xref: /linux/drivers/net/ethernet/stmicro/stmmac/stmmac_main.c (revision f49f4ab95c301dbccad0efe85296d908b8ae7ad4)
1 /*******************************************************************************
2   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3   ST Ethernet IPs are built around a Synopsys IP Core.
4 
5 	Copyright(C) 2007-2011 STMicroelectronics Ltd
6 
7   This program is free software; you can redistribute it and/or modify it
8   under the terms and conditions of the GNU General Public License,
9   version 2, as published by the Free Software Foundation.
10 
11   This program is distributed in the hope it will be useful, but WITHOUT
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14   more details.
15 
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc.,
18   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 
20   The full GNU General Public License is included in this distribution in
21   the file called "COPYING".
22 
23   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
24 
25   Documentation available at:
26 	http://www.stlinux.com
27   Support available at:
28 	https://bugzilla.stlinux.com/
29 *******************************************************************************/
30 
31 #include <linux/clk.h>
32 #include <linux/kernel.h>
33 #include <linux/interrupt.h>
34 #include <linux/ip.h>
35 #include <linux/tcp.h>
36 #include <linux/skbuff.h>
37 #include <linux/ethtool.h>
38 #include <linux/if_ether.h>
39 #include <linux/crc32.h>
40 #include <linux/mii.h>
41 #include <linux/if.h>
42 #include <linux/if_vlan.h>
43 #include <linux/dma-mapping.h>
44 #include <linux/slab.h>
45 #include <linux/prefetch.h>
46 #ifdef CONFIG_STMMAC_DEBUG_FS
47 #include <linux/debugfs.h>
48 #include <linux/seq_file.h>
49 #endif
50 #include "stmmac.h"
51 
52 #undef STMMAC_DEBUG
53 /*#define STMMAC_DEBUG*/
54 #ifdef STMMAC_DEBUG
55 #define DBG(nlevel, klevel, fmt, args...) \
56 		((void)(netif_msg_##nlevel(priv) && \
57 		printk(KERN_##klevel fmt, ## args)))
58 #else
59 #define DBG(nlevel, klevel, fmt, args...) do { } while (0)
60 #endif
61 
62 #undef STMMAC_RX_DEBUG
63 /*#define STMMAC_RX_DEBUG*/
64 #ifdef STMMAC_RX_DEBUG
65 #define RX_DBG(fmt, args...)  printk(fmt, ## args)
66 #else
67 #define RX_DBG(fmt, args...)  do { } while (0)
68 #endif
69 
70 #undef STMMAC_XMIT_DEBUG
71 /*#define STMMAC_XMIT_DEBUG*/
72 #ifdef STMMAC_TX_DEBUG
73 #define TX_DBG(fmt, args...)  printk(fmt, ## args)
74 #else
75 #define TX_DBG(fmt, args...)  do { } while (0)
76 #endif
77 
78 #define STMMAC_ALIGN(x)	L1_CACHE_ALIGN(x)
79 #define JUMBO_LEN	9000
80 
81 /* Module parameters */
82 #define TX_TIMEO 5000 /* default 5 seconds */
83 static int watchdog = TX_TIMEO;
84 module_param(watchdog, int, S_IRUGO | S_IWUSR);
85 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds");
86 
87 static int debug = -1;		/* -1: default, 0: no output, 16:  all */
88 module_param(debug, int, S_IRUGO | S_IWUSR);
89 MODULE_PARM_DESC(debug, "Message Level (0: no output, 16: all)");
90 
91 int phyaddr = -1;
92 module_param(phyaddr, int, S_IRUGO);
93 MODULE_PARM_DESC(phyaddr, "Physical device address");
94 
95 #define DMA_TX_SIZE 256
96 static int dma_txsize = DMA_TX_SIZE;
97 module_param(dma_txsize, int, S_IRUGO | S_IWUSR);
98 MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list");
99 
100 #define DMA_RX_SIZE 256
101 static int dma_rxsize = DMA_RX_SIZE;
102 module_param(dma_rxsize, int, S_IRUGO | S_IWUSR);
103 MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list");
104 
105 static int flow_ctrl = FLOW_OFF;
106 module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
107 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
108 
109 static int pause = PAUSE_TIME;
110 module_param(pause, int, S_IRUGO | S_IWUSR);
111 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
112 
113 #define TC_DEFAULT 64
114 static int tc = TC_DEFAULT;
115 module_param(tc, int, S_IRUGO | S_IWUSR);
116 MODULE_PARM_DESC(tc, "DMA threshold control value");
117 
118 /* Pay attention to tune this parameter; take care of both
119  * hardware capability and network stabitily/performance impact.
120  * Many tests showed that ~4ms latency seems to be good enough. */
121 #ifdef CONFIG_STMMAC_TIMER
122 #define DEFAULT_PERIODIC_RATE	256
123 static int tmrate = DEFAULT_PERIODIC_RATE;
124 module_param(tmrate, int, S_IRUGO | S_IWUSR);
125 MODULE_PARM_DESC(tmrate, "External timer freq. (default: 256Hz)");
126 #endif
127 
128 #define DMA_BUFFER_SIZE	BUF_SIZE_2KiB
129 static int buf_sz = DMA_BUFFER_SIZE;
130 module_param(buf_sz, int, S_IRUGO | S_IWUSR);
131 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
132 
133 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
134 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
135 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
136 
137 #define STMMAC_DEFAULT_LPI_TIMER	1000
138 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
139 module_param(eee_timer, int, S_IRUGO | S_IWUSR);
140 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
141 #define STMMAC_LPI_TIMER(x) (jiffies + msecs_to_jiffies(x))
142 
143 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
144 
145 #ifdef CONFIG_STMMAC_DEBUG_FS
146 static int stmmac_init_fs(struct net_device *dev);
147 static void stmmac_exit_fs(void);
148 #endif
149 
150 /**
151  * stmmac_verify_args - verify the driver parameters.
152  * Description: it verifies if some wrong parameter is passed to the driver.
153  * Note that wrong parameters are replaced with the default values.
154  */
155 static void stmmac_verify_args(void)
156 {
157 	if (unlikely(watchdog < 0))
158 		watchdog = TX_TIMEO;
159 	if (unlikely(dma_rxsize < 0))
160 		dma_rxsize = DMA_RX_SIZE;
161 	if (unlikely(dma_txsize < 0))
162 		dma_txsize = DMA_TX_SIZE;
163 	if (unlikely((buf_sz < DMA_BUFFER_SIZE) || (buf_sz > BUF_SIZE_16KiB)))
164 		buf_sz = DMA_BUFFER_SIZE;
165 	if (unlikely(flow_ctrl > 1))
166 		flow_ctrl = FLOW_AUTO;
167 	else if (likely(flow_ctrl < 0))
168 		flow_ctrl = FLOW_OFF;
169 	if (unlikely((pause < 0) || (pause > 0xffff)))
170 		pause = PAUSE_TIME;
171 	if (eee_timer < 0)
172 		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
173 }
174 
175 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
176 {
177 	u32 clk_rate;
178 
179 	clk_rate = clk_get_rate(priv->stmmac_clk);
180 
181 	/* Platform provided default clk_csr would be assumed valid
182 	 * for all other cases except for the below mentioned ones. */
183 	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
184 		if (clk_rate < CSR_F_35M)
185 			priv->clk_csr = STMMAC_CSR_20_35M;
186 		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
187 			priv->clk_csr = STMMAC_CSR_35_60M;
188 		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
189 			priv->clk_csr = STMMAC_CSR_60_100M;
190 		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
191 			priv->clk_csr = STMMAC_CSR_100_150M;
192 		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
193 			priv->clk_csr = STMMAC_CSR_150_250M;
194 		else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
195 			priv->clk_csr = STMMAC_CSR_250_300M;
196 	} /* For values higher than the IEEE 802.3 specified frequency
197 	   * we can not estimate the proper divider as it is not known
198 	   * the frequency of clk_csr_i. So we do not change the default
199 	   * divider. */
200 }
201 
202 #if defined(STMMAC_XMIT_DEBUG) || defined(STMMAC_RX_DEBUG)
203 static void print_pkt(unsigned char *buf, int len)
204 {
205 	int j;
206 	pr_info("len = %d byte, buf addr: 0x%p", len, buf);
207 	for (j = 0; j < len; j++) {
208 		if ((j % 16) == 0)
209 			pr_info("\n %03x:", j);
210 		pr_info(" %02x", buf[j]);
211 	}
212 	pr_info("\n");
213 }
214 #endif
215 
216 /* minimum number of free TX descriptors required to wake up TX process */
217 #define STMMAC_TX_THRESH(x)	(x->dma_tx_size/4)
218 
219 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
220 {
221 	return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1;
222 }
223 
224 /* On some ST platforms, some HW system configuraton registers have to be
225  * set according to the link speed negotiated.
226  */
227 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
228 {
229 	struct phy_device *phydev = priv->phydev;
230 
231 	if (likely(priv->plat->fix_mac_speed))
232 		priv->plat->fix_mac_speed(priv->plat->bsp_priv,
233 					  phydev->speed);
234 }
235 
236 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
237 {
238 	/* Check and enter in LPI mode */
239 	if ((priv->dirty_tx == priv->cur_tx) &&
240 	    (priv->tx_path_in_lpi_mode == false))
241 		priv->hw->mac->set_eee_mode(priv->ioaddr);
242 }
243 
244 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
245 {
246 	/* Exit and disable EEE in case of we are are in LPI state. */
247 	priv->hw->mac->reset_eee_mode(priv->ioaddr);
248 	del_timer_sync(&priv->eee_ctrl_timer);
249 	priv->tx_path_in_lpi_mode = false;
250 }
251 
252 /**
253  * stmmac_eee_ctrl_timer
254  * @arg : data hook
255  * Description:
256  *  If there is no data transfer and if we are not in LPI state,
257  *  then MAC Transmitter can be moved to LPI state.
258  */
259 static void stmmac_eee_ctrl_timer(unsigned long arg)
260 {
261 	struct stmmac_priv *priv = (struct stmmac_priv *)arg;
262 
263 	stmmac_enable_eee_mode(priv);
264 	mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_TIMER(eee_timer));
265 }
266 
267 /**
268  * stmmac_eee_init
269  * @priv: private device pointer
270  * Description:
271  *  If the EEE support has been enabled while configuring the driver,
272  *  if the GMAC actually supports the EEE (from the HW cap reg) and the
273  *  phy can also manage EEE, so enable the LPI state and start the timer
274  *  to verify if the tx path can enter in LPI state.
275  */
276 bool stmmac_eee_init(struct stmmac_priv *priv)
277 {
278 	bool ret = false;
279 
280 	/* MAC core supports the EEE feature. */
281 	if (priv->dma_cap.eee) {
282 		/* Check if the PHY supports EEE */
283 		if (phy_init_eee(priv->phydev, 1))
284 			goto out;
285 
286 		priv->eee_active = 1;
287 		init_timer(&priv->eee_ctrl_timer);
288 		priv->eee_ctrl_timer.function = stmmac_eee_ctrl_timer;
289 		priv->eee_ctrl_timer.data = (unsigned long)priv;
290 		priv->eee_ctrl_timer.expires = STMMAC_LPI_TIMER(eee_timer);
291 		add_timer(&priv->eee_ctrl_timer);
292 
293 		priv->hw->mac->set_eee_timer(priv->ioaddr,
294 					     STMMAC_DEFAULT_LIT_LS_TIMER,
295 					     priv->tx_lpi_timer);
296 
297 		pr_info("stmmac: Energy-Efficient Ethernet initialized\n");
298 
299 		ret = true;
300 	}
301 out:
302 	return ret;
303 }
304 
305 static void stmmac_eee_adjust(struct stmmac_priv *priv)
306 {
307 	/* When the EEE has been already initialised we have to
308 	 * modify the PLS bit in the LPI ctrl & status reg according
309 	 * to the PHY link status. For this reason.
310 	 */
311 	if (priv->eee_enabled)
312 		priv->hw->mac->set_eee_pls(priv->ioaddr, priv->phydev->link);
313 }
314 
315 /**
316  * stmmac_adjust_link
317  * @dev: net device structure
318  * Description: it adjusts the link parameters.
319  */
320 static void stmmac_adjust_link(struct net_device *dev)
321 {
322 	struct stmmac_priv *priv = netdev_priv(dev);
323 	struct phy_device *phydev = priv->phydev;
324 	unsigned long flags;
325 	int new_state = 0;
326 	unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;
327 
328 	if (phydev == NULL)
329 		return;
330 
331 	DBG(probe, DEBUG, "stmmac_adjust_link: called.  address %d link %d\n",
332 	    phydev->addr, phydev->link);
333 
334 	spin_lock_irqsave(&priv->lock, flags);
335 
336 	if (phydev->link) {
337 		u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
338 
339 		/* Now we make sure that we can be in full duplex mode.
340 		 * If not, we operate in half-duplex mode. */
341 		if (phydev->duplex != priv->oldduplex) {
342 			new_state = 1;
343 			if (!(phydev->duplex))
344 				ctrl &= ~priv->hw->link.duplex;
345 			else
346 				ctrl |= priv->hw->link.duplex;
347 			priv->oldduplex = phydev->duplex;
348 		}
349 		/* Flow Control operation */
350 		if (phydev->pause)
351 			priv->hw->mac->flow_ctrl(priv->ioaddr, phydev->duplex,
352 						 fc, pause_time);
353 
354 		if (phydev->speed != priv->speed) {
355 			new_state = 1;
356 			switch (phydev->speed) {
357 			case 1000:
358 				if (likely(priv->plat->has_gmac))
359 					ctrl &= ~priv->hw->link.port;
360 					stmmac_hw_fix_mac_speed(priv);
361 				break;
362 			case 100:
363 			case 10:
364 				if (priv->plat->has_gmac) {
365 					ctrl |= priv->hw->link.port;
366 					if (phydev->speed == SPEED_100) {
367 						ctrl |= priv->hw->link.speed;
368 					} else {
369 						ctrl &= ~(priv->hw->link.speed);
370 					}
371 				} else {
372 					ctrl &= ~priv->hw->link.port;
373 				}
374 				stmmac_hw_fix_mac_speed(priv);
375 				break;
376 			default:
377 				if (netif_msg_link(priv))
378 					pr_warning("%s: Speed (%d) is not 10"
379 				       " or 100!\n", dev->name, phydev->speed);
380 				break;
381 			}
382 
383 			priv->speed = phydev->speed;
384 		}
385 
386 		writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
387 
388 		if (!priv->oldlink) {
389 			new_state = 1;
390 			priv->oldlink = 1;
391 		}
392 	} else if (priv->oldlink) {
393 		new_state = 1;
394 		priv->oldlink = 0;
395 		priv->speed = 0;
396 		priv->oldduplex = -1;
397 	}
398 
399 	if (new_state && netif_msg_link(priv))
400 		phy_print_status(phydev);
401 
402 	stmmac_eee_adjust(priv);
403 
404 	spin_unlock_irqrestore(&priv->lock, flags);
405 
406 	DBG(probe, DEBUG, "stmmac_adjust_link: exiting\n");
407 }
408 
409 /**
410  * stmmac_init_phy - PHY initialization
411  * @dev: net device structure
412  * Description: it initializes the driver's PHY state, and attaches the PHY
413  * to the mac driver.
414  *  Return value:
415  *  0 on success
416  */
417 static int stmmac_init_phy(struct net_device *dev)
418 {
419 	struct stmmac_priv *priv = netdev_priv(dev);
420 	struct phy_device *phydev;
421 	char phy_id_fmt[MII_BUS_ID_SIZE + 3];
422 	char bus_id[MII_BUS_ID_SIZE];
423 	int interface = priv->plat->interface;
424 	priv->oldlink = 0;
425 	priv->speed = 0;
426 	priv->oldduplex = -1;
427 
428 	if (priv->plat->phy_bus_name)
429 		snprintf(bus_id, MII_BUS_ID_SIZE, "%s-%x",
430 				priv->plat->phy_bus_name, priv->plat->bus_id);
431 	else
432 		snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
433 				priv->plat->bus_id);
434 
435 	snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
436 		 priv->plat->phy_addr);
437 	pr_debug("stmmac_init_phy:  trying to attach to %s\n", phy_id_fmt);
438 
439 	phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link, 0,
440 			     interface);
441 
442 	if (IS_ERR(phydev)) {
443 		pr_err("%s: Could not attach to PHY\n", dev->name);
444 		return PTR_ERR(phydev);
445 	}
446 
447 	/* Stop Advertising 1000BASE Capability if interface is not GMII */
448 	if ((interface == PHY_INTERFACE_MODE_MII) ||
449 	    (interface == PHY_INTERFACE_MODE_RMII))
450 		phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
451 					 SUPPORTED_1000baseT_Full);
452 
453 	/*
454 	 * Broken HW is sometimes missing the pull-up resistor on the
455 	 * MDIO line, which results in reads to non-existent devices returning
456 	 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
457 	 * device as well.
458 	 * Note: phydev->phy_id is the result of reading the UID PHY registers.
459 	 */
460 	if (phydev->phy_id == 0) {
461 		phy_disconnect(phydev);
462 		return -ENODEV;
463 	}
464 	pr_debug("stmmac_init_phy:  %s: attached to PHY (UID 0x%x)"
465 		 " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
466 
467 	priv->phydev = phydev;
468 
469 	return 0;
470 }
471 
472 /**
473  * display_ring
474  * @p: pointer to the ring.
475  * @size: size of the ring.
476  * Description: display all the descriptors within the ring.
477  */
478 static void display_ring(struct dma_desc *p, int size)
479 {
480 	struct tmp_s {
481 		u64 a;
482 		unsigned int b;
483 		unsigned int c;
484 	};
485 	int i;
486 	for (i = 0; i < size; i++) {
487 		struct tmp_s *x = (struct tmp_s *)(p + i);
488 		pr_info("\t%d [0x%x]: DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
489 		       i, (unsigned int)virt_to_phys(&p[i]),
490 		       (unsigned int)(x->a), (unsigned int)((x->a) >> 32),
491 		       x->b, x->c);
492 		pr_info("\n");
493 	}
494 }
495 
496 static int stmmac_set_bfsize(int mtu, int bufsize)
497 {
498 	int ret = bufsize;
499 
500 	if (mtu >= BUF_SIZE_4KiB)
501 		ret = BUF_SIZE_8KiB;
502 	else if (mtu >= BUF_SIZE_2KiB)
503 		ret = BUF_SIZE_4KiB;
504 	else if (mtu >= DMA_BUFFER_SIZE)
505 		ret = BUF_SIZE_2KiB;
506 	else
507 		ret = DMA_BUFFER_SIZE;
508 
509 	return ret;
510 }
511 
512 /**
513  * init_dma_desc_rings - init the RX/TX descriptor rings
514  * @dev: net device structure
515  * Description:  this function initializes the DMA RX/TX descriptors
516  * and allocates the socket buffers. It suppors the chained and ring
517  * modes.
518  */
519 static void init_dma_desc_rings(struct net_device *dev)
520 {
521 	int i;
522 	struct stmmac_priv *priv = netdev_priv(dev);
523 	struct sk_buff *skb;
524 	unsigned int txsize = priv->dma_tx_size;
525 	unsigned int rxsize = priv->dma_rx_size;
526 	unsigned int bfsize;
527 	int dis_ic = 0;
528 	int des3_as_data_buf = 0;
529 
530 	/* Set the max buffer size according to the DESC mode
531 	 * and the MTU. Note that RING mode allows 16KiB bsize. */
532 	bfsize = priv->hw->ring->set_16kib_bfsize(dev->mtu);
533 
534 	if (bfsize == BUF_SIZE_16KiB)
535 		des3_as_data_buf = 1;
536 	else
537 		bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
538 
539 #ifdef CONFIG_STMMAC_TIMER
540 	/* Disable interrupts on completion for the reception if timer is on */
541 	if (likely(priv->tm->enable))
542 		dis_ic = 1;
543 #endif
544 
545 	DBG(probe, INFO, "stmmac: txsize %d, rxsize %d, bfsize %d\n",
546 	    txsize, rxsize, bfsize);
547 
548 	priv->rx_skbuff_dma = kmalloc(rxsize * sizeof(dma_addr_t), GFP_KERNEL);
549 	priv->rx_skbuff =
550 	    kmalloc(sizeof(struct sk_buff *) * rxsize, GFP_KERNEL);
551 	priv->dma_rx =
552 	    (struct dma_desc *)dma_alloc_coherent(priv->device,
553 						  rxsize *
554 						  sizeof(struct dma_desc),
555 						  &priv->dma_rx_phy,
556 						  GFP_KERNEL);
557 	priv->tx_skbuff = kmalloc(sizeof(struct sk_buff *) * txsize,
558 				       GFP_KERNEL);
559 	priv->dma_tx =
560 	    (struct dma_desc *)dma_alloc_coherent(priv->device,
561 						  txsize *
562 						  sizeof(struct dma_desc),
563 						  &priv->dma_tx_phy,
564 						  GFP_KERNEL);
565 
566 	if ((priv->dma_rx == NULL) || (priv->dma_tx == NULL)) {
567 		pr_err("%s:ERROR allocating the DMA Tx/Rx desc\n", __func__);
568 		return;
569 	}
570 
571 	DBG(probe, INFO, "stmmac (%s) DMA desc: virt addr (Rx %p, "
572 	    "Tx %p)\n\tDMA phy addr (Rx 0x%08x, Tx 0x%08x)\n",
573 	    dev->name, priv->dma_rx, priv->dma_tx,
574 	    (unsigned int)priv->dma_rx_phy, (unsigned int)priv->dma_tx_phy);
575 
576 	/* RX INITIALIZATION */
577 	DBG(probe, INFO, "stmmac: SKB addresses:\n"
578 			 "skb\t\tskb data\tdma data\n");
579 
580 	for (i = 0; i < rxsize; i++) {
581 		struct dma_desc *p = priv->dma_rx + i;
582 
583 		skb = __netdev_alloc_skb(dev, bfsize + NET_IP_ALIGN,
584 					 GFP_KERNEL);
585 		if (unlikely(skb == NULL)) {
586 			pr_err("%s: Rx init fails; skb is NULL\n", __func__);
587 			break;
588 		}
589 		skb_reserve(skb, NET_IP_ALIGN);
590 		priv->rx_skbuff[i] = skb;
591 		priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
592 						bfsize, DMA_FROM_DEVICE);
593 
594 		p->des2 = priv->rx_skbuff_dma[i];
595 
596 		priv->hw->ring->init_desc3(des3_as_data_buf, p);
597 
598 		DBG(probe, INFO, "[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
599 			priv->rx_skbuff[i]->data, priv->rx_skbuff_dma[i]);
600 	}
601 	priv->cur_rx = 0;
602 	priv->dirty_rx = (unsigned int)(i - rxsize);
603 	priv->dma_buf_sz = bfsize;
604 	buf_sz = bfsize;
605 
606 	/* TX INITIALIZATION */
607 	for (i = 0; i < txsize; i++) {
608 		priv->tx_skbuff[i] = NULL;
609 		priv->dma_tx[i].des2 = 0;
610 	}
611 
612 	/* In case of Chained mode this sets the des3 to the next
613 	 * element in the chain */
614 	priv->hw->ring->init_dma_chain(priv->dma_rx, priv->dma_rx_phy, rxsize);
615 	priv->hw->ring->init_dma_chain(priv->dma_tx, priv->dma_tx_phy, txsize);
616 
617 	priv->dirty_tx = 0;
618 	priv->cur_tx = 0;
619 
620 	/* Clear the Rx/Tx descriptors */
621 	priv->hw->desc->init_rx_desc(priv->dma_rx, rxsize, dis_ic);
622 	priv->hw->desc->init_tx_desc(priv->dma_tx, txsize);
623 
624 	if (netif_msg_hw(priv)) {
625 		pr_info("RX descriptor ring:\n");
626 		display_ring(priv->dma_rx, rxsize);
627 		pr_info("TX descriptor ring:\n");
628 		display_ring(priv->dma_tx, txsize);
629 	}
630 }
631 
632 static void dma_free_rx_skbufs(struct stmmac_priv *priv)
633 {
634 	int i;
635 
636 	for (i = 0; i < priv->dma_rx_size; i++) {
637 		if (priv->rx_skbuff[i]) {
638 			dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
639 					 priv->dma_buf_sz, DMA_FROM_DEVICE);
640 			dev_kfree_skb_any(priv->rx_skbuff[i]);
641 		}
642 		priv->rx_skbuff[i] = NULL;
643 	}
644 }
645 
646 static void dma_free_tx_skbufs(struct stmmac_priv *priv)
647 {
648 	int i;
649 
650 	for (i = 0; i < priv->dma_tx_size; i++) {
651 		if (priv->tx_skbuff[i] != NULL) {
652 			struct dma_desc *p = priv->dma_tx + i;
653 			if (p->des2)
654 				dma_unmap_single(priv->device, p->des2,
655 						 priv->hw->desc->get_tx_len(p),
656 						 DMA_TO_DEVICE);
657 			dev_kfree_skb_any(priv->tx_skbuff[i]);
658 			priv->tx_skbuff[i] = NULL;
659 		}
660 	}
661 }
662 
663 static void free_dma_desc_resources(struct stmmac_priv *priv)
664 {
665 	/* Release the DMA TX/RX socket buffers */
666 	dma_free_rx_skbufs(priv);
667 	dma_free_tx_skbufs(priv);
668 
669 	/* Free the region of consistent memory previously allocated for
670 	 * the DMA */
671 	dma_free_coherent(priv->device,
672 			  priv->dma_tx_size * sizeof(struct dma_desc),
673 			  priv->dma_tx, priv->dma_tx_phy);
674 	dma_free_coherent(priv->device,
675 			  priv->dma_rx_size * sizeof(struct dma_desc),
676 			  priv->dma_rx, priv->dma_rx_phy);
677 	kfree(priv->rx_skbuff_dma);
678 	kfree(priv->rx_skbuff);
679 	kfree(priv->tx_skbuff);
680 }
681 
682 /**
683  *  stmmac_dma_operation_mode - HW DMA operation mode
684  *  @priv : pointer to the private device structure.
685  *  Description: it sets the DMA operation mode: tx/rx DMA thresholds
686  *  or Store-And-Forward capability.
687  */
688 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
689 {
690 	if (likely(priv->plat->force_sf_dma_mode ||
691 		((priv->plat->tx_coe) && (!priv->no_csum_insertion)))) {
692 		/*
693 		 * In case of GMAC, SF mode can be enabled
694 		 * to perform the TX COE in HW. This depends on:
695 		 * 1) TX COE if actually supported
696 		 * 2) There is no bugged Jumbo frame support
697 		 *    that needs to not insert csum in the TDES.
698 		 */
699 		priv->hw->dma->dma_mode(priv->ioaddr,
700 					SF_DMA_MODE, SF_DMA_MODE);
701 		tc = SF_DMA_MODE;
702 	} else
703 		priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
704 }
705 
706 /**
707  * stmmac_tx:
708  * @priv: private driver structure
709  * Description: it reclaims resources after transmission completes.
710  */
711 static void stmmac_tx(struct stmmac_priv *priv)
712 {
713 	unsigned int txsize = priv->dma_tx_size;
714 
715 	spin_lock(&priv->tx_lock);
716 
717 	while (priv->dirty_tx != priv->cur_tx) {
718 		int last;
719 		unsigned int entry = priv->dirty_tx % txsize;
720 		struct sk_buff *skb = priv->tx_skbuff[entry];
721 		struct dma_desc *p = priv->dma_tx + entry;
722 
723 		/* Check if the descriptor is owned by the DMA. */
724 		if (priv->hw->desc->get_tx_owner(p))
725 			break;
726 
727 		/* Verify tx error by looking at the last segment */
728 		last = priv->hw->desc->get_tx_ls(p);
729 		if (likely(last)) {
730 			int tx_error =
731 				priv->hw->desc->tx_status(&priv->dev->stats,
732 							  &priv->xstats, p,
733 							  priv->ioaddr);
734 			if (likely(tx_error == 0)) {
735 				priv->dev->stats.tx_packets++;
736 				priv->xstats.tx_pkt_n++;
737 			} else
738 				priv->dev->stats.tx_errors++;
739 		}
740 		TX_DBG("%s: curr %d, dirty %d\n", __func__,
741 			priv->cur_tx, priv->dirty_tx);
742 
743 		if (likely(p->des2))
744 			dma_unmap_single(priv->device, p->des2,
745 					 priv->hw->desc->get_tx_len(p),
746 					 DMA_TO_DEVICE);
747 		priv->hw->ring->clean_desc3(p);
748 
749 		if (likely(skb != NULL)) {
750 			dev_kfree_skb(skb);
751 			priv->tx_skbuff[entry] = NULL;
752 		}
753 
754 		priv->hw->desc->release_tx_desc(p);
755 
756 		priv->dirty_tx++;
757 	}
758 	if (unlikely(netif_queue_stopped(priv->dev) &&
759 		     stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) {
760 		netif_tx_lock(priv->dev);
761 		if (netif_queue_stopped(priv->dev) &&
762 		     stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) {
763 			TX_DBG("%s: restart transmit\n", __func__);
764 			netif_wake_queue(priv->dev);
765 		}
766 		netif_tx_unlock(priv->dev);
767 	}
768 
769 	if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
770 		stmmac_enable_eee_mode(priv);
771 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_TIMER(eee_timer));
772 	}
773 	spin_unlock(&priv->tx_lock);
774 }
775 
776 static inline void stmmac_enable_irq(struct stmmac_priv *priv)
777 {
778 #ifdef CONFIG_STMMAC_TIMER
779 	if (likely(priv->tm->enable))
780 		priv->tm->timer_start(tmrate);
781 	else
782 #endif
783 		priv->hw->dma->enable_dma_irq(priv->ioaddr);
784 }
785 
786 static inline void stmmac_disable_irq(struct stmmac_priv *priv)
787 {
788 #ifdef CONFIG_STMMAC_TIMER
789 	if (likely(priv->tm->enable))
790 		priv->tm->timer_stop();
791 	else
792 #endif
793 		priv->hw->dma->disable_dma_irq(priv->ioaddr);
794 }
795 
796 static int stmmac_has_work(struct stmmac_priv *priv)
797 {
798 	unsigned int has_work = 0;
799 	int rxret, tx_work = 0;
800 
801 	rxret = priv->hw->desc->get_rx_owner(priv->dma_rx +
802 		(priv->cur_rx % priv->dma_rx_size));
803 
804 	if (priv->dirty_tx != priv->cur_tx)
805 		tx_work = 1;
806 
807 	if (likely(!rxret || tx_work))
808 		has_work = 1;
809 
810 	return has_work;
811 }
812 
813 static inline void _stmmac_schedule(struct stmmac_priv *priv)
814 {
815 	if (likely(stmmac_has_work(priv))) {
816 		stmmac_disable_irq(priv);
817 		napi_schedule(&priv->napi);
818 	}
819 }
820 
821 #ifdef CONFIG_STMMAC_TIMER
822 void stmmac_schedule(struct net_device *dev)
823 {
824 	struct stmmac_priv *priv = netdev_priv(dev);
825 
826 	priv->xstats.sched_timer_n++;
827 
828 	_stmmac_schedule(priv);
829 }
830 
831 static void stmmac_no_timer_started(unsigned int x)
832 {;
833 };
834 
835 static void stmmac_no_timer_stopped(void)
836 {;
837 };
838 #endif
839 
840 /**
841  * stmmac_tx_err:
842  * @priv: pointer to the private device structure
843  * Description: it cleans the descriptors and restarts the transmission
844  * in case of errors.
845  */
846 static void stmmac_tx_err(struct stmmac_priv *priv)
847 {
848 	netif_stop_queue(priv->dev);
849 
850 	priv->hw->dma->stop_tx(priv->ioaddr);
851 	dma_free_tx_skbufs(priv);
852 	priv->hw->desc->init_tx_desc(priv->dma_tx, priv->dma_tx_size);
853 	priv->dirty_tx = 0;
854 	priv->cur_tx = 0;
855 	priv->hw->dma->start_tx(priv->ioaddr);
856 
857 	priv->dev->stats.tx_errors++;
858 	netif_wake_queue(priv->dev);
859 }
860 
861 
862 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
863 {
864 	int status;
865 
866 	status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
867 	if (likely(status == handle_tx_rx))
868 		_stmmac_schedule(priv);
869 
870 	else if (unlikely(status == tx_hard_error_bump_tc)) {
871 		/* Try to bump up the dma threshold on this failure */
872 		if (unlikely(tc != SF_DMA_MODE) && (tc <= 256)) {
873 			tc += 64;
874 			priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
875 			priv->xstats.threshold = tc;
876 		}
877 	} else if (unlikely(status == tx_hard_error))
878 		stmmac_tx_err(priv);
879 }
880 
881 static void stmmac_mmc_setup(struct stmmac_priv *priv)
882 {
883 	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
884 			    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
885 
886 	/* Mask MMC irq, counters are managed in SW and registers
887 	 * are cleared on each READ eventually. */
888 	dwmac_mmc_intr_all_mask(priv->ioaddr);
889 
890 	if (priv->dma_cap.rmon) {
891 		dwmac_mmc_ctrl(priv->ioaddr, mode);
892 		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
893 	} else
894 		pr_info(" No MAC Management Counters available\n");
895 }
896 
897 static u32 stmmac_get_synopsys_id(struct stmmac_priv *priv)
898 {
899 	u32 hwid = priv->hw->synopsys_uid;
900 
901 	/* Only check valid Synopsys Id because old MAC chips
902 	 * have no HW registers where get the ID */
903 	if (likely(hwid)) {
904 		u32 uid = ((hwid & 0x0000ff00) >> 8);
905 		u32 synid = (hwid & 0x000000ff);
906 
907 		pr_info("stmmac - user ID: 0x%x, Synopsys ID: 0x%x\n",
908 			uid, synid);
909 
910 		return synid;
911 	}
912 	return 0;
913 }
914 
915 /**
916  * stmmac_selec_desc_mode
917  * @priv : private structure
918  * Description: select the Enhanced/Alternate or Normal descriptors
919  */
920 static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
921 {
922 	if (priv->plat->enh_desc) {
923 		pr_info(" Enhanced/Alternate descriptors\n");
924 		priv->hw->desc = &enh_desc_ops;
925 	} else {
926 		pr_info(" Normal descriptors\n");
927 		priv->hw->desc = &ndesc_ops;
928 	}
929 }
930 
931 /**
932  * stmmac_get_hw_features
933  * @priv : private device pointer
934  * Description:
935  *  new GMAC chip generations have a new register to indicate the
936  *  presence of the optional feature/functions.
937  *  This can be also used to override the value passed through the
938  *  platform and necessary for old MAC10/100 and GMAC chips.
939  */
940 static int stmmac_get_hw_features(struct stmmac_priv *priv)
941 {
942 	u32 hw_cap = 0;
943 
944 	if (priv->hw->dma->get_hw_feature) {
945 		hw_cap = priv->hw->dma->get_hw_feature(priv->ioaddr);
946 
947 		priv->dma_cap.mbps_10_100 = (hw_cap & DMA_HW_FEAT_MIISEL);
948 		priv->dma_cap.mbps_1000 = (hw_cap & DMA_HW_FEAT_GMIISEL) >> 1;
949 		priv->dma_cap.half_duplex = (hw_cap & DMA_HW_FEAT_HDSEL) >> 2;
950 		priv->dma_cap.hash_filter = (hw_cap & DMA_HW_FEAT_HASHSEL) >> 4;
951 		priv->dma_cap.multi_addr =
952 			(hw_cap & DMA_HW_FEAT_ADDMACADRSEL) >> 5;
953 		priv->dma_cap.pcs = (hw_cap & DMA_HW_FEAT_PCSSEL) >> 6;
954 		priv->dma_cap.sma_mdio = (hw_cap & DMA_HW_FEAT_SMASEL) >> 8;
955 		priv->dma_cap.pmt_remote_wake_up =
956 			(hw_cap & DMA_HW_FEAT_RWKSEL) >> 9;
957 		priv->dma_cap.pmt_magic_frame =
958 			(hw_cap & DMA_HW_FEAT_MGKSEL) >> 10;
959 		/* MMC */
960 		priv->dma_cap.rmon = (hw_cap & DMA_HW_FEAT_MMCSEL) >> 11;
961 		/* IEEE 1588-2002*/
962 		priv->dma_cap.time_stamp =
963 			(hw_cap & DMA_HW_FEAT_TSVER1SEL) >> 12;
964 		/* IEEE 1588-2008*/
965 		priv->dma_cap.atime_stamp =
966 			(hw_cap & DMA_HW_FEAT_TSVER2SEL) >> 13;
967 		/* 802.3az - Energy-Efficient Ethernet (EEE) */
968 		priv->dma_cap.eee = (hw_cap & DMA_HW_FEAT_EEESEL) >> 14;
969 		priv->dma_cap.av = (hw_cap & DMA_HW_FEAT_AVSEL) >> 15;
970 		/* TX and RX csum */
971 		priv->dma_cap.tx_coe = (hw_cap & DMA_HW_FEAT_TXCOESEL) >> 16;
972 		priv->dma_cap.rx_coe_type1 =
973 			(hw_cap & DMA_HW_FEAT_RXTYP1COE) >> 17;
974 		priv->dma_cap.rx_coe_type2 =
975 			(hw_cap & DMA_HW_FEAT_RXTYP2COE) >> 18;
976 		priv->dma_cap.rxfifo_over_2048 =
977 			(hw_cap & DMA_HW_FEAT_RXFIFOSIZE) >> 19;
978 		/* TX and RX number of channels */
979 		priv->dma_cap.number_rx_channel =
980 			(hw_cap & DMA_HW_FEAT_RXCHCNT) >> 20;
981 		priv->dma_cap.number_tx_channel =
982 			(hw_cap & DMA_HW_FEAT_TXCHCNT) >> 22;
983 		/* Alternate (enhanced) DESC mode*/
984 		priv->dma_cap.enh_desc =
985 			(hw_cap & DMA_HW_FEAT_ENHDESSEL) >> 24;
986 
987 	}
988 
989 	return hw_cap;
990 }
991 
992 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
993 {
994 	/* verify if the MAC address is valid, in case of failures it
995 	 * generates a random MAC address */
996 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
997 		priv->hw->mac->get_umac_addr((void __iomem *)
998 					     priv->dev->base_addr,
999 					     priv->dev->dev_addr, 0);
1000 		if  (!is_valid_ether_addr(priv->dev->dev_addr))
1001 			eth_hw_addr_random(priv->dev);
1002 	}
1003 	pr_warning("%s: device MAC address %pM\n", priv->dev->name,
1004 						   priv->dev->dev_addr);
1005 }
1006 
1007 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
1008 {
1009 	int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, burst_len = 0;
1010 	int mixed_burst = 0;
1011 
1012 	/* Some DMA parameters can be passed from the platform;
1013 	 * in case of these are not passed we keep a default
1014 	 * (good for all the chips) and init the DMA! */
1015 	if (priv->plat->dma_cfg) {
1016 		pbl = priv->plat->dma_cfg->pbl;
1017 		fixed_burst = priv->plat->dma_cfg->fixed_burst;
1018 		mixed_burst = priv->plat->dma_cfg->mixed_burst;
1019 		burst_len = priv->plat->dma_cfg->burst_len;
1020 	}
1021 
1022 	return priv->hw->dma->init(priv->ioaddr, pbl, fixed_burst, mixed_burst,
1023 				   burst_len, priv->dma_tx_phy,
1024 				   priv->dma_rx_phy);
1025 }
1026 
1027 /**
1028  *  stmmac_open - open entry point of the driver
1029  *  @dev : pointer to the device structure.
1030  *  Description:
1031  *  This function is the open entry point of the driver.
1032  *  Return value:
1033  *  0 on success and an appropriate (-)ve integer as defined in errno.h
1034  *  file on failure.
1035  */
1036 static int stmmac_open(struct net_device *dev)
1037 {
1038 	struct stmmac_priv *priv = netdev_priv(dev);
1039 	int ret;
1040 
1041 #ifdef CONFIG_STMMAC_TIMER
1042 	priv->tm = kzalloc(sizeof(struct stmmac_timer *), GFP_KERNEL);
1043 	if (unlikely(priv->tm == NULL))
1044 		return -ENOMEM;
1045 
1046 	priv->tm->freq = tmrate;
1047 
1048 	/* Test if the external timer can be actually used.
1049 	 * In case of failure continue without timer. */
1050 	if (unlikely((stmmac_open_ext_timer(dev, priv->tm)) < 0)) {
1051 		pr_warning("stmmaceth: cannot attach the external timer.\n");
1052 		priv->tm->freq = 0;
1053 		priv->tm->timer_start = stmmac_no_timer_started;
1054 		priv->tm->timer_stop = stmmac_no_timer_stopped;
1055 	} else
1056 		priv->tm->enable = 1;
1057 #endif
1058 	clk_prepare_enable(priv->stmmac_clk);
1059 
1060 	stmmac_check_ether_addr(priv);
1061 
1062 	ret = stmmac_init_phy(dev);
1063 	if (unlikely(ret)) {
1064 		pr_err("%s: Cannot attach to PHY (error: %d)\n", __func__, ret);
1065 		goto open_error;
1066 	}
1067 
1068 	/* Create and initialize the TX/RX descriptors chains. */
1069 	priv->dma_tx_size = STMMAC_ALIGN(dma_txsize);
1070 	priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize);
1071 	priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
1072 	init_dma_desc_rings(dev);
1073 
1074 	/* DMA initialization and SW reset */
1075 	ret = stmmac_init_dma_engine(priv);
1076 	if (ret < 0) {
1077 		pr_err("%s: DMA initialization failed\n", __func__);
1078 		goto open_error;
1079 	}
1080 
1081 	/* Copy the MAC addr into the HW  */
1082 	priv->hw->mac->set_umac_addr(priv->ioaddr, dev->dev_addr, 0);
1083 
1084 	/* If required, perform hw setup of the bus. */
1085 	if (priv->plat->bus_setup)
1086 		priv->plat->bus_setup(priv->ioaddr);
1087 
1088 	/* Initialize the MAC Core */
1089 	priv->hw->mac->core_init(priv->ioaddr);
1090 
1091 	/* Request the IRQ lines */
1092 	ret = request_irq(dev->irq, stmmac_interrupt,
1093 			 IRQF_SHARED, dev->name, dev);
1094 	if (unlikely(ret < 0)) {
1095 		pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
1096 		       __func__, dev->irq, ret);
1097 		goto open_error;
1098 	}
1099 
1100 	/* Request the Wake IRQ in case of another line is used for WoL */
1101 	if (priv->wol_irq != dev->irq) {
1102 		ret = request_irq(priv->wol_irq, stmmac_interrupt,
1103 				  IRQF_SHARED, dev->name, dev);
1104 		if (unlikely(ret < 0)) {
1105 			pr_err("%s: ERROR: allocating the ext WoL IRQ %d "
1106 			       "(error: %d)\n",	__func__, priv->wol_irq, ret);
1107 			goto open_error_wolirq;
1108 		}
1109 	}
1110 
1111 	/* Request the IRQ lines */
1112 	if (priv->lpi_irq != -ENXIO) {
1113 		ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
1114 				  dev->name, dev);
1115 		if (unlikely(ret < 0)) {
1116 			pr_err("%s: ERROR: allocating the LPI IRQ %d (%d)\n",
1117 			       __func__, priv->lpi_irq, ret);
1118 			goto open_error_lpiirq;
1119 		}
1120 	}
1121 
1122 	/* Enable the MAC Rx/Tx */
1123 	stmmac_set_mac(priv->ioaddr, true);
1124 
1125 	/* Set the HW DMA mode and the COE */
1126 	stmmac_dma_operation_mode(priv);
1127 
1128 	/* Extra statistics */
1129 	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
1130 	priv->xstats.threshold = tc;
1131 
1132 	stmmac_mmc_setup(priv);
1133 
1134 #ifdef CONFIG_STMMAC_DEBUG_FS
1135 	ret = stmmac_init_fs(dev);
1136 	if (ret < 0)
1137 		pr_warning("%s: failed debugFS registration\n", __func__);
1138 #endif
1139 	/* Start the ball rolling... */
1140 	DBG(probe, DEBUG, "%s: DMA RX/TX processes started...\n", dev->name);
1141 	priv->hw->dma->start_tx(priv->ioaddr);
1142 	priv->hw->dma->start_rx(priv->ioaddr);
1143 
1144 #ifdef CONFIG_STMMAC_TIMER
1145 	priv->tm->timer_start(tmrate);
1146 #endif
1147 
1148 	/* Dump DMA/MAC registers */
1149 	if (netif_msg_hw(priv)) {
1150 		priv->hw->mac->dump_regs(priv->ioaddr);
1151 		priv->hw->dma->dump_regs(priv->ioaddr);
1152 	}
1153 
1154 	if (priv->phydev)
1155 		phy_start(priv->phydev);
1156 
1157 	priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS_TIMER;
1158 	priv->eee_enabled = stmmac_eee_init(priv);
1159 
1160 	napi_enable(&priv->napi);
1161 	netif_start_queue(dev);
1162 
1163 	return 0;
1164 
1165 open_error_lpiirq:
1166 	if (priv->wol_irq != dev->irq)
1167 		free_irq(priv->wol_irq, dev);
1168 
1169 open_error_wolirq:
1170 	free_irq(dev->irq, dev);
1171 
1172 open_error:
1173 #ifdef CONFIG_STMMAC_TIMER
1174 	kfree(priv->tm);
1175 #endif
1176 	if (priv->phydev)
1177 		phy_disconnect(priv->phydev);
1178 
1179 	clk_disable_unprepare(priv->stmmac_clk);
1180 
1181 	return ret;
1182 }
1183 
1184 /**
1185  *  stmmac_release - close entry point of the driver
1186  *  @dev : device pointer.
1187  *  Description:
1188  *  This is the stop entry point of the driver.
1189  */
1190 static int stmmac_release(struct net_device *dev)
1191 {
1192 	struct stmmac_priv *priv = netdev_priv(dev);
1193 
1194 	if (priv->eee_enabled)
1195 		del_timer_sync(&priv->eee_ctrl_timer);
1196 
1197 	/* Stop and disconnect the PHY */
1198 	if (priv->phydev) {
1199 		phy_stop(priv->phydev);
1200 		phy_disconnect(priv->phydev);
1201 		priv->phydev = NULL;
1202 	}
1203 
1204 	netif_stop_queue(dev);
1205 
1206 #ifdef CONFIG_STMMAC_TIMER
1207 	/* Stop and release the timer */
1208 	stmmac_close_ext_timer();
1209 	if (priv->tm != NULL)
1210 		kfree(priv->tm);
1211 #endif
1212 	napi_disable(&priv->napi);
1213 
1214 	/* Free the IRQ lines */
1215 	free_irq(dev->irq, dev);
1216 	if (priv->wol_irq != dev->irq)
1217 		free_irq(priv->wol_irq, dev);
1218 	if (priv->lpi_irq != -ENXIO)
1219 		free_irq(priv->lpi_irq, dev);
1220 
1221 	/* Stop TX/RX DMA and clear the descriptors */
1222 	priv->hw->dma->stop_tx(priv->ioaddr);
1223 	priv->hw->dma->stop_rx(priv->ioaddr);
1224 
1225 	/* Release and free the Rx/Tx resources */
1226 	free_dma_desc_resources(priv);
1227 
1228 	/* Disable the MAC Rx/Tx */
1229 	stmmac_set_mac(priv->ioaddr, false);
1230 
1231 	netif_carrier_off(dev);
1232 
1233 #ifdef CONFIG_STMMAC_DEBUG_FS
1234 	stmmac_exit_fs();
1235 #endif
1236 	clk_disable_unprepare(priv->stmmac_clk);
1237 
1238 	return 0;
1239 }
1240 
1241 /**
1242  *  stmmac_xmit:
1243  *  @skb : the socket buffer
1244  *  @dev : device pointer
1245  *  Description : Tx entry point of the driver.
1246  */
1247 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
1248 {
1249 	struct stmmac_priv *priv = netdev_priv(dev);
1250 	unsigned int txsize = priv->dma_tx_size;
1251 	unsigned int entry;
1252 	int i, csum_insertion = 0;
1253 	int nfrags = skb_shinfo(skb)->nr_frags;
1254 	struct dma_desc *desc, *first;
1255 	unsigned int nopaged_len = skb_headlen(skb);
1256 
1257 	if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
1258 		if (!netif_queue_stopped(dev)) {
1259 			netif_stop_queue(dev);
1260 			/* This is a hard error, log it. */
1261 			pr_err("%s: BUG! Tx Ring full when queue awake\n",
1262 				__func__);
1263 		}
1264 		return NETDEV_TX_BUSY;
1265 	}
1266 
1267 	spin_lock(&priv->tx_lock);
1268 
1269 	if (priv->tx_path_in_lpi_mode)
1270 		stmmac_disable_eee_mode(priv);
1271 
1272 	entry = priv->cur_tx % txsize;
1273 
1274 #ifdef STMMAC_XMIT_DEBUG
1275 	if ((skb->len > ETH_FRAME_LEN) || nfrags)
1276 		pr_info("stmmac xmit:\n"
1277 		       "\tskb addr %p - len: %d - nopaged_len: %d\n"
1278 		       "\tn_frags: %d - ip_summed: %d - %s gso\n",
1279 		       skb, skb->len, nopaged_len, nfrags, skb->ip_summed,
1280 		       !skb_is_gso(skb) ? "isn't" : "is");
1281 #endif
1282 
1283 	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
1284 
1285 	desc = priv->dma_tx + entry;
1286 	first = desc;
1287 
1288 #ifdef STMMAC_XMIT_DEBUG
1289 	if ((nfrags > 0) || (skb->len > ETH_FRAME_LEN))
1290 		pr_debug("stmmac xmit: skb len: %d, nopaged_len: %d,\n"
1291 		       "\t\tn_frags: %d, ip_summed: %d\n",
1292 		       skb->len, nopaged_len, nfrags, skb->ip_summed);
1293 #endif
1294 	priv->tx_skbuff[entry] = skb;
1295 
1296 	if (priv->hw->ring->is_jumbo_frm(skb->len, priv->plat->enh_desc)) {
1297 		entry = priv->hw->ring->jumbo_frm(priv, skb, csum_insertion);
1298 		desc = priv->dma_tx + entry;
1299 	} else {
1300 		desc->des2 = dma_map_single(priv->device, skb->data,
1301 					nopaged_len, DMA_TO_DEVICE);
1302 		priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
1303 						csum_insertion);
1304 	}
1305 
1306 	for (i = 0; i < nfrags; i++) {
1307 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1308 		int len = skb_frag_size(frag);
1309 
1310 		entry = (++priv->cur_tx) % txsize;
1311 		desc = priv->dma_tx + entry;
1312 
1313 		TX_DBG("\t[entry %d] segment len: %d\n", entry, len);
1314 		desc->des2 = skb_frag_dma_map(priv->device, frag, 0, len,
1315 					      DMA_TO_DEVICE);
1316 		priv->tx_skbuff[entry] = NULL;
1317 		priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion);
1318 		wmb();
1319 		priv->hw->desc->set_tx_owner(desc);
1320 		wmb();
1321 	}
1322 
1323 	/* Interrupt on completition only for the latest segment */
1324 	priv->hw->desc->close_tx_desc(desc);
1325 
1326 #ifdef CONFIG_STMMAC_TIMER
1327 	/* Clean IC while using timer */
1328 	if (likely(priv->tm->enable))
1329 		priv->hw->desc->clear_tx_ic(desc);
1330 #endif
1331 
1332 	wmb();
1333 
1334 	/* To avoid raise condition */
1335 	priv->hw->desc->set_tx_owner(first);
1336 	wmb();
1337 
1338 	priv->cur_tx++;
1339 
1340 #ifdef STMMAC_XMIT_DEBUG
1341 	if (netif_msg_pktdata(priv)) {
1342 		pr_info("stmmac xmit: current=%d, dirty=%d, entry=%d, "
1343 		       "first=%p, nfrags=%d\n",
1344 		       (priv->cur_tx % txsize), (priv->dirty_tx % txsize),
1345 		       entry, first, nfrags);
1346 		display_ring(priv->dma_tx, txsize);
1347 		pr_info(">>> frame to be transmitted: ");
1348 		print_pkt(skb->data, skb->len);
1349 	}
1350 #endif
1351 	if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
1352 		TX_DBG("%s: stop transmitted packets\n", __func__);
1353 		netif_stop_queue(dev);
1354 	}
1355 
1356 	dev->stats.tx_bytes += skb->len;
1357 
1358 	skb_tx_timestamp(skb);
1359 
1360 	priv->hw->dma->enable_dma_transmission(priv->ioaddr);
1361 
1362 	spin_unlock(&priv->tx_lock);
1363 
1364 	return NETDEV_TX_OK;
1365 }
1366 
1367 static inline void stmmac_rx_refill(struct stmmac_priv *priv)
1368 {
1369 	unsigned int rxsize = priv->dma_rx_size;
1370 	int bfsize = priv->dma_buf_sz;
1371 	struct dma_desc *p = priv->dma_rx;
1372 
1373 	for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) {
1374 		unsigned int entry = priv->dirty_rx % rxsize;
1375 		if (likely(priv->rx_skbuff[entry] == NULL)) {
1376 			struct sk_buff *skb;
1377 
1378 			skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
1379 
1380 			if (unlikely(skb == NULL))
1381 				break;
1382 
1383 			priv->rx_skbuff[entry] = skb;
1384 			priv->rx_skbuff_dma[entry] =
1385 			    dma_map_single(priv->device, skb->data, bfsize,
1386 					   DMA_FROM_DEVICE);
1387 
1388 			(p + entry)->des2 = priv->rx_skbuff_dma[entry];
1389 
1390 			if (unlikely(priv->plat->has_gmac))
1391 				priv->hw->ring->refill_desc3(bfsize, p + entry);
1392 
1393 			RX_DBG(KERN_INFO "\trefill entry #%d\n", entry);
1394 		}
1395 		wmb();
1396 		priv->hw->desc->set_rx_owner(p + entry);
1397 		wmb();
1398 	}
1399 }
1400 
1401 static int stmmac_rx(struct stmmac_priv *priv, int limit)
1402 {
1403 	unsigned int rxsize = priv->dma_rx_size;
1404 	unsigned int entry = priv->cur_rx % rxsize;
1405 	unsigned int next_entry;
1406 	unsigned int count = 0;
1407 	struct dma_desc *p = priv->dma_rx + entry;
1408 	struct dma_desc *p_next;
1409 
1410 #ifdef STMMAC_RX_DEBUG
1411 	if (netif_msg_hw(priv)) {
1412 		pr_debug(">>> stmmac_rx: descriptor ring:\n");
1413 		display_ring(priv->dma_rx, rxsize);
1414 	}
1415 #endif
1416 	while (!priv->hw->desc->get_rx_owner(p)) {
1417 		int status;
1418 
1419 		if (count >= limit)
1420 			break;
1421 
1422 		count++;
1423 
1424 		next_entry = (++priv->cur_rx) % rxsize;
1425 		p_next = priv->dma_rx + next_entry;
1426 		prefetch(p_next);
1427 
1428 		/* read the status of the incoming frame */
1429 		status = (priv->hw->desc->rx_status(&priv->dev->stats,
1430 						    &priv->xstats, p));
1431 		if (unlikely(status == discard_frame))
1432 			priv->dev->stats.rx_errors++;
1433 		else {
1434 			struct sk_buff *skb;
1435 			int frame_len;
1436 
1437 			frame_len = priv->hw->desc->get_rx_frame_len(p,
1438 					priv->plat->rx_coe);
1439 			/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
1440 			 * Type frames (LLC/LLC-SNAP) */
1441 			if (unlikely(status != llc_snap))
1442 				frame_len -= ETH_FCS_LEN;
1443 #ifdef STMMAC_RX_DEBUG
1444 			if (frame_len > ETH_FRAME_LEN)
1445 				pr_debug("\tRX frame size %d, COE status: %d\n",
1446 					frame_len, status);
1447 
1448 			if (netif_msg_hw(priv))
1449 				pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
1450 					p, entry, p->des2);
1451 #endif
1452 			skb = priv->rx_skbuff[entry];
1453 			if (unlikely(!skb)) {
1454 				pr_err("%s: Inconsistent Rx descriptor chain\n",
1455 					priv->dev->name);
1456 				priv->dev->stats.rx_dropped++;
1457 				break;
1458 			}
1459 			prefetch(skb->data - NET_IP_ALIGN);
1460 			priv->rx_skbuff[entry] = NULL;
1461 
1462 			skb_put(skb, frame_len);
1463 			dma_unmap_single(priv->device,
1464 					 priv->rx_skbuff_dma[entry],
1465 					 priv->dma_buf_sz, DMA_FROM_DEVICE);
1466 #ifdef STMMAC_RX_DEBUG
1467 			if (netif_msg_pktdata(priv)) {
1468 				pr_info(" frame received (%dbytes)", frame_len);
1469 				print_pkt(skb->data, frame_len);
1470 			}
1471 #endif
1472 			skb->protocol = eth_type_trans(skb, priv->dev);
1473 
1474 			if (unlikely(!priv->plat->rx_coe)) {
1475 				/* No RX COE for old mac10/100 devices */
1476 				skb_checksum_none_assert(skb);
1477 				netif_receive_skb(skb);
1478 			} else {
1479 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1480 				napi_gro_receive(&priv->napi, skb);
1481 			}
1482 
1483 			priv->dev->stats.rx_packets++;
1484 			priv->dev->stats.rx_bytes += frame_len;
1485 		}
1486 		entry = next_entry;
1487 		p = p_next;	/* use prefetched values */
1488 	}
1489 
1490 	stmmac_rx_refill(priv);
1491 
1492 	priv->xstats.rx_pkt_n += count;
1493 
1494 	return count;
1495 }
1496 
1497 /**
1498  *  stmmac_poll - stmmac poll method (NAPI)
1499  *  @napi : pointer to the napi structure.
1500  *  @budget : maximum number of packets that the current CPU can receive from
1501  *	      all interfaces.
1502  *  Description :
1503  *   This function implements the the reception process.
1504  *   Also it runs the TX completion thread
1505  */
1506 static int stmmac_poll(struct napi_struct *napi, int budget)
1507 {
1508 	struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
1509 	int work_done = 0;
1510 
1511 	priv->xstats.poll_n++;
1512 	stmmac_tx(priv);
1513 	work_done = stmmac_rx(priv, budget);
1514 
1515 	if (work_done < budget) {
1516 		napi_complete(napi);
1517 		stmmac_enable_irq(priv);
1518 	}
1519 	return work_done;
1520 }
1521 
1522 /**
1523  *  stmmac_tx_timeout
1524  *  @dev : Pointer to net device structure
1525  *  Description: this function is called when a packet transmission fails to
1526  *   complete within a reasonable tmrate. The driver will mark the error in the
1527  *   netdev structure and arrange for the device to be reset to a sane state
1528  *   in order to transmit a new packet.
1529  */
1530 static void stmmac_tx_timeout(struct net_device *dev)
1531 {
1532 	struct stmmac_priv *priv = netdev_priv(dev);
1533 
1534 	/* Clear Tx resources and restart transmitting again */
1535 	stmmac_tx_err(priv);
1536 }
1537 
1538 /* Configuration changes (passed on by ifconfig) */
1539 static int stmmac_config(struct net_device *dev, struct ifmap *map)
1540 {
1541 	if (dev->flags & IFF_UP)	/* can't act on a running interface */
1542 		return -EBUSY;
1543 
1544 	/* Don't allow changing the I/O address */
1545 	if (map->base_addr != dev->base_addr) {
1546 		pr_warning("%s: can't change I/O address\n", dev->name);
1547 		return -EOPNOTSUPP;
1548 	}
1549 
1550 	/* Don't allow changing the IRQ */
1551 	if (map->irq != dev->irq) {
1552 		pr_warning("%s: can't change IRQ number %d\n",
1553 		       dev->name, dev->irq);
1554 		return -EOPNOTSUPP;
1555 	}
1556 
1557 	/* ignore other fields */
1558 	return 0;
1559 }
1560 
1561 /**
1562  *  stmmac_set_rx_mode - entry point for multicast addressing
1563  *  @dev : pointer to the device structure
1564  *  Description:
1565  *  This function is a driver entry point which gets called by the kernel
1566  *  whenever multicast addresses must be enabled/disabled.
1567  *  Return value:
1568  *  void.
1569  */
1570 static void stmmac_set_rx_mode(struct net_device *dev)
1571 {
1572 	struct stmmac_priv *priv = netdev_priv(dev);
1573 
1574 	spin_lock(&priv->lock);
1575 	priv->hw->mac->set_filter(dev, priv->synopsys_id);
1576 	spin_unlock(&priv->lock);
1577 }
1578 
1579 /**
1580  *  stmmac_change_mtu - entry point to change MTU size for the device.
1581  *  @dev : device pointer.
1582  *  @new_mtu : the new MTU size for the device.
1583  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
1584  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
1585  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
1586  *  Return value:
1587  *  0 on success and an appropriate (-)ve integer as defined in errno.h
1588  *  file on failure.
1589  */
1590 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
1591 {
1592 	struct stmmac_priv *priv = netdev_priv(dev);
1593 	int max_mtu;
1594 
1595 	if (netif_running(dev)) {
1596 		pr_err("%s: must be stopped to change its MTU\n", dev->name);
1597 		return -EBUSY;
1598 	}
1599 
1600 	if (priv->plat->enh_desc)
1601 		max_mtu = JUMBO_LEN;
1602 	else
1603 		max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
1604 
1605 	if ((new_mtu < 46) || (new_mtu > max_mtu)) {
1606 		pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
1607 		return -EINVAL;
1608 	}
1609 
1610 	dev->mtu = new_mtu;
1611 	netdev_update_features(dev);
1612 
1613 	return 0;
1614 }
1615 
1616 static netdev_features_t stmmac_fix_features(struct net_device *dev,
1617 	netdev_features_t features)
1618 {
1619 	struct stmmac_priv *priv = netdev_priv(dev);
1620 
1621 	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
1622 		features &= ~NETIF_F_RXCSUM;
1623 	else if (priv->plat->rx_coe == STMMAC_RX_COE_TYPE1)
1624 		features &= ~NETIF_F_IPV6_CSUM;
1625 	if (!priv->plat->tx_coe)
1626 		features &= ~NETIF_F_ALL_CSUM;
1627 
1628 	/* Some GMAC devices have a bugged Jumbo frame support that
1629 	 * needs to have the Tx COE disabled for oversized frames
1630 	 * (due to limited buffer sizes). In this case we disable
1631 	 * the TX csum insertionin the TDES and not use SF. */
1632 	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
1633 		features &= ~NETIF_F_ALL_CSUM;
1634 
1635 	return features;
1636 }
1637 
1638 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
1639 {
1640 	struct net_device *dev = (struct net_device *)dev_id;
1641 	struct stmmac_priv *priv = netdev_priv(dev);
1642 
1643 	if (unlikely(!dev)) {
1644 		pr_err("%s: invalid dev pointer\n", __func__);
1645 		return IRQ_NONE;
1646 	}
1647 
1648 	/* To handle GMAC own interrupts */
1649 	if (priv->plat->has_gmac) {
1650 		int status = priv->hw->mac->host_irq_status((void __iomem *)
1651 							    dev->base_addr);
1652 		if (unlikely(status)) {
1653 			if (status & core_mmc_tx_irq)
1654 				priv->xstats.mmc_tx_irq_n++;
1655 			if (status & core_mmc_rx_irq)
1656 				priv->xstats.mmc_rx_irq_n++;
1657 			if (status & core_mmc_rx_csum_offload_irq)
1658 				priv->xstats.mmc_rx_csum_offload_irq_n++;
1659 			if (status & core_irq_receive_pmt_irq)
1660 				priv->xstats.irq_receive_pmt_irq_n++;
1661 
1662 			/* For LPI we need to save the tx status */
1663 			if (status & core_irq_tx_path_in_lpi_mode) {
1664 				priv->xstats.irq_tx_path_in_lpi_mode_n++;
1665 				priv->tx_path_in_lpi_mode = true;
1666 			}
1667 			if (status & core_irq_tx_path_exit_lpi_mode) {
1668 				priv->xstats.irq_tx_path_exit_lpi_mode_n++;
1669 				priv->tx_path_in_lpi_mode = false;
1670 			}
1671 			if (status & core_irq_rx_path_in_lpi_mode)
1672 				priv->xstats.irq_rx_path_in_lpi_mode_n++;
1673 			if (status & core_irq_rx_path_exit_lpi_mode)
1674 				priv->xstats.irq_rx_path_exit_lpi_mode_n++;
1675 		}
1676 	}
1677 
1678 	/* To handle DMA interrupts */
1679 	stmmac_dma_interrupt(priv);
1680 
1681 	return IRQ_HANDLED;
1682 }
1683 
1684 #ifdef CONFIG_NET_POLL_CONTROLLER
1685 /* Polling receive - used by NETCONSOLE and other diagnostic tools
1686  * to allow network I/O with interrupts disabled. */
1687 static void stmmac_poll_controller(struct net_device *dev)
1688 {
1689 	disable_irq(dev->irq);
1690 	stmmac_interrupt(dev->irq, dev);
1691 	enable_irq(dev->irq);
1692 }
1693 #endif
1694 
1695 /**
1696  *  stmmac_ioctl - Entry point for the Ioctl
1697  *  @dev: Device pointer.
1698  *  @rq: An IOCTL specefic structure, that can contain a pointer to
1699  *  a proprietary structure used to pass information to the driver.
1700  *  @cmd: IOCTL command
1701  *  Description:
1702  *  Currently there are no special functionality supported in IOCTL, just the
1703  *  phy_mii_ioctl(...) can be invoked.
1704  */
1705 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1706 {
1707 	struct stmmac_priv *priv = netdev_priv(dev);
1708 	int ret;
1709 
1710 	if (!netif_running(dev))
1711 		return -EINVAL;
1712 
1713 	if (!priv->phydev)
1714 		return -EINVAL;
1715 
1716 	ret = phy_mii_ioctl(priv->phydev, rq, cmd);
1717 
1718 	return ret;
1719 }
1720 
1721 #ifdef CONFIG_STMMAC_DEBUG_FS
1722 static struct dentry *stmmac_fs_dir;
1723 static struct dentry *stmmac_rings_status;
1724 static struct dentry *stmmac_dma_cap;
1725 
1726 static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
1727 {
1728 	struct tmp_s {
1729 		u64 a;
1730 		unsigned int b;
1731 		unsigned int c;
1732 	};
1733 	int i;
1734 	struct net_device *dev = seq->private;
1735 	struct stmmac_priv *priv = netdev_priv(dev);
1736 
1737 	seq_printf(seq, "=======================\n");
1738 	seq_printf(seq, " RX descriptor ring\n");
1739 	seq_printf(seq, "=======================\n");
1740 
1741 	for (i = 0; i < priv->dma_rx_size; i++) {
1742 		struct tmp_s *x = (struct tmp_s *)(priv->dma_rx + i);
1743 		seq_printf(seq, "[%d] DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
1744 			   i, (unsigned int)(x->a),
1745 			   (unsigned int)((x->a) >> 32), x->b, x->c);
1746 		seq_printf(seq, "\n");
1747 	}
1748 
1749 	seq_printf(seq, "\n");
1750 	seq_printf(seq, "=======================\n");
1751 	seq_printf(seq, "  TX descriptor ring\n");
1752 	seq_printf(seq, "=======================\n");
1753 
1754 	for (i = 0; i < priv->dma_tx_size; i++) {
1755 		struct tmp_s *x = (struct tmp_s *)(priv->dma_tx + i);
1756 		seq_printf(seq, "[%d] DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
1757 			   i, (unsigned int)(x->a),
1758 			   (unsigned int)((x->a) >> 32), x->b, x->c);
1759 		seq_printf(seq, "\n");
1760 	}
1761 
1762 	return 0;
1763 }
1764 
1765 static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
1766 {
1767 	return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
1768 }
1769 
1770 static const struct file_operations stmmac_rings_status_fops = {
1771 	.owner = THIS_MODULE,
1772 	.open = stmmac_sysfs_ring_open,
1773 	.read = seq_read,
1774 	.llseek = seq_lseek,
1775 	.release = single_release,
1776 };
1777 
1778 static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
1779 {
1780 	struct net_device *dev = seq->private;
1781 	struct stmmac_priv *priv = netdev_priv(dev);
1782 
1783 	if (!priv->hw_cap_support) {
1784 		seq_printf(seq, "DMA HW features not supported\n");
1785 		return 0;
1786 	}
1787 
1788 	seq_printf(seq, "==============================\n");
1789 	seq_printf(seq, "\tDMA HW features\n");
1790 	seq_printf(seq, "==============================\n");
1791 
1792 	seq_printf(seq, "\t10/100 Mbps %s\n",
1793 		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
1794 	seq_printf(seq, "\t1000 Mbps %s\n",
1795 		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
1796 	seq_printf(seq, "\tHalf duple %s\n",
1797 		   (priv->dma_cap.half_duplex) ? "Y" : "N");
1798 	seq_printf(seq, "\tHash Filter: %s\n",
1799 		   (priv->dma_cap.hash_filter) ? "Y" : "N");
1800 	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
1801 		   (priv->dma_cap.multi_addr) ? "Y" : "N");
1802 	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
1803 		   (priv->dma_cap.pcs) ? "Y" : "N");
1804 	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
1805 		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
1806 	seq_printf(seq, "\tPMT Remote wake up: %s\n",
1807 		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
1808 	seq_printf(seq, "\tPMT Magic Frame: %s\n",
1809 		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
1810 	seq_printf(seq, "\tRMON module: %s\n",
1811 		   (priv->dma_cap.rmon) ? "Y" : "N");
1812 	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
1813 		   (priv->dma_cap.time_stamp) ? "Y" : "N");
1814 	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n",
1815 		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
1816 	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n",
1817 		   (priv->dma_cap.eee) ? "Y" : "N");
1818 	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
1819 	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
1820 		   (priv->dma_cap.tx_coe) ? "Y" : "N");
1821 	seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
1822 		   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
1823 	seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
1824 		   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
1825 	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
1826 		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
1827 	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
1828 		   priv->dma_cap.number_rx_channel);
1829 	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
1830 		   priv->dma_cap.number_tx_channel);
1831 	seq_printf(seq, "\tEnhanced descriptors: %s\n",
1832 		   (priv->dma_cap.enh_desc) ? "Y" : "N");
1833 
1834 	return 0;
1835 }
1836 
1837 static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
1838 {
1839 	return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
1840 }
1841 
1842 static const struct file_operations stmmac_dma_cap_fops = {
1843 	.owner = THIS_MODULE,
1844 	.open = stmmac_sysfs_dma_cap_open,
1845 	.read = seq_read,
1846 	.llseek = seq_lseek,
1847 	.release = single_release,
1848 };
1849 
1850 static int stmmac_init_fs(struct net_device *dev)
1851 {
1852 	/* Create debugfs entries */
1853 	stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
1854 
1855 	if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
1856 		pr_err("ERROR %s, debugfs create directory failed\n",
1857 		       STMMAC_RESOURCE_NAME);
1858 
1859 		return -ENOMEM;
1860 	}
1861 
1862 	/* Entry to report DMA RX/TX rings */
1863 	stmmac_rings_status = debugfs_create_file("descriptors_status",
1864 					   S_IRUGO, stmmac_fs_dir, dev,
1865 					   &stmmac_rings_status_fops);
1866 
1867 	if (!stmmac_rings_status || IS_ERR(stmmac_rings_status)) {
1868 		pr_info("ERROR creating stmmac ring debugfs file\n");
1869 		debugfs_remove(stmmac_fs_dir);
1870 
1871 		return -ENOMEM;
1872 	}
1873 
1874 	/* Entry to report the DMA HW features */
1875 	stmmac_dma_cap = debugfs_create_file("dma_cap", S_IRUGO, stmmac_fs_dir,
1876 					     dev, &stmmac_dma_cap_fops);
1877 
1878 	if (!stmmac_dma_cap || IS_ERR(stmmac_dma_cap)) {
1879 		pr_info("ERROR creating stmmac MMC debugfs file\n");
1880 		debugfs_remove(stmmac_rings_status);
1881 		debugfs_remove(stmmac_fs_dir);
1882 
1883 		return -ENOMEM;
1884 	}
1885 
1886 	return 0;
1887 }
1888 
1889 static void stmmac_exit_fs(void)
1890 {
1891 	debugfs_remove(stmmac_rings_status);
1892 	debugfs_remove(stmmac_dma_cap);
1893 	debugfs_remove(stmmac_fs_dir);
1894 }
1895 #endif /* CONFIG_STMMAC_DEBUG_FS */
1896 
1897 static const struct net_device_ops stmmac_netdev_ops = {
1898 	.ndo_open = stmmac_open,
1899 	.ndo_start_xmit = stmmac_xmit,
1900 	.ndo_stop = stmmac_release,
1901 	.ndo_change_mtu = stmmac_change_mtu,
1902 	.ndo_fix_features = stmmac_fix_features,
1903 	.ndo_set_rx_mode = stmmac_set_rx_mode,
1904 	.ndo_tx_timeout = stmmac_tx_timeout,
1905 	.ndo_do_ioctl = stmmac_ioctl,
1906 	.ndo_set_config = stmmac_config,
1907 #ifdef CONFIG_NET_POLL_CONTROLLER
1908 	.ndo_poll_controller = stmmac_poll_controller,
1909 #endif
1910 	.ndo_set_mac_address = eth_mac_addr,
1911 };
1912 
1913 /**
1914  *  stmmac_hw_init - Init the MAC device
1915  *  @priv : pointer to the private device structure.
1916  *  Description: this function detects which MAC device
1917  *  (GMAC/MAC10-100) has to attached, checks the HW capability
1918  *  (if supported) and sets the driver's features (for example
1919  *  to use the ring or chaine mode or support the normal/enh
1920  *  descriptor structure).
1921  */
1922 static int stmmac_hw_init(struct stmmac_priv *priv)
1923 {
1924 	int ret = 0;
1925 	struct mac_device_info *mac;
1926 
1927 	/* Identify the MAC HW device */
1928 	if (priv->plat->has_gmac) {
1929 		priv->dev->priv_flags |= IFF_UNICAST_FLT;
1930 		mac = dwmac1000_setup(priv->ioaddr);
1931 	} else {
1932 		mac = dwmac100_setup(priv->ioaddr);
1933 	}
1934 	if (!mac)
1935 		return -ENOMEM;
1936 
1937 	priv->hw = mac;
1938 
1939 	/* To use the chained or ring mode */
1940 	priv->hw->ring = &ring_mode_ops;
1941 
1942 	/* Get and dump the chip ID */
1943 	priv->synopsys_id = stmmac_get_synopsys_id(priv);
1944 
1945 	/* Get the HW capability (new GMAC newer than 3.50a) */
1946 	priv->hw_cap_support = stmmac_get_hw_features(priv);
1947 	if (priv->hw_cap_support) {
1948 		pr_info(" DMA HW capability register supported");
1949 
1950 		/* We can override some gmac/dma configuration fields: e.g.
1951 		 * enh_desc, tx_coe (e.g. that are passed through the
1952 		 * platform) with the values from the HW capability
1953 		 * register (if supported).
1954 		 */
1955 		priv->plat->enh_desc = priv->dma_cap.enh_desc;
1956 		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
1957 
1958 		priv->plat->tx_coe = priv->dma_cap.tx_coe;
1959 
1960 		if (priv->dma_cap.rx_coe_type2)
1961 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
1962 		else if (priv->dma_cap.rx_coe_type1)
1963 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
1964 
1965 	} else
1966 		pr_info(" No HW DMA feature register supported");
1967 
1968 	/* Select the enhnaced/normal descriptor structures */
1969 	stmmac_selec_desc_mode(priv);
1970 
1971 	/* Enable the IPC (Checksum Offload) and check if the feature has been
1972 	 * enabled during the core configuration. */
1973 	ret = priv->hw->mac->rx_ipc(priv->ioaddr);
1974 	if (!ret) {
1975 		pr_warning(" RX IPC Checksum Offload not configured.\n");
1976 		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
1977 	}
1978 
1979 	if (priv->plat->rx_coe)
1980 		pr_info(" RX Checksum Offload Engine supported (type %d)\n",
1981 			priv->plat->rx_coe);
1982 	if (priv->plat->tx_coe)
1983 		pr_info(" TX Checksum insertion supported\n");
1984 
1985 	if (priv->plat->pmt) {
1986 		pr_info(" Wake-Up On Lan supported\n");
1987 		device_set_wakeup_capable(priv->device, 1);
1988 	}
1989 
1990 	return ret;
1991 }
1992 
1993 /**
1994  * stmmac_dvr_probe
1995  * @device: device pointer
1996  * @plat_dat: platform data pointer
1997  * @addr: iobase memory address
1998  * Description: this is the main probe function used to
1999  * call the alloc_etherdev, allocate the priv structure.
2000  */
2001 struct stmmac_priv *stmmac_dvr_probe(struct device *device,
2002 				     struct plat_stmmacenet_data *plat_dat,
2003 				     void __iomem *addr)
2004 {
2005 	int ret = 0;
2006 	struct net_device *ndev = NULL;
2007 	struct stmmac_priv *priv;
2008 
2009 	ndev = alloc_etherdev(sizeof(struct stmmac_priv));
2010 	if (!ndev)
2011 		return NULL;
2012 
2013 	SET_NETDEV_DEV(ndev, device);
2014 
2015 	priv = netdev_priv(ndev);
2016 	priv->device = device;
2017 	priv->dev = ndev;
2018 
2019 	ether_setup(ndev);
2020 
2021 	stmmac_set_ethtool_ops(ndev);
2022 	priv->pause = pause;
2023 	priv->plat = plat_dat;
2024 	priv->ioaddr = addr;
2025 	priv->dev->base_addr = (unsigned long)addr;
2026 
2027 	/* Verify driver arguments */
2028 	stmmac_verify_args();
2029 
2030 	/* Override with kernel parameters if supplied XXX CRS XXX
2031 	 * this needs to have multiple instances */
2032 	if ((phyaddr >= 0) && (phyaddr <= 31))
2033 		priv->plat->phy_addr = phyaddr;
2034 
2035 	/* Init MAC and get the capabilities */
2036 	stmmac_hw_init(priv);
2037 
2038 	ndev->netdev_ops = &stmmac_netdev_ops;
2039 
2040 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2041 			    NETIF_F_RXCSUM;
2042 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
2043 	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
2044 #ifdef STMMAC_VLAN_TAG_USED
2045 	/* Both mac100 and gmac support receive VLAN tag detection */
2046 	ndev->features |= NETIF_F_HW_VLAN_RX;
2047 #endif
2048 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
2049 
2050 	if (flow_ctrl)
2051 		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
2052 
2053 	netif_napi_add(ndev, &priv->napi, stmmac_poll, 64);
2054 
2055 	spin_lock_init(&priv->lock);
2056 	spin_lock_init(&priv->tx_lock);
2057 
2058 	ret = register_netdev(ndev);
2059 	if (ret) {
2060 		pr_err("%s: ERROR %i registering the device\n", __func__, ret);
2061 		goto error_netdev_register;
2062 	}
2063 
2064 	priv->stmmac_clk = clk_get(priv->device, STMMAC_RESOURCE_NAME);
2065 	if (IS_ERR(priv->stmmac_clk)) {
2066 		pr_warning("%s: warning: cannot get CSR clock\n", __func__);
2067 		goto error_clk_get;
2068 	}
2069 
2070 	/* If a specific clk_csr value is passed from the platform
2071 	 * this means that the CSR Clock Range selection cannot be
2072 	 * changed at run-time and it is fixed. Viceversa the driver'll try to
2073 	 * set the MDC clock dynamically according to the csr actual
2074 	 * clock input.
2075 	 */
2076 	if (!priv->plat->clk_csr)
2077 		stmmac_clk_csr_set(priv);
2078 	else
2079 		priv->clk_csr = priv->plat->clk_csr;
2080 
2081 	/* MDIO bus Registration */
2082 	ret = stmmac_mdio_register(ndev);
2083 	if (ret < 0) {
2084 		pr_debug("%s: MDIO bus (id: %d) registration failed",
2085 			 __func__, priv->plat->bus_id);
2086 		goto error_mdio_register;
2087 	}
2088 
2089 	return priv;
2090 
2091 error_mdio_register:
2092 	clk_put(priv->stmmac_clk);
2093 error_clk_get:
2094 	unregister_netdev(ndev);
2095 error_netdev_register:
2096 	netif_napi_del(&priv->napi);
2097 	free_netdev(ndev);
2098 
2099 	return NULL;
2100 }
2101 
2102 /**
2103  * stmmac_dvr_remove
2104  * @ndev: net device pointer
2105  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
2106  * changes the link status, releases the DMA descriptor rings.
2107  */
2108 int stmmac_dvr_remove(struct net_device *ndev)
2109 {
2110 	struct stmmac_priv *priv = netdev_priv(ndev);
2111 
2112 	pr_info("%s:\n\tremoving driver", __func__);
2113 
2114 	priv->hw->dma->stop_rx(priv->ioaddr);
2115 	priv->hw->dma->stop_tx(priv->ioaddr);
2116 
2117 	stmmac_set_mac(priv->ioaddr, false);
2118 	stmmac_mdio_unregister(ndev);
2119 	netif_carrier_off(ndev);
2120 	unregister_netdev(ndev);
2121 	free_netdev(ndev);
2122 
2123 	return 0;
2124 }
2125 
2126 #ifdef CONFIG_PM
2127 int stmmac_suspend(struct net_device *ndev)
2128 {
2129 	struct stmmac_priv *priv = netdev_priv(ndev);
2130 	int dis_ic = 0;
2131 	unsigned long flags;
2132 
2133 	if (!ndev || !netif_running(ndev))
2134 		return 0;
2135 
2136 	if (priv->phydev)
2137 		phy_stop(priv->phydev);
2138 
2139 	spin_lock_irqsave(&priv->lock, flags);
2140 
2141 	netif_device_detach(ndev);
2142 	netif_stop_queue(ndev);
2143 
2144 #ifdef CONFIG_STMMAC_TIMER
2145 	priv->tm->timer_stop();
2146 	if (likely(priv->tm->enable))
2147 		dis_ic = 1;
2148 #endif
2149 	napi_disable(&priv->napi);
2150 
2151 	/* Stop TX/RX DMA */
2152 	priv->hw->dma->stop_tx(priv->ioaddr);
2153 	priv->hw->dma->stop_rx(priv->ioaddr);
2154 	/* Clear the Rx/Tx descriptors */
2155 	priv->hw->desc->init_rx_desc(priv->dma_rx, priv->dma_rx_size,
2156 				     dis_ic);
2157 	priv->hw->desc->init_tx_desc(priv->dma_tx, priv->dma_tx_size);
2158 
2159 	/* Enable Power down mode by programming the PMT regs */
2160 	if (device_may_wakeup(priv->device))
2161 		priv->hw->mac->pmt(priv->ioaddr, priv->wolopts);
2162 	else {
2163 		stmmac_set_mac(priv->ioaddr, false);
2164 		/* Disable clock in case of PWM is off */
2165 		clk_disable_unprepare(priv->stmmac_clk);
2166 	}
2167 	spin_unlock_irqrestore(&priv->lock, flags);
2168 	return 0;
2169 }
2170 
2171 int stmmac_resume(struct net_device *ndev)
2172 {
2173 	struct stmmac_priv *priv = netdev_priv(ndev);
2174 	unsigned long flags;
2175 
2176 	if (!netif_running(ndev))
2177 		return 0;
2178 
2179 	spin_lock_irqsave(&priv->lock, flags);
2180 
2181 	/* Power Down bit, into the PM register, is cleared
2182 	 * automatically as soon as a magic packet or a Wake-up frame
2183 	 * is received. Anyway, it's better to manually clear
2184 	 * this bit because it can generate problems while resuming
2185 	 * from another devices (e.g. serial console). */
2186 	if (device_may_wakeup(priv->device))
2187 		priv->hw->mac->pmt(priv->ioaddr, 0);
2188 	else
2189 		/* enable the clk prevously disabled */
2190 		clk_prepare_enable(priv->stmmac_clk);
2191 
2192 	netif_device_attach(ndev);
2193 
2194 	/* Enable the MAC and DMA */
2195 	stmmac_set_mac(priv->ioaddr, true);
2196 	priv->hw->dma->start_tx(priv->ioaddr);
2197 	priv->hw->dma->start_rx(priv->ioaddr);
2198 
2199 #ifdef CONFIG_STMMAC_TIMER
2200 	if (likely(priv->tm->enable))
2201 		priv->tm->timer_start(tmrate);
2202 #endif
2203 	napi_enable(&priv->napi);
2204 
2205 	netif_start_queue(ndev);
2206 
2207 	spin_unlock_irqrestore(&priv->lock, flags);
2208 
2209 	if (priv->phydev)
2210 		phy_start(priv->phydev);
2211 
2212 	return 0;
2213 }
2214 
2215 int stmmac_freeze(struct net_device *ndev)
2216 {
2217 	if (!ndev || !netif_running(ndev))
2218 		return 0;
2219 
2220 	return stmmac_release(ndev);
2221 }
2222 
2223 int stmmac_restore(struct net_device *ndev)
2224 {
2225 	if (!ndev || !netif_running(ndev))
2226 		return 0;
2227 
2228 	return stmmac_open(ndev);
2229 }
2230 #endif /* CONFIG_PM */
2231 
2232 /* Driver can be configured w/ and w/ both PCI and Platf drivers
2233  * depending on the configuration selected.
2234  */
2235 static int __init stmmac_init(void)
2236 {
2237 	int err_plt = 0;
2238 	int err_pci = 0;
2239 
2240 	err_plt = stmmac_register_platform();
2241 	err_pci = stmmac_register_pci();
2242 
2243 	if ((err_pci) && (err_plt)) {
2244 		pr_err("stmmac: driver registration failed\n");
2245 		return -EINVAL;
2246 	}
2247 
2248 	return 0;
2249 }
2250 
2251 static void __exit stmmac_exit(void)
2252 {
2253 	stmmac_unregister_platform();
2254 	stmmac_unregister_pci();
2255 }
2256 
2257 module_init(stmmac_init);
2258 module_exit(stmmac_exit);
2259 
2260 #ifndef MODULE
2261 static int __init stmmac_cmdline_opt(char *str)
2262 {
2263 	char *opt;
2264 
2265 	if (!str || !*str)
2266 		return -EINVAL;
2267 	while ((opt = strsep(&str, ",")) != NULL) {
2268 		if (!strncmp(opt, "debug:", 6)) {
2269 			if (kstrtoint(opt + 6, 0, &debug))
2270 				goto err;
2271 		} else if (!strncmp(opt, "phyaddr:", 8)) {
2272 			if (kstrtoint(opt + 8, 0, &phyaddr))
2273 				goto err;
2274 		} else if (!strncmp(opt, "dma_txsize:", 11)) {
2275 			if (kstrtoint(opt + 11, 0, &dma_txsize))
2276 				goto err;
2277 		} else if (!strncmp(opt, "dma_rxsize:", 11)) {
2278 			if (kstrtoint(opt + 11, 0, &dma_rxsize))
2279 				goto err;
2280 		} else if (!strncmp(opt, "buf_sz:", 7)) {
2281 			if (kstrtoint(opt + 7, 0, &buf_sz))
2282 				goto err;
2283 		} else if (!strncmp(opt, "tc:", 3)) {
2284 			if (kstrtoint(opt + 3, 0, &tc))
2285 				goto err;
2286 		} else if (!strncmp(opt, "watchdog:", 9)) {
2287 			if (kstrtoint(opt + 9, 0, &watchdog))
2288 				goto err;
2289 		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
2290 			if (kstrtoint(opt + 10, 0, &flow_ctrl))
2291 				goto err;
2292 		} else if (!strncmp(opt, "pause:", 6)) {
2293 			if (kstrtoint(opt + 6, 0, &pause))
2294 				goto err;
2295 		} else if (!strncmp(opt, "eee_timer:", 6)) {
2296 			if (kstrtoint(opt + 10, 0, &eee_timer))
2297 				goto err;
2298 #ifdef CONFIG_STMMAC_TIMER
2299 		} else if (!strncmp(opt, "tmrate:", 7)) {
2300 			if (kstrtoint(opt + 7, 0, &tmrate))
2301 				goto err;
2302 #endif
2303 		}
2304 	}
2305 	return 0;
2306 
2307 err:
2308 	pr_err("%s: ERROR broken module parameter conversion", __func__);
2309 	return -EINVAL;
2310 }
2311 
2312 __setup("stmmaceth=", stmmac_cmdline_opt);
2313 #endif
2314 
2315 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
2316 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
2317 MODULE_LICENSE("GPL");
2318