xref: /linux/drivers/net/ethernet/stmicro/stmmac/stmmac_main.c (revision dec1c62e91ba268ab2a6e339d4d7a59287d5eba1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*******************************************************************************
3   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
4   ST Ethernet IPs are built around a Synopsys IP Core.
5 
6 	Copyright(C) 2007-2011 STMicroelectronics Ltd
7 
8 
9   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
10 
11   Documentation available at:
12 	http://www.stlinux.com
13   Support available at:
14 	https://bugzilla.stlinux.com/
15 *******************************************************************************/
16 
17 #include <linux/clk.h>
18 #include <linux/kernel.h>
19 #include <linux/interrupt.h>
20 #include <linux/ip.h>
21 #include <linux/tcp.h>
22 #include <linux/skbuff.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_ether.h>
25 #include <linux/crc32.h>
26 #include <linux/mii.h>
27 #include <linux/if.h>
28 #include <linux/if_vlan.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/slab.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/prefetch.h>
33 #include <linux/pinctrl/consumer.h>
34 #ifdef CONFIG_DEBUG_FS
35 #include <linux/debugfs.h>
36 #include <linux/seq_file.h>
37 #endif /* CONFIG_DEBUG_FS */
38 #include <linux/net_tstamp.h>
39 #include <linux/phylink.h>
40 #include <linux/udp.h>
41 #include <linux/bpf_trace.h>
42 #include <net/pkt_cls.h>
43 #include <net/xdp_sock_drv.h>
44 #include "stmmac_ptp.h"
45 #include "stmmac.h"
46 #include "stmmac_xdp.h"
47 #include <linux/reset.h>
48 #include <linux/of_mdio.h>
49 #include "dwmac1000.h"
50 #include "dwxgmac2.h"
51 #include "hwif.h"
52 
53 /* As long as the interface is active, we keep the timestamping counter enabled
54  * with fine resolution and binary rollover. This avoid non-monotonic behavior
55  * (clock jumps) when changing timestamping settings at runtime.
56  */
57 #define STMMAC_HWTS_ACTIVE	(PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | \
58 				 PTP_TCR_TSCTRLSSR)
59 
60 #define	STMMAC_ALIGN(x)		ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16)
61 #define	TSO_MAX_BUFF_SIZE	(SZ_16K - 1)
62 
63 /* Module parameters */
64 #define TX_TIMEO	5000
65 static int watchdog = TX_TIMEO;
66 module_param(watchdog, int, 0644);
67 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
68 
69 static int debug = -1;
70 module_param(debug, int, 0644);
71 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
72 
73 static int phyaddr = -1;
74 module_param(phyaddr, int, 0444);
75 MODULE_PARM_DESC(phyaddr, "Physical device address");
76 
77 #define STMMAC_TX_THRESH(x)	((x)->dma_tx_size / 4)
78 #define STMMAC_RX_THRESH(x)	((x)->dma_rx_size / 4)
79 
80 /* Limit to make sure XDP TX and slow path can coexist */
81 #define STMMAC_XSK_TX_BUDGET_MAX	256
82 #define STMMAC_TX_XSK_AVAIL		16
83 #define STMMAC_RX_FILL_BATCH		16
84 
85 #define STMMAC_XDP_PASS		0
86 #define STMMAC_XDP_CONSUMED	BIT(0)
87 #define STMMAC_XDP_TX		BIT(1)
88 #define STMMAC_XDP_REDIRECT	BIT(2)
89 
90 static int flow_ctrl = FLOW_AUTO;
91 module_param(flow_ctrl, int, 0644);
92 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
93 
94 static int pause = PAUSE_TIME;
95 module_param(pause, int, 0644);
96 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
97 
98 #define TC_DEFAULT 64
99 static int tc = TC_DEFAULT;
100 module_param(tc, int, 0644);
101 MODULE_PARM_DESC(tc, "DMA threshold control value");
102 
103 #define	DEFAULT_BUFSIZE	1536
104 static int buf_sz = DEFAULT_BUFSIZE;
105 module_param(buf_sz, int, 0644);
106 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
107 
108 #define	STMMAC_RX_COPYBREAK	256
109 
110 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
111 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
112 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
113 
114 #define STMMAC_DEFAULT_LPI_TIMER	1000
115 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
116 module_param(eee_timer, int, 0644);
117 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
118 #define STMMAC_LPI_T(x) (jiffies + usecs_to_jiffies(x))
119 
120 /* By default the driver will use the ring mode to manage tx and rx descriptors,
121  * but allow user to force to use the chain instead of the ring
122  */
123 static unsigned int chain_mode;
124 module_param(chain_mode, int, 0444);
125 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
126 
127 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
128 /* For MSI interrupts handling */
129 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id);
130 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id);
131 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data);
132 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data);
133 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue);
134 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue);
135 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
136 					  u32 rxmode, u32 chan);
137 
138 #ifdef CONFIG_DEBUG_FS
139 static const struct net_device_ops stmmac_netdev_ops;
140 static void stmmac_init_fs(struct net_device *dev);
141 static void stmmac_exit_fs(struct net_device *dev);
142 #endif
143 
144 #define STMMAC_COAL_TIMER(x) (ns_to_ktime((x) * NSEC_PER_USEC))
145 
146 int stmmac_bus_clks_config(struct stmmac_priv *priv, bool enabled)
147 {
148 	int ret = 0;
149 
150 	if (enabled) {
151 		ret = clk_prepare_enable(priv->plat->stmmac_clk);
152 		if (ret)
153 			return ret;
154 		ret = clk_prepare_enable(priv->plat->pclk);
155 		if (ret) {
156 			clk_disable_unprepare(priv->plat->stmmac_clk);
157 			return ret;
158 		}
159 		if (priv->plat->clks_config) {
160 			ret = priv->plat->clks_config(priv->plat->bsp_priv, enabled);
161 			if (ret) {
162 				clk_disable_unprepare(priv->plat->stmmac_clk);
163 				clk_disable_unprepare(priv->plat->pclk);
164 				return ret;
165 			}
166 		}
167 	} else {
168 		clk_disable_unprepare(priv->plat->stmmac_clk);
169 		clk_disable_unprepare(priv->plat->pclk);
170 		if (priv->plat->clks_config)
171 			priv->plat->clks_config(priv->plat->bsp_priv, enabled);
172 	}
173 
174 	return ret;
175 }
176 EXPORT_SYMBOL_GPL(stmmac_bus_clks_config);
177 
178 /**
179  * stmmac_verify_args - verify the driver parameters.
180  * Description: it checks the driver parameters and set a default in case of
181  * errors.
182  */
183 static void stmmac_verify_args(void)
184 {
185 	if (unlikely(watchdog < 0))
186 		watchdog = TX_TIMEO;
187 	if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
188 		buf_sz = DEFAULT_BUFSIZE;
189 	if (unlikely(flow_ctrl > 1))
190 		flow_ctrl = FLOW_AUTO;
191 	else if (likely(flow_ctrl < 0))
192 		flow_ctrl = FLOW_OFF;
193 	if (unlikely((pause < 0) || (pause > 0xffff)))
194 		pause = PAUSE_TIME;
195 	if (eee_timer < 0)
196 		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
197 }
198 
199 static void __stmmac_disable_all_queues(struct stmmac_priv *priv)
200 {
201 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
202 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
203 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
204 	u32 queue;
205 
206 	for (queue = 0; queue < maxq; queue++) {
207 		struct stmmac_channel *ch = &priv->channel[queue];
208 
209 		if (stmmac_xdp_is_enabled(priv) &&
210 		    test_bit(queue, priv->af_xdp_zc_qps)) {
211 			napi_disable(&ch->rxtx_napi);
212 			continue;
213 		}
214 
215 		if (queue < rx_queues_cnt)
216 			napi_disable(&ch->rx_napi);
217 		if (queue < tx_queues_cnt)
218 			napi_disable(&ch->tx_napi);
219 	}
220 }
221 
222 /**
223  * stmmac_disable_all_queues - Disable all queues
224  * @priv: driver private structure
225  */
226 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
227 {
228 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
229 	struct stmmac_rx_queue *rx_q;
230 	u32 queue;
231 
232 	/* synchronize_rcu() needed for pending XDP buffers to drain */
233 	for (queue = 0; queue < rx_queues_cnt; queue++) {
234 		rx_q = &priv->rx_queue[queue];
235 		if (rx_q->xsk_pool) {
236 			synchronize_rcu();
237 			break;
238 		}
239 	}
240 
241 	__stmmac_disable_all_queues(priv);
242 }
243 
244 /**
245  * stmmac_enable_all_queues - Enable all queues
246  * @priv: driver private structure
247  */
248 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
249 {
250 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
251 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
252 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
253 	u32 queue;
254 
255 	for (queue = 0; queue < maxq; queue++) {
256 		struct stmmac_channel *ch = &priv->channel[queue];
257 
258 		if (stmmac_xdp_is_enabled(priv) &&
259 		    test_bit(queue, priv->af_xdp_zc_qps)) {
260 			napi_enable(&ch->rxtx_napi);
261 			continue;
262 		}
263 
264 		if (queue < rx_queues_cnt)
265 			napi_enable(&ch->rx_napi);
266 		if (queue < tx_queues_cnt)
267 			napi_enable(&ch->tx_napi);
268 	}
269 }
270 
271 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
272 {
273 	if (!test_bit(STMMAC_DOWN, &priv->state) &&
274 	    !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
275 		queue_work(priv->wq, &priv->service_task);
276 }
277 
278 static void stmmac_global_err(struct stmmac_priv *priv)
279 {
280 	netif_carrier_off(priv->dev);
281 	set_bit(STMMAC_RESET_REQUESTED, &priv->state);
282 	stmmac_service_event_schedule(priv);
283 }
284 
285 /**
286  * stmmac_clk_csr_set - dynamically set the MDC clock
287  * @priv: driver private structure
288  * Description: this is to dynamically set the MDC clock according to the csr
289  * clock input.
290  * Note:
291  *	If a specific clk_csr value is passed from the platform
292  *	this means that the CSR Clock Range selection cannot be
293  *	changed at run-time and it is fixed (as reported in the driver
294  *	documentation). Viceversa the driver will try to set the MDC
295  *	clock dynamically according to the actual clock input.
296  */
297 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
298 {
299 	u32 clk_rate;
300 
301 	clk_rate = clk_get_rate(priv->plat->stmmac_clk);
302 
303 	/* Platform provided default clk_csr would be assumed valid
304 	 * for all other cases except for the below mentioned ones.
305 	 * For values higher than the IEEE 802.3 specified frequency
306 	 * we can not estimate the proper divider as it is not known
307 	 * the frequency of clk_csr_i. So we do not change the default
308 	 * divider.
309 	 */
310 	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
311 		if (clk_rate < CSR_F_35M)
312 			priv->clk_csr = STMMAC_CSR_20_35M;
313 		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
314 			priv->clk_csr = STMMAC_CSR_35_60M;
315 		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
316 			priv->clk_csr = STMMAC_CSR_60_100M;
317 		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
318 			priv->clk_csr = STMMAC_CSR_100_150M;
319 		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
320 			priv->clk_csr = STMMAC_CSR_150_250M;
321 		else if ((clk_rate >= CSR_F_250M) && (clk_rate <= CSR_F_300M))
322 			priv->clk_csr = STMMAC_CSR_250_300M;
323 	}
324 
325 	if (priv->plat->has_sun8i) {
326 		if (clk_rate > 160000000)
327 			priv->clk_csr = 0x03;
328 		else if (clk_rate > 80000000)
329 			priv->clk_csr = 0x02;
330 		else if (clk_rate > 40000000)
331 			priv->clk_csr = 0x01;
332 		else
333 			priv->clk_csr = 0;
334 	}
335 
336 	if (priv->plat->has_xgmac) {
337 		if (clk_rate > 400000000)
338 			priv->clk_csr = 0x5;
339 		else if (clk_rate > 350000000)
340 			priv->clk_csr = 0x4;
341 		else if (clk_rate > 300000000)
342 			priv->clk_csr = 0x3;
343 		else if (clk_rate > 250000000)
344 			priv->clk_csr = 0x2;
345 		else if (clk_rate > 150000000)
346 			priv->clk_csr = 0x1;
347 		else
348 			priv->clk_csr = 0x0;
349 	}
350 }
351 
352 static void print_pkt(unsigned char *buf, int len)
353 {
354 	pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
355 	print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
356 }
357 
358 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
359 {
360 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
361 	u32 avail;
362 
363 	if (tx_q->dirty_tx > tx_q->cur_tx)
364 		avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
365 	else
366 		avail = priv->dma_tx_size - tx_q->cur_tx + tx_q->dirty_tx - 1;
367 
368 	return avail;
369 }
370 
371 /**
372  * stmmac_rx_dirty - Get RX queue dirty
373  * @priv: driver private structure
374  * @queue: RX queue index
375  */
376 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
377 {
378 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
379 	u32 dirty;
380 
381 	if (rx_q->dirty_rx <= rx_q->cur_rx)
382 		dirty = rx_q->cur_rx - rx_q->dirty_rx;
383 	else
384 		dirty = priv->dma_rx_size - rx_q->dirty_rx + rx_q->cur_rx;
385 
386 	return dirty;
387 }
388 
389 static void stmmac_lpi_entry_timer_config(struct stmmac_priv *priv, bool en)
390 {
391 	int tx_lpi_timer;
392 
393 	/* Clear/set the SW EEE timer flag based on LPI ET enablement */
394 	priv->eee_sw_timer_en = en ? 0 : 1;
395 	tx_lpi_timer  = en ? priv->tx_lpi_timer : 0;
396 	stmmac_set_eee_lpi_timer(priv, priv->hw, tx_lpi_timer);
397 }
398 
399 /**
400  * stmmac_enable_eee_mode - check and enter in LPI mode
401  * @priv: driver private structure
402  * Description: this function is to verify and enter in LPI mode in case of
403  * EEE.
404  */
405 static int stmmac_enable_eee_mode(struct stmmac_priv *priv)
406 {
407 	u32 tx_cnt = priv->plat->tx_queues_to_use;
408 	u32 queue;
409 
410 	/* check if all TX queues have the work finished */
411 	for (queue = 0; queue < tx_cnt; queue++) {
412 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
413 
414 		if (tx_q->dirty_tx != tx_q->cur_tx)
415 			return -EBUSY; /* still unfinished work */
416 	}
417 
418 	/* Check and enter in LPI mode */
419 	if (!priv->tx_path_in_lpi_mode)
420 		stmmac_set_eee_mode(priv, priv->hw,
421 				priv->plat->en_tx_lpi_clockgating);
422 	return 0;
423 }
424 
425 /**
426  * stmmac_disable_eee_mode - disable and exit from LPI mode
427  * @priv: driver private structure
428  * Description: this function is to exit and disable EEE in case of
429  * LPI state is true. This is called by the xmit.
430  */
431 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
432 {
433 	if (!priv->eee_sw_timer_en) {
434 		stmmac_lpi_entry_timer_config(priv, 0);
435 		return;
436 	}
437 
438 	stmmac_reset_eee_mode(priv, priv->hw);
439 	del_timer_sync(&priv->eee_ctrl_timer);
440 	priv->tx_path_in_lpi_mode = false;
441 }
442 
443 /**
444  * stmmac_eee_ctrl_timer - EEE TX SW timer.
445  * @t:  timer_list struct containing private info
446  * Description:
447  *  if there is no data transfer and if we are not in LPI state,
448  *  then MAC Transmitter can be moved to LPI state.
449  */
450 static void stmmac_eee_ctrl_timer(struct timer_list *t)
451 {
452 	struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
453 
454 	if (stmmac_enable_eee_mode(priv))
455 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
456 }
457 
458 /**
459  * stmmac_eee_init - init EEE
460  * @priv: driver private structure
461  * Description:
462  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
463  *  can also manage EEE, this function enable the LPI state and start related
464  *  timer.
465  */
466 bool stmmac_eee_init(struct stmmac_priv *priv)
467 {
468 	int eee_tw_timer = priv->eee_tw_timer;
469 
470 	/* Using PCS we cannot dial with the phy registers at this stage
471 	 * so we do not support extra feature like EEE.
472 	 */
473 	if (priv->hw->pcs == STMMAC_PCS_TBI ||
474 	    priv->hw->pcs == STMMAC_PCS_RTBI)
475 		return false;
476 
477 	/* Check if MAC core supports the EEE feature. */
478 	if (!priv->dma_cap.eee)
479 		return false;
480 
481 	mutex_lock(&priv->lock);
482 
483 	/* Check if it needs to be deactivated */
484 	if (!priv->eee_active) {
485 		if (priv->eee_enabled) {
486 			netdev_dbg(priv->dev, "disable EEE\n");
487 			stmmac_lpi_entry_timer_config(priv, 0);
488 			del_timer_sync(&priv->eee_ctrl_timer);
489 			stmmac_set_eee_timer(priv, priv->hw, 0, eee_tw_timer);
490 			if (priv->hw->xpcs)
491 				xpcs_config_eee(priv->hw->xpcs,
492 						priv->plat->mult_fact_100ns,
493 						false);
494 		}
495 		mutex_unlock(&priv->lock);
496 		return false;
497 	}
498 
499 	if (priv->eee_active && !priv->eee_enabled) {
500 		timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
501 		stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
502 				     eee_tw_timer);
503 		if (priv->hw->xpcs)
504 			xpcs_config_eee(priv->hw->xpcs,
505 					priv->plat->mult_fact_100ns,
506 					true);
507 	}
508 
509 	if (priv->plat->has_gmac4 && priv->tx_lpi_timer <= STMMAC_ET_MAX) {
510 		del_timer_sync(&priv->eee_ctrl_timer);
511 		priv->tx_path_in_lpi_mode = false;
512 		stmmac_lpi_entry_timer_config(priv, 1);
513 	} else {
514 		stmmac_lpi_entry_timer_config(priv, 0);
515 		mod_timer(&priv->eee_ctrl_timer,
516 			  STMMAC_LPI_T(priv->tx_lpi_timer));
517 	}
518 
519 	mutex_unlock(&priv->lock);
520 	netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
521 	return true;
522 }
523 
524 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
525  * @priv: driver private structure
526  * @p : descriptor pointer
527  * @skb : the socket buffer
528  * Description :
529  * This function will read timestamp from the descriptor & pass it to stack.
530  * and also perform some sanity checks.
531  */
532 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
533 				   struct dma_desc *p, struct sk_buff *skb)
534 {
535 	struct skb_shared_hwtstamps shhwtstamp;
536 	bool found = false;
537 	u64 ns = 0;
538 
539 	if (!priv->hwts_tx_en)
540 		return;
541 
542 	/* exit if skb doesn't support hw tstamp */
543 	if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
544 		return;
545 
546 	/* check tx tstamp status */
547 	if (stmmac_get_tx_timestamp_status(priv, p)) {
548 		stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
549 		found = true;
550 	} else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) {
551 		found = true;
552 	}
553 
554 	if (found) {
555 		ns -= priv->plat->cdc_error_adj;
556 
557 		memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
558 		shhwtstamp.hwtstamp = ns_to_ktime(ns);
559 
560 		netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
561 		/* pass tstamp to stack */
562 		skb_tstamp_tx(skb, &shhwtstamp);
563 	}
564 }
565 
566 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
567  * @priv: driver private structure
568  * @p : descriptor pointer
569  * @np : next descriptor pointer
570  * @skb : the socket buffer
571  * Description :
572  * This function will read received packet's timestamp from the descriptor
573  * and pass it to stack. It also perform some sanity checks.
574  */
575 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
576 				   struct dma_desc *np, struct sk_buff *skb)
577 {
578 	struct skb_shared_hwtstamps *shhwtstamp = NULL;
579 	struct dma_desc *desc = p;
580 	u64 ns = 0;
581 
582 	if (!priv->hwts_rx_en)
583 		return;
584 	/* For GMAC4, the valid timestamp is from CTX next desc. */
585 	if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
586 		desc = np;
587 
588 	/* Check if timestamp is available */
589 	if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
590 		stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
591 
592 		ns -= priv->plat->cdc_error_adj;
593 
594 		netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
595 		shhwtstamp = skb_hwtstamps(skb);
596 		memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
597 		shhwtstamp->hwtstamp = ns_to_ktime(ns);
598 	} else  {
599 		netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
600 	}
601 }
602 
603 /**
604  *  stmmac_hwtstamp_set - control hardware timestamping.
605  *  @dev: device pointer.
606  *  @ifr: An IOCTL specific structure, that can contain a pointer to
607  *  a proprietary structure used to pass information to the driver.
608  *  Description:
609  *  This function configures the MAC to enable/disable both outgoing(TX)
610  *  and incoming(RX) packets time stamping based on user input.
611  *  Return Value:
612  *  0 on success and an appropriate -ve integer on failure.
613  */
614 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
615 {
616 	struct stmmac_priv *priv = netdev_priv(dev);
617 	struct hwtstamp_config config;
618 	u32 ptp_v2 = 0;
619 	u32 tstamp_all = 0;
620 	u32 ptp_over_ipv4_udp = 0;
621 	u32 ptp_over_ipv6_udp = 0;
622 	u32 ptp_over_ethernet = 0;
623 	u32 snap_type_sel = 0;
624 	u32 ts_master_en = 0;
625 	u32 ts_event_en = 0;
626 
627 	if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
628 		netdev_alert(priv->dev, "No support for HW time stamping\n");
629 		priv->hwts_tx_en = 0;
630 		priv->hwts_rx_en = 0;
631 
632 		return -EOPNOTSUPP;
633 	}
634 
635 	if (copy_from_user(&config, ifr->ifr_data,
636 			   sizeof(config)))
637 		return -EFAULT;
638 
639 	netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
640 		   __func__, config.flags, config.tx_type, config.rx_filter);
641 
642 	if (config.tx_type != HWTSTAMP_TX_OFF &&
643 	    config.tx_type != HWTSTAMP_TX_ON)
644 		return -ERANGE;
645 
646 	if (priv->adv_ts) {
647 		switch (config.rx_filter) {
648 		case HWTSTAMP_FILTER_NONE:
649 			/* time stamp no incoming packet at all */
650 			config.rx_filter = HWTSTAMP_FILTER_NONE;
651 			break;
652 
653 		case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
654 			/* PTP v1, UDP, any kind of event packet */
655 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
656 			/* 'xmac' hardware can support Sync, Pdelay_Req and
657 			 * Pdelay_resp by setting bit14 and bits17/16 to 01
658 			 * This leaves Delay_Req timestamps out.
659 			 * Enable all events *and* general purpose message
660 			 * timestamping
661 			 */
662 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
663 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
664 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
665 			break;
666 
667 		case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
668 			/* PTP v1, UDP, Sync packet */
669 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
670 			/* take time stamp for SYNC messages only */
671 			ts_event_en = PTP_TCR_TSEVNTENA;
672 
673 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
674 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
675 			break;
676 
677 		case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
678 			/* PTP v1, UDP, Delay_req packet */
679 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
680 			/* take time stamp for Delay_Req messages only */
681 			ts_master_en = PTP_TCR_TSMSTRENA;
682 			ts_event_en = PTP_TCR_TSEVNTENA;
683 
684 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
685 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
686 			break;
687 
688 		case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
689 			/* PTP v2, UDP, any kind of event packet */
690 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
691 			ptp_v2 = PTP_TCR_TSVER2ENA;
692 			/* take time stamp for all event messages */
693 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
694 
695 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
696 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
697 			break;
698 
699 		case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
700 			/* PTP v2, UDP, Sync packet */
701 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
702 			ptp_v2 = PTP_TCR_TSVER2ENA;
703 			/* take time stamp for SYNC messages only */
704 			ts_event_en = PTP_TCR_TSEVNTENA;
705 
706 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
707 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
708 			break;
709 
710 		case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
711 			/* PTP v2, UDP, Delay_req packet */
712 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
713 			ptp_v2 = PTP_TCR_TSVER2ENA;
714 			/* take time stamp for Delay_Req messages only */
715 			ts_master_en = PTP_TCR_TSMSTRENA;
716 			ts_event_en = PTP_TCR_TSEVNTENA;
717 
718 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
719 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
720 			break;
721 
722 		case HWTSTAMP_FILTER_PTP_V2_EVENT:
723 			/* PTP v2/802.AS1 any layer, any kind of event packet */
724 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
725 			ptp_v2 = PTP_TCR_TSVER2ENA;
726 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
727 			if (priv->synopsys_id < DWMAC_CORE_4_10)
728 				ts_event_en = PTP_TCR_TSEVNTENA;
729 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
730 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
731 			ptp_over_ethernet = PTP_TCR_TSIPENA;
732 			break;
733 
734 		case HWTSTAMP_FILTER_PTP_V2_SYNC:
735 			/* PTP v2/802.AS1, any layer, Sync packet */
736 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
737 			ptp_v2 = PTP_TCR_TSVER2ENA;
738 			/* take time stamp for SYNC messages only */
739 			ts_event_en = PTP_TCR_TSEVNTENA;
740 
741 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
742 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
743 			ptp_over_ethernet = PTP_TCR_TSIPENA;
744 			break;
745 
746 		case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
747 			/* PTP v2/802.AS1, any layer, Delay_req packet */
748 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
749 			ptp_v2 = PTP_TCR_TSVER2ENA;
750 			/* take time stamp for Delay_Req messages only */
751 			ts_master_en = PTP_TCR_TSMSTRENA;
752 			ts_event_en = PTP_TCR_TSEVNTENA;
753 
754 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
755 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
756 			ptp_over_ethernet = PTP_TCR_TSIPENA;
757 			break;
758 
759 		case HWTSTAMP_FILTER_NTP_ALL:
760 		case HWTSTAMP_FILTER_ALL:
761 			/* time stamp any incoming packet */
762 			config.rx_filter = HWTSTAMP_FILTER_ALL;
763 			tstamp_all = PTP_TCR_TSENALL;
764 			break;
765 
766 		default:
767 			return -ERANGE;
768 		}
769 	} else {
770 		switch (config.rx_filter) {
771 		case HWTSTAMP_FILTER_NONE:
772 			config.rx_filter = HWTSTAMP_FILTER_NONE;
773 			break;
774 		default:
775 			/* PTP v1, UDP, any kind of event packet */
776 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
777 			break;
778 		}
779 	}
780 	priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
781 	priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
782 
783 	priv->systime_flags = STMMAC_HWTS_ACTIVE;
784 
785 	if (priv->hwts_tx_en || priv->hwts_rx_en) {
786 		priv->systime_flags |= tstamp_all | ptp_v2 |
787 				       ptp_over_ethernet | ptp_over_ipv6_udp |
788 				       ptp_over_ipv4_udp | ts_event_en |
789 				       ts_master_en | snap_type_sel;
790 	}
791 
792 	stmmac_config_hw_tstamping(priv, priv->ptpaddr, priv->systime_flags);
793 
794 	memcpy(&priv->tstamp_config, &config, sizeof(config));
795 
796 	return copy_to_user(ifr->ifr_data, &config,
797 			    sizeof(config)) ? -EFAULT : 0;
798 }
799 
800 /**
801  *  stmmac_hwtstamp_get - read hardware timestamping.
802  *  @dev: device pointer.
803  *  @ifr: An IOCTL specific structure, that can contain a pointer to
804  *  a proprietary structure used to pass information to the driver.
805  *  Description:
806  *  This function obtain the current hardware timestamping settings
807  *  as requested.
808  */
809 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
810 {
811 	struct stmmac_priv *priv = netdev_priv(dev);
812 	struct hwtstamp_config *config = &priv->tstamp_config;
813 
814 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
815 		return -EOPNOTSUPP;
816 
817 	return copy_to_user(ifr->ifr_data, config,
818 			    sizeof(*config)) ? -EFAULT : 0;
819 }
820 
821 /**
822  * stmmac_init_tstamp_counter - init hardware timestamping counter
823  * @priv: driver private structure
824  * @systime_flags: timestamping flags
825  * Description:
826  * Initialize hardware counter for packet timestamping.
827  * This is valid as long as the interface is open and not suspended.
828  * Will be rerun after resuming from suspend, case in which the timestamping
829  * flags updated by stmmac_hwtstamp_set() also need to be restored.
830  */
831 int stmmac_init_tstamp_counter(struct stmmac_priv *priv, u32 systime_flags)
832 {
833 	bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
834 	struct timespec64 now;
835 	u32 sec_inc = 0;
836 	u64 temp = 0;
837 	int ret;
838 
839 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
840 		return -EOPNOTSUPP;
841 
842 	ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
843 	if (ret < 0) {
844 		netdev_warn(priv->dev,
845 			    "failed to enable PTP reference clock: %pe\n",
846 			    ERR_PTR(ret));
847 		return ret;
848 	}
849 
850 	stmmac_config_hw_tstamping(priv, priv->ptpaddr, systime_flags);
851 	priv->systime_flags = systime_flags;
852 
853 	/* program Sub Second Increment reg */
854 	stmmac_config_sub_second_increment(priv, priv->ptpaddr,
855 					   priv->plat->clk_ptp_rate,
856 					   xmac, &sec_inc);
857 	temp = div_u64(1000000000ULL, sec_inc);
858 
859 	/* Store sub second increment for later use */
860 	priv->sub_second_inc = sec_inc;
861 
862 	/* calculate default added value:
863 	 * formula is :
864 	 * addend = (2^32)/freq_div_ratio;
865 	 * where, freq_div_ratio = 1e9ns/sec_inc
866 	 */
867 	temp = (u64)(temp << 32);
868 	priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
869 	stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
870 
871 	/* initialize system time */
872 	ktime_get_real_ts64(&now);
873 
874 	/* lower 32 bits of tv_sec are safe until y2106 */
875 	stmmac_init_systime(priv, priv->ptpaddr, (u32)now.tv_sec, now.tv_nsec);
876 
877 	return 0;
878 }
879 EXPORT_SYMBOL_GPL(stmmac_init_tstamp_counter);
880 
881 /**
882  * stmmac_init_ptp - init PTP
883  * @priv: driver private structure
884  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
885  * This is done by looking at the HW cap. register.
886  * This function also registers the ptp driver.
887  */
888 static int stmmac_init_ptp(struct stmmac_priv *priv)
889 {
890 	bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
891 	int ret;
892 
893 	if (priv->plat->ptp_clk_freq_config)
894 		priv->plat->ptp_clk_freq_config(priv);
895 
896 	ret = stmmac_init_tstamp_counter(priv, STMMAC_HWTS_ACTIVE);
897 	if (ret)
898 		return ret;
899 
900 	priv->adv_ts = 0;
901 	/* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
902 	if (xmac && priv->dma_cap.atime_stamp)
903 		priv->adv_ts = 1;
904 	/* Dwmac 3.x core with extend_desc can support adv_ts */
905 	else if (priv->extend_desc && priv->dma_cap.atime_stamp)
906 		priv->adv_ts = 1;
907 
908 	if (priv->dma_cap.time_stamp)
909 		netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
910 
911 	if (priv->adv_ts)
912 		netdev_info(priv->dev,
913 			    "IEEE 1588-2008 Advanced Timestamp supported\n");
914 
915 	priv->hwts_tx_en = 0;
916 	priv->hwts_rx_en = 0;
917 
918 	return 0;
919 }
920 
921 static void stmmac_release_ptp(struct stmmac_priv *priv)
922 {
923 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
924 	stmmac_ptp_unregister(priv);
925 }
926 
927 /**
928  *  stmmac_mac_flow_ctrl - Configure flow control in all queues
929  *  @priv: driver private structure
930  *  @duplex: duplex passed to the next function
931  *  Description: It is used for configuring the flow control in all queues
932  */
933 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
934 {
935 	u32 tx_cnt = priv->plat->tx_queues_to_use;
936 
937 	stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
938 			priv->pause, tx_cnt);
939 }
940 
941 static struct phylink_pcs *stmmac_mac_select_pcs(struct phylink_config *config,
942 						 phy_interface_t interface)
943 {
944 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
945 
946 	if (!priv->hw->xpcs)
947 		return NULL;
948 
949 	return &priv->hw->xpcs->pcs;
950 }
951 
952 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
953 			      const struct phylink_link_state *state)
954 {
955 	/* Nothing to do, xpcs_config() handles everything */
956 }
957 
958 static void stmmac_fpe_link_state_handle(struct stmmac_priv *priv, bool is_up)
959 {
960 	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
961 	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
962 	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
963 	bool *hs_enable = &fpe_cfg->hs_enable;
964 
965 	if (is_up && *hs_enable) {
966 		stmmac_fpe_send_mpacket(priv, priv->ioaddr, MPACKET_VERIFY);
967 	} else {
968 		*lo_state = FPE_STATE_OFF;
969 		*lp_state = FPE_STATE_OFF;
970 	}
971 }
972 
973 static void stmmac_mac_link_down(struct phylink_config *config,
974 				 unsigned int mode, phy_interface_t interface)
975 {
976 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
977 
978 	stmmac_mac_set(priv, priv->ioaddr, false);
979 	priv->eee_active = false;
980 	priv->tx_lpi_enabled = false;
981 	priv->eee_enabled = stmmac_eee_init(priv);
982 	stmmac_set_eee_pls(priv, priv->hw, false);
983 
984 	if (priv->dma_cap.fpesel)
985 		stmmac_fpe_link_state_handle(priv, false);
986 }
987 
988 static void stmmac_mac_link_up(struct phylink_config *config,
989 			       struct phy_device *phy,
990 			       unsigned int mode, phy_interface_t interface,
991 			       int speed, int duplex,
992 			       bool tx_pause, bool rx_pause)
993 {
994 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
995 	u32 ctrl;
996 
997 	ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
998 	ctrl &= ~priv->hw->link.speed_mask;
999 
1000 	if (interface == PHY_INTERFACE_MODE_USXGMII) {
1001 		switch (speed) {
1002 		case SPEED_10000:
1003 			ctrl |= priv->hw->link.xgmii.speed10000;
1004 			break;
1005 		case SPEED_5000:
1006 			ctrl |= priv->hw->link.xgmii.speed5000;
1007 			break;
1008 		case SPEED_2500:
1009 			ctrl |= priv->hw->link.xgmii.speed2500;
1010 			break;
1011 		default:
1012 			return;
1013 		}
1014 	} else if (interface == PHY_INTERFACE_MODE_XLGMII) {
1015 		switch (speed) {
1016 		case SPEED_100000:
1017 			ctrl |= priv->hw->link.xlgmii.speed100000;
1018 			break;
1019 		case SPEED_50000:
1020 			ctrl |= priv->hw->link.xlgmii.speed50000;
1021 			break;
1022 		case SPEED_40000:
1023 			ctrl |= priv->hw->link.xlgmii.speed40000;
1024 			break;
1025 		case SPEED_25000:
1026 			ctrl |= priv->hw->link.xlgmii.speed25000;
1027 			break;
1028 		case SPEED_10000:
1029 			ctrl |= priv->hw->link.xgmii.speed10000;
1030 			break;
1031 		case SPEED_2500:
1032 			ctrl |= priv->hw->link.speed2500;
1033 			break;
1034 		case SPEED_1000:
1035 			ctrl |= priv->hw->link.speed1000;
1036 			break;
1037 		default:
1038 			return;
1039 		}
1040 	} else {
1041 		switch (speed) {
1042 		case SPEED_2500:
1043 			ctrl |= priv->hw->link.speed2500;
1044 			break;
1045 		case SPEED_1000:
1046 			ctrl |= priv->hw->link.speed1000;
1047 			break;
1048 		case SPEED_100:
1049 			ctrl |= priv->hw->link.speed100;
1050 			break;
1051 		case SPEED_10:
1052 			ctrl |= priv->hw->link.speed10;
1053 			break;
1054 		default:
1055 			return;
1056 		}
1057 	}
1058 
1059 	priv->speed = speed;
1060 
1061 	if (priv->plat->fix_mac_speed)
1062 		priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed);
1063 
1064 	if (!duplex)
1065 		ctrl &= ~priv->hw->link.duplex;
1066 	else
1067 		ctrl |= priv->hw->link.duplex;
1068 
1069 	/* Flow Control operation */
1070 	if (tx_pause && rx_pause)
1071 		stmmac_mac_flow_ctrl(priv, duplex);
1072 
1073 	writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
1074 
1075 	stmmac_mac_set(priv, priv->ioaddr, true);
1076 	if (phy && priv->dma_cap.eee) {
1077 		priv->eee_active = phy_init_eee(phy, 1) >= 0;
1078 		priv->eee_enabled = stmmac_eee_init(priv);
1079 		priv->tx_lpi_enabled = priv->eee_enabled;
1080 		stmmac_set_eee_pls(priv, priv->hw, true);
1081 	}
1082 
1083 	if (priv->dma_cap.fpesel)
1084 		stmmac_fpe_link_state_handle(priv, true);
1085 }
1086 
1087 static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
1088 	.validate = phylink_generic_validate,
1089 	.mac_select_pcs = stmmac_mac_select_pcs,
1090 	.mac_config = stmmac_mac_config,
1091 	.mac_link_down = stmmac_mac_link_down,
1092 	.mac_link_up = stmmac_mac_link_up,
1093 };
1094 
1095 /**
1096  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
1097  * @priv: driver private structure
1098  * Description: this is to verify if the HW supports the PCS.
1099  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
1100  * configured for the TBI, RTBI, or SGMII PHY interface.
1101  */
1102 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
1103 {
1104 	int interface = priv->plat->interface;
1105 
1106 	if (priv->dma_cap.pcs) {
1107 		if ((interface == PHY_INTERFACE_MODE_RGMII) ||
1108 		    (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
1109 		    (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
1110 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
1111 			netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
1112 			priv->hw->pcs = STMMAC_PCS_RGMII;
1113 		} else if (interface == PHY_INTERFACE_MODE_SGMII) {
1114 			netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
1115 			priv->hw->pcs = STMMAC_PCS_SGMII;
1116 		}
1117 	}
1118 }
1119 
1120 /**
1121  * stmmac_init_phy - PHY initialization
1122  * @dev: net device structure
1123  * Description: it initializes the driver's PHY state, and attaches the PHY
1124  * to the mac driver.
1125  *  Return value:
1126  *  0 on success
1127  */
1128 static int stmmac_init_phy(struct net_device *dev)
1129 {
1130 	struct stmmac_priv *priv = netdev_priv(dev);
1131 	struct device_node *node;
1132 	int ret;
1133 
1134 	node = priv->plat->phylink_node;
1135 
1136 	if (node)
1137 		ret = phylink_of_phy_connect(priv->phylink, node, 0);
1138 
1139 	/* Some DT bindings do not set-up the PHY handle. Let's try to
1140 	 * manually parse it
1141 	 */
1142 	if (!node || ret) {
1143 		int addr = priv->plat->phy_addr;
1144 		struct phy_device *phydev;
1145 
1146 		phydev = mdiobus_get_phy(priv->mii, addr);
1147 		if (!phydev) {
1148 			netdev_err(priv->dev, "no phy at addr %d\n", addr);
1149 			return -ENODEV;
1150 		}
1151 
1152 		ret = phylink_connect_phy(priv->phylink, phydev);
1153 	}
1154 
1155 	if (!priv->plat->pmt) {
1156 		struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
1157 
1158 		phylink_ethtool_get_wol(priv->phylink, &wol);
1159 		device_set_wakeup_capable(priv->device, !!wol.supported);
1160 	}
1161 
1162 	return ret;
1163 }
1164 
1165 static int stmmac_phy_setup(struct stmmac_priv *priv)
1166 {
1167 	struct stmmac_mdio_bus_data *mdio_bus_data = priv->plat->mdio_bus_data;
1168 	struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node);
1169 	int max_speed = priv->plat->max_speed;
1170 	int mode = priv->plat->phy_interface;
1171 	struct phylink *phylink;
1172 
1173 	priv->phylink_config.dev = &priv->dev->dev;
1174 	priv->phylink_config.type = PHYLINK_NETDEV;
1175 	if (priv->plat->mdio_bus_data)
1176 		priv->phylink_config.ovr_an_inband =
1177 			mdio_bus_data->xpcs_an_inband;
1178 
1179 	if (!fwnode)
1180 		fwnode = dev_fwnode(priv->device);
1181 
1182 	/* Set the platform/firmware specified interface mode */
1183 	__set_bit(mode, priv->phylink_config.supported_interfaces);
1184 
1185 	/* If we have an xpcs, it defines which PHY interfaces are supported. */
1186 	if (priv->hw->xpcs)
1187 		xpcs_get_interfaces(priv->hw->xpcs,
1188 				    priv->phylink_config.supported_interfaces);
1189 
1190 	priv->phylink_config.mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
1191 		MAC_10 | MAC_100;
1192 
1193 	if (!max_speed || max_speed >= 1000)
1194 		priv->phylink_config.mac_capabilities |= MAC_1000;
1195 
1196 	if (priv->plat->has_gmac4) {
1197 		if (!max_speed || max_speed >= 2500)
1198 			priv->phylink_config.mac_capabilities |= MAC_2500FD;
1199 	} else if (priv->plat->has_xgmac) {
1200 		if (!max_speed || max_speed >= 2500)
1201 			priv->phylink_config.mac_capabilities |= MAC_2500FD;
1202 		if (!max_speed || max_speed >= 5000)
1203 			priv->phylink_config.mac_capabilities |= MAC_5000FD;
1204 		if (!max_speed || max_speed >= 10000)
1205 			priv->phylink_config.mac_capabilities |= MAC_10000FD;
1206 		if (!max_speed || max_speed >= 25000)
1207 			priv->phylink_config.mac_capabilities |= MAC_25000FD;
1208 		if (!max_speed || max_speed >= 40000)
1209 			priv->phylink_config.mac_capabilities |= MAC_40000FD;
1210 		if (!max_speed || max_speed >= 50000)
1211 			priv->phylink_config.mac_capabilities |= MAC_50000FD;
1212 		if (!max_speed || max_speed >= 100000)
1213 			priv->phylink_config.mac_capabilities |= MAC_100000FD;
1214 	}
1215 
1216 	/* Half-Duplex can only work with single queue */
1217 	if (priv->plat->tx_queues_to_use > 1)
1218 		priv->phylink_config.mac_capabilities &=
1219 			~(MAC_10HD | MAC_100HD | MAC_1000HD);
1220 
1221 	phylink = phylink_create(&priv->phylink_config, fwnode,
1222 				 mode, &stmmac_phylink_mac_ops);
1223 	if (IS_ERR(phylink))
1224 		return PTR_ERR(phylink);
1225 
1226 	priv->phylink = phylink;
1227 	return 0;
1228 }
1229 
1230 static void stmmac_display_rx_rings(struct stmmac_priv *priv)
1231 {
1232 	u32 rx_cnt = priv->plat->rx_queues_to_use;
1233 	unsigned int desc_size;
1234 	void *head_rx;
1235 	u32 queue;
1236 
1237 	/* Display RX rings */
1238 	for (queue = 0; queue < rx_cnt; queue++) {
1239 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1240 
1241 		pr_info("\tRX Queue %u rings\n", queue);
1242 
1243 		if (priv->extend_desc) {
1244 			head_rx = (void *)rx_q->dma_erx;
1245 			desc_size = sizeof(struct dma_extended_desc);
1246 		} else {
1247 			head_rx = (void *)rx_q->dma_rx;
1248 			desc_size = sizeof(struct dma_desc);
1249 		}
1250 
1251 		/* Display RX ring */
1252 		stmmac_display_ring(priv, head_rx, priv->dma_rx_size, true,
1253 				    rx_q->dma_rx_phy, desc_size);
1254 	}
1255 }
1256 
1257 static void stmmac_display_tx_rings(struct stmmac_priv *priv)
1258 {
1259 	u32 tx_cnt = priv->plat->tx_queues_to_use;
1260 	unsigned int desc_size;
1261 	void *head_tx;
1262 	u32 queue;
1263 
1264 	/* Display TX rings */
1265 	for (queue = 0; queue < tx_cnt; queue++) {
1266 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1267 
1268 		pr_info("\tTX Queue %d rings\n", queue);
1269 
1270 		if (priv->extend_desc) {
1271 			head_tx = (void *)tx_q->dma_etx;
1272 			desc_size = sizeof(struct dma_extended_desc);
1273 		} else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1274 			head_tx = (void *)tx_q->dma_entx;
1275 			desc_size = sizeof(struct dma_edesc);
1276 		} else {
1277 			head_tx = (void *)tx_q->dma_tx;
1278 			desc_size = sizeof(struct dma_desc);
1279 		}
1280 
1281 		stmmac_display_ring(priv, head_tx, priv->dma_tx_size, false,
1282 				    tx_q->dma_tx_phy, desc_size);
1283 	}
1284 }
1285 
1286 static void stmmac_display_rings(struct stmmac_priv *priv)
1287 {
1288 	/* Display RX ring */
1289 	stmmac_display_rx_rings(priv);
1290 
1291 	/* Display TX ring */
1292 	stmmac_display_tx_rings(priv);
1293 }
1294 
1295 static int stmmac_set_bfsize(int mtu, int bufsize)
1296 {
1297 	int ret = bufsize;
1298 
1299 	if (mtu >= BUF_SIZE_8KiB)
1300 		ret = BUF_SIZE_16KiB;
1301 	else if (mtu >= BUF_SIZE_4KiB)
1302 		ret = BUF_SIZE_8KiB;
1303 	else if (mtu >= BUF_SIZE_2KiB)
1304 		ret = BUF_SIZE_4KiB;
1305 	else if (mtu > DEFAULT_BUFSIZE)
1306 		ret = BUF_SIZE_2KiB;
1307 	else
1308 		ret = DEFAULT_BUFSIZE;
1309 
1310 	return ret;
1311 }
1312 
1313 /**
1314  * stmmac_clear_rx_descriptors - clear RX descriptors
1315  * @priv: driver private structure
1316  * @queue: RX queue index
1317  * Description: this function is called to clear the RX descriptors
1318  * in case of both basic and extended descriptors are used.
1319  */
1320 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue)
1321 {
1322 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1323 	int i;
1324 
1325 	/* Clear the RX descriptors */
1326 	for (i = 0; i < priv->dma_rx_size; i++)
1327 		if (priv->extend_desc)
1328 			stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1329 					priv->use_riwt, priv->mode,
1330 					(i == priv->dma_rx_size - 1),
1331 					priv->dma_buf_sz);
1332 		else
1333 			stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1334 					priv->use_riwt, priv->mode,
1335 					(i == priv->dma_rx_size - 1),
1336 					priv->dma_buf_sz);
1337 }
1338 
1339 /**
1340  * stmmac_clear_tx_descriptors - clear tx descriptors
1341  * @priv: driver private structure
1342  * @queue: TX queue index.
1343  * Description: this function is called to clear the TX descriptors
1344  * in case of both basic and extended descriptors are used.
1345  */
1346 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue)
1347 {
1348 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1349 	int i;
1350 
1351 	/* Clear the TX descriptors */
1352 	for (i = 0; i < priv->dma_tx_size; i++) {
1353 		int last = (i == (priv->dma_tx_size - 1));
1354 		struct dma_desc *p;
1355 
1356 		if (priv->extend_desc)
1357 			p = &tx_q->dma_etx[i].basic;
1358 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1359 			p = &tx_q->dma_entx[i].basic;
1360 		else
1361 			p = &tx_q->dma_tx[i];
1362 
1363 		stmmac_init_tx_desc(priv, p, priv->mode, last);
1364 	}
1365 }
1366 
1367 /**
1368  * stmmac_clear_descriptors - clear descriptors
1369  * @priv: driver private structure
1370  * Description: this function is called to clear the TX and RX descriptors
1371  * in case of both basic and extended descriptors are used.
1372  */
1373 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
1374 {
1375 	u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1376 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1377 	u32 queue;
1378 
1379 	/* Clear the RX descriptors */
1380 	for (queue = 0; queue < rx_queue_cnt; queue++)
1381 		stmmac_clear_rx_descriptors(priv, queue);
1382 
1383 	/* Clear the TX descriptors */
1384 	for (queue = 0; queue < tx_queue_cnt; queue++)
1385 		stmmac_clear_tx_descriptors(priv, queue);
1386 }
1387 
1388 /**
1389  * stmmac_init_rx_buffers - init the RX descriptor buffer.
1390  * @priv: driver private structure
1391  * @p: descriptor pointer
1392  * @i: descriptor index
1393  * @flags: gfp flag
1394  * @queue: RX queue index
1395  * Description: this function is called to allocate a receive buffer, perform
1396  * the DMA mapping and init the descriptor.
1397  */
1398 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
1399 				  int i, gfp_t flags, u32 queue)
1400 {
1401 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1402 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1403 	gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
1404 
1405 	if (priv->dma_cap.addr64 <= 32)
1406 		gfp |= GFP_DMA32;
1407 
1408 	if (!buf->page) {
1409 		buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp);
1410 		if (!buf->page)
1411 			return -ENOMEM;
1412 		buf->page_offset = stmmac_rx_offset(priv);
1413 	}
1414 
1415 	if (priv->sph && !buf->sec_page) {
1416 		buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp);
1417 		if (!buf->sec_page)
1418 			return -ENOMEM;
1419 
1420 		buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
1421 		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
1422 	} else {
1423 		buf->sec_page = NULL;
1424 		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
1425 	}
1426 
1427 	buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
1428 
1429 	stmmac_set_desc_addr(priv, p, buf->addr);
1430 	if (priv->dma_buf_sz == BUF_SIZE_16KiB)
1431 		stmmac_init_desc3(priv, p);
1432 
1433 	return 0;
1434 }
1435 
1436 /**
1437  * stmmac_free_rx_buffer - free RX dma buffers
1438  * @priv: private structure
1439  * @queue: RX queue index
1440  * @i: buffer index.
1441  */
1442 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1443 {
1444 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1445 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1446 
1447 	if (buf->page)
1448 		page_pool_put_full_page(rx_q->page_pool, buf->page, false);
1449 	buf->page = NULL;
1450 
1451 	if (buf->sec_page)
1452 		page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false);
1453 	buf->sec_page = NULL;
1454 }
1455 
1456 /**
1457  * stmmac_free_tx_buffer - free RX dma buffers
1458  * @priv: private structure
1459  * @queue: RX queue index
1460  * @i: buffer index.
1461  */
1462 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1463 {
1464 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1465 
1466 	if (tx_q->tx_skbuff_dma[i].buf &&
1467 	    tx_q->tx_skbuff_dma[i].buf_type != STMMAC_TXBUF_T_XDP_TX) {
1468 		if (tx_q->tx_skbuff_dma[i].map_as_page)
1469 			dma_unmap_page(priv->device,
1470 				       tx_q->tx_skbuff_dma[i].buf,
1471 				       tx_q->tx_skbuff_dma[i].len,
1472 				       DMA_TO_DEVICE);
1473 		else
1474 			dma_unmap_single(priv->device,
1475 					 tx_q->tx_skbuff_dma[i].buf,
1476 					 tx_q->tx_skbuff_dma[i].len,
1477 					 DMA_TO_DEVICE);
1478 	}
1479 
1480 	if (tx_q->xdpf[i] &&
1481 	    (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_TX ||
1482 	     tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_NDO)) {
1483 		xdp_return_frame(tx_q->xdpf[i]);
1484 		tx_q->xdpf[i] = NULL;
1485 	}
1486 
1487 	if (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XSK_TX)
1488 		tx_q->xsk_frames_done++;
1489 
1490 	if (tx_q->tx_skbuff[i] &&
1491 	    tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_SKB) {
1492 		dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1493 		tx_q->tx_skbuff[i] = NULL;
1494 	}
1495 
1496 	tx_q->tx_skbuff_dma[i].buf = 0;
1497 	tx_q->tx_skbuff_dma[i].map_as_page = false;
1498 }
1499 
1500 /**
1501  * dma_free_rx_skbufs - free RX dma buffers
1502  * @priv: private structure
1503  * @queue: RX queue index
1504  */
1505 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue)
1506 {
1507 	int i;
1508 
1509 	for (i = 0; i < priv->dma_rx_size; i++)
1510 		stmmac_free_rx_buffer(priv, queue, i);
1511 }
1512 
1513 static int stmmac_alloc_rx_buffers(struct stmmac_priv *priv, u32 queue,
1514 				   gfp_t flags)
1515 {
1516 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1517 	int i;
1518 
1519 	for (i = 0; i < priv->dma_rx_size; i++) {
1520 		struct dma_desc *p;
1521 		int ret;
1522 
1523 		if (priv->extend_desc)
1524 			p = &((rx_q->dma_erx + i)->basic);
1525 		else
1526 			p = rx_q->dma_rx + i;
1527 
1528 		ret = stmmac_init_rx_buffers(priv, p, i, flags,
1529 					     queue);
1530 		if (ret)
1531 			return ret;
1532 
1533 		rx_q->buf_alloc_num++;
1534 	}
1535 
1536 	return 0;
1537 }
1538 
1539 /**
1540  * dma_free_rx_xskbufs - free RX dma buffers from XSK pool
1541  * @priv: private structure
1542  * @queue: RX queue index
1543  */
1544 static void dma_free_rx_xskbufs(struct stmmac_priv *priv, u32 queue)
1545 {
1546 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1547 	int i;
1548 
1549 	for (i = 0; i < priv->dma_rx_size; i++) {
1550 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1551 
1552 		if (!buf->xdp)
1553 			continue;
1554 
1555 		xsk_buff_free(buf->xdp);
1556 		buf->xdp = NULL;
1557 	}
1558 }
1559 
1560 static int stmmac_alloc_rx_buffers_zc(struct stmmac_priv *priv, u32 queue)
1561 {
1562 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1563 	int i;
1564 
1565 	for (i = 0; i < priv->dma_rx_size; i++) {
1566 		struct stmmac_rx_buffer *buf;
1567 		dma_addr_t dma_addr;
1568 		struct dma_desc *p;
1569 
1570 		if (priv->extend_desc)
1571 			p = (struct dma_desc *)(rx_q->dma_erx + i);
1572 		else
1573 			p = rx_q->dma_rx + i;
1574 
1575 		buf = &rx_q->buf_pool[i];
1576 
1577 		buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
1578 		if (!buf->xdp)
1579 			return -ENOMEM;
1580 
1581 		dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
1582 		stmmac_set_desc_addr(priv, p, dma_addr);
1583 		rx_q->buf_alloc_num++;
1584 	}
1585 
1586 	return 0;
1587 }
1588 
1589 static struct xsk_buff_pool *stmmac_get_xsk_pool(struct stmmac_priv *priv, u32 queue)
1590 {
1591 	if (!stmmac_xdp_is_enabled(priv) || !test_bit(queue, priv->af_xdp_zc_qps))
1592 		return NULL;
1593 
1594 	return xsk_get_pool_from_qid(priv->dev, queue);
1595 }
1596 
1597 /**
1598  * __init_dma_rx_desc_rings - init the RX descriptor ring (per queue)
1599  * @priv: driver private structure
1600  * @queue: RX queue index
1601  * @flags: gfp flag.
1602  * Description: this function initializes the DMA RX descriptors
1603  * and allocates the socket buffers. It supports the chained and ring
1604  * modes.
1605  */
1606 static int __init_dma_rx_desc_rings(struct stmmac_priv *priv, u32 queue, gfp_t flags)
1607 {
1608 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1609 	int ret;
1610 
1611 	netif_dbg(priv, probe, priv->dev,
1612 		  "(%s) dma_rx_phy=0x%08x\n", __func__,
1613 		  (u32)rx_q->dma_rx_phy);
1614 
1615 	stmmac_clear_rx_descriptors(priv, queue);
1616 
1617 	xdp_rxq_info_unreg_mem_model(&rx_q->xdp_rxq);
1618 
1619 	rx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1620 
1621 	if (rx_q->xsk_pool) {
1622 		WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1623 						   MEM_TYPE_XSK_BUFF_POOL,
1624 						   NULL));
1625 		netdev_info(priv->dev,
1626 			    "Register MEM_TYPE_XSK_BUFF_POOL RxQ-%d\n",
1627 			    rx_q->queue_index);
1628 		xsk_pool_set_rxq_info(rx_q->xsk_pool, &rx_q->xdp_rxq);
1629 	} else {
1630 		WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1631 						   MEM_TYPE_PAGE_POOL,
1632 						   rx_q->page_pool));
1633 		netdev_info(priv->dev,
1634 			    "Register MEM_TYPE_PAGE_POOL RxQ-%d\n",
1635 			    rx_q->queue_index);
1636 	}
1637 
1638 	if (rx_q->xsk_pool) {
1639 		/* RX XDP ZC buffer pool may not be populated, e.g.
1640 		 * xdpsock TX-only.
1641 		 */
1642 		stmmac_alloc_rx_buffers_zc(priv, queue);
1643 	} else {
1644 		ret = stmmac_alloc_rx_buffers(priv, queue, flags);
1645 		if (ret < 0)
1646 			return -ENOMEM;
1647 	}
1648 
1649 	rx_q->cur_rx = 0;
1650 	rx_q->dirty_rx = 0;
1651 
1652 	/* Setup the chained descriptor addresses */
1653 	if (priv->mode == STMMAC_CHAIN_MODE) {
1654 		if (priv->extend_desc)
1655 			stmmac_mode_init(priv, rx_q->dma_erx,
1656 					 rx_q->dma_rx_phy,
1657 					 priv->dma_rx_size, 1);
1658 		else
1659 			stmmac_mode_init(priv, rx_q->dma_rx,
1660 					 rx_q->dma_rx_phy,
1661 					 priv->dma_rx_size, 0);
1662 	}
1663 
1664 	return 0;
1665 }
1666 
1667 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags)
1668 {
1669 	struct stmmac_priv *priv = netdev_priv(dev);
1670 	u32 rx_count = priv->plat->rx_queues_to_use;
1671 	int queue;
1672 	int ret;
1673 
1674 	/* RX INITIALIZATION */
1675 	netif_dbg(priv, probe, priv->dev,
1676 		  "SKB addresses:\nskb\t\tskb data\tdma data\n");
1677 
1678 	for (queue = 0; queue < rx_count; queue++) {
1679 		ret = __init_dma_rx_desc_rings(priv, queue, flags);
1680 		if (ret)
1681 			goto err_init_rx_buffers;
1682 	}
1683 
1684 	return 0;
1685 
1686 err_init_rx_buffers:
1687 	while (queue >= 0) {
1688 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1689 
1690 		if (rx_q->xsk_pool)
1691 			dma_free_rx_xskbufs(priv, queue);
1692 		else
1693 			dma_free_rx_skbufs(priv, queue);
1694 
1695 		rx_q->buf_alloc_num = 0;
1696 		rx_q->xsk_pool = NULL;
1697 
1698 		queue--;
1699 	}
1700 
1701 	return ret;
1702 }
1703 
1704 /**
1705  * __init_dma_tx_desc_rings - init the TX descriptor ring (per queue)
1706  * @priv: driver private structure
1707  * @queue : TX queue index
1708  * Description: this function initializes the DMA TX descriptors
1709  * and allocates the socket buffers. It supports the chained and ring
1710  * modes.
1711  */
1712 static int __init_dma_tx_desc_rings(struct stmmac_priv *priv, u32 queue)
1713 {
1714 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1715 	int i;
1716 
1717 	netif_dbg(priv, probe, priv->dev,
1718 		  "(%s) dma_tx_phy=0x%08x\n", __func__,
1719 		  (u32)tx_q->dma_tx_phy);
1720 
1721 	/* Setup the chained descriptor addresses */
1722 	if (priv->mode == STMMAC_CHAIN_MODE) {
1723 		if (priv->extend_desc)
1724 			stmmac_mode_init(priv, tx_q->dma_etx,
1725 					 tx_q->dma_tx_phy,
1726 					 priv->dma_tx_size, 1);
1727 		else if (!(tx_q->tbs & STMMAC_TBS_AVAIL))
1728 			stmmac_mode_init(priv, tx_q->dma_tx,
1729 					 tx_q->dma_tx_phy,
1730 					 priv->dma_tx_size, 0);
1731 	}
1732 
1733 	tx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1734 
1735 	for (i = 0; i < priv->dma_tx_size; i++) {
1736 		struct dma_desc *p;
1737 
1738 		if (priv->extend_desc)
1739 			p = &((tx_q->dma_etx + i)->basic);
1740 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1741 			p = &((tx_q->dma_entx + i)->basic);
1742 		else
1743 			p = tx_q->dma_tx + i;
1744 
1745 		stmmac_clear_desc(priv, p);
1746 
1747 		tx_q->tx_skbuff_dma[i].buf = 0;
1748 		tx_q->tx_skbuff_dma[i].map_as_page = false;
1749 		tx_q->tx_skbuff_dma[i].len = 0;
1750 		tx_q->tx_skbuff_dma[i].last_segment = false;
1751 		tx_q->tx_skbuff[i] = NULL;
1752 	}
1753 
1754 	tx_q->dirty_tx = 0;
1755 	tx_q->cur_tx = 0;
1756 	tx_q->mss = 0;
1757 
1758 	netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
1759 
1760 	return 0;
1761 }
1762 
1763 static int init_dma_tx_desc_rings(struct net_device *dev)
1764 {
1765 	struct stmmac_priv *priv = netdev_priv(dev);
1766 	u32 tx_queue_cnt;
1767 	u32 queue;
1768 
1769 	tx_queue_cnt = priv->plat->tx_queues_to_use;
1770 
1771 	for (queue = 0; queue < tx_queue_cnt; queue++)
1772 		__init_dma_tx_desc_rings(priv, queue);
1773 
1774 	return 0;
1775 }
1776 
1777 /**
1778  * init_dma_desc_rings - init the RX/TX descriptor rings
1779  * @dev: net device structure
1780  * @flags: gfp flag.
1781  * Description: this function initializes the DMA RX/TX descriptors
1782  * and allocates the socket buffers. It supports the chained and ring
1783  * modes.
1784  */
1785 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1786 {
1787 	struct stmmac_priv *priv = netdev_priv(dev);
1788 	int ret;
1789 
1790 	ret = init_dma_rx_desc_rings(dev, flags);
1791 	if (ret)
1792 		return ret;
1793 
1794 	ret = init_dma_tx_desc_rings(dev);
1795 
1796 	stmmac_clear_descriptors(priv);
1797 
1798 	if (netif_msg_hw(priv))
1799 		stmmac_display_rings(priv);
1800 
1801 	return ret;
1802 }
1803 
1804 /**
1805  * dma_free_tx_skbufs - free TX dma buffers
1806  * @priv: private structure
1807  * @queue: TX queue index
1808  */
1809 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue)
1810 {
1811 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1812 	int i;
1813 
1814 	tx_q->xsk_frames_done = 0;
1815 
1816 	for (i = 0; i < priv->dma_tx_size; i++)
1817 		stmmac_free_tx_buffer(priv, queue, i);
1818 
1819 	if (tx_q->xsk_pool && tx_q->xsk_frames_done) {
1820 		xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
1821 		tx_q->xsk_frames_done = 0;
1822 		tx_q->xsk_pool = NULL;
1823 	}
1824 }
1825 
1826 /**
1827  * stmmac_free_tx_skbufs - free TX skb buffers
1828  * @priv: private structure
1829  */
1830 static void stmmac_free_tx_skbufs(struct stmmac_priv *priv)
1831 {
1832 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1833 	u32 queue;
1834 
1835 	for (queue = 0; queue < tx_queue_cnt; queue++)
1836 		dma_free_tx_skbufs(priv, queue);
1837 }
1838 
1839 /**
1840  * __free_dma_rx_desc_resources - free RX dma desc resources (per queue)
1841  * @priv: private structure
1842  * @queue: RX queue index
1843  */
1844 static void __free_dma_rx_desc_resources(struct stmmac_priv *priv, u32 queue)
1845 {
1846 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1847 
1848 	/* Release the DMA RX socket buffers */
1849 	if (rx_q->xsk_pool)
1850 		dma_free_rx_xskbufs(priv, queue);
1851 	else
1852 		dma_free_rx_skbufs(priv, queue);
1853 
1854 	rx_q->buf_alloc_num = 0;
1855 	rx_q->xsk_pool = NULL;
1856 
1857 	/* Free DMA regions of consistent memory previously allocated */
1858 	if (!priv->extend_desc)
1859 		dma_free_coherent(priv->device, priv->dma_rx_size *
1860 				  sizeof(struct dma_desc),
1861 				  rx_q->dma_rx, rx_q->dma_rx_phy);
1862 	else
1863 		dma_free_coherent(priv->device, priv->dma_rx_size *
1864 				  sizeof(struct dma_extended_desc),
1865 				  rx_q->dma_erx, rx_q->dma_rx_phy);
1866 
1867 	if (xdp_rxq_info_is_reg(&rx_q->xdp_rxq))
1868 		xdp_rxq_info_unreg(&rx_q->xdp_rxq);
1869 
1870 	kfree(rx_q->buf_pool);
1871 	if (rx_q->page_pool)
1872 		page_pool_destroy(rx_q->page_pool);
1873 }
1874 
1875 static void free_dma_rx_desc_resources(struct stmmac_priv *priv)
1876 {
1877 	u32 rx_count = priv->plat->rx_queues_to_use;
1878 	u32 queue;
1879 
1880 	/* Free RX queue resources */
1881 	for (queue = 0; queue < rx_count; queue++)
1882 		__free_dma_rx_desc_resources(priv, queue);
1883 }
1884 
1885 /**
1886  * __free_dma_tx_desc_resources - free TX dma desc resources (per queue)
1887  * @priv: private structure
1888  * @queue: TX queue index
1889  */
1890 static void __free_dma_tx_desc_resources(struct stmmac_priv *priv, u32 queue)
1891 {
1892 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1893 	size_t size;
1894 	void *addr;
1895 
1896 	/* Release the DMA TX socket buffers */
1897 	dma_free_tx_skbufs(priv, queue);
1898 
1899 	if (priv->extend_desc) {
1900 		size = sizeof(struct dma_extended_desc);
1901 		addr = tx_q->dma_etx;
1902 	} else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1903 		size = sizeof(struct dma_edesc);
1904 		addr = tx_q->dma_entx;
1905 	} else {
1906 		size = sizeof(struct dma_desc);
1907 		addr = tx_q->dma_tx;
1908 	}
1909 
1910 	size *= priv->dma_tx_size;
1911 
1912 	dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy);
1913 
1914 	kfree(tx_q->tx_skbuff_dma);
1915 	kfree(tx_q->tx_skbuff);
1916 }
1917 
1918 static void free_dma_tx_desc_resources(struct stmmac_priv *priv)
1919 {
1920 	u32 tx_count = priv->plat->tx_queues_to_use;
1921 	u32 queue;
1922 
1923 	/* Free TX queue resources */
1924 	for (queue = 0; queue < tx_count; queue++)
1925 		__free_dma_tx_desc_resources(priv, queue);
1926 }
1927 
1928 /**
1929  * __alloc_dma_rx_desc_resources - alloc RX resources (per queue).
1930  * @priv: private structure
1931  * @queue: RX queue index
1932  * Description: according to which descriptor can be used (extend or basic)
1933  * this function allocates the resources for TX and RX paths. In case of
1934  * reception, for example, it pre-allocated the RX socket buffer in order to
1935  * allow zero-copy mechanism.
1936  */
1937 static int __alloc_dma_rx_desc_resources(struct stmmac_priv *priv, u32 queue)
1938 {
1939 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1940 	struct stmmac_channel *ch = &priv->channel[queue];
1941 	bool xdp_prog = stmmac_xdp_is_enabled(priv);
1942 	struct page_pool_params pp_params = { 0 };
1943 	unsigned int num_pages;
1944 	unsigned int napi_id;
1945 	int ret;
1946 
1947 	rx_q->queue_index = queue;
1948 	rx_q->priv_data = priv;
1949 
1950 	pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV;
1951 	pp_params.pool_size = priv->dma_rx_size;
1952 	num_pages = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE);
1953 	pp_params.order = ilog2(num_pages);
1954 	pp_params.nid = dev_to_node(priv->device);
1955 	pp_params.dev = priv->device;
1956 	pp_params.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
1957 	pp_params.offset = stmmac_rx_offset(priv);
1958 	pp_params.max_len = STMMAC_MAX_RX_BUF_SIZE(num_pages);
1959 
1960 	rx_q->page_pool = page_pool_create(&pp_params);
1961 	if (IS_ERR(rx_q->page_pool)) {
1962 		ret = PTR_ERR(rx_q->page_pool);
1963 		rx_q->page_pool = NULL;
1964 		return ret;
1965 	}
1966 
1967 	rx_q->buf_pool = kcalloc(priv->dma_rx_size,
1968 				 sizeof(*rx_q->buf_pool),
1969 				 GFP_KERNEL);
1970 	if (!rx_q->buf_pool)
1971 		return -ENOMEM;
1972 
1973 	if (priv->extend_desc) {
1974 		rx_q->dma_erx = dma_alloc_coherent(priv->device,
1975 						   priv->dma_rx_size *
1976 						   sizeof(struct dma_extended_desc),
1977 						   &rx_q->dma_rx_phy,
1978 						   GFP_KERNEL);
1979 		if (!rx_q->dma_erx)
1980 			return -ENOMEM;
1981 
1982 	} else {
1983 		rx_q->dma_rx = dma_alloc_coherent(priv->device,
1984 						  priv->dma_rx_size *
1985 						  sizeof(struct dma_desc),
1986 						  &rx_q->dma_rx_phy,
1987 						  GFP_KERNEL);
1988 		if (!rx_q->dma_rx)
1989 			return -ENOMEM;
1990 	}
1991 
1992 	if (stmmac_xdp_is_enabled(priv) &&
1993 	    test_bit(queue, priv->af_xdp_zc_qps))
1994 		napi_id = ch->rxtx_napi.napi_id;
1995 	else
1996 		napi_id = ch->rx_napi.napi_id;
1997 
1998 	ret = xdp_rxq_info_reg(&rx_q->xdp_rxq, priv->dev,
1999 			       rx_q->queue_index,
2000 			       napi_id);
2001 	if (ret) {
2002 		netdev_err(priv->dev, "Failed to register xdp rxq info\n");
2003 		return -EINVAL;
2004 	}
2005 
2006 	return 0;
2007 }
2008 
2009 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv)
2010 {
2011 	u32 rx_count = priv->plat->rx_queues_to_use;
2012 	u32 queue;
2013 	int ret;
2014 
2015 	/* RX queues buffers and DMA */
2016 	for (queue = 0; queue < rx_count; queue++) {
2017 		ret = __alloc_dma_rx_desc_resources(priv, queue);
2018 		if (ret)
2019 			goto err_dma;
2020 	}
2021 
2022 	return 0;
2023 
2024 err_dma:
2025 	free_dma_rx_desc_resources(priv);
2026 
2027 	return ret;
2028 }
2029 
2030 /**
2031  * __alloc_dma_tx_desc_resources - alloc TX resources (per queue).
2032  * @priv: private structure
2033  * @queue: TX queue index
2034  * Description: according to which descriptor can be used (extend or basic)
2035  * this function allocates the resources for TX and RX paths. In case of
2036  * reception, for example, it pre-allocated the RX socket buffer in order to
2037  * allow zero-copy mechanism.
2038  */
2039 static int __alloc_dma_tx_desc_resources(struct stmmac_priv *priv, u32 queue)
2040 {
2041 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2042 	size_t size;
2043 	void *addr;
2044 
2045 	tx_q->queue_index = queue;
2046 	tx_q->priv_data = priv;
2047 
2048 	tx_q->tx_skbuff_dma = kcalloc(priv->dma_tx_size,
2049 				      sizeof(*tx_q->tx_skbuff_dma),
2050 				      GFP_KERNEL);
2051 	if (!tx_q->tx_skbuff_dma)
2052 		return -ENOMEM;
2053 
2054 	tx_q->tx_skbuff = kcalloc(priv->dma_tx_size,
2055 				  sizeof(struct sk_buff *),
2056 				  GFP_KERNEL);
2057 	if (!tx_q->tx_skbuff)
2058 		return -ENOMEM;
2059 
2060 	if (priv->extend_desc)
2061 		size = sizeof(struct dma_extended_desc);
2062 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2063 		size = sizeof(struct dma_edesc);
2064 	else
2065 		size = sizeof(struct dma_desc);
2066 
2067 	size *= priv->dma_tx_size;
2068 
2069 	addr = dma_alloc_coherent(priv->device, size,
2070 				  &tx_q->dma_tx_phy, GFP_KERNEL);
2071 	if (!addr)
2072 		return -ENOMEM;
2073 
2074 	if (priv->extend_desc)
2075 		tx_q->dma_etx = addr;
2076 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2077 		tx_q->dma_entx = addr;
2078 	else
2079 		tx_q->dma_tx = addr;
2080 
2081 	return 0;
2082 }
2083 
2084 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv)
2085 {
2086 	u32 tx_count = priv->plat->tx_queues_to_use;
2087 	u32 queue;
2088 	int ret;
2089 
2090 	/* TX queues buffers and DMA */
2091 	for (queue = 0; queue < tx_count; queue++) {
2092 		ret = __alloc_dma_tx_desc_resources(priv, queue);
2093 		if (ret)
2094 			goto err_dma;
2095 	}
2096 
2097 	return 0;
2098 
2099 err_dma:
2100 	free_dma_tx_desc_resources(priv);
2101 	return ret;
2102 }
2103 
2104 /**
2105  * alloc_dma_desc_resources - alloc TX/RX resources.
2106  * @priv: private structure
2107  * Description: according to which descriptor can be used (extend or basic)
2108  * this function allocates the resources for TX and RX paths. In case of
2109  * reception, for example, it pre-allocated the RX socket buffer in order to
2110  * allow zero-copy mechanism.
2111  */
2112 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
2113 {
2114 	/* RX Allocation */
2115 	int ret = alloc_dma_rx_desc_resources(priv);
2116 
2117 	if (ret)
2118 		return ret;
2119 
2120 	ret = alloc_dma_tx_desc_resources(priv);
2121 
2122 	return ret;
2123 }
2124 
2125 /**
2126  * free_dma_desc_resources - free dma desc resources
2127  * @priv: private structure
2128  */
2129 static void free_dma_desc_resources(struct stmmac_priv *priv)
2130 {
2131 	/* Release the DMA TX socket buffers */
2132 	free_dma_tx_desc_resources(priv);
2133 
2134 	/* Release the DMA RX socket buffers later
2135 	 * to ensure all pending XDP_TX buffers are returned.
2136 	 */
2137 	free_dma_rx_desc_resources(priv);
2138 }
2139 
2140 /**
2141  *  stmmac_mac_enable_rx_queues - Enable MAC rx queues
2142  *  @priv: driver private structure
2143  *  Description: It is used for enabling the rx queues in the MAC
2144  */
2145 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
2146 {
2147 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2148 	int queue;
2149 	u8 mode;
2150 
2151 	for (queue = 0; queue < rx_queues_count; queue++) {
2152 		mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
2153 		stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
2154 	}
2155 }
2156 
2157 /**
2158  * stmmac_start_rx_dma - start RX DMA channel
2159  * @priv: driver private structure
2160  * @chan: RX channel index
2161  * Description:
2162  * This starts a RX DMA channel
2163  */
2164 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
2165 {
2166 	netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
2167 	stmmac_start_rx(priv, priv->ioaddr, chan);
2168 }
2169 
2170 /**
2171  * stmmac_start_tx_dma - start TX DMA channel
2172  * @priv: driver private structure
2173  * @chan: TX channel index
2174  * Description:
2175  * This starts a TX DMA channel
2176  */
2177 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
2178 {
2179 	netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
2180 	stmmac_start_tx(priv, priv->ioaddr, chan);
2181 }
2182 
2183 /**
2184  * stmmac_stop_rx_dma - stop RX DMA channel
2185  * @priv: driver private structure
2186  * @chan: RX channel index
2187  * Description:
2188  * This stops a RX DMA channel
2189  */
2190 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
2191 {
2192 	netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
2193 	stmmac_stop_rx(priv, priv->ioaddr, chan);
2194 }
2195 
2196 /**
2197  * stmmac_stop_tx_dma - stop TX DMA channel
2198  * @priv: driver private structure
2199  * @chan: TX channel index
2200  * Description:
2201  * This stops a TX DMA channel
2202  */
2203 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
2204 {
2205 	netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
2206 	stmmac_stop_tx(priv, priv->ioaddr, chan);
2207 }
2208 
2209 static void stmmac_enable_all_dma_irq(struct stmmac_priv *priv)
2210 {
2211 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2212 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2213 	u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2214 	u32 chan;
2215 
2216 	for (chan = 0; chan < dma_csr_ch; chan++) {
2217 		struct stmmac_channel *ch = &priv->channel[chan];
2218 		unsigned long flags;
2219 
2220 		spin_lock_irqsave(&ch->lock, flags);
2221 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
2222 		spin_unlock_irqrestore(&ch->lock, flags);
2223 	}
2224 }
2225 
2226 /**
2227  * stmmac_start_all_dma - start all RX and TX DMA channels
2228  * @priv: driver private structure
2229  * Description:
2230  * This starts all the RX and TX DMA channels
2231  */
2232 static void stmmac_start_all_dma(struct stmmac_priv *priv)
2233 {
2234 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2235 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2236 	u32 chan = 0;
2237 
2238 	for (chan = 0; chan < rx_channels_count; chan++)
2239 		stmmac_start_rx_dma(priv, chan);
2240 
2241 	for (chan = 0; chan < tx_channels_count; chan++)
2242 		stmmac_start_tx_dma(priv, chan);
2243 }
2244 
2245 /**
2246  * stmmac_stop_all_dma - stop all RX and TX DMA channels
2247  * @priv: driver private structure
2248  * Description:
2249  * This stops the RX and TX DMA channels
2250  */
2251 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
2252 {
2253 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2254 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2255 	u32 chan = 0;
2256 
2257 	for (chan = 0; chan < rx_channels_count; chan++)
2258 		stmmac_stop_rx_dma(priv, chan);
2259 
2260 	for (chan = 0; chan < tx_channels_count; chan++)
2261 		stmmac_stop_tx_dma(priv, chan);
2262 }
2263 
2264 /**
2265  *  stmmac_dma_operation_mode - HW DMA operation mode
2266  *  @priv: driver private structure
2267  *  Description: it is used for configuring the DMA operation mode register in
2268  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
2269  */
2270 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
2271 {
2272 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2273 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2274 	int rxfifosz = priv->plat->rx_fifo_size;
2275 	int txfifosz = priv->plat->tx_fifo_size;
2276 	u32 txmode = 0;
2277 	u32 rxmode = 0;
2278 	u32 chan = 0;
2279 	u8 qmode = 0;
2280 
2281 	if (rxfifosz == 0)
2282 		rxfifosz = priv->dma_cap.rx_fifo_size;
2283 	if (txfifosz == 0)
2284 		txfifosz = priv->dma_cap.tx_fifo_size;
2285 
2286 	/* Adjust for real per queue fifo size */
2287 	rxfifosz /= rx_channels_count;
2288 	txfifosz /= tx_channels_count;
2289 
2290 	if (priv->plat->force_thresh_dma_mode) {
2291 		txmode = tc;
2292 		rxmode = tc;
2293 	} else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
2294 		/*
2295 		 * In case of GMAC, SF mode can be enabled
2296 		 * to perform the TX COE in HW. This depends on:
2297 		 * 1) TX COE if actually supported
2298 		 * 2) There is no bugged Jumbo frame support
2299 		 *    that needs to not insert csum in the TDES.
2300 		 */
2301 		txmode = SF_DMA_MODE;
2302 		rxmode = SF_DMA_MODE;
2303 		priv->xstats.threshold = SF_DMA_MODE;
2304 	} else {
2305 		txmode = tc;
2306 		rxmode = SF_DMA_MODE;
2307 	}
2308 
2309 	/* configure all channels */
2310 	for (chan = 0; chan < rx_channels_count; chan++) {
2311 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[chan];
2312 		u32 buf_size;
2313 
2314 		qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2315 
2316 		stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
2317 				rxfifosz, qmode);
2318 
2319 		if (rx_q->xsk_pool) {
2320 			buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
2321 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
2322 					      buf_size,
2323 					      chan);
2324 		} else {
2325 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
2326 					      priv->dma_buf_sz,
2327 					      chan);
2328 		}
2329 	}
2330 
2331 	for (chan = 0; chan < tx_channels_count; chan++) {
2332 		qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2333 
2334 		stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
2335 				txfifosz, qmode);
2336 	}
2337 }
2338 
2339 static bool stmmac_xdp_xmit_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
2340 {
2341 	struct netdev_queue *nq = netdev_get_tx_queue(priv->dev, queue);
2342 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2343 	struct xsk_buff_pool *pool = tx_q->xsk_pool;
2344 	unsigned int entry = tx_q->cur_tx;
2345 	struct dma_desc *tx_desc = NULL;
2346 	struct xdp_desc xdp_desc;
2347 	bool work_done = true;
2348 
2349 	/* Avoids TX time-out as we are sharing with slow path */
2350 	txq_trans_cond_update(nq);
2351 
2352 	budget = min(budget, stmmac_tx_avail(priv, queue));
2353 
2354 	while (budget-- > 0) {
2355 		dma_addr_t dma_addr;
2356 		bool set_ic;
2357 
2358 		/* We are sharing with slow path and stop XSK TX desc submission when
2359 		 * available TX ring is less than threshold.
2360 		 */
2361 		if (unlikely(stmmac_tx_avail(priv, queue) < STMMAC_TX_XSK_AVAIL) ||
2362 		    !netif_carrier_ok(priv->dev)) {
2363 			work_done = false;
2364 			break;
2365 		}
2366 
2367 		if (!xsk_tx_peek_desc(pool, &xdp_desc))
2368 			break;
2369 
2370 		if (likely(priv->extend_desc))
2371 			tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
2372 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2373 			tx_desc = &tx_q->dma_entx[entry].basic;
2374 		else
2375 			tx_desc = tx_q->dma_tx + entry;
2376 
2377 		dma_addr = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
2378 		xsk_buff_raw_dma_sync_for_device(pool, dma_addr, xdp_desc.len);
2379 
2380 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XSK_TX;
2381 
2382 		/* To return XDP buffer to XSK pool, we simple call
2383 		 * xsk_tx_completed(), so we don't need to fill up
2384 		 * 'buf' and 'xdpf'.
2385 		 */
2386 		tx_q->tx_skbuff_dma[entry].buf = 0;
2387 		tx_q->xdpf[entry] = NULL;
2388 
2389 		tx_q->tx_skbuff_dma[entry].map_as_page = false;
2390 		tx_q->tx_skbuff_dma[entry].len = xdp_desc.len;
2391 		tx_q->tx_skbuff_dma[entry].last_segment = true;
2392 		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2393 
2394 		stmmac_set_desc_addr(priv, tx_desc, dma_addr);
2395 
2396 		tx_q->tx_count_frames++;
2397 
2398 		if (!priv->tx_coal_frames[queue])
2399 			set_ic = false;
2400 		else if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
2401 			set_ic = true;
2402 		else
2403 			set_ic = false;
2404 
2405 		if (set_ic) {
2406 			tx_q->tx_count_frames = 0;
2407 			stmmac_set_tx_ic(priv, tx_desc);
2408 			priv->xstats.tx_set_ic_bit++;
2409 		}
2410 
2411 		stmmac_prepare_tx_desc(priv, tx_desc, 1, xdp_desc.len,
2412 				       true, priv->mode, true, true,
2413 				       xdp_desc.len);
2414 
2415 		stmmac_enable_dma_transmission(priv, priv->ioaddr);
2416 
2417 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
2418 		entry = tx_q->cur_tx;
2419 	}
2420 
2421 	if (tx_desc) {
2422 		stmmac_flush_tx_descriptors(priv, queue);
2423 		xsk_tx_release(pool);
2424 	}
2425 
2426 	/* Return true if all of the 3 conditions are met
2427 	 *  a) TX Budget is still available
2428 	 *  b) work_done = true when XSK TX desc peek is empty (no more
2429 	 *     pending XSK TX for transmission)
2430 	 */
2431 	return !!budget && work_done;
2432 }
2433 
2434 static void stmmac_bump_dma_threshold(struct stmmac_priv *priv, u32 chan)
2435 {
2436 	if (unlikely(priv->xstats.threshold != SF_DMA_MODE) && tc <= 256) {
2437 		tc += 64;
2438 
2439 		if (priv->plat->force_thresh_dma_mode)
2440 			stmmac_set_dma_operation_mode(priv, tc, tc, chan);
2441 		else
2442 			stmmac_set_dma_operation_mode(priv, tc, SF_DMA_MODE,
2443 						      chan);
2444 
2445 		priv->xstats.threshold = tc;
2446 	}
2447 }
2448 
2449 /**
2450  * stmmac_tx_clean - to manage the transmission completion
2451  * @priv: driver private structure
2452  * @budget: napi budget limiting this functions packet handling
2453  * @queue: TX queue index
2454  * Description: it reclaims the transmit resources after transmission completes.
2455  */
2456 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
2457 {
2458 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2459 	unsigned int bytes_compl = 0, pkts_compl = 0;
2460 	unsigned int entry, xmits = 0, count = 0;
2461 
2462 	__netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
2463 
2464 	priv->xstats.tx_clean++;
2465 
2466 	tx_q->xsk_frames_done = 0;
2467 
2468 	entry = tx_q->dirty_tx;
2469 
2470 	/* Try to clean all TX complete frame in 1 shot */
2471 	while ((entry != tx_q->cur_tx) && count < priv->dma_tx_size) {
2472 		struct xdp_frame *xdpf;
2473 		struct sk_buff *skb;
2474 		struct dma_desc *p;
2475 		int status;
2476 
2477 		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX ||
2478 		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2479 			xdpf = tx_q->xdpf[entry];
2480 			skb = NULL;
2481 		} else if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2482 			xdpf = NULL;
2483 			skb = tx_q->tx_skbuff[entry];
2484 		} else {
2485 			xdpf = NULL;
2486 			skb = NULL;
2487 		}
2488 
2489 		if (priv->extend_desc)
2490 			p = (struct dma_desc *)(tx_q->dma_etx + entry);
2491 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2492 			p = &tx_q->dma_entx[entry].basic;
2493 		else
2494 			p = tx_q->dma_tx + entry;
2495 
2496 		status = stmmac_tx_status(priv, &priv->dev->stats,
2497 				&priv->xstats, p, priv->ioaddr);
2498 		/* Check if the descriptor is owned by the DMA */
2499 		if (unlikely(status & tx_dma_own))
2500 			break;
2501 
2502 		count++;
2503 
2504 		/* Make sure descriptor fields are read after reading
2505 		 * the own bit.
2506 		 */
2507 		dma_rmb();
2508 
2509 		/* Just consider the last segment and ...*/
2510 		if (likely(!(status & tx_not_ls))) {
2511 			/* ... verify the status error condition */
2512 			if (unlikely(status & tx_err)) {
2513 				priv->dev->stats.tx_errors++;
2514 				if (unlikely(status & tx_err_bump_tc))
2515 					stmmac_bump_dma_threshold(priv, queue);
2516 			} else {
2517 				priv->dev->stats.tx_packets++;
2518 				priv->xstats.tx_pkt_n++;
2519 				priv->xstats.txq_stats[queue].tx_pkt_n++;
2520 			}
2521 			if (skb)
2522 				stmmac_get_tx_hwtstamp(priv, p, skb);
2523 		}
2524 
2525 		if (likely(tx_q->tx_skbuff_dma[entry].buf &&
2526 			   tx_q->tx_skbuff_dma[entry].buf_type != STMMAC_TXBUF_T_XDP_TX)) {
2527 			if (tx_q->tx_skbuff_dma[entry].map_as_page)
2528 				dma_unmap_page(priv->device,
2529 					       tx_q->tx_skbuff_dma[entry].buf,
2530 					       tx_q->tx_skbuff_dma[entry].len,
2531 					       DMA_TO_DEVICE);
2532 			else
2533 				dma_unmap_single(priv->device,
2534 						 tx_q->tx_skbuff_dma[entry].buf,
2535 						 tx_q->tx_skbuff_dma[entry].len,
2536 						 DMA_TO_DEVICE);
2537 			tx_q->tx_skbuff_dma[entry].buf = 0;
2538 			tx_q->tx_skbuff_dma[entry].len = 0;
2539 			tx_q->tx_skbuff_dma[entry].map_as_page = false;
2540 		}
2541 
2542 		stmmac_clean_desc3(priv, tx_q, p);
2543 
2544 		tx_q->tx_skbuff_dma[entry].last_segment = false;
2545 		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2546 
2547 		if (xdpf &&
2548 		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX) {
2549 			xdp_return_frame_rx_napi(xdpf);
2550 			tx_q->xdpf[entry] = NULL;
2551 		}
2552 
2553 		if (xdpf &&
2554 		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2555 			xdp_return_frame(xdpf);
2556 			tx_q->xdpf[entry] = NULL;
2557 		}
2558 
2559 		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XSK_TX)
2560 			tx_q->xsk_frames_done++;
2561 
2562 		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2563 			if (likely(skb)) {
2564 				pkts_compl++;
2565 				bytes_compl += skb->len;
2566 				dev_consume_skb_any(skb);
2567 				tx_q->tx_skbuff[entry] = NULL;
2568 			}
2569 		}
2570 
2571 		stmmac_release_tx_desc(priv, p, priv->mode);
2572 
2573 		entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
2574 	}
2575 	tx_q->dirty_tx = entry;
2576 
2577 	netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
2578 				  pkts_compl, bytes_compl);
2579 
2580 	if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
2581 								queue))) &&
2582 	    stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH(priv)) {
2583 
2584 		netif_dbg(priv, tx_done, priv->dev,
2585 			  "%s: restart transmit\n", __func__);
2586 		netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
2587 	}
2588 
2589 	if (tx_q->xsk_pool) {
2590 		bool work_done;
2591 
2592 		if (tx_q->xsk_frames_done)
2593 			xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
2594 
2595 		if (xsk_uses_need_wakeup(tx_q->xsk_pool))
2596 			xsk_set_tx_need_wakeup(tx_q->xsk_pool);
2597 
2598 		/* For XSK TX, we try to send as many as possible.
2599 		 * If XSK work done (XSK TX desc empty and budget still
2600 		 * available), return "budget - 1" to reenable TX IRQ.
2601 		 * Else, return "budget" to make NAPI continue polling.
2602 		 */
2603 		work_done = stmmac_xdp_xmit_zc(priv, queue,
2604 					       STMMAC_XSK_TX_BUDGET_MAX);
2605 		if (work_done)
2606 			xmits = budget - 1;
2607 		else
2608 			xmits = budget;
2609 	}
2610 
2611 	if (priv->eee_enabled && !priv->tx_path_in_lpi_mode &&
2612 	    priv->eee_sw_timer_en) {
2613 		if (stmmac_enable_eee_mode(priv))
2614 			mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
2615 	}
2616 
2617 	/* We still have pending packets, let's call for a new scheduling */
2618 	if (tx_q->dirty_tx != tx_q->cur_tx)
2619 		hrtimer_start(&tx_q->txtimer,
2620 			      STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]),
2621 			      HRTIMER_MODE_REL);
2622 
2623 	__netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
2624 
2625 	/* Combine decisions from TX clean and XSK TX */
2626 	return max(count, xmits);
2627 }
2628 
2629 /**
2630  * stmmac_tx_err - to manage the tx error
2631  * @priv: driver private structure
2632  * @chan: channel index
2633  * Description: it cleans the descriptors and restarts the transmission
2634  * in case of transmission errors.
2635  */
2636 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
2637 {
2638 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2639 
2640 	netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
2641 
2642 	stmmac_stop_tx_dma(priv, chan);
2643 	dma_free_tx_skbufs(priv, chan);
2644 	stmmac_clear_tx_descriptors(priv, chan);
2645 	tx_q->dirty_tx = 0;
2646 	tx_q->cur_tx = 0;
2647 	tx_q->mss = 0;
2648 	netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan));
2649 	stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2650 			    tx_q->dma_tx_phy, chan);
2651 	stmmac_start_tx_dma(priv, chan);
2652 
2653 	priv->dev->stats.tx_errors++;
2654 	netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
2655 }
2656 
2657 /**
2658  *  stmmac_set_dma_operation_mode - Set DMA operation mode by channel
2659  *  @priv: driver private structure
2660  *  @txmode: TX operating mode
2661  *  @rxmode: RX operating mode
2662  *  @chan: channel index
2663  *  Description: it is used for configuring of the DMA operation mode in
2664  *  runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
2665  *  mode.
2666  */
2667 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
2668 					  u32 rxmode, u32 chan)
2669 {
2670 	u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2671 	u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2672 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2673 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2674 	int rxfifosz = priv->plat->rx_fifo_size;
2675 	int txfifosz = priv->plat->tx_fifo_size;
2676 
2677 	if (rxfifosz == 0)
2678 		rxfifosz = priv->dma_cap.rx_fifo_size;
2679 	if (txfifosz == 0)
2680 		txfifosz = priv->dma_cap.tx_fifo_size;
2681 
2682 	/* Adjust for real per queue fifo size */
2683 	rxfifosz /= rx_channels_count;
2684 	txfifosz /= tx_channels_count;
2685 
2686 	stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2687 	stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2688 }
2689 
2690 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2691 {
2692 	int ret;
2693 
2694 	ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2695 			priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2696 	if (ret && (ret != -EINVAL)) {
2697 		stmmac_global_err(priv);
2698 		return true;
2699 	}
2700 
2701 	return false;
2702 }
2703 
2704 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan, u32 dir)
2705 {
2706 	int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2707 						 &priv->xstats, chan, dir);
2708 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[chan];
2709 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2710 	struct stmmac_channel *ch = &priv->channel[chan];
2711 	struct napi_struct *rx_napi;
2712 	struct napi_struct *tx_napi;
2713 	unsigned long flags;
2714 
2715 	rx_napi = rx_q->xsk_pool ? &ch->rxtx_napi : &ch->rx_napi;
2716 	tx_napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
2717 
2718 	if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2719 		if (napi_schedule_prep(rx_napi)) {
2720 			spin_lock_irqsave(&ch->lock, flags);
2721 			stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
2722 			spin_unlock_irqrestore(&ch->lock, flags);
2723 			__napi_schedule(rx_napi);
2724 		}
2725 	}
2726 
2727 	if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) {
2728 		if (napi_schedule_prep(tx_napi)) {
2729 			spin_lock_irqsave(&ch->lock, flags);
2730 			stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
2731 			spin_unlock_irqrestore(&ch->lock, flags);
2732 			__napi_schedule(tx_napi);
2733 		}
2734 	}
2735 
2736 	return status;
2737 }
2738 
2739 /**
2740  * stmmac_dma_interrupt - DMA ISR
2741  * @priv: driver private structure
2742  * Description: this is the DMA ISR. It is called by the main ISR.
2743  * It calls the dwmac dma routine and schedule poll method in case of some
2744  * work can be done.
2745  */
2746 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2747 {
2748 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2749 	u32 rx_channel_count = priv->plat->rx_queues_to_use;
2750 	u32 channels_to_check = tx_channel_count > rx_channel_count ?
2751 				tx_channel_count : rx_channel_count;
2752 	u32 chan;
2753 	int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2754 
2755 	/* Make sure we never check beyond our status buffer. */
2756 	if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2757 		channels_to_check = ARRAY_SIZE(status);
2758 
2759 	for (chan = 0; chan < channels_to_check; chan++)
2760 		status[chan] = stmmac_napi_check(priv, chan,
2761 						 DMA_DIR_RXTX);
2762 
2763 	for (chan = 0; chan < tx_channel_count; chan++) {
2764 		if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2765 			/* Try to bump up the dma threshold on this failure */
2766 			stmmac_bump_dma_threshold(priv, chan);
2767 		} else if (unlikely(status[chan] == tx_hard_error)) {
2768 			stmmac_tx_err(priv, chan);
2769 		}
2770 	}
2771 }
2772 
2773 /**
2774  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2775  * @priv: driver private structure
2776  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2777  */
2778 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2779 {
2780 	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2781 			    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2782 
2783 	stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2784 
2785 	if (priv->dma_cap.rmon) {
2786 		stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2787 		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2788 	} else
2789 		netdev_info(priv->dev, "No MAC Management Counters available\n");
2790 }
2791 
2792 /**
2793  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2794  * @priv: driver private structure
2795  * Description:
2796  *  new GMAC chip generations have a new register to indicate the
2797  *  presence of the optional feature/functions.
2798  *  This can be also used to override the value passed through the
2799  *  platform and necessary for old MAC10/100 and GMAC chips.
2800  */
2801 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2802 {
2803 	return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2804 }
2805 
2806 /**
2807  * stmmac_check_ether_addr - check if the MAC addr is valid
2808  * @priv: driver private structure
2809  * Description:
2810  * it is to verify if the MAC address is valid, in case of failures it
2811  * generates a random MAC address
2812  */
2813 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2814 {
2815 	u8 addr[ETH_ALEN];
2816 
2817 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2818 		stmmac_get_umac_addr(priv, priv->hw, addr, 0);
2819 		if (is_valid_ether_addr(addr))
2820 			eth_hw_addr_set(priv->dev, addr);
2821 		else
2822 			eth_hw_addr_random(priv->dev);
2823 		dev_info(priv->device, "device MAC address %pM\n",
2824 			 priv->dev->dev_addr);
2825 	}
2826 }
2827 
2828 /**
2829  * stmmac_init_dma_engine - DMA init.
2830  * @priv: driver private structure
2831  * Description:
2832  * It inits the DMA invoking the specific MAC/GMAC callback.
2833  * Some DMA parameters can be passed from the platform;
2834  * in case of these are not passed a default is kept for the MAC or GMAC.
2835  */
2836 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2837 {
2838 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2839 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2840 	u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2841 	struct stmmac_rx_queue *rx_q;
2842 	struct stmmac_tx_queue *tx_q;
2843 	u32 chan = 0;
2844 	int atds = 0;
2845 	int ret = 0;
2846 
2847 	if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2848 		dev_err(priv->device, "Invalid DMA configuration\n");
2849 		return -EINVAL;
2850 	}
2851 
2852 	if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2853 		atds = 1;
2854 
2855 	ret = stmmac_reset(priv, priv->ioaddr);
2856 	if (ret) {
2857 		dev_err(priv->device, "Failed to reset the dma\n");
2858 		return ret;
2859 	}
2860 
2861 	/* DMA Configuration */
2862 	stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2863 
2864 	if (priv->plat->axi)
2865 		stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2866 
2867 	/* DMA CSR Channel configuration */
2868 	for (chan = 0; chan < dma_csr_ch; chan++) {
2869 		stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2870 		stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
2871 	}
2872 
2873 	/* DMA RX Channel Configuration */
2874 	for (chan = 0; chan < rx_channels_count; chan++) {
2875 		rx_q = &priv->rx_queue[chan];
2876 
2877 		stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2878 				    rx_q->dma_rx_phy, chan);
2879 
2880 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2881 				     (rx_q->buf_alloc_num *
2882 				      sizeof(struct dma_desc));
2883 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2884 				       rx_q->rx_tail_addr, chan);
2885 	}
2886 
2887 	/* DMA TX Channel Configuration */
2888 	for (chan = 0; chan < tx_channels_count; chan++) {
2889 		tx_q = &priv->tx_queue[chan];
2890 
2891 		stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2892 				    tx_q->dma_tx_phy, chan);
2893 
2894 		tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2895 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2896 				       tx_q->tx_tail_addr, chan);
2897 	}
2898 
2899 	return ret;
2900 }
2901 
2902 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2903 {
2904 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2905 
2906 	hrtimer_start(&tx_q->txtimer,
2907 		      STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]),
2908 		      HRTIMER_MODE_REL);
2909 }
2910 
2911 /**
2912  * stmmac_tx_timer - mitigation sw timer for tx.
2913  * @t: data pointer
2914  * Description:
2915  * This is the timer handler to directly invoke the stmmac_tx_clean.
2916  */
2917 static enum hrtimer_restart stmmac_tx_timer(struct hrtimer *t)
2918 {
2919 	struct stmmac_tx_queue *tx_q = container_of(t, struct stmmac_tx_queue, txtimer);
2920 	struct stmmac_priv *priv = tx_q->priv_data;
2921 	struct stmmac_channel *ch;
2922 	struct napi_struct *napi;
2923 
2924 	ch = &priv->channel[tx_q->queue_index];
2925 	napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
2926 
2927 	if (likely(napi_schedule_prep(napi))) {
2928 		unsigned long flags;
2929 
2930 		spin_lock_irqsave(&ch->lock, flags);
2931 		stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1);
2932 		spin_unlock_irqrestore(&ch->lock, flags);
2933 		__napi_schedule(napi);
2934 	}
2935 
2936 	return HRTIMER_NORESTART;
2937 }
2938 
2939 /**
2940  * stmmac_init_coalesce - init mitigation options.
2941  * @priv: driver private structure
2942  * Description:
2943  * This inits the coalesce parameters: i.e. timer rate,
2944  * timer handler and default threshold used for enabling the
2945  * interrupt on completion bit.
2946  */
2947 static void stmmac_init_coalesce(struct stmmac_priv *priv)
2948 {
2949 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2950 	u32 rx_channel_count = priv->plat->rx_queues_to_use;
2951 	u32 chan;
2952 
2953 	for (chan = 0; chan < tx_channel_count; chan++) {
2954 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2955 
2956 		priv->tx_coal_frames[chan] = STMMAC_TX_FRAMES;
2957 		priv->tx_coal_timer[chan] = STMMAC_COAL_TX_TIMER;
2958 
2959 		hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2960 		tx_q->txtimer.function = stmmac_tx_timer;
2961 	}
2962 
2963 	for (chan = 0; chan < rx_channel_count; chan++)
2964 		priv->rx_coal_frames[chan] = STMMAC_RX_FRAMES;
2965 }
2966 
2967 static void stmmac_set_rings_length(struct stmmac_priv *priv)
2968 {
2969 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2970 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2971 	u32 chan;
2972 
2973 	/* set TX ring length */
2974 	for (chan = 0; chan < tx_channels_count; chan++)
2975 		stmmac_set_tx_ring_len(priv, priv->ioaddr,
2976 				       (priv->dma_tx_size - 1), chan);
2977 
2978 	/* set RX ring length */
2979 	for (chan = 0; chan < rx_channels_count; chan++)
2980 		stmmac_set_rx_ring_len(priv, priv->ioaddr,
2981 				       (priv->dma_rx_size - 1), chan);
2982 }
2983 
2984 /**
2985  *  stmmac_set_tx_queue_weight - Set TX queue weight
2986  *  @priv: driver private structure
2987  *  Description: It is used for setting TX queues weight
2988  */
2989 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
2990 {
2991 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2992 	u32 weight;
2993 	u32 queue;
2994 
2995 	for (queue = 0; queue < tx_queues_count; queue++) {
2996 		weight = priv->plat->tx_queues_cfg[queue].weight;
2997 		stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
2998 	}
2999 }
3000 
3001 /**
3002  *  stmmac_configure_cbs - Configure CBS in TX queue
3003  *  @priv: driver private structure
3004  *  Description: It is used for configuring CBS in AVB TX queues
3005  */
3006 static void stmmac_configure_cbs(struct stmmac_priv *priv)
3007 {
3008 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3009 	u32 mode_to_use;
3010 	u32 queue;
3011 
3012 	/* queue 0 is reserved for legacy traffic */
3013 	for (queue = 1; queue < tx_queues_count; queue++) {
3014 		mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
3015 		if (mode_to_use == MTL_QUEUE_DCB)
3016 			continue;
3017 
3018 		stmmac_config_cbs(priv, priv->hw,
3019 				priv->plat->tx_queues_cfg[queue].send_slope,
3020 				priv->plat->tx_queues_cfg[queue].idle_slope,
3021 				priv->plat->tx_queues_cfg[queue].high_credit,
3022 				priv->plat->tx_queues_cfg[queue].low_credit,
3023 				queue);
3024 	}
3025 }
3026 
3027 /**
3028  *  stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
3029  *  @priv: driver private structure
3030  *  Description: It is used for mapping RX queues to RX dma channels
3031  */
3032 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
3033 {
3034 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3035 	u32 queue;
3036 	u32 chan;
3037 
3038 	for (queue = 0; queue < rx_queues_count; queue++) {
3039 		chan = priv->plat->rx_queues_cfg[queue].chan;
3040 		stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
3041 	}
3042 }
3043 
3044 /**
3045  *  stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
3046  *  @priv: driver private structure
3047  *  Description: It is used for configuring the RX Queue Priority
3048  */
3049 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
3050 {
3051 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3052 	u32 queue;
3053 	u32 prio;
3054 
3055 	for (queue = 0; queue < rx_queues_count; queue++) {
3056 		if (!priv->plat->rx_queues_cfg[queue].use_prio)
3057 			continue;
3058 
3059 		prio = priv->plat->rx_queues_cfg[queue].prio;
3060 		stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
3061 	}
3062 }
3063 
3064 /**
3065  *  stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
3066  *  @priv: driver private structure
3067  *  Description: It is used for configuring the TX Queue Priority
3068  */
3069 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
3070 {
3071 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3072 	u32 queue;
3073 	u32 prio;
3074 
3075 	for (queue = 0; queue < tx_queues_count; queue++) {
3076 		if (!priv->plat->tx_queues_cfg[queue].use_prio)
3077 			continue;
3078 
3079 		prio = priv->plat->tx_queues_cfg[queue].prio;
3080 		stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
3081 	}
3082 }
3083 
3084 /**
3085  *  stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
3086  *  @priv: driver private structure
3087  *  Description: It is used for configuring the RX queue routing
3088  */
3089 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
3090 {
3091 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3092 	u32 queue;
3093 	u8 packet;
3094 
3095 	for (queue = 0; queue < rx_queues_count; queue++) {
3096 		/* no specific packet type routing specified for the queue */
3097 		if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
3098 			continue;
3099 
3100 		packet = priv->plat->rx_queues_cfg[queue].pkt_route;
3101 		stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
3102 	}
3103 }
3104 
3105 static void stmmac_mac_config_rss(struct stmmac_priv *priv)
3106 {
3107 	if (!priv->dma_cap.rssen || !priv->plat->rss_en) {
3108 		priv->rss.enable = false;
3109 		return;
3110 	}
3111 
3112 	if (priv->dev->features & NETIF_F_RXHASH)
3113 		priv->rss.enable = true;
3114 	else
3115 		priv->rss.enable = false;
3116 
3117 	stmmac_rss_configure(priv, priv->hw, &priv->rss,
3118 			     priv->plat->rx_queues_to_use);
3119 }
3120 
3121 /**
3122  *  stmmac_mtl_configuration - Configure MTL
3123  *  @priv: driver private structure
3124  *  Description: It is used for configurring MTL
3125  */
3126 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
3127 {
3128 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3129 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3130 
3131 	if (tx_queues_count > 1)
3132 		stmmac_set_tx_queue_weight(priv);
3133 
3134 	/* Configure MTL RX algorithms */
3135 	if (rx_queues_count > 1)
3136 		stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
3137 				priv->plat->rx_sched_algorithm);
3138 
3139 	/* Configure MTL TX algorithms */
3140 	if (tx_queues_count > 1)
3141 		stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
3142 				priv->plat->tx_sched_algorithm);
3143 
3144 	/* Configure CBS in AVB TX queues */
3145 	if (tx_queues_count > 1)
3146 		stmmac_configure_cbs(priv);
3147 
3148 	/* Map RX MTL to DMA channels */
3149 	stmmac_rx_queue_dma_chan_map(priv);
3150 
3151 	/* Enable MAC RX Queues */
3152 	stmmac_mac_enable_rx_queues(priv);
3153 
3154 	/* Set RX priorities */
3155 	if (rx_queues_count > 1)
3156 		stmmac_mac_config_rx_queues_prio(priv);
3157 
3158 	/* Set TX priorities */
3159 	if (tx_queues_count > 1)
3160 		stmmac_mac_config_tx_queues_prio(priv);
3161 
3162 	/* Set RX routing */
3163 	if (rx_queues_count > 1)
3164 		stmmac_mac_config_rx_queues_routing(priv);
3165 
3166 	/* Receive Side Scaling */
3167 	if (rx_queues_count > 1)
3168 		stmmac_mac_config_rss(priv);
3169 }
3170 
3171 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
3172 {
3173 	if (priv->dma_cap.asp) {
3174 		netdev_info(priv->dev, "Enabling Safety Features\n");
3175 		stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp,
3176 					  priv->plat->safety_feat_cfg);
3177 	} else {
3178 		netdev_info(priv->dev, "No Safety Features support found\n");
3179 	}
3180 }
3181 
3182 static int stmmac_fpe_start_wq(struct stmmac_priv *priv)
3183 {
3184 	char *name;
3185 
3186 	clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
3187 	clear_bit(__FPE_REMOVING,  &priv->fpe_task_state);
3188 
3189 	name = priv->wq_name;
3190 	sprintf(name, "%s-fpe", priv->dev->name);
3191 
3192 	priv->fpe_wq = create_singlethread_workqueue(name);
3193 	if (!priv->fpe_wq) {
3194 		netdev_err(priv->dev, "%s: Failed to create workqueue\n", name);
3195 
3196 		return -ENOMEM;
3197 	}
3198 	netdev_info(priv->dev, "FPE workqueue start");
3199 
3200 	return 0;
3201 }
3202 
3203 /**
3204  * stmmac_hw_setup - setup mac in a usable state.
3205  *  @dev : pointer to the device structure.
3206  *  @ptp_register: register PTP if set
3207  *  Description:
3208  *  this is the main function to setup the HW in a usable state because the
3209  *  dma engine is reset, the core registers are configured (e.g. AXI,
3210  *  Checksum features, timers). The DMA is ready to start receiving and
3211  *  transmitting.
3212  *  Return value:
3213  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3214  *  file on failure.
3215  */
3216 static int stmmac_hw_setup(struct net_device *dev, bool ptp_register)
3217 {
3218 	struct stmmac_priv *priv = netdev_priv(dev);
3219 	u32 rx_cnt = priv->plat->rx_queues_to_use;
3220 	u32 tx_cnt = priv->plat->tx_queues_to_use;
3221 	bool sph_en;
3222 	u32 chan;
3223 	int ret;
3224 
3225 	/* DMA initialization and SW reset */
3226 	ret = stmmac_init_dma_engine(priv);
3227 	if (ret < 0) {
3228 		netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
3229 			   __func__);
3230 		return ret;
3231 	}
3232 
3233 	/* Copy the MAC addr into the HW  */
3234 	stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
3235 
3236 	/* PS and related bits will be programmed according to the speed */
3237 	if (priv->hw->pcs) {
3238 		int speed = priv->plat->mac_port_sel_speed;
3239 
3240 		if ((speed == SPEED_10) || (speed == SPEED_100) ||
3241 		    (speed == SPEED_1000)) {
3242 			priv->hw->ps = speed;
3243 		} else {
3244 			dev_warn(priv->device, "invalid port speed\n");
3245 			priv->hw->ps = 0;
3246 		}
3247 	}
3248 
3249 	/* Initialize the MAC Core */
3250 	stmmac_core_init(priv, priv->hw, dev);
3251 
3252 	/* Initialize MTL*/
3253 	stmmac_mtl_configuration(priv);
3254 
3255 	/* Initialize Safety Features */
3256 	stmmac_safety_feat_configuration(priv);
3257 
3258 	ret = stmmac_rx_ipc(priv, priv->hw);
3259 	if (!ret) {
3260 		netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
3261 		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
3262 		priv->hw->rx_csum = 0;
3263 	}
3264 
3265 	/* Enable the MAC Rx/Tx */
3266 	stmmac_mac_set(priv, priv->ioaddr, true);
3267 
3268 	/* Set the HW DMA mode and the COE */
3269 	stmmac_dma_operation_mode(priv);
3270 
3271 	stmmac_mmc_setup(priv);
3272 
3273 	ret = stmmac_init_ptp(priv);
3274 	if (ret == -EOPNOTSUPP)
3275 		netdev_info(priv->dev, "PTP not supported by HW\n");
3276 	else if (ret)
3277 		netdev_warn(priv->dev, "PTP init failed\n");
3278 	else if (ptp_register)
3279 		stmmac_ptp_register(priv);
3280 
3281 	priv->eee_tw_timer = STMMAC_DEFAULT_TWT_LS;
3282 
3283 	/* Convert the timer from msec to usec */
3284 	if (!priv->tx_lpi_timer)
3285 		priv->tx_lpi_timer = eee_timer * 1000;
3286 
3287 	if (priv->use_riwt) {
3288 		u32 queue;
3289 
3290 		for (queue = 0; queue < rx_cnt; queue++) {
3291 			if (!priv->rx_riwt[queue])
3292 				priv->rx_riwt[queue] = DEF_DMA_RIWT;
3293 
3294 			stmmac_rx_watchdog(priv, priv->ioaddr,
3295 					   priv->rx_riwt[queue], queue);
3296 		}
3297 	}
3298 
3299 	if (priv->hw->pcs)
3300 		stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0);
3301 
3302 	/* set TX and RX rings length */
3303 	stmmac_set_rings_length(priv);
3304 
3305 	/* Enable TSO */
3306 	if (priv->tso) {
3307 		for (chan = 0; chan < tx_cnt; chan++) {
3308 			struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
3309 
3310 			/* TSO and TBS cannot co-exist */
3311 			if (tx_q->tbs & STMMAC_TBS_AVAIL)
3312 				continue;
3313 
3314 			stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
3315 		}
3316 	}
3317 
3318 	/* Enable Split Header */
3319 	sph_en = (priv->hw->rx_csum > 0) && priv->sph;
3320 	for (chan = 0; chan < rx_cnt; chan++)
3321 		stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
3322 
3323 
3324 	/* VLAN Tag Insertion */
3325 	if (priv->dma_cap.vlins)
3326 		stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT);
3327 
3328 	/* TBS */
3329 	for (chan = 0; chan < tx_cnt; chan++) {
3330 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
3331 		int enable = tx_q->tbs & STMMAC_TBS_AVAIL;
3332 
3333 		stmmac_enable_tbs(priv, priv->ioaddr, enable, chan);
3334 	}
3335 
3336 	/* Configure real RX and TX queues */
3337 	netif_set_real_num_rx_queues(dev, priv->plat->rx_queues_to_use);
3338 	netif_set_real_num_tx_queues(dev, priv->plat->tx_queues_to_use);
3339 
3340 	/* Start the ball rolling... */
3341 	stmmac_start_all_dma(priv);
3342 
3343 	if (priv->dma_cap.fpesel) {
3344 		stmmac_fpe_start_wq(priv);
3345 
3346 		if (priv->plat->fpe_cfg->enable)
3347 			stmmac_fpe_handshake(priv, true);
3348 	}
3349 
3350 	return 0;
3351 }
3352 
3353 static void stmmac_hw_teardown(struct net_device *dev)
3354 {
3355 	struct stmmac_priv *priv = netdev_priv(dev);
3356 
3357 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
3358 }
3359 
3360 static void stmmac_free_irq(struct net_device *dev,
3361 			    enum request_irq_err irq_err, int irq_idx)
3362 {
3363 	struct stmmac_priv *priv = netdev_priv(dev);
3364 	int j;
3365 
3366 	switch (irq_err) {
3367 	case REQ_IRQ_ERR_ALL:
3368 		irq_idx = priv->plat->tx_queues_to_use;
3369 		fallthrough;
3370 	case REQ_IRQ_ERR_TX:
3371 		for (j = irq_idx - 1; j >= 0; j--) {
3372 			if (priv->tx_irq[j] > 0) {
3373 				irq_set_affinity_hint(priv->tx_irq[j], NULL);
3374 				free_irq(priv->tx_irq[j], &priv->tx_queue[j]);
3375 			}
3376 		}
3377 		irq_idx = priv->plat->rx_queues_to_use;
3378 		fallthrough;
3379 	case REQ_IRQ_ERR_RX:
3380 		for (j = irq_idx - 1; j >= 0; j--) {
3381 			if (priv->rx_irq[j] > 0) {
3382 				irq_set_affinity_hint(priv->rx_irq[j], NULL);
3383 				free_irq(priv->rx_irq[j], &priv->rx_queue[j]);
3384 			}
3385 		}
3386 
3387 		if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq)
3388 			free_irq(priv->sfty_ue_irq, dev);
3389 		fallthrough;
3390 	case REQ_IRQ_ERR_SFTY_UE:
3391 		if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq)
3392 			free_irq(priv->sfty_ce_irq, dev);
3393 		fallthrough;
3394 	case REQ_IRQ_ERR_SFTY_CE:
3395 		if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq)
3396 			free_irq(priv->lpi_irq, dev);
3397 		fallthrough;
3398 	case REQ_IRQ_ERR_LPI:
3399 		if (priv->wol_irq > 0 && priv->wol_irq != dev->irq)
3400 			free_irq(priv->wol_irq, dev);
3401 		fallthrough;
3402 	case REQ_IRQ_ERR_WOL:
3403 		free_irq(dev->irq, dev);
3404 		fallthrough;
3405 	case REQ_IRQ_ERR_MAC:
3406 	case REQ_IRQ_ERR_NO:
3407 		/* If MAC IRQ request error, no more IRQ to free */
3408 		break;
3409 	}
3410 }
3411 
3412 static int stmmac_request_irq_multi_msi(struct net_device *dev)
3413 {
3414 	struct stmmac_priv *priv = netdev_priv(dev);
3415 	enum request_irq_err irq_err;
3416 	cpumask_t cpu_mask;
3417 	int irq_idx = 0;
3418 	char *int_name;
3419 	int ret;
3420 	int i;
3421 
3422 	/* For common interrupt */
3423 	int_name = priv->int_name_mac;
3424 	sprintf(int_name, "%s:%s", dev->name, "mac");
3425 	ret = request_irq(dev->irq, stmmac_mac_interrupt,
3426 			  0, int_name, dev);
3427 	if (unlikely(ret < 0)) {
3428 		netdev_err(priv->dev,
3429 			   "%s: alloc mac MSI %d (error: %d)\n",
3430 			   __func__, dev->irq, ret);
3431 		irq_err = REQ_IRQ_ERR_MAC;
3432 		goto irq_error;
3433 	}
3434 
3435 	/* Request the Wake IRQ in case of another line
3436 	 * is used for WoL
3437 	 */
3438 	if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3439 		int_name = priv->int_name_wol;
3440 		sprintf(int_name, "%s:%s", dev->name, "wol");
3441 		ret = request_irq(priv->wol_irq,
3442 				  stmmac_mac_interrupt,
3443 				  0, int_name, dev);
3444 		if (unlikely(ret < 0)) {
3445 			netdev_err(priv->dev,
3446 				   "%s: alloc wol MSI %d (error: %d)\n",
3447 				   __func__, priv->wol_irq, ret);
3448 			irq_err = REQ_IRQ_ERR_WOL;
3449 			goto irq_error;
3450 		}
3451 	}
3452 
3453 	/* Request the LPI IRQ in case of another line
3454 	 * is used for LPI
3455 	 */
3456 	if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3457 		int_name = priv->int_name_lpi;
3458 		sprintf(int_name, "%s:%s", dev->name, "lpi");
3459 		ret = request_irq(priv->lpi_irq,
3460 				  stmmac_mac_interrupt,
3461 				  0, int_name, dev);
3462 		if (unlikely(ret < 0)) {
3463 			netdev_err(priv->dev,
3464 				   "%s: alloc lpi MSI %d (error: %d)\n",
3465 				   __func__, priv->lpi_irq, ret);
3466 			irq_err = REQ_IRQ_ERR_LPI;
3467 			goto irq_error;
3468 		}
3469 	}
3470 
3471 	/* Request the Safety Feature Correctible Error line in
3472 	 * case of another line is used
3473 	 */
3474 	if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq) {
3475 		int_name = priv->int_name_sfty_ce;
3476 		sprintf(int_name, "%s:%s", dev->name, "safety-ce");
3477 		ret = request_irq(priv->sfty_ce_irq,
3478 				  stmmac_safety_interrupt,
3479 				  0, int_name, dev);
3480 		if (unlikely(ret < 0)) {
3481 			netdev_err(priv->dev,
3482 				   "%s: alloc sfty ce MSI %d (error: %d)\n",
3483 				   __func__, priv->sfty_ce_irq, ret);
3484 			irq_err = REQ_IRQ_ERR_SFTY_CE;
3485 			goto irq_error;
3486 		}
3487 	}
3488 
3489 	/* Request the Safety Feature Uncorrectible Error line in
3490 	 * case of another line is used
3491 	 */
3492 	if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq) {
3493 		int_name = priv->int_name_sfty_ue;
3494 		sprintf(int_name, "%s:%s", dev->name, "safety-ue");
3495 		ret = request_irq(priv->sfty_ue_irq,
3496 				  stmmac_safety_interrupt,
3497 				  0, int_name, dev);
3498 		if (unlikely(ret < 0)) {
3499 			netdev_err(priv->dev,
3500 				   "%s: alloc sfty ue MSI %d (error: %d)\n",
3501 				   __func__, priv->sfty_ue_irq, ret);
3502 			irq_err = REQ_IRQ_ERR_SFTY_UE;
3503 			goto irq_error;
3504 		}
3505 	}
3506 
3507 	/* Request Rx MSI irq */
3508 	for (i = 0; i < priv->plat->rx_queues_to_use; i++) {
3509 		if (i >= MTL_MAX_RX_QUEUES)
3510 			break;
3511 		if (priv->rx_irq[i] == 0)
3512 			continue;
3513 
3514 		int_name = priv->int_name_rx_irq[i];
3515 		sprintf(int_name, "%s:%s-%d", dev->name, "rx", i);
3516 		ret = request_irq(priv->rx_irq[i],
3517 				  stmmac_msi_intr_rx,
3518 				  0, int_name, &priv->rx_queue[i]);
3519 		if (unlikely(ret < 0)) {
3520 			netdev_err(priv->dev,
3521 				   "%s: alloc rx-%d  MSI %d (error: %d)\n",
3522 				   __func__, i, priv->rx_irq[i], ret);
3523 			irq_err = REQ_IRQ_ERR_RX;
3524 			irq_idx = i;
3525 			goto irq_error;
3526 		}
3527 		cpumask_clear(&cpu_mask);
3528 		cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3529 		irq_set_affinity_hint(priv->rx_irq[i], &cpu_mask);
3530 	}
3531 
3532 	/* Request Tx MSI irq */
3533 	for (i = 0; i < priv->plat->tx_queues_to_use; i++) {
3534 		if (i >= MTL_MAX_TX_QUEUES)
3535 			break;
3536 		if (priv->tx_irq[i] == 0)
3537 			continue;
3538 
3539 		int_name = priv->int_name_tx_irq[i];
3540 		sprintf(int_name, "%s:%s-%d", dev->name, "tx", i);
3541 		ret = request_irq(priv->tx_irq[i],
3542 				  stmmac_msi_intr_tx,
3543 				  0, int_name, &priv->tx_queue[i]);
3544 		if (unlikely(ret < 0)) {
3545 			netdev_err(priv->dev,
3546 				   "%s: alloc tx-%d  MSI %d (error: %d)\n",
3547 				   __func__, i, priv->tx_irq[i], ret);
3548 			irq_err = REQ_IRQ_ERR_TX;
3549 			irq_idx = i;
3550 			goto irq_error;
3551 		}
3552 		cpumask_clear(&cpu_mask);
3553 		cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3554 		irq_set_affinity_hint(priv->tx_irq[i], &cpu_mask);
3555 	}
3556 
3557 	return 0;
3558 
3559 irq_error:
3560 	stmmac_free_irq(dev, irq_err, irq_idx);
3561 	return ret;
3562 }
3563 
3564 static int stmmac_request_irq_single(struct net_device *dev)
3565 {
3566 	struct stmmac_priv *priv = netdev_priv(dev);
3567 	enum request_irq_err irq_err;
3568 	int ret;
3569 
3570 	ret = request_irq(dev->irq, stmmac_interrupt,
3571 			  IRQF_SHARED, dev->name, dev);
3572 	if (unlikely(ret < 0)) {
3573 		netdev_err(priv->dev,
3574 			   "%s: ERROR: allocating the IRQ %d (error: %d)\n",
3575 			   __func__, dev->irq, ret);
3576 		irq_err = REQ_IRQ_ERR_MAC;
3577 		goto irq_error;
3578 	}
3579 
3580 	/* Request the Wake IRQ in case of another line
3581 	 * is used for WoL
3582 	 */
3583 	if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3584 		ret = request_irq(priv->wol_irq, stmmac_interrupt,
3585 				  IRQF_SHARED, dev->name, dev);
3586 		if (unlikely(ret < 0)) {
3587 			netdev_err(priv->dev,
3588 				   "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
3589 				   __func__, priv->wol_irq, ret);
3590 			irq_err = REQ_IRQ_ERR_WOL;
3591 			goto irq_error;
3592 		}
3593 	}
3594 
3595 	/* Request the IRQ lines */
3596 	if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3597 		ret = request_irq(priv->lpi_irq, stmmac_interrupt,
3598 				  IRQF_SHARED, dev->name, dev);
3599 		if (unlikely(ret < 0)) {
3600 			netdev_err(priv->dev,
3601 				   "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
3602 				   __func__, priv->lpi_irq, ret);
3603 			irq_err = REQ_IRQ_ERR_LPI;
3604 			goto irq_error;
3605 		}
3606 	}
3607 
3608 	return 0;
3609 
3610 irq_error:
3611 	stmmac_free_irq(dev, irq_err, 0);
3612 	return ret;
3613 }
3614 
3615 static int stmmac_request_irq(struct net_device *dev)
3616 {
3617 	struct stmmac_priv *priv = netdev_priv(dev);
3618 	int ret;
3619 
3620 	/* Request the IRQ lines */
3621 	if (priv->plat->multi_msi_en)
3622 		ret = stmmac_request_irq_multi_msi(dev);
3623 	else
3624 		ret = stmmac_request_irq_single(dev);
3625 
3626 	return ret;
3627 }
3628 
3629 /**
3630  *  stmmac_open - open entry point of the driver
3631  *  @dev : pointer to the device structure.
3632  *  Description:
3633  *  This function is the open entry point of the driver.
3634  *  Return value:
3635  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3636  *  file on failure.
3637  */
3638 static int stmmac_open(struct net_device *dev)
3639 {
3640 	struct stmmac_priv *priv = netdev_priv(dev);
3641 	int mode = priv->plat->phy_interface;
3642 	int bfsize = 0;
3643 	u32 chan;
3644 	int ret;
3645 
3646 	ret = pm_runtime_resume_and_get(priv->device);
3647 	if (ret < 0)
3648 		return ret;
3649 
3650 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
3651 	    priv->hw->pcs != STMMAC_PCS_RTBI &&
3652 	    (!priv->hw->xpcs ||
3653 	     xpcs_get_an_mode(priv->hw->xpcs, mode) != DW_AN_C73)) {
3654 		ret = stmmac_init_phy(dev);
3655 		if (ret) {
3656 			netdev_err(priv->dev,
3657 				   "%s: Cannot attach to PHY (error: %d)\n",
3658 				   __func__, ret);
3659 			goto init_phy_error;
3660 		}
3661 	}
3662 
3663 	/* Extra statistics */
3664 	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
3665 	priv->xstats.threshold = tc;
3666 
3667 	bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu);
3668 	if (bfsize < 0)
3669 		bfsize = 0;
3670 
3671 	if (bfsize < BUF_SIZE_16KiB)
3672 		bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
3673 
3674 	priv->dma_buf_sz = bfsize;
3675 	buf_sz = bfsize;
3676 
3677 	priv->rx_copybreak = STMMAC_RX_COPYBREAK;
3678 
3679 	if (!priv->dma_tx_size)
3680 		priv->dma_tx_size = DMA_DEFAULT_TX_SIZE;
3681 	if (!priv->dma_rx_size)
3682 		priv->dma_rx_size = DMA_DEFAULT_RX_SIZE;
3683 
3684 	/* Earlier check for TBS */
3685 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) {
3686 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
3687 		int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en;
3688 
3689 		/* Setup per-TXQ tbs flag before TX descriptor alloc */
3690 		tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0;
3691 	}
3692 
3693 	ret = alloc_dma_desc_resources(priv);
3694 	if (ret < 0) {
3695 		netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
3696 			   __func__);
3697 		goto dma_desc_error;
3698 	}
3699 
3700 	ret = init_dma_desc_rings(dev, GFP_KERNEL);
3701 	if (ret < 0) {
3702 		netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
3703 			   __func__);
3704 		goto init_error;
3705 	}
3706 
3707 	ret = stmmac_hw_setup(dev, true);
3708 	if (ret < 0) {
3709 		netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
3710 		goto init_error;
3711 	}
3712 
3713 	stmmac_init_coalesce(priv);
3714 
3715 	phylink_start(priv->phylink);
3716 	/* We may have called phylink_speed_down before */
3717 	phylink_speed_up(priv->phylink);
3718 
3719 	ret = stmmac_request_irq(dev);
3720 	if (ret)
3721 		goto irq_error;
3722 
3723 	stmmac_enable_all_queues(priv);
3724 	netif_tx_start_all_queues(priv->dev);
3725 	stmmac_enable_all_dma_irq(priv);
3726 
3727 	return 0;
3728 
3729 irq_error:
3730 	phylink_stop(priv->phylink);
3731 
3732 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3733 		hrtimer_cancel(&priv->tx_queue[chan].txtimer);
3734 
3735 	stmmac_hw_teardown(dev);
3736 init_error:
3737 	free_dma_desc_resources(priv);
3738 dma_desc_error:
3739 	phylink_disconnect_phy(priv->phylink);
3740 init_phy_error:
3741 	pm_runtime_put(priv->device);
3742 	return ret;
3743 }
3744 
3745 static void stmmac_fpe_stop_wq(struct stmmac_priv *priv)
3746 {
3747 	set_bit(__FPE_REMOVING, &priv->fpe_task_state);
3748 
3749 	if (priv->fpe_wq)
3750 		destroy_workqueue(priv->fpe_wq);
3751 
3752 	netdev_info(priv->dev, "FPE workqueue stop");
3753 }
3754 
3755 /**
3756  *  stmmac_release - close entry point of the driver
3757  *  @dev : device pointer.
3758  *  Description:
3759  *  This is the stop entry point of the driver.
3760  */
3761 static int stmmac_release(struct net_device *dev)
3762 {
3763 	struct stmmac_priv *priv = netdev_priv(dev);
3764 	u32 chan;
3765 
3766 	netif_tx_disable(dev);
3767 
3768 	if (device_may_wakeup(priv->device))
3769 		phylink_speed_down(priv->phylink, false);
3770 	/* Stop and disconnect the PHY */
3771 	phylink_stop(priv->phylink);
3772 	phylink_disconnect_phy(priv->phylink);
3773 
3774 	stmmac_disable_all_queues(priv);
3775 
3776 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3777 		hrtimer_cancel(&priv->tx_queue[chan].txtimer);
3778 
3779 	/* Free the IRQ lines */
3780 	stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0);
3781 
3782 	if (priv->eee_enabled) {
3783 		priv->tx_path_in_lpi_mode = false;
3784 		del_timer_sync(&priv->eee_ctrl_timer);
3785 	}
3786 
3787 	/* Stop TX/RX DMA and clear the descriptors */
3788 	stmmac_stop_all_dma(priv);
3789 
3790 	/* Release and free the Rx/Tx resources */
3791 	free_dma_desc_resources(priv);
3792 
3793 	/* Disable the MAC Rx/Tx */
3794 	stmmac_mac_set(priv, priv->ioaddr, false);
3795 
3796 	netif_carrier_off(dev);
3797 
3798 	stmmac_release_ptp(priv);
3799 
3800 	pm_runtime_put(priv->device);
3801 
3802 	if (priv->dma_cap.fpesel)
3803 		stmmac_fpe_stop_wq(priv);
3804 
3805 	return 0;
3806 }
3807 
3808 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb,
3809 			       struct stmmac_tx_queue *tx_q)
3810 {
3811 	u16 tag = 0x0, inner_tag = 0x0;
3812 	u32 inner_type = 0x0;
3813 	struct dma_desc *p;
3814 
3815 	if (!priv->dma_cap.vlins)
3816 		return false;
3817 	if (!skb_vlan_tag_present(skb))
3818 		return false;
3819 	if (skb->vlan_proto == htons(ETH_P_8021AD)) {
3820 		inner_tag = skb_vlan_tag_get(skb);
3821 		inner_type = STMMAC_VLAN_INSERT;
3822 	}
3823 
3824 	tag = skb_vlan_tag_get(skb);
3825 
3826 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
3827 		p = &tx_q->dma_entx[tx_q->cur_tx].basic;
3828 	else
3829 		p = &tx_q->dma_tx[tx_q->cur_tx];
3830 
3831 	if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type))
3832 		return false;
3833 
3834 	stmmac_set_tx_owner(priv, p);
3835 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
3836 	return true;
3837 }
3838 
3839 /**
3840  *  stmmac_tso_allocator - close entry point of the driver
3841  *  @priv: driver private structure
3842  *  @des: buffer start address
3843  *  @total_len: total length to fill in descriptors
3844  *  @last_segment: condition for the last descriptor
3845  *  @queue: TX queue index
3846  *  Description:
3847  *  This function fills descriptor and request new descriptors according to
3848  *  buffer length to fill
3849  */
3850 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
3851 				 int total_len, bool last_segment, u32 queue)
3852 {
3853 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
3854 	struct dma_desc *desc;
3855 	u32 buff_size;
3856 	int tmp_len;
3857 
3858 	tmp_len = total_len;
3859 
3860 	while (tmp_len > 0) {
3861 		dma_addr_t curr_addr;
3862 
3863 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
3864 						priv->dma_tx_size);
3865 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
3866 
3867 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
3868 			desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3869 		else
3870 			desc = &tx_q->dma_tx[tx_q->cur_tx];
3871 
3872 		curr_addr = des + (total_len - tmp_len);
3873 		if (priv->dma_cap.addr64 <= 32)
3874 			desc->des0 = cpu_to_le32(curr_addr);
3875 		else
3876 			stmmac_set_desc_addr(priv, desc, curr_addr);
3877 
3878 		buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
3879 			    TSO_MAX_BUFF_SIZE : tmp_len;
3880 
3881 		stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
3882 				0, 1,
3883 				(last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
3884 				0, 0);
3885 
3886 		tmp_len -= TSO_MAX_BUFF_SIZE;
3887 	}
3888 }
3889 
3890 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue)
3891 {
3892 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
3893 	int desc_size;
3894 
3895 	if (likely(priv->extend_desc))
3896 		desc_size = sizeof(struct dma_extended_desc);
3897 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3898 		desc_size = sizeof(struct dma_edesc);
3899 	else
3900 		desc_size = sizeof(struct dma_desc);
3901 
3902 	/* The own bit must be the latest setting done when prepare the
3903 	 * descriptor and then barrier is needed to make sure that
3904 	 * all is coherent before granting the DMA engine.
3905 	 */
3906 	wmb();
3907 
3908 	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
3909 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3910 }
3911 
3912 /**
3913  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
3914  *  @skb : the socket buffer
3915  *  @dev : device pointer
3916  *  Description: this is the transmit function that is called on TSO frames
3917  *  (support available on GMAC4 and newer chips).
3918  *  Diagram below show the ring programming in case of TSO frames:
3919  *
3920  *  First Descriptor
3921  *   --------
3922  *   | DES0 |---> buffer1 = L2/L3/L4 header
3923  *   | DES1 |---> TCP Payload (can continue on next descr...)
3924  *   | DES2 |---> buffer 1 and 2 len
3925  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
3926  *   --------
3927  *	|
3928  *     ...
3929  *	|
3930  *   --------
3931  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
3932  *   | DES1 | --|
3933  *   | DES2 | --> buffer 1 and 2 len
3934  *   | DES3 |
3935  *   --------
3936  *
3937  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
3938  */
3939 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
3940 {
3941 	struct dma_desc *desc, *first, *mss_desc = NULL;
3942 	struct stmmac_priv *priv = netdev_priv(dev);
3943 	int nfrags = skb_shinfo(skb)->nr_frags;
3944 	u32 queue = skb_get_queue_mapping(skb);
3945 	unsigned int first_entry, tx_packets;
3946 	int tmp_pay_len = 0, first_tx;
3947 	struct stmmac_tx_queue *tx_q;
3948 	bool has_vlan, set_ic;
3949 	u8 proto_hdr_len, hdr;
3950 	u32 pay_len, mss;
3951 	dma_addr_t des;
3952 	int i;
3953 
3954 	tx_q = &priv->tx_queue[queue];
3955 	first_tx = tx_q->cur_tx;
3956 
3957 	/* Compute header lengths */
3958 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
3959 		proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr);
3960 		hdr = sizeof(struct udphdr);
3961 	} else {
3962 		proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3963 		hdr = tcp_hdrlen(skb);
3964 	}
3965 
3966 	/* Desc availability based on threshold should be enough safe */
3967 	if (unlikely(stmmac_tx_avail(priv, queue) <
3968 		(((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
3969 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3970 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3971 								queue));
3972 			/* This is a hard error, log it. */
3973 			netdev_err(priv->dev,
3974 				   "%s: Tx Ring full when queue awake\n",
3975 				   __func__);
3976 		}
3977 		return NETDEV_TX_BUSY;
3978 	}
3979 
3980 	pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
3981 
3982 	mss = skb_shinfo(skb)->gso_size;
3983 
3984 	/* set new MSS value if needed */
3985 	if (mss != tx_q->mss) {
3986 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
3987 			mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3988 		else
3989 			mss_desc = &tx_q->dma_tx[tx_q->cur_tx];
3990 
3991 		stmmac_set_mss(priv, mss_desc, mss);
3992 		tx_q->mss = mss;
3993 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
3994 						priv->dma_tx_size);
3995 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
3996 	}
3997 
3998 	if (netif_msg_tx_queued(priv)) {
3999 		pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
4000 			__func__, hdr, proto_hdr_len, pay_len, mss);
4001 		pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
4002 			skb->data_len);
4003 	}
4004 
4005 	/* Check if VLAN can be inserted by HW */
4006 	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
4007 
4008 	first_entry = tx_q->cur_tx;
4009 	WARN_ON(tx_q->tx_skbuff[first_entry]);
4010 
4011 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
4012 		desc = &tx_q->dma_entx[first_entry].basic;
4013 	else
4014 		desc = &tx_q->dma_tx[first_entry];
4015 	first = desc;
4016 
4017 	if (has_vlan)
4018 		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4019 
4020 	/* first descriptor: fill Headers on Buf1 */
4021 	des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
4022 			     DMA_TO_DEVICE);
4023 	if (dma_mapping_error(priv->device, des))
4024 		goto dma_map_err;
4025 
4026 	tx_q->tx_skbuff_dma[first_entry].buf = des;
4027 	tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
4028 	tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4029 	tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
4030 
4031 	if (priv->dma_cap.addr64 <= 32) {
4032 		first->des0 = cpu_to_le32(des);
4033 
4034 		/* Fill start of payload in buff2 of first descriptor */
4035 		if (pay_len)
4036 			first->des1 = cpu_to_le32(des + proto_hdr_len);
4037 
4038 		/* If needed take extra descriptors to fill the remaining payload */
4039 		tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
4040 	} else {
4041 		stmmac_set_desc_addr(priv, first, des);
4042 		tmp_pay_len = pay_len;
4043 		des += proto_hdr_len;
4044 		pay_len = 0;
4045 	}
4046 
4047 	stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
4048 
4049 	/* Prepare fragments */
4050 	for (i = 0; i < nfrags; i++) {
4051 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4052 
4053 		des = skb_frag_dma_map(priv->device, frag, 0,
4054 				       skb_frag_size(frag),
4055 				       DMA_TO_DEVICE);
4056 		if (dma_mapping_error(priv->device, des))
4057 			goto dma_map_err;
4058 
4059 		stmmac_tso_allocator(priv, des, skb_frag_size(frag),
4060 				     (i == nfrags - 1), queue);
4061 
4062 		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
4063 		tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
4064 		tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
4065 		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4066 	}
4067 
4068 	tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
4069 
4070 	/* Only the last descriptor gets to point to the skb. */
4071 	tx_q->tx_skbuff[tx_q->cur_tx] = skb;
4072 	tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4073 
4074 	/* Manage tx mitigation */
4075 	tx_packets = (tx_q->cur_tx + 1) - first_tx;
4076 	tx_q->tx_count_frames += tx_packets;
4077 
4078 	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4079 		set_ic = true;
4080 	else if (!priv->tx_coal_frames[queue])
4081 		set_ic = false;
4082 	else if (tx_packets > priv->tx_coal_frames[queue])
4083 		set_ic = true;
4084 	else if ((tx_q->tx_count_frames %
4085 		  priv->tx_coal_frames[queue]) < tx_packets)
4086 		set_ic = true;
4087 	else
4088 		set_ic = false;
4089 
4090 	if (set_ic) {
4091 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
4092 			desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4093 		else
4094 			desc = &tx_q->dma_tx[tx_q->cur_tx];
4095 
4096 		tx_q->tx_count_frames = 0;
4097 		stmmac_set_tx_ic(priv, desc);
4098 		priv->xstats.tx_set_ic_bit++;
4099 	}
4100 
4101 	/* We've used all descriptors we need for this skb, however,
4102 	 * advance cur_tx so that it references a fresh descriptor.
4103 	 * ndo_start_xmit will fill this descriptor the next time it's
4104 	 * called and stmmac_tx_clean may clean up to this descriptor.
4105 	 */
4106 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
4107 
4108 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4109 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4110 			  __func__);
4111 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4112 	}
4113 
4114 	dev->stats.tx_bytes += skb->len;
4115 	priv->xstats.tx_tso_frames++;
4116 	priv->xstats.tx_tso_nfrags += nfrags;
4117 
4118 	if (priv->sarc_type)
4119 		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4120 
4121 	skb_tx_timestamp(skb);
4122 
4123 	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4124 		     priv->hwts_tx_en)) {
4125 		/* declare that device is doing timestamping */
4126 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4127 		stmmac_enable_tx_timestamp(priv, first);
4128 	}
4129 
4130 	/* Complete the first descriptor before granting the DMA */
4131 	stmmac_prepare_tso_tx_desc(priv, first, 1,
4132 			proto_hdr_len,
4133 			pay_len,
4134 			1, tx_q->tx_skbuff_dma[first_entry].last_segment,
4135 			hdr / 4, (skb->len - proto_hdr_len));
4136 
4137 	/* If context desc is used to change MSS */
4138 	if (mss_desc) {
4139 		/* Make sure that first descriptor has been completely
4140 		 * written, including its own bit. This is because MSS is
4141 		 * actually before first descriptor, so we need to make
4142 		 * sure that MSS's own bit is the last thing written.
4143 		 */
4144 		dma_wmb();
4145 		stmmac_set_tx_owner(priv, mss_desc);
4146 	}
4147 
4148 	if (netif_msg_pktdata(priv)) {
4149 		pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
4150 			__func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4151 			tx_q->cur_tx, first, nfrags);
4152 		pr_info(">>> frame to be transmitted: ");
4153 		print_pkt(skb->data, skb_headlen(skb));
4154 	}
4155 
4156 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4157 
4158 	stmmac_flush_tx_descriptors(priv, queue);
4159 	stmmac_tx_timer_arm(priv, queue);
4160 
4161 	return NETDEV_TX_OK;
4162 
4163 dma_map_err:
4164 	dev_err(priv->device, "Tx dma map failed\n");
4165 	dev_kfree_skb(skb);
4166 	priv->dev->stats.tx_dropped++;
4167 	return NETDEV_TX_OK;
4168 }
4169 
4170 /**
4171  *  stmmac_xmit - Tx entry point of the driver
4172  *  @skb : the socket buffer
4173  *  @dev : device pointer
4174  *  Description : this is the tx entry point of the driver.
4175  *  It programs the chain or the ring and supports oversized frames
4176  *  and SG feature.
4177  */
4178 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
4179 {
4180 	unsigned int first_entry, tx_packets, enh_desc;
4181 	struct stmmac_priv *priv = netdev_priv(dev);
4182 	unsigned int nopaged_len = skb_headlen(skb);
4183 	int i, csum_insertion = 0, is_jumbo = 0;
4184 	u32 queue = skb_get_queue_mapping(skb);
4185 	int nfrags = skb_shinfo(skb)->nr_frags;
4186 	int gso = skb_shinfo(skb)->gso_type;
4187 	struct dma_edesc *tbs_desc = NULL;
4188 	struct dma_desc *desc, *first;
4189 	struct stmmac_tx_queue *tx_q;
4190 	bool has_vlan, set_ic;
4191 	int entry, first_tx;
4192 	dma_addr_t des;
4193 
4194 	tx_q = &priv->tx_queue[queue];
4195 	first_tx = tx_q->cur_tx;
4196 
4197 	if (priv->tx_path_in_lpi_mode && priv->eee_sw_timer_en)
4198 		stmmac_disable_eee_mode(priv);
4199 
4200 	/* Manage oversized TCP frames for GMAC4 device */
4201 	if (skb_is_gso(skb) && priv->tso) {
4202 		if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
4203 			return stmmac_tso_xmit(skb, dev);
4204 		if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4))
4205 			return stmmac_tso_xmit(skb, dev);
4206 	}
4207 
4208 	if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
4209 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
4210 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
4211 								queue));
4212 			/* This is a hard error, log it. */
4213 			netdev_err(priv->dev,
4214 				   "%s: Tx Ring full when queue awake\n",
4215 				   __func__);
4216 		}
4217 		return NETDEV_TX_BUSY;
4218 	}
4219 
4220 	/* Check if VLAN can be inserted by HW */
4221 	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
4222 
4223 	entry = tx_q->cur_tx;
4224 	first_entry = entry;
4225 	WARN_ON(tx_q->tx_skbuff[first_entry]);
4226 
4227 	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
4228 
4229 	if (likely(priv->extend_desc))
4230 		desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4231 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4232 		desc = &tx_q->dma_entx[entry].basic;
4233 	else
4234 		desc = tx_q->dma_tx + entry;
4235 
4236 	first = desc;
4237 
4238 	if (has_vlan)
4239 		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4240 
4241 	enh_desc = priv->plat->enh_desc;
4242 	/* To program the descriptors according to the size of the frame */
4243 	if (enh_desc)
4244 		is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
4245 
4246 	if (unlikely(is_jumbo)) {
4247 		entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
4248 		if (unlikely(entry < 0) && (entry != -EINVAL))
4249 			goto dma_map_err;
4250 	}
4251 
4252 	for (i = 0; i < nfrags; i++) {
4253 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4254 		int len = skb_frag_size(frag);
4255 		bool last_segment = (i == (nfrags - 1));
4256 
4257 		entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
4258 		WARN_ON(tx_q->tx_skbuff[entry]);
4259 
4260 		if (likely(priv->extend_desc))
4261 			desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4262 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4263 			desc = &tx_q->dma_entx[entry].basic;
4264 		else
4265 			desc = tx_q->dma_tx + entry;
4266 
4267 		des = skb_frag_dma_map(priv->device, frag, 0, len,
4268 				       DMA_TO_DEVICE);
4269 		if (dma_mapping_error(priv->device, des))
4270 			goto dma_map_err; /* should reuse desc w/o issues */
4271 
4272 		tx_q->tx_skbuff_dma[entry].buf = des;
4273 
4274 		stmmac_set_desc_addr(priv, desc, des);
4275 
4276 		tx_q->tx_skbuff_dma[entry].map_as_page = true;
4277 		tx_q->tx_skbuff_dma[entry].len = len;
4278 		tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
4279 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4280 
4281 		/* Prepare the descriptor and set the own bit too */
4282 		stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
4283 				priv->mode, 1, last_segment, skb->len);
4284 	}
4285 
4286 	/* Only the last descriptor gets to point to the skb. */
4287 	tx_q->tx_skbuff[entry] = skb;
4288 	tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4289 
4290 	/* According to the coalesce parameter the IC bit for the latest
4291 	 * segment is reset and the timer re-started to clean the tx status.
4292 	 * This approach takes care about the fragments: desc is the first
4293 	 * element in case of no SG.
4294 	 */
4295 	tx_packets = (entry + 1) - first_tx;
4296 	tx_q->tx_count_frames += tx_packets;
4297 
4298 	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4299 		set_ic = true;
4300 	else if (!priv->tx_coal_frames[queue])
4301 		set_ic = false;
4302 	else if (tx_packets > priv->tx_coal_frames[queue])
4303 		set_ic = true;
4304 	else if ((tx_q->tx_count_frames %
4305 		  priv->tx_coal_frames[queue]) < tx_packets)
4306 		set_ic = true;
4307 	else
4308 		set_ic = false;
4309 
4310 	if (set_ic) {
4311 		if (likely(priv->extend_desc))
4312 			desc = &tx_q->dma_etx[entry].basic;
4313 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4314 			desc = &tx_q->dma_entx[entry].basic;
4315 		else
4316 			desc = &tx_q->dma_tx[entry];
4317 
4318 		tx_q->tx_count_frames = 0;
4319 		stmmac_set_tx_ic(priv, desc);
4320 		priv->xstats.tx_set_ic_bit++;
4321 	}
4322 
4323 	/* We've used all descriptors we need for this skb, however,
4324 	 * advance cur_tx so that it references a fresh descriptor.
4325 	 * ndo_start_xmit will fill this descriptor the next time it's
4326 	 * called and stmmac_tx_clean may clean up to this descriptor.
4327 	 */
4328 	entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
4329 	tx_q->cur_tx = entry;
4330 
4331 	if (netif_msg_pktdata(priv)) {
4332 		netdev_dbg(priv->dev,
4333 			   "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
4334 			   __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4335 			   entry, first, nfrags);
4336 
4337 		netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
4338 		print_pkt(skb->data, skb->len);
4339 	}
4340 
4341 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4342 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4343 			  __func__);
4344 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4345 	}
4346 
4347 	dev->stats.tx_bytes += skb->len;
4348 
4349 	if (priv->sarc_type)
4350 		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4351 
4352 	skb_tx_timestamp(skb);
4353 
4354 	/* Ready to fill the first descriptor and set the OWN bit w/o any
4355 	 * problems because all the descriptors are actually ready to be
4356 	 * passed to the DMA engine.
4357 	 */
4358 	if (likely(!is_jumbo)) {
4359 		bool last_segment = (nfrags == 0);
4360 
4361 		des = dma_map_single(priv->device, skb->data,
4362 				     nopaged_len, DMA_TO_DEVICE);
4363 		if (dma_mapping_error(priv->device, des))
4364 			goto dma_map_err;
4365 
4366 		tx_q->tx_skbuff_dma[first_entry].buf = des;
4367 		tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
4368 		tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4369 
4370 		stmmac_set_desc_addr(priv, first, des);
4371 
4372 		tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
4373 		tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
4374 
4375 		if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4376 			     priv->hwts_tx_en)) {
4377 			/* declare that device is doing timestamping */
4378 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4379 			stmmac_enable_tx_timestamp(priv, first);
4380 		}
4381 
4382 		/* Prepare the first descriptor setting the OWN bit too */
4383 		stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
4384 				csum_insertion, priv->mode, 0, last_segment,
4385 				skb->len);
4386 	}
4387 
4388 	if (tx_q->tbs & STMMAC_TBS_EN) {
4389 		struct timespec64 ts = ns_to_timespec64(skb->tstamp);
4390 
4391 		tbs_desc = &tx_q->dma_entx[first_entry];
4392 		stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec);
4393 	}
4394 
4395 	stmmac_set_tx_owner(priv, first);
4396 
4397 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4398 
4399 	stmmac_enable_dma_transmission(priv, priv->ioaddr);
4400 
4401 	stmmac_flush_tx_descriptors(priv, queue);
4402 	stmmac_tx_timer_arm(priv, queue);
4403 
4404 	return NETDEV_TX_OK;
4405 
4406 dma_map_err:
4407 	netdev_err(priv->dev, "Tx DMA map failed\n");
4408 	dev_kfree_skb(skb);
4409 	priv->dev->stats.tx_dropped++;
4410 	return NETDEV_TX_OK;
4411 }
4412 
4413 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
4414 {
4415 	struct vlan_ethhdr *veth;
4416 	__be16 vlan_proto;
4417 	u16 vlanid;
4418 
4419 	veth = (struct vlan_ethhdr *)skb->data;
4420 	vlan_proto = veth->h_vlan_proto;
4421 
4422 	if ((vlan_proto == htons(ETH_P_8021Q) &&
4423 	     dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
4424 	    (vlan_proto == htons(ETH_P_8021AD) &&
4425 	     dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
4426 		/* pop the vlan tag */
4427 		vlanid = ntohs(veth->h_vlan_TCI);
4428 		memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
4429 		skb_pull(skb, VLAN_HLEN);
4430 		__vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
4431 	}
4432 }
4433 
4434 /**
4435  * stmmac_rx_refill - refill used skb preallocated buffers
4436  * @priv: driver private structure
4437  * @queue: RX queue index
4438  * Description : this is to reallocate the skb for the reception process
4439  * that is based on zero-copy.
4440  */
4441 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
4442 {
4443 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4444 	int dirty = stmmac_rx_dirty(priv, queue);
4445 	unsigned int entry = rx_q->dirty_rx;
4446 	gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
4447 
4448 	if (priv->dma_cap.addr64 <= 32)
4449 		gfp |= GFP_DMA32;
4450 
4451 	while (dirty-- > 0) {
4452 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
4453 		struct dma_desc *p;
4454 		bool use_rx_wd;
4455 
4456 		if (priv->extend_desc)
4457 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
4458 		else
4459 			p = rx_q->dma_rx + entry;
4460 
4461 		if (!buf->page) {
4462 			buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp);
4463 			if (!buf->page)
4464 				break;
4465 		}
4466 
4467 		if (priv->sph && !buf->sec_page) {
4468 			buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp);
4469 			if (!buf->sec_page)
4470 				break;
4471 
4472 			buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
4473 		}
4474 
4475 		buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
4476 
4477 		stmmac_set_desc_addr(priv, p, buf->addr);
4478 		if (priv->sph)
4479 			stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
4480 		else
4481 			stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
4482 		stmmac_refill_desc3(priv, rx_q, p);
4483 
4484 		rx_q->rx_count_frames++;
4485 		rx_q->rx_count_frames += priv->rx_coal_frames[queue];
4486 		if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
4487 			rx_q->rx_count_frames = 0;
4488 
4489 		use_rx_wd = !priv->rx_coal_frames[queue];
4490 		use_rx_wd |= rx_q->rx_count_frames > 0;
4491 		if (!priv->use_riwt)
4492 			use_rx_wd = false;
4493 
4494 		dma_wmb();
4495 		stmmac_set_rx_owner(priv, p, use_rx_wd);
4496 
4497 		entry = STMMAC_GET_ENTRY(entry, priv->dma_rx_size);
4498 	}
4499 	rx_q->dirty_rx = entry;
4500 	rx_q->rx_tail_addr = rx_q->dma_rx_phy +
4501 			    (rx_q->dirty_rx * sizeof(struct dma_desc));
4502 	stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
4503 }
4504 
4505 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv,
4506 				       struct dma_desc *p,
4507 				       int status, unsigned int len)
4508 {
4509 	unsigned int plen = 0, hlen = 0;
4510 	int coe = priv->hw->rx_csum;
4511 
4512 	/* Not first descriptor, buffer is always zero */
4513 	if (priv->sph && len)
4514 		return 0;
4515 
4516 	/* First descriptor, get split header length */
4517 	stmmac_get_rx_header_len(priv, p, &hlen);
4518 	if (priv->sph && hlen) {
4519 		priv->xstats.rx_split_hdr_pkt_n++;
4520 		return hlen;
4521 	}
4522 
4523 	/* First descriptor, not last descriptor and not split header */
4524 	if (status & rx_not_ls)
4525 		return priv->dma_buf_sz;
4526 
4527 	plen = stmmac_get_rx_frame_len(priv, p, coe);
4528 
4529 	/* First descriptor and last descriptor and not split header */
4530 	return min_t(unsigned int, priv->dma_buf_sz, plen);
4531 }
4532 
4533 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv,
4534 				       struct dma_desc *p,
4535 				       int status, unsigned int len)
4536 {
4537 	int coe = priv->hw->rx_csum;
4538 	unsigned int plen = 0;
4539 
4540 	/* Not split header, buffer is not available */
4541 	if (!priv->sph)
4542 		return 0;
4543 
4544 	/* Not last descriptor */
4545 	if (status & rx_not_ls)
4546 		return priv->dma_buf_sz;
4547 
4548 	plen = stmmac_get_rx_frame_len(priv, p, coe);
4549 
4550 	/* Last descriptor */
4551 	return plen - len;
4552 }
4553 
4554 static int stmmac_xdp_xmit_xdpf(struct stmmac_priv *priv, int queue,
4555 				struct xdp_frame *xdpf, bool dma_map)
4556 {
4557 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4558 	unsigned int entry = tx_q->cur_tx;
4559 	struct dma_desc *tx_desc;
4560 	dma_addr_t dma_addr;
4561 	bool set_ic;
4562 
4563 	if (stmmac_tx_avail(priv, queue) < STMMAC_TX_THRESH(priv))
4564 		return STMMAC_XDP_CONSUMED;
4565 
4566 	if (likely(priv->extend_desc))
4567 		tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4568 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4569 		tx_desc = &tx_q->dma_entx[entry].basic;
4570 	else
4571 		tx_desc = tx_q->dma_tx + entry;
4572 
4573 	if (dma_map) {
4574 		dma_addr = dma_map_single(priv->device, xdpf->data,
4575 					  xdpf->len, DMA_TO_DEVICE);
4576 		if (dma_mapping_error(priv->device, dma_addr))
4577 			return STMMAC_XDP_CONSUMED;
4578 
4579 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_NDO;
4580 	} else {
4581 		struct page *page = virt_to_page(xdpf->data);
4582 
4583 		dma_addr = page_pool_get_dma_addr(page) + sizeof(*xdpf) +
4584 			   xdpf->headroom;
4585 		dma_sync_single_for_device(priv->device, dma_addr,
4586 					   xdpf->len, DMA_BIDIRECTIONAL);
4587 
4588 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_TX;
4589 	}
4590 
4591 	tx_q->tx_skbuff_dma[entry].buf = dma_addr;
4592 	tx_q->tx_skbuff_dma[entry].map_as_page = false;
4593 	tx_q->tx_skbuff_dma[entry].len = xdpf->len;
4594 	tx_q->tx_skbuff_dma[entry].last_segment = true;
4595 	tx_q->tx_skbuff_dma[entry].is_jumbo = false;
4596 
4597 	tx_q->xdpf[entry] = xdpf;
4598 
4599 	stmmac_set_desc_addr(priv, tx_desc, dma_addr);
4600 
4601 	stmmac_prepare_tx_desc(priv, tx_desc, 1, xdpf->len,
4602 			       true, priv->mode, true, true,
4603 			       xdpf->len);
4604 
4605 	tx_q->tx_count_frames++;
4606 
4607 	if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
4608 		set_ic = true;
4609 	else
4610 		set_ic = false;
4611 
4612 	if (set_ic) {
4613 		tx_q->tx_count_frames = 0;
4614 		stmmac_set_tx_ic(priv, tx_desc);
4615 		priv->xstats.tx_set_ic_bit++;
4616 	}
4617 
4618 	stmmac_enable_dma_transmission(priv, priv->ioaddr);
4619 
4620 	entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
4621 	tx_q->cur_tx = entry;
4622 
4623 	return STMMAC_XDP_TX;
4624 }
4625 
4626 static int stmmac_xdp_get_tx_queue(struct stmmac_priv *priv,
4627 				   int cpu)
4628 {
4629 	int index = cpu;
4630 
4631 	if (unlikely(index < 0))
4632 		index = 0;
4633 
4634 	while (index >= priv->plat->tx_queues_to_use)
4635 		index -= priv->plat->tx_queues_to_use;
4636 
4637 	return index;
4638 }
4639 
4640 static int stmmac_xdp_xmit_back(struct stmmac_priv *priv,
4641 				struct xdp_buff *xdp)
4642 {
4643 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
4644 	int cpu = smp_processor_id();
4645 	struct netdev_queue *nq;
4646 	int queue;
4647 	int res;
4648 
4649 	if (unlikely(!xdpf))
4650 		return STMMAC_XDP_CONSUMED;
4651 
4652 	queue = stmmac_xdp_get_tx_queue(priv, cpu);
4653 	nq = netdev_get_tx_queue(priv->dev, queue);
4654 
4655 	__netif_tx_lock(nq, cpu);
4656 	/* Avoids TX time-out as we are sharing with slow path */
4657 	txq_trans_cond_update(nq);
4658 
4659 	res = stmmac_xdp_xmit_xdpf(priv, queue, xdpf, false);
4660 	if (res == STMMAC_XDP_TX)
4661 		stmmac_flush_tx_descriptors(priv, queue);
4662 
4663 	__netif_tx_unlock(nq);
4664 
4665 	return res;
4666 }
4667 
4668 static int __stmmac_xdp_run_prog(struct stmmac_priv *priv,
4669 				 struct bpf_prog *prog,
4670 				 struct xdp_buff *xdp)
4671 {
4672 	u32 act;
4673 	int res;
4674 
4675 	act = bpf_prog_run_xdp(prog, xdp);
4676 	switch (act) {
4677 	case XDP_PASS:
4678 		res = STMMAC_XDP_PASS;
4679 		break;
4680 	case XDP_TX:
4681 		res = stmmac_xdp_xmit_back(priv, xdp);
4682 		break;
4683 	case XDP_REDIRECT:
4684 		if (xdp_do_redirect(priv->dev, xdp, prog) < 0)
4685 			res = STMMAC_XDP_CONSUMED;
4686 		else
4687 			res = STMMAC_XDP_REDIRECT;
4688 		break;
4689 	default:
4690 		bpf_warn_invalid_xdp_action(priv->dev, prog, act);
4691 		fallthrough;
4692 	case XDP_ABORTED:
4693 		trace_xdp_exception(priv->dev, prog, act);
4694 		fallthrough;
4695 	case XDP_DROP:
4696 		res = STMMAC_XDP_CONSUMED;
4697 		break;
4698 	}
4699 
4700 	return res;
4701 }
4702 
4703 static struct sk_buff *stmmac_xdp_run_prog(struct stmmac_priv *priv,
4704 					   struct xdp_buff *xdp)
4705 {
4706 	struct bpf_prog *prog;
4707 	int res;
4708 
4709 	prog = READ_ONCE(priv->xdp_prog);
4710 	if (!prog) {
4711 		res = STMMAC_XDP_PASS;
4712 		goto out;
4713 	}
4714 
4715 	res = __stmmac_xdp_run_prog(priv, prog, xdp);
4716 out:
4717 	return ERR_PTR(-res);
4718 }
4719 
4720 static void stmmac_finalize_xdp_rx(struct stmmac_priv *priv,
4721 				   int xdp_status)
4722 {
4723 	int cpu = smp_processor_id();
4724 	int queue;
4725 
4726 	queue = stmmac_xdp_get_tx_queue(priv, cpu);
4727 
4728 	if (xdp_status & STMMAC_XDP_TX)
4729 		stmmac_tx_timer_arm(priv, queue);
4730 
4731 	if (xdp_status & STMMAC_XDP_REDIRECT)
4732 		xdp_do_flush();
4733 }
4734 
4735 static struct sk_buff *stmmac_construct_skb_zc(struct stmmac_channel *ch,
4736 					       struct xdp_buff *xdp)
4737 {
4738 	unsigned int metasize = xdp->data - xdp->data_meta;
4739 	unsigned int datasize = xdp->data_end - xdp->data;
4740 	struct sk_buff *skb;
4741 
4742 	skb = __napi_alloc_skb(&ch->rxtx_napi,
4743 			       xdp->data_end - xdp->data_hard_start,
4744 			       GFP_ATOMIC | __GFP_NOWARN);
4745 	if (unlikely(!skb))
4746 		return NULL;
4747 
4748 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
4749 	memcpy(__skb_put(skb, datasize), xdp->data, datasize);
4750 	if (metasize)
4751 		skb_metadata_set(skb, metasize);
4752 
4753 	return skb;
4754 }
4755 
4756 static void stmmac_dispatch_skb_zc(struct stmmac_priv *priv, u32 queue,
4757 				   struct dma_desc *p, struct dma_desc *np,
4758 				   struct xdp_buff *xdp)
4759 {
4760 	struct stmmac_channel *ch = &priv->channel[queue];
4761 	unsigned int len = xdp->data_end - xdp->data;
4762 	enum pkt_hash_types hash_type;
4763 	int coe = priv->hw->rx_csum;
4764 	struct sk_buff *skb;
4765 	u32 hash;
4766 
4767 	skb = stmmac_construct_skb_zc(ch, xdp);
4768 	if (!skb) {
4769 		priv->dev->stats.rx_dropped++;
4770 		return;
4771 	}
4772 
4773 	stmmac_get_rx_hwtstamp(priv, p, np, skb);
4774 	stmmac_rx_vlan(priv->dev, skb);
4775 	skb->protocol = eth_type_trans(skb, priv->dev);
4776 
4777 	if (unlikely(!coe))
4778 		skb_checksum_none_assert(skb);
4779 	else
4780 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4781 
4782 	if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
4783 		skb_set_hash(skb, hash, hash_type);
4784 
4785 	skb_record_rx_queue(skb, queue);
4786 	napi_gro_receive(&ch->rxtx_napi, skb);
4787 
4788 	priv->dev->stats.rx_packets++;
4789 	priv->dev->stats.rx_bytes += len;
4790 }
4791 
4792 static bool stmmac_rx_refill_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
4793 {
4794 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4795 	unsigned int entry = rx_q->dirty_rx;
4796 	struct dma_desc *rx_desc = NULL;
4797 	bool ret = true;
4798 
4799 	budget = min(budget, stmmac_rx_dirty(priv, queue));
4800 
4801 	while (budget-- > 0 && entry != rx_q->cur_rx) {
4802 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
4803 		dma_addr_t dma_addr;
4804 		bool use_rx_wd;
4805 
4806 		if (!buf->xdp) {
4807 			buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
4808 			if (!buf->xdp) {
4809 				ret = false;
4810 				break;
4811 			}
4812 		}
4813 
4814 		if (priv->extend_desc)
4815 			rx_desc = (struct dma_desc *)(rx_q->dma_erx + entry);
4816 		else
4817 			rx_desc = rx_q->dma_rx + entry;
4818 
4819 		dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
4820 		stmmac_set_desc_addr(priv, rx_desc, dma_addr);
4821 		stmmac_set_desc_sec_addr(priv, rx_desc, 0, false);
4822 		stmmac_refill_desc3(priv, rx_q, rx_desc);
4823 
4824 		rx_q->rx_count_frames++;
4825 		rx_q->rx_count_frames += priv->rx_coal_frames[queue];
4826 		if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
4827 			rx_q->rx_count_frames = 0;
4828 
4829 		use_rx_wd = !priv->rx_coal_frames[queue];
4830 		use_rx_wd |= rx_q->rx_count_frames > 0;
4831 		if (!priv->use_riwt)
4832 			use_rx_wd = false;
4833 
4834 		dma_wmb();
4835 		stmmac_set_rx_owner(priv, rx_desc, use_rx_wd);
4836 
4837 		entry = STMMAC_GET_ENTRY(entry, priv->dma_rx_size);
4838 	}
4839 
4840 	if (rx_desc) {
4841 		rx_q->dirty_rx = entry;
4842 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
4843 				     (rx_q->dirty_rx * sizeof(struct dma_desc));
4844 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
4845 	}
4846 
4847 	return ret;
4848 }
4849 
4850 static int stmmac_rx_zc(struct stmmac_priv *priv, int limit, u32 queue)
4851 {
4852 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4853 	unsigned int count = 0, error = 0, len = 0;
4854 	int dirty = stmmac_rx_dirty(priv, queue);
4855 	unsigned int next_entry = rx_q->cur_rx;
4856 	unsigned int desc_size;
4857 	struct bpf_prog *prog;
4858 	bool failure = false;
4859 	int xdp_status = 0;
4860 	int status = 0;
4861 
4862 	if (netif_msg_rx_status(priv)) {
4863 		void *rx_head;
4864 
4865 		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
4866 		if (priv->extend_desc) {
4867 			rx_head = (void *)rx_q->dma_erx;
4868 			desc_size = sizeof(struct dma_extended_desc);
4869 		} else {
4870 			rx_head = (void *)rx_q->dma_rx;
4871 			desc_size = sizeof(struct dma_desc);
4872 		}
4873 
4874 		stmmac_display_ring(priv, rx_head, priv->dma_rx_size, true,
4875 				    rx_q->dma_rx_phy, desc_size);
4876 	}
4877 	while (count < limit) {
4878 		struct stmmac_rx_buffer *buf;
4879 		unsigned int buf1_len = 0;
4880 		struct dma_desc *np, *p;
4881 		int entry;
4882 		int res;
4883 
4884 		if (!count && rx_q->state_saved) {
4885 			error = rx_q->state.error;
4886 			len = rx_q->state.len;
4887 		} else {
4888 			rx_q->state_saved = false;
4889 			error = 0;
4890 			len = 0;
4891 		}
4892 
4893 		if (count >= limit)
4894 			break;
4895 
4896 read_again:
4897 		buf1_len = 0;
4898 		entry = next_entry;
4899 		buf = &rx_q->buf_pool[entry];
4900 
4901 		if (dirty >= STMMAC_RX_FILL_BATCH) {
4902 			failure = failure ||
4903 				  !stmmac_rx_refill_zc(priv, queue, dirty);
4904 			dirty = 0;
4905 		}
4906 
4907 		if (priv->extend_desc)
4908 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
4909 		else
4910 			p = rx_q->dma_rx + entry;
4911 
4912 		/* read the status of the incoming frame */
4913 		status = stmmac_rx_status(priv, &priv->dev->stats,
4914 					  &priv->xstats, p);
4915 		/* check if managed by the DMA otherwise go ahead */
4916 		if (unlikely(status & dma_own))
4917 			break;
4918 
4919 		/* Prefetch the next RX descriptor */
4920 		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
4921 						priv->dma_rx_size);
4922 		next_entry = rx_q->cur_rx;
4923 
4924 		if (priv->extend_desc)
4925 			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
4926 		else
4927 			np = rx_q->dma_rx + next_entry;
4928 
4929 		prefetch(np);
4930 
4931 		/* Ensure a valid XSK buffer before proceed */
4932 		if (!buf->xdp)
4933 			break;
4934 
4935 		if (priv->extend_desc)
4936 			stmmac_rx_extended_status(priv, &priv->dev->stats,
4937 						  &priv->xstats,
4938 						  rx_q->dma_erx + entry);
4939 		if (unlikely(status == discard_frame)) {
4940 			xsk_buff_free(buf->xdp);
4941 			buf->xdp = NULL;
4942 			dirty++;
4943 			error = 1;
4944 			if (!priv->hwts_rx_en)
4945 				priv->dev->stats.rx_errors++;
4946 		}
4947 
4948 		if (unlikely(error && (status & rx_not_ls)))
4949 			goto read_again;
4950 		if (unlikely(error)) {
4951 			count++;
4952 			continue;
4953 		}
4954 
4955 		/* XSK pool expects RX frame 1:1 mapped to XSK buffer */
4956 		if (likely(status & rx_not_ls)) {
4957 			xsk_buff_free(buf->xdp);
4958 			buf->xdp = NULL;
4959 			dirty++;
4960 			count++;
4961 			goto read_again;
4962 		}
4963 
4964 		/* XDP ZC Frame only support primary buffers for now */
4965 		buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
4966 		len += buf1_len;
4967 
4968 		/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
4969 		 * Type frames (LLC/LLC-SNAP)
4970 		 *
4971 		 * llc_snap is never checked in GMAC >= 4, so this ACS
4972 		 * feature is always disabled and packets need to be
4973 		 * stripped manually.
4974 		 */
4975 		if (likely(!(status & rx_not_ls)) &&
4976 		    (likely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
4977 		     unlikely(status != llc_snap))) {
4978 			buf1_len -= ETH_FCS_LEN;
4979 			len -= ETH_FCS_LEN;
4980 		}
4981 
4982 		/* RX buffer is good and fit into a XSK pool buffer */
4983 		buf->xdp->data_end = buf->xdp->data + buf1_len;
4984 		xsk_buff_dma_sync_for_cpu(buf->xdp, rx_q->xsk_pool);
4985 
4986 		prog = READ_ONCE(priv->xdp_prog);
4987 		res = __stmmac_xdp_run_prog(priv, prog, buf->xdp);
4988 
4989 		switch (res) {
4990 		case STMMAC_XDP_PASS:
4991 			stmmac_dispatch_skb_zc(priv, queue, p, np, buf->xdp);
4992 			xsk_buff_free(buf->xdp);
4993 			break;
4994 		case STMMAC_XDP_CONSUMED:
4995 			xsk_buff_free(buf->xdp);
4996 			priv->dev->stats.rx_dropped++;
4997 			break;
4998 		case STMMAC_XDP_TX:
4999 		case STMMAC_XDP_REDIRECT:
5000 			xdp_status |= res;
5001 			break;
5002 		}
5003 
5004 		buf->xdp = NULL;
5005 		dirty++;
5006 		count++;
5007 	}
5008 
5009 	if (status & rx_not_ls) {
5010 		rx_q->state_saved = true;
5011 		rx_q->state.error = error;
5012 		rx_q->state.len = len;
5013 	}
5014 
5015 	stmmac_finalize_xdp_rx(priv, xdp_status);
5016 
5017 	priv->xstats.rx_pkt_n += count;
5018 	priv->xstats.rxq_stats[queue].rx_pkt_n += count;
5019 
5020 	if (xsk_uses_need_wakeup(rx_q->xsk_pool)) {
5021 		if (failure || stmmac_rx_dirty(priv, queue) > 0)
5022 			xsk_set_rx_need_wakeup(rx_q->xsk_pool);
5023 		else
5024 			xsk_clear_rx_need_wakeup(rx_q->xsk_pool);
5025 
5026 		return (int)count;
5027 	}
5028 
5029 	return failure ? limit : (int)count;
5030 }
5031 
5032 /**
5033  * stmmac_rx - manage the receive process
5034  * @priv: driver private structure
5035  * @limit: napi bugget
5036  * @queue: RX queue index.
5037  * Description :  this the function called by the napi poll method.
5038  * It gets all the frames inside the ring.
5039  */
5040 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
5041 {
5042 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
5043 	struct stmmac_channel *ch = &priv->channel[queue];
5044 	unsigned int count = 0, error = 0, len = 0;
5045 	int status = 0, coe = priv->hw->rx_csum;
5046 	unsigned int next_entry = rx_q->cur_rx;
5047 	enum dma_data_direction dma_dir;
5048 	unsigned int desc_size;
5049 	struct sk_buff *skb = NULL;
5050 	struct xdp_buff xdp;
5051 	int xdp_status = 0;
5052 	int buf_sz;
5053 
5054 	dma_dir = page_pool_get_dma_dir(rx_q->page_pool);
5055 	buf_sz = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE) * PAGE_SIZE;
5056 
5057 	if (netif_msg_rx_status(priv)) {
5058 		void *rx_head;
5059 
5060 		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
5061 		if (priv->extend_desc) {
5062 			rx_head = (void *)rx_q->dma_erx;
5063 			desc_size = sizeof(struct dma_extended_desc);
5064 		} else {
5065 			rx_head = (void *)rx_q->dma_rx;
5066 			desc_size = sizeof(struct dma_desc);
5067 		}
5068 
5069 		stmmac_display_ring(priv, rx_head, priv->dma_rx_size, true,
5070 				    rx_q->dma_rx_phy, desc_size);
5071 	}
5072 	while (count < limit) {
5073 		unsigned int buf1_len = 0, buf2_len = 0;
5074 		enum pkt_hash_types hash_type;
5075 		struct stmmac_rx_buffer *buf;
5076 		struct dma_desc *np, *p;
5077 		int entry;
5078 		u32 hash;
5079 
5080 		if (!count && rx_q->state_saved) {
5081 			skb = rx_q->state.skb;
5082 			error = rx_q->state.error;
5083 			len = rx_q->state.len;
5084 		} else {
5085 			rx_q->state_saved = false;
5086 			skb = NULL;
5087 			error = 0;
5088 			len = 0;
5089 		}
5090 
5091 		if (count >= limit)
5092 			break;
5093 
5094 read_again:
5095 		buf1_len = 0;
5096 		buf2_len = 0;
5097 		entry = next_entry;
5098 		buf = &rx_q->buf_pool[entry];
5099 
5100 		if (priv->extend_desc)
5101 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
5102 		else
5103 			p = rx_q->dma_rx + entry;
5104 
5105 		/* read the status of the incoming frame */
5106 		status = stmmac_rx_status(priv, &priv->dev->stats,
5107 				&priv->xstats, p);
5108 		/* check if managed by the DMA otherwise go ahead */
5109 		if (unlikely(status & dma_own))
5110 			break;
5111 
5112 		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
5113 						priv->dma_rx_size);
5114 		next_entry = rx_q->cur_rx;
5115 
5116 		if (priv->extend_desc)
5117 			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
5118 		else
5119 			np = rx_q->dma_rx + next_entry;
5120 
5121 		prefetch(np);
5122 
5123 		if (priv->extend_desc)
5124 			stmmac_rx_extended_status(priv, &priv->dev->stats,
5125 					&priv->xstats, rx_q->dma_erx + entry);
5126 		if (unlikely(status == discard_frame)) {
5127 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
5128 			buf->page = NULL;
5129 			error = 1;
5130 			if (!priv->hwts_rx_en)
5131 				priv->dev->stats.rx_errors++;
5132 		}
5133 
5134 		if (unlikely(error && (status & rx_not_ls)))
5135 			goto read_again;
5136 		if (unlikely(error)) {
5137 			dev_kfree_skb(skb);
5138 			skb = NULL;
5139 			count++;
5140 			continue;
5141 		}
5142 
5143 		/* Buffer is good. Go on. */
5144 
5145 		prefetch(page_address(buf->page) + buf->page_offset);
5146 		if (buf->sec_page)
5147 			prefetch(page_address(buf->sec_page));
5148 
5149 		buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
5150 		len += buf1_len;
5151 		buf2_len = stmmac_rx_buf2_len(priv, p, status, len);
5152 		len += buf2_len;
5153 
5154 		/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
5155 		 * Type frames (LLC/LLC-SNAP)
5156 		 *
5157 		 * llc_snap is never checked in GMAC >= 4, so this ACS
5158 		 * feature is always disabled and packets need to be
5159 		 * stripped manually.
5160 		 */
5161 		if (likely(!(status & rx_not_ls)) &&
5162 		    (likely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
5163 		     unlikely(status != llc_snap))) {
5164 			if (buf2_len) {
5165 				buf2_len -= ETH_FCS_LEN;
5166 				len -= ETH_FCS_LEN;
5167 			} else if (buf1_len) {
5168 				buf1_len -= ETH_FCS_LEN;
5169 				len -= ETH_FCS_LEN;
5170 			}
5171 		}
5172 
5173 		if (!skb) {
5174 			unsigned int pre_len, sync_len;
5175 
5176 			dma_sync_single_for_cpu(priv->device, buf->addr,
5177 						buf1_len, dma_dir);
5178 
5179 			xdp_init_buff(&xdp, buf_sz, &rx_q->xdp_rxq);
5180 			xdp_prepare_buff(&xdp, page_address(buf->page),
5181 					 buf->page_offset, buf1_len, false);
5182 
5183 			pre_len = xdp.data_end - xdp.data_hard_start -
5184 				  buf->page_offset;
5185 			skb = stmmac_xdp_run_prog(priv, &xdp);
5186 			/* Due xdp_adjust_tail: DMA sync for_device
5187 			 * cover max len CPU touch
5188 			 */
5189 			sync_len = xdp.data_end - xdp.data_hard_start -
5190 				   buf->page_offset;
5191 			sync_len = max(sync_len, pre_len);
5192 
5193 			/* For Not XDP_PASS verdict */
5194 			if (IS_ERR(skb)) {
5195 				unsigned int xdp_res = -PTR_ERR(skb);
5196 
5197 				if (xdp_res & STMMAC_XDP_CONSUMED) {
5198 					page_pool_put_page(rx_q->page_pool,
5199 							   virt_to_head_page(xdp.data),
5200 							   sync_len, true);
5201 					buf->page = NULL;
5202 					priv->dev->stats.rx_dropped++;
5203 
5204 					/* Clear skb as it was set as
5205 					 * status by XDP program.
5206 					 */
5207 					skb = NULL;
5208 
5209 					if (unlikely((status & rx_not_ls)))
5210 						goto read_again;
5211 
5212 					count++;
5213 					continue;
5214 				} else if (xdp_res & (STMMAC_XDP_TX |
5215 						      STMMAC_XDP_REDIRECT)) {
5216 					xdp_status |= xdp_res;
5217 					buf->page = NULL;
5218 					skb = NULL;
5219 					count++;
5220 					continue;
5221 				}
5222 			}
5223 		}
5224 
5225 		if (!skb) {
5226 			/* XDP program may expand or reduce tail */
5227 			buf1_len = xdp.data_end - xdp.data;
5228 
5229 			skb = napi_alloc_skb(&ch->rx_napi, buf1_len);
5230 			if (!skb) {
5231 				priv->dev->stats.rx_dropped++;
5232 				count++;
5233 				goto drain_data;
5234 			}
5235 
5236 			/* XDP program may adjust header */
5237 			skb_copy_to_linear_data(skb, xdp.data, buf1_len);
5238 			skb_put(skb, buf1_len);
5239 
5240 			/* Data payload copied into SKB, page ready for recycle */
5241 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
5242 			buf->page = NULL;
5243 		} else if (buf1_len) {
5244 			dma_sync_single_for_cpu(priv->device, buf->addr,
5245 						buf1_len, dma_dir);
5246 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5247 					buf->page, buf->page_offset, buf1_len,
5248 					priv->dma_buf_sz);
5249 
5250 			/* Data payload appended into SKB */
5251 			page_pool_release_page(rx_q->page_pool, buf->page);
5252 			buf->page = NULL;
5253 		}
5254 
5255 		if (buf2_len) {
5256 			dma_sync_single_for_cpu(priv->device, buf->sec_addr,
5257 						buf2_len, dma_dir);
5258 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5259 					buf->sec_page, 0, buf2_len,
5260 					priv->dma_buf_sz);
5261 
5262 			/* Data payload appended into SKB */
5263 			page_pool_release_page(rx_q->page_pool, buf->sec_page);
5264 			buf->sec_page = NULL;
5265 		}
5266 
5267 drain_data:
5268 		if (likely(status & rx_not_ls))
5269 			goto read_again;
5270 		if (!skb)
5271 			continue;
5272 
5273 		/* Got entire packet into SKB. Finish it. */
5274 
5275 		stmmac_get_rx_hwtstamp(priv, p, np, skb);
5276 		stmmac_rx_vlan(priv->dev, skb);
5277 		skb->protocol = eth_type_trans(skb, priv->dev);
5278 
5279 		if (unlikely(!coe))
5280 			skb_checksum_none_assert(skb);
5281 		else
5282 			skb->ip_summed = CHECKSUM_UNNECESSARY;
5283 
5284 		if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
5285 			skb_set_hash(skb, hash, hash_type);
5286 
5287 		skb_record_rx_queue(skb, queue);
5288 		napi_gro_receive(&ch->rx_napi, skb);
5289 		skb = NULL;
5290 
5291 		priv->dev->stats.rx_packets++;
5292 		priv->dev->stats.rx_bytes += len;
5293 		count++;
5294 	}
5295 
5296 	if (status & rx_not_ls || skb) {
5297 		rx_q->state_saved = true;
5298 		rx_q->state.skb = skb;
5299 		rx_q->state.error = error;
5300 		rx_q->state.len = len;
5301 	}
5302 
5303 	stmmac_finalize_xdp_rx(priv, xdp_status);
5304 
5305 	stmmac_rx_refill(priv, queue);
5306 
5307 	priv->xstats.rx_pkt_n += count;
5308 	priv->xstats.rxq_stats[queue].rx_pkt_n += count;
5309 
5310 	return count;
5311 }
5312 
5313 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
5314 {
5315 	struct stmmac_channel *ch =
5316 		container_of(napi, struct stmmac_channel, rx_napi);
5317 	struct stmmac_priv *priv = ch->priv_data;
5318 	u32 chan = ch->index;
5319 	int work_done;
5320 
5321 	priv->xstats.napi_poll++;
5322 
5323 	work_done = stmmac_rx(priv, budget, chan);
5324 	if (work_done < budget && napi_complete_done(napi, work_done)) {
5325 		unsigned long flags;
5326 
5327 		spin_lock_irqsave(&ch->lock, flags);
5328 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
5329 		spin_unlock_irqrestore(&ch->lock, flags);
5330 	}
5331 
5332 	return work_done;
5333 }
5334 
5335 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
5336 {
5337 	struct stmmac_channel *ch =
5338 		container_of(napi, struct stmmac_channel, tx_napi);
5339 	struct stmmac_priv *priv = ch->priv_data;
5340 	u32 chan = ch->index;
5341 	int work_done;
5342 
5343 	priv->xstats.napi_poll++;
5344 
5345 	work_done = stmmac_tx_clean(priv, budget, chan);
5346 	work_done = min(work_done, budget);
5347 
5348 	if (work_done < budget && napi_complete_done(napi, work_done)) {
5349 		unsigned long flags;
5350 
5351 		spin_lock_irqsave(&ch->lock, flags);
5352 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
5353 		spin_unlock_irqrestore(&ch->lock, flags);
5354 	}
5355 
5356 	return work_done;
5357 }
5358 
5359 static int stmmac_napi_poll_rxtx(struct napi_struct *napi, int budget)
5360 {
5361 	struct stmmac_channel *ch =
5362 		container_of(napi, struct stmmac_channel, rxtx_napi);
5363 	struct stmmac_priv *priv = ch->priv_data;
5364 	int rx_done, tx_done, rxtx_done;
5365 	u32 chan = ch->index;
5366 
5367 	priv->xstats.napi_poll++;
5368 
5369 	tx_done = stmmac_tx_clean(priv, budget, chan);
5370 	tx_done = min(tx_done, budget);
5371 
5372 	rx_done = stmmac_rx_zc(priv, budget, chan);
5373 
5374 	rxtx_done = max(tx_done, rx_done);
5375 
5376 	/* If either TX or RX work is not complete, return budget
5377 	 * and keep pooling
5378 	 */
5379 	if (rxtx_done >= budget)
5380 		return budget;
5381 
5382 	/* all work done, exit the polling mode */
5383 	if (napi_complete_done(napi, rxtx_done)) {
5384 		unsigned long flags;
5385 
5386 		spin_lock_irqsave(&ch->lock, flags);
5387 		/* Both RX and TX work done are compelte,
5388 		 * so enable both RX & TX IRQs.
5389 		 */
5390 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
5391 		spin_unlock_irqrestore(&ch->lock, flags);
5392 	}
5393 
5394 	return min(rxtx_done, budget - 1);
5395 }
5396 
5397 /**
5398  *  stmmac_tx_timeout
5399  *  @dev : Pointer to net device structure
5400  *  @txqueue: the index of the hanging transmit queue
5401  *  Description: this function is called when a packet transmission fails to
5402  *   complete within a reasonable time. The driver will mark the error in the
5403  *   netdev structure and arrange for the device to be reset to a sane state
5404  *   in order to transmit a new packet.
5405  */
5406 static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue)
5407 {
5408 	struct stmmac_priv *priv = netdev_priv(dev);
5409 
5410 	stmmac_global_err(priv);
5411 }
5412 
5413 /**
5414  *  stmmac_set_rx_mode - entry point for multicast addressing
5415  *  @dev : pointer to the device structure
5416  *  Description:
5417  *  This function is a driver entry point which gets called by the kernel
5418  *  whenever multicast addresses must be enabled/disabled.
5419  *  Return value:
5420  *  void.
5421  */
5422 static void stmmac_set_rx_mode(struct net_device *dev)
5423 {
5424 	struct stmmac_priv *priv = netdev_priv(dev);
5425 
5426 	stmmac_set_filter(priv, priv->hw, dev);
5427 }
5428 
5429 /**
5430  *  stmmac_change_mtu - entry point to change MTU size for the device.
5431  *  @dev : device pointer.
5432  *  @new_mtu : the new MTU size for the device.
5433  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
5434  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
5435  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
5436  *  Return value:
5437  *  0 on success and an appropriate (-)ve integer as defined in errno.h
5438  *  file on failure.
5439  */
5440 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
5441 {
5442 	struct stmmac_priv *priv = netdev_priv(dev);
5443 	int txfifosz = priv->plat->tx_fifo_size;
5444 	const int mtu = new_mtu;
5445 
5446 	if (txfifosz == 0)
5447 		txfifosz = priv->dma_cap.tx_fifo_size;
5448 
5449 	txfifosz /= priv->plat->tx_queues_to_use;
5450 
5451 	if (netif_running(dev)) {
5452 		netdev_err(priv->dev, "must be stopped to change its MTU\n");
5453 		return -EBUSY;
5454 	}
5455 
5456 	if (stmmac_xdp_is_enabled(priv) && new_mtu > ETH_DATA_LEN) {
5457 		netdev_dbg(priv->dev, "Jumbo frames not supported for XDP\n");
5458 		return -EINVAL;
5459 	}
5460 
5461 	new_mtu = STMMAC_ALIGN(new_mtu);
5462 
5463 	/* If condition true, FIFO is too small or MTU too large */
5464 	if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB))
5465 		return -EINVAL;
5466 
5467 	dev->mtu = mtu;
5468 
5469 	netdev_update_features(dev);
5470 
5471 	return 0;
5472 }
5473 
5474 static netdev_features_t stmmac_fix_features(struct net_device *dev,
5475 					     netdev_features_t features)
5476 {
5477 	struct stmmac_priv *priv = netdev_priv(dev);
5478 
5479 	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
5480 		features &= ~NETIF_F_RXCSUM;
5481 
5482 	if (!priv->plat->tx_coe)
5483 		features &= ~NETIF_F_CSUM_MASK;
5484 
5485 	/* Some GMAC devices have a bugged Jumbo frame support that
5486 	 * needs to have the Tx COE disabled for oversized frames
5487 	 * (due to limited buffer sizes). In this case we disable
5488 	 * the TX csum insertion in the TDES and not use SF.
5489 	 */
5490 	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
5491 		features &= ~NETIF_F_CSUM_MASK;
5492 
5493 	/* Disable tso if asked by ethtool */
5494 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
5495 		if (features & NETIF_F_TSO)
5496 			priv->tso = true;
5497 		else
5498 			priv->tso = false;
5499 	}
5500 
5501 	return features;
5502 }
5503 
5504 static int stmmac_set_features(struct net_device *netdev,
5505 			       netdev_features_t features)
5506 {
5507 	struct stmmac_priv *priv = netdev_priv(netdev);
5508 
5509 	/* Keep the COE Type in case of csum is supporting */
5510 	if (features & NETIF_F_RXCSUM)
5511 		priv->hw->rx_csum = priv->plat->rx_coe;
5512 	else
5513 		priv->hw->rx_csum = 0;
5514 	/* No check needed because rx_coe has been set before and it will be
5515 	 * fixed in case of issue.
5516 	 */
5517 	stmmac_rx_ipc(priv, priv->hw);
5518 
5519 	if (priv->sph_cap) {
5520 		bool sph_en = (priv->hw->rx_csum > 0) && priv->sph;
5521 		u32 chan;
5522 
5523 		for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++)
5524 			stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
5525 	}
5526 
5527 	return 0;
5528 }
5529 
5530 static void stmmac_fpe_event_status(struct stmmac_priv *priv, int status)
5531 {
5532 	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
5533 	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
5534 	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
5535 	bool *hs_enable = &fpe_cfg->hs_enable;
5536 
5537 	if (status == FPE_EVENT_UNKNOWN || !*hs_enable)
5538 		return;
5539 
5540 	/* If LP has sent verify mPacket, LP is FPE capable */
5541 	if ((status & FPE_EVENT_RVER) == FPE_EVENT_RVER) {
5542 		if (*lp_state < FPE_STATE_CAPABLE)
5543 			*lp_state = FPE_STATE_CAPABLE;
5544 
5545 		/* If user has requested FPE enable, quickly response */
5546 		if (*hs_enable)
5547 			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
5548 						MPACKET_RESPONSE);
5549 	}
5550 
5551 	/* If Local has sent verify mPacket, Local is FPE capable */
5552 	if ((status & FPE_EVENT_TVER) == FPE_EVENT_TVER) {
5553 		if (*lo_state < FPE_STATE_CAPABLE)
5554 			*lo_state = FPE_STATE_CAPABLE;
5555 	}
5556 
5557 	/* If LP has sent response mPacket, LP is entering FPE ON */
5558 	if ((status & FPE_EVENT_RRSP) == FPE_EVENT_RRSP)
5559 		*lp_state = FPE_STATE_ENTERING_ON;
5560 
5561 	/* If Local has sent response mPacket, Local is entering FPE ON */
5562 	if ((status & FPE_EVENT_TRSP) == FPE_EVENT_TRSP)
5563 		*lo_state = FPE_STATE_ENTERING_ON;
5564 
5565 	if (!test_bit(__FPE_REMOVING, &priv->fpe_task_state) &&
5566 	    !test_and_set_bit(__FPE_TASK_SCHED, &priv->fpe_task_state) &&
5567 	    priv->fpe_wq) {
5568 		queue_work(priv->fpe_wq, &priv->fpe_task);
5569 	}
5570 }
5571 
5572 static void stmmac_common_interrupt(struct stmmac_priv *priv)
5573 {
5574 	u32 rx_cnt = priv->plat->rx_queues_to_use;
5575 	u32 tx_cnt = priv->plat->tx_queues_to_use;
5576 	u32 queues_count;
5577 	u32 queue;
5578 	bool xmac;
5579 
5580 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
5581 	queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
5582 
5583 	if (priv->irq_wake)
5584 		pm_wakeup_event(priv->device, 0);
5585 
5586 	if (priv->dma_cap.estsel)
5587 		stmmac_est_irq_status(priv, priv->ioaddr, priv->dev,
5588 				      &priv->xstats, tx_cnt);
5589 
5590 	if (priv->dma_cap.fpesel) {
5591 		int status = stmmac_fpe_irq_status(priv, priv->ioaddr,
5592 						   priv->dev);
5593 
5594 		stmmac_fpe_event_status(priv, status);
5595 	}
5596 
5597 	/* To handle GMAC own interrupts */
5598 	if ((priv->plat->has_gmac) || xmac) {
5599 		int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
5600 
5601 		if (unlikely(status)) {
5602 			/* For LPI we need to save the tx status */
5603 			if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
5604 				priv->tx_path_in_lpi_mode = true;
5605 			if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
5606 				priv->tx_path_in_lpi_mode = false;
5607 		}
5608 
5609 		for (queue = 0; queue < queues_count; queue++) {
5610 			status = stmmac_host_mtl_irq_status(priv, priv->hw,
5611 							    queue);
5612 		}
5613 
5614 		/* PCS link status */
5615 		if (priv->hw->pcs) {
5616 			if (priv->xstats.pcs_link)
5617 				netif_carrier_on(priv->dev);
5618 			else
5619 				netif_carrier_off(priv->dev);
5620 		}
5621 
5622 		stmmac_timestamp_interrupt(priv, priv);
5623 	}
5624 }
5625 
5626 /**
5627  *  stmmac_interrupt - main ISR
5628  *  @irq: interrupt number.
5629  *  @dev_id: to pass the net device pointer.
5630  *  Description: this is the main driver interrupt service routine.
5631  *  It can call:
5632  *  o DMA service routine (to manage incoming frame reception and transmission
5633  *    status)
5634  *  o Core interrupts to manage: remote wake-up, management counter, LPI
5635  *    interrupts.
5636  */
5637 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
5638 {
5639 	struct net_device *dev = (struct net_device *)dev_id;
5640 	struct stmmac_priv *priv = netdev_priv(dev);
5641 
5642 	/* Check if adapter is up */
5643 	if (test_bit(STMMAC_DOWN, &priv->state))
5644 		return IRQ_HANDLED;
5645 
5646 	/* Check if a fatal error happened */
5647 	if (stmmac_safety_feat_interrupt(priv))
5648 		return IRQ_HANDLED;
5649 
5650 	/* To handle Common interrupts */
5651 	stmmac_common_interrupt(priv);
5652 
5653 	/* To handle DMA interrupts */
5654 	stmmac_dma_interrupt(priv);
5655 
5656 	return IRQ_HANDLED;
5657 }
5658 
5659 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id)
5660 {
5661 	struct net_device *dev = (struct net_device *)dev_id;
5662 	struct stmmac_priv *priv = netdev_priv(dev);
5663 
5664 	if (unlikely(!dev)) {
5665 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5666 		return IRQ_NONE;
5667 	}
5668 
5669 	/* Check if adapter is up */
5670 	if (test_bit(STMMAC_DOWN, &priv->state))
5671 		return IRQ_HANDLED;
5672 
5673 	/* To handle Common interrupts */
5674 	stmmac_common_interrupt(priv);
5675 
5676 	return IRQ_HANDLED;
5677 }
5678 
5679 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id)
5680 {
5681 	struct net_device *dev = (struct net_device *)dev_id;
5682 	struct stmmac_priv *priv = netdev_priv(dev);
5683 
5684 	if (unlikely(!dev)) {
5685 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5686 		return IRQ_NONE;
5687 	}
5688 
5689 	/* Check if adapter is up */
5690 	if (test_bit(STMMAC_DOWN, &priv->state))
5691 		return IRQ_HANDLED;
5692 
5693 	/* Check if a fatal error happened */
5694 	stmmac_safety_feat_interrupt(priv);
5695 
5696 	return IRQ_HANDLED;
5697 }
5698 
5699 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data)
5700 {
5701 	struct stmmac_tx_queue *tx_q = (struct stmmac_tx_queue *)data;
5702 	int chan = tx_q->queue_index;
5703 	struct stmmac_priv *priv;
5704 	int status;
5705 
5706 	priv = container_of(tx_q, struct stmmac_priv, tx_queue[chan]);
5707 
5708 	if (unlikely(!data)) {
5709 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5710 		return IRQ_NONE;
5711 	}
5712 
5713 	/* Check if adapter is up */
5714 	if (test_bit(STMMAC_DOWN, &priv->state))
5715 		return IRQ_HANDLED;
5716 
5717 	status = stmmac_napi_check(priv, chan, DMA_DIR_TX);
5718 
5719 	if (unlikely(status & tx_hard_error_bump_tc)) {
5720 		/* Try to bump up the dma threshold on this failure */
5721 		stmmac_bump_dma_threshold(priv, chan);
5722 	} else if (unlikely(status == tx_hard_error)) {
5723 		stmmac_tx_err(priv, chan);
5724 	}
5725 
5726 	return IRQ_HANDLED;
5727 }
5728 
5729 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data)
5730 {
5731 	struct stmmac_rx_queue *rx_q = (struct stmmac_rx_queue *)data;
5732 	int chan = rx_q->queue_index;
5733 	struct stmmac_priv *priv;
5734 
5735 	priv = container_of(rx_q, struct stmmac_priv, rx_queue[chan]);
5736 
5737 	if (unlikely(!data)) {
5738 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5739 		return IRQ_NONE;
5740 	}
5741 
5742 	/* Check if adapter is up */
5743 	if (test_bit(STMMAC_DOWN, &priv->state))
5744 		return IRQ_HANDLED;
5745 
5746 	stmmac_napi_check(priv, chan, DMA_DIR_RX);
5747 
5748 	return IRQ_HANDLED;
5749 }
5750 
5751 #ifdef CONFIG_NET_POLL_CONTROLLER
5752 /* Polling receive - used by NETCONSOLE and other diagnostic tools
5753  * to allow network I/O with interrupts disabled.
5754  */
5755 static void stmmac_poll_controller(struct net_device *dev)
5756 {
5757 	struct stmmac_priv *priv = netdev_priv(dev);
5758 	int i;
5759 
5760 	/* If adapter is down, do nothing */
5761 	if (test_bit(STMMAC_DOWN, &priv->state))
5762 		return;
5763 
5764 	if (priv->plat->multi_msi_en) {
5765 		for (i = 0; i < priv->plat->rx_queues_to_use; i++)
5766 			stmmac_msi_intr_rx(0, &priv->rx_queue[i]);
5767 
5768 		for (i = 0; i < priv->plat->tx_queues_to_use; i++)
5769 			stmmac_msi_intr_tx(0, &priv->tx_queue[i]);
5770 	} else {
5771 		disable_irq(dev->irq);
5772 		stmmac_interrupt(dev->irq, dev);
5773 		enable_irq(dev->irq);
5774 	}
5775 }
5776 #endif
5777 
5778 /**
5779  *  stmmac_ioctl - Entry point for the Ioctl
5780  *  @dev: Device pointer.
5781  *  @rq: An IOCTL specefic structure, that can contain a pointer to
5782  *  a proprietary structure used to pass information to the driver.
5783  *  @cmd: IOCTL command
5784  *  Description:
5785  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
5786  */
5787 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5788 {
5789 	struct stmmac_priv *priv = netdev_priv (dev);
5790 	int ret = -EOPNOTSUPP;
5791 
5792 	if (!netif_running(dev))
5793 		return -EINVAL;
5794 
5795 	switch (cmd) {
5796 	case SIOCGMIIPHY:
5797 	case SIOCGMIIREG:
5798 	case SIOCSMIIREG:
5799 		ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
5800 		break;
5801 	case SIOCSHWTSTAMP:
5802 		ret = stmmac_hwtstamp_set(dev, rq);
5803 		break;
5804 	case SIOCGHWTSTAMP:
5805 		ret = stmmac_hwtstamp_get(dev, rq);
5806 		break;
5807 	default:
5808 		break;
5809 	}
5810 
5811 	return ret;
5812 }
5813 
5814 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
5815 				    void *cb_priv)
5816 {
5817 	struct stmmac_priv *priv = cb_priv;
5818 	int ret = -EOPNOTSUPP;
5819 
5820 	if (!tc_cls_can_offload_and_chain0(priv->dev, type_data))
5821 		return ret;
5822 
5823 	__stmmac_disable_all_queues(priv);
5824 
5825 	switch (type) {
5826 	case TC_SETUP_CLSU32:
5827 		ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
5828 		break;
5829 	case TC_SETUP_CLSFLOWER:
5830 		ret = stmmac_tc_setup_cls(priv, priv, type_data);
5831 		break;
5832 	default:
5833 		break;
5834 	}
5835 
5836 	stmmac_enable_all_queues(priv);
5837 	return ret;
5838 }
5839 
5840 static LIST_HEAD(stmmac_block_cb_list);
5841 
5842 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
5843 			   void *type_data)
5844 {
5845 	struct stmmac_priv *priv = netdev_priv(ndev);
5846 
5847 	switch (type) {
5848 	case TC_SETUP_BLOCK:
5849 		return flow_block_cb_setup_simple(type_data,
5850 						  &stmmac_block_cb_list,
5851 						  stmmac_setup_tc_block_cb,
5852 						  priv, priv, true);
5853 	case TC_SETUP_QDISC_CBS:
5854 		return stmmac_tc_setup_cbs(priv, priv, type_data);
5855 	case TC_SETUP_QDISC_TAPRIO:
5856 		return stmmac_tc_setup_taprio(priv, priv, type_data);
5857 	case TC_SETUP_QDISC_ETF:
5858 		return stmmac_tc_setup_etf(priv, priv, type_data);
5859 	default:
5860 		return -EOPNOTSUPP;
5861 	}
5862 }
5863 
5864 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
5865 			       struct net_device *sb_dev)
5866 {
5867 	int gso = skb_shinfo(skb)->gso_type;
5868 
5869 	if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) {
5870 		/*
5871 		 * There is no way to determine the number of TSO/USO
5872 		 * capable Queues. Let's use always the Queue 0
5873 		 * because if TSO/USO is supported then at least this
5874 		 * one will be capable.
5875 		 */
5876 		return 0;
5877 	}
5878 
5879 	return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
5880 }
5881 
5882 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
5883 {
5884 	struct stmmac_priv *priv = netdev_priv(ndev);
5885 	int ret = 0;
5886 
5887 	ret = pm_runtime_resume_and_get(priv->device);
5888 	if (ret < 0)
5889 		return ret;
5890 
5891 	ret = eth_mac_addr(ndev, addr);
5892 	if (ret)
5893 		goto set_mac_error;
5894 
5895 	stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
5896 
5897 set_mac_error:
5898 	pm_runtime_put(priv->device);
5899 
5900 	return ret;
5901 }
5902 
5903 #ifdef CONFIG_DEBUG_FS
5904 static struct dentry *stmmac_fs_dir;
5905 
5906 static void sysfs_display_ring(void *head, int size, int extend_desc,
5907 			       struct seq_file *seq, dma_addr_t dma_phy_addr)
5908 {
5909 	int i;
5910 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
5911 	struct dma_desc *p = (struct dma_desc *)head;
5912 	dma_addr_t dma_addr;
5913 
5914 	for (i = 0; i < size; i++) {
5915 		if (extend_desc) {
5916 			dma_addr = dma_phy_addr + i * sizeof(*ep);
5917 			seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
5918 				   i, &dma_addr,
5919 				   le32_to_cpu(ep->basic.des0),
5920 				   le32_to_cpu(ep->basic.des1),
5921 				   le32_to_cpu(ep->basic.des2),
5922 				   le32_to_cpu(ep->basic.des3));
5923 			ep++;
5924 		} else {
5925 			dma_addr = dma_phy_addr + i * sizeof(*p);
5926 			seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
5927 				   i, &dma_addr,
5928 				   le32_to_cpu(p->des0), le32_to_cpu(p->des1),
5929 				   le32_to_cpu(p->des2), le32_to_cpu(p->des3));
5930 			p++;
5931 		}
5932 		seq_printf(seq, "\n");
5933 	}
5934 }
5935 
5936 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
5937 {
5938 	struct net_device *dev = seq->private;
5939 	struct stmmac_priv *priv = netdev_priv(dev);
5940 	u32 rx_count = priv->plat->rx_queues_to_use;
5941 	u32 tx_count = priv->plat->tx_queues_to_use;
5942 	u32 queue;
5943 
5944 	if ((dev->flags & IFF_UP) == 0)
5945 		return 0;
5946 
5947 	for (queue = 0; queue < rx_count; queue++) {
5948 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
5949 
5950 		seq_printf(seq, "RX Queue %d:\n", queue);
5951 
5952 		if (priv->extend_desc) {
5953 			seq_printf(seq, "Extended descriptor ring:\n");
5954 			sysfs_display_ring((void *)rx_q->dma_erx,
5955 					   priv->dma_rx_size, 1, seq, rx_q->dma_rx_phy);
5956 		} else {
5957 			seq_printf(seq, "Descriptor ring:\n");
5958 			sysfs_display_ring((void *)rx_q->dma_rx,
5959 					   priv->dma_rx_size, 0, seq, rx_q->dma_rx_phy);
5960 		}
5961 	}
5962 
5963 	for (queue = 0; queue < tx_count; queue++) {
5964 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
5965 
5966 		seq_printf(seq, "TX Queue %d:\n", queue);
5967 
5968 		if (priv->extend_desc) {
5969 			seq_printf(seq, "Extended descriptor ring:\n");
5970 			sysfs_display_ring((void *)tx_q->dma_etx,
5971 					   priv->dma_tx_size, 1, seq, tx_q->dma_tx_phy);
5972 		} else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) {
5973 			seq_printf(seq, "Descriptor ring:\n");
5974 			sysfs_display_ring((void *)tx_q->dma_tx,
5975 					   priv->dma_tx_size, 0, seq, tx_q->dma_tx_phy);
5976 		}
5977 	}
5978 
5979 	return 0;
5980 }
5981 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
5982 
5983 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
5984 {
5985 	struct net_device *dev = seq->private;
5986 	struct stmmac_priv *priv = netdev_priv(dev);
5987 
5988 	if (!priv->hw_cap_support) {
5989 		seq_printf(seq, "DMA HW features not supported\n");
5990 		return 0;
5991 	}
5992 
5993 	seq_printf(seq, "==============================\n");
5994 	seq_printf(seq, "\tDMA HW features\n");
5995 	seq_printf(seq, "==============================\n");
5996 
5997 	seq_printf(seq, "\t10/100 Mbps: %s\n",
5998 		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
5999 	seq_printf(seq, "\t1000 Mbps: %s\n",
6000 		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
6001 	seq_printf(seq, "\tHalf duplex: %s\n",
6002 		   (priv->dma_cap.half_duplex) ? "Y" : "N");
6003 	seq_printf(seq, "\tHash Filter: %s\n",
6004 		   (priv->dma_cap.hash_filter) ? "Y" : "N");
6005 	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
6006 		   (priv->dma_cap.multi_addr) ? "Y" : "N");
6007 	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
6008 		   (priv->dma_cap.pcs) ? "Y" : "N");
6009 	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
6010 		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
6011 	seq_printf(seq, "\tPMT Remote wake up: %s\n",
6012 		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
6013 	seq_printf(seq, "\tPMT Magic Frame: %s\n",
6014 		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
6015 	seq_printf(seq, "\tRMON module: %s\n",
6016 		   (priv->dma_cap.rmon) ? "Y" : "N");
6017 	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
6018 		   (priv->dma_cap.time_stamp) ? "Y" : "N");
6019 	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
6020 		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
6021 	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
6022 		   (priv->dma_cap.eee) ? "Y" : "N");
6023 	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
6024 	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
6025 		   (priv->dma_cap.tx_coe) ? "Y" : "N");
6026 	if (priv->synopsys_id >= DWMAC_CORE_4_00) {
6027 		seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
6028 			   (priv->dma_cap.rx_coe) ? "Y" : "N");
6029 	} else {
6030 		seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
6031 			   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
6032 		seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
6033 			   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
6034 	}
6035 	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
6036 		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
6037 	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
6038 		   priv->dma_cap.number_rx_channel);
6039 	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
6040 		   priv->dma_cap.number_tx_channel);
6041 	seq_printf(seq, "\tNumber of Additional RX queues: %d\n",
6042 		   priv->dma_cap.number_rx_queues);
6043 	seq_printf(seq, "\tNumber of Additional TX queues: %d\n",
6044 		   priv->dma_cap.number_tx_queues);
6045 	seq_printf(seq, "\tEnhanced descriptors: %s\n",
6046 		   (priv->dma_cap.enh_desc) ? "Y" : "N");
6047 	seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size);
6048 	seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size);
6049 	seq_printf(seq, "\tHash Table Size: %d\n", priv->dma_cap.hash_tb_sz);
6050 	seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N");
6051 	seq_printf(seq, "\tNumber of PPS Outputs: %d\n",
6052 		   priv->dma_cap.pps_out_num);
6053 	seq_printf(seq, "\tSafety Features: %s\n",
6054 		   priv->dma_cap.asp ? "Y" : "N");
6055 	seq_printf(seq, "\tFlexible RX Parser: %s\n",
6056 		   priv->dma_cap.frpsel ? "Y" : "N");
6057 	seq_printf(seq, "\tEnhanced Addressing: %d\n",
6058 		   priv->dma_cap.addr64);
6059 	seq_printf(seq, "\tReceive Side Scaling: %s\n",
6060 		   priv->dma_cap.rssen ? "Y" : "N");
6061 	seq_printf(seq, "\tVLAN Hash Filtering: %s\n",
6062 		   priv->dma_cap.vlhash ? "Y" : "N");
6063 	seq_printf(seq, "\tSplit Header: %s\n",
6064 		   priv->dma_cap.sphen ? "Y" : "N");
6065 	seq_printf(seq, "\tVLAN TX Insertion: %s\n",
6066 		   priv->dma_cap.vlins ? "Y" : "N");
6067 	seq_printf(seq, "\tDouble VLAN: %s\n",
6068 		   priv->dma_cap.dvlan ? "Y" : "N");
6069 	seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n",
6070 		   priv->dma_cap.l3l4fnum);
6071 	seq_printf(seq, "\tARP Offloading: %s\n",
6072 		   priv->dma_cap.arpoffsel ? "Y" : "N");
6073 	seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n",
6074 		   priv->dma_cap.estsel ? "Y" : "N");
6075 	seq_printf(seq, "\tFrame Preemption (FPE): %s\n",
6076 		   priv->dma_cap.fpesel ? "Y" : "N");
6077 	seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n",
6078 		   priv->dma_cap.tbssel ? "Y" : "N");
6079 	return 0;
6080 }
6081 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
6082 
6083 /* Use network device events to rename debugfs file entries.
6084  */
6085 static int stmmac_device_event(struct notifier_block *unused,
6086 			       unsigned long event, void *ptr)
6087 {
6088 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
6089 	struct stmmac_priv *priv = netdev_priv(dev);
6090 
6091 	if (dev->netdev_ops != &stmmac_netdev_ops)
6092 		goto done;
6093 
6094 	switch (event) {
6095 	case NETDEV_CHANGENAME:
6096 		if (priv->dbgfs_dir)
6097 			priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir,
6098 							 priv->dbgfs_dir,
6099 							 stmmac_fs_dir,
6100 							 dev->name);
6101 		break;
6102 	}
6103 done:
6104 	return NOTIFY_DONE;
6105 }
6106 
6107 static struct notifier_block stmmac_notifier = {
6108 	.notifier_call = stmmac_device_event,
6109 };
6110 
6111 static void stmmac_init_fs(struct net_device *dev)
6112 {
6113 	struct stmmac_priv *priv = netdev_priv(dev);
6114 
6115 	rtnl_lock();
6116 
6117 	/* Create per netdev entries */
6118 	priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
6119 
6120 	/* Entry to report DMA RX/TX rings */
6121 	debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev,
6122 			    &stmmac_rings_status_fops);
6123 
6124 	/* Entry to report the DMA HW features */
6125 	debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev,
6126 			    &stmmac_dma_cap_fops);
6127 
6128 	rtnl_unlock();
6129 }
6130 
6131 static void stmmac_exit_fs(struct net_device *dev)
6132 {
6133 	struct stmmac_priv *priv = netdev_priv(dev);
6134 
6135 	debugfs_remove_recursive(priv->dbgfs_dir);
6136 }
6137 #endif /* CONFIG_DEBUG_FS */
6138 
6139 static u32 stmmac_vid_crc32_le(__le16 vid_le)
6140 {
6141 	unsigned char *data = (unsigned char *)&vid_le;
6142 	unsigned char data_byte = 0;
6143 	u32 crc = ~0x0;
6144 	u32 temp = 0;
6145 	int i, bits;
6146 
6147 	bits = get_bitmask_order(VLAN_VID_MASK);
6148 	for (i = 0; i < bits; i++) {
6149 		if ((i % 8) == 0)
6150 			data_byte = data[i / 8];
6151 
6152 		temp = ((crc & 1) ^ data_byte) & 1;
6153 		crc >>= 1;
6154 		data_byte >>= 1;
6155 
6156 		if (temp)
6157 			crc ^= 0xedb88320;
6158 	}
6159 
6160 	return crc;
6161 }
6162 
6163 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double)
6164 {
6165 	u32 crc, hash = 0;
6166 	__le16 pmatch = 0;
6167 	int count = 0;
6168 	u16 vid = 0;
6169 
6170 	for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
6171 		__le16 vid_le = cpu_to_le16(vid);
6172 		crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28;
6173 		hash |= (1 << crc);
6174 		count++;
6175 	}
6176 
6177 	if (!priv->dma_cap.vlhash) {
6178 		if (count > 2) /* VID = 0 always passes filter */
6179 			return -EOPNOTSUPP;
6180 
6181 		pmatch = cpu_to_le16(vid);
6182 		hash = 0;
6183 	}
6184 
6185 	return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double);
6186 }
6187 
6188 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
6189 {
6190 	struct stmmac_priv *priv = netdev_priv(ndev);
6191 	bool is_double = false;
6192 	int ret;
6193 
6194 	if (be16_to_cpu(proto) == ETH_P_8021AD)
6195 		is_double = true;
6196 
6197 	set_bit(vid, priv->active_vlans);
6198 	ret = stmmac_vlan_update(priv, is_double);
6199 	if (ret) {
6200 		clear_bit(vid, priv->active_vlans);
6201 		return ret;
6202 	}
6203 
6204 	if (priv->hw->num_vlan) {
6205 		ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6206 		if (ret)
6207 			return ret;
6208 	}
6209 
6210 	return 0;
6211 }
6212 
6213 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
6214 {
6215 	struct stmmac_priv *priv = netdev_priv(ndev);
6216 	bool is_double = false;
6217 	int ret;
6218 
6219 	ret = pm_runtime_resume_and_get(priv->device);
6220 	if (ret < 0)
6221 		return ret;
6222 
6223 	if (be16_to_cpu(proto) == ETH_P_8021AD)
6224 		is_double = true;
6225 
6226 	clear_bit(vid, priv->active_vlans);
6227 
6228 	if (priv->hw->num_vlan) {
6229 		ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6230 		if (ret)
6231 			goto del_vlan_error;
6232 	}
6233 
6234 	ret = stmmac_vlan_update(priv, is_double);
6235 
6236 del_vlan_error:
6237 	pm_runtime_put(priv->device);
6238 
6239 	return ret;
6240 }
6241 
6242 static int stmmac_bpf(struct net_device *dev, struct netdev_bpf *bpf)
6243 {
6244 	struct stmmac_priv *priv = netdev_priv(dev);
6245 
6246 	switch (bpf->command) {
6247 	case XDP_SETUP_PROG:
6248 		return stmmac_xdp_set_prog(priv, bpf->prog, bpf->extack);
6249 	case XDP_SETUP_XSK_POOL:
6250 		return stmmac_xdp_setup_pool(priv, bpf->xsk.pool,
6251 					     bpf->xsk.queue_id);
6252 	default:
6253 		return -EOPNOTSUPP;
6254 	}
6255 }
6256 
6257 static int stmmac_xdp_xmit(struct net_device *dev, int num_frames,
6258 			   struct xdp_frame **frames, u32 flags)
6259 {
6260 	struct stmmac_priv *priv = netdev_priv(dev);
6261 	int cpu = smp_processor_id();
6262 	struct netdev_queue *nq;
6263 	int i, nxmit = 0;
6264 	int queue;
6265 
6266 	if (unlikely(test_bit(STMMAC_DOWN, &priv->state)))
6267 		return -ENETDOWN;
6268 
6269 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
6270 		return -EINVAL;
6271 
6272 	queue = stmmac_xdp_get_tx_queue(priv, cpu);
6273 	nq = netdev_get_tx_queue(priv->dev, queue);
6274 
6275 	__netif_tx_lock(nq, cpu);
6276 	/* Avoids TX time-out as we are sharing with slow path */
6277 	txq_trans_cond_update(nq);
6278 
6279 	for (i = 0; i < num_frames; i++) {
6280 		int res;
6281 
6282 		res = stmmac_xdp_xmit_xdpf(priv, queue, frames[i], true);
6283 		if (res == STMMAC_XDP_CONSUMED)
6284 			break;
6285 
6286 		nxmit++;
6287 	}
6288 
6289 	if (flags & XDP_XMIT_FLUSH) {
6290 		stmmac_flush_tx_descriptors(priv, queue);
6291 		stmmac_tx_timer_arm(priv, queue);
6292 	}
6293 
6294 	__netif_tx_unlock(nq);
6295 
6296 	return nxmit;
6297 }
6298 
6299 void stmmac_disable_rx_queue(struct stmmac_priv *priv, u32 queue)
6300 {
6301 	struct stmmac_channel *ch = &priv->channel[queue];
6302 	unsigned long flags;
6303 
6304 	spin_lock_irqsave(&ch->lock, flags);
6305 	stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6306 	spin_unlock_irqrestore(&ch->lock, flags);
6307 
6308 	stmmac_stop_rx_dma(priv, queue);
6309 	__free_dma_rx_desc_resources(priv, queue);
6310 }
6311 
6312 void stmmac_enable_rx_queue(struct stmmac_priv *priv, u32 queue)
6313 {
6314 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
6315 	struct stmmac_channel *ch = &priv->channel[queue];
6316 	unsigned long flags;
6317 	u32 buf_size;
6318 	int ret;
6319 
6320 	ret = __alloc_dma_rx_desc_resources(priv, queue);
6321 	if (ret) {
6322 		netdev_err(priv->dev, "Failed to alloc RX desc.\n");
6323 		return;
6324 	}
6325 
6326 	ret = __init_dma_rx_desc_rings(priv, queue, GFP_KERNEL);
6327 	if (ret) {
6328 		__free_dma_rx_desc_resources(priv, queue);
6329 		netdev_err(priv->dev, "Failed to init RX desc.\n");
6330 		return;
6331 	}
6332 
6333 	stmmac_clear_rx_descriptors(priv, queue);
6334 
6335 	stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6336 			    rx_q->dma_rx_phy, rx_q->queue_index);
6337 
6338 	rx_q->rx_tail_addr = rx_q->dma_rx_phy + (rx_q->buf_alloc_num *
6339 			     sizeof(struct dma_desc));
6340 	stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
6341 			       rx_q->rx_tail_addr, rx_q->queue_index);
6342 
6343 	if (rx_q->xsk_pool && rx_q->buf_alloc_num) {
6344 		buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
6345 		stmmac_set_dma_bfsize(priv, priv->ioaddr,
6346 				      buf_size,
6347 				      rx_q->queue_index);
6348 	} else {
6349 		stmmac_set_dma_bfsize(priv, priv->ioaddr,
6350 				      priv->dma_buf_sz,
6351 				      rx_q->queue_index);
6352 	}
6353 
6354 	stmmac_start_rx_dma(priv, queue);
6355 
6356 	spin_lock_irqsave(&ch->lock, flags);
6357 	stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6358 	spin_unlock_irqrestore(&ch->lock, flags);
6359 }
6360 
6361 void stmmac_disable_tx_queue(struct stmmac_priv *priv, u32 queue)
6362 {
6363 	struct stmmac_channel *ch = &priv->channel[queue];
6364 	unsigned long flags;
6365 
6366 	spin_lock_irqsave(&ch->lock, flags);
6367 	stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6368 	spin_unlock_irqrestore(&ch->lock, flags);
6369 
6370 	stmmac_stop_tx_dma(priv, queue);
6371 	__free_dma_tx_desc_resources(priv, queue);
6372 }
6373 
6374 void stmmac_enable_tx_queue(struct stmmac_priv *priv, u32 queue)
6375 {
6376 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
6377 	struct stmmac_channel *ch = &priv->channel[queue];
6378 	unsigned long flags;
6379 	int ret;
6380 
6381 	ret = __alloc_dma_tx_desc_resources(priv, queue);
6382 	if (ret) {
6383 		netdev_err(priv->dev, "Failed to alloc TX desc.\n");
6384 		return;
6385 	}
6386 
6387 	ret = __init_dma_tx_desc_rings(priv, queue);
6388 	if (ret) {
6389 		__free_dma_tx_desc_resources(priv, queue);
6390 		netdev_err(priv->dev, "Failed to init TX desc.\n");
6391 		return;
6392 	}
6393 
6394 	stmmac_clear_tx_descriptors(priv, queue);
6395 
6396 	stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6397 			    tx_q->dma_tx_phy, tx_q->queue_index);
6398 
6399 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
6400 		stmmac_enable_tbs(priv, priv->ioaddr, 1, tx_q->queue_index);
6401 
6402 	tx_q->tx_tail_addr = tx_q->dma_tx_phy;
6403 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
6404 			       tx_q->tx_tail_addr, tx_q->queue_index);
6405 
6406 	stmmac_start_tx_dma(priv, queue);
6407 
6408 	spin_lock_irqsave(&ch->lock, flags);
6409 	stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6410 	spin_unlock_irqrestore(&ch->lock, flags);
6411 }
6412 
6413 void stmmac_xdp_release(struct net_device *dev)
6414 {
6415 	struct stmmac_priv *priv = netdev_priv(dev);
6416 	u32 chan;
6417 
6418 	/* Disable NAPI process */
6419 	stmmac_disable_all_queues(priv);
6420 
6421 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
6422 		hrtimer_cancel(&priv->tx_queue[chan].txtimer);
6423 
6424 	/* Free the IRQ lines */
6425 	stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0);
6426 
6427 	/* Stop TX/RX DMA channels */
6428 	stmmac_stop_all_dma(priv);
6429 
6430 	/* Release and free the Rx/Tx resources */
6431 	free_dma_desc_resources(priv);
6432 
6433 	/* Disable the MAC Rx/Tx */
6434 	stmmac_mac_set(priv, priv->ioaddr, false);
6435 
6436 	/* set trans_start so we don't get spurious
6437 	 * watchdogs during reset
6438 	 */
6439 	netif_trans_update(dev);
6440 	netif_carrier_off(dev);
6441 }
6442 
6443 int stmmac_xdp_open(struct net_device *dev)
6444 {
6445 	struct stmmac_priv *priv = netdev_priv(dev);
6446 	u32 rx_cnt = priv->plat->rx_queues_to_use;
6447 	u32 tx_cnt = priv->plat->tx_queues_to_use;
6448 	u32 dma_csr_ch = max(rx_cnt, tx_cnt);
6449 	struct stmmac_rx_queue *rx_q;
6450 	struct stmmac_tx_queue *tx_q;
6451 	u32 buf_size;
6452 	bool sph_en;
6453 	u32 chan;
6454 	int ret;
6455 
6456 	ret = alloc_dma_desc_resources(priv);
6457 	if (ret < 0) {
6458 		netdev_err(dev, "%s: DMA descriptors allocation failed\n",
6459 			   __func__);
6460 		goto dma_desc_error;
6461 	}
6462 
6463 	ret = init_dma_desc_rings(dev, GFP_KERNEL);
6464 	if (ret < 0) {
6465 		netdev_err(dev, "%s: DMA descriptors initialization failed\n",
6466 			   __func__);
6467 		goto init_error;
6468 	}
6469 
6470 	/* DMA CSR Channel configuration */
6471 	for (chan = 0; chan < dma_csr_ch; chan++) {
6472 		stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
6473 		stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
6474 	}
6475 
6476 	/* Adjust Split header */
6477 	sph_en = (priv->hw->rx_csum > 0) && priv->sph;
6478 
6479 	/* DMA RX Channel Configuration */
6480 	for (chan = 0; chan < rx_cnt; chan++) {
6481 		rx_q = &priv->rx_queue[chan];
6482 
6483 		stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6484 				    rx_q->dma_rx_phy, chan);
6485 
6486 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
6487 				     (rx_q->buf_alloc_num *
6488 				      sizeof(struct dma_desc));
6489 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
6490 				       rx_q->rx_tail_addr, chan);
6491 
6492 		if (rx_q->xsk_pool && rx_q->buf_alloc_num) {
6493 			buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
6494 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
6495 					      buf_size,
6496 					      rx_q->queue_index);
6497 		} else {
6498 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
6499 					      priv->dma_buf_sz,
6500 					      rx_q->queue_index);
6501 		}
6502 
6503 		stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
6504 	}
6505 
6506 	/* DMA TX Channel Configuration */
6507 	for (chan = 0; chan < tx_cnt; chan++) {
6508 		tx_q = &priv->tx_queue[chan];
6509 
6510 		stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6511 				    tx_q->dma_tx_phy, chan);
6512 
6513 		tx_q->tx_tail_addr = tx_q->dma_tx_phy;
6514 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
6515 				       tx_q->tx_tail_addr, chan);
6516 
6517 		hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6518 		tx_q->txtimer.function = stmmac_tx_timer;
6519 	}
6520 
6521 	/* Enable the MAC Rx/Tx */
6522 	stmmac_mac_set(priv, priv->ioaddr, true);
6523 
6524 	/* Start Rx & Tx DMA Channels */
6525 	stmmac_start_all_dma(priv);
6526 
6527 	ret = stmmac_request_irq(dev);
6528 	if (ret)
6529 		goto irq_error;
6530 
6531 	/* Enable NAPI process*/
6532 	stmmac_enable_all_queues(priv);
6533 	netif_carrier_on(dev);
6534 	netif_tx_start_all_queues(dev);
6535 	stmmac_enable_all_dma_irq(priv);
6536 
6537 	return 0;
6538 
6539 irq_error:
6540 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
6541 		hrtimer_cancel(&priv->tx_queue[chan].txtimer);
6542 
6543 	stmmac_hw_teardown(dev);
6544 init_error:
6545 	free_dma_desc_resources(priv);
6546 dma_desc_error:
6547 	return ret;
6548 }
6549 
6550 int stmmac_xsk_wakeup(struct net_device *dev, u32 queue, u32 flags)
6551 {
6552 	struct stmmac_priv *priv = netdev_priv(dev);
6553 	struct stmmac_rx_queue *rx_q;
6554 	struct stmmac_tx_queue *tx_q;
6555 	struct stmmac_channel *ch;
6556 
6557 	if (test_bit(STMMAC_DOWN, &priv->state) ||
6558 	    !netif_carrier_ok(priv->dev))
6559 		return -ENETDOWN;
6560 
6561 	if (!stmmac_xdp_is_enabled(priv))
6562 		return -EINVAL;
6563 
6564 	if (queue >= priv->plat->rx_queues_to_use ||
6565 	    queue >= priv->plat->tx_queues_to_use)
6566 		return -EINVAL;
6567 
6568 	rx_q = &priv->rx_queue[queue];
6569 	tx_q = &priv->tx_queue[queue];
6570 	ch = &priv->channel[queue];
6571 
6572 	if (!rx_q->xsk_pool && !tx_q->xsk_pool)
6573 		return -EINVAL;
6574 
6575 	if (!napi_if_scheduled_mark_missed(&ch->rxtx_napi)) {
6576 		/* EQoS does not have per-DMA channel SW interrupt,
6577 		 * so we schedule RX Napi straight-away.
6578 		 */
6579 		if (likely(napi_schedule_prep(&ch->rxtx_napi)))
6580 			__napi_schedule(&ch->rxtx_napi);
6581 	}
6582 
6583 	return 0;
6584 }
6585 
6586 static const struct net_device_ops stmmac_netdev_ops = {
6587 	.ndo_open = stmmac_open,
6588 	.ndo_start_xmit = stmmac_xmit,
6589 	.ndo_stop = stmmac_release,
6590 	.ndo_change_mtu = stmmac_change_mtu,
6591 	.ndo_fix_features = stmmac_fix_features,
6592 	.ndo_set_features = stmmac_set_features,
6593 	.ndo_set_rx_mode = stmmac_set_rx_mode,
6594 	.ndo_tx_timeout = stmmac_tx_timeout,
6595 	.ndo_eth_ioctl = stmmac_ioctl,
6596 	.ndo_setup_tc = stmmac_setup_tc,
6597 	.ndo_select_queue = stmmac_select_queue,
6598 #ifdef CONFIG_NET_POLL_CONTROLLER
6599 	.ndo_poll_controller = stmmac_poll_controller,
6600 #endif
6601 	.ndo_set_mac_address = stmmac_set_mac_address,
6602 	.ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid,
6603 	.ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid,
6604 	.ndo_bpf = stmmac_bpf,
6605 	.ndo_xdp_xmit = stmmac_xdp_xmit,
6606 	.ndo_xsk_wakeup = stmmac_xsk_wakeup,
6607 };
6608 
6609 static void stmmac_reset_subtask(struct stmmac_priv *priv)
6610 {
6611 	if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
6612 		return;
6613 	if (test_bit(STMMAC_DOWN, &priv->state))
6614 		return;
6615 
6616 	netdev_err(priv->dev, "Reset adapter.\n");
6617 
6618 	rtnl_lock();
6619 	netif_trans_update(priv->dev);
6620 	while (test_and_set_bit(STMMAC_RESETING, &priv->state))
6621 		usleep_range(1000, 2000);
6622 
6623 	set_bit(STMMAC_DOWN, &priv->state);
6624 	dev_close(priv->dev);
6625 	dev_open(priv->dev, NULL);
6626 	clear_bit(STMMAC_DOWN, &priv->state);
6627 	clear_bit(STMMAC_RESETING, &priv->state);
6628 	rtnl_unlock();
6629 }
6630 
6631 static void stmmac_service_task(struct work_struct *work)
6632 {
6633 	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
6634 			service_task);
6635 
6636 	stmmac_reset_subtask(priv);
6637 	clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
6638 }
6639 
6640 /**
6641  *  stmmac_hw_init - Init the MAC device
6642  *  @priv: driver private structure
6643  *  Description: this function is to configure the MAC device according to
6644  *  some platform parameters or the HW capability register. It prepares the
6645  *  driver to use either ring or chain modes and to setup either enhanced or
6646  *  normal descriptors.
6647  */
6648 static int stmmac_hw_init(struct stmmac_priv *priv)
6649 {
6650 	int ret;
6651 
6652 	/* dwmac-sun8i only work in chain mode */
6653 	if (priv->plat->has_sun8i)
6654 		chain_mode = 1;
6655 	priv->chain_mode = chain_mode;
6656 
6657 	/* Initialize HW Interface */
6658 	ret = stmmac_hwif_init(priv);
6659 	if (ret)
6660 		return ret;
6661 
6662 	/* Get the HW capability (new GMAC newer than 3.50a) */
6663 	priv->hw_cap_support = stmmac_get_hw_features(priv);
6664 	if (priv->hw_cap_support) {
6665 		dev_info(priv->device, "DMA HW capability register supported\n");
6666 
6667 		/* We can override some gmac/dma configuration fields: e.g.
6668 		 * enh_desc, tx_coe (e.g. that are passed through the
6669 		 * platform) with the values from the HW capability
6670 		 * register (if supported).
6671 		 */
6672 		priv->plat->enh_desc = priv->dma_cap.enh_desc;
6673 		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up &&
6674 				!priv->plat->use_phy_wol;
6675 		priv->hw->pmt = priv->plat->pmt;
6676 		if (priv->dma_cap.hash_tb_sz) {
6677 			priv->hw->multicast_filter_bins =
6678 					(BIT(priv->dma_cap.hash_tb_sz) << 5);
6679 			priv->hw->mcast_bits_log2 =
6680 					ilog2(priv->hw->multicast_filter_bins);
6681 		}
6682 
6683 		/* TXCOE doesn't work in thresh DMA mode */
6684 		if (priv->plat->force_thresh_dma_mode)
6685 			priv->plat->tx_coe = 0;
6686 		else
6687 			priv->plat->tx_coe = priv->dma_cap.tx_coe;
6688 
6689 		/* In case of GMAC4 rx_coe is from HW cap register. */
6690 		priv->plat->rx_coe = priv->dma_cap.rx_coe;
6691 
6692 		if (priv->dma_cap.rx_coe_type2)
6693 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
6694 		else if (priv->dma_cap.rx_coe_type1)
6695 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
6696 
6697 	} else {
6698 		dev_info(priv->device, "No HW DMA feature register supported\n");
6699 	}
6700 
6701 	if (priv->plat->rx_coe) {
6702 		priv->hw->rx_csum = priv->plat->rx_coe;
6703 		dev_info(priv->device, "RX Checksum Offload Engine supported\n");
6704 		if (priv->synopsys_id < DWMAC_CORE_4_00)
6705 			dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
6706 	}
6707 	if (priv->plat->tx_coe)
6708 		dev_info(priv->device, "TX Checksum insertion supported\n");
6709 
6710 	if (priv->plat->pmt) {
6711 		dev_info(priv->device, "Wake-Up On Lan supported\n");
6712 		device_set_wakeup_capable(priv->device, 1);
6713 	}
6714 
6715 	if (priv->dma_cap.tsoen)
6716 		dev_info(priv->device, "TSO supported\n");
6717 
6718 	priv->hw->vlan_fail_q_en = priv->plat->vlan_fail_q_en;
6719 	priv->hw->vlan_fail_q = priv->plat->vlan_fail_q;
6720 
6721 	/* Run HW quirks, if any */
6722 	if (priv->hwif_quirks) {
6723 		ret = priv->hwif_quirks(priv);
6724 		if (ret)
6725 			return ret;
6726 	}
6727 
6728 	/* Rx Watchdog is available in the COREs newer than the 3.40.
6729 	 * In some case, for example on bugged HW this feature
6730 	 * has to be disable and this can be done by passing the
6731 	 * riwt_off field from the platform.
6732 	 */
6733 	if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
6734 	    (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
6735 		priv->use_riwt = 1;
6736 		dev_info(priv->device,
6737 			 "Enable RX Mitigation via HW Watchdog Timer\n");
6738 	}
6739 
6740 	return 0;
6741 }
6742 
6743 static void stmmac_napi_add(struct net_device *dev)
6744 {
6745 	struct stmmac_priv *priv = netdev_priv(dev);
6746 	u32 queue, maxq;
6747 
6748 	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
6749 
6750 	for (queue = 0; queue < maxq; queue++) {
6751 		struct stmmac_channel *ch = &priv->channel[queue];
6752 
6753 		ch->priv_data = priv;
6754 		ch->index = queue;
6755 		spin_lock_init(&ch->lock);
6756 
6757 		if (queue < priv->plat->rx_queues_to_use) {
6758 			netif_napi_add(dev, &ch->rx_napi, stmmac_napi_poll_rx,
6759 				       NAPI_POLL_WEIGHT);
6760 		}
6761 		if (queue < priv->plat->tx_queues_to_use) {
6762 			netif_napi_add_tx(dev, &ch->tx_napi,
6763 					  stmmac_napi_poll_tx);
6764 		}
6765 		if (queue < priv->plat->rx_queues_to_use &&
6766 		    queue < priv->plat->tx_queues_to_use) {
6767 			netif_napi_add(dev, &ch->rxtx_napi,
6768 				       stmmac_napi_poll_rxtx,
6769 				       NAPI_POLL_WEIGHT);
6770 		}
6771 	}
6772 }
6773 
6774 static void stmmac_napi_del(struct net_device *dev)
6775 {
6776 	struct stmmac_priv *priv = netdev_priv(dev);
6777 	u32 queue, maxq;
6778 
6779 	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
6780 
6781 	for (queue = 0; queue < maxq; queue++) {
6782 		struct stmmac_channel *ch = &priv->channel[queue];
6783 
6784 		if (queue < priv->plat->rx_queues_to_use)
6785 			netif_napi_del(&ch->rx_napi);
6786 		if (queue < priv->plat->tx_queues_to_use)
6787 			netif_napi_del(&ch->tx_napi);
6788 		if (queue < priv->plat->rx_queues_to_use &&
6789 		    queue < priv->plat->tx_queues_to_use) {
6790 			netif_napi_del(&ch->rxtx_napi);
6791 		}
6792 	}
6793 }
6794 
6795 int stmmac_reinit_queues(struct net_device *dev, u32 rx_cnt, u32 tx_cnt)
6796 {
6797 	struct stmmac_priv *priv = netdev_priv(dev);
6798 	int ret = 0;
6799 
6800 	if (netif_running(dev))
6801 		stmmac_release(dev);
6802 
6803 	stmmac_napi_del(dev);
6804 
6805 	priv->plat->rx_queues_to_use = rx_cnt;
6806 	priv->plat->tx_queues_to_use = tx_cnt;
6807 
6808 	stmmac_napi_add(dev);
6809 
6810 	if (netif_running(dev))
6811 		ret = stmmac_open(dev);
6812 
6813 	return ret;
6814 }
6815 
6816 int stmmac_reinit_ringparam(struct net_device *dev, u32 rx_size, u32 tx_size)
6817 {
6818 	struct stmmac_priv *priv = netdev_priv(dev);
6819 	int ret = 0;
6820 
6821 	if (netif_running(dev))
6822 		stmmac_release(dev);
6823 
6824 	priv->dma_rx_size = rx_size;
6825 	priv->dma_tx_size = tx_size;
6826 
6827 	if (netif_running(dev))
6828 		ret = stmmac_open(dev);
6829 
6830 	return ret;
6831 }
6832 
6833 #define SEND_VERIFY_MPAKCET_FMT "Send Verify mPacket lo_state=%d lp_state=%d\n"
6834 static void stmmac_fpe_lp_task(struct work_struct *work)
6835 {
6836 	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
6837 						fpe_task);
6838 	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
6839 	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
6840 	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
6841 	bool *hs_enable = &fpe_cfg->hs_enable;
6842 	bool *enable = &fpe_cfg->enable;
6843 	int retries = 20;
6844 
6845 	while (retries-- > 0) {
6846 		/* Bail out immediately if FPE handshake is OFF */
6847 		if (*lo_state == FPE_STATE_OFF || !*hs_enable)
6848 			break;
6849 
6850 		if (*lo_state == FPE_STATE_ENTERING_ON &&
6851 		    *lp_state == FPE_STATE_ENTERING_ON) {
6852 			stmmac_fpe_configure(priv, priv->ioaddr,
6853 					     priv->plat->tx_queues_to_use,
6854 					     priv->plat->rx_queues_to_use,
6855 					     *enable);
6856 
6857 			netdev_info(priv->dev, "configured FPE\n");
6858 
6859 			*lo_state = FPE_STATE_ON;
6860 			*lp_state = FPE_STATE_ON;
6861 			netdev_info(priv->dev, "!!! BOTH FPE stations ON\n");
6862 			break;
6863 		}
6864 
6865 		if ((*lo_state == FPE_STATE_CAPABLE ||
6866 		     *lo_state == FPE_STATE_ENTERING_ON) &&
6867 		     *lp_state != FPE_STATE_ON) {
6868 			netdev_info(priv->dev, SEND_VERIFY_MPAKCET_FMT,
6869 				    *lo_state, *lp_state);
6870 			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
6871 						MPACKET_VERIFY);
6872 		}
6873 		/* Sleep then retry */
6874 		msleep(500);
6875 	}
6876 
6877 	clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
6878 }
6879 
6880 void stmmac_fpe_handshake(struct stmmac_priv *priv, bool enable)
6881 {
6882 	if (priv->plat->fpe_cfg->hs_enable != enable) {
6883 		if (enable) {
6884 			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
6885 						MPACKET_VERIFY);
6886 		} else {
6887 			priv->plat->fpe_cfg->lo_fpe_state = FPE_STATE_OFF;
6888 			priv->plat->fpe_cfg->lp_fpe_state = FPE_STATE_OFF;
6889 		}
6890 
6891 		priv->plat->fpe_cfg->hs_enable = enable;
6892 	}
6893 }
6894 
6895 /**
6896  * stmmac_dvr_probe
6897  * @device: device pointer
6898  * @plat_dat: platform data pointer
6899  * @res: stmmac resource pointer
6900  * Description: this is the main probe function used to
6901  * call the alloc_etherdev, allocate the priv structure.
6902  * Return:
6903  * returns 0 on success, otherwise errno.
6904  */
6905 int stmmac_dvr_probe(struct device *device,
6906 		     struct plat_stmmacenet_data *plat_dat,
6907 		     struct stmmac_resources *res)
6908 {
6909 	struct net_device *ndev = NULL;
6910 	struct stmmac_priv *priv;
6911 	u32 rxq;
6912 	int i, ret = 0;
6913 
6914 	ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
6915 				       MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
6916 	if (!ndev)
6917 		return -ENOMEM;
6918 
6919 	SET_NETDEV_DEV(ndev, device);
6920 
6921 	priv = netdev_priv(ndev);
6922 	priv->device = device;
6923 	priv->dev = ndev;
6924 
6925 	stmmac_set_ethtool_ops(ndev);
6926 	priv->pause = pause;
6927 	priv->plat = plat_dat;
6928 	priv->ioaddr = res->addr;
6929 	priv->dev->base_addr = (unsigned long)res->addr;
6930 	priv->plat->dma_cfg->multi_msi_en = priv->plat->multi_msi_en;
6931 
6932 	priv->dev->irq = res->irq;
6933 	priv->wol_irq = res->wol_irq;
6934 	priv->lpi_irq = res->lpi_irq;
6935 	priv->sfty_ce_irq = res->sfty_ce_irq;
6936 	priv->sfty_ue_irq = res->sfty_ue_irq;
6937 	for (i = 0; i < MTL_MAX_RX_QUEUES; i++)
6938 		priv->rx_irq[i] = res->rx_irq[i];
6939 	for (i = 0; i < MTL_MAX_TX_QUEUES; i++)
6940 		priv->tx_irq[i] = res->tx_irq[i];
6941 
6942 	if (!is_zero_ether_addr(res->mac))
6943 		eth_hw_addr_set(priv->dev, res->mac);
6944 
6945 	dev_set_drvdata(device, priv->dev);
6946 
6947 	/* Verify driver arguments */
6948 	stmmac_verify_args();
6949 
6950 	priv->af_xdp_zc_qps = bitmap_zalloc(MTL_MAX_TX_QUEUES, GFP_KERNEL);
6951 	if (!priv->af_xdp_zc_qps)
6952 		return -ENOMEM;
6953 
6954 	/* Allocate workqueue */
6955 	priv->wq = create_singlethread_workqueue("stmmac_wq");
6956 	if (!priv->wq) {
6957 		dev_err(priv->device, "failed to create workqueue\n");
6958 		return -ENOMEM;
6959 	}
6960 
6961 	INIT_WORK(&priv->service_task, stmmac_service_task);
6962 
6963 	/* Initialize Link Partner FPE workqueue */
6964 	INIT_WORK(&priv->fpe_task, stmmac_fpe_lp_task);
6965 
6966 	/* Override with kernel parameters if supplied XXX CRS XXX
6967 	 * this needs to have multiple instances
6968 	 */
6969 	if ((phyaddr >= 0) && (phyaddr <= 31))
6970 		priv->plat->phy_addr = phyaddr;
6971 
6972 	if (priv->plat->stmmac_rst) {
6973 		ret = reset_control_assert(priv->plat->stmmac_rst);
6974 		reset_control_deassert(priv->plat->stmmac_rst);
6975 		/* Some reset controllers have only reset callback instead of
6976 		 * assert + deassert callbacks pair.
6977 		 */
6978 		if (ret == -ENOTSUPP)
6979 			reset_control_reset(priv->plat->stmmac_rst);
6980 	}
6981 
6982 	ret = reset_control_deassert(priv->plat->stmmac_ahb_rst);
6983 	if (ret == -ENOTSUPP)
6984 		dev_err(priv->device, "unable to bring out of ahb reset: %pe\n",
6985 			ERR_PTR(ret));
6986 
6987 	/* Init MAC and get the capabilities */
6988 	ret = stmmac_hw_init(priv);
6989 	if (ret)
6990 		goto error_hw_init;
6991 
6992 	/* Only DWMAC core version 5.20 onwards supports HW descriptor prefetch.
6993 	 */
6994 	if (priv->synopsys_id < DWMAC_CORE_5_20)
6995 		priv->plat->dma_cfg->dche = false;
6996 
6997 	stmmac_check_ether_addr(priv);
6998 
6999 	ndev->netdev_ops = &stmmac_netdev_ops;
7000 
7001 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
7002 			    NETIF_F_RXCSUM;
7003 
7004 	ret = stmmac_tc_init(priv, priv);
7005 	if (!ret) {
7006 		ndev->hw_features |= NETIF_F_HW_TC;
7007 	}
7008 
7009 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
7010 		ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
7011 		if (priv->plat->has_gmac4)
7012 			ndev->hw_features |= NETIF_F_GSO_UDP_L4;
7013 		priv->tso = true;
7014 		dev_info(priv->device, "TSO feature enabled\n");
7015 	}
7016 
7017 	if (priv->dma_cap.sphen && !priv->plat->sph_disable) {
7018 		ndev->hw_features |= NETIF_F_GRO;
7019 		priv->sph_cap = true;
7020 		priv->sph = priv->sph_cap;
7021 		dev_info(priv->device, "SPH feature enabled\n");
7022 	}
7023 
7024 	/* The current IP register MAC_HW_Feature1[ADDR64] only define
7025 	 * 32/40/64 bit width, but some SOC support others like i.MX8MP
7026 	 * support 34 bits but it map to 40 bits width in MAC_HW_Feature1[ADDR64].
7027 	 * So overwrite dma_cap.addr64 according to HW real design.
7028 	 */
7029 	if (priv->plat->addr64)
7030 		priv->dma_cap.addr64 = priv->plat->addr64;
7031 
7032 	if (priv->dma_cap.addr64) {
7033 		ret = dma_set_mask_and_coherent(device,
7034 				DMA_BIT_MASK(priv->dma_cap.addr64));
7035 		if (!ret) {
7036 			dev_info(priv->device, "Using %d bits DMA width\n",
7037 				 priv->dma_cap.addr64);
7038 
7039 			/*
7040 			 * If more than 32 bits can be addressed, make sure to
7041 			 * enable enhanced addressing mode.
7042 			 */
7043 			if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
7044 				priv->plat->dma_cfg->eame = true;
7045 		} else {
7046 			ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
7047 			if (ret) {
7048 				dev_err(priv->device, "Failed to set DMA Mask\n");
7049 				goto error_hw_init;
7050 			}
7051 
7052 			priv->dma_cap.addr64 = 32;
7053 		}
7054 	}
7055 
7056 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
7057 	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
7058 #ifdef STMMAC_VLAN_TAG_USED
7059 	/* Both mac100 and gmac support receive VLAN tag detection */
7060 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
7061 	if (priv->dma_cap.vlhash) {
7062 		ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7063 		ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER;
7064 	}
7065 	if (priv->dma_cap.vlins) {
7066 		ndev->features |= NETIF_F_HW_VLAN_CTAG_TX;
7067 		if (priv->dma_cap.dvlan)
7068 			ndev->features |= NETIF_F_HW_VLAN_STAG_TX;
7069 	}
7070 #endif
7071 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
7072 
7073 	/* Initialize RSS */
7074 	rxq = priv->plat->rx_queues_to_use;
7075 	netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key));
7076 	for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
7077 		priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq);
7078 
7079 	if (priv->dma_cap.rssen && priv->plat->rss_en)
7080 		ndev->features |= NETIF_F_RXHASH;
7081 
7082 	/* MTU range: 46 - hw-specific max */
7083 	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
7084 	if (priv->plat->has_xgmac)
7085 		ndev->max_mtu = XGMAC_JUMBO_LEN;
7086 	else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
7087 		ndev->max_mtu = JUMBO_LEN;
7088 	else
7089 		ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
7090 	/* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
7091 	 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
7092 	 */
7093 	if ((priv->plat->maxmtu < ndev->max_mtu) &&
7094 	    (priv->plat->maxmtu >= ndev->min_mtu))
7095 		ndev->max_mtu = priv->plat->maxmtu;
7096 	else if (priv->plat->maxmtu < ndev->min_mtu)
7097 		dev_warn(priv->device,
7098 			 "%s: warning: maxmtu having invalid value (%d)\n",
7099 			 __func__, priv->plat->maxmtu);
7100 
7101 	if (flow_ctrl)
7102 		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
7103 
7104 	/* Setup channels NAPI */
7105 	stmmac_napi_add(ndev);
7106 
7107 	mutex_init(&priv->lock);
7108 
7109 	/* If a specific clk_csr value is passed from the platform
7110 	 * this means that the CSR Clock Range selection cannot be
7111 	 * changed at run-time and it is fixed. Viceversa the driver'll try to
7112 	 * set the MDC clock dynamically according to the csr actual
7113 	 * clock input.
7114 	 */
7115 	if (priv->plat->clk_csr >= 0)
7116 		priv->clk_csr = priv->plat->clk_csr;
7117 	else
7118 		stmmac_clk_csr_set(priv);
7119 
7120 	stmmac_check_pcs_mode(priv);
7121 
7122 	pm_runtime_get_noresume(device);
7123 	pm_runtime_set_active(device);
7124 	if (!pm_runtime_enabled(device))
7125 		pm_runtime_enable(device);
7126 
7127 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
7128 	    priv->hw->pcs != STMMAC_PCS_RTBI) {
7129 		/* MDIO bus Registration */
7130 		ret = stmmac_mdio_register(ndev);
7131 		if (ret < 0) {
7132 			dev_err_probe(priv->device, ret,
7133 				      "%s: MDIO bus (id: %d) registration failed\n",
7134 				      __func__, priv->plat->bus_id);
7135 			goto error_mdio_register;
7136 		}
7137 	}
7138 
7139 	if (priv->plat->speed_mode_2500)
7140 		priv->plat->speed_mode_2500(ndev, priv->plat->bsp_priv);
7141 
7142 	if (priv->plat->mdio_bus_data && priv->plat->mdio_bus_data->has_xpcs) {
7143 		ret = stmmac_xpcs_setup(priv->mii);
7144 		if (ret)
7145 			goto error_xpcs_setup;
7146 	}
7147 
7148 	ret = stmmac_phy_setup(priv);
7149 	if (ret) {
7150 		netdev_err(ndev, "failed to setup phy (%d)\n", ret);
7151 		goto error_phy_setup;
7152 	}
7153 
7154 	ret = register_netdev(ndev);
7155 	if (ret) {
7156 		dev_err(priv->device, "%s: ERROR %i registering the device\n",
7157 			__func__, ret);
7158 		goto error_netdev_register;
7159 	}
7160 
7161 	if (priv->plat->serdes_powerup) {
7162 		ret = priv->plat->serdes_powerup(ndev,
7163 						 priv->plat->bsp_priv);
7164 
7165 		if (ret < 0)
7166 			goto error_serdes_powerup;
7167 	}
7168 
7169 #ifdef CONFIG_DEBUG_FS
7170 	stmmac_init_fs(ndev);
7171 #endif
7172 
7173 	if (priv->plat->dump_debug_regs)
7174 		priv->plat->dump_debug_regs(priv->plat->bsp_priv);
7175 
7176 	/* Let pm_runtime_put() disable the clocks.
7177 	 * If CONFIG_PM is not enabled, the clocks will stay powered.
7178 	 */
7179 	pm_runtime_put(device);
7180 
7181 	return ret;
7182 
7183 error_serdes_powerup:
7184 	unregister_netdev(ndev);
7185 error_netdev_register:
7186 	phylink_destroy(priv->phylink);
7187 error_xpcs_setup:
7188 error_phy_setup:
7189 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
7190 	    priv->hw->pcs != STMMAC_PCS_RTBI)
7191 		stmmac_mdio_unregister(ndev);
7192 error_mdio_register:
7193 	stmmac_napi_del(ndev);
7194 error_hw_init:
7195 	destroy_workqueue(priv->wq);
7196 	bitmap_free(priv->af_xdp_zc_qps);
7197 
7198 	return ret;
7199 }
7200 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
7201 
7202 /**
7203  * stmmac_dvr_remove
7204  * @dev: device pointer
7205  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
7206  * changes the link status, releases the DMA descriptor rings.
7207  */
7208 int stmmac_dvr_remove(struct device *dev)
7209 {
7210 	struct net_device *ndev = dev_get_drvdata(dev);
7211 	struct stmmac_priv *priv = netdev_priv(ndev);
7212 
7213 	netdev_info(priv->dev, "%s: removing driver", __func__);
7214 
7215 	pm_runtime_get_sync(dev);
7216 	pm_runtime_disable(dev);
7217 	pm_runtime_put_noidle(dev);
7218 
7219 	stmmac_stop_all_dma(priv);
7220 	stmmac_mac_set(priv, priv->ioaddr, false);
7221 	netif_carrier_off(ndev);
7222 	unregister_netdev(ndev);
7223 
7224 	/* Serdes power down needs to happen after VLAN filter
7225 	 * is deleted that is triggered by unregister_netdev().
7226 	 */
7227 	if (priv->plat->serdes_powerdown)
7228 		priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
7229 
7230 #ifdef CONFIG_DEBUG_FS
7231 	stmmac_exit_fs(ndev);
7232 #endif
7233 	phylink_destroy(priv->phylink);
7234 	if (priv->plat->stmmac_rst)
7235 		reset_control_assert(priv->plat->stmmac_rst);
7236 	reset_control_assert(priv->plat->stmmac_ahb_rst);
7237 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
7238 	    priv->hw->pcs != STMMAC_PCS_RTBI)
7239 		stmmac_mdio_unregister(ndev);
7240 	destroy_workqueue(priv->wq);
7241 	mutex_destroy(&priv->lock);
7242 	bitmap_free(priv->af_xdp_zc_qps);
7243 
7244 	return 0;
7245 }
7246 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
7247 
7248 /**
7249  * stmmac_suspend - suspend callback
7250  * @dev: device pointer
7251  * Description: this is the function to suspend the device and it is called
7252  * by the platform driver to stop the network queue, release the resources,
7253  * program the PMT register (for WoL), clean and release driver resources.
7254  */
7255 int stmmac_suspend(struct device *dev)
7256 {
7257 	struct net_device *ndev = dev_get_drvdata(dev);
7258 	struct stmmac_priv *priv = netdev_priv(ndev);
7259 	u32 chan;
7260 
7261 	if (!ndev || !netif_running(ndev))
7262 		return 0;
7263 
7264 	mutex_lock(&priv->lock);
7265 
7266 	netif_device_detach(ndev);
7267 
7268 	stmmac_disable_all_queues(priv);
7269 
7270 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
7271 		hrtimer_cancel(&priv->tx_queue[chan].txtimer);
7272 
7273 	if (priv->eee_enabled) {
7274 		priv->tx_path_in_lpi_mode = false;
7275 		del_timer_sync(&priv->eee_ctrl_timer);
7276 	}
7277 
7278 	/* Stop TX/RX DMA */
7279 	stmmac_stop_all_dma(priv);
7280 
7281 	if (priv->plat->serdes_powerdown)
7282 		priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
7283 
7284 	/* Enable Power down mode by programming the PMT regs */
7285 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7286 		stmmac_pmt(priv, priv->hw, priv->wolopts);
7287 		priv->irq_wake = 1;
7288 	} else {
7289 		stmmac_mac_set(priv, priv->ioaddr, false);
7290 		pinctrl_pm_select_sleep_state(priv->device);
7291 	}
7292 
7293 	mutex_unlock(&priv->lock);
7294 
7295 	rtnl_lock();
7296 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7297 		phylink_suspend(priv->phylink, true);
7298 	} else {
7299 		if (device_may_wakeup(priv->device))
7300 			phylink_speed_down(priv->phylink, false);
7301 		phylink_suspend(priv->phylink, false);
7302 	}
7303 	rtnl_unlock();
7304 
7305 	if (priv->dma_cap.fpesel) {
7306 		/* Disable FPE */
7307 		stmmac_fpe_configure(priv, priv->ioaddr,
7308 				     priv->plat->tx_queues_to_use,
7309 				     priv->plat->rx_queues_to_use, false);
7310 
7311 		stmmac_fpe_handshake(priv, false);
7312 		stmmac_fpe_stop_wq(priv);
7313 	}
7314 
7315 	priv->speed = SPEED_UNKNOWN;
7316 	return 0;
7317 }
7318 EXPORT_SYMBOL_GPL(stmmac_suspend);
7319 
7320 /**
7321  * stmmac_reset_queues_param - reset queue parameters
7322  * @priv: device pointer
7323  */
7324 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
7325 {
7326 	u32 rx_cnt = priv->plat->rx_queues_to_use;
7327 	u32 tx_cnt = priv->plat->tx_queues_to_use;
7328 	u32 queue;
7329 
7330 	for (queue = 0; queue < rx_cnt; queue++) {
7331 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
7332 
7333 		rx_q->cur_rx = 0;
7334 		rx_q->dirty_rx = 0;
7335 	}
7336 
7337 	for (queue = 0; queue < tx_cnt; queue++) {
7338 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
7339 
7340 		tx_q->cur_tx = 0;
7341 		tx_q->dirty_tx = 0;
7342 		tx_q->mss = 0;
7343 
7344 		netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
7345 	}
7346 }
7347 
7348 /**
7349  * stmmac_resume - resume callback
7350  * @dev: device pointer
7351  * Description: when resume this function is invoked to setup the DMA and CORE
7352  * in a usable state.
7353  */
7354 int stmmac_resume(struct device *dev)
7355 {
7356 	struct net_device *ndev = dev_get_drvdata(dev);
7357 	struct stmmac_priv *priv = netdev_priv(ndev);
7358 	int ret;
7359 
7360 	if (!netif_running(ndev))
7361 		return 0;
7362 
7363 	/* Power Down bit, into the PM register, is cleared
7364 	 * automatically as soon as a magic packet or a Wake-up frame
7365 	 * is received. Anyway, it's better to manually clear
7366 	 * this bit because it can generate problems while resuming
7367 	 * from another devices (e.g. serial console).
7368 	 */
7369 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7370 		mutex_lock(&priv->lock);
7371 		stmmac_pmt(priv, priv->hw, 0);
7372 		mutex_unlock(&priv->lock);
7373 		priv->irq_wake = 0;
7374 	} else {
7375 		pinctrl_pm_select_default_state(priv->device);
7376 		/* reset the phy so that it's ready */
7377 		if (priv->mii)
7378 			stmmac_mdio_reset(priv->mii);
7379 	}
7380 
7381 	if (priv->plat->serdes_powerup) {
7382 		ret = priv->plat->serdes_powerup(ndev,
7383 						 priv->plat->bsp_priv);
7384 
7385 		if (ret < 0)
7386 			return ret;
7387 	}
7388 
7389 	rtnl_lock();
7390 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7391 		phylink_resume(priv->phylink);
7392 	} else {
7393 		phylink_resume(priv->phylink);
7394 		if (device_may_wakeup(priv->device))
7395 			phylink_speed_up(priv->phylink);
7396 	}
7397 	rtnl_unlock();
7398 
7399 	rtnl_lock();
7400 	mutex_lock(&priv->lock);
7401 
7402 	stmmac_reset_queues_param(priv);
7403 
7404 	stmmac_free_tx_skbufs(priv);
7405 	stmmac_clear_descriptors(priv);
7406 
7407 	stmmac_hw_setup(ndev, false);
7408 	stmmac_init_coalesce(priv);
7409 	stmmac_set_rx_mode(ndev);
7410 
7411 	stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw);
7412 
7413 	stmmac_enable_all_queues(priv);
7414 	stmmac_enable_all_dma_irq(priv);
7415 
7416 	mutex_unlock(&priv->lock);
7417 	rtnl_unlock();
7418 
7419 	netif_device_attach(ndev);
7420 
7421 	return 0;
7422 }
7423 EXPORT_SYMBOL_GPL(stmmac_resume);
7424 
7425 #ifndef MODULE
7426 static int __init stmmac_cmdline_opt(char *str)
7427 {
7428 	char *opt;
7429 
7430 	if (!str || !*str)
7431 		return 1;
7432 	while ((opt = strsep(&str, ",")) != NULL) {
7433 		if (!strncmp(opt, "debug:", 6)) {
7434 			if (kstrtoint(opt + 6, 0, &debug))
7435 				goto err;
7436 		} else if (!strncmp(opt, "phyaddr:", 8)) {
7437 			if (kstrtoint(opt + 8, 0, &phyaddr))
7438 				goto err;
7439 		} else if (!strncmp(opt, "buf_sz:", 7)) {
7440 			if (kstrtoint(opt + 7, 0, &buf_sz))
7441 				goto err;
7442 		} else if (!strncmp(opt, "tc:", 3)) {
7443 			if (kstrtoint(opt + 3, 0, &tc))
7444 				goto err;
7445 		} else if (!strncmp(opt, "watchdog:", 9)) {
7446 			if (kstrtoint(opt + 9, 0, &watchdog))
7447 				goto err;
7448 		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
7449 			if (kstrtoint(opt + 10, 0, &flow_ctrl))
7450 				goto err;
7451 		} else if (!strncmp(opt, "pause:", 6)) {
7452 			if (kstrtoint(opt + 6, 0, &pause))
7453 				goto err;
7454 		} else if (!strncmp(opt, "eee_timer:", 10)) {
7455 			if (kstrtoint(opt + 10, 0, &eee_timer))
7456 				goto err;
7457 		} else if (!strncmp(opt, "chain_mode:", 11)) {
7458 			if (kstrtoint(opt + 11, 0, &chain_mode))
7459 				goto err;
7460 		}
7461 	}
7462 	return 1;
7463 
7464 err:
7465 	pr_err("%s: ERROR broken module parameter conversion", __func__);
7466 	return 1;
7467 }
7468 
7469 __setup("stmmaceth=", stmmac_cmdline_opt);
7470 #endif /* MODULE */
7471 
7472 static int __init stmmac_init(void)
7473 {
7474 #ifdef CONFIG_DEBUG_FS
7475 	/* Create debugfs main directory if it doesn't exist yet */
7476 	if (!stmmac_fs_dir)
7477 		stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
7478 	register_netdevice_notifier(&stmmac_notifier);
7479 #endif
7480 
7481 	return 0;
7482 }
7483 
7484 static void __exit stmmac_exit(void)
7485 {
7486 #ifdef CONFIG_DEBUG_FS
7487 	unregister_netdevice_notifier(&stmmac_notifier);
7488 	debugfs_remove_recursive(stmmac_fs_dir);
7489 #endif
7490 }
7491 
7492 module_init(stmmac_init)
7493 module_exit(stmmac_exit)
7494 
7495 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
7496 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
7497 MODULE_LICENSE("GPL");
7498