xref: /linux/drivers/net/ethernet/stmicro/stmmac/stmmac_main.c (revision d0b73b488c55df905ea8faaad079f8535629ed26)
1 /*******************************************************************************
2   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3   ST Ethernet IPs are built around a Synopsys IP Core.
4 
5 	Copyright(C) 2007-2011 STMicroelectronics Ltd
6 
7   This program is free software; you can redistribute it and/or modify it
8   under the terms and conditions of the GNU General Public License,
9   version 2, as published by the Free Software Foundation.
10 
11   This program is distributed in the hope it will be useful, but WITHOUT
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14   more details.
15 
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc.,
18   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 
20   The full GNU General Public License is included in this distribution in
21   the file called "COPYING".
22 
23   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
24 
25   Documentation available at:
26 	http://www.stlinux.com
27   Support available at:
28 	https://bugzilla.stlinux.com/
29 *******************************************************************************/
30 
31 #include <linux/clk.h>
32 #include <linux/kernel.h>
33 #include <linux/interrupt.h>
34 #include <linux/ip.h>
35 #include <linux/tcp.h>
36 #include <linux/skbuff.h>
37 #include <linux/ethtool.h>
38 #include <linux/if_ether.h>
39 #include <linux/crc32.h>
40 #include <linux/mii.h>
41 #include <linux/if.h>
42 #include <linux/if_vlan.h>
43 #include <linux/dma-mapping.h>
44 #include <linux/slab.h>
45 #include <linux/prefetch.h>
46 #ifdef CONFIG_STMMAC_DEBUG_FS
47 #include <linux/debugfs.h>
48 #include <linux/seq_file.h>
49 #endif
50 #include "stmmac.h"
51 
52 #undef STMMAC_DEBUG
53 /*#define STMMAC_DEBUG*/
54 #ifdef STMMAC_DEBUG
55 #define DBG(nlevel, klevel, fmt, args...) \
56 		((void)(netif_msg_##nlevel(priv) && \
57 		printk(KERN_##klevel fmt, ## args)))
58 #else
59 #define DBG(nlevel, klevel, fmt, args...) do { } while (0)
60 #endif
61 
62 #undef STMMAC_RX_DEBUG
63 /*#define STMMAC_RX_DEBUG*/
64 #ifdef STMMAC_RX_DEBUG
65 #define RX_DBG(fmt, args...)  printk(fmt, ## args)
66 #else
67 #define RX_DBG(fmt, args...)  do { } while (0)
68 #endif
69 
70 #undef STMMAC_XMIT_DEBUG
71 /*#define STMMAC_XMIT_DEBUG*/
72 #ifdef STMMAC_XMIT_DEBUG
73 #define TX_DBG(fmt, args...)  printk(fmt, ## args)
74 #else
75 #define TX_DBG(fmt, args...)  do { } while (0)
76 #endif
77 
78 #define STMMAC_ALIGN(x)	L1_CACHE_ALIGN(x)
79 #define JUMBO_LEN	9000
80 
81 /* Module parameters */
82 #define TX_TIMEO 5000 /* default 5 seconds */
83 static int watchdog = TX_TIMEO;
84 module_param(watchdog, int, S_IRUGO | S_IWUSR);
85 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds");
86 
87 static int debug = -1;		/* -1: default, 0: no output, 16:  all */
88 module_param(debug, int, S_IRUGO | S_IWUSR);
89 MODULE_PARM_DESC(debug, "Message Level (0: no output, 16: all)");
90 
91 int phyaddr = -1;
92 module_param(phyaddr, int, S_IRUGO);
93 MODULE_PARM_DESC(phyaddr, "Physical device address");
94 
95 #define DMA_TX_SIZE 256
96 static int dma_txsize = DMA_TX_SIZE;
97 module_param(dma_txsize, int, S_IRUGO | S_IWUSR);
98 MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list");
99 
100 #define DMA_RX_SIZE 256
101 static int dma_rxsize = DMA_RX_SIZE;
102 module_param(dma_rxsize, int, S_IRUGO | S_IWUSR);
103 MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list");
104 
105 static int flow_ctrl = FLOW_OFF;
106 module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
107 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
108 
109 static int pause = PAUSE_TIME;
110 module_param(pause, int, S_IRUGO | S_IWUSR);
111 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
112 
113 #define TC_DEFAULT 64
114 static int tc = TC_DEFAULT;
115 module_param(tc, int, S_IRUGO | S_IWUSR);
116 MODULE_PARM_DESC(tc, "DMA threshold control value");
117 
118 #define DMA_BUFFER_SIZE	BUF_SIZE_2KiB
119 static int buf_sz = DMA_BUFFER_SIZE;
120 module_param(buf_sz, int, S_IRUGO | S_IWUSR);
121 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
122 
123 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
124 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
125 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
126 
127 #define STMMAC_DEFAULT_LPI_TIMER	1000
128 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
129 module_param(eee_timer, int, S_IRUGO | S_IWUSR);
130 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
131 #define STMMAC_LPI_TIMER(x) (jiffies + msecs_to_jiffies(x))
132 
133 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
134 
135 #ifdef CONFIG_STMMAC_DEBUG_FS
136 static int stmmac_init_fs(struct net_device *dev);
137 static void stmmac_exit_fs(void);
138 #endif
139 
140 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
141 
142 /**
143  * stmmac_verify_args - verify the driver parameters.
144  * Description: it verifies if some wrong parameter is passed to the driver.
145  * Note that wrong parameters are replaced with the default values.
146  */
147 static void stmmac_verify_args(void)
148 {
149 	if (unlikely(watchdog < 0))
150 		watchdog = TX_TIMEO;
151 	if (unlikely(dma_rxsize < 0))
152 		dma_rxsize = DMA_RX_SIZE;
153 	if (unlikely(dma_txsize < 0))
154 		dma_txsize = DMA_TX_SIZE;
155 	if (unlikely((buf_sz < DMA_BUFFER_SIZE) || (buf_sz > BUF_SIZE_16KiB)))
156 		buf_sz = DMA_BUFFER_SIZE;
157 	if (unlikely(flow_ctrl > 1))
158 		flow_ctrl = FLOW_AUTO;
159 	else if (likely(flow_ctrl < 0))
160 		flow_ctrl = FLOW_OFF;
161 	if (unlikely((pause < 0) || (pause > 0xffff)))
162 		pause = PAUSE_TIME;
163 	if (eee_timer < 0)
164 		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
165 }
166 
167 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
168 {
169 	u32 clk_rate;
170 
171 	clk_rate = clk_get_rate(priv->stmmac_clk);
172 
173 	/* Platform provided default clk_csr would be assumed valid
174 	 * for all other cases except for the below mentioned ones. */
175 	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
176 		if (clk_rate < CSR_F_35M)
177 			priv->clk_csr = STMMAC_CSR_20_35M;
178 		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
179 			priv->clk_csr = STMMAC_CSR_35_60M;
180 		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
181 			priv->clk_csr = STMMAC_CSR_60_100M;
182 		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
183 			priv->clk_csr = STMMAC_CSR_100_150M;
184 		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
185 			priv->clk_csr = STMMAC_CSR_150_250M;
186 		else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
187 			priv->clk_csr = STMMAC_CSR_250_300M;
188 	} /* For values higher than the IEEE 802.3 specified frequency
189 	   * we can not estimate the proper divider as it is not known
190 	   * the frequency of clk_csr_i. So we do not change the default
191 	   * divider. */
192 }
193 
194 #if defined(STMMAC_XMIT_DEBUG) || defined(STMMAC_RX_DEBUG)
195 static void print_pkt(unsigned char *buf, int len)
196 {
197 	int j;
198 	pr_info("len = %d byte, buf addr: 0x%p", len, buf);
199 	for (j = 0; j < len; j++) {
200 		if ((j % 16) == 0)
201 			pr_info("\n %03x:", j);
202 		pr_info(" %02x", buf[j]);
203 	}
204 	pr_info("\n");
205 }
206 #endif
207 
208 /* minimum number of free TX descriptors required to wake up TX process */
209 #define STMMAC_TX_THRESH(x)	(x->dma_tx_size/4)
210 
211 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
212 {
213 	return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1;
214 }
215 
216 /* On some ST platforms, some HW system configuraton registers have to be
217  * set according to the link speed negotiated.
218  */
219 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
220 {
221 	struct phy_device *phydev = priv->phydev;
222 
223 	if (likely(priv->plat->fix_mac_speed))
224 		priv->plat->fix_mac_speed(priv->plat->bsp_priv,
225 					  phydev->speed);
226 }
227 
228 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
229 {
230 	/* Check and enter in LPI mode */
231 	if ((priv->dirty_tx == priv->cur_tx) &&
232 	    (priv->tx_path_in_lpi_mode == false))
233 		priv->hw->mac->set_eee_mode(priv->ioaddr);
234 }
235 
236 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
237 {
238 	/* Exit and disable EEE in case of we are are in LPI state. */
239 	priv->hw->mac->reset_eee_mode(priv->ioaddr);
240 	del_timer_sync(&priv->eee_ctrl_timer);
241 	priv->tx_path_in_lpi_mode = false;
242 }
243 
244 /**
245  * stmmac_eee_ctrl_timer
246  * @arg : data hook
247  * Description:
248  *  If there is no data transfer and if we are not in LPI state,
249  *  then MAC Transmitter can be moved to LPI state.
250  */
251 static void stmmac_eee_ctrl_timer(unsigned long arg)
252 {
253 	struct stmmac_priv *priv = (struct stmmac_priv *)arg;
254 
255 	stmmac_enable_eee_mode(priv);
256 	mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_TIMER(eee_timer));
257 }
258 
259 /**
260  * stmmac_eee_init
261  * @priv: private device pointer
262  * Description:
263  *  If the EEE support has been enabled while configuring the driver,
264  *  if the GMAC actually supports the EEE (from the HW cap reg) and the
265  *  phy can also manage EEE, so enable the LPI state and start the timer
266  *  to verify if the tx path can enter in LPI state.
267  */
268 bool stmmac_eee_init(struct stmmac_priv *priv)
269 {
270 	bool ret = false;
271 
272 	/* MAC core supports the EEE feature. */
273 	if (priv->dma_cap.eee) {
274 		/* Check if the PHY supports EEE */
275 		if (phy_init_eee(priv->phydev, 1))
276 			goto out;
277 
278 		priv->eee_active = 1;
279 		init_timer(&priv->eee_ctrl_timer);
280 		priv->eee_ctrl_timer.function = stmmac_eee_ctrl_timer;
281 		priv->eee_ctrl_timer.data = (unsigned long)priv;
282 		priv->eee_ctrl_timer.expires = STMMAC_LPI_TIMER(eee_timer);
283 		add_timer(&priv->eee_ctrl_timer);
284 
285 		priv->hw->mac->set_eee_timer(priv->ioaddr,
286 					     STMMAC_DEFAULT_LIT_LS_TIMER,
287 					     priv->tx_lpi_timer);
288 
289 		pr_info("stmmac: Energy-Efficient Ethernet initialized\n");
290 
291 		ret = true;
292 	}
293 out:
294 	return ret;
295 }
296 
297 static void stmmac_eee_adjust(struct stmmac_priv *priv)
298 {
299 	/* When the EEE has been already initialised we have to
300 	 * modify the PLS bit in the LPI ctrl & status reg according
301 	 * to the PHY link status. For this reason.
302 	 */
303 	if (priv->eee_enabled)
304 		priv->hw->mac->set_eee_pls(priv->ioaddr, priv->phydev->link);
305 }
306 
307 /**
308  * stmmac_adjust_link
309  * @dev: net device structure
310  * Description: it adjusts the link parameters.
311  */
312 static void stmmac_adjust_link(struct net_device *dev)
313 {
314 	struct stmmac_priv *priv = netdev_priv(dev);
315 	struct phy_device *phydev = priv->phydev;
316 	unsigned long flags;
317 	int new_state = 0;
318 	unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;
319 
320 	if (phydev == NULL)
321 		return;
322 
323 	DBG(probe, DEBUG, "stmmac_adjust_link: called.  address %d link %d\n",
324 	    phydev->addr, phydev->link);
325 
326 	spin_lock_irqsave(&priv->lock, flags);
327 
328 	if (phydev->link) {
329 		u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
330 
331 		/* Now we make sure that we can be in full duplex mode.
332 		 * If not, we operate in half-duplex mode. */
333 		if (phydev->duplex != priv->oldduplex) {
334 			new_state = 1;
335 			if (!(phydev->duplex))
336 				ctrl &= ~priv->hw->link.duplex;
337 			else
338 				ctrl |= priv->hw->link.duplex;
339 			priv->oldduplex = phydev->duplex;
340 		}
341 		/* Flow Control operation */
342 		if (phydev->pause)
343 			priv->hw->mac->flow_ctrl(priv->ioaddr, phydev->duplex,
344 						 fc, pause_time);
345 
346 		if (phydev->speed != priv->speed) {
347 			new_state = 1;
348 			switch (phydev->speed) {
349 			case 1000:
350 				if (likely(priv->plat->has_gmac))
351 					ctrl &= ~priv->hw->link.port;
352 					stmmac_hw_fix_mac_speed(priv);
353 				break;
354 			case 100:
355 			case 10:
356 				if (priv->plat->has_gmac) {
357 					ctrl |= priv->hw->link.port;
358 					if (phydev->speed == SPEED_100) {
359 						ctrl |= priv->hw->link.speed;
360 					} else {
361 						ctrl &= ~(priv->hw->link.speed);
362 					}
363 				} else {
364 					ctrl &= ~priv->hw->link.port;
365 				}
366 				stmmac_hw_fix_mac_speed(priv);
367 				break;
368 			default:
369 				if (netif_msg_link(priv))
370 					pr_warning("%s: Speed (%d) is not 10"
371 				       " or 100!\n", dev->name, phydev->speed);
372 				break;
373 			}
374 
375 			priv->speed = phydev->speed;
376 		}
377 
378 		writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
379 
380 		if (!priv->oldlink) {
381 			new_state = 1;
382 			priv->oldlink = 1;
383 		}
384 	} else if (priv->oldlink) {
385 		new_state = 1;
386 		priv->oldlink = 0;
387 		priv->speed = 0;
388 		priv->oldduplex = -1;
389 	}
390 
391 	if (new_state && netif_msg_link(priv))
392 		phy_print_status(phydev);
393 
394 	stmmac_eee_adjust(priv);
395 
396 	spin_unlock_irqrestore(&priv->lock, flags);
397 
398 	DBG(probe, DEBUG, "stmmac_adjust_link: exiting\n");
399 }
400 
401 /**
402  * stmmac_init_phy - PHY initialization
403  * @dev: net device structure
404  * Description: it initializes the driver's PHY state, and attaches the PHY
405  * to the mac driver.
406  *  Return value:
407  *  0 on success
408  */
409 static int stmmac_init_phy(struct net_device *dev)
410 {
411 	struct stmmac_priv *priv = netdev_priv(dev);
412 	struct phy_device *phydev;
413 	char phy_id_fmt[MII_BUS_ID_SIZE + 3];
414 	char bus_id[MII_BUS_ID_SIZE];
415 	int interface = priv->plat->interface;
416 	priv->oldlink = 0;
417 	priv->speed = 0;
418 	priv->oldduplex = -1;
419 
420 	if (priv->plat->phy_bus_name)
421 		snprintf(bus_id, MII_BUS_ID_SIZE, "%s-%x",
422 				priv->plat->phy_bus_name, priv->plat->bus_id);
423 	else
424 		snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
425 				priv->plat->bus_id);
426 
427 	snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
428 		 priv->plat->phy_addr);
429 	pr_debug("stmmac_init_phy:  trying to attach to %s\n", phy_id_fmt);
430 
431 	phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link, 0,
432 			     interface);
433 
434 	if (IS_ERR(phydev)) {
435 		pr_err("%s: Could not attach to PHY\n", dev->name);
436 		return PTR_ERR(phydev);
437 	}
438 
439 	/* Stop Advertising 1000BASE Capability if interface is not GMII */
440 	if ((interface == PHY_INTERFACE_MODE_MII) ||
441 	    (interface == PHY_INTERFACE_MODE_RMII))
442 		phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
443 					 SUPPORTED_1000baseT_Full);
444 
445 	/*
446 	 * Broken HW is sometimes missing the pull-up resistor on the
447 	 * MDIO line, which results in reads to non-existent devices returning
448 	 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
449 	 * device as well.
450 	 * Note: phydev->phy_id is the result of reading the UID PHY registers.
451 	 */
452 	if (phydev->phy_id == 0) {
453 		phy_disconnect(phydev);
454 		return -ENODEV;
455 	}
456 	pr_debug("stmmac_init_phy:  %s: attached to PHY (UID 0x%x)"
457 		 " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
458 
459 	priv->phydev = phydev;
460 
461 	return 0;
462 }
463 
464 /**
465  * display_ring
466  * @p: pointer to the ring.
467  * @size: size of the ring.
468  * Description: display all the descriptors within the ring.
469  */
470 static void display_ring(struct dma_desc *p, int size)
471 {
472 	struct tmp_s {
473 		u64 a;
474 		unsigned int b;
475 		unsigned int c;
476 	};
477 	int i;
478 	for (i = 0; i < size; i++) {
479 		struct tmp_s *x = (struct tmp_s *)(p + i);
480 		pr_info("\t%d [0x%x]: DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
481 		       i, (unsigned int)virt_to_phys(&p[i]),
482 		       (unsigned int)(x->a), (unsigned int)((x->a) >> 32),
483 		       x->b, x->c);
484 		pr_info("\n");
485 	}
486 }
487 
488 static int stmmac_set_bfsize(int mtu, int bufsize)
489 {
490 	int ret = bufsize;
491 
492 	if (mtu >= BUF_SIZE_4KiB)
493 		ret = BUF_SIZE_8KiB;
494 	else if (mtu >= BUF_SIZE_2KiB)
495 		ret = BUF_SIZE_4KiB;
496 	else if (mtu >= DMA_BUFFER_SIZE)
497 		ret = BUF_SIZE_2KiB;
498 	else
499 		ret = DMA_BUFFER_SIZE;
500 
501 	return ret;
502 }
503 
504 /**
505  * init_dma_desc_rings - init the RX/TX descriptor rings
506  * @dev: net device structure
507  * Description:  this function initializes the DMA RX/TX descriptors
508  * and allocates the socket buffers. It suppors the chained and ring
509  * modes.
510  */
511 static void init_dma_desc_rings(struct net_device *dev)
512 {
513 	int i;
514 	struct stmmac_priv *priv = netdev_priv(dev);
515 	struct sk_buff *skb;
516 	unsigned int txsize = priv->dma_tx_size;
517 	unsigned int rxsize = priv->dma_rx_size;
518 	unsigned int bfsize;
519 	int dis_ic = 0;
520 	int des3_as_data_buf = 0;
521 
522 	/* Set the max buffer size according to the DESC mode
523 	 * and the MTU. Note that RING mode allows 16KiB bsize. */
524 	bfsize = priv->hw->ring->set_16kib_bfsize(dev->mtu);
525 
526 	if (bfsize == BUF_SIZE_16KiB)
527 		des3_as_data_buf = 1;
528 	else
529 		bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
530 
531 	DBG(probe, INFO, "stmmac: txsize %d, rxsize %d, bfsize %d\n",
532 	    txsize, rxsize, bfsize);
533 
534 	priv->rx_skbuff_dma = kmalloc(rxsize * sizeof(dma_addr_t), GFP_KERNEL);
535 	priv->rx_skbuff =
536 	    kmalloc(sizeof(struct sk_buff *) * rxsize, GFP_KERNEL);
537 	priv->dma_rx =
538 	    (struct dma_desc *)dma_alloc_coherent(priv->device,
539 						  rxsize *
540 						  sizeof(struct dma_desc),
541 						  &priv->dma_rx_phy,
542 						  GFP_KERNEL);
543 	priv->tx_skbuff = kmalloc(sizeof(struct sk_buff *) * txsize,
544 				       GFP_KERNEL);
545 	priv->dma_tx =
546 	    (struct dma_desc *)dma_alloc_coherent(priv->device,
547 						  txsize *
548 						  sizeof(struct dma_desc),
549 						  &priv->dma_tx_phy,
550 						  GFP_KERNEL);
551 
552 	if ((priv->dma_rx == NULL) || (priv->dma_tx == NULL)) {
553 		pr_err("%s:ERROR allocating the DMA Tx/Rx desc\n", __func__);
554 		return;
555 	}
556 
557 	DBG(probe, INFO, "stmmac (%s) DMA desc: virt addr (Rx %p, "
558 	    "Tx %p)\n\tDMA phy addr (Rx 0x%08x, Tx 0x%08x)\n",
559 	    dev->name, priv->dma_rx, priv->dma_tx,
560 	    (unsigned int)priv->dma_rx_phy, (unsigned int)priv->dma_tx_phy);
561 
562 	/* RX INITIALIZATION */
563 	DBG(probe, INFO, "stmmac: SKB addresses:\n"
564 			 "skb\t\tskb data\tdma data\n");
565 
566 	for (i = 0; i < rxsize; i++) {
567 		struct dma_desc *p = priv->dma_rx + i;
568 
569 		skb = __netdev_alloc_skb(dev, bfsize + NET_IP_ALIGN,
570 					 GFP_KERNEL);
571 		if (unlikely(skb == NULL)) {
572 			pr_err("%s: Rx init fails; skb is NULL\n", __func__);
573 			break;
574 		}
575 		skb_reserve(skb, NET_IP_ALIGN);
576 		priv->rx_skbuff[i] = skb;
577 		priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
578 						bfsize, DMA_FROM_DEVICE);
579 
580 		p->des2 = priv->rx_skbuff_dma[i];
581 
582 		priv->hw->ring->init_desc3(des3_as_data_buf, p);
583 
584 		DBG(probe, INFO, "[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
585 			priv->rx_skbuff[i]->data, priv->rx_skbuff_dma[i]);
586 	}
587 	priv->cur_rx = 0;
588 	priv->dirty_rx = (unsigned int)(i - rxsize);
589 	priv->dma_buf_sz = bfsize;
590 	buf_sz = bfsize;
591 
592 	/* TX INITIALIZATION */
593 	for (i = 0; i < txsize; i++) {
594 		priv->tx_skbuff[i] = NULL;
595 		priv->dma_tx[i].des2 = 0;
596 	}
597 
598 	/* In case of Chained mode this sets the des3 to the next
599 	 * element in the chain */
600 	priv->hw->ring->init_dma_chain(priv->dma_rx, priv->dma_rx_phy, rxsize);
601 	priv->hw->ring->init_dma_chain(priv->dma_tx, priv->dma_tx_phy, txsize);
602 
603 	priv->dirty_tx = 0;
604 	priv->cur_tx = 0;
605 
606 	if (priv->use_riwt)
607 		dis_ic = 1;
608 	/* Clear the Rx/Tx descriptors */
609 	priv->hw->desc->init_rx_desc(priv->dma_rx, rxsize, dis_ic);
610 	priv->hw->desc->init_tx_desc(priv->dma_tx, txsize);
611 
612 	if (netif_msg_hw(priv)) {
613 		pr_info("RX descriptor ring:\n");
614 		display_ring(priv->dma_rx, rxsize);
615 		pr_info("TX descriptor ring:\n");
616 		display_ring(priv->dma_tx, txsize);
617 	}
618 }
619 
620 static void dma_free_rx_skbufs(struct stmmac_priv *priv)
621 {
622 	int i;
623 
624 	for (i = 0; i < priv->dma_rx_size; i++) {
625 		if (priv->rx_skbuff[i]) {
626 			dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
627 					 priv->dma_buf_sz, DMA_FROM_DEVICE);
628 			dev_kfree_skb_any(priv->rx_skbuff[i]);
629 		}
630 		priv->rx_skbuff[i] = NULL;
631 	}
632 }
633 
634 static void dma_free_tx_skbufs(struct stmmac_priv *priv)
635 {
636 	int i;
637 
638 	for (i = 0; i < priv->dma_tx_size; i++) {
639 		if (priv->tx_skbuff[i] != NULL) {
640 			struct dma_desc *p = priv->dma_tx + i;
641 			if (p->des2)
642 				dma_unmap_single(priv->device, p->des2,
643 						 priv->hw->desc->get_tx_len(p),
644 						 DMA_TO_DEVICE);
645 			dev_kfree_skb_any(priv->tx_skbuff[i]);
646 			priv->tx_skbuff[i] = NULL;
647 		}
648 	}
649 }
650 
651 static void free_dma_desc_resources(struct stmmac_priv *priv)
652 {
653 	/* Release the DMA TX/RX socket buffers */
654 	dma_free_rx_skbufs(priv);
655 	dma_free_tx_skbufs(priv);
656 
657 	/* Free the region of consistent memory previously allocated for
658 	 * the DMA */
659 	dma_free_coherent(priv->device,
660 			  priv->dma_tx_size * sizeof(struct dma_desc),
661 			  priv->dma_tx, priv->dma_tx_phy);
662 	dma_free_coherent(priv->device,
663 			  priv->dma_rx_size * sizeof(struct dma_desc),
664 			  priv->dma_rx, priv->dma_rx_phy);
665 	kfree(priv->rx_skbuff_dma);
666 	kfree(priv->rx_skbuff);
667 	kfree(priv->tx_skbuff);
668 }
669 
670 /**
671  *  stmmac_dma_operation_mode - HW DMA operation mode
672  *  @priv : pointer to the private device structure.
673  *  Description: it sets the DMA operation mode: tx/rx DMA thresholds
674  *  or Store-And-Forward capability.
675  */
676 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
677 {
678 	if (likely(priv->plat->force_sf_dma_mode ||
679 		((priv->plat->tx_coe) && (!priv->no_csum_insertion)))) {
680 		/*
681 		 * In case of GMAC, SF mode can be enabled
682 		 * to perform the TX COE in HW. This depends on:
683 		 * 1) TX COE if actually supported
684 		 * 2) There is no bugged Jumbo frame support
685 		 *    that needs to not insert csum in the TDES.
686 		 */
687 		priv->hw->dma->dma_mode(priv->ioaddr,
688 					SF_DMA_MODE, SF_DMA_MODE);
689 		tc = SF_DMA_MODE;
690 	} else
691 		priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
692 }
693 
694 /**
695  * stmmac_tx_clean:
696  * @priv: private data pointer
697  * Description: it reclaims resources after transmission completes.
698  */
699 static void stmmac_tx_clean(struct stmmac_priv *priv)
700 {
701 	unsigned int txsize = priv->dma_tx_size;
702 
703 	spin_lock(&priv->tx_lock);
704 
705 	priv->xstats.tx_clean++;
706 
707 	while (priv->dirty_tx != priv->cur_tx) {
708 		int last;
709 		unsigned int entry = priv->dirty_tx % txsize;
710 		struct sk_buff *skb = priv->tx_skbuff[entry];
711 		struct dma_desc *p = priv->dma_tx + entry;
712 
713 		/* Check if the descriptor is owned by the DMA. */
714 		if (priv->hw->desc->get_tx_owner(p))
715 			break;
716 
717 		/* Verify tx error by looking at the last segment */
718 		last = priv->hw->desc->get_tx_ls(p);
719 		if (likely(last)) {
720 			int tx_error =
721 				priv->hw->desc->tx_status(&priv->dev->stats,
722 							  &priv->xstats, p,
723 							  priv->ioaddr);
724 			if (likely(tx_error == 0)) {
725 				priv->dev->stats.tx_packets++;
726 				priv->xstats.tx_pkt_n++;
727 			} else
728 				priv->dev->stats.tx_errors++;
729 		}
730 		TX_DBG("%s: curr %d, dirty %d\n", __func__,
731 			priv->cur_tx, priv->dirty_tx);
732 
733 		if (likely(p->des2))
734 			dma_unmap_single(priv->device, p->des2,
735 					 priv->hw->desc->get_tx_len(p),
736 					 DMA_TO_DEVICE);
737 		priv->hw->ring->clean_desc3(p);
738 
739 		if (likely(skb != NULL)) {
740 			dev_kfree_skb(skb);
741 			priv->tx_skbuff[entry] = NULL;
742 		}
743 
744 		priv->hw->desc->release_tx_desc(p);
745 
746 		priv->dirty_tx++;
747 	}
748 	if (unlikely(netif_queue_stopped(priv->dev) &&
749 		     stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) {
750 		netif_tx_lock(priv->dev);
751 		if (netif_queue_stopped(priv->dev) &&
752 		     stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) {
753 			TX_DBG("%s: restart transmit\n", __func__);
754 			netif_wake_queue(priv->dev);
755 		}
756 		netif_tx_unlock(priv->dev);
757 	}
758 
759 	if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
760 		stmmac_enable_eee_mode(priv);
761 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_TIMER(eee_timer));
762 	}
763 	spin_unlock(&priv->tx_lock);
764 }
765 
766 static inline void stmmac_enable_dma_irq(struct stmmac_priv *priv)
767 {
768 	priv->hw->dma->enable_dma_irq(priv->ioaddr);
769 }
770 
771 static inline void stmmac_disable_dma_irq(struct stmmac_priv *priv)
772 {
773 	priv->hw->dma->disable_dma_irq(priv->ioaddr);
774 }
775 
776 
777 /**
778  * stmmac_tx_err:
779  * @priv: pointer to the private device structure
780  * Description: it cleans the descriptors and restarts the transmission
781  * in case of errors.
782  */
783 static void stmmac_tx_err(struct stmmac_priv *priv)
784 {
785 	netif_stop_queue(priv->dev);
786 
787 	priv->hw->dma->stop_tx(priv->ioaddr);
788 	dma_free_tx_skbufs(priv);
789 	priv->hw->desc->init_tx_desc(priv->dma_tx, priv->dma_tx_size);
790 	priv->dirty_tx = 0;
791 	priv->cur_tx = 0;
792 	priv->hw->dma->start_tx(priv->ioaddr);
793 
794 	priv->dev->stats.tx_errors++;
795 	netif_wake_queue(priv->dev);
796 }
797 
798 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
799 {
800 	int status;
801 
802 	status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
803 	if (likely((status & handle_rx)) || (status & handle_tx)) {
804 		if (likely(napi_schedule_prep(&priv->napi))) {
805 			stmmac_disable_dma_irq(priv);
806 			__napi_schedule(&priv->napi);
807 		}
808 	}
809 	if (unlikely(status & tx_hard_error_bump_tc)) {
810 		/* Try to bump up the dma threshold on this failure */
811 		if (unlikely(tc != SF_DMA_MODE) && (tc <= 256)) {
812 			tc += 64;
813 			priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
814 			priv->xstats.threshold = tc;
815 		}
816 	} else if (unlikely(status == tx_hard_error))
817 		stmmac_tx_err(priv);
818 }
819 
820 static void stmmac_mmc_setup(struct stmmac_priv *priv)
821 {
822 	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
823 			    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
824 
825 	/* Mask MMC irq, counters are managed in SW and registers
826 	 * are cleared on each READ eventually. */
827 	dwmac_mmc_intr_all_mask(priv->ioaddr);
828 
829 	if (priv->dma_cap.rmon) {
830 		dwmac_mmc_ctrl(priv->ioaddr, mode);
831 		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
832 	} else
833 		pr_info(" No MAC Management Counters available\n");
834 }
835 
836 static u32 stmmac_get_synopsys_id(struct stmmac_priv *priv)
837 {
838 	u32 hwid = priv->hw->synopsys_uid;
839 
840 	/* Only check valid Synopsys Id because old MAC chips
841 	 * have no HW registers where get the ID */
842 	if (likely(hwid)) {
843 		u32 uid = ((hwid & 0x0000ff00) >> 8);
844 		u32 synid = (hwid & 0x000000ff);
845 
846 		pr_info("stmmac - user ID: 0x%x, Synopsys ID: 0x%x\n",
847 			uid, synid);
848 
849 		return synid;
850 	}
851 	return 0;
852 }
853 
854 /**
855  * stmmac_selec_desc_mode
856  * @priv : private structure
857  * Description: select the Enhanced/Alternate or Normal descriptors
858  */
859 static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
860 {
861 	if (priv->plat->enh_desc) {
862 		pr_info(" Enhanced/Alternate descriptors\n");
863 		priv->hw->desc = &enh_desc_ops;
864 	} else {
865 		pr_info(" Normal descriptors\n");
866 		priv->hw->desc = &ndesc_ops;
867 	}
868 }
869 
870 /**
871  * stmmac_get_hw_features
872  * @priv : private device pointer
873  * Description:
874  *  new GMAC chip generations have a new register to indicate the
875  *  presence of the optional feature/functions.
876  *  This can be also used to override the value passed through the
877  *  platform and necessary for old MAC10/100 and GMAC chips.
878  */
879 static int stmmac_get_hw_features(struct stmmac_priv *priv)
880 {
881 	u32 hw_cap = 0;
882 
883 	if (priv->hw->dma->get_hw_feature) {
884 		hw_cap = priv->hw->dma->get_hw_feature(priv->ioaddr);
885 
886 		priv->dma_cap.mbps_10_100 = (hw_cap & DMA_HW_FEAT_MIISEL);
887 		priv->dma_cap.mbps_1000 = (hw_cap & DMA_HW_FEAT_GMIISEL) >> 1;
888 		priv->dma_cap.half_duplex = (hw_cap & DMA_HW_FEAT_HDSEL) >> 2;
889 		priv->dma_cap.hash_filter = (hw_cap & DMA_HW_FEAT_HASHSEL) >> 4;
890 		priv->dma_cap.multi_addr =
891 			(hw_cap & DMA_HW_FEAT_ADDMACADRSEL) >> 5;
892 		priv->dma_cap.pcs = (hw_cap & DMA_HW_FEAT_PCSSEL) >> 6;
893 		priv->dma_cap.sma_mdio = (hw_cap & DMA_HW_FEAT_SMASEL) >> 8;
894 		priv->dma_cap.pmt_remote_wake_up =
895 			(hw_cap & DMA_HW_FEAT_RWKSEL) >> 9;
896 		priv->dma_cap.pmt_magic_frame =
897 			(hw_cap & DMA_HW_FEAT_MGKSEL) >> 10;
898 		/* MMC */
899 		priv->dma_cap.rmon = (hw_cap & DMA_HW_FEAT_MMCSEL) >> 11;
900 		/* IEEE 1588-2002*/
901 		priv->dma_cap.time_stamp =
902 			(hw_cap & DMA_HW_FEAT_TSVER1SEL) >> 12;
903 		/* IEEE 1588-2008*/
904 		priv->dma_cap.atime_stamp =
905 			(hw_cap & DMA_HW_FEAT_TSVER2SEL) >> 13;
906 		/* 802.3az - Energy-Efficient Ethernet (EEE) */
907 		priv->dma_cap.eee = (hw_cap & DMA_HW_FEAT_EEESEL) >> 14;
908 		priv->dma_cap.av = (hw_cap & DMA_HW_FEAT_AVSEL) >> 15;
909 		/* TX and RX csum */
910 		priv->dma_cap.tx_coe = (hw_cap & DMA_HW_FEAT_TXCOESEL) >> 16;
911 		priv->dma_cap.rx_coe_type1 =
912 			(hw_cap & DMA_HW_FEAT_RXTYP1COE) >> 17;
913 		priv->dma_cap.rx_coe_type2 =
914 			(hw_cap & DMA_HW_FEAT_RXTYP2COE) >> 18;
915 		priv->dma_cap.rxfifo_over_2048 =
916 			(hw_cap & DMA_HW_FEAT_RXFIFOSIZE) >> 19;
917 		/* TX and RX number of channels */
918 		priv->dma_cap.number_rx_channel =
919 			(hw_cap & DMA_HW_FEAT_RXCHCNT) >> 20;
920 		priv->dma_cap.number_tx_channel =
921 			(hw_cap & DMA_HW_FEAT_TXCHCNT) >> 22;
922 		/* Alternate (enhanced) DESC mode*/
923 		priv->dma_cap.enh_desc =
924 			(hw_cap & DMA_HW_FEAT_ENHDESSEL) >> 24;
925 	}
926 
927 	return hw_cap;
928 }
929 
930 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
931 {
932 	/* verify if the MAC address is valid, in case of failures it
933 	 * generates a random MAC address */
934 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
935 		priv->hw->mac->get_umac_addr((void __iomem *)
936 					     priv->dev->base_addr,
937 					     priv->dev->dev_addr, 0);
938 		if  (!is_valid_ether_addr(priv->dev->dev_addr))
939 			eth_hw_addr_random(priv->dev);
940 	}
941 	pr_warning("%s: device MAC address %pM\n", priv->dev->name,
942 						   priv->dev->dev_addr);
943 }
944 
945 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
946 {
947 	int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, burst_len = 0;
948 	int mixed_burst = 0;
949 
950 	/* Some DMA parameters can be passed from the platform;
951 	 * in case of these are not passed we keep a default
952 	 * (good for all the chips) and init the DMA! */
953 	if (priv->plat->dma_cfg) {
954 		pbl = priv->plat->dma_cfg->pbl;
955 		fixed_burst = priv->plat->dma_cfg->fixed_burst;
956 		mixed_burst = priv->plat->dma_cfg->mixed_burst;
957 		burst_len = priv->plat->dma_cfg->burst_len;
958 	}
959 
960 	return priv->hw->dma->init(priv->ioaddr, pbl, fixed_burst, mixed_burst,
961 				   burst_len, priv->dma_tx_phy,
962 				   priv->dma_rx_phy);
963 }
964 
965 /**
966  * stmmac_tx_timer:
967  * @data: data pointer
968  * Description:
969  * This is the timer handler to directly invoke the stmmac_tx_clean.
970  */
971 static void stmmac_tx_timer(unsigned long data)
972 {
973 	struct stmmac_priv *priv = (struct stmmac_priv *)data;
974 
975 	stmmac_tx_clean(priv);
976 }
977 
978 /**
979  * stmmac_tx_timer:
980  * @priv: private data structure
981  * Description:
982  * This inits the transmit coalesce parameters: i.e. timer rate,
983  * timer handler and default threshold used for enabling the
984  * interrupt on completion bit.
985  */
986 static void stmmac_init_tx_coalesce(struct stmmac_priv *priv)
987 {
988 	priv->tx_coal_frames = STMMAC_TX_FRAMES;
989 	priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
990 	init_timer(&priv->txtimer);
991 	priv->txtimer.expires = STMMAC_COAL_TIMER(priv->tx_coal_timer);
992 	priv->txtimer.data = (unsigned long)priv;
993 	priv->txtimer.function = stmmac_tx_timer;
994 	add_timer(&priv->txtimer);
995 }
996 
997 /**
998  *  stmmac_open - open entry point of the driver
999  *  @dev : pointer to the device structure.
1000  *  Description:
1001  *  This function is the open entry point of the driver.
1002  *  Return value:
1003  *  0 on success and an appropriate (-)ve integer as defined in errno.h
1004  *  file on failure.
1005  */
1006 static int stmmac_open(struct net_device *dev)
1007 {
1008 	struct stmmac_priv *priv = netdev_priv(dev);
1009 	int ret;
1010 
1011 	clk_prepare_enable(priv->stmmac_clk);
1012 
1013 	stmmac_check_ether_addr(priv);
1014 
1015 	ret = stmmac_init_phy(dev);
1016 	if (unlikely(ret)) {
1017 		pr_err("%s: Cannot attach to PHY (error: %d)\n", __func__, ret);
1018 		goto open_error;
1019 	}
1020 
1021 	/* Create and initialize the TX/RX descriptors chains. */
1022 	priv->dma_tx_size = STMMAC_ALIGN(dma_txsize);
1023 	priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize);
1024 	priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
1025 	init_dma_desc_rings(dev);
1026 
1027 	/* DMA initialization and SW reset */
1028 	ret = stmmac_init_dma_engine(priv);
1029 	if (ret < 0) {
1030 		pr_err("%s: DMA initialization failed\n", __func__);
1031 		goto open_error;
1032 	}
1033 
1034 	/* Copy the MAC addr into the HW  */
1035 	priv->hw->mac->set_umac_addr(priv->ioaddr, dev->dev_addr, 0);
1036 
1037 	/* If required, perform hw setup of the bus. */
1038 	if (priv->plat->bus_setup)
1039 		priv->plat->bus_setup(priv->ioaddr);
1040 
1041 	/* Initialize the MAC Core */
1042 	priv->hw->mac->core_init(priv->ioaddr);
1043 
1044 	/* Request the IRQ lines */
1045 	ret = request_irq(dev->irq, stmmac_interrupt,
1046 			 IRQF_SHARED, dev->name, dev);
1047 	if (unlikely(ret < 0)) {
1048 		pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
1049 		       __func__, dev->irq, ret);
1050 		goto open_error;
1051 	}
1052 
1053 	/* Request the Wake IRQ in case of another line is used for WoL */
1054 	if (priv->wol_irq != dev->irq) {
1055 		ret = request_irq(priv->wol_irq, stmmac_interrupt,
1056 				  IRQF_SHARED, dev->name, dev);
1057 		if (unlikely(ret < 0)) {
1058 			pr_err("%s: ERROR: allocating the ext WoL IRQ %d "
1059 			       "(error: %d)\n",	__func__, priv->wol_irq, ret);
1060 			goto open_error_wolirq;
1061 		}
1062 	}
1063 
1064 	/* Request the IRQ lines */
1065 	if (priv->lpi_irq != -ENXIO) {
1066 		ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
1067 				  dev->name, dev);
1068 		if (unlikely(ret < 0)) {
1069 			pr_err("%s: ERROR: allocating the LPI IRQ %d (%d)\n",
1070 			       __func__, priv->lpi_irq, ret);
1071 			goto open_error_lpiirq;
1072 		}
1073 	}
1074 
1075 	/* Enable the MAC Rx/Tx */
1076 	stmmac_set_mac(priv->ioaddr, true);
1077 
1078 	/* Set the HW DMA mode and the COE */
1079 	stmmac_dma_operation_mode(priv);
1080 
1081 	/* Extra statistics */
1082 	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
1083 	priv->xstats.threshold = tc;
1084 
1085 	stmmac_mmc_setup(priv);
1086 
1087 #ifdef CONFIG_STMMAC_DEBUG_FS
1088 	ret = stmmac_init_fs(dev);
1089 	if (ret < 0)
1090 		pr_warning("%s: failed debugFS registration\n", __func__);
1091 #endif
1092 	/* Start the ball rolling... */
1093 	DBG(probe, DEBUG, "%s: DMA RX/TX processes started...\n", dev->name);
1094 	priv->hw->dma->start_tx(priv->ioaddr);
1095 	priv->hw->dma->start_rx(priv->ioaddr);
1096 
1097 	/* Dump DMA/MAC registers */
1098 	if (netif_msg_hw(priv)) {
1099 		priv->hw->mac->dump_regs(priv->ioaddr);
1100 		priv->hw->dma->dump_regs(priv->ioaddr);
1101 	}
1102 
1103 	if (priv->phydev)
1104 		phy_start(priv->phydev);
1105 
1106 	priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS_TIMER;
1107 	priv->eee_enabled = stmmac_eee_init(priv);
1108 
1109 	stmmac_init_tx_coalesce(priv);
1110 
1111 	if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) {
1112 		priv->rx_riwt = MAX_DMA_RIWT;
1113 		priv->hw->dma->rx_watchdog(priv->ioaddr, MAX_DMA_RIWT);
1114 	}
1115 
1116 	napi_enable(&priv->napi);
1117 	netif_start_queue(dev);
1118 
1119 	return 0;
1120 
1121 open_error_lpiirq:
1122 	if (priv->wol_irq != dev->irq)
1123 		free_irq(priv->wol_irq, dev);
1124 
1125 open_error_wolirq:
1126 	free_irq(dev->irq, dev);
1127 
1128 open_error:
1129 	if (priv->phydev)
1130 		phy_disconnect(priv->phydev);
1131 
1132 	clk_disable_unprepare(priv->stmmac_clk);
1133 
1134 	return ret;
1135 }
1136 
1137 /**
1138  *  stmmac_release - close entry point of the driver
1139  *  @dev : device pointer.
1140  *  Description:
1141  *  This is the stop entry point of the driver.
1142  */
1143 static int stmmac_release(struct net_device *dev)
1144 {
1145 	struct stmmac_priv *priv = netdev_priv(dev);
1146 
1147 	if (priv->eee_enabled)
1148 		del_timer_sync(&priv->eee_ctrl_timer);
1149 
1150 	/* Stop and disconnect the PHY */
1151 	if (priv->phydev) {
1152 		phy_stop(priv->phydev);
1153 		phy_disconnect(priv->phydev);
1154 		priv->phydev = NULL;
1155 	}
1156 
1157 	netif_stop_queue(dev);
1158 
1159 	napi_disable(&priv->napi);
1160 
1161 	del_timer_sync(&priv->txtimer);
1162 
1163 	/* Free the IRQ lines */
1164 	free_irq(dev->irq, dev);
1165 	if (priv->wol_irq != dev->irq)
1166 		free_irq(priv->wol_irq, dev);
1167 	if (priv->lpi_irq != -ENXIO)
1168 		free_irq(priv->lpi_irq, dev);
1169 
1170 	/* Stop TX/RX DMA and clear the descriptors */
1171 	priv->hw->dma->stop_tx(priv->ioaddr);
1172 	priv->hw->dma->stop_rx(priv->ioaddr);
1173 
1174 	/* Release and free the Rx/Tx resources */
1175 	free_dma_desc_resources(priv);
1176 
1177 	/* Disable the MAC Rx/Tx */
1178 	stmmac_set_mac(priv->ioaddr, false);
1179 
1180 	netif_carrier_off(dev);
1181 
1182 #ifdef CONFIG_STMMAC_DEBUG_FS
1183 	stmmac_exit_fs();
1184 #endif
1185 	clk_disable_unprepare(priv->stmmac_clk);
1186 
1187 	return 0;
1188 }
1189 
1190 /**
1191  *  stmmac_xmit:
1192  *  @skb : the socket buffer
1193  *  @dev : device pointer
1194  *  Description : Tx entry point of the driver.
1195  */
1196 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
1197 {
1198 	struct stmmac_priv *priv = netdev_priv(dev);
1199 	unsigned int txsize = priv->dma_tx_size;
1200 	unsigned int entry;
1201 	int i, csum_insertion = 0;
1202 	int nfrags = skb_shinfo(skb)->nr_frags;
1203 	struct dma_desc *desc, *first;
1204 	unsigned int nopaged_len = skb_headlen(skb);
1205 
1206 	if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
1207 		if (!netif_queue_stopped(dev)) {
1208 			netif_stop_queue(dev);
1209 			/* This is a hard error, log it. */
1210 			pr_err("%s: BUG! Tx Ring full when queue awake\n",
1211 				__func__);
1212 		}
1213 		return NETDEV_TX_BUSY;
1214 	}
1215 
1216 	spin_lock(&priv->tx_lock);
1217 
1218 	if (priv->tx_path_in_lpi_mode)
1219 		stmmac_disable_eee_mode(priv);
1220 
1221 	entry = priv->cur_tx % txsize;
1222 
1223 #ifdef STMMAC_XMIT_DEBUG
1224 	if ((skb->len > ETH_FRAME_LEN) || nfrags)
1225 		pr_debug("stmmac xmit: [entry %d]\n"
1226 			 "\tskb addr %p - len: %d - nopaged_len: %d\n"
1227 			 "\tn_frags: %d - ip_summed: %d - %s gso\n"
1228 			 "\ttx_count_frames %d\n", entry,
1229 			 skb, skb->len, nopaged_len, nfrags, skb->ip_summed,
1230 			 !skb_is_gso(skb) ? "isn't" : "is",
1231 			 priv->tx_count_frames);
1232 #endif
1233 
1234 	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
1235 
1236 	desc = priv->dma_tx + entry;
1237 	first = desc;
1238 
1239 #ifdef STMMAC_XMIT_DEBUG
1240 	if ((nfrags > 0) || (skb->len > ETH_FRAME_LEN))
1241 		pr_debug("\tskb len: %d, nopaged_len: %d,\n"
1242 			 "\t\tn_frags: %d, ip_summed: %d\n",
1243 			 skb->len, nopaged_len, nfrags, skb->ip_summed);
1244 #endif
1245 	priv->tx_skbuff[entry] = skb;
1246 
1247 	if (priv->hw->ring->is_jumbo_frm(skb->len, priv->plat->enh_desc)) {
1248 		entry = priv->hw->ring->jumbo_frm(priv, skb, csum_insertion);
1249 		desc = priv->dma_tx + entry;
1250 	} else {
1251 		desc->des2 = dma_map_single(priv->device, skb->data,
1252 					nopaged_len, DMA_TO_DEVICE);
1253 		priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
1254 						csum_insertion);
1255 	}
1256 
1257 	for (i = 0; i < nfrags; i++) {
1258 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1259 		int len = skb_frag_size(frag);
1260 
1261 		entry = (++priv->cur_tx) % txsize;
1262 		desc = priv->dma_tx + entry;
1263 
1264 		TX_DBG("\t[entry %d] segment len: %d\n", entry, len);
1265 		desc->des2 = skb_frag_dma_map(priv->device, frag, 0, len,
1266 					      DMA_TO_DEVICE);
1267 		priv->tx_skbuff[entry] = NULL;
1268 		priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion);
1269 		wmb();
1270 		priv->hw->desc->set_tx_owner(desc);
1271 		wmb();
1272 	}
1273 
1274 	/* Finalize the latest segment. */
1275 	priv->hw->desc->close_tx_desc(desc);
1276 
1277 	wmb();
1278 	/* According to the coalesce parameter the IC bit for the latest
1279 	 * segment could be reset and the timer re-started to invoke the
1280 	 * stmmac_tx function. This approach takes care about the fragments.
1281 	 */
1282 	priv->tx_count_frames += nfrags + 1;
1283 	if (priv->tx_coal_frames > priv->tx_count_frames) {
1284 		priv->hw->desc->clear_tx_ic(desc);
1285 		priv->xstats.tx_reset_ic_bit++;
1286 		TX_DBG("\t[entry %d]: tx_count_frames %d\n", entry,
1287 		       priv->tx_count_frames);
1288 		mod_timer(&priv->txtimer,
1289 			  STMMAC_COAL_TIMER(priv->tx_coal_timer));
1290 	} else
1291 		priv->tx_count_frames = 0;
1292 
1293 	/* To avoid raise condition */
1294 	priv->hw->desc->set_tx_owner(first);
1295 	wmb();
1296 
1297 	priv->cur_tx++;
1298 
1299 #ifdef STMMAC_XMIT_DEBUG
1300 	if (netif_msg_pktdata(priv)) {
1301 		pr_info("stmmac xmit: current=%d, dirty=%d, entry=%d, "
1302 		       "first=%p, nfrags=%d\n",
1303 		       (priv->cur_tx % txsize), (priv->dirty_tx % txsize),
1304 		       entry, first, nfrags);
1305 		display_ring(priv->dma_tx, txsize);
1306 		pr_info(">>> frame to be transmitted: ");
1307 		print_pkt(skb->data, skb->len);
1308 	}
1309 #endif
1310 	if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
1311 		TX_DBG("%s: stop transmitted packets\n", __func__);
1312 		netif_stop_queue(dev);
1313 	}
1314 
1315 	dev->stats.tx_bytes += skb->len;
1316 
1317 	skb_tx_timestamp(skb);
1318 
1319 	priv->hw->dma->enable_dma_transmission(priv->ioaddr);
1320 
1321 	spin_unlock(&priv->tx_lock);
1322 
1323 	return NETDEV_TX_OK;
1324 }
1325 
1326 static inline void stmmac_rx_refill(struct stmmac_priv *priv)
1327 {
1328 	unsigned int rxsize = priv->dma_rx_size;
1329 	int bfsize = priv->dma_buf_sz;
1330 	struct dma_desc *p = priv->dma_rx;
1331 
1332 	for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) {
1333 		unsigned int entry = priv->dirty_rx % rxsize;
1334 		if (likely(priv->rx_skbuff[entry] == NULL)) {
1335 			struct sk_buff *skb;
1336 
1337 			skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
1338 
1339 			if (unlikely(skb == NULL))
1340 				break;
1341 
1342 			priv->rx_skbuff[entry] = skb;
1343 			priv->rx_skbuff_dma[entry] =
1344 			    dma_map_single(priv->device, skb->data, bfsize,
1345 					   DMA_FROM_DEVICE);
1346 
1347 			(p + entry)->des2 = priv->rx_skbuff_dma[entry];
1348 
1349 			if (unlikely(priv->plat->has_gmac))
1350 				priv->hw->ring->refill_desc3(bfsize, p + entry);
1351 
1352 			RX_DBG(KERN_INFO "\trefill entry #%d\n", entry);
1353 		}
1354 		wmb();
1355 		priv->hw->desc->set_rx_owner(p + entry);
1356 		wmb();
1357 	}
1358 }
1359 
1360 static int stmmac_rx(struct stmmac_priv *priv, int limit)
1361 {
1362 	unsigned int rxsize = priv->dma_rx_size;
1363 	unsigned int entry = priv->cur_rx % rxsize;
1364 	unsigned int next_entry;
1365 	unsigned int count = 0;
1366 	struct dma_desc *p = priv->dma_rx + entry;
1367 	struct dma_desc *p_next;
1368 
1369 #ifdef STMMAC_RX_DEBUG
1370 	if (netif_msg_hw(priv)) {
1371 		pr_debug(">>> stmmac_rx: descriptor ring:\n");
1372 		display_ring(priv->dma_rx, rxsize);
1373 	}
1374 #endif
1375 	while (!priv->hw->desc->get_rx_owner(p)) {
1376 		int status;
1377 
1378 		if (count >= limit)
1379 			break;
1380 
1381 		count++;
1382 
1383 		next_entry = (++priv->cur_rx) % rxsize;
1384 		p_next = priv->dma_rx + next_entry;
1385 		prefetch(p_next);
1386 
1387 		/* read the status of the incoming frame */
1388 		status = (priv->hw->desc->rx_status(&priv->dev->stats,
1389 						    &priv->xstats, p));
1390 		if (unlikely(status == discard_frame))
1391 			priv->dev->stats.rx_errors++;
1392 		else {
1393 			struct sk_buff *skb;
1394 			int frame_len;
1395 
1396 			frame_len = priv->hw->desc->get_rx_frame_len(p,
1397 					priv->plat->rx_coe);
1398 			/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
1399 			 * Type frames (LLC/LLC-SNAP) */
1400 			if (unlikely(status != llc_snap))
1401 				frame_len -= ETH_FCS_LEN;
1402 #ifdef STMMAC_RX_DEBUG
1403 			if (frame_len > ETH_FRAME_LEN)
1404 				pr_debug("\tRX frame size %d, COE status: %d\n",
1405 					frame_len, status);
1406 
1407 			if (netif_msg_hw(priv))
1408 				pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
1409 					p, entry, p->des2);
1410 #endif
1411 			skb = priv->rx_skbuff[entry];
1412 			if (unlikely(!skb)) {
1413 				pr_err("%s: Inconsistent Rx descriptor chain\n",
1414 					priv->dev->name);
1415 				priv->dev->stats.rx_dropped++;
1416 				break;
1417 			}
1418 			prefetch(skb->data - NET_IP_ALIGN);
1419 			priv->rx_skbuff[entry] = NULL;
1420 
1421 			skb_put(skb, frame_len);
1422 			dma_unmap_single(priv->device,
1423 					 priv->rx_skbuff_dma[entry],
1424 					 priv->dma_buf_sz, DMA_FROM_DEVICE);
1425 #ifdef STMMAC_RX_DEBUG
1426 			if (netif_msg_pktdata(priv)) {
1427 				pr_info(" frame received (%dbytes)", frame_len);
1428 				print_pkt(skb->data, frame_len);
1429 			}
1430 #endif
1431 			skb->protocol = eth_type_trans(skb, priv->dev);
1432 
1433 			if (unlikely(!priv->plat->rx_coe))
1434 				skb_checksum_none_assert(skb);
1435 			else
1436 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1437 
1438 			napi_gro_receive(&priv->napi, skb);
1439 
1440 			priv->dev->stats.rx_packets++;
1441 			priv->dev->stats.rx_bytes += frame_len;
1442 		}
1443 		entry = next_entry;
1444 		p = p_next;	/* use prefetched values */
1445 	}
1446 
1447 	stmmac_rx_refill(priv);
1448 
1449 	priv->xstats.rx_pkt_n += count;
1450 
1451 	return count;
1452 }
1453 
1454 /**
1455  *  stmmac_poll - stmmac poll method (NAPI)
1456  *  @napi : pointer to the napi structure.
1457  *  @budget : maximum number of packets that the current CPU can receive from
1458  *	      all interfaces.
1459  *  Description :
1460  *  To look at the incoming frames and clear the tx resources.
1461  */
1462 static int stmmac_poll(struct napi_struct *napi, int budget)
1463 {
1464 	struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
1465 	int work_done = 0;
1466 
1467 	priv->xstats.napi_poll++;
1468 	stmmac_tx_clean(priv);
1469 
1470 	work_done = stmmac_rx(priv, budget);
1471 	if (work_done < budget) {
1472 		napi_complete(napi);
1473 		stmmac_enable_dma_irq(priv);
1474 	}
1475 	return work_done;
1476 }
1477 
1478 /**
1479  *  stmmac_tx_timeout
1480  *  @dev : Pointer to net device structure
1481  *  Description: this function is called when a packet transmission fails to
1482  *   complete within a reasonable time. The driver will mark the error in the
1483  *   netdev structure and arrange for the device to be reset to a sane state
1484  *   in order to transmit a new packet.
1485  */
1486 static void stmmac_tx_timeout(struct net_device *dev)
1487 {
1488 	struct stmmac_priv *priv = netdev_priv(dev);
1489 
1490 	/* Clear Tx resources and restart transmitting again */
1491 	stmmac_tx_err(priv);
1492 }
1493 
1494 /* Configuration changes (passed on by ifconfig) */
1495 static int stmmac_config(struct net_device *dev, struct ifmap *map)
1496 {
1497 	if (dev->flags & IFF_UP)	/* can't act on a running interface */
1498 		return -EBUSY;
1499 
1500 	/* Don't allow changing the I/O address */
1501 	if (map->base_addr != dev->base_addr) {
1502 		pr_warning("%s: can't change I/O address\n", dev->name);
1503 		return -EOPNOTSUPP;
1504 	}
1505 
1506 	/* Don't allow changing the IRQ */
1507 	if (map->irq != dev->irq) {
1508 		pr_warning("%s: can't change IRQ number %d\n",
1509 		       dev->name, dev->irq);
1510 		return -EOPNOTSUPP;
1511 	}
1512 
1513 	/* ignore other fields */
1514 	return 0;
1515 }
1516 
1517 /**
1518  *  stmmac_set_rx_mode - entry point for multicast addressing
1519  *  @dev : pointer to the device structure
1520  *  Description:
1521  *  This function is a driver entry point which gets called by the kernel
1522  *  whenever multicast addresses must be enabled/disabled.
1523  *  Return value:
1524  *  void.
1525  */
1526 static void stmmac_set_rx_mode(struct net_device *dev)
1527 {
1528 	struct stmmac_priv *priv = netdev_priv(dev);
1529 
1530 	spin_lock(&priv->lock);
1531 	priv->hw->mac->set_filter(dev, priv->synopsys_id);
1532 	spin_unlock(&priv->lock);
1533 }
1534 
1535 /**
1536  *  stmmac_change_mtu - entry point to change MTU size for the device.
1537  *  @dev : device pointer.
1538  *  @new_mtu : the new MTU size for the device.
1539  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
1540  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
1541  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
1542  *  Return value:
1543  *  0 on success and an appropriate (-)ve integer as defined in errno.h
1544  *  file on failure.
1545  */
1546 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
1547 {
1548 	struct stmmac_priv *priv = netdev_priv(dev);
1549 	int max_mtu;
1550 
1551 	if (netif_running(dev)) {
1552 		pr_err("%s: must be stopped to change its MTU\n", dev->name);
1553 		return -EBUSY;
1554 	}
1555 
1556 	if (priv->plat->enh_desc)
1557 		max_mtu = JUMBO_LEN;
1558 	else
1559 		max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
1560 
1561 	if ((new_mtu < 46) || (new_mtu > max_mtu)) {
1562 		pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
1563 		return -EINVAL;
1564 	}
1565 
1566 	dev->mtu = new_mtu;
1567 	netdev_update_features(dev);
1568 
1569 	return 0;
1570 }
1571 
1572 static netdev_features_t stmmac_fix_features(struct net_device *dev,
1573 	netdev_features_t features)
1574 {
1575 	struct stmmac_priv *priv = netdev_priv(dev);
1576 
1577 	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
1578 		features &= ~NETIF_F_RXCSUM;
1579 	else if (priv->plat->rx_coe == STMMAC_RX_COE_TYPE1)
1580 		features &= ~NETIF_F_IPV6_CSUM;
1581 	if (!priv->plat->tx_coe)
1582 		features &= ~NETIF_F_ALL_CSUM;
1583 
1584 	/* Some GMAC devices have a bugged Jumbo frame support that
1585 	 * needs to have the Tx COE disabled for oversized frames
1586 	 * (due to limited buffer sizes). In this case we disable
1587 	 * the TX csum insertionin the TDES and not use SF. */
1588 	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
1589 		features &= ~NETIF_F_ALL_CSUM;
1590 
1591 	return features;
1592 }
1593 
1594 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
1595 {
1596 	struct net_device *dev = (struct net_device *)dev_id;
1597 	struct stmmac_priv *priv = netdev_priv(dev);
1598 
1599 	if (unlikely(!dev)) {
1600 		pr_err("%s: invalid dev pointer\n", __func__);
1601 		return IRQ_NONE;
1602 	}
1603 
1604 	/* To handle GMAC own interrupts */
1605 	if (priv->plat->has_gmac) {
1606 		int status = priv->hw->mac->host_irq_status((void __iomem *)
1607 							    dev->base_addr);
1608 		if (unlikely(status)) {
1609 			if (status & core_mmc_tx_irq)
1610 				priv->xstats.mmc_tx_irq_n++;
1611 			if (status & core_mmc_rx_irq)
1612 				priv->xstats.mmc_rx_irq_n++;
1613 			if (status & core_mmc_rx_csum_offload_irq)
1614 				priv->xstats.mmc_rx_csum_offload_irq_n++;
1615 			if (status & core_irq_receive_pmt_irq)
1616 				priv->xstats.irq_receive_pmt_irq_n++;
1617 
1618 			/* For LPI we need to save the tx status */
1619 			if (status & core_irq_tx_path_in_lpi_mode) {
1620 				priv->xstats.irq_tx_path_in_lpi_mode_n++;
1621 				priv->tx_path_in_lpi_mode = true;
1622 			}
1623 			if (status & core_irq_tx_path_exit_lpi_mode) {
1624 				priv->xstats.irq_tx_path_exit_lpi_mode_n++;
1625 				priv->tx_path_in_lpi_mode = false;
1626 			}
1627 			if (status & core_irq_rx_path_in_lpi_mode)
1628 				priv->xstats.irq_rx_path_in_lpi_mode_n++;
1629 			if (status & core_irq_rx_path_exit_lpi_mode)
1630 				priv->xstats.irq_rx_path_exit_lpi_mode_n++;
1631 		}
1632 	}
1633 
1634 	/* To handle DMA interrupts */
1635 	stmmac_dma_interrupt(priv);
1636 
1637 	return IRQ_HANDLED;
1638 }
1639 
1640 #ifdef CONFIG_NET_POLL_CONTROLLER
1641 /* Polling receive - used by NETCONSOLE and other diagnostic tools
1642  * to allow network I/O with interrupts disabled. */
1643 static void stmmac_poll_controller(struct net_device *dev)
1644 {
1645 	disable_irq(dev->irq);
1646 	stmmac_interrupt(dev->irq, dev);
1647 	enable_irq(dev->irq);
1648 }
1649 #endif
1650 
1651 /**
1652  *  stmmac_ioctl - Entry point for the Ioctl
1653  *  @dev: Device pointer.
1654  *  @rq: An IOCTL specefic structure, that can contain a pointer to
1655  *  a proprietary structure used to pass information to the driver.
1656  *  @cmd: IOCTL command
1657  *  Description:
1658  *  Currently there are no special functionality supported in IOCTL, just the
1659  *  phy_mii_ioctl(...) can be invoked.
1660  */
1661 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1662 {
1663 	struct stmmac_priv *priv = netdev_priv(dev);
1664 	int ret;
1665 
1666 	if (!netif_running(dev))
1667 		return -EINVAL;
1668 
1669 	if (!priv->phydev)
1670 		return -EINVAL;
1671 
1672 	ret = phy_mii_ioctl(priv->phydev, rq, cmd);
1673 
1674 	return ret;
1675 }
1676 
1677 #ifdef CONFIG_STMMAC_DEBUG_FS
1678 static struct dentry *stmmac_fs_dir;
1679 static struct dentry *stmmac_rings_status;
1680 static struct dentry *stmmac_dma_cap;
1681 
1682 static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
1683 {
1684 	struct tmp_s {
1685 		u64 a;
1686 		unsigned int b;
1687 		unsigned int c;
1688 	};
1689 	int i;
1690 	struct net_device *dev = seq->private;
1691 	struct stmmac_priv *priv = netdev_priv(dev);
1692 
1693 	seq_printf(seq, "=======================\n");
1694 	seq_printf(seq, " RX descriptor ring\n");
1695 	seq_printf(seq, "=======================\n");
1696 
1697 	for (i = 0; i < priv->dma_rx_size; i++) {
1698 		struct tmp_s *x = (struct tmp_s *)(priv->dma_rx + i);
1699 		seq_printf(seq, "[%d] DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
1700 			   i, (unsigned int)(x->a),
1701 			   (unsigned int)((x->a) >> 32), x->b, x->c);
1702 		seq_printf(seq, "\n");
1703 	}
1704 
1705 	seq_printf(seq, "\n");
1706 	seq_printf(seq, "=======================\n");
1707 	seq_printf(seq, "  TX descriptor ring\n");
1708 	seq_printf(seq, "=======================\n");
1709 
1710 	for (i = 0; i < priv->dma_tx_size; i++) {
1711 		struct tmp_s *x = (struct tmp_s *)(priv->dma_tx + i);
1712 		seq_printf(seq, "[%d] DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
1713 			   i, (unsigned int)(x->a),
1714 			   (unsigned int)((x->a) >> 32), x->b, x->c);
1715 		seq_printf(seq, "\n");
1716 	}
1717 
1718 	return 0;
1719 }
1720 
1721 static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
1722 {
1723 	return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
1724 }
1725 
1726 static const struct file_operations stmmac_rings_status_fops = {
1727 	.owner = THIS_MODULE,
1728 	.open = stmmac_sysfs_ring_open,
1729 	.read = seq_read,
1730 	.llseek = seq_lseek,
1731 	.release = single_release,
1732 };
1733 
1734 static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
1735 {
1736 	struct net_device *dev = seq->private;
1737 	struct stmmac_priv *priv = netdev_priv(dev);
1738 
1739 	if (!priv->hw_cap_support) {
1740 		seq_printf(seq, "DMA HW features not supported\n");
1741 		return 0;
1742 	}
1743 
1744 	seq_printf(seq, "==============================\n");
1745 	seq_printf(seq, "\tDMA HW features\n");
1746 	seq_printf(seq, "==============================\n");
1747 
1748 	seq_printf(seq, "\t10/100 Mbps %s\n",
1749 		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
1750 	seq_printf(seq, "\t1000 Mbps %s\n",
1751 		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
1752 	seq_printf(seq, "\tHalf duple %s\n",
1753 		   (priv->dma_cap.half_duplex) ? "Y" : "N");
1754 	seq_printf(seq, "\tHash Filter: %s\n",
1755 		   (priv->dma_cap.hash_filter) ? "Y" : "N");
1756 	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
1757 		   (priv->dma_cap.multi_addr) ? "Y" : "N");
1758 	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
1759 		   (priv->dma_cap.pcs) ? "Y" : "N");
1760 	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
1761 		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
1762 	seq_printf(seq, "\tPMT Remote wake up: %s\n",
1763 		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
1764 	seq_printf(seq, "\tPMT Magic Frame: %s\n",
1765 		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
1766 	seq_printf(seq, "\tRMON module: %s\n",
1767 		   (priv->dma_cap.rmon) ? "Y" : "N");
1768 	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
1769 		   (priv->dma_cap.time_stamp) ? "Y" : "N");
1770 	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n",
1771 		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
1772 	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n",
1773 		   (priv->dma_cap.eee) ? "Y" : "N");
1774 	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
1775 	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
1776 		   (priv->dma_cap.tx_coe) ? "Y" : "N");
1777 	seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
1778 		   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
1779 	seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
1780 		   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
1781 	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
1782 		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
1783 	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
1784 		   priv->dma_cap.number_rx_channel);
1785 	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
1786 		   priv->dma_cap.number_tx_channel);
1787 	seq_printf(seq, "\tEnhanced descriptors: %s\n",
1788 		   (priv->dma_cap.enh_desc) ? "Y" : "N");
1789 
1790 	return 0;
1791 }
1792 
1793 static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
1794 {
1795 	return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
1796 }
1797 
1798 static const struct file_operations stmmac_dma_cap_fops = {
1799 	.owner = THIS_MODULE,
1800 	.open = stmmac_sysfs_dma_cap_open,
1801 	.read = seq_read,
1802 	.llseek = seq_lseek,
1803 	.release = single_release,
1804 };
1805 
1806 static int stmmac_init_fs(struct net_device *dev)
1807 {
1808 	/* Create debugfs entries */
1809 	stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
1810 
1811 	if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
1812 		pr_err("ERROR %s, debugfs create directory failed\n",
1813 		       STMMAC_RESOURCE_NAME);
1814 
1815 		return -ENOMEM;
1816 	}
1817 
1818 	/* Entry to report DMA RX/TX rings */
1819 	stmmac_rings_status = debugfs_create_file("descriptors_status",
1820 					   S_IRUGO, stmmac_fs_dir, dev,
1821 					   &stmmac_rings_status_fops);
1822 
1823 	if (!stmmac_rings_status || IS_ERR(stmmac_rings_status)) {
1824 		pr_info("ERROR creating stmmac ring debugfs file\n");
1825 		debugfs_remove(stmmac_fs_dir);
1826 
1827 		return -ENOMEM;
1828 	}
1829 
1830 	/* Entry to report the DMA HW features */
1831 	stmmac_dma_cap = debugfs_create_file("dma_cap", S_IRUGO, stmmac_fs_dir,
1832 					     dev, &stmmac_dma_cap_fops);
1833 
1834 	if (!stmmac_dma_cap || IS_ERR(stmmac_dma_cap)) {
1835 		pr_info("ERROR creating stmmac MMC debugfs file\n");
1836 		debugfs_remove(stmmac_rings_status);
1837 		debugfs_remove(stmmac_fs_dir);
1838 
1839 		return -ENOMEM;
1840 	}
1841 
1842 	return 0;
1843 }
1844 
1845 static void stmmac_exit_fs(void)
1846 {
1847 	debugfs_remove(stmmac_rings_status);
1848 	debugfs_remove(stmmac_dma_cap);
1849 	debugfs_remove(stmmac_fs_dir);
1850 }
1851 #endif /* CONFIG_STMMAC_DEBUG_FS */
1852 
1853 static const struct net_device_ops stmmac_netdev_ops = {
1854 	.ndo_open = stmmac_open,
1855 	.ndo_start_xmit = stmmac_xmit,
1856 	.ndo_stop = stmmac_release,
1857 	.ndo_change_mtu = stmmac_change_mtu,
1858 	.ndo_fix_features = stmmac_fix_features,
1859 	.ndo_set_rx_mode = stmmac_set_rx_mode,
1860 	.ndo_tx_timeout = stmmac_tx_timeout,
1861 	.ndo_do_ioctl = stmmac_ioctl,
1862 	.ndo_set_config = stmmac_config,
1863 #ifdef CONFIG_NET_POLL_CONTROLLER
1864 	.ndo_poll_controller = stmmac_poll_controller,
1865 #endif
1866 	.ndo_set_mac_address = eth_mac_addr,
1867 };
1868 
1869 /**
1870  *  stmmac_hw_init - Init the MAC device
1871  *  @priv : pointer to the private device structure.
1872  *  Description: this function detects which MAC device
1873  *  (GMAC/MAC10-100) has to attached, checks the HW capability
1874  *  (if supported) and sets the driver's features (for example
1875  *  to use the ring or chaine mode or support the normal/enh
1876  *  descriptor structure).
1877  */
1878 static int stmmac_hw_init(struct stmmac_priv *priv)
1879 {
1880 	int ret = 0;
1881 	struct mac_device_info *mac;
1882 
1883 	/* Identify the MAC HW device */
1884 	if (priv->plat->has_gmac) {
1885 		priv->dev->priv_flags |= IFF_UNICAST_FLT;
1886 		mac = dwmac1000_setup(priv->ioaddr);
1887 	} else {
1888 		mac = dwmac100_setup(priv->ioaddr);
1889 	}
1890 	if (!mac)
1891 		return -ENOMEM;
1892 
1893 	priv->hw = mac;
1894 
1895 	/* To use the chained or ring mode */
1896 	priv->hw->ring = &ring_mode_ops;
1897 
1898 	/* Get and dump the chip ID */
1899 	priv->synopsys_id = stmmac_get_synopsys_id(priv);
1900 
1901 	/* Get the HW capability (new GMAC newer than 3.50a) */
1902 	priv->hw_cap_support = stmmac_get_hw_features(priv);
1903 	if (priv->hw_cap_support) {
1904 		pr_info(" DMA HW capability register supported");
1905 
1906 		/* We can override some gmac/dma configuration fields: e.g.
1907 		 * enh_desc, tx_coe (e.g. that are passed through the
1908 		 * platform) with the values from the HW capability
1909 		 * register (if supported).
1910 		 */
1911 		priv->plat->enh_desc = priv->dma_cap.enh_desc;
1912 		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
1913 
1914 		priv->plat->tx_coe = priv->dma_cap.tx_coe;
1915 
1916 		if (priv->dma_cap.rx_coe_type2)
1917 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
1918 		else if (priv->dma_cap.rx_coe_type1)
1919 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
1920 
1921 	} else
1922 		pr_info(" No HW DMA feature register supported");
1923 
1924 	/* Select the enhnaced/normal descriptor structures */
1925 	stmmac_selec_desc_mode(priv);
1926 
1927 	/* Enable the IPC (Checksum Offload) and check if the feature has been
1928 	 * enabled during the core configuration. */
1929 	ret = priv->hw->mac->rx_ipc(priv->ioaddr);
1930 	if (!ret) {
1931 		pr_warning(" RX IPC Checksum Offload not configured.\n");
1932 		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
1933 	}
1934 
1935 	if (priv->plat->rx_coe)
1936 		pr_info(" RX Checksum Offload Engine supported (type %d)\n",
1937 			priv->plat->rx_coe);
1938 	if (priv->plat->tx_coe)
1939 		pr_info(" TX Checksum insertion supported\n");
1940 
1941 	if (priv->plat->pmt) {
1942 		pr_info(" Wake-Up On Lan supported\n");
1943 		device_set_wakeup_capable(priv->device, 1);
1944 	}
1945 
1946 	return ret;
1947 }
1948 
1949 /**
1950  * stmmac_dvr_probe
1951  * @device: device pointer
1952  * @plat_dat: platform data pointer
1953  * @addr: iobase memory address
1954  * Description: this is the main probe function used to
1955  * call the alloc_etherdev, allocate the priv structure.
1956  */
1957 struct stmmac_priv *stmmac_dvr_probe(struct device *device,
1958 				     struct plat_stmmacenet_data *plat_dat,
1959 				     void __iomem *addr)
1960 {
1961 	int ret = 0;
1962 	struct net_device *ndev = NULL;
1963 	struct stmmac_priv *priv;
1964 
1965 	ndev = alloc_etherdev(sizeof(struct stmmac_priv));
1966 	if (!ndev)
1967 		return NULL;
1968 
1969 	SET_NETDEV_DEV(ndev, device);
1970 
1971 	priv = netdev_priv(ndev);
1972 	priv->device = device;
1973 	priv->dev = ndev;
1974 
1975 	ether_setup(ndev);
1976 
1977 	stmmac_set_ethtool_ops(ndev);
1978 	priv->pause = pause;
1979 	priv->plat = plat_dat;
1980 	priv->ioaddr = addr;
1981 	priv->dev->base_addr = (unsigned long)addr;
1982 
1983 	/* Verify driver arguments */
1984 	stmmac_verify_args();
1985 
1986 	/* Override with kernel parameters if supplied XXX CRS XXX
1987 	 * this needs to have multiple instances */
1988 	if ((phyaddr >= 0) && (phyaddr <= 31))
1989 		priv->plat->phy_addr = phyaddr;
1990 
1991 	/* Init MAC and get the capabilities */
1992 	stmmac_hw_init(priv);
1993 
1994 	ndev->netdev_ops = &stmmac_netdev_ops;
1995 
1996 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1997 			    NETIF_F_RXCSUM;
1998 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
1999 	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
2000 #ifdef STMMAC_VLAN_TAG_USED
2001 	/* Both mac100 and gmac support receive VLAN tag detection */
2002 	ndev->features |= NETIF_F_HW_VLAN_RX;
2003 #endif
2004 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
2005 
2006 	if (flow_ctrl)
2007 		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
2008 
2009 	/* Rx Watchdog is available in the COREs newer than the 3.40.
2010 	 * In some case, for example on bugged HW this feature
2011 	 * has to be disable and this can be done by passing the
2012 	 * riwt_off field from the platform.
2013 	 */
2014 	if ((priv->synopsys_id >= DWMAC_CORE_3_50) && (!priv->plat->riwt_off)) {
2015 		priv->use_riwt = 1;
2016 		pr_info(" Enable RX Mitigation via HW Watchdog Timer\n");
2017 	}
2018 
2019 	netif_napi_add(ndev, &priv->napi, stmmac_poll, 64);
2020 
2021 	spin_lock_init(&priv->lock);
2022 	spin_lock_init(&priv->tx_lock);
2023 
2024 	ret = register_netdev(ndev);
2025 	if (ret) {
2026 		pr_err("%s: ERROR %i registering the device\n", __func__, ret);
2027 		goto error_netdev_register;
2028 	}
2029 
2030 	priv->stmmac_clk = clk_get(priv->device, STMMAC_RESOURCE_NAME);
2031 	if (IS_ERR(priv->stmmac_clk)) {
2032 		pr_warning("%s: warning: cannot get CSR clock\n", __func__);
2033 		goto error_clk_get;
2034 	}
2035 
2036 	/* If a specific clk_csr value is passed from the platform
2037 	 * this means that the CSR Clock Range selection cannot be
2038 	 * changed at run-time and it is fixed. Viceversa the driver'll try to
2039 	 * set the MDC clock dynamically according to the csr actual
2040 	 * clock input.
2041 	 */
2042 	if (!priv->plat->clk_csr)
2043 		stmmac_clk_csr_set(priv);
2044 	else
2045 		priv->clk_csr = priv->plat->clk_csr;
2046 
2047 	/* MDIO bus Registration */
2048 	ret = stmmac_mdio_register(ndev);
2049 	if (ret < 0) {
2050 		pr_debug("%s: MDIO bus (id: %d) registration failed",
2051 			 __func__, priv->plat->bus_id);
2052 		goto error_mdio_register;
2053 	}
2054 
2055 	return priv;
2056 
2057 error_mdio_register:
2058 	clk_put(priv->stmmac_clk);
2059 error_clk_get:
2060 	unregister_netdev(ndev);
2061 error_netdev_register:
2062 	netif_napi_del(&priv->napi);
2063 	free_netdev(ndev);
2064 
2065 	return NULL;
2066 }
2067 
2068 /**
2069  * stmmac_dvr_remove
2070  * @ndev: net device pointer
2071  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
2072  * changes the link status, releases the DMA descriptor rings.
2073  */
2074 int stmmac_dvr_remove(struct net_device *ndev)
2075 {
2076 	struct stmmac_priv *priv = netdev_priv(ndev);
2077 
2078 	pr_info("%s:\n\tremoving driver", __func__);
2079 
2080 	priv->hw->dma->stop_rx(priv->ioaddr);
2081 	priv->hw->dma->stop_tx(priv->ioaddr);
2082 
2083 	stmmac_set_mac(priv->ioaddr, false);
2084 	stmmac_mdio_unregister(ndev);
2085 	netif_carrier_off(ndev);
2086 	unregister_netdev(ndev);
2087 	free_netdev(ndev);
2088 
2089 	return 0;
2090 }
2091 
2092 #ifdef CONFIG_PM
2093 int stmmac_suspend(struct net_device *ndev)
2094 {
2095 	struct stmmac_priv *priv = netdev_priv(ndev);
2096 	int dis_ic = 0;
2097 	unsigned long flags;
2098 
2099 	if (!ndev || !netif_running(ndev))
2100 		return 0;
2101 
2102 	if (priv->phydev)
2103 		phy_stop(priv->phydev);
2104 
2105 	spin_lock_irqsave(&priv->lock, flags);
2106 
2107 	netif_device_detach(ndev);
2108 	netif_stop_queue(ndev);
2109 
2110 	if (priv->use_riwt)
2111 		dis_ic = 1;
2112 
2113 	napi_disable(&priv->napi);
2114 
2115 	/* Stop TX/RX DMA */
2116 	priv->hw->dma->stop_tx(priv->ioaddr);
2117 	priv->hw->dma->stop_rx(priv->ioaddr);
2118 	/* Clear the Rx/Tx descriptors */
2119 	priv->hw->desc->init_rx_desc(priv->dma_rx, priv->dma_rx_size,
2120 				     dis_ic);
2121 	priv->hw->desc->init_tx_desc(priv->dma_tx, priv->dma_tx_size);
2122 
2123 	/* Enable Power down mode by programming the PMT regs */
2124 	if (device_may_wakeup(priv->device))
2125 		priv->hw->mac->pmt(priv->ioaddr, priv->wolopts);
2126 	else {
2127 		stmmac_set_mac(priv->ioaddr, false);
2128 		/* Disable clock in case of PWM is off */
2129 		clk_disable_unprepare(priv->stmmac_clk);
2130 	}
2131 	spin_unlock_irqrestore(&priv->lock, flags);
2132 	return 0;
2133 }
2134 
2135 int stmmac_resume(struct net_device *ndev)
2136 {
2137 	struct stmmac_priv *priv = netdev_priv(ndev);
2138 	unsigned long flags;
2139 
2140 	if (!netif_running(ndev))
2141 		return 0;
2142 
2143 	spin_lock_irqsave(&priv->lock, flags);
2144 
2145 	/* Power Down bit, into the PM register, is cleared
2146 	 * automatically as soon as a magic packet or a Wake-up frame
2147 	 * is received. Anyway, it's better to manually clear
2148 	 * this bit because it can generate problems while resuming
2149 	 * from another devices (e.g. serial console). */
2150 	if (device_may_wakeup(priv->device))
2151 		priv->hw->mac->pmt(priv->ioaddr, 0);
2152 	else
2153 		/* enable the clk prevously disabled */
2154 		clk_prepare_enable(priv->stmmac_clk);
2155 
2156 	netif_device_attach(ndev);
2157 
2158 	/* Enable the MAC and DMA */
2159 	stmmac_set_mac(priv->ioaddr, true);
2160 	priv->hw->dma->start_tx(priv->ioaddr);
2161 	priv->hw->dma->start_rx(priv->ioaddr);
2162 
2163 	napi_enable(&priv->napi);
2164 
2165 	netif_start_queue(ndev);
2166 
2167 	spin_unlock_irqrestore(&priv->lock, flags);
2168 
2169 	if (priv->phydev)
2170 		phy_start(priv->phydev);
2171 
2172 	return 0;
2173 }
2174 
2175 int stmmac_freeze(struct net_device *ndev)
2176 {
2177 	if (!ndev || !netif_running(ndev))
2178 		return 0;
2179 
2180 	return stmmac_release(ndev);
2181 }
2182 
2183 int stmmac_restore(struct net_device *ndev)
2184 {
2185 	if (!ndev || !netif_running(ndev))
2186 		return 0;
2187 
2188 	return stmmac_open(ndev);
2189 }
2190 #endif /* CONFIG_PM */
2191 
2192 /* Driver can be configured w/ and w/ both PCI and Platf drivers
2193  * depending on the configuration selected.
2194  */
2195 static int __init stmmac_init(void)
2196 {
2197 	int ret;
2198 
2199 	ret = stmmac_register_platform();
2200 	if (ret)
2201 		goto err;
2202 	ret = stmmac_register_pci();
2203 	if (ret)
2204 		goto err_pci;
2205 	return 0;
2206 err_pci:
2207 	stmmac_unregister_platform();
2208 err:
2209 	pr_err("stmmac: driver registration failed\n");
2210 	return ret;
2211 }
2212 
2213 static void __exit stmmac_exit(void)
2214 {
2215 	stmmac_unregister_platform();
2216 	stmmac_unregister_pci();
2217 }
2218 
2219 module_init(stmmac_init);
2220 module_exit(stmmac_exit);
2221 
2222 #ifndef MODULE
2223 static int __init stmmac_cmdline_opt(char *str)
2224 {
2225 	char *opt;
2226 
2227 	if (!str || !*str)
2228 		return -EINVAL;
2229 	while ((opt = strsep(&str, ",")) != NULL) {
2230 		if (!strncmp(opt, "debug:", 6)) {
2231 			if (kstrtoint(opt + 6, 0, &debug))
2232 				goto err;
2233 		} else if (!strncmp(opt, "phyaddr:", 8)) {
2234 			if (kstrtoint(opt + 8, 0, &phyaddr))
2235 				goto err;
2236 		} else if (!strncmp(opt, "dma_txsize:", 11)) {
2237 			if (kstrtoint(opt + 11, 0, &dma_txsize))
2238 				goto err;
2239 		} else if (!strncmp(opt, "dma_rxsize:", 11)) {
2240 			if (kstrtoint(opt + 11, 0, &dma_rxsize))
2241 				goto err;
2242 		} else if (!strncmp(opt, "buf_sz:", 7)) {
2243 			if (kstrtoint(opt + 7, 0, &buf_sz))
2244 				goto err;
2245 		} else if (!strncmp(opt, "tc:", 3)) {
2246 			if (kstrtoint(opt + 3, 0, &tc))
2247 				goto err;
2248 		} else if (!strncmp(opt, "watchdog:", 9)) {
2249 			if (kstrtoint(opt + 9, 0, &watchdog))
2250 				goto err;
2251 		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
2252 			if (kstrtoint(opt + 10, 0, &flow_ctrl))
2253 				goto err;
2254 		} else if (!strncmp(opt, "pause:", 6)) {
2255 			if (kstrtoint(opt + 6, 0, &pause))
2256 				goto err;
2257 		} else if (!strncmp(opt, "eee_timer:", 6)) {
2258 			if (kstrtoint(opt + 10, 0, &eee_timer))
2259 				goto err;
2260 		}
2261 	}
2262 	return 0;
2263 
2264 err:
2265 	pr_err("%s: ERROR broken module parameter conversion", __func__);
2266 	return -EINVAL;
2267 }
2268 
2269 __setup("stmmaceth=", stmmac_cmdline_opt);
2270 #endif
2271 
2272 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
2273 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
2274 MODULE_LICENSE("GPL");
2275