xref: /linux/drivers/net/ethernet/stmicro/stmmac/stmmac_main.c (revision b8d312aa075f33282565467662c4628dae0a2aff)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*******************************************************************************
3   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
4   ST Ethernet IPs are built around a Synopsys IP Core.
5 
6 	Copyright(C) 2007-2011 STMicroelectronics Ltd
7 
8 
9   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
10 
11   Documentation available at:
12 	http://www.stlinux.com
13   Support available at:
14 	https://bugzilla.stlinux.com/
15 *******************************************************************************/
16 
17 #include <linux/clk.h>
18 #include <linux/kernel.h>
19 #include <linux/interrupt.h>
20 #include <linux/ip.h>
21 #include <linux/tcp.h>
22 #include <linux/skbuff.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_ether.h>
25 #include <linux/crc32.h>
26 #include <linux/mii.h>
27 #include <linux/if.h>
28 #include <linux/if_vlan.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/slab.h>
31 #include <linux/prefetch.h>
32 #include <linux/pinctrl/consumer.h>
33 #ifdef CONFIG_DEBUG_FS
34 #include <linux/debugfs.h>
35 #include <linux/seq_file.h>
36 #endif /* CONFIG_DEBUG_FS */
37 #include <linux/net_tstamp.h>
38 #include <linux/phylink.h>
39 #include <net/pkt_cls.h>
40 #include "stmmac_ptp.h"
41 #include "stmmac.h"
42 #include <linux/reset.h>
43 #include <linux/of_mdio.h>
44 #include "dwmac1000.h"
45 #include "dwxgmac2.h"
46 #include "hwif.h"
47 
48 #define	STMMAC_ALIGN(x)		__ALIGN_KERNEL(x, SMP_CACHE_BYTES)
49 #define	TSO_MAX_BUFF_SIZE	(SZ_16K - 1)
50 
51 /* Module parameters */
52 #define TX_TIMEO	5000
53 static int watchdog = TX_TIMEO;
54 module_param(watchdog, int, 0644);
55 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
56 
57 static int debug = -1;
58 module_param(debug, int, 0644);
59 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
60 
61 static int phyaddr = -1;
62 module_param(phyaddr, int, 0444);
63 MODULE_PARM_DESC(phyaddr, "Physical device address");
64 
65 #define STMMAC_TX_THRESH	(DMA_TX_SIZE / 4)
66 #define STMMAC_RX_THRESH	(DMA_RX_SIZE / 4)
67 
68 static int flow_ctrl = FLOW_AUTO;
69 module_param(flow_ctrl, int, 0644);
70 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
71 
72 static int pause = PAUSE_TIME;
73 module_param(pause, int, 0644);
74 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
75 
76 #define TC_DEFAULT 64
77 static int tc = TC_DEFAULT;
78 module_param(tc, int, 0644);
79 MODULE_PARM_DESC(tc, "DMA threshold control value");
80 
81 #define	DEFAULT_BUFSIZE	1536
82 static int buf_sz = DEFAULT_BUFSIZE;
83 module_param(buf_sz, int, 0644);
84 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
85 
86 #define	STMMAC_RX_COPYBREAK	256
87 
88 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
89 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
90 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
91 
92 #define STMMAC_DEFAULT_LPI_TIMER	1000
93 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
94 module_param(eee_timer, int, 0644);
95 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
96 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
97 
98 /* By default the driver will use the ring mode to manage tx and rx descriptors,
99  * but allow user to force to use the chain instead of the ring
100  */
101 static unsigned int chain_mode;
102 module_param(chain_mode, int, 0444);
103 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
104 
105 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
106 
107 #ifdef CONFIG_DEBUG_FS
108 static int stmmac_init_fs(struct net_device *dev);
109 static void stmmac_exit_fs(struct net_device *dev);
110 #endif
111 
112 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
113 
114 /**
115  * stmmac_verify_args - verify the driver parameters.
116  * Description: it checks the driver parameters and set a default in case of
117  * errors.
118  */
119 static void stmmac_verify_args(void)
120 {
121 	if (unlikely(watchdog < 0))
122 		watchdog = TX_TIMEO;
123 	if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
124 		buf_sz = DEFAULT_BUFSIZE;
125 	if (unlikely(flow_ctrl > 1))
126 		flow_ctrl = FLOW_AUTO;
127 	else if (likely(flow_ctrl < 0))
128 		flow_ctrl = FLOW_OFF;
129 	if (unlikely((pause < 0) || (pause > 0xffff)))
130 		pause = PAUSE_TIME;
131 	if (eee_timer < 0)
132 		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
133 }
134 
135 /**
136  * stmmac_disable_all_queues - Disable all queues
137  * @priv: driver private structure
138  */
139 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
140 {
141 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
142 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
143 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
144 	u32 queue;
145 
146 	for (queue = 0; queue < maxq; queue++) {
147 		struct stmmac_channel *ch = &priv->channel[queue];
148 
149 		if (queue < rx_queues_cnt)
150 			napi_disable(&ch->rx_napi);
151 		if (queue < tx_queues_cnt)
152 			napi_disable(&ch->tx_napi);
153 	}
154 }
155 
156 /**
157  * stmmac_enable_all_queues - Enable all queues
158  * @priv: driver private structure
159  */
160 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
161 {
162 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
163 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
164 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
165 	u32 queue;
166 
167 	for (queue = 0; queue < maxq; queue++) {
168 		struct stmmac_channel *ch = &priv->channel[queue];
169 
170 		if (queue < rx_queues_cnt)
171 			napi_enable(&ch->rx_napi);
172 		if (queue < tx_queues_cnt)
173 			napi_enable(&ch->tx_napi);
174 	}
175 }
176 
177 /**
178  * stmmac_stop_all_queues - Stop all queues
179  * @priv: driver private structure
180  */
181 static void stmmac_stop_all_queues(struct stmmac_priv *priv)
182 {
183 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
184 	u32 queue;
185 
186 	for (queue = 0; queue < tx_queues_cnt; queue++)
187 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
188 }
189 
190 /**
191  * stmmac_start_all_queues - Start all queues
192  * @priv: driver private structure
193  */
194 static void stmmac_start_all_queues(struct stmmac_priv *priv)
195 {
196 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
197 	u32 queue;
198 
199 	for (queue = 0; queue < tx_queues_cnt; queue++)
200 		netif_tx_start_queue(netdev_get_tx_queue(priv->dev, queue));
201 }
202 
203 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
204 {
205 	if (!test_bit(STMMAC_DOWN, &priv->state) &&
206 	    !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
207 		queue_work(priv->wq, &priv->service_task);
208 }
209 
210 static void stmmac_global_err(struct stmmac_priv *priv)
211 {
212 	netif_carrier_off(priv->dev);
213 	set_bit(STMMAC_RESET_REQUESTED, &priv->state);
214 	stmmac_service_event_schedule(priv);
215 }
216 
217 /**
218  * stmmac_clk_csr_set - dynamically set the MDC clock
219  * @priv: driver private structure
220  * Description: this is to dynamically set the MDC clock according to the csr
221  * clock input.
222  * Note:
223  *	If a specific clk_csr value is passed from the platform
224  *	this means that the CSR Clock Range selection cannot be
225  *	changed at run-time and it is fixed (as reported in the driver
226  *	documentation). Viceversa the driver will try to set the MDC
227  *	clock dynamically according to the actual clock input.
228  */
229 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
230 {
231 	u32 clk_rate;
232 
233 	clk_rate = clk_get_rate(priv->plat->stmmac_clk);
234 
235 	/* Platform provided default clk_csr would be assumed valid
236 	 * for all other cases except for the below mentioned ones.
237 	 * For values higher than the IEEE 802.3 specified frequency
238 	 * we can not estimate the proper divider as it is not known
239 	 * the frequency of clk_csr_i. So we do not change the default
240 	 * divider.
241 	 */
242 	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
243 		if (clk_rate < CSR_F_35M)
244 			priv->clk_csr = STMMAC_CSR_20_35M;
245 		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
246 			priv->clk_csr = STMMAC_CSR_35_60M;
247 		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
248 			priv->clk_csr = STMMAC_CSR_60_100M;
249 		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
250 			priv->clk_csr = STMMAC_CSR_100_150M;
251 		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
252 			priv->clk_csr = STMMAC_CSR_150_250M;
253 		else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
254 			priv->clk_csr = STMMAC_CSR_250_300M;
255 	}
256 
257 	if (priv->plat->has_sun8i) {
258 		if (clk_rate > 160000000)
259 			priv->clk_csr = 0x03;
260 		else if (clk_rate > 80000000)
261 			priv->clk_csr = 0x02;
262 		else if (clk_rate > 40000000)
263 			priv->clk_csr = 0x01;
264 		else
265 			priv->clk_csr = 0;
266 	}
267 
268 	if (priv->plat->has_xgmac) {
269 		if (clk_rate > 400000000)
270 			priv->clk_csr = 0x5;
271 		else if (clk_rate > 350000000)
272 			priv->clk_csr = 0x4;
273 		else if (clk_rate > 300000000)
274 			priv->clk_csr = 0x3;
275 		else if (clk_rate > 250000000)
276 			priv->clk_csr = 0x2;
277 		else if (clk_rate > 150000000)
278 			priv->clk_csr = 0x1;
279 		else
280 			priv->clk_csr = 0x0;
281 	}
282 }
283 
284 static void print_pkt(unsigned char *buf, int len)
285 {
286 	pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
287 	print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
288 }
289 
290 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
291 {
292 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
293 	u32 avail;
294 
295 	if (tx_q->dirty_tx > tx_q->cur_tx)
296 		avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
297 	else
298 		avail = DMA_TX_SIZE - tx_q->cur_tx + tx_q->dirty_tx - 1;
299 
300 	return avail;
301 }
302 
303 /**
304  * stmmac_rx_dirty - Get RX queue dirty
305  * @priv: driver private structure
306  * @queue: RX queue index
307  */
308 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
309 {
310 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
311 	u32 dirty;
312 
313 	if (rx_q->dirty_rx <= rx_q->cur_rx)
314 		dirty = rx_q->cur_rx - rx_q->dirty_rx;
315 	else
316 		dirty = DMA_RX_SIZE - rx_q->dirty_rx + rx_q->cur_rx;
317 
318 	return dirty;
319 }
320 
321 /**
322  * stmmac_enable_eee_mode - check and enter in LPI mode
323  * @priv: driver private structure
324  * Description: this function is to verify and enter in LPI mode in case of
325  * EEE.
326  */
327 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
328 {
329 	u32 tx_cnt = priv->plat->tx_queues_to_use;
330 	u32 queue;
331 
332 	/* check if all TX queues have the work finished */
333 	for (queue = 0; queue < tx_cnt; queue++) {
334 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
335 
336 		if (tx_q->dirty_tx != tx_q->cur_tx)
337 			return; /* still unfinished work */
338 	}
339 
340 	/* Check and enter in LPI mode */
341 	if (!priv->tx_path_in_lpi_mode)
342 		stmmac_set_eee_mode(priv, priv->hw,
343 				priv->plat->en_tx_lpi_clockgating);
344 }
345 
346 /**
347  * stmmac_disable_eee_mode - disable and exit from LPI mode
348  * @priv: driver private structure
349  * Description: this function is to exit and disable EEE in case of
350  * LPI state is true. This is called by the xmit.
351  */
352 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
353 {
354 	stmmac_reset_eee_mode(priv, priv->hw);
355 	del_timer_sync(&priv->eee_ctrl_timer);
356 	priv->tx_path_in_lpi_mode = false;
357 }
358 
359 /**
360  * stmmac_eee_ctrl_timer - EEE TX SW timer.
361  * @arg : data hook
362  * Description:
363  *  if there is no data transfer and if we are not in LPI state,
364  *  then MAC Transmitter can be moved to LPI state.
365  */
366 static void stmmac_eee_ctrl_timer(struct timer_list *t)
367 {
368 	struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
369 
370 	stmmac_enable_eee_mode(priv);
371 	mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
372 }
373 
374 /**
375  * stmmac_eee_init - init EEE
376  * @priv: driver private structure
377  * Description:
378  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
379  *  can also manage EEE, this function enable the LPI state and start related
380  *  timer.
381  */
382 bool stmmac_eee_init(struct stmmac_priv *priv)
383 {
384 	int tx_lpi_timer = priv->tx_lpi_timer;
385 
386 	/* Using PCS we cannot dial with the phy registers at this stage
387 	 * so we do not support extra feature like EEE.
388 	 */
389 	if ((priv->hw->pcs == STMMAC_PCS_RGMII) ||
390 	    (priv->hw->pcs == STMMAC_PCS_TBI) ||
391 	    (priv->hw->pcs == STMMAC_PCS_RTBI))
392 		return false;
393 
394 	/* Check if MAC core supports the EEE feature. */
395 	if (!priv->dma_cap.eee)
396 		return false;
397 
398 	mutex_lock(&priv->lock);
399 
400 	/* Check if it needs to be deactivated */
401 	if (!priv->eee_active) {
402 		if (priv->eee_enabled) {
403 			netdev_dbg(priv->dev, "disable EEE\n");
404 			del_timer_sync(&priv->eee_ctrl_timer);
405 			stmmac_set_eee_timer(priv, priv->hw, 0, tx_lpi_timer);
406 		}
407 		mutex_unlock(&priv->lock);
408 		return false;
409 	}
410 
411 	if (priv->eee_active && !priv->eee_enabled) {
412 		timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
413 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
414 		stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
415 				     tx_lpi_timer);
416 	}
417 
418 	mutex_unlock(&priv->lock);
419 	netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
420 	return true;
421 }
422 
423 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
424  * @priv: driver private structure
425  * @p : descriptor pointer
426  * @skb : the socket buffer
427  * Description :
428  * This function will read timestamp from the descriptor & pass it to stack.
429  * and also perform some sanity checks.
430  */
431 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
432 				   struct dma_desc *p, struct sk_buff *skb)
433 {
434 	struct skb_shared_hwtstamps shhwtstamp;
435 	u64 ns = 0;
436 
437 	if (!priv->hwts_tx_en)
438 		return;
439 
440 	/* exit if skb doesn't support hw tstamp */
441 	if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
442 		return;
443 
444 	/* check tx tstamp status */
445 	if (stmmac_get_tx_timestamp_status(priv, p)) {
446 		/* get the valid tstamp */
447 		stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
448 
449 		memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
450 		shhwtstamp.hwtstamp = ns_to_ktime(ns);
451 
452 		netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
453 		/* pass tstamp to stack */
454 		skb_tstamp_tx(skb, &shhwtstamp);
455 	}
456 
457 	return;
458 }
459 
460 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
461  * @priv: driver private structure
462  * @p : descriptor pointer
463  * @np : next descriptor pointer
464  * @skb : the socket buffer
465  * Description :
466  * This function will read received packet's timestamp from the descriptor
467  * and pass it to stack. It also perform some sanity checks.
468  */
469 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
470 				   struct dma_desc *np, struct sk_buff *skb)
471 {
472 	struct skb_shared_hwtstamps *shhwtstamp = NULL;
473 	struct dma_desc *desc = p;
474 	u64 ns = 0;
475 
476 	if (!priv->hwts_rx_en)
477 		return;
478 	/* For GMAC4, the valid timestamp is from CTX next desc. */
479 	if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
480 		desc = np;
481 
482 	/* Check if timestamp is available */
483 	if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
484 		stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
485 		netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
486 		shhwtstamp = skb_hwtstamps(skb);
487 		memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
488 		shhwtstamp->hwtstamp = ns_to_ktime(ns);
489 	} else  {
490 		netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
491 	}
492 }
493 
494 /**
495  *  stmmac_hwtstamp_set - control hardware timestamping.
496  *  @dev: device pointer.
497  *  @ifr: An IOCTL specific structure, that can contain a pointer to
498  *  a proprietary structure used to pass information to the driver.
499  *  Description:
500  *  This function configures the MAC to enable/disable both outgoing(TX)
501  *  and incoming(RX) packets time stamping based on user input.
502  *  Return Value:
503  *  0 on success and an appropriate -ve integer on failure.
504  */
505 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
506 {
507 	struct stmmac_priv *priv = netdev_priv(dev);
508 	struct hwtstamp_config config;
509 	struct timespec64 now;
510 	u64 temp = 0;
511 	u32 ptp_v2 = 0;
512 	u32 tstamp_all = 0;
513 	u32 ptp_over_ipv4_udp = 0;
514 	u32 ptp_over_ipv6_udp = 0;
515 	u32 ptp_over_ethernet = 0;
516 	u32 snap_type_sel = 0;
517 	u32 ts_master_en = 0;
518 	u32 ts_event_en = 0;
519 	u32 sec_inc = 0;
520 	u32 value = 0;
521 	bool xmac;
522 
523 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
524 
525 	if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
526 		netdev_alert(priv->dev, "No support for HW time stamping\n");
527 		priv->hwts_tx_en = 0;
528 		priv->hwts_rx_en = 0;
529 
530 		return -EOPNOTSUPP;
531 	}
532 
533 	if (copy_from_user(&config, ifr->ifr_data,
534 			   sizeof(config)))
535 		return -EFAULT;
536 
537 	netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
538 		   __func__, config.flags, config.tx_type, config.rx_filter);
539 
540 	/* reserved for future extensions */
541 	if (config.flags)
542 		return -EINVAL;
543 
544 	if (config.tx_type != HWTSTAMP_TX_OFF &&
545 	    config.tx_type != HWTSTAMP_TX_ON)
546 		return -ERANGE;
547 
548 	if (priv->adv_ts) {
549 		switch (config.rx_filter) {
550 		case HWTSTAMP_FILTER_NONE:
551 			/* time stamp no incoming packet at all */
552 			config.rx_filter = HWTSTAMP_FILTER_NONE;
553 			break;
554 
555 		case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
556 			/* PTP v1, UDP, any kind of event packet */
557 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
558 			/* 'xmac' hardware can support Sync, Pdelay_Req and
559 			 * Pdelay_resp by setting bit14 and bits17/16 to 01
560 			 * This leaves Delay_Req timestamps out.
561 			 * Enable all events *and* general purpose message
562 			 * timestamping
563 			 */
564 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
565 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
566 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
567 			break;
568 
569 		case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
570 			/* PTP v1, UDP, Sync packet */
571 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
572 			/* take time stamp for SYNC messages only */
573 			ts_event_en = PTP_TCR_TSEVNTENA;
574 
575 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
576 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
577 			break;
578 
579 		case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
580 			/* PTP v1, UDP, Delay_req packet */
581 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
582 			/* take time stamp for Delay_Req messages only */
583 			ts_master_en = PTP_TCR_TSMSTRENA;
584 			ts_event_en = PTP_TCR_TSEVNTENA;
585 
586 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
587 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
588 			break;
589 
590 		case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
591 			/* PTP v2, UDP, any kind of event packet */
592 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
593 			ptp_v2 = PTP_TCR_TSVER2ENA;
594 			/* take time stamp for all event messages */
595 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
596 
597 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
598 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
599 			break;
600 
601 		case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
602 			/* PTP v2, UDP, Sync packet */
603 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
604 			ptp_v2 = PTP_TCR_TSVER2ENA;
605 			/* take time stamp for SYNC messages only */
606 			ts_event_en = PTP_TCR_TSEVNTENA;
607 
608 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
609 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
610 			break;
611 
612 		case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
613 			/* PTP v2, UDP, Delay_req packet */
614 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
615 			ptp_v2 = PTP_TCR_TSVER2ENA;
616 			/* take time stamp for Delay_Req messages only */
617 			ts_master_en = PTP_TCR_TSMSTRENA;
618 			ts_event_en = PTP_TCR_TSEVNTENA;
619 
620 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
621 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
622 			break;
623 
624 		case HWTSTAMP_FILTER_PTP_V2_EVENT:
625 			/* PTP v2/802.AS1 any layer, any kind of event packet */
626 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
627 			ptp_v2 = PTP_TCR_TSVER2ENA;
628 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
629 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
630 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
631 			ptp_over_ethernet = PTP_TCR_TSIPENA;
632 			break;
633 
634 		case HWTSTAMP_FILTER_PTP_V2_SYNC:
635 			/* PTP v2/802.AS1, any layer, Sync packet */
636 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
637 			ptp_v2 = PTP_TCR_TSVER2ENA;
638 			/* take time stamp for SYNC messages only */
639 			ts_event_en = PTP_TCR_TSEVNTENA;
640 
641 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
642 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
643 			ptp_over_ethernet = PTP_TCR_TSIPENA;
644 			break;
645 
646 		case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
647 			/* PTP v2/802.AS1, any layer, Delay_req packet */
648 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
649 			ptp_v2 = PTP_TCR_TSVER2ENA;
650 			/* take time stamp for Delay_Req messages only */
651 			ts_master_en = PTP_TCR_TSMSTRENA;
652 			ts_event_en = PTP_TCR_TSEVNTENA;
653 
654 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
655 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
656 			ptp_over_ethernet = PTP_TCR_TSIPENA;
657 			break;
658 
659 		case HWTSTAMP_FILTER_NTP_ALL:
660 		case HWTSTAMP_FILTER_ALL:
661 			/* time stamp any incoming packet */
662 			config.rx_filter = HWTSTAMP_FILTER_ALL;
663 			tstamp_all = PTP_TCR_TSENALL;
664 			break;
665 
666 		default:
667 			return -ERANGE;
668 		}
669 	} else {
670 		switch (config.rx_filter) {
671 		case HWTSTAMP_FILTER_NONE:
672 			config.rx_filter = HWTSTAMP_FILTER_NONE;
673 			break;
674 		default:
675 			/* PTP v1, UDP, any kind of event packet */
676 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
677 			break;
678 		}
679 	}
680 	priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
681 	priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
682 
683 	if (!priv->hwts_tx_en && !priv->hwts_rx_en)
684 		stmmac_config_hw_tstamping(priv, priv->ptpaddr, 0);
685 	else {
686 		value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
687 			 tstamp_all | ptp_v2 | ptp_over_ethernet |
688 			 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
689 			 ts_master_en | snap_type_sel);
690 		stmmac_config_hw_tstamping(priv, priv->ptpaddr, value);
691 
692 		/* program Sub Second Increment reg */
693 		stmmac_config_sub_second_increment(priv,
694 				priv->ptpaddr, priv->plat->clk_ptp_rate,
695 				xmac, &sec_inc);
696 		temp = div_u64(1000000000ULL, sec_inc);
697 
698 		/* Store sub second increment and flags for later use */
699 		priv->sub_second_inc = sec_inc;
700 		priv->systime_flags = value;
701 
702 		/* calculate default added value:
703 		 * formula is :
704 		 * addend = (2^32)/freq_div_ratio;
705 		 * where, freq_div_ratio = 1e9ns/sec_inc
706 		 */
707 		temp = (u64)(temp << 32);
708 		priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
709 		stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
710 
711 		/* initialize system time */
712 		ktime_get_real_ts64(&now);
713 
714 		/* lower 32 bits of tv_sec are safe until y2106 */
715 		stmmac_init_systime(priv, priv->ptpaddr,
716 				(u32)now.tv_sec, now.tv_nsec);
717 	}
718 
719 	memcpy(&priv->tstamp_config, &config, sizeof(config));
720 
721 	return copy_to_user(ifr->ifr_data, &config,
722 			    sizeof(config)) ? -EFAULT : 0;
723 }
724 
725 /**
726  *  stmmac_hwtstamp_get - read hardware timestamping.
727  *  @dev: device pointer.
728  *  @ifr: An IOCTL specific structure, that can contain a pointer to
729  *  a proprietary structure used to pass information to the driver.
730  *  Description:
731  *  This function obtain the current hardware timestamping settings
732     as requested.
733  */
734 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
735 {
736 	struct stmmac_priv *priv = netdev_priv(dev);
737 	struct hwtstamp_config *config = &priv->tstamp_config;
738 
739 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
740 		return -EOPNOTSUPP;
741 
742 	return copy_to_user(ifr->ifr_data, config,
743 			    sizeof(*config)) ? -EFAULT : 0;
744 }
745 
746 /**
747  * stmmac_init_ptp - init PTP
748  * @priv: driver private structure
749  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
750  * This is done by looking at the HW cap. register.
751  * This function also registers the ptp driver.
752  */
753 static int stmmac_init_ptp(struct stmmac_priv *priv)
754 {
755 	bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
756 
757 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
758 		return -EOPNOTSUPP;
759 
760 	priv->adv_ts = 0;
761 	/* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
762 	if (xmac && priv->dma_cap.atime_stamp)
763 		priv->adv_ts = 1;
764 	/* Dwmac 3.x core with extend_desc can support adv_ts */
765 	else if (priv->extend_desc && priv->dma_cap.atime_stamp)
766 		priv->adv_ts = 1;
767 
768 	if (priv->dma_cap.time_stamp)
769 		netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
770 
771 	if (priv->adv_ts)
772 		netdev_info(priv->dev,
773 			    "IEEE 1588-2008 Advanced Timestamp supported\n");
774 
775 	priv->hwts_tx_en = 0;
776 	priv->hwts_rx_en = 0;
777 
778 	stmmac_ptp_register(priv);
779 
780 	return 0;
781 }
782 
783 static void stmmac_release_ptp(struct stmmac_priv *priv)
784 {
785 	if (priv->plat->clk_ptp_ref)
786 		clk_disable_unprepare(priv->plat->clk_ptp_ref);
787 	stmmac_ptp_unregister(priv);
788 }
789 
790 /**
791  *  stmmac_mac_flow_ctrl - Configure flow control in all queues
792  *  @priv: driver private structure
793  *  Description: It is used for configuring the flow control in all queues
794  */
795 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
796 {
797 	u32 tx_cnt = priv->plat->tx_queues_to_use;
798 
799 	stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
800 			priv->pause, tx_cnt);
801 }
802 
803 static void stmmac_validate(struct phylink_config *config,
804 			    unsigned long *supported,
805 			    struct phylink_link_state *state)
806 {
807 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
808 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mac_supported) = { 0, };
809 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
810 	int tx_cnt = priv->plat->tx_queues_to_use;
811 	int max_speed = priv->plat->max_speed;
812 
813 	phylink_set(mac_supported, 10baseT_Half);
814 	phylink_set(mac_supported, 10baseT_Full);
815 	phylink_set(mac_supported, 100baseT_Half);
816 	phylink_set(mac_supported, 100baseT_Full);
817 
818 	phylink_set(mac_supported, Autoneg);
819 	phylink_set(mac_supported, Pause);
820 	phylink_set(mac_supported, Asym_Pause);
821 	phylink_set_port_modes(mac_supported);
822 
823 	if (priv->plat->has_gmac ||
824 	    priv->plat->has_gmac4 ||
825 	    priv->plat->has_xgmac) {
826 		phylink_set(mac_supported, 1000baseT_Half);
827 		phylink_set(mac_supported, 1000baseT_Full);
828 		phylink_set(mac_supported, 1000baseKX_Full);
829 	}
830 
831 	/* Cut down 1G if asked to */
832 	if ((max_speed > 0) && (max_speed < 1000)) {
833 		phylink_set(mask, 1000baseT_Full);
834 		phylink_set(mask, 1000baseX_Full);
835 	} else if (priv->plat->has_xgmac) {
836 		phylink_set(mac_supported, 2500baseT_Full);
837 		phylink_set(mac_supported, 5000baseT_Full);
838 		phylink_set(mac_supported, 10000baseSR_Full);
839 		phylink_set(mac_supported, 10000baseLR_Full);
840 		phylink_set(mac_supported, 10000baseER_Full);
841 		phylink_set(mac_supported, 10000baseLRM_Full);
842 		phylink_set(mac_supported, 10000baseT_Full);
843 		phylink_set(mac_supported, 10000baseKX4_Full);
844 		phylink_set(mac_supported, 10000baseKR_Full);
845 	}
846 
847 	/* Half-Duplex can only work with single queue */
848 	if (tx_cnt > 1) {
849 		phylink_set(mask, 10baseT_Half);
850 		phylink_set(mask, 100baseT_Half);
851 		phylink_set(mask, 1000baseT_Half);
852 	}
853 
854 	bitmap_and(supported, supported, mac_supported,
855 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
856 	bitmap_andnot(supported, supported, mask,
857 		      __ETHTOOL_LINK_MODE_MASK_NBITS);
858 	bitmap_and(state->advertising, state->advertising, mac_supported,
859 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
860 	bitmap_andnot(state->advertising, state->advertising, mask,
861 		      __ETHTOOL_LINK_MODE_MASK_NBITS);
862 }
863 
864 static int stmmac_mac_link_state(struct phylink_config *config,
865 				 struct phylink_link_state *state)
866 {
867 	return -EOPNOTSUPP;
868 }
869 
870 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
871 			      const struct phylink_link_state *state)
872 {
873 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
874 	u32 ctrl;
875 
876 	ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
877 	ctrl &= ~priv->hw->link.speed_mask;
878 
879 	if (state->interface == PHY_INTERFACE_MODE_USXGMII) {
880 		switch (state->speed) {
881 		case SPEED_10000:
882 			ctrl |= priv->hw->link.xgmii.speed10000;
883 			break;
884 		case SPEED_5000:
885 			ctrl |= priv->hw->link.xgmii.speed5000;
886 			break;
887 		case SPEED_2500:
888 			ctrl |= priv->hw->link.xgmii.speed2500;
889 			break;
890 		default:
891 			return;
892 		}
893 	} else {
894 		switch (state->speed) {
895 		case SPEED_2500:
896 			ctrl |= priv->hw->link.speed2500;
897 			break;
898 		case SPEED_1000:
899 			ctrl |= priv->hw->link.speed1000;
900 			break;
901 		case SPEED_100:
902 			ctrl |= priv->hw->link.speed100;
903 			break;
904 		case SPEED_10:
905 			ctrl |= priv->hw->link.speed10;
906 			break;
907 		default:
908 			return;
909 		}
910 	}
911 
912 	priv->speed = state->speed;
913 
914 	if (priv->plat->fix_mac_speed)
915 		priv->plat->fix_mac_speed(priv->plat->bsp_priv, state->speed);
916 
917 	if (!state->duplex)
918 		ctrl &= ~priv->hw->link.duplex;
919 	else
920 		ctrl |= priv->hw->link.duplex;
921 
922 	/* Flow Control operation */
923 	if (state->pause)
924 		stmmac_mac_flow_ctrl(priv, state->duplex);
925 
926 	writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
927 }
928 
929 static void stmmac_mac_an_restart(struct phylink_config *config)
930 {
931 	/* Not Supported */
932 }
933 
934 static void stmmac_mac_link_down(struct phylink_config *config,
935 				 unsigned int mode, phy_interface_t interface)
936 {
937 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
938 
939 	stmmac_mac_set(priv, priv->ioaddr, false);
940 	priv->eee_active = false;
941 	stmmac_eee_init(priv);
942 	stmmac_set_eee_pls(priv, priv->hw, false);
943 }
944 
945 static void stmmac_mac_link_up(struct phylink_config *config,
946 			       unsigned int mode, phy_interface_t interface,
947 			       struct phy_device *phy)
948 {
949 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
950 
951 	stmmac_mac_set(priv, priv->ioaddr, true);
952 	if (phy && priv->dma_cap.eee) {
953 		priv->eee_active = phy_init_eee(phy, 1) >= 0;
954 		priv->eee_enabled = stmmac_eee_init(priv);
955 		stmmac_set_eee_pls(priv, priv->hw, true);
956 	}
957 }
958 
959 static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
960 	.validate = stmmac_validate,
961 	.mac_link_state = stmmac_mac_link_state,
962 	.mac_config = stmmac_mac_config,
963 	.mac_an_restart = stmmac_mac_an_restart,
964 	.mac_link_down = stmmac_mac_link_down,
965 	.mac_link_up = stmmac_mac_link_up,
966 };
967 
968 /**
969  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
970  * @priv: driver private structure
971  * Description: this is to verify if the HW supports the PCS.
972  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
973  * configured for the TBI, RTBI, or SGMII PHY interface.
974  */
975 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
976 {
977 	int interface = priv->plat->interface;
978 
979 	if (priv->dma_cap.pcs) {
980 		if ((interface == PHY_INTERFACE_MODE_RGMII) ||
981 		    (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
982 		    (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
983 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
984 			netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
985 			priv->hw->pcs = STMMAC_PCS_RGMII;
986 		} else if (interface == PHY_INTERFACE_MODE_SGMII) {
987 			netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
988 			priv->hw->pcs = STMMAC_PCS_SGMII;
989 		}
990 	}
991 }
992 
993 /**
994  * stmmac_init_phy - PHY initialization
995  * @dev: net device structure
996  * Description: it initializes the driver's PHY state, and attaches the PHY
997  * to the mac driver.
998  *  Return value:
999  *  0 on success
1000  */
1001 static int stmmac_init_phy(struct net_device *dev)
1002 {
1003 	struct stmmac_priv *priv = netdev_priv(dev);
1004 	struct device_node *node;
1005 	int ret;
1006 
1007 	node = priv->plat->phylink_node;
1008 
1009 	if (node)
1010 		ret = phylink_of_phy_connect(priv->phylink, node, 0);
1011 
1012 	/* Some DT bindings do not set-up the PHY handle. Let's try to
1013 	 * manually parse it
1014 	 */
1015 	if (!node || ret) {
1016 		int addr = priv->plat->phy_addr;
1017 		struct phy_device *phydev;
1018 
1019 		phydev = mdiobus_get_phy(priv->mii, addr);
1020 		if (!phydev) {
1021 			netdev_err(priv->dev, "no phy at addr %d\n", addr);
1022 			return -ENODEV;
1023 		}
1024 
1025 		ret = phylink_connect_phy(priv->phylink, phydev);
1026 	}
1027 
1028 	return ret;
1029 }
1030 
1031 static int stmmac_phy_setup(struct stmmac_priv *priv)
1032 {
1033 	struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node);
1034 	int mode = priv->plat->interface;
1035 	struct phylink *phylink;
1036 
1037 	priv->phylink_config.dev = &priv->dev->dev;
1038 	priv->phylink_config.type = PHYLINK_NETDEV;
1039 
1040 	phylink = phylink_create(&priv->phylink_config, fwnode,
1041 				 mode, &stmmac_phylink_mac_ops);
1042 	if (IS_ERR(phylink))
1043 		return PTR_ERR(phylink);
1044 
1045 	priv->phylink = phylink;
1046 	return 0;
1047 }
1048 
1049 static void stmmac_display_rx_rings(struct stmmac_priv *priv)
1050 {
1051 	u32 rx_cnt = priv->plat->rx_queues_to_use;
1052 	void *head_rx;
1053 	u32 queue;
1054 
1055 	/* Display RX rings */
1056 	for (queue = 0; queue < rx_cnt; queue++) {
1057 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1058 
1059 		pr_info("\tRX Queue %u rings\n", queue);
1060 
1061 		if (priv->extend_desc)
1062 			head_rx = (void *)rx_q->dma_erx;
1063 		else
1064 			head_rx = (void *)rx_q->dma_rx;
1065 
1066 		/* Display RX ring */
1067 		stmmac_display_ring(priv, head_rx, DMA_RX_SIZE, true);
1068 	}
1069 }
1070 
1071 static void stmmac_display_tx_rings(struct stmmac_priv *priv)
1072 {
1073 	u32 tx_cnt = priv->plat->tx_queues_to_use;
1074 	void *head_tx;
1075 	u32 queue;
1076 
1077 	/* Display TX rings */
1078 	for (queue = 0; queue < tx_cnt; queue++) {
1079 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1080 
1081 		pr_info("\tTX Queue %d rings\n", queue);
1082 
1083 		if (priv->extend_desc)
1084 			head_tx = (void *)tx_q->dma_etx;
1085 		else
1086 			head_tx = (void *)tx_q->dma_tx;
1087 
1088 		stmmac_display_ring(priv, head_tx, DMA_TX_SIZE, false);
1089 	}
1090 }
1091 
1092 static void stmmac_display_rings(struct stmmac_priv *priv)
1093 {
1094 	/* Display RX ring */
1095 	stmmac_display_rx_rings(priv);
1096 
1097 	/* Display TX ring */
1098 	stmmac_display_tx_rings(priv);
1099 }
1100 
1101 static int stmmac_set_bfsize(int mtu, int bufsize)
1102 {
1103 	int ret = bufsize;
1104 
1105 	if (mtu >= BUF_SIZE_4KiB)
1106 		ret = BUF_SIZE_8KiB;
1107 	else if (mtu >= BUF_SIZE_2KiB)
1108 		ret = BUF_SIZE_4KiB;
1109 	else if (mtu > DEFAULT_BUFSIZE)
1110 		ret = BUF_SIZE_2KiB;
1111 	else
1112 		ret = DEFAULT_BUFSIZE;
1113 
1114 	return ret;
1115 }
1116 
1117 /**
1118  * stmmac_clear_rx_descriptors - clear RX descriptors
1119  * @priv: driver private structure
1120  * @queue: RX queue index
1121  * Description: this function is called to clear the RX descriptors
1122  * in case of both basic and extended descriptors are used.
1123  */
1124 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue)
1125 {
1126 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1127 	int i;
1128 
1129 	/* Clear the RX descriptors */
1130 	for (i = 0; i < DMA_RX_SIZE; i++)
1131 		if (priv->extend_desc)
1132 			stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1133 					priv->use_riwt, priv->mode,
1134 					(i == DMA_RX_SIZE - 1),
1135 					priv->dma_buf_sz);
1136 		else
1137 			stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1138 					priv->use_riwt, priv->mode,
1139 					(i == DMA_RX_SIZE - 1),
1140 					priv->dma_buf_sz);
1141 }
1142 
1143 /**
1144  * stmmac_clear_tx_descriptors - clear tx descriptors
1145  * @priv: driver private structure
1146  * @queue: TX queue index.
1147  * Description: this function is called to clear the TX descriptors
1148  * in case of both basic and extended descriptors are used.
1149  */
1150 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue)
1151 {
1152 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1153 	int i;
1154 
1155 	/* Clear the TX descriptors */
1156 	for (i = 0; i < DMA_TX_SIZE; i++)
1157 		if (priv->extend_desc)
1158 			stmmac_init_tx_desc(priv, &tx_q->dma_etx[i].basic,
1159 					priv->mode, (i == DMA_TX_SIZE - 1));
1160 		else
1161 			stmmac_init_tx_desc(priv, &tx_q->dma_tx[i],
1162 					priv->mode, (i == DMA_TX_SIZE - 1));
1163 }
1164 
1165 /**
1166  * stmmac_clear_descriptors - clear descriptors
1167  * @priv: driver private structure
1168  * Description: this function is called to clear the TX and RX descriptors
1169  * in case of both basic and extended descriptors are used.
1170  */
1171 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
1172 {
1173 	u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1174 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1175 	u32 queue;
1176 
1177 	/* Clear the RX descriptors */
1178 	for (queue = 0; queue < rx_queue_cnt; queue++)
1179 		stmmac_clear_rx_descriptors(priv, queue);
1180 
1181 	/* Clear the TX descriptors */
1182 	for (queue = 0; queue < tx_queue_cnt; queue++)
1183 		stmmac_clear_tx_descriptors(priv, queue);
1184 }
1185 
1186 /**
1187  * stmmac_init_rx_buffers - init the RX descriptor buffer.
1188  * @priv: driver private structure
1189  * @p: descriptor pointer
1190  * @i: descriptor index
1191  * @flags: gfp flag
1192  * @queue: RX queue index
1193  * Description: this function is called to allocate a receive buffer, perform
1194  * the DMA mapping and init the descriptor.
1195  */
1196 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
1197 				  int i, gfp_t flags, u32 queue)
1198 {
1199 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1200 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1201 
1202 	buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
1203 	if (!buf->page)
1204 		return -ENOMEM;
1205 
1206 	buf->addr = page_pool_get_dma_addr(buf->page);
1207 	stmmac_set_desc_addr(priv, p, buf->addr);
1208 	if (priv->dma_buf_sz == BUF_SIZE_16KiB)
1209 		stmmac_init_desc3(priv, p);
1210 
1211 	return 0;
1212 }
1213 
1214 /**
1215  * stmmac_free_rx_buffer - free RX dma buffers
1216  * @priv: private structure
1217  * @queue: RX queue index
1218  * @i: buffer index.
1219  */
1220 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1221 {
1222 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1223 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1224 
1225 	if (buf->page)
1226 		page_pool_put_page(rx_q->page_pool, buf->page, false);
1227 	buf->page = NULL;
1228 }
1229 
1230 /**
1231  * stmmac_free_tx_buffer - free RX dma buffers
1232  * @priv: private structure
1233  * @queue: RX queue index
1234  * @i: buffer index.
1235  */
1236 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1237 {
1238 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1239 
1240 	if (tx_q->tx_skbuff_dma[i].buf) {
1241 		if (tx_q->tx_skbuff_dma[i].map_as_page)
1242 			dma_unmap_page(priv->device,
1243 				       tx_q->tx_skbuff_dma[i].buf,
1244 				       tx_q->tx_skbuff_dma[i].len,
1245 				       DMA_TO_DEVICE);
1246 		else
1247 			dma_unmap_single(priv->device,
1248 					 tx_q->tx_skbuff_dma[i].buf,
1249 					 tx_q->tx_skbuff_dma[i].len,
1250 					 DMA_TO_DEVICE);
1251 	}
1252 
1253 	if (tx_q->tx_skbuff[i]) {
1254 		dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1255 		tx_q->tx_skbuff[i] = NULL;
1256 		tx_q->tx_skbuff_dma[i].buf = 0;
1257 		tx_q->tx_skbuff_dma[i].map_as_page = false;
1258 	}
1259 }
1260 
1261 /**
1262  * init_dma_rx_desc_rings - init the RX descriptor rings
1263  * @dev: net device structure
1264  * @flags: gfp flag.
1265  * Description: this function initializes the DMA RX descriptors
1266  * and allocates the socket buffers. It supports the chained and ring
1267  * modes.
1268  */
1269 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags)
1270 {
1271 	struct stmmac_priv *priv = netdev_priv(dev);
1272 	u32 rx_count = priv->plat->rx_queues_to_use;
1273 	int ret = -ENOMEM;
1274 	int bfsize = 0;
1275 	int queue;
1276 	int i;
1277 
1278 	bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu);
1279 	if (bfsize < 0)
1280 		bfsize = 0;
1281 
1282 	if (bfsize < BUF_SIZE_16KiB)
1283 		bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
1284 
1285 	priv->dma_buf_sz = bfsize;
1286 
1287 	/* RX INITIALIZATION */
1288 	netif_dbg(priv, probe, priv->dev,
1289 		  "SKB addresses:\nskb\t\tskb data\tdma data\n");
1290 
1291 	for (queue = 0; queue < rx_count; queue++) {
1292 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1293 
1294 		netif_dbg(priv, probe, priv->dev,
1295 			  "(%s) dma_rx_phy=0x%08x\n", __func__,
1296 			  (u32)rx_q->dma_rx_phy);
1297 
1298 		for (i = 0; i < DMA_RX_SIZE; i++) {
1299 			struct dma_desc *p;
1300 
1301 			if (priv->extend_desc)
1302 				p = &((rx_q->dma_erx + i)->basic);
1303 			else
1304 				p = rx_q->dma_rx + i;
1305 
1306 			ret = stmmac_init_rx_buffers(priv, p, i, flags,
1307 						     queue);
1308 			if (ret)
1309 				goto err_init_rx_buffers;
1310 		}
1311 
1312 		rx_q->cur_rx = 0;
1313 		rx_q->dirty_rx = (unsigned int)(i - DMA_RX_SIZE);
1314 
1315 		stmmac_clear_rx_descriptors(priv, queue);
1316 
1317 		/* Setup the chained descriptor addresses */
1318 		if (priv->mode == STMMAC_CHAIN_MODE) {
1319 			if (priv->extend_desc)
1320 				stmmac_mode_init(priv, rx_q->dma_erx,
1321 						rx_q->dma_rx_phy, DMA_RX_SIZE, 1);
1322 			else
1323 				stmmac_mode_init(priv, rx_q->dma_rx,
1324 						rx_q->dma_rx_phy, DMA_RX_SIZE, 0);
1325 		}
1326 	}
1327 
1328 	buf_sz = bfsize;
1329 
1330 	return 0;
1331 
1332 err_init_rx_buffers:
1333 	while (queue >= 0) {
1334 		while (--i >= 0)
1335 			stmmac_free_rx_buffer(priv, queue, i);
1336 
1337 		if (queue == 0)
1338 			break;
1339 
1340 		i = DMA_RX_SIZE;
1341 		queue--;
1342 	}
1343 
1344 	return ret;
1345 }
1346 
1347 /**
1348  * init_dma_tx_desc_rings - init the TX descriptor rings
1349  * @dev: net device structure.
1350  * Description: this function initializes the DMA TX descriptors
1351  * and allocates the socket buffers. It supports the chained and ring
1352  * modes.
1353  */
1354 static int init_dma_tx_desc_rings(struct net_device *dev)
1355 {
1356 	struct stmmac_priv *priv = netdev_priv(dev);
1357 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1358 	u32 queue;
1359 	int i;
1360 
1361 	for (queue = 0; queue < tx_queue_cnt; queue++) {
1362 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1363 
1364 		netif_dbg(priv, probe, priv->dev,
1365 			  "(%s) dma_tx_phy=0x%08x\n", __func__,
1366 			 (u32)tx_q->dma_tx_phy);
1367 
1368 		/* Setup the chained descriptor addresses */
1369 		if (priv->mode == STMMAC_CHAIN_MODE) {
1370 			if (priv->extend_desc)
1371 				stmmac_mode_init(priv, tx_q->dma_etx,
1372 						tx_q->dma_tx_phy, DMA_TX_SIZE, 1);
1373 			else
1374 				stmmac_mode_init(priv, tx_q->dma_tx,
1375 						tx_q->dma_tx_phy, DMA_TX_SIZE, 0);
1376 		}
1377 
1378 		for (i = 0; i < DMA_TX_SIZE; i++) {
1379 			struct dma_desc *p;
1380 			if (priv->extend_desc)
1381 				p = &((tx_q->dma_etx + i)->basic);
1382 			else
1383 				p = tx_q->dma_tx + i;
1384 
1385 			stmmac_clear_desc(priv, p);
1386 
1387 			tx_q->tx_skbuff_dma[i].buf = 0;
1388 			tx_q->tx_skbuff_dma[i].map_as_page = false;
1389 			tx_q->tx_skbuff_dma[i].len = 0;
1390 			tx_q->tx_skbuff_dma[i].last_segment = false;
1391 			tx_q->tx_skbuff[i] = NULL;
1392 		}
1393 
1394 		tx_q->dirty_tx = 0;
1395 		tx_q->cur_tx = 0;
1396 		tx_q->mss = 0;
1397 
1398 		netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
1399 	}
1400 
1401 	return 0;
1402 }
1403 
1404 /**
1405  * init_dma_desc_rings - init the RX/TX descriptor rings
1406  * @dev: net device structure
1407  * @flags: gfp flag.
1408  * Description: this function initializes the DMA RX/TX descriptors
1409  * and allocates the socket buffers. It supports the chained and ring
1410  * modes.
1411  */
1412 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1413 {
1414 	struct stmmac_priv *priv = netdev_priv(dev);
1415 	int ret;
1416 
1417 	ret = init_dma_rx_desc_rings(dev, flags);
1418 	if (ret)
1419 		return ret;
1420 
1421 	ret = init_dma_tx_desc_rings(dev);
1422 
1423 	stmmac_clear_descriptors(priv);
1424 
1425 	if (netif_msg_hw(priv))
1426 		stmmac_display_rings(priv);
1427 
1428 	return ret;
1429 }
1430 
1431 /**
1432  * dma_free_rx_skbufs - free RX dma buffers
1433  * @priv: private structure
1434  * @queue: RX queue index
1435  */
1436 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue)
1437 {
1438 	int i;
1439 
1440 	for (i = 0; i < DMA_RX_SIZE; i++)
1441 		stmmac_free_rx_buffer(priv, queue, i);
1442 }
1443 
1444 /**
1445  * dma_free_tx_skbufs - free TX dma buffers
1446  * @priv: private structure
1447  * @queue: TX queue index
1448  */
1449 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue)
1450 {
1451 	int i;
1452 
1453 	for (i = 0; i < DMA_TX_SIZE; i++)
1454 		stmmac_free_tx_buffer(priv, queue, i);
1455 }
1456 
1457 /**
1458  * free_dma_rx_desc_resources - free RX dma desc resources
1459  * @priv: private structure
1460  */
1461 static void free_dma_rx_desc_resources(struct stmmac_priv *priv)
1462 {
1463 	u32 rx_count = priv->plat->rx_queues_to_use;
1464 	u32 queue;
1465 
1466 	/* Free RX queue resources */
1467 	for (queue = 0; queue < rx_count; queue++) {
1468 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1469 
1470 		/* Release the DMA RX socket buffers */
1471 		dma_free_rx_skbufs(priv, queue);
1472 
1473 		/* Free DMA regions of consistent memory previously allocated */
1474 		if (!priv->extend_desc)
1475 			dma_free_coherent(priv->device,
1476 					  DMA_RX_SIZE * sizeof(struct dma_desc),
1477 					  rx_q->dma_rx, rx_q->dma_rx_phy);
1478 		else
1479 			dma_free_coherent(priv->device, DMA_RX_SIZE *
1480 					  sizeof(struct dma_extended_desc),
1481 					  rx_q->dma_erx, rx_q->dma_rx_phy);
1482 
1483 		kfree(rx_q->buf_pool);
1484 		if (rx_q->page_pool) {
1485 			page_pool_request_shutdown(rx_q->page_pool);
1486 			page_pool_destroy(rx_q->page_pool);
1487 		}
1488 	}
1489 }
1490 
1491 /**
1492  * free_dma_tx_desc_resources - free TX dma desc resources
1493  * @priv: private structure
1494  */
1495 static void free_dma_tx_desc_resources(struct stmmac_priv *priv)
1496 {
1497 	u32 tx_count = priv->plat->tx_queues_to_use;
1498 	u32 queue;
1499 
1500 	/* Free TX queue resources */
1501 	for (queue = 0; queue < tx_count; queue++) {
1502 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1503 
1504 		/* Release the DMA TX socket buffers */
1505 		dma_free_tx_skbufs(priv, queue);
1506 
1507 		/* Free DMA regions of consistent memory previously allocated */
1508 		if (!priv->extend_desc)
1509 			dma_free_coherent(priv->device,
1510 					  DMA_TX_SIZE * sizeof(struct dma_desc),
1511 					  tx_q->dma_tx, tx_q->dma_tx_phy);
1512 		else
1513 			dma_free_coherent(priv->device, DMA_TX_SIZE *
1514 					  sizeof(struct dma_extended_desc),
1515 					  tx_q->dma_etx, tx_q->dma_tx_phy);
1516 
1517 		kfree(tx_q->tx_skbuff_dma);
1518 		kfree(tx_q->tx_skbuff);
1519 	}
1520 }
1521 
1522 /**
1523  * alloc_dma_rx_desc_resources - alloc RX resources.
1524  * @priv: private structure
1525  * Description: according to which descriptor can be used (extend or basic)
1526  * this function allocates the resources for TX and RX paths. In case of
1527  * reception, for example, it pre-allocated the RX socket buffer in order to
1528  * allow zero-copy mechanism.
1529  */
1530 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv)
1531 {
1532 	u32 rx_count = priv->plat->rx_queues_to_use;
1533 	int ret = -ENOMEM;
1534 	u32 queue;
1535 
1536 	/* RX queues buffers and DMA */
1537 	for (queue = 0; queue < rx_count; queue++) {
1538 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1539 		struct page_pool_params pp_params = { 0 };
1540 
1541 		rx_q->queue_index = queue;
1542 		rx_q->priv_data = priv;
1543 
1544 		pp_params.flags = PP_FLAG_DMA_MAP;
1545 		pp_params.pool_size = DMA_RX_SIZE;
1546 		pp_params.order = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE);
1547 		pp_params.nid = dev_to_node(priv->device);
1548 		pp_params.dev = priv->device;
1549 		pp_params.dma_dir = DMA_FROM_DEVICE;
1550 
1551 		rx_q->page_pool = page_pool_create(&pp_params);
1552 		if (IS_ERR(rx_q->page_pool)) {
1553 			ret = PTR_ERR(rx_q->page_pool);
1554 			rx_q->page_pool = NULL;
1555 			goto err_dma;
1556 		}
1557 
1558 		rx_q->buf_pool = kmalloc_array(DMA_RX_SIZE,
1559 					       sizeof(*rx_q->buf_pool),
1560 					       GFP_KERNEL);
1561 		if (!rx_q->buf_pool)
1562 			goto err_dma;
1563 
1564 		if (priv->extend_desc) {
1565 			rx_q->dma_erx = dma_alloc_coherent(priv->device,
1566 							   DMA_RX_SIZE * sizeof(struct dma_extended_desc),
1567 							   &rx_q->dma_rx_phy,
1568 							   GFP_KERNEL);
1569 			if (!rx_q->dma_erx)
1570 				goto err_dma;
1571 
1572 		} else {
1573 			rx_q->dma_rx = dma_alloc_coherent(priv->device,
1574 							  DMA_RX_SIZE * sizeof(struct dma_desc),
1575 							  &rx_q->dma_rx_phy,
1576 							  GFP_KERNEL);
1577 			if (!rx_q->dma_rx)
1578 				goto err_dma;
1579 		}
1580 	}
1581 
1582 	return 0;
1583 
1584 err_dma:
1585 	free_dma_rx_desc_resources(priv);
1586 
1587 	return ret;
1588 }
1589 
1590 /**
1591  * alloc_dma_tx_desc_resources - alloc TX resources.
1592  * @priv: private structure
1593  * Description: according to which descriptor can be used (extend or basic)
1594  * this function allocates the resources for TX and RX paths. In case of
1595  * reception, for example, it pre-allocated the RX socket buffer in order to
1596  * allow zero-copy mechanism.
1597  */
1598 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv)
1599 {
1600 	u32 tx_count = priv->plat->tx_queues_to_use;
1601 	int ret = -ENOMEM;
1602 	u32 queue;
1603 
1604 	/* TX queues buffers and DMA */
1605 	for (queue = 0; queue < tx_count; queue++) {
1606 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1607 
1608 		tx_q->queue_index = queue;
1609 		tx_q->priv_data = priv;
1610 
1611 		tx_q->tx_skbuff_dma = kmalloc_array(DMA_TX_SIZE,
1612 						    sizeof(*tx_q->tx_skbuff_dma),
1613 						    GFP_KERNEL);
1614 		if (!tx_q->tx_skbuff_dma)
1615 			goto err_dma;
1616 
1617 		tx_q->tx_skbuff = kmalloc_array(DMA_TX_SIZE,
1618 						sizeof(struct sk_buff *),
1619 						GFP_KERNEL);
1620 		if (!tx_q->tx_skbuff)
1621 			goto err_dma;
1622 
1623 		if (priv->extend_desc) {
1624 			tx_q->dma_etx = dma_alloc_coherent(priv->device,
1625 							   DMA_TX_SIZE * sizeof(struct dma_extended_desc),
1626 							   &tx_q->dma_tx_phy,
1627 							   GFP_KERNEL);
1628 			if (!tx_q->dma_etx)
1629 				goto err_dma;
1630 		} else {
1631 			tx_q->dma_tx = dma_alloc_coherent(priv->device,
1632 							  DMA_TX_SIZE * sizeof(struct dma_desc),
1633 							  &tx_q->dma_tx_phy,
1634 							  GFP_KERNEL);
1635 			if (!tx_q->dma_tx)
1636 				goto err_dma;
1637 		}
1638 	}
1639 
1640 	return 0;
1641 
1642 err_dma:
1643 	free_dma_tx_desc_resources(priv);
1644 
1645 	return ret;
1646 }
1647 
1648 /**
1649  * alloc_dma_desc_resources - alloc TX/RX resources.
1650  * @priv: private structure
1651  * Description: according to which descriptor can be used (extend or basic)
1652  * this function allocates the resources for TX and RX paths. In case of
1653  * reception, for example, it pre-allocated the RX socket buffer in order to
1654  * allow zero-copy mechanism.
1655  */
1656 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1657 {
1658 	/* RX Allocation */
1659 	int ret = alloc_dma_rx_desc_resources(priv);
1660 
1661 	if (ret)
1662 		return ret;
1663 
1664 	ret = alloc_dma_tx_desc_resources(priv);
1665 
1666 	return ret;
1667 }
1668 
1669 /**
1670  * free_dma_desc_resources - free dma desc resources
1671  * @priv: private structure
1672  */
1673 static void free_dma_desc_resources(struct stmmac_priv *priv)
1674 {
1675 	/* Release the DMA RX socket buffers */
1676 	free_dma_rx_desc_resources(priv);
1677 
1678 	/* Release the DMA TX socket buffers */
1679 	free_dma_tx_desc_resources(priv);
1680 }
1681 
1682 /**
1683  *  stmmac_mac_enable_rx_queues - Enable MAC rx queues
1684  *  @priv: driver private structure
1685  *  Description: It is used for enabling the rx queues in the MAC
1686  */
1687 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
1688 {
1689 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
1690 	int queue;
1691 	u8 mode;
1692 
1693 	for (queue = 0; queue < rx_queues_count; queue++) {
1694 		mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
1695 		stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
1696 	}
1697 }
1698 
1699 /**
1700  * stmmac_start_rx_dma - start RX DMA channel
1701  * @priv: driver private structure
1702  * @chan: RX channel index
1703  * Description:
1704  * This starts a RX DMA channel
1705  */
1706 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
1707 {
1708 	netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
1709 	stmmac_start_rx(priv, priv->ioaddr, chan);
1710 }
1711 
1712 /**
1713  * stmmac_start_tx_dma - start TX DMA channel
1714  * @priv: driver private structure
1715  * @chan: TX channel index
1716  * Description:
1717  * This starts a TX DMA channel
1718  */
1719 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
1720 {
1721 	netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
1722 	stmmac_start_tx(priv, priv->ioaddr, chan);
1723 }
1724 
1725 /**
1726  * stmmac_stop_rx_dma - stop RX DMA channel
1727  * @priv: driver private structure
1728  * @chan: RX channel index
1729  * Description:
1730  * This stops a RX DMA channel
1731  */
1732 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
1733 {
1734 	netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
1735 	stmmac_stop_rx(priv, priv->ioaddr, chan);
1736 }
1737 
1738 /**
1739  * stmmac_stop_tx_dma - stop TX DMA channel
1740  * @priv: driver private structure
1741  * @chan: TX channel index
1742  * Description:
1743  * This stops a TX DMA channel
1744  */
1745 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
1746 {
1747 	netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
1748 	stmmac_stop_tx(priv, priv->ioaddr, chan);
1749 }
1750 
1751 /**
1752  * stmmac_start_all_dma - start all RX and TX DMA channels
1753  * @priv: driver private structure
1754  * Description:
1755  * This starts all the RX and TX DMA channels
1756  */
1757 static void stmmac_start_all_dma(struct stmmac_priv *priv)
1758 {
1759 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1760 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1761 	u32 chan = 0;
1762 
1763 	for (chan = 0; chan < rx_channels_count; chan++)
1764 		stmmac_start_rx_dma(priv, chan);
1765 
1766 	for (chan = 0; chan < tx_channels_count; chan++)
1767 		stmmac_start_tx_dma(priv, chan);
1768 }
1769 
1770 /**
1771  * stmmac_stop_all_dma - stop all RX and TX DMA channels
1772  * @priv: driver private structure
1773  * Description:
1774  * This stops the RX and TX DMA channels
1775  */
1776 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
1777 {
1778 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1779 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1780 	u32 chan = 0;
1781 
1782 	for (chan = 0; chan < rx_channels_count; chan++)
1783 		stmmac_stop_rx_dma(priv, chan);
1784 
1785 	for (chan = 0; chan < tx_channels_count; chan++)
1786 		stmmac_stop_tx_dma(priv, chan);
1787 }
1788 
1789 /**
1790  *  stmmac_dma_operation_mode - HW DMA operation mode
1791  *  @priv: driver private structure
1792  *  Description: it is used for configuring the DMA operation mode register in
1793  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1794  */
1795 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1796 {
1797 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1798 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1799 	int rxfifosz = priv->plat->rx_fifo_size;
1800 	int txfifosz = priv->plat->tx_fifo_size;
1801 	u32 txmode = 0;
1802 	u32 rxmode = 0;
1803 	u32 chan = 0;
1804 	u8 qmode = 0;
1805 
1806 	if (rxfifosz == 0)
1807 		rxfifosz = priv->dma_cap.rx_fifo_size;
1808 	if (txfifosz == 0)
1809 		txfifosz = priv->dma_cap.tx_fifo_size;
1810 
1811 	/* Adjust for real per queue fifo size */
1812 	rxfifosz /= rx_channels_count;
1813 	txfifosz /= tx_channels_count;
1814 
1815 	if (priv->plat->force_thresh_dma_mode) {
1816 		txmode = tc;
1817 		rxmode = tc;
1818 	} else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1819 		/*
1820 		 * In case of GMAC, SF mode can be enabled
1821 		 * to perform the TX COE in HW. This depends on:
1822 		 * 1) TX COE if actually supported
1823 		 * 2) There is no bugged Jumbo frame support
1824 		 *    that needs to not insert csum in the TDES.
1825 		 */
1826 		txmode = SF_DMA_MODE;
1827 		rxmode = SF_DMA_MODE;
1828 		priv->xstats.threshold = SF_DMA_MODE;
1829 	} else {
1830 		txmode = tc;
1831 		rxmode = SF_DMA_MODE;
1832 	}
1833 
1834 	/* configure all channels */
1835 	for (chan = 0; chan < rx_channels_count; chan++) {
1836 		qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
1837 
1838 		stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
1839 				rxfifosz, qmode);
1840 		stmmac_set_dma_bfsize(priv, priv->ioaddr, priv->dma_buf_sz,
1841 				chan);
1842 	}
1843 
1844 	for (chan = 0; chan < tx_channels_count; chan++) {
1845 		qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
1846 
1847 		stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
1848 				txfifosz, qmode);
1849 	}
1850 }
1851 
1852 /**
1853  * stmmac_tx_clean - to manage the transmission completion
1854  * @priv: driver private structure
1855  * @queue: TX queue index
1856  * Description: it reclaims the transmit resources after transmission completes.
1857  */
1858 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
1859 {
1860 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1861 	unsigned int bytes_compl = 0, pkts_compl = 0;
1862 	unsigned int entry, count = 0;
1863 
1864 	__netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
1865 
1866 	priv->xstats.tx_clean++;
1867 
1868 	entry = tx_q->dirty_tx;
1869 	while ((entry != tx_q->cur_tx) && (count < budget)) {
1870 		struct sk_buff *skb = tx_q->tx_skbuff[entry];
1871 		struct dma_desc *p;
1872 		int status;
1873 
1874 		if (priv->extend_desc)
1875 			p = (struct dma_desc *)(tx_q->dma_etx + entry);
1876 		else
1877 			p = tx_q->dma_tx + entry;
1878 
1879 		status = stmmac_tx_status(priv, &priv->dev->stats,
1880 				&priv->xstats, p, priv->ioaddr);
1881 		/* Check if the descriptor is owned by the DMA */
1882 		if (unlikely(status & tx_dma_own))
1883 			break;
1884 
1885 		count++;
1886 
1887 		/* Make sure descriptor fields are read after reading
1888 		 * the own bit.
1889 		 */
1890 		dma_rmb();
1891 
1892 		/* Just consider the last segment and ...*/
1893 		if (likely(!(status & tx_not_ls))) {
1894 			/* ... verify the status error condition */
1895 			if (unlikely(status & tx_err)) {
1896 				priv->dev->stats.tx_errors++;
1897 			} else {
1898 				priv->dev->stats.tx_packets++;
1899 				priv->xstats.tx_pkt_n++;
1900 			}
1901 			stmmac_get_tx_hwtstamp(priv, p, skb);
1902 		}
1903 
1904 		if (likely(tx_q->tx_skbuff_dma[entry].buf)) {
1905 			if (tx_q->tx_skbuff_dma[entry].map_as_page)
1906 				dma_unmap_page(priv->device,
1907 					       tx_q->tx_skbuff_dma[entry].buf,
1908 					       tx_q->tx_skbuff_dma[entry].len,
1909 					       DMA_TO_DEVICE);
1910 			else
1911 				dma_unmap_single(priv->device,
1912 						 tx_q->tx_skbuff_dma[entry].buf,
1913 						 tx_q->tx_skbuff_dma[entry].len,
1914 						 DMA_TO_DEVICE);
1915 			tx_q->tx_skbuff_dma[entry].buf = 0;
1916 			tx_q->tx_skbuff_dma[entry].len = 0;
1917 			tx_q->tx_skbuff_dma[entry].map_as_page = false;
1918 		}
1919 
1920 		stmmac_clean_desc3(priv, tx_q, p);
1921 
1922 		tx_q->tx_skbuff_dma[entry].last_segment = false;
1923 		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
1924 
1925 		if (likely(skb != NULL)) {
1926 			pkts_compl++;
1927 			bytes_compl += skb->len;
1928 			dev_consume_skb_any(skb);
1929 			tx_q->tx_skbuff[entry] = NULL;
1930 		}
1931 
1932 		stmmac_release_tx_desc(priv, p, priv->mode);
1933 
1934 		entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
1935 	}
1936 	tx_q->dirty_tx = entry;
1937 
1938 	netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
1939 				  pkts_compl, bytes_compl);
1940 
1941 	if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
1942 								queue))) &&
1943 	    stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH) {
1944 
1945 		netif_dbg(priv, tx_done, priv->dev,
1946 			  "%s: restart transmit\n", __func__);
1947 		netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
1948 	}
1949 
1950 	if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1951 		stmmac_enable_eee_mode(priv);
1952 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1953 	}
1954 
1955 	/* We still have pending packets, let's call for a new scheduling */
1956 	if (tx_q->dirty_tx != tx_q->cur_tx)
1957 		mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(10));
1958 
1959 	__netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
1960 
1961 	return count;
1962 }
1963 
1964 /**
1965  * stmmac_tx_err - to manage the tx error
1966  * @priv: driver private structure
1967  * @chan: channel index
1968  * Description: it cleans the descriptors and restarts the transmission
1969  * in case of transmission errors.
1970  */
1971 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
1972 {
1973 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
1974 	int i;
1975 
1976 	netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
1977 
1978 	stmmac_stop_tx_dma(priv, chan);
1979 	dma_free_tx_skbufs(priv, chan);
1980 	for (i = 0; i < DMA_TX_SIZE; i++)
1981 		if (priv->extend_desc)
1982 			stmmac_init_tx_desc(priv, &tx_q->dma_etx[i].basic,
1983 					priv->mode, (i == DMA_TX_SIZE - 1));
1984 		else
1985 			stmmac_init_tx_desc(priv, &tx_q->dma_tx[i],
1986 					priv->mode, (i == DMA_TX_SIZE - 1));
1987 	tx_q->dirty_tx = 0;
1988 	tx_q->cur_tx = 0;
1989 	tx_q->mss = 0;
1990 	netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan));
1991 	stmmac_start_tx_dma(priv, chan);
1992 
1993 	priv->dev->stats.tx_errors++;
1994 	netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
1995 }
1996 
1997 /**
1998  *  stmmac_set_dma_operation_mode - Set DMA operation mode by channel
1999  *  @priv: driver private structure
2000  *  @txmode: TX operating mode
2001  *  @rxmode: RX operating mode
2002  *  @chan: channel index
2003  *  Description: it is used for configuring of the DMA operation mode in
2004  *  runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
2005  *  mode.
2006  */
2007 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
2008 					  u32 rxmode, u32 chan)
2009 {
2010 	u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2011 	u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2012 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2013 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2014 	int rxfifosz = priv->plat->rx_fifo_size;
2015 	int txfifosz = priv->plat->tx_fifo_size;
2016 
2017 	if (rxfifosz == 0)
2018 		rxfifosz = priv->dma_cap.rx_fifo_size;
2019 	if (txfifosz == 0)
2020 		txfifosz = priv->dma_cap.tx_fifo_size;
2021 
2022 	/* Adjust for real per queue fifo size */
2023 	rxfifosz /= rx_channels_count;
2024 	txfifosz /= tx_channels_count;
2025 
2026 	stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2027 	stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2028 }
2029 
2030 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2031 {
2032 	int ret;
2033 
2034 	ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2035 			priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2036 	if (ret && (ret != -EINVAL)) {
2037 		stmmac_global_err(priv);
2038 		return true;
2039 	}
2040 
2041 	return false;
2042 }
2043 
2044 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan)
2045 {
2046 	int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2047 						 &priv->xstats, chan);
2048 	struct stmmac_channel *ch = &priv->channel[chan];
2049 
2050 	if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2051 		if (napi_schedule_prep(&ch->rx_napi)) {
2052 			stmmac_disable_dma_irq(priv, priv->ioaddr, chan);
2053 			__napi_schedule_irqoff(&ch->rx_napi);
2054 			status |= handle_tx;
2055 		}
2056 	}
2057 
2058 	if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use))
2059 		napi_schedule_irqoff(&ch->tx_napi);
2060 
2061 	return status;
2062 }
2063 
2064 /**
2065  * stmmac_dma_interrupt - DMA ISR
2066  * @priv: driver private structure
2067  * Description: this is the DMA ISR. It is called by the main ISR.
2068  * It calls the dwmac dma routine and schedule poll method in case of some
2069  * work can be done.
2070  */
2071 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2072 {
2073 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2074 	u32 rx_channel_count = priv->plat->rx_queues_to_use;
2075 	u32 channels_to_check = tx_channel_count > rx_channel_count ?
2076 				tx_channel_count : rx_channel_count;
2077 	u32 chan;
2078 	int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2079 
2080 	/* Make sure we never check beyond our status buffer. */
2081 	if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2082 		channels_to_check = ARRAY_SIZE(status);
2083 
2084 	for (chan = 0; chan < channels_to_check; chan++)
2085 		status[chan] = stmmac_napi_check(priv, chan);
2086 
2087 	for (chan = 0; chan < tx_channel_count; chan++) {
2088 		if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2089 			/* Try to bump up the dma threshold on this failure */
2090 			if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
2091 			    (tc <= 256)) {
2092 				tc += 64;
2093 				if (priv->plat->force_thresh_dma_mode)
2094 					stmmac_set_dma_operation_mode(priv,
2095 								      tc,
2096 								      tc,
2097 								      chan);
2098 				else
2099 					stmmac_set_dma_operation_mode(priv,
2100 								    tc,
2101 								    SF_DMA_MODE,
2102 								    chan);
2103 				priv->xstats.threshold = tc;
2104 			}
2105 		} else if (unlikely(status[chan] == tx_hard_error)) {
2106 			stmmac_tx_err(priv, chan);
2107 		}
2108 	}
2109 }
2110 
2111 /**
2112  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2113  * @priv: driver private structure
2114  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2115  */
2116 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2117 {
2118 	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2119 			    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2120 
2121 	stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2122 
2123 	if (priv->dma_cap.rmon) {
2124 		stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2125 		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2126 	} else
2127 		netdev_info(priv->dev, "No MAC Management Counters available\n");
2128 }
2129 
2130 /**
2131  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2132  * @priv: driver private structure
2133  * Description:
2134  *  new GMAC chip generations have a new register to indicate the
2135  *  presence of the optional feature/functions.
2136  *  This can be also used to override the value passed through the
2137  *  platform and necessary for old MAC10/100 and GMAC chips.
2138  */
2139 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2140 {
2141 	return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2142 }
2143 
2144 /**
2145  * stmmac_check_ether_addr - check if the MAC addr is valid
2146  * @priv: driver private structure
2147  * Description:
2148  * it is to verify if the MAC address is valid, in case of failures it
2149  * generates a random MAC address
2150  */
2151 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2152 {
2153 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2154 		stmmac_get_umac_addr(priv, priv->hw, priv->dev->dev_addr, 0);
2155 		if (!is_valid_ether_addr(priv->dev->dev_addr))
2156 			eth_hw_addr_random(priv->dev);
2157 		dev_info(priv->device, "device MAC address %pM\n",
2158 			 priv->dev->dev_addr);
2159 	}
2160 }
2161 
2162 /**
2163  * stmmac_init_dma_engine - DMA init.
2164  * @priv: driver private structure
2165  * Description:
2166  * It inits the DMA invoking the specific MAC/GMAC callback.
2167  * Some DMA parameters can be passed from the platform;
2168  * in case of these are not passed a default is kept for the MAC or GMAC.
2169  */
2170 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2171 {
2172 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2173 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2174 	u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2175 	struct stmmac_rx_queue *rx_q;
2176 	struct stmmac_tx_queue *tx_q;
2177 	u32 chan = 0;
2178 	int atds = 0;
2179 	int ret = 0;
2180 
2181 	if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2182 		dev_err(priv->device, "Invalid DMA configuration\n");
2183 		return -EINVAL;
2184 	}
2185 
2186 	if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2187 		atds = 1;
2188 
2189 	ret = stmmac_reset(priv, priv->ioaddr);
2190 	if (ret) {
2191 		dev_err(priv->device, "Failed to reset the dma\n");
2192 		return ret;
2193 	}
2194 
2195 	/* DMA Configuration */
2196 	stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2197 
2198 	if (priv->plat->axi)
2199 		stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2200 
2201 	/* DMA CSR Channel configuration */
2202 	for (chan = 0; chan < dma_csr_ch; chan++)
2203 		stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2204 
2205 	/* DMA RX Channel Configuration */
2206 	for (chan = 0; chan < rx_channels_count; chan++) {
2207 		rx_q = &priv->rx_queue[chan];
2208 
2209 		stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2210 				    rx_q->dma_rx_phy, chan);
2211 
2212 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2213 			    (DMA_RX_SIZE * sizeof(struct dma_desc));
2214 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2215 				       rx_q->rx_tail_addr, chan);
2216 	}
2217 
2218 	/* DMA TX Channel Configuration */
2219 	for (chan = 0; chan < tx_channels_count; chan++) {
2220 		tx_q = &priv->tx_queue[chan];
2221 
2222 		stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2223 				    tx_q->dma_tx_phy, chan);
2224 
2225 		tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2226 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2227 				       tx_q->tx_tail_addr, chan);
2228 	}
2229 
2230 	return ret;
2231 }
2232 
2233 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2234 {
2235 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2236 
2237 	mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer));
2238 }
2239 
2240 /**
2241  * stmmac_tx_timer - mitigation sw timer for tx.
2242  * @data: data pointer
2243  * Description:
2244  * This is the timer handler to directly invoke the stmmac_tx_clean.
2245  */
2246 static void stmmac_tx_timer(struct timer_list *t)
2247 {
2248 	struct stmmac_tx_queue *tx_q = from_timer(tx_q, t, txtimer);
2249 	struct stmmac_priv *priv = tx_q->priv_data;
2250 	struct stmmac_channel *ch;
2251 
2252 	ch = &priv->channel[tx_q->queue_index];
2253 
2254 	/*
2255 	 * If NAPI is already running we can miss some events. Let's rearm
2256 	 * the timer and try again.
2257 	 */
2258 	if (likely(napi_schedule_prep(&ch->tx_napi)))
2259 		__napi_schedule(&ch->tx_napi);
2260 	else
2261 		mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(10));
2262 }
2263 
2264 /**
2265  * stmmac_init_coalesce - init mitigation options.
2266  * @priv: driver private structure
2267  * Description:
2268  * This inits the coalesce parameters: i.e. timer rate,
2269  * timer handler and default threshold used for enabling the
2270  * interrupt on completion bit.
2271  */
2272 static void stmmac_init_coalesce(struct stmmac_priv *priv)
2273 {
2274 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2275 	u32 chan;
2276 
2277 	priv->tx_coal_frames = STMMAC_TX_FRAMES;
2278 	priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
2279 	priv->rx_coal_frames = STMMAC_RX_FRAMES;
2280 
2281 	for (chan = 0; chan < tx_channel_count; chan++) {
2282 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2283 
2284 		timer_setup(&tx_q->txtimer, stmmac_tx_timer, 0);
2285 	}
2286 }
2287 
2288 static void stmmac_set_rings_length(struct stmmac_priv *priv)
2289 {
2290 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2291 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2292 	u32 chan;
2293 
2294 	/* set TX ring length */
2295 	for (chan = 0; chan < tx_channels_count; chan++)
2296 		stmmac_set_tx_ring_len(priv, priv->ioaddr,
2297 				(DMA_TX_SIZE - 1), chan);
2298 
2299 	/* set RX ring length */
2300 	for (chan = 0; chan < rx_channels_count; chan++)
2301 		stmmac_set_rx_ring_len(priv, priv->ioaddr,
2302 				(DMA_RX_SIZE - 1), chan);
2303 }
2304 
2305 /**
2306  *  stmmac_set_tx_queue_weight - Set TX queue weight
2307  *  @priv: driver private structure
2308  *  Description: It is used for setting TX queues weight
2309  */
2310 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
2311 {
2312 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2313 	u32 weight;
2314 	u32 queue;
2315 
2316 	for (queue = 0; queue < tx_queues_count; queue++) {
2317 		weight = priv->plat->tx_queues_cfg[queue].weight;
2318 		stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
2319 	}
2320 }
2321 
2322 /**
2323  *  stmmac_configure_cbs - Configure CBS in TX queue
2324  *  @priv: driver private structure
2325  *  Description: It is used for configuring CBS in AVB TX queues
2326  */
2327 static void stmmac_configure_cbs(struct stmmac_priv *priv)
2328 {
2329 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2330 	u32 mode_to_use;
2331 	u32 queue;
2332 
2333 	/* queue 0 is reserved for legacy traffic */
2334 	for (queue = 1; queue < tx_queues_count; queue++) {
2335 		mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
2336 		if (mode_to_use == MTL_QUEUE_DCB)
2337 			continue;
2338 
2339 		stmmac_config_cbs(priv, priv->hw,
2340 				priv->plat->tx_queues_cfg[queue].send_slope,
2341 				priv->plat->tx_queues_cfg[queue].idle_slope,
2342 				priv->plat->tx_queues_cfg[queue].high_credit,
2343 				priv->plat->tx_queues_cfg[queue].low_credit,
2344 				queue);
2345 	}
2346 }
2347 
2348 /**
2349  *  stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
2350  *  @priv: driver private structure
2351  *  Description: It is used for mapping RX queues to RX dma channels
2352  */
2353 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
2354 {
2355 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2356 	u32 queue;
2357 	u32 chan;
2358 
2359 	for (queue = 0; queue < rx_queues_count; queue++) {
2360 		chan = priv->plat->rx_queues_cfg[queue].chan;
2361 		stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
2362 	}
2363 }
2364 
2365 /**
2366  *  stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
2367  *  @priv: driver private structure
2368  *  Description: It is used for configuring the RX Queue Priority
2369  */
2370 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
2371 {
2372 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2373 	u32 queue;
2374 	u32 prio;
2375 
2376 	for (queue = 0; queue < rx_queues_count; queue++) {
2377 		if (!priv->plat->rx_queues_cfg[queue].use_prio)
2378 			continue;
2379 
2380 		prio = priv->plat->rx_queues_cfg[queue].prio;
2381 		stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
2382 	}
2383 }
2384 
2385 /**
2386  *  stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
2387  *  @priv: driver private structure
2388  *  Description: It is used for configuring the TX Queue Priority
2389  */
2390 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
2391 {
2392 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2393 	u32 queue;
2394 	u32 prio;
2395 
2396 	for (queue = 0; queue < tx_queues_count; queue++) {
2397 		if (!priv->plat->tx_queues_cfg[queue].use_prio)
2398 			continue;
2399 
2400 		prio = priv->plat->tx_queues_cfg[queue].prio;
2401 		stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
2402 	}
2403 }
2404 
2405 /**
2406  *  stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
2407  *  @priv: driver private structure
2408  *  Description: It is used for configuring the RX queue routing
2409  */
2410 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
2411 {
2412 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2413 	u32 queue;
2414 	u8 packet;
2415 
2416 	for (queue = 0; queue < rx_queues_count; queue++) {
2417 		/* no specific packet type routing specified for the queue */
2418 		if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
2419 			continue;
2420 
2421 		packet = priv->plat->rx_queues_cfg[queue].pkt_route;
2422 		stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
2423 	}
2424 }
2425 
2426 /**
2427  *  stmmac_mtl_configuration - Configure MTL
2428  *  @priv: driver private structure
2429  *  Description: It is used for configurring MTL
2430  */
2431 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
2432 {
2433 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2434 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2435 
2436 	if (tx_queues_count > 1)
2437 		stmmac_set_tx_queue_weight(priv);
2438 
2439 	/* Configure MTL RX algorithms */
2440 	if (rx_queues_count > 1)
2441 		stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
2442 				priv->plat->rx_sched_algorithm);
2443 
2444 	/* Configure MTL TX algorithms */
2445 	if (tx_queues_count > 1)
2446 		stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
2447 				priv->plat->tx_sched_algorithm);
2448 
2449 	/* Configure CBS in AVB TX queues */
2450 	if (tx_queues_count > 1)
2451 		stmmac_configure_cbs(priv);
2452 
2453 	/* Map RX MTL to DMA channels */
2454 	stmmac_rx_queue_dma_chan_map(priv);
2455 
2456 	/* Enable MAC RX Queues */
2457 	stmmac_mac_enable_rx_queues(priv);
2458 
2459 	/* Set RX priorities */
2460 	if (rx_queues_count > 1)
2461 		stmmac_mac_config_rx_queues_prio(priv);
2462 
2463 	/* Set TX priorities */
2464 	if (tx_queues_count > 1)
2465 		stmmac_mac_config_tx_queues_prio(priv);
2466 
2467 	/* Set RX routing */
2468 	if (rx_queues_count > 1)
2469 		stmmac_mac_config_rx_queues_routing(priv);
2470 }
2471 
2472 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
2473 {
2474 	if (priv->dma_cap.asp) {
2475 		netdev_info(priv->dev, "Enabling Safety Features\n");
2476 		stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp);
2477 	} else {
2478 		netdev_info(priv->dev, "No Safety Features support found\n");
2479 	}
2480 }
2481 
2482 /**
2483  * stmmac_hw_setup - setup mac in a usable state.
2484  *  @dev : pointer to the device structure.
2485  *  Description:
2486  *  this is the main function to setup the HW in a usable state because the
2487  *  dma engine is reset, the core registers are configured (e.g. AXI,
2488  *  Checksum features, timers). The DMA is ready to start receiving and
2489  *  transmitting.
2490  *  Return value:
2491  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2492  *  file on failure.
2493  */
2494 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
2495 {
2496 	struct stmmac_priv *priv = netdev_priv(dev);
2497 	u32 rx_cnt = priv->plat->rx_queues_to_use;
2498 	u32 tx_cnt = priv->plat->tx_queues_to_use;
2499 	u32 chan;
2500 	int ret;
2501 
2502 	/* DMA initialization and SW reset */
2503 	ret = stmmac_init_dma_engine(priv);
2504 	if (ret < 0) {
2505 		netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
2506 			   __func__);
2507 		return ret;
2508 	}
2509 
2510 	/* Copy the MAC addr into the HW  */
2511 	stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
2512 
2513 	/* PS and related bits will be programmed according to the speed */
2514 	if (priv->hw->pcs) {
2515 		int speed = priv->plat->mac_port_sel_speed;
2516 
2517 		if ((speed == SPEED_10) || (speed == SPEED_100) ||
2518 		    (speed == SPEED_1000)) {
2519 			priv->hw->ps = speed;
2520 		} else {
2521 			dev_warn(priv->device, "invalid port speed\n");
2522 			priv->hw->ps = 0;
2523 		}
2524 	}
2525 
2526 	/* Initialize the MAC Core */
2527 	stmmac_core_init(priv, priv->hw, dev);
2528 
2529 	/* Initialize MTL*/
2530 	stmmac_mtl_configuration(priv);
2531 
2532 	/* Initialize Safety Features */
2533 	stmmac_safety_feat_configuration(priv);
2534 
2535 	ret = stmmac_rx_ipc(priv, priv->hw);
2536 	if (!ret) {
2537 		netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
2538 		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
2539 		priv->hw->rx_csum = 0;
2540 	}
2541 
2542 	/* Enable the MAC Rx/Tx */
2543 	stmmac_mac_set(priv, priv->ioaddr, true);
2544 
2545 	/* Set the HW DMA mode and the COE */
2546 	stmmac_dma_operation_mode(priv);
2547 
2548 	stmmac_mmc_setup(priv);
2549 
2550 	if (init_ptp) {
2551 		ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
2552 		if (ret < 0)
2553 			netdev_warn(priv->dev, "failed to enable PTP reference clock: %d\n", ret);
2554 
2555 		ret = stmmac_init_ptp(priv);
2556 		if (ret == -EOPNOTSUPP)
2557 			netdev_warn(priv->dev, "PTP not supported by HW\n");
2558 		else if (ret)
2559 			netdev_warn(priv->dev, "PTP init failed\n");
2560 	}
2561 
2562 	priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
2563 
2564 	if (priv->use_riwt) {
2565 		ret = stmmac_rx_watchdog(priv, priv->ioaddr, MIN_DMA_RIWT, rx_cnt);
2566 		if (!ret)
2567 			priv->rx_riwt = MIN_DMA_RIWT;
2568 	}
2569 
2570 	if (priv->hw->pcs)
2571 		stmmac_pcs_ctrl_ane(priv, priv->hw, 1, priv->hw->ps, 0);
2572 
2573 	/* set TX and RX rings length */
2574 	stmmac_set_rings_length(priv);
2575 
2576 	/* Enable TSO */
2577 	if (priv->tso) {
2578 		for (chan = 0; chan < tx_cnt; chan++)
2579 			stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
2580 	}
2581 
2582 	/* Start the ball rolling... */
2583 	stmmac_start_all_dma(priv);
2584 
2585 	return 0;
2586 }
2587 
2588 static void stmmac_hw_teardown(struct net_device *dev)
2589 {
2590 	struct stmmac_priv *priv = netdev_priv(dev);
2591 
2592 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
2593 }
2594 
2595 /**
2596  *  stmmac_open - open entry point of the driver
2597  *  @dev : pointer to the device structure.
2598  *  Description:
2599  *  This function is the open entry point of the driver.
2600  *  Return value:
2601  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2602  *  file on failure.
2603  */
2604 static int stmmac_open(struct net_device *dev)
2605 {
2606 	struct stmmac_priv *priv = netdev_priv(dev);
2607 	u32 chan;
2608 	int ret;
2609 
2610 	if (priv->hw->pcs != STMMAC_PCS_RGMII &&
2611 	    priv->hw->pcs != STMMAC_PCS_TBI &&
2612 	    priv->hw->pcs != STMMAC_PCS_RTBI) {
2613 		ret = stmmac_init_phy(dev);
2614 		if (ret) {
2615 			netdev_err(priv->dev,
2616 				   "%s: Cannot attach to PHY (error: %d)\n",
2617 				   __func__, ret);
2618 			return ret;
2619 		}
2620 	}
2621 
2622 	/* Extra statistics */
2623 	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
2624 	priv->xstats.threshold = tc;
2625 
2626 	priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
2627 	priv->rx_copybreak = STMMAC_RX_COPYBREAK;
2628 
2629 	ret = alloc_dma_desc_resources(priv);
2630 	if (ret < 0) {
2631 		netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
2632 			   __func__);
2633 		goto dma_desc_error;
2634 	}
2635 
2636 	ret = init_dma_desc_rings(dev, GFP_KERNEL);
2637 	if (ret < 0) {
2638 		netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
2639 			   __func__);
2640 		goto init_error;
2641 	}
2642 
2643 	ret = stmmac_hw_setup(dev, true);
2644 	if (ret < 0) {
2645 		netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
2646 		goto init_error;
2647 	}
2648 
2649 	stmmac_init_coalesce(priv);
2650 
2651 	phylink_start(priv->phylink);
2652 
2653 	/* Request the IRQ lines */
2654 	ret = request_irq(dev->irq, stmmac_interrupt,
2655 			  IRQF_SHARED, dev->name, dev);
2656 	if (unlikely(ret < 0)) {
2657 		netdev_err(priv->dev,
2658 			   "%s: ERROR: allocating the IRQ %d (error: %d)\n",
2659 			   __func__, dev->irq, ret);
2660 		goto irq_error;
2661 	}
2662 
2663 	/* Request the Wake IRQ in case of another line is used for WoL */
2664 	if (priv->wol_irq != dev->irq) {
2665 		ret = request_irq(priv->wol_irq, stmmac_interrupt,
2666 				  IRQF_SHARED, dev->name, dev);
2667 		if (unlikely(ret < 0)) {
2668 			netdev_err(priv->dev,
2669 				   "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
2670 				   __func__, priv->wol_irq, ret);
2671 			goto wolirq_error;
2672 		}
2673 	}
2674 
2675 	/* Request the IRQ lines */
2676 	if (priv->lpi_irq > 0) {
2677 		ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
2678 				  dev->name, dev);
2679 		if (unlikely(ret < 0)) {
2680 			netdev_err(priv->dev,
2681 				   "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
2682 				   __func__, priv->lpi_irq, ret);
2683 			goto lpiirq_error;
2684 		}
2685 	}
2686 
2687 	stmmac_enable_all_queues(priv);
2688 	stmmac_start_all_queues(priv);
2689 
2690 	return 0;
2691 
2692 lpiirq_error:
2693 	if (priv->wol_irq != dev->irq)
2694 		free_irq(priv->wol_irq, dev);
2695 wolirq_error:
2696 	free_irq(dev->irq, dev);
2697 irq_error:
2698 	phylink_stop(priv->phylink);
2699 
2700 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2701 		del_timer_sync(&priv->tx_queue[chan].txtimer);
2702 
2703 	stmmac_hw_teardown(dev);
2704 init_error:
2705 	free_dma_desc_resources(priv);
2706 dma_desc_error:
2707 	phylink_disconnect_phy(priv->phylink);
2708 	return ret;
2709 }
2710 
2711 /**
2712  *  stmmac_release - close entry point of the driver
2713  *  @dev : device pointer.
2714  *  Description:
2715  *  This is the stop entry point of the driver.
2716  */
2717 static int stmmac_release(struct net_device *dev)
2718 {
2719 	struct stmmac_priv *priv = netdev_priv(dev);
2720 	u32 chan;
2721 
2722 	if (priv->eee_enabled)
2723 		del_timer_sync(&priv->eee_ctrl_timer);
2724 
2725 	/* Stop and disconnect the PHY */
2726 	phylink_stop(priv->phylink);
2727 	phylink_disconnect_phy(priv->phylink);
2728 
2729 	stmmac_stop_all_queues(priv);
2730 
2731 	stmmac_disable_all_queues(priv);
2732 
2733 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2734 		del_timer_sync(&priv->tx_queue[chan].txtimer);
2735 
2736 	/* Free the IRQ lines */
2737 	free_irq(dev->irq, dev);
2738 	if (priv->wol_irq != dev->irq)
2739 		free_irq(priv->wol_irq, dev);
2740 	if (priv->lpi_irq > 0)
2741 		free_irq(priv->lpi_irq, dev);
2742 
2743 	/* Stop TX/RX DMA and clear the descriptors */
2744 	stmmac_stop_all_dma(priv);
2745 
2746 	/* Release and free the Rx/Tx resources */
2747 	free_dma_desc_resources(priv);
2748 
2749 	/* Disable the MAC Rx/Tx */
2750 	stmmac_mac_set(priv, priv->ioaddr, false);
2751 
2752 	netif_carrier_off(dev);
2753 
2754 	stmmac_release_ptp(priv);
2755 
2756 	return 0;
2757 }
2758 
2759 /**
2760  *  stmmac_tso_allocator - close entry point of the driver
2761  *  @priv: driver private structure
2762  *  @des: buffer start address
2763  *  @total_len: total length to fill in descriptors
2764  *  @last_segmant: condition for the last descriptor
2765  *  @queue: TX queue index
2766  *  Description:
2767  *  This function fills descriptor and request new descriptors according to
2768  *  buffer length to fill
2769  */
2770 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
2771 				 int total_len, bool last_segment, u32 queue)
2772 {
2773 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2774 	struct dma_desc *desc;
2775 	u32 buff_size;
2776 	int tmp_len;
2777 
2778 	tmp_len = total_len;
2779 
2780 	while (tmp_len > 0) {
2781 		dma_addr_t curr_addr;
2782 
2783 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2784 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
2785 		desc = tx_q->dma_tx + tx_q->cur_tx;
2786 
2787 		curr_addr = des + (total_len - tmp_len);
2788 		if (priv->dma_cap.addr64 <= 32)
2789 			desc->des0 = cpu_to_le32(curr_addr);
2790 		else
2791 			stmmac_set_desc_addr(priv, desc, curr_addr);
2792 
2793 		buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
2794 			    TSO_MAX_BUFF_SIZE : tmp_len;
2795 
2796 		stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
2797 				0, 1,
2798 				(last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
2799 				0, 0);
2800 
2801 		tmp_len -= TSO_MAX_BUFF_SIZE;
2802 	}
2803 }
2804 
2805 /**
2806  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
2807  *  @skb : the socket buffer
2808  *  @dev : device pointer
2809  *  Description: this is the transmit function that is called on TSO frames
2810  *  (support available on GMAC4 and newer chips).
2811  *  Diagram below show the ring programming in case of TSO frames:
2812  *
2813  *  First Descriptor
2814  *   --------
2815  *   | DES0 |---> buffer1 = L2/L3/L4 header
2816  *   | DES1 |---> TCP Payload (can continue on next descr...)
2817  *   | DES2 |---> buffer 1 and 2 len
2818  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
2819  *   --------
2820  *	|
2821  *     ...
2822  *	|
2823  *   --------
2824  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
2825  *   | DES1 | --|
2826  *   | DES2 | --> buffer 1 and 2 len
2827  *   | DES3 |
2828  *   --------
2829  *
2830  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
2831  */
2832 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
2833 {
2834 	struct dma_desc *desc, *first, *mss_desc = NULL;
2835 	struct stmmac_priv *priv = netdev_priv(dev);
2836 	int nfrags = skb_shinfo(skb)->nr_frags;
2837 	u32 queue = skb_get_queue_mapping(skb);
2838 	unsigned int first_entry;
2839 	struct stmmac_tx_queue *tx_q;
2840 	int tmp_pay_len = 0;
2841 	u32 pay_len, mss;
2842 	u8 proto_hdr_len;
2843 	dma_addr_t des;
2844 	int i;
2845 
2846 	tx_q = &priv->tx_queue[queue];
2847 
2848 	/* Compute header lengths */
2849 	proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2850 
2851 	/* Desc availability based on threshold should be enough safe */
2852 	if (unlikely(stmmac_tx_avail(priv, queue) <
2853 		(((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
2854 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
2855 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
2856 								queue));
2857 			/* This is a hard error, log it. */
2858 			netdev_err(priv->dev,
2859 				   "%s: Tx Ring full when queue awake\n",
2860 				   __func__);
2861 		}
2862 		return NETDEV_TX_BUSY;
2863 	}
2864 
2865 	pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
2866 
2867 	mss = skb_shinfo(skb)->gso_size;
2868 
2869 	/* set new MSS value if needed */
2870 	if (mss != tx_q->mss) {
2871 		mss_desc = tx_q->dma_tx + tx_q->cur_tx;
2872 		stmmac_set_mss(priv, mss_desc, mss);
2873 		tx_q->mss = mss;
2874 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2875 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
2876 	}
2877 
2878 	if (netif_msg_tx_queued(priv)) {
2879 		pr_info("%s: tcphdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
2880 			__func__, tcp_hdrlen(skb), proto_hdr_len, pay_len, mss);
2881 		pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
2882 			skb->data_len);
2883 	}
2884 
2885 	first_entry = tx_q->cur_tx;
2886 	WARN_ON(tx_q->tx_skbuff[first_entry]);
2887 
2888 	desc = tx_q->dma_tx + first_entry;
2889 	first = desc;
2890 
2891 	/* first descriptor: fill Headers on Buf1 */
2892 	des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
2893 			     DMA_TO_DEVICE);
2894 	if (dma_mapping_error(priv->device, des))
2895 		goto dma_map_err;
2896 
2897 	tx_q->tx_skbuff_dma[first_entry].buf = des;
2898 	tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
2899 
2900 	if (priv->dma_cap.addr64 <= 32) {
2901 		first->des0 = cpu_to_le32(des);
2902 
2903 		/* Fill start of payload in buff2 of first descriptor */
2904 		if (pay_len)
2905 			first->des1 = cpu_to_le32(des + proto_hdr_len);
2906 
2907 		/* If needed take extra descriptors to fill the remaining payload */
2908 		tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
2909 	} else {
2910 		stmmac_set_desc_addr(priv, first, des);
2911 		tmp_pay_len = pay_len;
2912 	}
2913 
2914 	stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
2915 
2916 	/* Prepare fragments */
2917 	for (i = 0; i < nfrags; i++) {
2918 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2919 
2920 		des = skb_frag_dma_map(priv->device, frag, 0,
2921 				       skb_frag_size(frag),
2922 				       DMA_TO_DEVICE);
2923 		if (dma_mapping_error(priv->device, des))
2924 			goto dma_map_err;
2925 
2926 		stmmac_tso_allocator(priv, des, skb_frag_size(frag),
2927 				     (i == nfrags - 1), queue);
2928 
2929 		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
2930 		tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
2931 		tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
2932 	}
2933 
2934 	tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
2935 
2936 	/* Only the last descriptor gets to point to the skb. */
2937 	tx_q->tx_skbuff[tx_q->cur_tx] = skb;
2938 
2939 	/* We've used all descriptors we need for this skb, however,
2940 	 * advance cur_tx so that it references a fresh descriptor.
2941 	 * ndo_start_xmit will fill this descriptor the next time it's
2942 	 * called and stmmac_tx_clean may clean up to this descriptor.
2943 	 */
2944 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2945 
2946 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
2947 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
2948 			  __func__);
2949 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
2950 	}
2951 
2952 	dev->stats.tx_bytes += skb->len;
2953 	priv->xstats.tx_tso_frames++;
2954 	priv->xstats.tx_tso_nfrags += nfrags;
2955 
2956 	/* Manage tx mitigation */
2957 	tx_q->tx_count_frames += nfrags + 1;
2958 	if (likely(priv->tx_coal_frames > tx_q->tx_count_frames) &&
2959 	    !(priv->synopsys_id >= DWMAC_CORE_4_00 &&
2960 	    (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2961 	    priv->hwts_tx_en)) {
2962 		stmmac_tx_timer_arm(priv, queue);
2963 	} else {
2964 		tx_q->tx_count_frames = 0;
2965 		stmmac_set_tx_ic(priv, desc);
2966 		priv->xstats.tx_set_ic_bit++;
2967 	}
2968 
2969 	skb_tx_timestamp(skb);
2970 
2971 	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2972 		     priv->hwts_tx_en)) {
2973 		/* declare that device is doing timestamping */
2974 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2975 		stmmac_enable_tx_timestamp(priv, first);
2976 	}
2977 
2978 	/* Complete the first descriptor before granting the DMA */
2979 	stmmac_prepare_tso_tx_desc(priv, first, 1,
2980 			proto_hdr_len,
2981 			pay_len,
2982 			1, tx_q->tx_skbuff_dma[first_entry].last_segment,
2983 			tcp_hdrlen(skb) / 4, (skb->len - proto_hdr_len));
2984 
2985 	/* If context desc is used to change MSS */
2986 	if (mss_desc) {
2987 		/* Make sure that first descriptor has been completely
2988 		 * written, including its own bit. This is because MSS is
2989 		 * actually before first descriptor, so we need to make
2990 		 * sure that MSS's own bit is the last thing written.
2991 		 */
2992 		dma_wmb();
2993 		stmmac_set_tx_owner(priv, mss_desc);
2994 	}
2995 
2996 	/* The own bit must be the latest setting done when prepare the
2997 	 * descriptor and then barrier is needed to make sure that
2998 	 * all is coherent before granting the DMA engine.
2999 	 */
3000 	wmb();
3001 
3002 	if (netif_msg_pktdata(priv)) {
3003 		pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
3004 			__func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3005 			tx_q->cur_tx, first, nfrags);
3006 
3007 		stmmac_display_ring(priv, (void *)tx_q->dma_tx, DMA_TX_SIZE, 0);
3008 
3009 		pr_info(">>> frame to be transmitted: ");
3010 		print_pkt(skb->data, skb_headlen(skb));
3011 	}
3012 
3013 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3014 
3015 	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * sizeof(*desc));
3016 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3017 
3018 	return NETDEV_TX_OK;
3019 
3020 dma_map_err:
3021 	dev_err(priv->device, "Tx dma map failed\n");
3022 	dev_kfree_skb(skb);
3023 	priv->dev->stats.tx_dropped++;
3024 	return NETDEV_TX_OK;
3025 }
3026 
3027 /**
3028  *  stmmac_xmit - Tx entry point of the driver
3029  *  @skb : the socket buffer
3030  *  @dev : device pointer
3031  *  Description : this is the tx entry point of the driver.
3032  *  It programs the chain or the ring and supports oversized frames
3033  *  and SG feature.
3034  */
3035 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
3036 {
3037 	struct stmmac_priv *priv = netdev_priv(dev);
3038 	unsigned int nopaged_len = skb_headlen(skb);
3039 	int i, csum_insertion = 0, is_jumbo = 0;
3040 	u32 queue = skb_get_queue_mapping(skb);
3041 	int nfrags = skb_shinfo(skb)->nr_frags;
3042 	struct dma_desc *desc, *first;
3043 	struct stmmac_tx_queue *tx_q;
3044 	unsigned int first_entry;
3045 	unsigned int enh_desc;
3046 	dma_addr_t des;
3047 	int entry;
3048 
3049 	tx_q = &priv->tx_queue[queue];
3050 
3051 	if (priv->tx_path_in_lpi_mode)
3052 		stmmac_disable_eee_mode(priv);
3053 
3054 	/* Manage oversized TCP frames for GMAC4 device */
3055 	if (skb_is_gso(skb) && priv->tso) {
3056 		if (skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
3057 			return stmmac_tso_xmit(skb, dev);
3058 	}
3059 
3060 	if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
3061 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3062 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3063 								queue));
3064 			/* This is a hard error, log it. */
3065 			netdev_err(priv->dev,
3066 				   "%s: Tx Ring full when queue awake\n",
3067 				   __func__);
3068 		}
3069 		return NETDEV_TX_BUSY;
3070 	}
3071 
3072 	entry = tx_q->cur_tx;
3073 	first_entry = entry;
3074 	WARN_ON(tx_q->tx_skbuff[first_entry]);
3075 
3076 	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
3077 
3078 	if (likely(priv->extend_desc))
3079 		desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3080 	else
3081 		desc = tx_q->dma_tx + entry;
3082 
3083 	first = desc;
3084 
3085 	enh_desc = priv->plat->enh_desc;
3086 	/* To program the descriptors according to the size of the frame */
3087 	if (enh_desc)
3088 		is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
3089 
3090 	if (unlikely(is_jumbo)) {
3091 		entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
3092 		if (unlikely(entry < 0) && (entry != -EINVAL))
3093 			goto dma_map_err;
3094 	}
3095 
3096 	for (i = 0; i < nfrags; i++) {
3097 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3098 		int len = skb_frag_size(frag);
3099 		bool last_segment = (i == (nfrags - 1));
3100 
3101 		entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
3102 		WARN_ON(tx_q->tx_skbuff[entry]);
3103 
3104 		if (likely(priv->extend_desc))
3105 			desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3106 		else
3107 			desc = tx_q->dma_tx + entry;
3108 
3109 		des = skb_frag_dma_map(priv->device, frag, 0, len,
3110 				       DMA_TO_DEVICE);
3111 		if (dma_mapping_error(priv->device, des))
3112 			goto dma_map_err; /* should reuse desc w/o issues */
3113 
3114 		tx_q->tx_skbuff_dma[entry].buf = des;
3115 
3116 		stmmac_set_desc_addr(priv, desc, des);
3117 
3118 		tx_q->tx_skbuff_dma[entry].map_as_page = true;
3119 		tx_q->tx_skbuff_dma[entry].len = len;
3120 		tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
3121 
3122 		/* Prepare the descriptor and set the own bit too */
3123 		stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
3124 				priv->mode, 1, last_segment, skb->len);
3125 	}
3126 
3127 	/* Only the last descriptor gets to point to the skb. */
3128 	tx_q->tx_skbuff[entry] = skb;
3129 
3130 	/* We've used all descriptors we need for this skb, however,
3131 	 * advance cur_tx so that it references a fresh descriptor.
3132 	 * ndo_start_xmit will fill this descriptor the next time it's
3133 	 * called and stmmac_tx_clean may clean up to this descriptor.
3134 	 */
3135 	entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
3136 	tx_q->cur_tx = entry;
3137 
3138 	if (netif_msg_pktdata(priv)) {
3139 		void *tx_head;
3140 
3141 		netdev_dbg(priv->dev,
3142 			   "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
3143 			   __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3144 			   entry, first, nfrags);
3145 
3146 		if (priv->extend_desc)
3147 			tx_head = (void *)tx_q->dma_etx;
3148 		else
3149 			tx_head = (void *)tx_q->dma_tx;
3150 
3151 		stmmac_display_ring(priv, tx_head, DMA_TX_SIZE, false);
3152 
3153 		netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
3154 		print_pkt(skb->data, skb->len);
3155 	}
3156 
3157 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3158 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3159 			  __func__);
3160 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3161 	}
3162 
3163 	dev->stats.tx_bytes += skb->len;
3164 
3165 	/* According to the coalesce parameter the IC bit for the latest
3166 	 * segment is reset and the timer re-started to clean the tx status.
3167 	 * This approach takes care about the fragments: desc is the first
3168 	 * element in case of no SG.
3169 	 */
3170 	tx_q->tx_count_frames += nfrags + 1;
3171 	if (likely(priv->tx_coal_frames > tx_q->tx_count_frames) &&
3172 	    !(priv->synopsys_id >= DWMAC_CORE_4_00 &&
3173 	    (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3174 	    priv->hwts_tx_en)) {
3175 		stmmac_tx_timer_arm(priv, queue);
3176 	} else {
3177 		tx_q->tx_count_frames = 0;
3178 		stmmac_set_tx_ic(priv, desc);
3179 		priv->xstats.tx_set_ic_bit++;
3180 	}
3181 
3182 	skb_tx_timestamp(skb);
3183 
3184 	/* Ready to fill the first descriptor and set the OWN bit w/o any
3185 	 * problems because all the descriptors are actually ready to be
3186 	 * passed to the DMA engine.
3187 	 */
3188 	if (likely(!is_jumbo)) {
3189 		bool last_segment = (nfrags == 0);
3190 
3191 		des = dma_map_single(priv->device, skb->data,
3192 				     nopaged_len, DMA_TO_DEVICE);
3193 		if (dma_mapping_error(priv->device, des))
3194 			goto dma_map_err;
3195 
3196 		tx_q->tx_skbuff_dma[first_entry].buf = des;
3197 
3198 		stmmac_set_desc_addr(priv, first, des);
3199 
3200 		tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
3201 		tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
3202 
3203 		if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3204 			     priv->hwts_tx_en)) {
3205 			/* declare that device is doing timestamping */
3206 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3207 			stmmac_enable_tx_timestamp(priv, first);
3208 		}
3209 
3210 		/* Prepare the first descriptor setting the OWN bit too */
3211 		stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
3212 				csum_insertion, priv->mode, 1, last_segment,
3213 				skb->len);
3214 	} else {
3215 		stmmac_set_tx_owner(priv, first);
3216 	}
3217 
3218 	/* The own bit must be the latest setting done when prepare the
3219 	 * descriptor and then barrier is needed to make sure that
3220 	 * all is coherent before granting the DMA engine.
3221 	 */
3222 	wmb();
3223 
3224 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3225 
3226 	stmmac_enable_dma_transmission(priv, priv->ioaddr);
3227 
3228 	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * sizeof(*desc));
3229 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3230 
3231 	return NETDEV_TX_OK;
3232 
3233 dma_map_err:
3234 	netdev_err(priv->dev, "Tx DMA map failed\n");
3235 	dev_kfree_skb(skb);
3236 	priv->dev->stats.tx_dropped++;
3237 	return NETDEV_TX_OK;
3238 }
3239 
3240 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
3241 {
3242 	struct vlan_ethhdr *veth;
3243 	__be16 vlan_proto;
3244 	u16 vlanid;
3245 
3246 	veth = (struct vlan_ethhdr *)skb->data;
3247 	vlan_proto = veth->h_vlan_proto;
3248 
3249 	if ((vlan_proto == htons(ETH_P_8021Q) &&
3250 	     dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
3251 	    (vlan_proto == htons(ETH_P_8021AD) &&
3252 	     dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
3253 		/* pop the vlan tag */
3254 		vlanid = ntohs(veth->h_vlan_TCI);
3255 		memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
3256 		skb_pull(skb, VLAN_HLEN);
3257 		__vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
3258 	}
3259 }
3260 
3261 
3262 static inline int stmmac_rx_threshold_count(struct stmmac_rx_queue *rx_q)
3263 {
3264 	if (rx_q->rx_zeroc_thresh < STMMAC_RX_THRESH)
3265 		return 0;
3266 
3267 	return 1;
3268 }
3269 
3270 /**
3271  * stmmac_rx_refill - refill used skb preallocated buffers
3272  * @priv: driver private structure
3273  * @queue: RX queue index
3274  * Description : this is to reallocate the skb for the reception process
3275  * that is based on zero-copy.
3276  */
3277 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
3278 {
3279 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3280 	int dirty = stmmac_rx_dirty(priv, queue);
3281 	unsigned int entry = rx_q->dirty_rx;
3282 
3283 	while (dirty-- > 0) {
3284 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
3285 		struct dma_desc *p;
3286 		bool use_rx_wd;
3287 
3288 		if (priv->extend_desc)
3289 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
3290 		else
3291 			p = rx_q->dma_rx + entry;
3292 
3293 		if (!buf->page) {
3294 			buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
3295 			if (!buf->page)
3296 				break;
3297 		}
3298 
3299 		buf->addr = page_pool_get_dma_addr(buf->page);
3300 		stmmac_set_desc_addr(priv, p, buf->addr);
3301 		stmmac_refill_desc3(priv, rx_q, p);
3302 
3303 		rx_q->rx_count_frames++;
3304 		rx_q->rx_count_frames %= priv->rx_coal_frames;
3305 		use_rx_wd = priv->use_riwt && rx_q->rx_count_frames;
3306 
3307 		dma_wmb();
3308 		stmmac_set_rx_owner(priv, p, use_rx_wd);
3309 
3310 		entry = STMMAC_GET_ENTRY(entry, DMA_RX_SIZE);
3311 	}
3312 	rx_q->dirty_rx = entry;
3313 	rx_q->rx_tail_addr = rx_q->dma_rx_phy +
3314 			    (rx_q->dirty_rx * sizeof(struct dma_desc));
3315 	stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
3316 }
3317 
3318 /**
3319  * stmmac_rx - manage the receive process
3320  * @priv: driver private structure
3321  * @limit: napi bugget
3322  * @queue: RX queue index.
3323  * Description :  this the function called by the napi poll method.
3324  * It gets all the frames inside the ring.
3325  */
3326 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
3327 {
3328 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3329 	struct stmmac_channel *ch = &priv->channel[queue];
3330 	unsigned int next_entry = rx_q->cur_rx;
3331 	int coe = priv->hw->rx_csum;
3332 	unsigned int count = 0;
3333 
3334 	if (netif_msg_rx_status(priv)) {
3335 		void *rx_head;
3336 
3337 		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
3338 		if (priv->extend_desc)
3339 			rx_head = (void *)rx_q->dma_erx;
3340 		else
3341 			rx_head = (void *)rx_q->dma_rx;
3342 
3343 		stmmac_display_ring(priv, rx_head, DMA_RX_SIZE, true);
3344 	}
3345 	while (count < limit) {
3346 		struct stmmac_rx_buffer *buf;
3347 		struct dma_desc *np, *p;
3348 		int entry, status;
3349 
3350 		entry = next_entry;
3351 		buf = &rx_q->buf_pool[entry];
3352 
3353 		if (priv->extend_desc)
3354 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
3355 		else
3356 			p = rx_q->dma_rx + entry;
3357 
3358 		/* read the status of the incoming frame */
3359 		status = stmmac_rx_status(priv, &priv->dev->stats,
3360 				&priv->xstats, p);
3361 		/* check if managed by the DMA otherwise go ahead */
3362 		if (unlikely(status & dma_own))
3363 			break;
3364 
3365 		count++;
3366 
3367 		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, DMA_RX_SIZE);
3368 		next_entry = rx_q->cur_rx;
3369 
3370 		if (priv->extend_desc)
3371 			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
3372 		else
3373 			np = rx_q->dma_rx + next_entry;
3374 
3375 		prefetch(np);
3376 
3377 		if (priv->extend_desc)
3378 			stmmac_rx_extended_status(priv, &priv->dev->stats,
3379 					&priv->xstats, rx_q->dma_erx + entry);
3380 		if (unlikely(status == discard_frame)) {
3381 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
3382 			priv->dev->stats.rx_errors++;
3383 			buf->page = NULL;
3384 		} else {
3385 			struct sk_buff *skb;
3386 			int frame_len;
3387 			unsigned int des;
3388 
3389 			stmmac_get_desc_addr(priv, p, &des);
3390 			frame_len = stmmac_get_rx_frame_len(priv, p, coe);
3391 
3392 			/*  If frame length is greater than skb buffer size
3393 			 *  (preallocated during init) then the packet is
3394 			 *  ignored
3395 			 */
3396 			if (frame_len > priv->dma_buf_sz) {
3397 				if (net_ratelimit())
3398 					netdev_err(priv->dev,
3399 						   "len %d larger than size (%d)\n",
3400 						   frame_len, priv->dma_buf_sz);
3401 				priv->dev->stats.rx_length_errors++;
3402 				continue;
3403 			}
3404 
3405 			/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
3406 			 * Type frames (LLC/LLC-SNAP)
3407 			 *
3408 			 * llc_snap is never checked in GMAC >= 4, so this ACS
3409 			 * feature is always disabled and packets need to be
3410 			 * stripped manually.
3411 			 */
3412 			if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
3413 			    unlikely(status != llc_snap))
3414 				frame_len -= ETH_FCS_LEN;
3415 
3416 			if (netif_msg_rx_status(priv)) {
3417 				netdev_dbg(priv->dev, "\tdesc: %p [entry %d] buff=0x%x\n",
3418 					   p, entry, des);
3419 				netdev_dbg(priv->dev, "frame size %d, COE: %d\n",
3420 					   frame_len, status);
3421 			}
3422 
3423 			skb = netdev_alloc_skb_ip_align(priv->dev, frame_len);
3424 			if (unlikely(!skb)) {
3425 				priv->dev->stats.rx_dropped++;
3426 				continue;
3427 			}
3428 
3429 			dma_sync_single_for_cpu(priv->device, buf->addr,
3430 						frame_len, DMA_FROM_DEVICE);
3431 			skb_copy_to_linear_data(skb, page_address(buf->page),
3432 						frame_len);
3433 			skb_put(skb, frame_len);
3434 			dma_sync_single_for_device(priv->device, buf->addr,
3435 						   frame_len, DMA_FROM_DEVICE);
3436 
3437 			if (netif_msg_pktdata(priv)) {
3438 				netdev_dbg(priv->dev, "frame received (%dbytes)",
3439 					   frame_len);
3440 				print_pkt(skb->data, frame_len);
3441 			}
3442 
3443 			stmmac_get_rx_hwtstamp(priv, p, np, skb);
3444 
3445 			stmmac_rx_vlan(priv->dev, skb);
3446 
3447 			skb->protocol = eth_type_trans(skb, priv->dev);
3448 
3449 			if (unlikely(!coe))
3450 				skb_checksum_none_assert(skb);
3451 			else
3452 				skb->ip_summed = CHECKSUM_UNNECESSARY;
3453 
3454 			napi_gro_receive(&ch->rx_napi, skb);
3455 
3456 			/* Data payload copied into SKB, page ready for recycle */
3457 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
3458 			buf->page = NULL;
3459 
3460 			priv->dev->stats.rx_packets++;
3461 			priv->dev->stats.rx_bytes += frame_len;
3462 		}
3463 	}
3464 
3465 	stmmac_rx_refill(priv, queue);
3466 
3467 	priv->xstats.rx_pkt_n += count;
3468 
3469 	return count;
3470 }
3471 
3472 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
3473 {
3474 	struct stmmac_channel *ch =
3475 		container_of(napi, struct stmmac_channel, rx_napi);
3476 	struct stmmac_priv *priv = ch->priv_data;
3477 	u32 chan = ch->index;
3478 	int work_done;
3479 
3480 	priv->xstats.napi_poll++;
3481 
3482 	work_done = stmmac_rx(priv, budget, chan);
3483 	if (work_done < budget && napi_complete_done(napi, work_done))
3484 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan);
3485 	return work_done;
3486 }
3487 
3488 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
3489 {
3490 	struct stmmac_channel *ch =
3491 		container_of(napi, struct stmmac_channel, tx_napi);
3492 	struct stmmac_priv *priv = ch->priv_data;
3493 	struct stmmac_tx_queue *tx_q;
3494 	u32 chan = ch->index;
3495 	int work_done;
3496 
3497 	priv->xstats.napi_poll++;
3498 
3499 	work_done = stmmac_tx_clean(priv, DMA_TX_SIZE, chan);
3500 	work_done = min(work_done, budget);
3501 
3502 	if (work_done < budget)
3503 		napi_complete_done(napi, work_done);
3504 
3505 	/* Force transmission restart */
3506 	tx_q = &priv->tx_queue[chan];
3507 	if (tx_q->cur_tx != tx_q->dirty_tx) {
3508 		stmmac_enable_dma_transmission(priv, priv->ioaddr);
3509 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr,
3510 				       chan);
3511 	}
3512 
3513 	return work_done;
3514 }
3515 
3516 /**
3517  *  stmmac_tx_timeout
3518  *  @dev : Pointer to net device structure
3519  *  Description: this function is called when a packet transmission fails to
3520  *   complete within a reasonable time. The driver will mark the error in the
3521  *   netdev structure and arrange for the device to be reset to a sane state
3522  *   in order to transmit a new packet.
3523  */
3524 static void stmmac_tx_timeout(struct net_device *dev)
3525 {
3526 	struct stmmac_priv *priv = netdev_priv(dev);
3527 
3528 	stmmac_global_err(priv);
3529 }
3530 
3531 /**
3532  *  stmmac_set_rx_mode - entry point for multicast addressing
3533  *  @dev : pointer to the device structure
3534  *  Description:
3535  *  This function is a driver entry point which gets called by the kernel
3536  *  whenever multicast addresses must be enabled/disabled.
3537  *  Return value:
3538  *  void.
3539  */
3540 static void stmmac_set_rx_mode(struct net_device *dev)
3541 {
3542 	struct stmmac_priv *priv = netdev_priv(dev);
3543 
3544 	stmmac_set_filter(priv, priv->hw, dev);
3545 }
3546 
3547 /**
3548  *  stmmac_change_mtu - entry point to change MTU size for the device.
3549  *  @dev : device pointer.
3550  *  @new_mtu : the new MTU size for the device.
3551  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
3552  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
3553  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
3554  *  Return value:
3555  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3556  *  file on failure.
3557  */
3558 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
3559 {
3560 	struct stmmac_priv *priv = netdev_priv(dev);
3561 
3562 	if (netif_running(dev)) {
3563 		netdev_err(priv->dev, "must be stopped to change its MTU\n");
3564 		return -EBUSY;
3565 	}
3566 
3567 	dev->mtu = new_mtu;
3568 
3569 	netdev_update_features(dev);
3570 
3571 	return 0;
3572 }
3573 
3574 static netdev_features_t stmmac_fix_features(struct net_device *dev,
3575 					     netdev_features_t features)
3576 {
3577 	struct stmmac_priv *priv = netdev_priv(dev);
3578 
3579 	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
3580 		features &= ~NETIF_F_RXCSUM;
3581 
3582 	if (!priv->plat->tx_coe)
3583 		features &= ~NETIF_F_CSUM_MASK;
3584 
3585 	/* Some GMAC devices have a bugged Jumbo frame support that
3586 	 * needs to have the Tx COE disabled for oversized frames
3587 	 * (due to limited buffer sizes). In this case we disable
3588 	 * the TX csum insertion in the TDES and not use SF.
3589 	 */
3590 	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
3591 		features &= ~NETIF_F_CSUM_MASK;
3592 
3593 	/* Disable tso if asked by ethtool */
3594 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
3595 		if (features & NETIF_F_TSO)
3596 			priv->tso = true;
3597 		else
3598 			priv->tso = false;
3599 	}
3600 
3601 	return features;
3602 }
3603 
3604 static int stmmac_set_features(struct net_device *netdev,
3605 			       netdev_features_t features)
3606 {
3607 	struct stmmac_priv *priv = netdev_priv(netdev);
3608 
3609 	/* Keep the COE Type in case of csum is supporting */
3610 	if (features & NETIF_F_RXCSUM)
3611 		priv->hw->rx_csum = priv->plat->rx_coe;
3612 	else
3613 		priv->hw->rx_csum = 0;
3614 	/* No check needed because rx_coe has been set before and it will be
3615 	 * fixed in case of issue.
3616 	 */
3617 	stmmac_rx_ipc(priv, priv->hw);
3618 
3619 	return 0;
3620 }
3621 
3622 /**
3623  *  stmmac_interrupt - main ISR
3624  *  @irq: interrupt number.
3625  *  @dev_id: to pass the net device pointer.
3626  *  Description: this is the main driver interrupt service routine.
3627  *  It can call:
3628  *  o DMA service routine (to manage incoming frame reception and transmission
3629  *    status)
3630  *  o Core interrupts to manage: remote wake-up, management counter, LPI
3631  *    interrupts.
3632  */
3633 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
3634 {
3635 	struct net_device *dev = (struct net_device *)dev_id;
3636 	struct stmmac_priv *priv = netdev_priv(dev);
3637 	u32 rx_cnt = priv->plat->rx_queues_to_use;
3638 	u32 tx_cnt = priv->plat->tx_queues_to_use;
3639 	u32 queues_count;
3640 	u32 queue;
3641 	bool xmac;
3642 
3643 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
3644 	queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
3645 
3646 	if (priv->irq_wake)
3647 		pm_wakeup_event(priv->device, 0);
3648 
3649 	if (unlikely(!dev)) {
3650 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
3651 		return IRQ_NONE;
3652 	}
3653 
3654 	/* Check if adapter is up */
3655 	if (test_bit(STMMAC_DOWN, &priv->state))
3656 		return IRQ_HANDLED;
3657 	/* Check if a fatal error happened */
3658 	if (stmmac_safety_feat_interrupt(priv))
3659 		return IRQ_HANDLED;
3660 
3661 	/* To handle GMAC own interrupts */
3662 	if ((priv->plat->has_gmac) || xmac) {
3663 		int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
3664 		int mtl_status;
3665 
3666 		if (unlikely(status)) {
3667 			/* For LPI we need to save the tx status */
3668 			if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
3669 				priv->tx_path_in_lpi_mode = true;
3670 			if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
3671 				priv->tx_path_in_lpi_mode = false;
3672 		}
3673 
3674 		for (queue = 0; queue < queues_count; queue++) {
3675 			struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3676 
3677 			mtl_status = stmmac_host_mtl_irq_status(priv, priv->hw,
3678 								queue);
3679 			if (mtl_status != -EINVAL)
3680 				status |= mtl_status;
3681 
3682 			if (status & CORE_IRQ_MTL_RX_OVERFLOW)
3683 				stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
3684 						       rx_q->rx_tail_addr,
3685 						       queue);
3686 		}
3687 
3688 		/* PCS link status */
3689 		if (priv->hw->pcs) {
3690 			if (priv->xstats.pcs_link)
3691 				netif_carrier_on(dev);
3692 			else
3693 				netif_carrier_off(dev);
3694 		}
3695 	}
3696 
3697 	/* To handle DMA interrupts */
3698 	stmmac_dma_interrupt(priv);
3699 
3700 	return IRQ_HANDLED;
3701 }
3702 
3703 #ifdef CONFIG_NET_POLL_CONTROLLER
3704 /* Polling receive - used by NETCONSOLE and other diagnostic tools
3705  * to allow network I/O with interrupts disabled.
3706  */
3707 static void stmmac_poll_controller(struct net_device *dev)
3708 {
3709 	disable_irq(dev->irq);
3710 	stmmac_interrupt(dev->irq, dev);
3711 	enable_irq(dev->irq);
3712 }
3713 #endif
3714 
3715 /**
3716  *  stmmac_ioctl - Entry point for the Ioctl
3717  *  @dev: Device pointer.
3718  *  @rq: An IOCTL specefic structure, that can contain a pointer to
3719  *  a proprietary structure used to pass information to the driver.
3720  *  @cmd: IOCTL command
3721  *  Description:
3722  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
3723  */
3724 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3725 {
3726 	struct stmmac_priv *priv = netdev_priv (dev);
3727 	int ret = -EOPNOTSUPP;
3728 
3729 	if (!netif_running(dev))
3730 		return -EINVAL;
3731 
3732 	switch (cmd) {
3733 	case SIOCGMIIPHY:
3734 	case SIOCGMIIREG:
3735 	case SIOCSMIIREG:
3736 		ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
3737 		break;
3738 	case SIOCSHWTSTAMP:
3739 		ret = stmmac_hwtstamp_set(dev, rq);
3740 		break;
3741 	case SIOCGHWTSTAMP:
3742 		ret = stmmac_hwtstamp_get(dev, rq);
3743 		break;
3744 	default:
3745 		break;
3746 	}
3747 
3748 	return ret;
3749 }
3750 
3751 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
3752 				    void *cb_priv)
3753 {
3754 	struct stmmac_priv *priv = cb_priv;
3755 	int ret = -EOPNOTSUPP;
3756 
3757 	stmmac_disable_all_queues(priv);
3758 
3759 	switch (type) {
3760 	case TC_SETUP_CLSU32:
3761 		if (tc_cls_can_offload_and_chain0(priv->dev, type_data))
3762 			ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
3763 		break;
3764 	default:
3765 		break;
3766 	}
3767 
3768 	stmmac_enable_all_queues(priv);
3769 	return ret;
3770 }
3771 
3772 static LIST_HEAD(stmmac_block_cb_list);
3773 
3774 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
3775 			   void *type_data)
3776 {
3777 	struct stmmac_priv *priv = netdev_priv(ndev);
3778 
3779 	switch (type) {
3780 	case TC_SETUP_BLOCK:
3781 		return flow_block_cb_setup_simple(type_data,
3782 						  &stmmac_block_cb_list,
3783 						  stmmac_setup_tc_block_cb,
3784 						  priv, priv, true);
3785 	case TC_SETUP_QDISC_CBS:
3786 		return stmmac_tc_setup_cbs(priv, priv, type_data);
3787 	default:
3788 		return -EOPNOTSUPP;
3789 	}
3790 }
3791 
3792 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
3793 			       struct net_device *sb_dev)
3794 {
3795 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
3796 		/*
3797 		 * There is no way to determine the number of TSO
3798 		 * capable Queues. Let's use always the Queue 0
3799 		 * because if TSO is supported then at least this
3800 		 * one will be capable.
3801 		 */
3802 		return 0;
3803 	}
3804 
3805 	return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
3806 }
3807 
3808 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
3809 {
3810 	struct stmmac_priv *priv = netdev_priv(ndev);
3811 	int ret = 0;
3812 
3813 	ret = eth_mac_addr(ndev, addr);
3814 	if (ret)
3815 		return ret;
3816 
3817 	stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
3818 
3819 	return ret;
3820 }
3821 
3822 #ifdef CONFIG_DEBUG_FS
3823 static struct dentry *stmmac_fs_dir;
3824 
3825 static void sysfs_display_ring(void *head, int size, int extend_desc,
3826 			       struct seq_file *seq)
3827 {
3828 	int i;
3829 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
3830 	struct dma_desc *p = (struct dma_desc *)head;
3831 
3832 	for (i = 0; i < size; i++) {
3833 		if (extend_desc) {
3834 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
3835 				   i, (unsigned int)virt_to_phys(ep),
3836 				   le32_to_cpu(ep->basic.des0),
3837 				   le32_to_cpu(ep->basic.des1),
3838 				   le32_to_cpu(ep->basic.des2),
3839 				   le32_to_cpu(ep->basic.des3));
3840 			ep++;
3841 		} else {
3842 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
3843 				   i, (unsigned int)virt_to_phys(p),
3844 				   le32_to_cpu(p->des0), le32_to_cpu(p->des1),
3845 				   le32_to_cpu(p->des2), le32_to_cpu(p->des3));
3846 			p++;
3847 		}
3848 		seq_printf(seq, "\n");
3849 	}
3850 }
3851 
3852 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
3853 {
3854 	struct net_device *dev = seq->private;
3855 	struct stmmac_priv *priv = netdev_priv(dev);
3856 	u32 rx_count = priv->plat->rx_queues_to_use;
3857 	u32 tx_count = priv->plat->tx_queues_to_use;
3858 	u32 queue;
3859 
3860 	if ((dev->flags & IFF_UP) == 0)
3861 		return 0;
3862 
3863 	for (queue = 0; queue < rx_count; queue++) {
3864 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3865 
3866 		seq_printf(seq, "RX Queue %d:\n", queue);
3867 
3868 		if (priv->extend_desc) {
3869 			seq_printf(seq, "Extended descriptor ring:\n");
3870 			sysfs_display_ring((void *)rx_q->dma_erx,
3871 					   DMA_RX_SIZE, 1, seq);
3872 		} else {
3873 			seq_printf(seq, "Descriptor ring:\n");
3874 			sysfs_display_ring((void *)rx_q->dma_rx,
3875 					   DMA_RX_SIZE, 0, seq);
3876 		}
3877 	}
3878 
3879 	for (queue = 0; queue < tx_count; queue++) {
3880 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
3881 
3882 		seq_printf(seq, "TX Queue %d:\n", queue);
3883 
3884 		if (priv->extend_desc) {
3885 			seq_printf(seq, "Extended descriptor ring:\n");
3886 			sysfs_display_ring((void *)tx_q->dma_etx,
3887 					   DMA_TX_SIZE, 1, seq);
3888 		} else {
3889 			seq_printf(seq, "Descriptor ring:\n");
3890 			sysfs_display_ring((void *)tx_q->dma_tx,
3891 					   DMA_TX_SIZE, 0, seq);
3892 		}
3893 	}
3894 
3895 	return 0;
3896 }
3897 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
3898 
3899 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
3900 {
3901 	struct net_device *dev = seq->private;
3902 	struct stmmac_priv *priv = netdev_priv(dev);
3903 
3904 	if (!priv->hw_cap_support) {
3905 		seq_printf(seq, "DMA HW features not supported\n");
3906 		return 0;
3907 	}
3908 
3909 	seq_printf(seq, "==============================\n");
3910 	seq_printf(seq, "\tDMA HW features\n");
3911 	seq_printf(seq, "==============================\n");
3912 
3913 	seq_printf(seq, "\t10/100 Mbps: %s\n",
3914 		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
3915 	seq_printf(seq, "\t1000 Mbps: %s\n",
3916 		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
3917 	seq_printf(seq, "\tHalf duplex: %s\n",
3918 		   (priv->dma_cap.half_duplex) ? "Y" : "N");
3919 	seq_printf(seq, "\tHash Filter: %s\n",
3920 		   (priv->dma_cap.hash_filter) ? "Y" : "N");
3921 	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
3922 		   (priv->dma_cap.multi_addr) ? "Y" : "N");
3923 	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
3924 		   (priv->dma_cap.pcs) ? "Y" : "N");
3925 	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
3926 		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
3927 	seq_printf(seq, "\tPMT Remote wake up: %s\n",
3928 		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
3929 	seq_printf(seq, "\tPMT Magic Frame: %s\n",
3930 		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
3931 	seq_printf(seq, "\tRMON module: %s\n",
3932 		   (priv->dma_cap.rmon) ? "Y" : "N");
3933 	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
3934 		   (priv->dma_cap.time_stamp) ? "Y" : "N");
3935 	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
3936 		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
3937 	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
3938 		   (priv->dma_cap.eee) ? "Y" : "N");
3939 	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
3940 	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
3941 		   (priv->dma_cap.tx_coe) ? "Y" : "N");
3942 	if (priv->synopsys_id >= DWMAC_CORE_4_00) {
3943 		seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
3944 			   (priv->dma_cap.rx_coe) ? "Y" : "N");
3945 	} else {
3946 		seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
3947 			   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
3948 		seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
3949 			   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
3950 	}
3951 	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
3952 		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
3953 	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
3954 		   priv->dma_cap.number_rx_channel);
3955 	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
3956 		   priv->dma_cap.number_tx_channel);
3957 	seq_printf(seq, "\tEnhanced descriptors: %s\n",
3958 		   (priv->dma_cap.enh_desc) ? "Y" : "N");
3959 
3960 	return 0;
3961 }
3962 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
3963 
3964 static int stmmac_init_fs(struct net_device *dev)
3965 {
3966 	struct stmmac_priv *priv = netdev_priv(dev);
3967 
3968 	/* Create per netdev entries */
3969 	priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
3970 
3971 	if (!priv->dbgfs_dir || IS_ERR(priv->dbgfs_dir)) {
3972 		netdev_err(priv->dev, "ERROR failed to create debugfs directory\n");
3973 
3974 		return -ENOMEM;
3975 	}
3976 
3977 	/* Entry to report DMA RX/TX rings */
3978 	priv->dbgfs_rings_status =
3979 		debugfs_create_file("descriptors_status", 0444,
3980 				    priv->dbgfs_dir, dev,
3981 				    &stmmac_rings_status_fops);
3982 
3983 	if (!priv->dbgfs_rings_status || IS_ERR(priv->dbgfs_rings_status)) {
3984 		netdev_err(priv->dev, "ERROR creating stmmac ring debugfs file\n");
3985 		debugfs_remove_recursive(priv->dbgfs_dir);
3986 
3987 		return -ENOMEM;
3988 	}
3989 
3990 	/* Entry to report the DMA HW features */
3991 	priv->dbgfs_dma_cap = debugfs_create_file("dma_cap", 0444,
3992 						  priv->dbgfs_dir,
3993 						  dev, &stmmac_dma_cap_fops);
3994 
3995 	if (!priv->dbgfs_dma_cap || IS_ERR(priv->dbgfs_dma_cap)) {
3996 		netdev_err(priv->dev, "ERROR creating stmmac MMC debugfs file\n");
3997 		debugfs_remove_recursive(priv->dbgfs_dir);
3998 
3999 		return -ENOMEM;
4000 	}
4001 
4002 	return 0;
4003 }
4004 
4005 static void stmmac_exit_fs(struct net_device *dev)
4006 {
4007 	struct stmmac_priv *priv = netdev_priv(dev);
4008 
4009 	debugfs_remove_recursive(priv->dbgfs_dir);
4010 }
4011 #endif /* CONFIG_DEBUG_FS */
4012 
4013 static const struct net_device_ops stmmac_netdev_ops = {
4014 	.ndo_open = stmmac_open,
4015 	.ndo_start_xmit = stmmac_xmit,
4016 	.ndo_stop = stmmac_release,
4017 	.ndo_change_mtu = stmmac_change_mtu,
4018 	.ndo_fix_features = stmmac_fix_features,
4019 	.ndo_set_features = stmmac_set_features,
4020 	.ndo_set_rx_mode = stmmac_set_rx_mode,
4021 	.ndo_tx_timeout = stmmac_tx_timeout,
4022 	.ndo_do_ioctl = stmmac_ioctl,
4023 	.ndo_setup_tc = stmmac_setup_tc,
4024 	.ndo_select_queue = stmmac_select_queue,
4025 #ifdef CONFIG_NET_POLL_CONTROLLER
4026 	.ndo_poll_controller = stmmac_poll_controller,
4027 #endif
4028 	.ndo_set_mac_address = stmmac_set_mac_address,
4029 };
4030 
4031 static void stmmac_reset_subtask(struct stmmac_priv *priv)
4032 {
4033 	if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
4034 		return;
4035 	if (test_bit(STMMAC_DOWN, &priv->state))
4036 		return;
4037 
4038 	netdev_err(priv->dev, "Reset adapter.\n");
4039 
4040 	rtnl_lock();
4041 	netif_trans_update(priv->dev);
4042 	while (test_and_set_bit(STMMAC_RESETING, &priv->state))
4043 		usleep_range(1000, 2000);
4044 
4045 	set_bit(STMMAC_DOWN, &priv->state);
4046 	dev_close(priv->dev);
4047 	dev_open(priv->dev, NULL);
4048 	clear_bit(STMMAC_DOWN, &priv->state);
4049 	clear_bit(STMMAC_RESETING, &priv->state);
4050 	rtnl_unlock();
4051 }
4052 
4053 static void stmmac_service_task(struct work_struct *work)
4054 {
4055 	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
4056 			service_task);
4057 
4058 	stmmac_reset_subtask(priv);
4059 	clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
4060 }
4061 
4062 /**
4063  *  stmmac_hw_init - Init the MAC device
4064  *  @priv: driver private structure
4065  *  Description: this function is to configure the MAC device according to
4066  *  some platform parameters or the HW capability register. It prepares the
4067  *  driver to use either ring or chain modes and to setup either enhanced or
4068  *  normal descriptors.
4069  */
4070 static int stmmac_hw_init(struct stmmac_priv *priv)
4071 {
4072 	int ret;
4073 
4074 	/* dwmac-sun8i only work in chain mode */
4075 	if (priv->plat->has_sun8i)
4076 		chain_mode = 1;
4077 	priv->chain_mode = chain_mode;
4078 
4079 	/* Initialize HW Interface */
4080 	ret = stmmac_hwif_init(priv);
4081 	if (ret)
4082 		return ret;
4083 
4084 	/* Get the HW capability (new GMAC newer than 3.50a) */
4085 	priv->hw_cap_support = stmmac_get_hw_features(priv);
4086 	if (priv->hw_cap_support) {
4087 		dev_info(priv->device, "DMA HW capability register supported\n");
4088 
4089 		/* We can override some gmac/dma configuration fields: e.g.
4090 		 * enh_desc, tx_coe (e.g. that are passed through the
4091 		 * platform) with the values from the HW capability
4092 		 * register (if supported).
4093 		 */
4094 		priv->plat->enh_desc = priv->dma_cap.enh_desc;
4095 		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
4096 		priv->hw->pmt = priv->plat->pmt;
4097 		if (priv->dma_cap.hash_tb_sz) {
4098 			priv->hw->multicast_filter_bins =
4099 					(BIT(priv->dma_cap.hash_tb_sz) << 5);
4100 			priv->hw->mcast_bits_log2 =
4101 					ilog2(priv->hw->multicast_filter_bins);
4102 		}
4103 
4104 		/* TXCOE doesn't work in thresh DMA mode */
4105 		if (priv->plat->force_thresh_dma_mode)
4106 			priv->plat->tx_coe = 0;
4107 		else
4108 			priv->plat->tx_coe = priv->dma_cap.tx_coe;
4109 
4110 		/* In case of GMAC4 rx_coe is from HW cap register. */
4111 		priv->plat->rx_coe = priv->dma_cap.rx_coe;
4112 
4113 		if (priv->dma_cap.rx_coe_type2)
4114 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
4115 		else if (priv->dma_cap.rx_coe_type1)
4116 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
4117 
4118 	} else {
4119 		dev_info(priv->device, "No HW DMA feature register supported\n");
4120 	}
4121 
4122 	if (priv->plat->rx_coe) {
4123 		priv->hw->rx_csum = priv->plat->rx_coe;
4124 		dev_info(priv->device, "RX Checksum Offload Engine supported\n");
4125 		if (priv->synopsys_id < DWMAC_CORE_4_00)
4126 			dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
4127 	}
4128 	if (priv->plat->tx_coe)
4129 		dev_info(priv->device, "TX Checksum insertion supported\n");
4130 
4131 	if (priv->plat->pmt) {
4132 		dev_info(priv->device, "Wake-Up On Lan supported\n");
4133 		device_set_wakeup_capable(priv->device, 1);
4134 	}
4135 
4136 	if (priv->dma_cap.tsoen)
4137 		dev_info(priv->device, "TSO supported\n");
4138 
4139 	/* Run HW quirks, if any */
4140 	if (priv->hwif_quirks) {
4141 		ret = priv->hwif_quirks(priv);
4142 		if (ret)
4143 			return ret;
4144 	}
4145 
4146 	/* Rx Watchdog is available in the COREs newer than the 3.40.
4147 	 * In some case, for example on bugged HW this feature
4148 	 * has to be disable and this can be done by passing the
4149 	 * riwt_off field from the platform.
4150 	 */
4151 	if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
4152 	    (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
4153 		priv->use_riwt = 1;
4154 		dev_info(priv->device,
4155 			 "Enable RX Mitigation via HW Watchdog Timer\n");
4156 	}
4157 
4158 	return 0;
4159 }
4160 
4161 /**
4162  * stmmac_dvr_probe
4163  * @device: device pointer
4164  * @plat_dat: platform data pointer
4165  * @res: stmmac resource pointer
4166  * Description: this is the main probe function used to
4167  * call the alloc_etherdev, allocate the priv structure.
4168  * Return:
4169  * returns 0 on success, otherwise errno.
4170  */
4171 int stmmac_dvr_probe(struct device *device,
4172 		     struct plat_stmmacenet_data *plat_dat,
4173 		     struct stmmac_resources *res)
4174 {
4175 	struct net_device *ndev = NULL;
4176 	struct stmmac_priv *priv;
4177 	u32 queue, maxq;
4178 	int ret = 0;
4179 
4180 	ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
4181 				       MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
4182 	if (!ndev)
4183 		return -ENOMEM;
4184 
4185 	SET_NETDEV_DEV(ndev, device);
4186 
4187 	priv = netdev_priv(ndev);
4188 	priv->device = device;
4189 	priv->dev = ndev;
4190 
4191 	stmmac_set_ethtool_ops(ndev);
4192 	priv->pause = pause;
4193 	priv->plat = plat_dat;
4194 	priv->ioaddr = res->addr;
4195 	priv->dev->base_addr = (unsigned long)res->addr;
4196 
4197 	priv->dev->irq = res->irq;
4198 	priv->wol_irq = res->wol_irq;
4199 	priv->lpi_irq = res->lpi_irq;
4200 
4201 	if (!IS_ERR_OR_NULL(res->mac))
4202 		memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
4203 
4204 	dev_set_drvdata(device, priv->dev);
4205 
4206 	/* Verify driver arguments */
4207 	stmmac_verify_args();
4208 
4209 	/* Allocate workqueue */
4210 	priv->wq = create_singlethread_workqueue("stmmac_wq");
4211 	if (!priv->wq) {
4212 		dev_err(priv->device, "failed to create workqueue\n");
4213 		return -ENOMEM;
4214 	}
4215 
4216 	INIT_WORK(&priv->service_task, stmmac_service_task);
4217 
4218 	/* Override with kernel parameters if supplied XXX CRS XXX
4219 	 * this needs to have multiple instances
4220 	 */
4221 	if ((phyaddr >= 0) && (phyaddr <= 31))
4222 		priv->plat->phy_addr = phyaddr;
4223 
4224 	if (priv->plat->stmmac_rst) {
4225 		ret = reset_control_assert(priv->plat->stmmac_rst);
4226 		reset_control_deassert(priv->plat->stmmac_rst);
4227 		/* Some reset controllers have only reset callback instead of
4228 		 * assert + deassert callbacks pair.
4229 		 */
4230 		if (ret == -ENOTSUPP)
4231 			reset_control_reset(priv->plat->stmmac_rst);
4232 	}
4233 
4234 	/* Init MAC and get the capabilities */
4235 	ret = stmmac_hw_init(priv);
4236 	if (ret)
4237 		goto error_hw_init;
4238 
4239 	stmmac_check_ether_addr(priv);
4240 
4241 	/* Configure real RX and TX queues */
4242 	netif_set_real_num_rx_queues(ndev, priv->plat->rx_queues_to_use);
4243 	netif_set_real_num_tx_queues(ndev, priv->plat->tx_queues_to_use);
4244 
4245 	ndev->netdev_ops = &stmmac_netdev_ops;
4246 
4247 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4248 			    NETIF_F_RXCSUM;
4249 
4250 	ret = stmmac_tc_init(priv, priv);
4251 	if (!ret) {
4252 		ndev->hw_features |= NETIF_F_HW_TC;
4253 	}
4254 
4255 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
4256 		ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
4257 		priv->tso = true;
4258 		dev_info(priv->device, "TSO feature enabled\n");
4259 	}
4260 
4261 	if (priv->dma_cap.addr64) {
4262 		ret = dma_set_mask_and_coherent(device,
4263 				DMA_BIT_MASK(priv->dma_cap.addr64));
4264 		if (!ret) {
4265 			dev_info(priv->device, "Using %d bits DMA width\n",
4266 				 priv->dma_cap.addr64);
4267 		} else {
4268 			ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
4269 			if (ret) {
4270 				dev_err(priv->device, "Failed to set DMA Mask\n");
4271 				goto error_hw_init;
4272 			}
4273 
4274 			priv->dma_cap.addr64 = 32;
4275 		}
4276 	}
4277 
4278 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
4279 	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
4280 #ifdef STMMAC_VLAN_TAG_USED
4281 	/* Both mac100 and gmac support receive VLAN tag detection */
4282 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
4283 #endif
4284 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
4285 
4286 	/* MTU range: 46 - hw-specific max */
4287 	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
4288 	if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
4289 		ndev->max_mtu = JUMBO_LEN;
4290 	else if (priv->plat->has_xgmac)
4291 		ndev->max_mtu = XGMAC_JUMBO_LEN;
4292 	else
4293 		ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
4294 	/* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
4295 	 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
4296 	 */
4297 	if ((priv->plat->maxmtu < ndev->max_mtu) &&
4298 	    (priv->plat->maxmtu >= ndev->min_mtu))
4299 		ndev->max_mtu = priv->plat->maxmtu;
4300 	else if (priv->plat->maxmtu < ndev->min_mtu)
4301 		dev_warn(priv->device,
4302 			 "%s: warning: maxmtu having invalid value (%d)\n",
4303 			 __func__, priv->plat->maxmtu);
4304 
4305 	if (flow_ctrl)
4306 		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
4307 
4308 	/* Setup channels NAPI */
4309 	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
4310 
4311 	for (queue = 0; queue < maxq; queue++) {
4312 		struct stmmac_channel *ch = &priv->channel[queue];
4313 
4314 		ch->priv_data = priv;
4315 		ch->index = queue;
4316 
4317 		if (queue < priv->plat->rx_queues_to_use) {
4318 			netif_napi_add(ndev, &ch->rx_napi, stmmac_napi_poll_rx,
4319 				       NAPI_POLL_WEIGHT);
4320 		}
4321 		if (queue < priv->plat->tx_queues_to_use) {
4322 			netif_napi_add(ndev, &ch->tx_napi, stmmac_napi_poll_tx,
4323 				       NAPI_POLL_WEIGHT);
4324 		}
4325 	}
4326 
4327 	mutex_init(&priv->lock);
4328 
4329 	/* If a specific clk_csr value is passed from the platform
4330 	 * this means that the CSR Clock Range selection cannot be
4331 	 * changed at run-time and it is fixed. Viceversa the driver'll try to
4332 	 * set the MDC clock dynamically according to the csr actual
4333 	 * clock input.
4334 	 */
4335 	if (priv->plat->clk_csr >= 0)
4336 		priv->clk_csr = priv->plat->clk_csr;
4337 	else
4338 		stmmac_clk_csr_set(priv);
4339 
4340 	stmmac_check_pcs_mode(priv);
4341 
4342 	if (priv->hw->pcs != STMMAC_PCS_RGMII  &&
4343 	    priv->hw->pcs != STMMAC_PCS_TBI &&
4344 	    priv->hw->pcs != STMMAC_PCS_RTBI) {
4345 		/* MDIO bus Registration */
4346 		ret = stmmac_mdio_register(ndev);
4347 		if (ret < 0) {
4348 			dev_err(priv->device,
4349 				"%s: MDIO bus (id: %d) registration failed",
4350 				__func__, priv->plat->bus_id);
4351 			goto error_mdio_register;
4352 		}
4353 	}
4354 
4355 	ret = stmmac_phy_setup(priv);
4356 	if (ret) {
4357 		netdev_err(ndev, "failed to setup phy (%d)\n", ret);
4358 		goto error_phy_setup;
4359 	}
4360 
4361 	ret = register_netdev(ndev);
4362 	if (ret) {
4363 		dev_err(priv->device, "%s: ERROR %i registering the device\n",
4364 			__func__, ret);
4365 		goto error_netdev_register;
4366 	}
4367 
4368 #ifdef CONFIG_DEBUG_FS
4369 	ret = stmmac_init_fs(ndev);
4370 	if (ret < 0)
4371 		netdev_warn(priv->dev, "%s: failed debugFS registration\n",
4372 			    __func__);
4373 #endif
4374 
4375 	return ret;
4376 
4377 error_netdev_register:
4378 	phylink_destroy(priv->phylink);
4379 error_phy_setup:
4380 	if (priv->hw->pcs != STMMAC_PCS_RGMII &&
4381 	    priv->hw->pcs != STMMAC_PCS_TBI &&
4382 	    priv->hw->pcs != STMMAC_PCS_RTBI)
4383 		stmmac_mdio_unregister(ndev);
4384 error_mdio_register:
4385 	for (queue = 0; queue < maxq; queue++) {
4386 		struct stmmac_channel *ch = &priv->channel[queue];
4387 
4388 		if (queue < priv->plat->rx_queues_to_use)
4389 			netif_napi_del(&ch->rx_napi);
4390 		if (queue < priv->plat->tx_queues_to_use)
4391 			netif_napi_del(&ch->tx_napi);
4392 	}
4393 error_hw_init:
4394 	destroy_workqueue(priv->wq);
4395 
4396 	return ret;
4397 }
4398 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
4399 
4400 /**
4401  * stmmac_dvr_remove
4402  * @dev: device pointer
4403  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
4404  * changes the link status, releases the DMA descriptor rings.
4405  */
4406 int stmmac_dvr_remove(struct device *dev)
4407 {
4408 	struct net_device *ndev = dev_get_drvdata(dev);
4409 	struct stmmac_priv *priv = netdev_priv(ndev);
4410 
4411 	netdev_info(priv->dev, "%s: removing driver", __func__);
4412 
4413 #ifdef CONFIG_DEBUG_FS
4414 	stmmac_exit_fs(ndev);
4415 #endif
4416 	stmmac_stop_all_dma(priv);
4417 
4418 	stmmac_mac_set(priv, priv->ioaddr, false);
4419 	netif_carrier_off(ndev);
4420 	unregister_netdev(ndev);
4421 	phylink_destroy(priv->phylink);
4422 	if (priv->plat->stmmac_rst)
4423 		reset_control_assert(priv->plat->stmmac_rst);
4424 	clk_disable_unprepare(priv->plat->pclk);
4425 	clk_disable_unprepare(priv->plat->stmmac_clk);
4426 	if (priv->hw->pcs != STMMAC_PCS_RGMII &&
4427 	    priv->hw->pcs != STMMAC_PCS_TBI &&
4428 	    priv->hw->pcs != STMMAC_PCS_RTBI)
4429 		stmmac_mdio_unregister(ndev);
4430 	destroy_workqueue(priv->wq);
4431 	mutex_destroy(&priv->lock);
4432 
4433 	return 0;
4434 }
4435 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
4436 
4437 /**
4438  * stmmac_suspend - suspend callback
4439  * @dev: device pointer
4440  * Description: this is the function to suspend the device and it is called
4441  * by the platform driver to stop the network queue, release the resources,
4442  * program the PMT register (for WoL), clean and release driver resources.
4443  */
4444 int stmmac_suspend(struct device *dev)
4445 {
4446 	struct net_device *ndev = dev_get_drvdata(dev);
4447 	struct stmmac_priv *priv = netdev_priv(ndev);
4448 
4449 	if (!ndev || !netif_running(ndev))
4450 		return 0;
4451 
4452 	phylink_stop(priv->phylink);
4453 
4454 	mutex_lock(&priv->lock);
4455 
4456 	netif_device_detach(ndev);
4457 	stmmac_stop_all_queues(priv);
4458 
4459 	stmmac_disable_all_queues(priv);
4460 
4461 	/* Stop TX/RX DMA */
4462 	stmmac_stop_all_dma(priv);
4463 
4464 	/* Enable Power down mode by programming the PMT regs */
4465 	if (device_may_wakeup(priv->device)) {
4466 		stmmac_pmt(priv, priv->hw, priv->wolopts);
4467 		priv->irq_wake = 1;
4468 	} else {
4469 		stmmac_mac_set(priv, priv->ioaddr, false);
4470 		pinctrl_pm_select_sleep_state(priv->device);
4471 		/* Disable clock in case of PWM is off */
4472 		clk_disable(priv->plat->pclk);
4473 		clk_disable(priv->plat->stmmac_clk);
4474 	}
4475 	mutex_unlock(&priv->lock);
4476 
4477 	priv->speed = SPEED_UNKNOWN;
4478 	return 0;
4479 }
4480 EXPORT_SYMBOL_GPL(stmmac_suspend);
4481 
4482 /**
4483  * stmmac_reset_queues_param - reset queue parameters
4484  * @dev: device pointer
4485  */
4486 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
4487 {
4488 	u32 rx_cnt = priv->plat->rx_queues_to_use;
4489 	u32 tx_cnt = priv->plat->tx_queues_to_use;
4490 	u32 queue;
4491 
4492 	for (queue = 0; queue < rx_cnt; queue++) {
4493 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4494 
4495 		rx_q->cur_rx = 0;
4496 		rx_q->dirty_rx = 0;
4497 	}
4498 
4499 	for (queue = 0; queue < tx_cnt; queue++) {
4500 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4501 
4502 		tx_q->cur_tx = 0;
4503 		tx_q->dirty_tx = 0;
4504 		tx_q->mss = 0;
4505 	}
4506 }
4507 
4508 /**
4509  * stmmac_resume - resume callback
4510  * @dev: device pointer
4511  * Description: when resume this function is invoked to setup the DMA and CORE
4512  * in a usable state.
4513  */
4514 int stmmac_resume(struct device *dev)
4515 {
4516 	struct net_device *ndev = dev_get_drvdata(dev);
4517 	struct stmmac_priv *priv = netdev_priv(ndev);
4518 
4519 	if (!netif_running(ndev))
4520 		return 0;
4521 
4522 	/* Power Down bit, into the PM register, is cleared
4523 	 * automatically as soon as a magic packet or a Wake-up frame
4524 	 * is received. Anyway, it's better to manually clear
4525 	 * this bit because it can generate problems while resuming
4526 	 * from another devices (e.g. serial console).
4527 	 */
4528 	if (device_may_wakeup(priv->device)) {
4529 		mutex_lock(&priv->lock);
4530 		stmmac_pmt(priv, priv->hw, 0);
4531 		mutex_unlock(&priv->lock);
4532 		priv->irq_wake = 0;
4533 	} else {
4534 		pinctrl_pm_select_default_state(priv->device);
4535 		/* enable the clk previously disabled */
4536 		clk_enable(priv->plat->stmmac_clk);
4537 		clk_enable(priv->plat->pclk);
4538 		/* reset the phy so that it's ready */
4539 		if (priv->mii)
4540 			stmmac_mdio_reset(priv->mii);
4541 	}
4542 
4543 	netif_device_attach(ndev);
4544 
4545 	mutex_lock(&priv->lock);
4546 
4547 	stmmac_reset_queues_param(priv);
4548 
4549 	stmmac_clear_descriptors(priv);
4550 
4551 	stmmac_hw_setup(ndev, false);
4552 	stmmac_init_coalesce(priv);
4553 	stmmac_set_rx_mode(ndev);
4554 
4555 	stmmac_enable_all_queues(priv);
4556 
4557 	stmmac_start_all_queues(priv);
4558 
4559 	mutex_unlock(&priv->lock);
4560 
4561 	phylink_start(priv->phylink);
4562 
4563 	return 0;
4564 }
4565 EXPORT_SYMBOL_GPL(stmmac_resume);
4566 
4567 #ifndef MODULE
4568 static int __init stmmac_cmdline_opt(char *str)
4569 {
4570 	char *opt;
4571 
4572 	if (!str || !*str)
4573 		return -EINVAL;
4574 	while ((opt = strsep(&str, ",")) != NULL) {
4575 		if (!strncmp(opt, "debug:", 6)) {
4576 			if (kstrtoint(opt + 6, 0, &debug))
4577 				goto err;
4578 		} else if (!strncmp(opt, "phyaddr:", 8)) {
4579 			if (kstrtoint(opt + 8, 0, &phyaddr))
4580 				goto err;
4581 		} else if (!strncmp(opt, "buf_sz:", 7)) {
4582 			if (kstrtoint(opt + 7, 0, &buf_sz))
4583 				goto err;
4584 		} else if (!strncmp(opt, "tc:", 3)) {
4585 			if (kstrtoint(opt + 3, 0, &tc))
4586 				goto err;
4587 		} else if (!strncmp(opt, "watchdog:", 9)) {
4588 			if (kstrtoint(opt + 9, 0, &watchdog))
4589 				goto err;
4590 		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
4591 			if (kstrtoint(opt + 10, 0, &flow_ctrl))
4592 				goto err;
4593 		} else if (!strncmp(opt, "pause:", 6)) {
4594 			if (kstrtoint(opt + 6, 0, &pause))
4595 				goto err;
4596 		} else if (!strncmp(opt, "eee_timer:", 10)) {
4597 			if (kstrtoint(opt + 10, 0, &eee_timer))
4598 				goto err;
4599 		} else if (!strncmp(opt, "chain_mode:", 11)) {
4600 			if (kstrtoint(opt + 11, 0, &chain_mode))
4601 				goto err;
4602 		}
4603 	}
4604 	return 0;
4605 
4606 err:
4607 	pr_err("%s: ERROR broken module parameter conversion", __func__);
4608 	return -EINVAL;
4609 }
4610 
4611 __setup("stmmaceth=", stmmac_cmdline_opt);
4612 #endif /* MODULE */
4613 
4614 static int __init stmmac_init(void)
4615 {
4616 #ifdef CONFIG_DEBUG_FS
4617 	/* Create debugfs main directory if it doesn't exist yet */
4618 	if (!stmmac_fs_dir) {
4619 		stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
4620 
4621 		if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
4622 			pr_err("ERROR %s, debugfs create directory failed\n",
4623 			       STMMAC_RESOURCE_NAME);
4624 
4625 			return -ENOMEM;
4626 		}
4627 	}
4628 #endif
4629 
4630 	return 0;
4631 }
4632 
4633 static void __exit stmmac_exit(void)
4634 {
4635 #ifdef CONFIG_DEBUG_FS
4636 	debugfs_remove_recursive(stmmac_fs_dir);
4637 #endif
4638 }
4639 
4640 module_init(stmmac_init)
4641 module_exit(stmmac_exit)
4642 
4643 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
4644 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
4645 MODULE_LICENSE("GPL");
4646