xref: /linux/drivers/net/ethernet/stmicro/stmmac/stmmac_main.c (revision a5d9265e017f081f0dc133c0e2f45103d027b874)
1 /*******************************************************************************
2   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3   ST Ethernet IPs are built around a Synopsys IP Core.
4 
5 	Copyright(C) 2007-2011 STMicroelectronics Ltd
6 
7   This program is free software; you can redistribute it and/or modify it
8   under the terms and conditions of the GNU General Public License,
9   version 2, as published by the Free Software Foundation.
10 
11   This program is distributed in the hope it will be useful, but WITHOUT
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14   more details.
15 
16   The full GNU General Public License is included in this distribution in
17   the file called "COPYING".
18 
19   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
20 
21   Documentation available at:
22 	http://www.stlinux.com
23   Support available at:
24 	https://bugzilla.stlinux.com/
25 *******************************************************************************/
26 
27 #include <linux/clk.h>
28 #include <linux/kernel.h>
29 #include <linux/interrupt.h>
30 #include <linux/ip.h>
31 #include <linux/tcp.h>
32 #include <linux/skbuff.h>
33 #include <linux/ethtool.h>
34 #include <linux/if_ether.h>
35 #include <linux/crc32.h>
36 #include <linux/mii.h>
37 #include <linux/if.h>
38 #include <linux/if_vlan.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/slab.h>
41 #include <linux/prefetch.h>
42 #include <linux/pinctrl/consumer.h>
43 #ifdef CONFIG_DEBUG_FS
44 #include <linux/debugfs.h>
45 #include <linux/seq_file.h>
46 #endif /* CONFIG_DEBUG_FS */
47 #include <linux/net_tstamp.h>
48 #include <net/pkt_cls.h>
49 #include "stmmac_ptp.h"
50 #include "stmmac.h"
51 #include <linux/reset.h>
52 #include <linux/of_mdio.h>
53 #include "dwmac1000.h"
54 #include "dwxgmac2.h"
55 #include "hwif.h"
56 
57 #define	STMMAC_ALIGN(x)		__ALIGN_KERNEL(x, SMP_CACHE_BYTES)
58 #define	TSO_MAX_BUFF_SIZE	(SZ_16K - 1)
59 
60 /* Module parameters */
61 #define TX_TIMEO	5000
62 static int watchdog = TX_TIMEO;
63 module_param(watchdog, int, 0644);
64 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
65 
66 static int debug = -1;
67 module_param(debug, int, 0644);
68 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
69 
70 static int phyaddr = -1;
71 module_param(phyaddr, int, 0444);
72 MODULE_PARM_DESC(phyaddr, "Physical device address");
73 
74 #define STMMAC_TX_THRESH	(DMA_TX_SIZE / 4)
75 #define STMMAC_RX_THRESH	(DMA_RX_SIZE / 4)
76 
77 static int flow_ctrl = FLOW_OFF;
78 module_param(flow_ctrl, int, 0644);
79 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
80 
81 static int pause = PAUSE_TIME;
82 module_param(pause, int, 0644);
83 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
84 
85 #define TC_DEFAULT 64
86 static int tc = TC_DEFAULT;
87 module_param(tc, int, 0644);
88 MODULE_PARM_DESC(tc, "DMA threshold control value");
89 
90 #define	DEFAULT_BUFSIZE	1536
91 static int buf_sz = DEFAULT_BUFSIZE;
92 module_param(buf_sz, int, 0644);
93 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
94 
95 #define	STMMAC_RX_COPYBREAK	256
96 
97 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
98 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
99 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
100 
101 #define STMMAC_DEFAULT_LPI_TIMER	1000
102 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
103 module_param(eee_timer, int, 0644);
104 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
105 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
106 
107 /* By default the driver will use the ring mode to manage tx and rx descriptors,
108  * but allow user to force to use the chain instead of the ring
109  */
110 static unsigned int chain_mode;
111 module_param(chain_mode, int, 0444);
112 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
113 
114 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
115 
116 #ifdef CONFIG_DEBUG_FS
117 static int stmmac_init_fs(struct net_device *dev);
118 static void stmmac_exit_fs(struct net_device *dev);
119 #endif
120 
121 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
122 
123 /**
124  * stmmac_verify_args - verify the driver parameters.
125  * Description: it checks the driver parameters and set a default in case of
126  * errors.
127  */
128 static void stmmac_verify_args(void)
129 {
130 	if (unlikely(watchdog < 0))
131 		watchdog = TX_TIMEO;
132 	if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
133 		buf_sz = DEFAULT_BUFSIZE;
134 	if (unlikely(flow_ctrl > 1))
135 		flow_ctrl = FLOW_AUTO;
136 	else if (likely(flow_ctrl < 0))
137 		flow_ctrl = FLOW_OFF;
138 	if (unlikely((pause < 0) || (pause > 0xffff)))
139 		pause = PAUSE_TIME;
140 	if (eee_timer < 0)
141 		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
142 }
143 
144 /**
145  * stmmac_disable_all_queues - Disable all queues
146  * @priv: driver private structure
147  */
148 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
149 {
150 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
151 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
152 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
153 	u32 queue;
154 
155 	for (queue = 0; queue < maxq; queue++) {
156 		struct stmmac_channel *ch = &priv->channel[queue];
157 
158 		napi_disable(&ch->napi);
159 	}
160 }
161 
162 /**
163  * stmmac_enable_all_queues - Enable all queues
164  * @priv: driver private structure
165  */
166 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
167 {
168 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
169 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
170 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
171 	u32 queue;
172 
173 	for (queue = 0; queue < maxq; queue++) {
174 		struct stmmac_channel *ch = &priv->channel[queue];
175 
176 		napi_enable(&ch->napi);
177 	}
178 }
179 
180 /**
181  * stmmac_stop_all_queues - Stop all queues
182  * @priv: driver private structure
183  */
184 static void stmmac_stop_all_queues(struct stmmac_priv *priv)
185 {
186 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
187 	u32 queue;
188 
189 	for (queue = 0; queue < tx_queues_cnt; queue++)
190 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
191 }
192 
193 /**
194  * stmmac_start_all_queues - Start all queues
195  * @priv: driver private structure
196  */
197 static void stmmac_start_all_queues(struct stmmac_priv *priv)
198 {
199 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
200 	u32 queue;
201 
202 	for (queue = 0; queue < tx_queues_cnt; queue++)
203 		netif_tx_start_queue(netdev_get_tx_queue(priv->dev, queue));
204 }
205 
206 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
207 {
208 	if (!test_bit(STMMAC_DOWN, &priv->state) &&
209 	    !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
210 		queue_work(priv->wq, &priv->service_task);
211 }
212 
213 static void stmmac_global_err(struct stmmac_priv *priv)
214 {
215 	netif_carrier_off(priv->dev);
216 	set_bit(STMMAC_RESET_REQUESTED, &priv->state);
217 	stmmac_service_event_schedule(priv);
218 }
219 
220 /**
221  * stmmac_clk_csr_set - dynamically set the MDC clock
222  * @priv: driver private structure
223  * Description: this is to dynamically set the MDC clock according to the csr
224  * clock input.
225  * Note:
226  *	If a specific clk_csr value is passed from the platform
227  *	this means that the CSR Clock Range selection cannot be
228  *	changed at run-time and it is fixed (as reported in the driver
229  *	documentation). Viceversa the driver will try to set the MDC
230  *	clock dynamically according to the actual clock input.
231  */
232 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
233 {
234 	u32 clk_rate;
235 
236 	clk_rate = clk_get_rate(priv->plat->stmmac_clk);
237 
238 	/* Platform provided default clk_csr would be assumed valid
239 	 * for all other cases except for the below mentioned ones.
240 	 * For values higher than the IEEE 802.3 specified frequency
241 	 * we can not estimate the proper divider as it is not known
242 	 * the frequency of clk_csr_i. So we do not change the default
243 	 * divider.
244 	 */
245 	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
246 		if (clk_rate < CSR_F_35M)
247 			priv->clk_csr = STMMAC_CSR_20_35M;
248 		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
249 			priv->clk_csr = STMMAC_CSR_35_60M;
250 		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
251 			priv->clk_csr = STMMAC_CSR_60_100M;
252 		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
253 			priv->clk_csr = STMMAC_CSR_100_150M;
254 		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
255 			priv->clk_csr = STMMAC_CSR_150_250M;
256 		else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
257 			priv->clk_csr = STMMAC_CSR_250_300M;
258 	}
259 
260 	if (priv->plat->has_sun8i) {
261 		if (clk_rate > 160000000)
262 			priv->clk_csr = 0x03;
263 		else if (clk_rate > 80000000)
264 			priv->clk_csr = 0x02;
265 		else if (clk_rate > 40000000)
266 			priv->clk_csr = 0x01;
267 		else
268 			priv->clk_csr = 0;
269 	}
270 
271 	if (priv->plat->has_xgmac) {
272 		if (clk_rate > 400000000)
273 			priv->clk_csr = 0x5;
274 		else if (clk_rate > 350000000)
275 			priv->clk_csr = 0x4;
276 		else if (clk_rate > 300000000)
277 			priv->clk_csr = 0x3;
278 		else if (clk_rate > 250000000)
279 			priv->clk_csr = 0x2;
280 		else if (clk_rate > 150000000)
281 			priv->clk_csr = 0x1;
282 		else
283 			priv->clk_csr = 0x0;
284 	}
285 }
286 
287 static void print_pkt(unsigned char *buf, int len)
288 {
289 	pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
290 	print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
291 }
292 
293 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
294 {
295 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
296 	u32 avail;
297 
298 	if (tx_q->dirty_tx > tx_q->cur_tx)
299 		avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
300 	else
301 		avail = DMA_TX_SIZE - tx_q->cur_tx + tx_q->dirty_tx - 1;
302 
303 	return avail;
304 }
305 
306 /**
307  * stmmac_rx_dirty - Get RX queue dirty
308  * @priv: driver private structure
309  * @queue: RX queue index
310  */
311 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
312 {
313 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
314 	u32 dirty;
315 
316 	if (rx_q->dirty_rx <= rx_q->cur_rx)
317 		dirty = rx_q->cur_rx - rx_q->dirty_rx;
318 	else
319 		dirty = DMA_RX_SIZE - rx_q->dirty_rx + rx_q->cur_rx;
320 
321 	return dirty;
322 }
323 
324 /**
325  * stmmac_hw_fix_mac_speed - callback for speed selection
326  * @priv: driver private structure
327  * Description: on some platforms (e.g. ST), some HW system configuration
328  * registers have to be set according to the link speed negotiated.
329  */
330 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
331 {
332 	struct net_device *ndev = priv->dev;
333 	struct phy_device *phydev = ndev->phydev;
334 
335 	if (likely(priv->plat->fix_mac_speed))
336 		priv->plat->fix_mac_speed(priv->plat->bsp_priv, phydev->speed);
337 }
338 
339 /**
340  * stmmac_enable_eee_mode - check and enter in LPI mode
341  * @priv: driver private structure
342  * Description: this function is to verify and enter in LPI mode in case of
343  * EEE.
344  */
345 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
346 {
347 	u32 tx_cnt = priv->plat->tx_queues_to_use;
348 	u32 queue;
349 
350 	/* check if all TX queues have the work finished */
351 	for (queue = 0; queue < tx_cnt; queue++) {
352 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
353 
354 		if (tx_q->dirty_tx != tx_q->cur_tx)
355 			return; /* still unfinished work */
356 	}
357 
358 	/* Check and enter in LPI mode */
359 	if (!priv->tx_path_in_lpi_mode)
360 		stmmac_set_eee_mode(priv, priv->hw,
361 				priv->plat->en_tx_lpi_clockgating);
362 }
363 
364 /**
365  * stmmac_disable_eee_mode - disable and exit from LPI mode
366  * @priv: driver private structure
367  * Description: this function is to exit and disable EEE in case of
368  * LPI state is true. This is called by the xmit.
369  */
370 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
371 {
372 	stmmac_reset_eee_mode(priv, priv->hw);
373 	del_timer_sync(&priv->eee_ctrl_timer);
374 	priv->tx_path_in_lpi_mode = false;
375 }
376 
377 /**
378  * stmmac_eee_ctrl_timer - EEE TX SW timer.
379  * @arg : data hook
380  * Description:
381  *  if there is no data transfer and if we are not in LPI state,
382  *  then MAC Transmitter can be moved to LPI state.
383  */
384 static void stmmac_eee_ctrl_timer(struct timer_list *t)
385 {
386 	struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
387 
388 	stmmac_enable_eee_mode(priv);
389 	mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
390 }
391 
392 /**
393  * stmmac_eee_init - init EEE
394  * @priv: driver private structure
395  * Description:
396  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
397  *  can also manage EEE, this function enable the LPI state and start related
398  *  timer.
399  */
400 bool stmmac_eee_init(struct stmmac_priv *priv)
401 {
402 	struct net_device *ndev = priv->dev;
403 	int interface = priv->plat->interface;
404 	bool ret = false;
405 
406 	if ((interface != PHY_INTERFACE_MODE_MII) &&
407 	    (interface != PHY_INTERFACE_MODE_GMII) &&
408 	    !phy_interface_mode_is_rgmii(interface))
409 		goto out;
410 
411 	/* Using PCS we cannot dial with the phy registers at this stage
412 	 * so we do not support extra feature like EEE.
413 	 */
414 	if ((priv->hw->pcs == STMMAC_PCS_RGMII) ||
415 	    (priv->hw->pcs == STMMAC_PCS_TBI) ||
416 	    (priv->hw->pcs == STMMAC_PCS_RTBI))
417 		goto out;
418 
419 	/* MAC core supports the EEE feature. */
420 	if (priv->dma_cap.eee) {
421 		int tx_lpi_timer = priv->tx_lpi_timer;
422 
423 		/* Check if the PHY supports EEE */
424 		if (phy_init_eee(ndev->phydev, 1)) {
425 			/* To manage at run-time if the EEE cannot be supported
426 			 * anymore (for example because the lp caps have been
427 			 * changed).
428 			 * In that case the driver disable own timers.
429 			 */
430 			mutex_lock(&priv->lock);
431 			if (priv->eee_active) {
432 				netdev_dbg(priv->dev, "disable EEE\n");
433 				del_timer_sync(&priv->eee_ctrl_timer);
434 				stmmac_set_eee_timer(priv, priv->hw, 0,
435 						tx_lpi_timer);
436 			}
437 			priv->eee_active = 0;
438 			mutex_unlock(&priv->lock);
439 			goto out;
440 		}
441 		/* Activate the EEE and start timers */
442 		mutex_lock(&priv->lock);
443 		if (!priv->eee_active) {
444 			priv->eee_active = 1;
445 			timer_setup(&priv->eee_ctrl_timer,
446 				    stmmac_eee_ctrl_timer, 0);
447 			mod_timer(&priv->eee_ctrl_timer,
448 				  STMMAC_LPI_T(eee_timer));
449 
450 			stmmac_set_eee_timer(priv, priv->hw,
451 					STMMAC_DEFAULT_LIT_LS, tx_lpi_timer);
452 		}
453 		/* Set HW EEE according to the speed */
454 		stmmac_set_eee_pls(priv, priv->hw, ndev->phydev->link);
455 
456 		ret = true;
457 		mutex_unlock(&priv->lock);
458 
459 		netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
460 	}
461 out:
462 	return ret;
463 }
464 
465 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
466  * @priv: driver private structure
467  * @p : descriptor pointer
468  * @skb : the socket buffer
469  * Description :
470  * This function will read timestamp from the descriptor & pass it to stack.
471  * and also perform some sanity checks.
472  */
473 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
474 				   struct dma_desc *p, struct sk_buff *skb)
475 {
476 	struct skb_shared_hwtstamps shhwtstamp;
477 	u64 ns;
478 
479 	if (!priv->hwts_tx_en)
480 		return;
481 
482 	/* exit if skb doesn't support hw tstamp */
483 	if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
484 		return;
485 
486 	/* check tx tstamp status */
487 	if (stmmac_get_tx_timestamp_status(priv, p)) {
488 		/* get the valid tstamp */
489 		stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
490 
491 		memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
492 		shhwtstamp.hwtstamp = ns_to_ktime(ns);
493 
494 		netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
495 		/* pass tstamp to stack */
496 		skb_tstamp_tx(skb, &shhwtstamp);
497 	}
498 
499 	return;
500 }
501 
502 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
503  * @priv: driver private structure
504  * @p : descriptor pointer
505  * @np : next descriptor pointer
506  * @skb : the socket buffer
507  * Description :
508  * This function will read received packet's timestamp from the descriptor
509  * and pass it to stack. It also perform some sanity checks.
510  */
511 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
512 				   struct dma_desc *np, struct sk_buff *skb)
513 {
514 	struct skb_shared_hwtstamps *shhwtstamp = NULL;
515 	struct dma_desc *desc = p;
516 	u64 ns;
517 
518 	if (!priv->hwts_rx_en)
519 		return;
520 	/* For GMAC4, the valid timestamp is from CTX next desc. */
521 	if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
522 		desc = np;
523 
524 	/* Check if timestamp is available */
525 	if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
526 		stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
527 		netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
528 		shhwtstamp = skb_hwtstamps(skb);
529 		memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
530 		shhwtstamp->hwtstamp = ns_to_ktime(ns);
531 	} else  {
532 		netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
533 	}
534 }
535 
536 /**
537  *  stmmac_hwtstamp_set - control hardware timestamping.
538  *  @dev: device pointer.
539  *  @ifr: An IOCTL specific structure, that can contain a pointer to
540  *  a proprietary structure used to pass information to the driver.
541  *  Description:
542  *  This function configures the MAC to enable/disable both outgoing(TX)
543  *  and incoming(RX) packets time stamping based on user input.
544  *  Return Value:
545  *  0 on success and an appropriate -ve integer on failure.
546  */
547 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
548 {
549 	struct stmmac_priv *priv = netdev_priv(dev);
550 	struct hwtstamp_config config;
551 	struct timespec64 now;
552 	u64 temp = 0;
553 	u32 ptp_v2 = 0;
554 	u32 tstamp_all = 0;
555 	u32 ptp_over_ipv4_udp = 0;
556 	u32 ptp_over_ipv6_udp = 0;
557 	u32 ptp_over_ethernet = 0;
558 	u32 snap_type_sel = 0;
559 	u32 ts_master_en = 0;
560 	u32 ts_event_en = 0;
561 	u32 value = 0;
562 	u32 sec_inc;
563 	bool xmac;
564 
565 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
566 
567 	if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
568 		netdev_alert(priv->dev, "No support for HW time stamping\n");
569 		priv->hwts_tx_en = 0;
570 		priv->hwts_rx_en = 0;
571 
572 		return -EOPNOTSUPP;
573 	}
574 
575 	if (copy_from_user(&config, ifr->ifr_data,
576 			   sizeof(config)))
577 		return -EFAULT;
578 
579 	netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
580 		   __func__, config.flags, config.tx_type, config.rx_filter);
581 
582 	/* reserved for future extensions */
583 	if (config.flags)
584 		return -EINVAL;
585 
586 	if (config.tx_type != HWTSTAMP_TX_OFF &&
587 	    config.tx_type != HWTSTAMP_TX_ON)
588 		return -ERANGE;
589 
590 	if (priv->adv_ts) {
591 		switch (config.rx_filter) {
592 		case HWTSTAMP_FILTER_NONE:
593 			/* time stamp no incoming packet at all */
594 			config.rx_filter = HWTSTAMP_FILTER_NONE;
595 			break;
596 
597 		case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
598 			/* PTP v1, UDP, any kind of event packet */
599 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
600 			/* 'xmac' hardware can support Sync, Pdelay_Req and
601 			 * Pdelay_resp by setting bit14 and bits17/16 to 01
602 			 * This leaves Delay_Req timestamps out.
603 			 * Enable all events *and* general purpose message
604 			 * timestamping
605 			 */
606 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
607 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
608 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
609 			break;
610 
611 		case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
612 			/* PTP v1, UDP, Sync packet */
613 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
614 			/* take time stamp for SYNC messages only */
615 			ts_event_en = PTP_TCR_TSEVNTENA;
616 
617 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
618 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
619 			break;
620 
621 		case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
622 			/* PTP v1, UDP, Delay_req packet */
623 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
624 			/* take time stamp for Delay_Req messages only */
625 			ts_master_en = PTP_TCR_TSMSTRENA;
626 			ts_event_en = PTP_TCR_TSEVNTENA;
627 
628 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
629 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
630 			break;
631 
632 		case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
633 			/* PTP v2, UDP, any kind of event packet */
634 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
635 			ptp_v2 = PTP_TCR_TSVER2ENA;
636 			/* take time stamp for all event messages */
637 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
638 
639 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
640 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
641 			break;
642 
643 		case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
644 			/* PTP v2, UDP, Sync packet */
645 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
646 			ptp_v2 = PTP_TCR_TSVER2ENA;
647 			/* take time stamp for SYNC messages only */
648 			ts_event_en = PTP_TCR_TSEVNTENA;
649 
650 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
651 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
652 			break;
653 
654 		case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
655 			/* PTP v2, UDP, Delay_req packet */
656 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
657 			ptp_v2 = PTP_TCR_TSVER2ENA;
658 			/* take time stamp for Delay_Req messages only */
659 			ts_master_en = PTP_TCR_TSMSTRENA;
660 			ts_event_en = PTP_TCR_TSEVNTENA;
661 
662 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
663 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
664 			break;
665 
666 		case HWTSTAMP_FILTER_PTP_V2_EVENT:
667 			/* PTP v2/802.AS1 any layer, any kind of event packet */
668 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
669 			ptp_v2 = PTP_TCR_TSVER2ENA;
670 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
671 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
672 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
673 			ptp_over_ethernet = PTP_TCR_TSIPENA;
674 			break;
675 
676 		case HWTSTAMP_FILTER_PTP_V2_SYNC:
677 			/* PTP v2/802.AS1, any layer, Sync packet */
678 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
679 			ptp_v2 = PTP_TCR_TSVER2ENA;
680 			/* take time stamp for SYNC messages only */
681 			ts_event_en = PTP_TCR_TSEVNTENA;
682 
683 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
684 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
685 			ptp_over_ethernet = PTP_TCR_TSIPENA;
686 			break;
687 
688 		case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
689 			/* PTP v2/802.AS1, any layer, Delay_req packet */
690 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
691 			ptp_v2 = PTP_TCR_TSVER2ENA;
692 			/* take time stamp for Delay_Req messages only */
693 			ts_master_en = PTP_TCR_TSMSTRENA;
694 			ts_event_en = PTP_TCR_TSEVNTENA;
695 
696 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
697 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
698 			ptp_over_ethernet = PTP_TCR_TSIPENA;
699 			break;
700 
701 		case HWTSTAMP_FILTER_NTP_ALL:
702 		case HWTSTAMP_FILTER_ALL:
703 			/* time stamp any incoming packet */
704 			config.rx_filter = HWTSTAMP_FILTER_ALL;
705 			tstamp_all = PTP_TCR_TSENALL;
706 			break;
707 
708 		default:
709 			return -ERANGE;
710 		}
711 	} else {
712 		switch (config.rx_filter) {
713 		case HWTSTAMP_FILTER_NONE:
714 			config.rx_filter = HWTSTAMP_FILTER_NONE;
715 			break;
716 		default:
717 			/* PTP v1, UDP, any kind of event packet */
718 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
719 			break;
720 		}
721 	}
722 	priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
723 	priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
724 
725 	if (!priv->hwts_tx_en && !priv->hwts_rx_en)
726 		stmmac_config_hw_tstamping(priv, priv->ptpaddr, 0);
727 	else {
728 		value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
729 			 tstamp_all | ptp_v2 | ptp_over_ethernet |
730 			 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
731 			 ts_master_en | snap_type_sel);
732 		stmmac_config_hw_tstamping(priv, priv->ptpaddr, value);
733 
734 		/* program Sub Second Increment reg */
735 		stmmac_config_sub_second_increment(priv,
736 				priv->ptpaddr, priv->plat->clk_ptp_rate,
737 				xmac, &sec_inc);
738 		temp = div_u64(1000000000ULL, sec_inc);
739 
740 		/* Store sub second increment and flags for later use */
741 		priv->sub_second_inc = sec_inc;
742 		priv->systime_flags = value;
743 
744 		/* calculate default added value:
745 		 * formula is :
746 		 * addend = (2^32)/freq_div_ratio;
747 		 * where, freq_div_ratio = 1e9ns/sec_inc
748 		 */
749 		temp = (u64)(temp << 32);
750 		priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
751 		stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
752 
753 		/* initialize system time */
754 		ktime_get_real_ts64(&now);
755 
756 		/* lower 32 bits of tv_sec are safe until y2106 */
757 		stmmac_init_systime(priv, priv->ptpaddr,
758 				(u32)now.tv_sec, now.tv_nsec);
759 	}
760 
761 	memcpy(&priv->tstamp_config, &config, sizeof(config));
762 
763 	return copy_to_user(ifr->ifr_data, &config,
764 			    sizeof(config)) ? -EFAULT : 0;
765 }
766 
767 /**
768  *  stmmac_hwtstamp_get - read hardware timestamping.
769  *  @dev: device pointer.
770  *  @ifr: An IOCTL specific structure, that can contain a pointer to
771  *  a proprietary structure used to pass information to the driver.
772  *  Description:
773  *  This function obtain the current hardware timestamping settings
774     as requested.
775  */
776 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
777 {
778 	struct stmmac_priv *priv = netdev_priv(dev);
779 	struct hwtstamp_config *config = &priv->tstamp_config;
780 
781 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
782 		return -EOPNOTSUPP;
783 
784 	return copy_to_user(ifr->ifr_data, config,
785 			    sizeof(*config)) ? -EFAULT : 0;
786 }
787 
788 /**
789  * stmmac_init_ptp - init PTP
790  * @priv: driver private structure
791  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
792  * This is done by looking at the HW cap. register.
793  * This function also registers the ptp driver.
794  */
795 static int stmmac_init_ptp(struct stmmac_priv *priv)
796 {
797 	bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
798 
799 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
800 		return -EOPNOTSUPP;
801 
802 	priv->adv_ts = 0;
803 	/* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
804 	if (xmac && priv->dma_cap.atime_stamp)
805 		priv->adv_ts = 1;
806 	/* Dwmac 3.x core with extend_desc can support adv_ts */
807 	else if (priv->extend_desc && priv->dma_cap.atime_stamp)
808 		priv->adv_ts = 1;
809 
810 	if (priv->dma_cap.time_stamp)
811 		netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
812 
813 	if (priv->adv_ts)
814 		netdev_info(priv->dev,
815 			    "IEEE 1588-2008 Advanced Timestamp supported\n");
816 
817 	priv->hwts_tx_en = 0;
818 	priv->hwts_rx_en = 0;
819 
820 	stmmac_ptp_register(priv);
821 
822 	return 0;
823 }
824 
825 static void stmmac_release_ptp(struct stmmac_priv *priv)
826 {
827 	if (priv->plat->clk_ptp_ref)
828 		clk_disable_unprepare(priv->plat->clk_ptp_ref);
829 	stmmac_ptp_unregister(priv);
830 }
831 
832 /**
833  *  stmmac_mac_flow_ctrl - Configure flow control in all queues
834  *  @priv: driver private structure
835  *  Description: It is used for configuring the flow control in all queues
836  */
837 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
838 {
839 	u32 tx_cnt = priv->plat->tx_queues_to_use;
840 
841 	stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
842 			priv->pause, tx_cnt);
843 }
844 
845 /**
846  * stmmac_adjust_link - adjusts the link parameters
847  * @dev: net device structure
848  * Description: this is the helper called by the physical abstraction layer
849  * drivers to communicate the phy link status. According the speed and duplex
850  * this driver can invoke registered glue-logic as well.
851  * It also invoke the eee initialization because it could happen when switch
852  * on different networks (that are eee capable).
853  */
854 static void stmmac_adjust_link(struct net_device *dev)
855 {
856 	struct stmmac_priv *priv = netdev_priv(dev);
857 	struct phy_device *phydev = dev->phydev;
858 	bool new_state = false;
859 
860 	if (!phydev)
861 		return;
862 
863 	mutex_lock(&priv->lock);
864 
865 	if (phydev->link) {
866 		u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
867 
868 		/* Now we make sure that we can be in full duplex mode.
869 		 * If not, we operate in half-duplex mode. */
870 		if (phydev->duplex != priv->oldduplex) {
871 			new_state = true;
872 			if (!phydev->duplex)
873 				ctrl &= ~priv->hw->link.duplex;
874 			else
875 				ctrl |= priv->hw->link.duplex;
876 			priv->oldduplex = phydev->duplex;
877 		}
878 		/* Flow Control operation */
879 		if (phydev->pause)
880 			stmmac_mac_flow_ctrl(priv, phydev->duplex);
881 
882 		if (phydev->speed != priv->speed) {
883 			new_state = true;
884 			ctrl &= ~priv->hw->link.speed_mask;
885 			switch (phydev->speed) {
886 			case SPEED_1000:
887 				ctrl |= priv->hw->link.speed1000;
888 				break;
889 			case SPEED_100:
890 				ctrl |= priv->hw->link.speed100;
891 				break;
892 			case SPEED_10:
893 				ctrl |= priv->hw->link.speed10;
894 				break;
895 			default:
896 				netif_warn(priv, link, priv->dev,
897 					   "broken speed: %d\n", phydev->speed);
898 				phydev->speed = SPEED_UNKNOWN;
899 				break;
900 			}
901 			if (phydev->speed != SPEED_UNKNOWN)
902 				stmmac_hw_fix_mac_speed(priv);
903 			priv->speed = phydev->speed;
904 		}
905 
906 		writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
907 
908 		if (!priv->oldlink) {
909 			new_state = true;
910 			priv->oldlink = true;
911 		}
912 	} else if (priv->oldlink) {
913 		new_state = true;
914 		priv->oldlink = false;
915 		priv->speed = SPEED_UNKNOWN;
916 		priv->oldduplex = DUPLEX_UNKNOWN;
917 	}
918 
919 	if (new_state && netif_msg_link(priv))
920 		phy_print_status(phydev);
921 
922 	mutex_unlock(&priv->lock);
923 
924 	if (phydev->is_pseudo_fixed_link)
925 		/* Stop PHY layer to call the hook to adjust the link in case
926 		 * of a switch is attached to the stmmac driver.
927 		 */
928 		phydev->irq = PHY_IGNORE_INTERRUPT;
929 	else
930 		/* At this stage, init the EEE if supported.
931 		 * Never called in case of fixed_link.
932 		 */
933 		priv->eee_enabled = stmmac_eee_init(priv);
934 }
935 
936 /**
937  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
938  * @priv: driver private structure
939  * Description: this is to verify if the HW supports the PCS.
940  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
941  * configured for the TBI, RTBI, or SGMII PHY interface.
942  */
943 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
944 {
945 	int interface = priv->plat->interface;
946 
947 	if (priv->dma_cap.pcs) {
948 		if ((interface == PHY_INTERFACE_MODE_RGMII) ||
949 		    (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
950 		    (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
951 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
952 			netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
953 			priv->hw->pcs = STMMAC_PCS_RGMII;
954 		} else if (interface == PHY_INTERFACE_MODE_SGMII) {
955 			netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
956 			priv->hw->pcs = STMMAC_PCS_SGMII;
957 		}
958 	}
959 }
960 
961 /**
962  * stmmac_init_phy - PHY initialization
963  * @dev: net device structure
964  * Description: it initializes the driver's PHY state, and attaches the PHY
965  * to the mac driver.
966  *  Return value:
967  *  0 on success
968  */
969 static int stmmac_init_phy(struct net_device *dev)
970 {
971 	struct stmmac_priv *priv = netdev_priv(dev);
972 	u32 tx_cnt = priv->plat->tx_queues_to_use;
973 	struct phy_device *phydev;
974 	char phy_id_fmt[MII_BUS_ID_SIZE + 3];
975 	char bus_id[MII_BUS_ID_SIZE];
976 	int interface = priv->plat->interface;
977 	int max_speed = priv->plat->max_speed;
978 	priv->oldlink = false;
979 	priv->speed = SPEED_UNKNOWN;
980 	priv->oldduplex = DUPLEX_UNKNOWN;
981 
982 	if (priv->plat->phy_node) {
983 		phydev = of_phy_connect(dev, priv->plat->phy_node,
984 					&stmmac_adjust_link, 0, interface);
985 	} else {
986 		snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
987 			 priv->plat->bus_id);
988 
989 		snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
990 			 priv->plat->phy_addr);
991 		netdev_dbg(priv->dev, "%s: trying to attach to %s\n", __func__,
992 			   phy_id_fmt);
993 
994 		phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link,
995 				     interface);
996 	}
997 
998 	if (IS_ERR_OR_NULL(phydev)) {
999 		netdev_err(priv->dev, "Could not attach to PHY\n");
1000 		if (!phydev)
1001 			return -ENODEV;
1002 
1003 		return PTR_ERR(phydev);
1004 	}
1005 
1006 	/* Stop Advertising 1000BASE Capability if interface is not GMII */
1007 	if ((interface == PHY_INTERFACE_MODE_MII) ||
1008 	    (interface == PHY_INTERFACE_MODE_RMII) ||
1009 		(max_speed < 1000 && max_speed > 0))
1010 		phy_set_max_speed(phydev, SPEED_100);
1011 
1012 	/*
1013 	 * Half-duplex mode not supported with multiqueue
1014 	 * half-duplex can only works with single queue
1015 	 */
1016 	if (tx_cnt > 1) {
1017 		phy_remove_link_mode(phydev,
1018 				     ETHTOOL_LINK_MODE_10baseT_Half_BIT);
1019 		phy_remove_link_mode(phydev,
1020 				     ETHTOOL_LINK_MODE_100baseT_Half_BIT);
1021 		phy_remove_link_mode(phydev,
1022 				     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
1023 	}
1024 
1025 	/*
1026 	 * Broken HW is sometimes missing the pull-up resistor on the
1027 	 * MDIO line, which results in reads to non-existent devices returning
1028 	 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
1029 	 * device as well.
1030 	 * Note: phydev->phy_id is the result of reading the UID PHY registers.
1031 	 */
1032 	if (!priv->plat->phy_node && phydev->phy_id == 0) {
1033 		phy_disconnect(phydev);
1034 		return -ENODEV;
1035 	}
1036 
1037 	/* stmmac_adjust_link will change this to PHY_IGNORE_INTERRUPT to avoid
1038 	 * subsequent PHY polling, make sure we force a link transition if
1039 	 * we have a UP/DOWN/UP transition
1040 	 */
1041 	if (phydev->is_pseudo_fixed_link)
1042 		phydev->irq = PHY_POLL;
1043 
1044 	phy_attached_info(phydev);
1045 	return 0;
1046 }
1047 
1048 static void stmmac_display_rx_rings(struct stmmac_priv *priv)
1049 {
1050 	u32 rx_cnt = priv->plat->rx_queues_to_use;
1051 	void *head_rx;
1052 	u32 queue;
1053 
1054 	/* Display RX rings */
1055 	for (queue = 0; queue < rx_cnt; queue++) {
1056 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1057 
1058 		pr_info("\tRX Queue %u rings\n", queue);
1059 
1060 		if (priv->extend_desc)
1061 			head_rx = (void *)rx_q->dma_erx;
1062 		else
1063 			head_rx = (void *)rx_q->dma_rx;
1064 
1065 		/* Display RX ring */
1066 		stmmac_display_ring(priv, head_rx, DMA_RX_SIZE, true);
1067 	}
1068 }
1069 
1070 static void stmmac_display_tx_rings(struct stmmac_priv *priv)
1071 {
1072 	u32 tx_cnt = priv->plat->tx_queues_to_use;
1073 	void *head_tx;
1074 	u32 queue;
1075 
1076 	/* Display TX rings */
1077 	for (queue = 0; queue < tx_cnt; queue++) {
1078 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1079 
1080 		pr_info("\tTX Queue %d rings\n", queue);
1081 
1082 		if (priv->extend_desc)
1083 			head_tx = (void *)tx_q->dma_etx;
1084 		else
1085 			head_tx = (void *)tx_q->dma_tx;
1086 
1087 		stmmac_display_ring(priv, head_tx, DMA_TX_SIZE, false);
1088 	}
1089 }
1090 
1091 static void stmmac_display_rings(struct stmmac_priv *priv)
1092 {
1093 	/* Display RX ring */
1094 	stmmac_display_rx_rings(priv);
1095 
1096 	/* Display TX ring */
1097 	stmmac_display_tx_rings(priv);
1098 }
1099 
1100 static int stmmac_set_bfsize(int mtu, int bufsize)
1101 {
1102 	int ret = bufsize;
1103 
1104 	if (mtu >= BUF_SIZE_4KiB)
1105 		ret = BUF_SIZE_8KiB;
1106 	else if (mtu >= BUF_SIZE_2KiB)
1107 		ret = BUF_SIZE_4KiB;
1108 	else if (mtu > DEFAULT_BUFSIZE)
1109 		ret = BUF_SIZE_2KiB;
1110 	else
1111 		ret = DEFAULT_BUFSIZE;
1112 
1113 	return ret;
1114 }
1115 
1116 /**
1117  * stmmac_clear_rx_descriptors - clear RX descriptors
1118  * @priv: driver private structure
1119  * @queue: RX queue index
1120  * Description: this function is called to clear the RX descriptors
1121  * in case of both basic and extended descriptors are used.
1122  */
1123 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue)
1124 {
1125 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1126 	int i;
1127 
1128 	/* Clear the RX descriptors */
1129 	for (i = 0; i < DMA_RX_SIZE; i++)
1130 		if (priv->extend_desc)
1131 			stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1132 					priv->use_riwt, priv->mode,
1133 					(i == DMA_RX_SIZE - 1));
1134 		else
1135 			stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1136 					priv->use_riwt, priv->mode,
1137 					(i == DMA_RX_SIZE - 1));
1138 }
1139 
1140 /**
1141  * stmmac_clear_tx_descriptors - clear tx descriptors
1142  * @priv: driver private structure
1143  * @queue: TX queue index.
1144  * Description: this function is called to clear the TX descriptors
1145  * in case of both basic and extended descriptors are used.
1146  */
1147 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue)
1148 {
1149 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1150 	int i;
1151 
1152 	/* Clear the TX descriptors */
1153 	for (i = 0; i < DMA_TX_SIZE; i++)
1154 		if (priv->extend_desc)
1155 			stmmac_init_tx_desc(priv, &tx_q->dma_etx[i].basic,
1156 					priv->mode, (i == DMA_TX_SIZE - 1));
1157 		else
1158 			stmmac_init_tx_desc(priv, &tx_q->dma_tx[i],
1159 					priv->mode, (i == DMA_TX_SIZE - 1));
1160 }
1161 
1162 /**
1163  * stmmac_clear_descriptors - clear descriptors
1164  * @priv: driver private structure
1165  * Description: this function is called to clear the TX and RX descriptors
1166  * in case of both basic and extended descriptors are used.
1167  */
1168 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
1169 {
1170 	u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1171 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1172 	u32 queue;
1173 
1174 	/* Clear the RX descriptors */
1175 	for (queue = 0; queue < rx_queue_cnt; queue++)
1176 		stmmac_clear_rx_descriptors(priv, queue);
1177 
1178 	/* Clear the TX descriptors */
1179 	for (queue = 0; queue < tx_queue_cnt; queue++)
1180 		stmmac_clear_tx_descriptors(priv, queue);
1181 }
1182 
1183 /**
1184  * stmmac_init_rx_buffers - init the RX descriptor buffer.
1185  * @priv: driver private structure
1186  * @p: descriptor pointer
1187  * @i: descriptor index
1188  * @flags: gfp flag
1189  * @queue: RX queue index
1190  * Description: this function is called to allocate a receive buffer, perform
1191  * the DMA mapping and init the descriptor.
1192  */
1193 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
1194 				  int i, gfp_t flags, u32 queue)
1195 {
1196 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1197 	struct sk_buff *skb;
1198 
1199 	skb = __netdev_alloc_skb_ip_align(priv->dev, priv->dma_buf_sz, flags);
1200 	if (!skb) {
1201 		netdev_err(priv->dev,
1202 			   "%s: Rx init fails; skb is NULL\n", __func__);
1203 		return -ENOMEM;
1204 	}
1205 	rx_q->rx_skbuff[i] = skb;
1206 	rx_q->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
1207 						priv->dma_buf_sz,
1208 						DMA_FROM_DEVICE);
1209 	if (dma_mapping_error(priv->device, rx_q->rx_skbuff_dma[i])) {
1210 		netdev_err(priv->dev, "%s: DMA mapping error\n", __func__);
1211 		dev_kfree_skb_any(skb);
1212 		return -EINVAL;
1213 	}
1214 
1215 	stmmac_set_desc_addr(priv, p, rx_q->rx_skbuff_dma[i]);
1216 
1217 	if (priv->dma_buf_sz == BUF_SIZE_16KiB)
1218 		stmmac_init_desc3(priv, p);
1219 
1220 	return 0;
1221 }
1222 
1223 /**
1224  * stmmac_free_rx_buffer - free RX dma buffers
1225  * @priv: private structure
1226  * @queue: RX queue index
1227  * @i: buffer index.
1228  */
1229 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1230 {
1231 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1232 
1233 	if (rx_q->rx_skbuff[i]) {
1234 		dma_unmap_single(priv->device, rx_q->rx_skbuff_dma[i],
1235 				 priv->dma_buf_sz, DMA_FROM_DEVICE);
1236 		dev_kfree_skb_any(rx_q->rx_skbuff[i]);
1237 	}
1238 	rx_q->rx_skbuff[i] = NULL;
1239 }
1240 
1241 /**
1242  * stmmac_free_tx_buffer - free RX dma buffers
1243  * @priv: private structure
1244  * @queue: RX queue index
1245  * @i: buffer index.
1246  */
1247 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1248 {
1249 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1250 
1251 	if (tx_q->tx_skbuff_dma[i].buf) {
1252 		if (tx_q->tx_skbuff_dma[i].map_as_page)
1253 			dma_unmap_page(priv->device,
1254 				       tx_q->tx_skbuff_dma[i].buf,
1255 				       tx_q->tx_skbuff_dma[i].len,
1256 				       DMA_TO_DEVICE);
1257 		else
1258 			dma_unmap_single(priv->device,
1259 					 tx_q->tx_skbuff_dma[i].buf,
1260 					 tx_q->tx_skbuff_dma[i].len,
1261 					 DMA_TO_DEVICE);
1262 	}
1263 
1264 	if (tx_q->tx_skbuff[i]) {
1265 		dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1266 		tx_q->tx_skbuff[i] = NULL;
1267 		tx_q->tx_skbuff_dma[i].buf = 0;
1268 		tx_q->tx_skbuff_dma[i].map_as_page = false;
1269 	}
1270 }
1271 
1272 /**
1273  * init_dma_rx_desc_rings - init the RX descriptor rings
1274  * @dev: net device structure
1275  * @flags: gfp flag.
1276  * Description: this function initializes the DMA RX descriptors
1277  * and allocates the socket buffers. It supports the chained and ring
1278  * modes.
1279  */
1280 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags)
1281 {
1282 	struct stmmac_priv *priv = netdev_priv(dev);
1283 	u32 rx_count = priv->plat->rx_queues_to_use;
1284 	int ret = -ENOMEM;
1285 	int bfsize = 0;
1286 	int queue;
1287 	int i;
1288 
1289 	bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu);
1290 	if (bfsize < 0)
1291 		bfsize = 0;
1292 
1293 	if (bfsize < BUF_SIZE_16KiB)
1294 		bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
1295 
1296 	priv->dma_buf_sz = bfsize;
1297 
1298 	/* RX INITIALIZATION */
1299 	netif_dbg(priv, probe, priv->dev,
1300 		  "SKB addresses:\nskb\t\tskb data\tdma data\n");
1301 
1302 	for (queue = 0; queue < rx_count; queue++) {
1303 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1304 
1305 		netif_dbg(priv, probe, priv->dev,
1306 			  "(%s) dma_rx_phy=0x%08x\n", __func__,
1307 			  (u32)rx_q->dma_rx_phy);
1308 
1309 		for (i = 0; i < DMA_RX_SIZE; i++) {
1310 			struct dma_desc *p;
1311 
1312 			if (priv->extend_desc)
1313 				p = &((rx_q->dma_erx + i)->basic);
1314 			else
1315 				p = rx_q->dma_rx + i;
1316 
1317 			ret = stmmac_init_rx_buffers(priv, p, i, flags,
1318 						     queue);
1319 			if (ret)
1320 				goto err_init_rx_buffers;
1321 
1322 			netif_dbg(priv, probe, priv->dev, "[%p]\t[%p]\t[%x]\n",
1323 				  rx_q->rx_skbuff[i], rx_q->rx_skbuff[i]->data,
1324 				  (unsigned int)rx_q->rx_skbuff_dma[i]);
1325 		}
1326 
1327 		rx_q->cur_rx = 0;
1328 		rx_q->dirty_rx = (unsigned int)(i - DMA_RX_SIZE);
1329 
1330 		stmmac_clear_rx_descriptors(priv, queue);
1331 
1332 		/* Setup the chained descriptor addresses */
1333 		if (priv->mode == STMMAC_CHAIN_MODE) {
1334 			if (priv->extend_desc)
1335 				stmmac_mode_init(priv, rx_q->dma_erx,
1336 						rx_q->dma_rx_phy, DMA_RX_SIZE, 1);
1337 			else
1338 				stmmac_mode_init(priv, rx_q->dma_rx,
1339 						rx_q->dma_rx_phy, DMA_RX_SIZE, 0);
1340 		}
1341 	}
1342 
1343 	buf_sz = bfsize;
1344 
1345 	return 0;
1346 
1347 err_init_rx_buffers:
1348 	while (queue >= 0) {
1349 		while (--i >= 0)
1350 			stmmac_free_rx_buffer(priv, queue, i);
1351 
1352 		if (queue == 0)
1353 			break;
1354 
1355 		i = DMA_RX_SIZE;
1356 		queue--;
1357 	}
1358 
1359 	return ret;
1360 }
1361 
1362 /**
1363  * init_dma_tx_desc_rings - init the TX descriptor rings
1364  * @dev: net device structure.
1365  * Description: this function initializes the DMA TX descriptors
1366  * and allocates the socket buffers. It supports the chained and ring
1367  * modes.
1368  */
1369 static int init_dma_tx_desc_rings(struct net_device *dev)
1370 {
1371 	struct stmmac_priv *priv = netdev_priv(dev);
1372 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1373 	u32 queue;
1374 	int i;
1375 
1376 	for (queue = 0; queue < tx_queue_cnt; queue++) {
1377 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1378 
1379 		netif_dbg(priv, probe, priv->dev,
1380 			  "(%s) dma_tx_phy=0x%08x\n", __func__,
1381 			 (u32)tx_q->dma_tx_phy);
1382 
1383 		/* Setup the chained descriptor addresses */
1384 		if (priv->mode == STMMAC_CHAIN_MODE) {
1385 			if (priv->extend_desc)
1386 				stmmac_mode_init(priv, tx_q->dma_etx,
1387 						tx_q->dma_tx_phy, DMA_TX_SIZE, 1);
1388 			else
1389 				stmmac_mode_init(priv, tx_q->dma_tx,
1390 						tx_q->dma_tx_phy, DMA_TX_SIZE, 0);
1391 		}
1392 
1393 		for (i = 0; i < DMA_TX_SIZE; i++) {
1394 			struct dma_desc *p;
1395 			if (priv->extend_desc)
1396 				p = &((tx_q->dma_etx + i)->basic);
1397 			else
1398 				p = tx_q->dma_tx + i;
1399 
1400 			stmmac_clear_desc(priv, p);
1401 
1402 			tx_q->tx_skbuff_dma[i].buf = 0;
1403 			tx_q->tx_skbuff_dma[i].map_as_page = false;
1404 			tx_q->tx_skbuff_dma[i].len = 0;
1405 			tx_q->tx_skbuff_dma[i].last_segment = false;
1406 			tx_q->tx_skbuff[i] = NULL;
1407 		}
1408 
1409 		tx_q->dirty_tx = 0;
1410 		tx_q->cur_tx = 0;
1411 		tx_q->mss = 0;
1412 
1413 		netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
1414 	}
1415 
1416 	return 0;
1417 }
1418 
1419 /**
1420  * init_dma_desc_rings - init the RX/TX descriptor rings
1421  * @dev: net device structure
1422  * @flags: gfp flag.
1423  * Description: this function initializes the DMA RX/TX descriptors
1424  * and allocates the socket buffers. It supports the chained and ring
1425  * modes.
1426  */
1427 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1428 {
1429 	struct stmmac_priv *priv = netdev_priv(dev);
1430 	int ret;
1431 
1432 	ret = init_dma_rx_desc_rings(dev, flags);
1433 	if (ret)
1434 		return ret;
1435 
1436 	ret = init_dma_tx_desc_rings(dev);
1437 
1438 	stmmac_clear_descriptors(priv);
1439 
1440 	if (netif_msg_hw(priv))
1441 		stmmac_display_rings(priv);
1442 
1443 	return ret;
1444 }
1445 
1446 /**
1447  * dma_free_rx_skbufs - free RX dma buffers
1448  * @priv: private structure
1449  * @queue: RX queue index
1450  */
1451 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue)
1452 {
1453 	int i;
1454 
1455 	for (i = 0; i < DMA_RX_SIZE; i++)
1456 		stmmac_free_rx_buffer(priv, queue, i);
1457 }
1458 
1459 /**
1460  * dma_free_tx_skbufs - free TX dma buffers
1461  * @priv: private structure
1462  * @queue: TX queue index
1463  */
1464 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue)
1465 {
1466 	int i;
1467 
1468 	for (i = 0; i < DMA_TX_SIZE; i++)
1469 		stmmac_free_tx_buffer(priv, queue, i);
1470 }
1471 
1472 /**
1473  * free_dma_rx_desc_resources - free RX dma desc resources
1474  * @priv: private structure
1475  */
1476 static void free_dma_rx_desc_resources(struct stmmac_priv *priv)
1477 {
1478 	u32 rx_count = priv->plat->rx_queues_to_use;
1479 	u32 queue;
1480 
1481 	/* Free RX queue resources */
1482 	for (queue = 0; queue < rx_count; queue++) {
1483 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1484 
1485 		/* Release the DMA RX socket buffers */
1486 		dma_free_rx_skbufs(priv, queue);
1487 
1488 		/* Free DMA regions of consistent memory previously allocated */
1489 		if (!priv->extend_desc)
1490 			dma_free_coherent(priv->device,
1491 					  DMA_RX_SIZE * sizeof(struct dma_desc),
1492 					  rx_q->dma_rx, rx_q->dma_rx_phy);
1493 		else
1494 			dma_free_coherent(priv->device, DMA_RX_SIZE *
1495 					  sizeof(struct dma_extended_desc),
1496 					  rx_q->dma_erx, rx_q->dma_rx_phy);
1497 
1498 		kfree(rx_q->rx_skbuff_dma);
1499 		kfree(rx_q->rx_skbuff);
1500 	}
1501 }
1502 
1503 /**
1504  * free_dma_tx_desc_resources - free TX dma desc resources
1505  * @priv: private structure
1506  */
1507 static void free_dma_tx_desc_resources(struct stmmac_priv *priv)
1508 {
1509 	u32 tx_count = priv->plat->tx_queues_to_use;
1510 	u32 queue;
1511 
1512 	/* Free TX queue resources */
1513 	for (queue = 0; queue < tx_count; queue++) {
1514 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1515 
1516 		/* Release the DMA TX socket buffers */
1517 		dma_free_tx_skbufs(priv, queue);
1518 
1519 		/* Free DMA regions of consistent memory previously allocated */
1520 		if (!priv->extend_desc)
1521 			dma_free_coherent(priv->device,
1522 					  DMA_TX_SIZE * sizeof(struct dma_desc),
1523 					  tx_q->dma_tx, tx_q->dma_tx_phy);
1524 		else
1525 			dma_free_coherent(priv->device, DMA_TX_SIZE *
1526 					  sizeof(struct dma_extended_desc),
1527 					  tx_q->dma_etx, tx_q->dma_tx_phy);
1528 
1529 		kfree(tx_q->tx_skbuff_dma);
1530 		kfree(tx_q->tx_skbuff);
1531 	}
1532 }
1533 
1534 /**
1535  * alloc_dma_rx_desc_resources - alloc RX resources.
1536  * @priv: private structure
1537  * Description: according to which descriptor can be used (extend or basic)
1538  * this function allocates the resources for TX and RX paths. In case of
1539  * reception, for example, it pre-allocated the RX socket buffer in order to
1540  * allow zero-copy mechanism.
1541  */
1542 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv)
1543 {
1544 	u32 rx_count = priv->plat->rx_queues_to_use;
1545 	int ret = -ENOMEM;
1546 	u32 queue;
1547 
1548 	/* RX queues buffers and DMA */
1549 	for (queue = 0; queue < rx_count; queue++) {
1550 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1551 
1552 		rx_q->queue_index = queue;
1553 		rx_q->priv_data = priv;
1554 
1555 		rx_q->rx_skbuff_dma = kmalloc_array(DMA_RX_SIZE,
1556 						    sizeof(dma_addr_t),
1557 						    GFP_KERNEL);
1558 		if (!rx_q->rx_skbuff_dma)
1559 			goto err_dma;
1560 
1561 		rx_q->rx_skbuff = kmalloc_array(DMA_RX_SIZE,
1562 						sizeof(struct sk_buff *),
1563 						GFP_KERNEL);
1564 		if (!rx_q->rx_skbuff)
1565 			goto err_dma;
1566 
1567 		if (priv->extend_desc) {
1568 			rx_q->dma_erx = dma_alloc_coherent(priv->device,
1569 							   DMA_RX_SIZE * sizeof(struct dma_extended_desc),
1570 							   &rx_q->dma_rx_phy,
1571 							   GFP_KERNEL);
1572 			if (!rx_q->dma_erx)
1573 				goto err_dma;
1574 
1575 		} else {
1576 			rx_q->dma_rx = dma_alloc_coherent(priv->device,
1577 							  DMA_RX_SIZE * sizeof(struct dma_desc),
1578 							  &rx_q->dma_rx_phy,
1579 							  GFP_KERNEL);
1580 			if (!rx_q->dma_rx)
1581 				goto err_dma;
1582 		}
1583 	}
1584 
1585 	return 0;
1586 
1587 err_dma:
1588 	free_dma_rx_desc_resources(priv);
1589 
1590 	return ret;
1591 }
1592 
1593 /**
1594  * alloc_dma_tx_desc_resources - alloc TX resources.
1595  * @priv: private structure
1596  * Description: according to which descriptor can be used (extend or basic)
1597  * this function allocates the resources for TX and RX paths. In case of
1598  * reception, for example, it pre-allocated the RX socket buffer in order to
1599  * allow zero-copy mechanism.
1600  */
1601 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv)
1602 {
1603 	u32 tx_count = priv->plat->tx_queues_to_use;
1604 	int ret = -ENOMEM;
1605 	u32 queue;
1606 
1607 	/* TX queues buffers and DMA */
1608 	for (queue = 0; queue < tx_count; queue++) {
1609 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1610 
1611 		tx_q->queue_index = queue;
1612 		tx_q->priv_data = priv;
1613 
1614 		tx_q->tx_skbuff_dma = kmalloc_array(DMA_TX_SIZE,
1615 						    sizeof(*tx_q->tx_skbuff_dma),
1616 						    GFP_KERNEL);
1617 		if (!tx_q->tx_skbuff_dma)
1618 			goto err_dma;
1619 
1620 		tx_q->tx_skbuff = kmalloc_array(DMA_TX_SIZE,
1621 						sizeof(struct sk_buff *),
1622 						GFP_KERNEL);
1623 		if (!tx_q->tx_skbuff)
1624 			goto err_dma;
1625 
1626 		if (priv->extend_desc) {
1627 			tx_q->dma_etx = dma_alloc_coherent(priv->device,
1628 							   DMA_TX_SIZE * sizeof(struct dma_extended_desc),
1629 							   &tx_q->dma_tx_phy,
1630 							   GFP_KERNEL);
1631 			if (!tx_q->dma_etx)
1632 				goto err_dma;
1633 		} else {
1634 			tx_q->dma_tx = dma_alloc_coherent(priv->device,
1635 							  DMA_TX_SIZE * sizeof(struct dma_desc),
1636 							  &tx_q->dma_tx_phy,
1637 							  GFP_KERNEL);
1638 			if (!tx_q->dma_tx)
1639 				goto err_dma;
1640 		}
1641 	}
1642 
1643 	return 0;
1644 
1645 err_dma:
1646 	free_dma_tx_desc_resources(priv);
1647 
1648 	return ret;
1649 }
1650 
1651 /**
1652  * alloc_dma_desc_resources - alloc TX/RX resources.
1653  * @priv: private structure
1654  * Description: according to which descriptor can be used (extend or basic)
1655  * this function allocates the resources for TX and RX paths. In case of
1656  * reception, for example, it pre-allocated the RX socket buffer in order to
1657  * allow zero-copy mechanism.
1658  */
1659 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1660 {
1661 	/* RX Allocation */
1662 	int ret = alloc_dma_rx_desc_resources(priv);
1663 
1664 	if (ret)
1665 		return ret;
1666 
1667 	ret = alloc_dma_tx_desc_resources(priv);
1668 
1669 	return ret;
1670 }
1671 
1672 /**
1673  * free_dma_desc_resources - free dma desc resources
1674  * @priv: private structure
1675  */
1676 static void free_dma_desc_resources(struct stmmac_priv *priv)
1677 {
1678 	/* Release the DMA RX socket buffers */
1679 	free_dma_rx_desc_resources(priv);
1680 
1681 	/* Release the DMA TX socket buffers */
1682 	free_dma_tx_desc_resources(priv);
1683 }
1684 
1685 /**
1686  *  stmmac_mac_enable_rx_queues - Enable MAC rx queues
1687  *  @priv: driver private structure
1688  *  Description: It is used for enabling the rx queues in the MAC
1689  */
1690 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
1691 {
1692 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
1693 	int queue;
1694 	u8 mode;
1695 
1696 	for (queue = 0; queue < rx_queues_count; queue++) {
1697 		mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
1698 		stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
1699 	}
1700 }
1701 
1702 /**
1703  * stmmac_start_rx_dma - start RX DMA channel
1704  * @priv: driver private structure
1705  * @chan: RX channel index
1706  * Description:
1707  * This starts a RX DMA channel
1708  */
1709 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
1710 {
1711 	netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
1712 	stmmac_start_rx(priv, priv->ioaddr, chan);
1713 }
1714 
1715 /**
1716  * stmmac_start_tx_dma - start TX DMA channel
1717  * @priv: driver private structure
1718  * @chan: TX channel index
1719  * Description:
1720  * This starts a TX DMA channel
1721  */
1722 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
1723 {
1724 	netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
1725 	stmmac_start_tx(priv, priv->ioaddr, chan);
1726 }
1727 
1728 /**
1729  * stmmac_stop_rx_dma - stop RX DMA channel
1730  * @priv: driver private structure
1731  * @chan: RX channel index
1732  * Description:
1733  * This stops a RX DMA channel
1734  */
1735 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
1736 {
1737 	netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
1738 	stmmac_stop_rx(priv, priv->ioaddr, chan);
1739 }
1740 
1741 /**
1742  * stmmac_stop_tx_dma - stop TX DMA channel
1743  * @priv: driver private structure
1744  * @chan: TX channel index
1745  * Description:
1746  * This stops a TX DMA channel
1747  */
1748 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
1749 {
1750 	netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
1751 	stmmac_stop_tx(priv, priv->ioaddr, chan);
1752 }
1753 
1754 /**
1755  * stmmac_start_all_dma - start all RX and TX DMA channels
1756  * @priv: driver private structure
1757  * Description:
1758  * This starts all the RX and TX DMA channels
1759  */
1760 static void stmmac_start_all_dma(struct stmmac_priv *priv)
1761 {
1762 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1763 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1764 	u32 chan = 0;
1765 
1766 	for (chan = 0; chan < rx_channels_count; chan++)
1767 		stmmac_start_rx_dma(priv, chan);
1768 
1769 	for (chan = 0; chan < tx_channels_count; chan++)
1770 		stmmac_start_tx_dma(priv, chan);
1771 }
1772 
1773 /**
1774  * stmmac_stop_all_dma - stop all RX and TX DMA channels
1775  * @priv: driver private structure
1776  * Description:
1777  * This stops the RX and TX DMA channels
1778  */
1779 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
1780 {
1781 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1782 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1783 	u32 chan = 0;
1784 
1785 	for (chan = 0; chan < rx_channels_count; chan++)
1786 		stmmac_stop_rx_dma(priv, chan);
1787 
1788 	for (chan = 0; chan < tx_channels_count; chan++)
1789 		stmmac_stop_tx_dma(priv, chan);
1790 }
1791 
1792 /**
1793  *  stmmac_dma_operation_mode - HW DMA operation mode
1794  *  @priv: driver private structure
1795  *  Description: it is used for configuring the DMA operation mode register in
1796  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1797  */
1798 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1799 {
1800 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1801 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1802 	int rxfifosz = priv->plat->rx_fifo_size;
1803 	int txfifosz = priv->plat->tx_fifo_size;
1804 	u32 txmode = 0;
1805 	u32 rxmode = 0;
1806 	u32 chan = 0;
1807 	u8 qmode = 0;
1808 
1809 	if (rxfifosz == 0)
1810 		rxfifosz = priv->dma_cap.rx_fifo_size;
1811 	if (txfifosz == 0)
1812 		txfifosz = priv->dma_cap.tx_fifo_size;
1813 
1814 	/* Adjust for real per queue fifo size */
1815 	rxfifosz /= rx_channels_count;
1816 	txfifosz /= tx_channels_count;
1817 
1818 	if (priv->plat->force_thresh_dma_mode) {
1819 		txmode = tc;
1820 		rxmode = tc;
1821 	} else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1822 		/*
1823 		 * In case of GMAC, SF mode can be enabled
1824 		 * to perform the TX COE in HW. This depends on:
1825 		 * 1) TX COE if actually supported
1826 		 * 2) There is no bugged Jumbo frame support
1827 		 *    that needs to not insert csum in the TDES.
1828 		 */
1829 		txmode = SF_DMA_MODE;
1830 		rxmode = SF_DMA_MODE;
1831 		priv->xstats.threshold = SF_DMA_MODE;
1832 	} else {
1833 		txmode = tc;
1834 		rxmode = SF_DMA_MODE;
1835 	}
1836 
1837 	/* configure all channels */
1838 	for (chan = 0; chan < rx_channels_count; chan++) {
1839 		qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
1840 
1841 		stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
1842 				rxfifosz, qmode);
1843 		stmmac_set_dma_bfsize(priv, priv->ioaddr, priv->dma_buf_sz,
1844 				chan);
1845 	}
1846 
1847 	for (chan = 0; chan < tx_channels_count; chan++) {
1848 		qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
1849 
1850 		stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
1851 				txfifosz, qmode);
1852 	}
1853 }
1854 
1855 /**
1856  * stmmac_tx_clean - to manage the transmission completion
1857  * @priv: driver private structure
1858  * @queue: TX queue index
1859  * Description: it reclaims the transmit resources after transmission completes.
1860  */
1861 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
1862 {
1863 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1864 	unsigned int bytes_compl = 0, pkts_compl = 0;
1865 	unsigned int entry, count = 0;
1866 
1867 	__netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
1868 
1869 	priv->xstats.tx_clean++;
1870 
1871 	entry = tx_q->dirty_tx;
1872 	while ((entry != tx_q->cur_tx) && (count < budget)) {
1873 		struct sk_buff *skb = tx_q->tx_skbuff[entry];
1874 		struct dma_desc *p;
1875 		int status;
1876 
1877 		if (priv->extend_desc)
1878 			p = (struct dma_desc *)(tx_q->dma_etx + entry);
1879 		else
1880 			p = tx_q->dma_tx + entry;
1881 
1882 		status = stmmac_tx_status(priv, &priv->dev->stats,
1883 				&priv->xstats, p, priv->ioaddr);
1884 		/* Check if the descriptor is owned by the DMA */
1885 		if (unlikely(status & tx_dma_own))
1886 			break;
1887 
1888 		count++;
1889 
1890 		/* Make sure descriptor fields are read after reading
1891 		 * the own bit.
1892 		 */
1893 		dma_rmb();
1894 
1895 		/* Just consider the last segment and ...*/
1896 		if (likely(!(status & tx_not_ls))) {
1897 			/* ... verify the status error condition */
1898 			if (unlikely(status & tx_err)) {
1899 				priv->dev->stats.tx_errors++;
1900 			} else {
1901 				priv->dev->stats.tx_packets++;
1902 				priv->xstats.tx_pkt_n++;
1903 			}
1904 			stmmac_get_tx_hwtstamp(priv, p, skb);
1905 		}
1906 
1907 		if (likely(tx_q->tx_skbuff_dma[entry].buf)) {
1908 			if (tx_q->tx_skbuff_dma[entry].map_as_page)
1909 				dma_unmap_page(priv->device,
1910 					       tx_q->tx_skbuff_dma[entry].buf,
1911 					       tx_q->tx_skbuff_dma[entry].len,
1912 					       DMA_TO_DEVICE);
1913 			else
1914 				dma_unmap_single(priv->device,
1915 						 tx_q->tx_skbuff_dma[entry].buf,
1916 						 tx_q->tx_skbuff_dma[entry].len,
1917 						 DMA_TO_DEVICE);
1918 			tx_q->tx_skbuff_dma[entry].buf = 0;
1919 			tx_q->tx_skbuff_dma[entry].len = 0;
1920 			tx_q->tx_skbuff_dma[entry].map_as_page = false;
1921 		}
1922 
1923 		stmmac_clean_desc3(priv, tx_q, p);
1924 
1925 		tx_q->tx_skbuff_dma[entry].last_segment = false;
1926 		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
1927 
1928 		if (likely(skb != NULL)) {
1929 			pkts_compl++;
1930 			bytes_compl += skb->len;
1931 			dev_consume_skb_any(skb);
1932 			tx_q->tx_skbuff[entry] = NULL;
1933 		}
1934 
1935 		stmmac_release_tx_desc(priv, p, priv->mode);
1936 
1937 		entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
1938 	}
1939 	tx_q->dirty_tx = entry;
1940 
1941 	netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
1942 				  pkts_compl, bytes_compl);
1943 
1944 	if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
1945 								queue))) &&
1946 	    stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH) {
1947 
1948 		netif_dbg(priv, tx_done, priv->dev,
1949 			  "%s: restart transmit\n", __func__);
1950 		netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
1951 	}
1952 
1953 	if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1954 		stmmac_enable_eee_mode(priv);
1955 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1956 	}
1957 
1958 	__netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
1959 
1960 	return count;
1961 }
1962 
1963 /**
1964  * stmmac_tx_err - to manage the tx error
1965  * @priv: driver private structure
1966  * @chan: channel index
1967  * Description: it cleans the descriptors and restarts the transmission
1968  * in case of transmission errors.
1969  */
1970 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
1971 {
1972 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
1973 	int i;
1974 
1975 	netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
1976 
1977 	stmmac_stop_tx_dma(priv, chan);
1978 	dma_free_tx_skbufs(priv, chan);
1979 	for (i = 0; i < DMA_TX_SIZE; i++)
1980 		if (priv->extend_desc)
1981 			stmmac_init_tx_desc(priv, &tx_q->dma_etx[i].basic,
1982 					priv->mode, (i == DMA_TX_SIZE - 1));
1983 		else
1984 			stmmac_init_tx_desc(priv, &tx_q->dma_tx[i],
1985 					priv->mode, (i == DMA_TX_SIZE - 1));
1986 	tx_q->dirty_tx = 0;
1987 	tx_q->cur_tx = 0;
1988 	tx_q->mss = 0;
1989 	netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan));
1990 	stmmac_start_tx_dma(priv, chan);
1991 
1992 	priv->dev->stats.tx_errors++;
1993 	netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
1994 }
1995 
1996 /**
1997  *  stmmac_set_dma_operation_mode - Set DMA operation mode by channel
1998  *  @priv: driver private structure
1999  *  @txmode: TX operating mode
2000  *  @rxmode: RX operating mode
2001  *  @chan: channel index
2002  *  Description: it is used for configuring of the DMA operation mode in
2003  *  runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
2004  *  mode.
2005  */
2006 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
2007 					  u32 rxmode, u32 chan)
2008 {
2009 	u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2010 	u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2011 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2012 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2013 	int rxfifosz = priv->plat->rx_fifo_size;
2014 	int txfifosz = priv->plat->tx_fifo_size;
2015 
2016 	if (rxfifosz == 0)
2017 		rxfifosz = priv->dma_cap.rx_fifo_size;
2018 	if (txfifosz == 0)
2019 		txfifosz = priv->dma_cap.tx_fifo_size;
2020 
2021 	/* Adjust for real per queue fifo size */
2022 	rxfifosz /= rx_channels_count;
2023 	txfifosz /= tx_channels_count;
2024 
2025 	stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2026 	stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2027 }
2028 
2029 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2030 {
2031 	int ret;
2032 
2033 	ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2034 			priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2035 	if (ret && (ret != -EINVAL)) {
2036 		stmmac_global_err(priv);
2037 		return true;
2038 	}
2039 
2040 	return false;
2041 }
2042 
2043 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan)
2044 {
2045 	int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2046 						 &priv->xstats, chan);
2047 	struct stmmac_channel *ch = &priv->channel[chan];
2048 	bool needs_work = false;
2049 
2050 	if ((status & handle_rx) && ch->has_rx) {
2051 		needs_work = true;
2052 	} else {
2053 		status &= ~handle_rx;
2054 	}
2055 
2056 	if ((status & handle_tx) && ch->has_tx) {
2057 		needs_work = true;
2058 	} else {
2059 		status &= ~handle_tx;
2060 	}
2061 
2062 	if (needs_work && napi_schedule_prep(&ch->napi)) {
2063 		stmmac_disable_dma_irq(priv, priv->ioaddr, chan);
2064 		__napi_schedule(&ch->napi);
2065 	}
2066 
2067 	return status;
2068 }
2069 
2070 /**
2071  * stmmac_dma_interrupt - DMA ISR
2072  * @priv: driver private structure
2073  * Description: this is the DMA ISR. It is called by the main ISR.
2074  * It calls the dwmac dma routine and schedule poll method in case of some
2075  * work can be done.
2076  */
2077 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2078 {
2079 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2080 	u32 rx_channel_count = priv->plat->rx_queues_to_use;
2081 	u32 channels_to_check = tx_channel_count > rx_channel_count ?
2082 				tx_channel_count : rx_channel_count;
2083 	u32 chan;
2084 	int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2085 
2086 	/* Make sure we never check beyond our status buffer. */
2087 	if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2088 		channels_to_check = ARRAY_SIZE(status);
2089 
2090 	for (chan = 0; chan < channels_to_check; chan++)
2091 		status[chan] = stmmac_napi_check(priv, chan);
2092 
2093 	for (chan = 0; chan < tx_channel_count; chan++) {
2094 		if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2095 			/* Try to bump up the dma threshold on this failure */
2096 			if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
2097 			    (tc <= 256)) {
2098 				tc += 64;
2099 				if (priv->plat->force_thresh_dma_mode)
2100 					stmmac_set_dma_operation_mode(priv,
2101 								      tc,
2102 								      tc,
2103 								      chan);
2104 				else
2105 					stmmac_set_dma_operation_mode(priv,
2106 								    tc,
2107 								    SF_DMA_MODE,
2108 								    chan);
2109 				priv->xstats.threshold = tc;
2110 			}
2111 		} else if (unlikely(status[chan] == tx_hard_error)) {
2112 			stmmac_tx_err(priv, chan);
2113 		}
2114 	}
2115 }
2116 
2117 /**
2118  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2119  * @priv: driver private structure
2120  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2121  */
2122 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2123 {
2124 	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2125 			    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2126 
2127 	dwmac_mmc_intr_all_mask(priv->mmcaddr);
2128 
2129 	if (priv->dma_cap.rmon) {
2130 		dwmac_mmc_ctrl(priv->mmcaddr, mode);
2131 		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2132 	} else
2133 		netdev_info(priv->dev, "No MAC Management Counters available\n");
2134 }
2135 
2136 /**
2137  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2138  * @priv: driver private structure
2139  * Description:
2140  *  new GMAC chip generations have a new register to indicate the
2141  *  presence of the optional feature/functions.
2142  *  This can be also used to override the value passed through the
2143  *  platform and necessary for old MAC10/100 and GMAC chips.
2144  */
2145 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2146 {
2147 	return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2148 }
2149 
2150 /**
2151  * stmmac_check_ether_addr - check if the MAC addr is valid
2152  * @priv: driver private structure
2153  * Description:
2154  * it is to verify if the MAC address is valid, in case of failures it
2155  * generates a random MAC address
2156  */
2157 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2158 {
2159 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2160 		stmmac_get_umac_addr(priv, priv->hw, priv->dev->dev_addr, 0);
2161 		if (!is_valid_ether_addr(priv->dev->dev_addr))
2162 			eth_hw_addr_random(priv->dev);
2163 		netdev_info(priv->dev, "device MAC address %pM\n",
2164 			    priv->dev->dev_addr);
2165 	}
2166 }
2167 
2168 /**
2169  * stmmac_init_dma_engine - DMA init.
2170  * @priv: driver private structure
2171  * Description:
2172  * It inits the DMA invoking the specific MAC/GMAC callback.
2173  * Some DMA parameters can be passed from the platform;
2174  * in case of these are not passed a default is kept for the MAC or GMAC.
2175  */
2176 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2177 {
2178 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2179 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2180 	u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2181 	struct stmmac_rx_queue *rx_q;
2182 	struct stmmac_tx_queue *tx_q;
2183 	u32 chan = 0;
2184 	int atds = 0;
2185 	int ret = 0;
2186 
2187 	if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2188 		dev_err(priv->device, "Invalid DMA configuration\n");
2189 		return -EINVAL;
2190 	}
2191 
2192 	if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2193 		atds = 1;
2194 
2195 	ret = stmmac_reset(priv, priv->ioaddr);
2196 	if (ret) {
2197 		dev_err(priv->device, "Failed to reset the dma\n");
2198 		return ret;
2199 	}
2200 
2201 	/* DMA Configuration */
2202 	stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2203 
2204 	if (priv->plat->axi)
2205 		stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2206 
2207 	/* DMA RX Channel Configuration */
2208 	for (chan = 0; chan < rx_channels_count; chan++) {
2209 		rx_q = &priv->rx_queue[chan];
2210 
2211 		stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2212 				    rx_q->dma_rx_phy, chan);
2213 
2214 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2215 			    (DMA_RX_SIZE * sizeof(struct dma_desc));
2216 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2217 				       rx_q->rx_tail_addr, chan);
2218 	}
2219 
2220 	/* DMA TX Channel Configuration */
2221 	for (chan = 0; chan < tx_channels_count; chan++) {
2222 		tx_q = &priv->tx_queue[chan];
2223 
2224 		stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2225 				    tx_q->dma_tx_phy, chan);
2226 
2227 		tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2228 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2229 				       tx_q->tx_tail_addr, chan);
2230 	}
2231 
2232 	/* DMA CSR Channel configuration */
2233 	for (chan = 0; chan < dma_csr_ch; chan++)
2234 		stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2235 
2236 	return ret;
2237 }
2238 
2239 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2240 {
2241 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2242 
2243 	mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer));
2244 }
2245 
2246 /**
2247  * stmmac_tx_timer - mitigation sw timer for tx.
2248  * @data: data pointer
2249  * Description:
2250  * This is the timer handler to directly invoke the stmmac_tx_clean.
2251  */
2252 static void stmmac_tx_timer(struct timer_list *t)
2253 {
2254 	struct stmmac_tx_queue *tx_q = from_timer(tx_q, t, txtimer);
2255 	struct stmmac_priv *priv = tx_q->priv_data;
2256 	struct stmmac_channel *ch;
2257 
2258 	ch = &priv->channel[tx_q->queue_index];
2259 
2260 	if (likely(napi_schedule_prep(&ch->napi)))
2261 		__napi_schedule(&ch->napi);
2262 }
2263 
2264 /**
2265  * stmmac_init_tx_coalesce - init tx mitigation options.
2266  * @priv: driver private structure
2267  * Description:
2268  * This inits the transmit coalesce parameters: i.e. timer rate,
2269  * timer handler and default threshold used for enabling the
2270  * interrupt on completion bit.
2271  */
2272 static void stmmac_init_tx_coalesce(struct stmmac_priv *priv)
2273 {
2274 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2275 	u32 chan;
2276 
2277 	priv->tx_coal_frames = STMMAC_TX_FRAMES;
2278 	priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
2279 
2280 	for (chan = 0; chan < tx_channel_count; chan++) {
2281 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2282 
2283 		timer_setup(&tx_q->txtimer, stmmac_tx_timer, 0);
2284 	}
2285 }
2286 
2287 static void stmmac_set_rings_length(struct stmmac_priv *priv)
2288 {
2289 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2290 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2291 	u32 chan;
2292 
2293 	/* set TX ring length */
2294 	for (chan = 0; chan < tx_channels_count; chan++)
2295 		stmmac_set_tx_ring_len(priv, priv->ioaddr,
2296 				(DMA_TX_SIZE - 1), chan);
2297 
2298 	/* set RX ring length */
2299 	for (chan = 0; chan < rx_channels_count; chan++)
2300 		stmmac_set_rx_ring_len(priv, priv->ioaddr,
2301 				(DMA_RX_SIZE - 1), chan);
2302 }
2303 
2304 /**
2305  *  stmmac_set_tx_queue_weight - Set TX queue weight
2306  *  @priv: driver private structure
2307  *  Description: It is used for setting TX queues weight
2308  */
2309 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
2310 {
2311 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2312 	u32 weight;
2313 	u32 queue;
2314 
2315 	for (queue = 0; queue < tx_queues_count; queue++) {
2316 		weight = priv->plat->tx_queues_cfg[queue].weight;
2317 		stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
2318 	}
2319 }
2320 
2321 /**
2322  *  stmmac_configure_cbs - Configure CBS in TX queue
2323  *  @priv: driver private structure
2324  *  Description: It is used for configuring CBS in AVB TX queues
2325  */
2326 static void stmmac_configure_cbs(struct stmmac_priv *priv)
2327 {
2328 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2329 	u32 mode_to_use;
2330 	u32 queue;
2331 
2332 	/* queue 0 is reserved for legacy traffic */
2333 	for (queue = 1; queue < tx_queues_count; queue++) {
2334 		mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
2335 		if (mode_to_use == MTL_QUEUE_DCB)
2336 			continue;
2337 
2338 		stmmac_config_cbs(priv, priv->hw,
2339 				priv->plat->tx_queues_cfg[queue].send_slope,
2340 				priv->plat->tx_queues_cfg[queue].idle_slope,
2341 				priv->plat->tx_queues_cfg[queue].high_credit,
2342 				priv->plat->tx_queues_cfg[queue].low_credit,
2343 				queue);
2344 	}
2345 }
2346 
2347 /**
2348  *  stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
2349  *  @priv: driver private structure
2350  *  Description: It is used for mapping RX queues to RX dma channels
2351  */
2352 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
2353 {
2354 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2355 	u32 queue;
2356 	u32 chan;
2357 
2358 	for (queue = 0; queue < rx_queues_count; queue++) {
2359 		chan = priv->plat->rx_queues_cfg[queue].chan;
2360 		stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
2361 	}
2362 }
2363 
2364 /**
2365  *  stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
2366  *  @priv: driver private structure
2367  *  Description: It is used for configuring the RX Queue Priority
2368  */
2369 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
2370 {
2371 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2372 	u32 queue;
2373 	u32 prio;
2374 
2375 	for (queue = 0; queue < rx_queues_count; queue++) {
2376 		if (!priv->plat->rx_queues_cfg[queue].use_prio)
2377 			continue;
2378 
2379 		prio = priv->plat->rx_queues_cfg[queue].prio;
2380 		stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
2381 	}
2382 }
2383 
2384 /**
2385  *  stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
2386  *  @priv: driver private structure
2387  *  Description: It is used for configuring the TX Queue Priority
2388  */
2389 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
2390 {
2391 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2392 	u32 queue;
2393 	u32 prio;
2394 
2395 	for (queue = 0; queue < tx_queues_count; queue++) {
2396 		if (!priv->plat->tx_queues_cfg[queue].use_prio)
2397 			continue;
2398 
2399 		prio = priv->plat->tx_queues_cfg[queue].prio;
2400 		stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
2401 	}
2402 }
2403 
2404 /**
2405  *  stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
2406  *  @priv: driver private structure
2407  *  Description: It is used for configuring the RX queue routing
2408  */
2409 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
2410 {
2411 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2412 	u32 queue;
2413 	u8 packet;
2414 
2415 	for (queue = 0; queue < rx_queues_count; queue++) {
2416 		/* no specific packet type routing specified for the queue */
2417 		if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
2418 			continue;
2419 
2420 		packet = priv->plat->rx_queues_cfg[queue].pkt_route;
2421 		stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
2422 	}
2423 }
2424 
2425 /**
2426  *  stmmac_mtl_configuration - Configure MTL
2427  *  @priv: driver private structure
2428  *  Description: It is used for configurring MTL
2429  */
2430 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
2431 {
2432 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2433 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2434 
2435 	if (tx_queues_count > 1)
2436 		stmmac_set_tx_queue_weight(priv);
2437 
2438 	/* Configure MTL RX algorithms */
2439 	if (rx_queues_count > 1)
2440 		stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
2441 				priv->plat->rx_sched_algorithm);
2442 
2443 	/* Configure MTL TX algorithms */
2444 	if (tx_queues_count > 1)
2445 		stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
2446 				priv->plat->tx_sched_algorithm);
2447 
2448 	/* Configure CBS in AVB TX queues */
2449 	if (tx_queues_count > 1)
2450 		stmmac_configure_cbs(priv);
2451 
2452 	/* Map RX MTL to DMA channels */
2453 	stmmac_rx_queue_dma_chan_map(priv);
2454 
2455 	/* Enable MAC RX Queues */
2456 	stmmac_mac_enable_rx_queues(priv);
2457 
2458 	/* Set RX priorities */
2459 	if (rx_queues_count > 1)
2460 		stmmac_mac_config_rx_queues_prio(priv);
2461 
2462 	/* Set TX priorities */
2463 	if (tx_queues_count > 1)
2464 		stmmac_mac_config_tx_queues_prio(priv);
2465 
2466 	/* Set RX routing */
2467 	if (rx_queues_count > 1)
2468 		stmmac_mac_config_rx_queues_routing(priv);
2469 }
2470 
2471 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
2472 {
2473 	if (priv->dma_cap.asp) {
2474 		netdev_info(priv->dev, "Enabling Safety Features\n");
2475 		stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp);
2476 	} else {
2477 		netdev_info(priv->dev, "No Safety Features support found\n");
2478 	}
2479 }
2480 
2481 /**
2482  * stmmac_hw_setup - setup mac in a usable state.
2483  *  @dev : pointer to the device structure.
2484  *  Description:
2485  *  this is the main function to setup the HW in a usable state because the
2486  *  dma engine is reset, the core registers are configured (e.g. AXI,
2487  *  Checksum features, timers). The DMA is ready to start receiving and
2488  *  transmitting.
2489  *  Return value:
2490  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2491  *  file on failure.
2492  */
2493 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
2494 {
2495 	struct stmmac_priv *priv = netdev_priv(dev);
2496 	u32 rx_cnt = priv->plat->rx_queues_to_use;
2497 	u32 tx_cnt = priv->plat->tx_queues_to_use;
2498 	u32 chan;
2499 	int ret;
2500 
2501 	/* DMA initialization and SW reset */
2502 	ret = stmmac_init_dma_engine(priv);
2503 	if (ret < 0) {
2504 		netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
2505 			   __func__);
2506 		return ret;
2507 	}
2508 
2509 	/* Copy the MAC addr into the HW  */
2510 	stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
2511 
2512 	/* PS and related bits will be programmed according to the speed */
2513 	if (priv->hw->pcs) {
2514 		int speed = priv->plat->mac_port_sel_speed;
2515 
2516 		if ((speed == SPEED_10) || (speed == SPEED_100) ||
2517 		    (speed == SPEED_1000)) {
2518 			priv->hw->ps = speed;
2519 		} else {
2520 			dev_warn(priv->device, "invalid port speed\n");
2521 			priv->hw->ps = 0;
2522 		}
2523 	}
2524 
2525 	/* Initialize the MAC Core */
2526 	stmmac_core_init(priv, priv->hw, dev);
2527 
2528 	/* Initialize MTL*/
2529 	stmmac_mtl_configuration(priv);
2530 
2531 	/* Initialize Safety Features */
2532 	stmmac_safety_feat_configuration(priv);
2533 
2534 	ret = stmmac_rx_ipc(priv, priv->hw);
2535 	if (!ret) {
2536 		netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
2537 		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
2538 		priv->hw->rx_csum = 0;
2539 	}
2540 
2541 	/* Enable the MAC Rx/Tx */
2542 	stmmac_mac_set(priv, priv->ioaddr, true);
2543 
2544 	/* Set the HW DMA mode and the COE */
2545 	stmmac_dma_operation_mode(priv);
2546 
2547 	stmmac_mmc_setup(priv);
2548 
2549 	if (init_ptp) {
2550 		ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
2551 		if (ret < 0)
2552 			netdev_warn(priv->dev, "failed to enable PTP reference clock: %d\n", ret);
2553 
2554 		ret = stmmac_init_ptp(priv);
2555 		if (ret == -EOPNOTSUPP)
2556 			netdev_warn(priv->dev, "PTP not supported by HW\n");
2557 		else if (ret)
2558 			netdev_warn(priv->dev, "PTP init failed\n");
2559 	}
2560 
2561 	priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
2562 
2563 	if (priv->use_riwt) {
2564 		ret = stmmac_rx_watchdog(priv, priv->ioaddr, MAX_DMA_RIWT, rx_cnt);
2565 		if (!ret)
2566 			priv->rx_riwt = MAX_DMA_RIWT;
2567 	}
2568 
2569 	if (priv->hw->pcs)
2570 		stmmac_pcs_ctrl_ane(priv, priv->hw, 1, priv->hw->ps, 0);
2571 
2572 	/* set TX and RX rings length */
2573 	stmmac_set_rings_length(priv);
2574 
2575 	/* Enable TSO */
2576 	if (priv->tso) {
2577 		for (chan = 0; chan < tx_cnt; chan++)
2578 			stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
2579 	}
2580 
2581 	/* Start the ball rolling... */
2582 	stmmac_start_all_dma(priv);
2583 
2584 	return 0;
2585 }
2586 
2587 static void stmmac_hw_teardown(struct net_device *dev)
2588 {
2589 	struct stmmac_priv *priv = netdev_priv(dev);
2590 
2591 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
2592 }
2593 
2594 /**
2595  *  stmmac_open - open entry point of the driver
2596  *  @dev : pointer to the device structure.
2597  *  Description:
2598  *  This function is the open entry point of the driver.
2599  *  Return value:
2600  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2601  *  file on failure.
2602  */
2603 static int stmmac_open(struct net_device *dev)
2604 {
2605 	struct stmmac_priv *priv = netdev_priv(dev);
2606 	u32 chan;
2607 	int ret;
2608 
2609 	stmmac_check_ether_addr(priv);
2610 
2611 	if (priv->hw->pcs != STMMAC_PCS_RGMII &&
2612 	    priv->hw->pcs != STMMAC_PCS_TBI &&
2613 	    priv->hw->pcs != STMMAC_PCS_RTBI) {
2614 		ret = stmmac_init_phy(dev);
2615 		if (ret) {
2616 			netdev_err(priv->dev,
2617 				   "%s: Cannot attach to PHY (error: %d)\n",
2618 				   __func__, ret);
2619 			return ret;
2620 		}
2621 	}
2622 
2623 	/* Extra statistics */
2624 	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
2625 	priv->xstats.threshold = tc;
2626 
2627 	priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
2628 	priv->rx_copybreak = STMMAC_RX_COPYBREAK;
2629 
2630 	ret = alloc_dma_desc_resources(priv);
2631 	if (ret < 0) {
2632 		netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
2633 			   __func__);
2634 		goto dma_desc_error;
2635 	}
2636 
2637 	ret = init_dma_desc_rings(dev, GFP_KERNEL);
2638 	if (ret < 0) {
2639 		netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
2640 			   __func__);
2641 		goto init_error;
2642 	}
2643 
2644 	ret = stmmac_hw_setup(dev, true);
2645 	if (ret < 0) {
2646 		netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
2647 		goto init_error;
2648 	}
2649 
2650 	stmmac_init_tx_coalesce(priv);
2651 
2652 	if (dev->phydev)
2653 		phy_start(dev->phydev);
2654 
2655 	/* Request the IRQ lines */
2656 	ret = request_irq(dev->irq, stmmac_interrupt,
2657 			  IRQF_SHARED, dev->name, dev);
2658 	if (unlikely(ret < 0)) {
2659 		netdev_err(priv->dev,
2660 			   "%s: ERROR: allocating the IRQ %d (error: %d)\n",
2661 			   __func__, dev->irq, ret);
2662 		goto irq_error;
2663 	}
2664 
2665 	/* Request the Wake IRQ in case of another line is used for WoL */
2666 	if (priv->wol_irq != dev->irq) {
2667 		ret = request_irq(priv->wol_irq, stmmac_interrupt,
2668 				  IRQF_SHARED, dev->name, dev);
2669 		if (unlikely(ret < 0)) {
2670 			netdev_err(priv->dev,
2671 				   "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
2672 				   __func__, priv->wol_irq, ret);
2673 			goto wolirq_error;
2674 		}
2675 	}
2676 
2677 	/* Request the IRQ lines */
2678 	if (priv->lpi_irq > 0) {
2679 		ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
2680 				  dev->name, dev);
2681 		if (unlikely(ret < 0)) {
2682 			netdev_err(priv->dev,
2683 				   "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
2684 				   __func__, priv->lpi_irq, ret);
2685 			goto lpiirq_error;
2686 		}
2687 	}
2688 
2689 	stmmac_enable_all_queues(priv);
2690 	stmmac_start_all_queues(priv);
2691 
2692 	return 0;
2693 
2694 lpiirq_error:
2695 	if (priv->wol_irq != dev->irq)
2696 		free_irq(priv->wol_irq, dev);
2697 wolirq_error:
2698 	free_irq(dev->irq, dev);
2699 irq_error:
2700 	if (dev->phydev)
2701 		phy_stop(dev->phydev);
2702 
2703 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2704 		del_timer_sync(&priv->tx_queue[chan].txtimer);
2705 
2706 	stmmac_hw_teardown(dev);
2707 init_error:
2708 	free_dma_desc_resources(priv);
2709 dma_desc_error:
2710 	if (dev->phydev)
2711 		phy_disconnect(dev->phydev);
2712 
2713 	return ret;
2714 }
2715 
2716 /**
2717  *  stmmac_release - close entry point of the driver
2718  *  @dev : device pointer.
2719  *  Description:
2720  *  This is the stop entry point of the driver.
2721  */
2722 static int stmmac_release(struct net_device *dev)
2723 {
2724 	struct stmmac_priv *priv = netdev_priv(dev);
2725 	u32 chan;
2726 
2727 	if (priv->eee_enabled)
2728 		del_timer_sync(&priv->eee_ctrl_timer);
2729 
2730 	/* Stop and disconnect the PHY */
2731 	if (dev->phydev) {
2732 		phy_stop(dev->phydev);
2733 		phy_disconnect(dev->phydev);
2734 	}
2735 
2736 	stmmac_stop_all_queues(priv);
2737 
2738 	stmmac_disable_all_queues(priv);
2739 
2740 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2741 		del_timer_sync(&priv->tx_queue[chan].txtimer);
2742 
2743 	/* Free the IRQ lines */
2744 	free_irq(dev->irq, dev);
2745 	if (priv->wol_irq != dev->irq)
2746 		free_irq(priv->wol_irq, dev);
2747 	if (priv->lpi_irq > 0)
2748 		free_irq(priv->lpi_irq, dev);
2749 
2750 	/* Stop TX/RX DMA and clear the descriptors */
2751 	stmmac_stop_all_dma(priv);
2752 
2753 	/* Release and free the Rx/Tx resources */
2754 	free_dma_desc_resources(priv);
2755 
2756 	/* Disable the MAC Rx/Tx */
2757 	stmmac_mac_set(priv, priv->ioaddr, false);
2758 
2759 	netif_carrier_off(dev);
2760 
2761 	stmmac_release_ptp(priv);
2762 
2763 	return 0;
2764 }
2765 
2766 /**
2767  *  stmmac_tso_allocator - close entry point of the driver
2768  *  @priv: driver private structure
2769  *  @des: buffer start address
2770  *  @total_len: total length to fill in descriptors
2771  *  @last_segmant: condition for the last descriptor
2772  *  @queue: TX queue index
2773  *  Description:
2774  *  This function fills descriptor and request new descriptors according to
2775  *  buffer length to fill
2776  */
2777 static void stmmac_tso_allocator(struct stmmac_priv *priv, unsigned int des,
2778 				 int total_len, bool last_segment, u32 queue)
2779 {
2780 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2781 	struct dma_desc *desc;
2782 	u32 buff_size;
2783 	int tmp_len;
2784 
2785 	tmp_len = total_len;
2786 
2787 	while (tmp_len > 0) {
2788 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2789 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
2790 		desc = tx_q->dma_tx + tx_q->cur_tx;
2791 
2792 		desc->des0 = cpu_to_le32(des + (total_len - tmp_len));
2793 		buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
2794 			    TSO_MAX_BUFF_SIZE : tmp_len;
2795 
2796 		stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
2797 				0, 1,
2798 				(last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
2799 				0, 0);
2800 
2801 		tmp_len -= TSO_MAX_BUFF_SIZE;
2802 	}
2803 }
2804 
2805 /**
2806  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
2807  *  @skb : the socket buffer
2808  *  @dev : device pointer
2809  *  Description: this is the transmit function that is called on TSO frames
2810  *  (support available on GMAC4 and newer chips).
2811  *  Diagram below show the ring programming in case of TSO frames:
2812  *
2813  *  First Descriptor
2814  *   --------
2815  *   | DES0 |---> buffer1 = L2/L3/L4 header
2816  *   | DES1 |---> TCP Payload (can continue on next descr...)
2817  *   | DES2 |---> buffer 1 and 2 len
2818  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
2819  *   --------
2820  *	|
2821  *     ...
2822  *	|
2823  *   --------
2824  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
2825  *   | DES1 | --|
2826  *   | DES2 | --> buffer 1 and 2 len
2827  *   | DES3 |
2828  *   --------
2829  *
2830  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
2831  */
2832 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
2833 {
2834 	struct dma_desc *desc, *first, *mss_desc = NULL;
2835 	struct stmmac_priv *priv = netdev_priv(dev);
2836 	int nfrags = skb_shinfo(skb)->nr_frags;
2837 	u32 queue = skb_get_queue_mapping(skb);
2838 	unsigned int first_entry, des;
2839 	struct stmmac_tx_queue *tx_q;
2840 	int tmp_pay_len = 0;
2841 	u32 pay_len, mss;
2842 	u8 proto_hdr_len;
2843 	int i;
2844 
2845 	tx_q = &priv->tx_queue[queue];
2846 
2847 	/* Compute header lengths */
2848 	proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2849 
2850 	/* Desc availability based on threshold should be enough safe */
2851 	if (unlikely(stmmac_tx_avail(priv, queue) <
2852 		(((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
2853 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
2854 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
2855 								queue));
2856 			/* This is a hard error, log it. */
2857 			netdev_err(priv->dev,
2858 				   "%s: Tx Ring full when queue awake\n",
2859 				   __func__);
2860 		}
2861 		return NETDEV_TX_BUSY;
2862 	}
2863 
2864 	pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
2865 
2866 	mss = skb_shinfo(skb)->gso_size;
2867 
2868 	/* set new MSS value if needed */
2869 	if (mss != tx_q->mss) {
2870 		mss_desc = tx_q->dma_tx + tx_q->cur_tx;
2871 		stmmac_set_mss(priv, mss_desc, mss);
2872 		tx_q->mss = mss;
2873 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2874 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
2875 	}
2876 
2877 	if (netif_msg_tx_queued(priv)) {
2878 		pr_info("%s: tcphdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
2879 			__func__, tcp_hdrlen(skb), proto_hdr_len, pay_len, mss);
2880 		pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
2881 			skb->data_len);
2882 	}
2883 
2884 	first_entry = tx_q->cur_tx;
2885 	WARN_ON(tx_q->tx_skbuff[first_entry]);
2886 
2887 	desc = tx_q->dma_tx + first_entry;
2888 	first = desc;
2889 
2890 	/* first descriptor: fill Headers on Buf1 */
2891 	des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
2892 			     DMA_TO_DEVICE);
2893 	if (dma_mapping_error(priv->device, des))
2894 		goto dma_map_err;
2895 
2896 	tx_q->tx_skbuff_dma[first_entry].buf = des;
2897 	tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
2898 
2899 	first->des0 = cpu_to_le32(des);
2900 
2901 	/* Fill start of payload in buff2 of first descriptor */
2902 	if (pay_len)
2903 		first->des1 = cpu_to_le32(des + proto_hdr_len);
2904 
2905 	/* If needed take extra descriptors to fill the remaining payload */
2906 	tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
2907 
2908 	stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
2909 
2910 	/* Prepare fragments */
2911 	for (i = 0; i < nfrags; i++) {
2912 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2913 
2914 		des = skb_frag_dma_map(priv->device, frag, 0,
2915 				       skb_frag_size(frag),
2916 				       DMA_TO_DEVICE);
2917 		if (dma_mapping_error(priv->device, des))
2918 			goto dma_map_err;
2919 
2920 		stmmac_tso_allocator(priv, des, skb_frag_size(frag),
2921 				     (i == nfrags - 1), queue);
2922 
2923 		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
2924 		tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
2925 		tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
2926 	}
2927 
2928 	tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
2929 
2930 	/* Only the last descriptor gets to point to the skb. */
2931 	tx_q->tx_skbuff[tx_q->cur_tx] = skb;
2932 
2933 	/* We've used all descriptors we need for this skb, however,
2934 	 * advance cur_tx so that it references a fresh descriptor.
2935 	 * ndo_start_xmit will fill this descriptor the next time it's
2936 	 * called and stmmac_tx_clean may clean up to this descriptor.
2937 	 */
2938 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2939 
2940 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
2941 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
2942 			  __func__);
2943 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
2944 	}
2945 
2946 	dev->stats.tx_bytes += skb->len;
2947 	priv->xstats.tx_tso_frames++;
2948 	priv->xstats.tx_tso_nfrags += nfrags;
2949 
2950 	/* Manage tx mitigation */
2951 	tx_q->tx_count_frames += nfrags + 1;
2952 	if (priv->tx_coal_frames <= tx_q->tx_count_frames) {
2953 		stmmac_set_tx_ic(priv, desc);
2954 		priv->xstats.tx_set_ic_bit++;
2955 		tx_q->tx_count_frames = 0;
2956 	} else {
2957 		stmmac_tx_timer_arm(priv, queue);
2958 	}
2959 
2960 	skb_tx_timestamp(skb);
2961 
2962 	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2963 		     priv->hwts_tx_en)) {
2964 		/* declare that device is doing timestamping */
2965 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2966 		stmmac_enable_tx_timestamp(priv, first);
2967 	}
2968 
2969 	/* Complete the first descriptor before granting the DMA */
2970 	stmmac_prepare_tso_tx_desc(priv, first, 1,
2971 			proto_hdr_len,
2972 			pay_len,
2973 			1, tx_q->tx_skbuff_dma[first_entry].last_segment,
2974 			tcp_hdrlen(skb) / 4, (skb->len - proto_hdr_len));
2975 
2976 	/* If context desc is used to change MSS */
2977 	if (mss_desc) {
2978 		/* Make sure that first descriptor has been completely
2979 		 * written, including its own bit. This is because MSS is
2980 		 * actually before first descriptor, so we need to make
2981 		 * sure that MSS's own bit is the last thing written.
2982 		 */
2983 		dma_wmb();
2984 		stmmac_set_tx_owner(priv, mss_desc);
2985 	}
2986 
2987 	/* The own bit must be the latest setting done when prepare the
2988 	 * descriptor and then barrier is needed to make sure that
2989 	 * all is coherent before granting the DMA engine.
2990 	 */
2991 	wmb();
2992 
2993 	if (netif_msg_pktdata(priv)) {
2994 		pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
2995 			__func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
2996 			tx_q->cur_tx, first, nfrags);
2997 
2998 		stmmac_display_ring(priv, (void *)tx_q->dma_tx, DMA_TX_SIZE, 0);
2999 
3000 		pr_info(">>> frame to be transmitted: ");
3001 		print_pkt(skb->data, skb_headlen(skb));
3002 	}
3003 
3004 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3005 
3006 	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * sizeof(*desc));
3007 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3008 
3009 	return NETDEV_TX_OK;
3010 
3011 dma_map_err:
3012 	dev_err(priv->device, "Tx dma map failed\n");
3013 	dev_kfree_skb(skb);
3014 	priv->dev->stats.tx_dropped++;
3015 	return NETDEV_TX_OK;
3016 }
3017 
3018 /**
3019  *  stmmac_xmit - Tx entry point of the driver
3020  *  @skb : the socket buffer
3021  *  @dev : device pointer
3022  *  Description : this is the tx entry point of the driver.
3023  *  It programs the chain or the ring and supports oversized frames
3024  *  and SG feature.
3025  */
3026 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
3027 {
3028 	struct stmmac_priv *priv = netdev_priv(dev);
3029 	unsigned int nopaged_len = skb_headlen(skb);
3030 	int i, csum_insertion = 0, is_jumbo = 0;
3031 	u32 queue = skb_get_queue_mapping(skb);
3032 	int nfrags = skb_shinfo(skb)->nr_frags;
3033 	int entry;
3034 	unsigned int first_entry;
3035 	struct dma_desc *desc, *first;
3036 	struct stmmac_tx_queue *tx_q;
3037 	unsigned int enh_desc;
3038 	unsigned int des;
3039 
3040 	tx_q = &priv->tx_queue[queue];
3041 
3042 	if (priv->tx_path_in_lpi_mode)
3043 		stmmac_disable_eee_mode(priv);
3044 
3045 	/* Manage oversized TCP frames for GMAC4 device */
3046 	if (skb_is_gso(skb) && priv->tso) {
3047 		if (skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
3048 			/*
3049 			 * There is no way to determine the number of TSO
3050 			 * capable Queues. Let's use always the Queue 0
3051 			 * because if TSO is supported then at least this
3052 			 * one will be capable.
3053 			 */
3054 			skb_set_queue_mapping(skb, 0);
3055 
3056 			return stmmac_tso_xmit(skb, dev);
3057 		}
3058 	}
3059 
3060 	if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
3061 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3062 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3063 								queue));
3064 			/* This is a hard error, log it. */
3065 			netdev_err(priv->dev,
3066 				   "%s: Tx Ring full when queue awake\n",
3067 				   __func__);
3068 		}
3069 		return NETDEV_TX_BUSY;
3070 	}
3071 
3072 	entry = tx_q->cur_tx;
3073 	first_entry = entry;
3074 	WARN_ON(tx_q->tx_skbuff[first_entry]);
3075 
3076 	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
3077 
3078 	if (likely(priv->extend_desc))
3079 		desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3080 	else
3081 		desc = tx_q->dma_tx + entry;
3082 
3083 	first = desc;
3084 
3085 	enh_desc = priv->plat->enh_desc;
3086 	/* To program the descriptors according to the size of the frame */
3087 	if (enh_desc)
3088 		is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
3089 
3090 	if (unlikely(is_jumbo)) {
3091 		entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
3092 		if (unlikely(entry < 0) && (entry != -EINVAL))
3093 			goto dma_map_err;
3094 	}
3095 
3096 	for (i = 0; i < nfrags; i++) {
3097 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3098 		int len = skb_frag_size(frag);
3099 		bool last_segment = (i == (nfrags - 1));
3100 
3101 		entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
3102 		WARN_ON(tx_q->tx_skbuff[entry]);
3103 
3104 		if (likely(priv->extend_desc))
3105 			desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3106 		else
3107 			desc = tx_q->dma_tx + entry;
3108 
3109 		des = skb_frag_dma_map(priv->device, frag, 0, len,
3110 				       DMA_TO_DEVICE);
3111 		if (dma_mapping_error(priv->device, des))
3112 			goto dma_map_err; /* should reuse desc w/o issues */
3113 
3114 		tx_q->tx_skbuff_dma[entry].buf = des;
3115 
3116 		stmmac_set_desc_addr(priv, desc, des);
3117 
3118 		tx_q->tx_skbuff_dma[entry].map_as_page = true;
3119 		tx_q->tx_skbuff_dma[entry].len = len;
3120 		tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
3121 
3122 		/* Prepare the descriptor and set the own bit too */
3123 		stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
3124 				priv->mode, 1, last_segment, skb->len);
3125 	}
3126 
3127 	/* Only the last descriptor gets to point to the skb. */
3128 	tx_q->tx_skbuff[entry] = skb;
3129 
3130 	/* We've used all descriptors we need for this skb, however,
3131 	 * advance cur_tx so that it references a fresh descriptor.
3132 	 * ndo_start_xmit will fill this descriptor the next time it's
3133 	 * called and stmmac_tx_clean may clean up to this descriptor.
3134 	 */
3135 	entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
3136 	tx_q->cur_tx = entry;
3137 
3138 	if (netif_msg_pktdata(priv)) {
3139 		void *tx_head;
3140 
3141 		netdev_dbg(priv->dev,
3142 			   "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
3143 			   __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3144 			   entry, first, nfrags);
3145 
3146 		if (priv->extend_desc)
3147 			tx_head = (void *)tx_q->dma_etx;
3148 		else
3149 			tx_head = (void *)tx_q->dma_tx;
3150 
3151 		stmmac_display_ring(priv, tx_head, DMA_TX_SIZE, false);
3152 
3153 		netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
3154 		print_pkt(skb->data, skb->len);
3155 	}
3156 
3157 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3158 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3159 			  __func__);
3160 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3161 	}
3162 
3163 	dev->stats.tx_bytes += skb->len;
3164 
3165 	/* According to the coalesce parameter the IC bit for the latest
3166 	 * segment is reset and the timer re-started to clean the tx status.
3167 	 * This approach takes care about the fragments: desc is the first
3168 	 * element in case of no SG.
3169 	 */
3170 	tx_q->tx_count_frames += nfrags + 1;
3171 	if (priv->tx_coal_frames <= tx_q->tx_count_frames) {
3172 		stmmac_set_tx_ic(priv, desc);
3173 		priv->xstats.tx_set_ic_bit++;
3174 		tx_q->tx_count_frames = 0;
3175 	} else {
3176 		stmmac_tx_timer_arm(priv, queue);
3177 	}
3178 
3179 	skb_tx_timestamp(skb);
3180 
3181 	/* Ready to fill the first descriptor and set the OWN bit w/o any
3182 	 * problems because all the descriptors are actually ready to be
3183 	 * passed to the DMA engine.
3184 	 */
3185 	if (likely(!is_jumbo)) {
3186 		bool last_segment = (nfrags == 0);
3187 
3188 		des = dma_map_single(priv->device, skb->data,
3189 				     nopaged_len, DMA_TO_DEVICE);
3190 		if (dma_mapping_error(priv->device, des))
3191 			goto dma_map_err;
3192 
3193 		tx_q->tx_skbuff_dma[first_entry].buf = des;
3194 
3195 		stmmac_set_desc_addr(priv, first, des);
3196 
3197 		tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
3198 		tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
3199 
3200 		if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3201 			     priv->hwts_tx_en)) {
3202 			/* declare that device is doing timestamping */
3203 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3204 			stmmac_enable_tx_timestamp(priv, first);
3205 		}
3206 
3207 		/* Prepare the first descriptor setting the OWN bit too */
3208 		stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
3209 				csum_insertion, priv->mode, 1, last_segment,
3210 				skb->len);
3211 
3212 		/* The own bit must be the latest setting done when prepare the
3213 		 * descriptor and then barrier is needed to make sure that
3214 		 * all is coherent before granting the DMA engine.
3215 		 */
3216 		wmb();
3217 	}
3218 
3219 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3220 
3221 	stmmac_enable_dma_transmission(priv, priv->ioaddr);
3222 
3223 	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * sizeof(*desc));
3224 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3225 
3226 	return NETDEV_TX_OK;
3227 
3228 dma_map_err:
3229 	netdev_err(priv->dev, "Tx DMA map failed\n");
3230 	dev_kfree_skb(skb);
3231 	priv->dev->stats.tx_dropped++;
3232 	return NETDEV_TX_OK;
3233 }
3234 
3235 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
3236 {
3237 	struct vlan_ethhdr *veth;
3238 	__be16 vlan_proto;
3239 	u16 vlanid;
3240 
3241 	veth = (struct vlan_ethhdr *)skb->data;
3242 	vlan_proto = veth->h_vlan_proto;
3243 
3244 	if ((vlan_proto == htons(ETH_P_8021Q) &&
3245 	     dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
3246 	    (vlan_proto == htons(ETH_P_8021AD) &&
3247 	     dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
3248 		/* pop the vlan tag */
3249 		vlanid = ntohs(veth->h_vlan_TCI);
3250 		memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
3251 		skb_pull(skb, VLAN_HLEN);
3252 		__vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
3253 	}
3254 }
3255 
3256 
3257 static inline int stmmac_rx_threshold_count(struct stmmac_rx_queue *rx_q)
3258 {
3259 	if (rx_q->rx_zeroc_thresh < STMMAC_RX_THRESH)
3260 		return 0;
3261 
3262 	return 1;
3263 }
3264 
3265 /**
3266  * stmmac_rx_refill - refill used skb preallocated buffers
3267  * @priv: driver private structure
3268  * @queue: RX queue index
3269  * Description : this is to reallocate the skb for the reception process
3270  * that is based on zero-copy.
3271  */
3272 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
3273 {
3274 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3275 	int dirty = stmmac_rx_dirty(priv, queue);
3276 	unsigned int entry = rx_q->dirty_rx;
3277 
3278 	int bfsize = priv->dma_buf_sz;
3279 
3280 	while (dirty-- > 0) {
3281 		struct dma_desc *p;
3282 
3283 		if (priv->extend_desc)
3284 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
3285 		else
3286 			p = rx_q->dma_rx + entry;
3287 
3288 		if (likely(!rx_q->rx_skbuff[entry])) {
3289 			struct sk_buff *skb;
3290 
3291 			skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
3292 			if (unlikely(!skb)) {
3293 				/* so for a while no zero-copy! */
3294 				rx_q->rx_zeroc_thresh = STMMAC_RX_THRESH;
3295 				if (unlikely(net_ratelimit()))
3296 					dev_err(priv->device,
3297 						"fail to alloc skb entry %d\n",
3298 						entry);
3299 				break;
3300 			}
3301 
3302 			rx_q->rx_skbuff[entry] = skb;
3303 			rx_q->rx_skbuff_dma[entry] =
3304 			    dma_map_single(priv->device, skb->data, bfsize,
3305 					   DMA_FROM_DEVICE);
3306 			if (dma_mapping_error(priv->device,
3307 					      rx_q->rx_skbuff_dma[entry])) {
3308 				netdev_err(priv->dev, "Rx DMA map failed\n");
3309 				dev_kfree_skb(skb);
3310 				break;
3311 			}
3312 
3313 			stmmac_set_desc_addr(priv, p, rx_q->rx_skbuff_dma[entry]);
3314 			stmmac_refill_desc3(priv, rx_q, p);
3315 
3316 			if (rx_q->rx_zeroc_thresh > 0)
3317 				rx_q->rx_zeroc_thresh--;
3318 
3319 			netif_dbg(priv, rx_status, priv->dev,
3320 				  "refill entry #%d\n", entry);
3321 		}
3322 		dma_wmb();
3323 
3324 		stmmac_set_rx_owner(priv, p, priv->use_riwt);
3325 
3326 		dma_wmb();
3327 
3328 		entry = STMMAC_GET_ENTRY(entry, DMA_RX_SIZE);
3329 	}
3330 	rx_q->dirty_rx = entry;
3331 }
3332 
3333 /**
3334  * stmmac_rx - manage the receive process
3335  * @priv: driver private structure
3336  * @limit: napi bugget
3337  * @queue: RX queue index.
3338  * Description :  this the function called by the napi poll method.
3339  * It gets all the frames inside the ring.
3340  */
3341 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
3342 {
3343 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3344 	struct stmmac_channel *ch = &priv->channel[queue];
3345 	unsigned int entry = rx_q->cur_rx;
3346 	int coe = priv->hw->rx_csum;
3347 	unsigned int next_entry;
3348 	unsigned int count = 0;
3349 	bool xmac;
3350 
3351 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
3352 
3353 	if (netif_msg_rx_status(priv)) {
3354 		void *rx_head;
3355 
3356 		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
3357 		if (priv->extend_desc)
3358 			rx_head = (void *)rx_q->dma_erx;
3359 		else
3360 			rx_head = (void *)rx_q->dma_rx;
3361 
3362 		stmmac_display_ring(priv, rx_head, DMA_RX_SIZE, true);
3363 	}
3364 	while (count < limit) {
3365 		int status;
3366 		struct dma_desc *p;
3367 		struct dma_desc *np;
3368 
3369 		if (priv->extend_desc)
3370 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
3371 		else
3372 			p = rx_q->dma_rx + entry;
3373 
3374 		/* read the status of the incoming frame */
3375 		status = stmmac_rx_status(priv, &priv->dev->stats,
3376 				&priv->xstats, p);
3377 		/* check if managed by the DMA otherwise go ahead */
3378 		if (unlikely(status & dma_own))
3379 			break;
3380 
3381 		count++;
3382 
3383 		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, DMA_RX_SIZE);
3384 		next_entry = rx_q->cur_rx;
3385 
3386 		if (priv->extend_desc)
3387 			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
3388 		else
3389 			np = rx_q->dma_rx + next_entry;
3390 
3391 		prefetch(np);
3392 
3393 		if (priv->extend_desc)
3394 			stmmac_rx_extended_status(priv, &priv->dev->stats,
3395 					&priv->xstats, rx_q->dma_erx + entry);
3396 		if (unlikely(status == discard_frame)) {
3397 			priv->dev->stats.rx_errors++;
3398 			if (priv->hwts_rx_en && !priv->extend_desc) {
3399 				/* DESC2 & DESC3 will be overwritten by device
3400 				 * with timestamp value, hence reinitialize
3401 				 * them in stmmac_rx_refill() function so that
3402 				 * device can reuse it.
3403 				 */
3404 				dev_kfree_skb_any(rx_q->rx_skbuff[entry]);
3405 				rx_q->rx_skbuff[entry] = NULL;
3406 				dma_unmap_single(priv->device,
3407 						 rx_q->rx_skbuff_dma[entry],
3408 						 priv->dma_buf_sz,
3409 						 DMA_FROM_DEVICE);
3410 			}
3411 		} else {
3412 			struct sk_buff *skb;
3413 			int frame_len;
3414 			unsigned int des;
3415 
3416 			stmmac_get_desc_addr(priv, p, &des);
3417 			frame_len = stmmac_get_rx_frame_len(priv, p, coe);
3418 
3419 			/*  If frame length is greater than skb buffer size
3420 			 *  (preallocated during init) then the packet is
3421 			 *  ignored
3422 			 */
3423 			if (frame_len > priv->dma_buf_sz) {
3424 				netdev_err(priv->dev,
3425 					   "len %d larger than size (%d)\n",
3426 					   frame_len, priv->dma_buf_sz);
3427 				priv->dev->stats.rx_length_errors++;
3428 				break;
3429 			}
3430 
3431 			/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
3432 			 * Type frames (LLC/LLC-SNAP)
3433 			 *
3434 			 * llc_snap is never checked in GMAC >= 4, so this ACS
3435 			 * feature is always disabled and packets need to be
3436 			 * stripped manually.
3437 			 */
3438 			if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
3439 			    unlikely(status != llc_snap))
3440 				frame_len -= ETH_FCS_LEN;
3441 
3442 			if (netif_msg_rx_status(priv)) {
3443 				netdev_dbg(priv->dev, "\tdesc: %p [entry %d] buff=0x%x\n",
3444 					   p, entry, des);
3445 				netdev_dbg(priv->dev, "frame size %d, COE: %d\n",
3446 					   frame_len, status);
3447 			}
3448 
3449 			/* The zero-copy is always used for all the sizes
3450 			 * in case of GMAC4 because it needs
3451 			 * to refill the used descriptors, always.
3452 			 */
3453 			if (unlikely(!xmac &&
3454 				     ((frame_len < priv->rx_copybreak) ||
3455 				     stmmac_rx_threshold_count(rx_q)))) {
3456 				skb = netdev_alloc_skb_ip_align(priv->dev,
3457 								frame_len);
3458 				if (unlikely(!skb)) {
3459 					if (net_ratelimit())
3460 						dev_warn(priv->device,
3461 							 "packet dropped\n");
3462 					priv->dev->stats.rx_dropped++;
3463 					break;
3464 				}
3465 
3466 				dma_sync_single_for_cpu(priv->device,
3467 							rx_q->rx_skbuff_dma
3468 							[entry], frame_len,
3469 							DMA_FROM_DEVICE);
3470 				skb_copy_to_linear_data(skb,
3471 							rx_q->
3472 							rx_skbuff[entry]->data,
3473 							frame_len);
3474 
3475 				skb_put(skb, frame_len);
3476 				dma_sync_single_for_device(priv->device,
3477 							   rx_q->rx_skbuff_dma
3478 							   [entry], frame_len,
3479 							   DMA_FROM_DEVICE);
3480 			} else {
3481 				skb = rx_q->rx_skbuff[entry];
3482 				if (unlikely(!skb)) {
3483 					netdev_err(priv->dev,
3484 						   "%s: Inconsistent Rx chain\n",
3485 						   priv->dev->name);
3486 					priv->dev->stats.rx_dropped++;
3487 					break;
3488 				}
3489 				prefetch(skb->data - NET_IP_ALIGN);
3490 				rx_q->rx_skbuff[entry] = NULL;
3491 				rx_q->rx_zeroc_thresh++;
3492 
3493 				skb_put(skb, frame_len);
3494 				dma_unmap_single(priv->device,
3495 						 rx_q->rx_skbuff_dma[entry],
3496 						 priv->dma_buf_sz,
3497 						 DMA_FROM_DEVICE);
3498 			}
3499 
3500 			if (netif_msg_pktdata(priv)) {
3501 				netdev_dbg(priv->dev, "frame received (%dbytes)",
3502 					   frame_len);
3503 				print_pkt(skb->data, frame_len);
3504 			}
3505 
3506 			stmmac_get_rx_hwtstamp(priv, p, np, skb);
3507 
3508 			stmmac_rx_vlan(priv->dev, skb);
3509 
3510 			skb->protocol = eth_type_trans(skb, priv->dev);
3511 
3512 			if (unlikely(!coe))
3513 				skb_checksum_none_assert(skb);
3514 			else
3515 				skb->ip_summed = CHECKSUM_UNNECESSARY;
3516 
3517 			napi_gro_receive(&ch->napi, skb);
3518 
3519 			priv->dev->stats.rx_packets++;
3520 			priv->dev->stats.rx_bytes += frame_len;
3521 		}
3522 		entry = next_entry;
3523 	}
3524 
3525 	stmmac_rx_refill(priv, queue);
3526 
3527 	priv->xstats.rx_pkt_n += count;
3528 
3529 	return count;
3530 }
3531 
3532 /**
3533  *  stmmac_poll - stmmac poll method (NAPI)
3534  *  @napi : pointer to the napi structure.
3535  *  @budget : maximum number of packets that the current CPU can receive from
3536  *	      all interfaces.
3537  *  Description :
3538  *  To look at the incoming frames and clear the tx resources.
3539  */
3540 static int stmmac_napi_poll(struct napi_struct *napi, int budget)
3541 {
3542 	struct stmmac_channel *ch =
3543 		container_of(napi, struct stmmac_channel, napi);
3544 	struct stmmac_priv *priv = ch->priv_data;
3545 	int work_done, rx_done = 0, tx_done = 0;
3546 	u32 chan = ch->index;
3547 
3548 	priv->xstats.napi_poll++;
3549 
3550 	if (ch->has_tx)
3551 		tx_done = stmmac_tx_clean(priv, budget, chan);
3552 	if (ch->has_rx)
3553 		rx_done = stmmac_rx(priv, budget, chan);
3554 
3555 	work_done = max(rx_done, tx_done);
3556 	work_done = min(work_done, budget);
3557 
3558 	if (work_done < budget && napi_complete_done(napi, work_done)) {
3559 		int stat;
3560 
3561 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan);
3562 		stat = stmmac_dma_interrupt_status(priv, priv->ioaddr,
3563 						   &priv->xstats, chan);
3564 		if (stat && napi_reschedule(napi))
3565 			stmmac_disable_dma_irq(priv, priv->ioaddr, chan);
3566 	}
3567 
3568 	return work_done;
3569 }
3570 
3571 /**
3572  *  stmmac_tx_timeout
3573  *  @dev : Pointer to net device structure
3574  *  Description: this function is called when a packet transmission fails to
3575  *   complete within a reasonable time. The driver will mark the error in the
3576  *   netdev structure and arrange for the device to be reset to a sane state
3577  *   in order to transmit a new packet.
3578  */
3579 static void stmmac_tx_timeout(struct net_device *dev)
3580 {
3581 	struct stmmac_priv *priv = netdev_priv(dev);
3582 
3583 	stmmac_global_err(priv);
3584 }
3585 
3586 /**
3587  *  stmmac_set_rx_mode - entry point for multicast addressing
3588  *  @dev : pointer to the device structure
3589  *  Description:
3590  *  This function is a driver entry point which gets called by the kernel
3591  *  whenever multicast addresses must be enabled/disabled.
3592  *  Return value:
3593  *  void.
3594  */
3595 static void stmmac_set_rx_mode(struct net_device *dev)
3596 {
3597 	struct stmmac_priv *priv = netdev_priv(dev);
3598 
3599 	stmmac_set_filter(priv, priv->hw, dev);
3600 }
3601 
3602 /**
3603  *  stmmac_change_mtu - entry point to change MTU size for the device.
3604  *  @dev : device pointer.
3605  *  @new_mtu : the new MTU size for the device.
3606  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
3607  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
3608  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
3609  *  Return value:
3610  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3611  *  file on failure.
3612  */
3613 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
3614 {
3615 	struct stmmac_priv *priv = netdev_priv(dev);
3616 
3617 	if (netif_running(dev)) {
3618 		netdev_err(priv->dev, "must be stopped to change its MTU\n");
3619 		return -EBUSY;
3620 	}
3621 
3622 	dev->mtu = new_mtu;
3623 
3624 	netdev_update_features(dev);
3625 
3626 	return 0;
3627 }
3628 
3629 static netdev_features_t stmmac_fix_features(struct net_device *dev,
3630 					     netdev_features_t features)
3631 {
3632 	struct stmmac_priv *priv = netdev_priv(dev);
3633 
3634 	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
3635 		features &= ~NETIF_F_RXCSUM;
3636 
3637 	if (!priv->plat->tx_coe)
3638 		features &= ~NETIF_F_CSUM_MASK;
3639 
3640 	/* Some GMAC devices have a bugged Jumbo frame support that
3641 	 * needs to have the Tx COE disabled for oversized frames
3642 	 * (due to limited buffer sizes). In this case we disable
3643 	 * the TX csum insertion in the TDES and not use SF.
3644 	 */
3645 	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
3646 		features &= ~NETIF_F_CSUM_MASK;
3647 
3648 	/* Disable tso if asked by ethtool */
3649 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
3650 		if (features & NETIF_F_TSO)
3651 			priv->tso = true;
3652 		else
3653 			priv->tso = false;
3654 	}
3655 
3656 	return features;
3657 }
3658 
3659 static int stmmac_set_features(struct net_device *netdev,
3660 			       netdev_features_t features)
3661 {
3662 	struct stmmac_priv *priv = netdev_priv(netdev);
3663 
3664 	/* Keep the COE Type in case of csum is supporting */
3665 	if (features & NETIF_F_RXCSUM)
3666 		priv->hw->rx_csum = priv->plat->rx_coe;
3667 	else
3668 		priv->hw->rx_csum = 0;
3669 	/* No check needed because rx_coe has been set before and it will be
3670 	 * fixed in case of issue.
3671 	 */
3672 	stmmac_rx_ipc(priv, priv->hw);
3673 
3674 	return 0;
3675 }
3676 
3677 /**
3678  *  stmmac_interrupt - main ISR
3679  *  @irq: interrupt number.
3680  *  @dev_id: to pass the net device pointer.
3681  *  Description: this is the main driver interrupt service routine.
3682  *  It can call:
3683  *  o DMA service routine (to manage incoming frame reception and transmission
3684  *    status)
3685  *  o Core interrupts to manage: remote wake-up, management counter, LPI
3686  *    interrupts.
3687  */
3688 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
3689 {
3690 	struct net_device *dev = (struct net_device *)dev_id;
3691 	struct stmmac_priv *priv = netdev_priv(dev);
3692 	u32 rx_cnt = priv->plat->rx_queues_to_use;
3693 	u32 tx_cnt = priv->plat->tx_queues_to_use;
3694 	u32 queues_count;
3695 	u32 queue;
3696 	bool xmac;
3697 
3698 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
3699 	queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
3700 
3701 	if (priv->irq_wake)
3702 		pm_wakeup_event(priv->device, 0);
3703 
3704 	if (unlikely(!dev)) {
3705 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
3706 		return IRQ_NONE;
3707 	}
3708 
3709 	/* Check if adapter is up */
3710 	if (test_bit(STMMAC_DOWN, &priv->state))
3711 		return IRQ_HANDLED;
3712 	/* Check if a fatal error happened */
3713 	if (stmmac_safety_feat_interrupt(priv))
3714 		return IRQ_HANDLED;
3715 
3716 	/* To handle GMAC own interrupts */
3717 	if ((priv->plat->has_gmac) || xmac) {
3718 		int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
3719 		int mtl_status;
3720 
3721 		if (unlikely(status)) {
3722 			/* For LPI we need to save the tx status */
3723 			if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
3724 				priv->tx_path_in_lpi_mode = true;
3725 			if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
3726 				priv->tx_path_in_lpi_mode = false;
3727 		}
3728 
3729 		for (queue = 0; queue < queues_count; queue++) {
3730 			struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3731 
3732 			mtl_status = stmmac_host_mtl_irq_status(priv, priv->hw,
3733 								queue);
3734 			if (mtl_status != -EINVAL)
3735 				status |= mtl_status;
3736 
3737 			if (status & CORE_IRQ_MTL_RX_OVERFLOW)
3738 				stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
3739 						       rx_q->rx_tail_addr,
3740 						       queue);
3741 		}
3742 
3743 		/* PCS link status */
3744 		if (priv->hw->pcs) {
3745 			if (priv->xstats.pcs_link)
3746 				netif_carrier_on(dev);
3747 			else
3748 				netif_carrier_off(dev);
3749 		}
3750 	}
3751 
3752 	/* To handle DMA interrupts */
3753 	stmmac_dma_interrupt(priv);
3754 
3755 	return IRQ_HANDLED;
3756 }
3757 
3758 #ifdef CONFIG_NET_POLL_CONTROLLER
3759 /* Polling receive - used by NETCONSOLE and other diagnostic tools
3760  * to allow network I/O with interrupts disabled.
3761  */
3762 static void stmmac_poll_controller(struct net_device *dev)
3763 {
3764 	disable_irq(dev->irq);
3765 	stmmac_interrupt(dev->irq, dev);
3766 	enable_irq(dev->irq);
3767 }
3768 #endif
3769 
3770 /**
3771  *  stmmac_ioctl - Entry point for the Ioctl
3772  *  @dev: Device pointer.
3773  *  @rq: An IOCTL specefic structure, that can contain a pointer to
3774  *  a proprietary structure used to pass information to the driver.
3775  *  @cmd: IOCTL command
3776  *  Description:
3777  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
3778  */
3779 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3780 {
3781 	int ret = -EOPNOTSUPP;
3782 
3783 	if (!netif_running(dev))
3784 		return -EINVAL;
3785 
3786 	switch (cmd) {
3787 	case SIOCGMIIPHY:
3788 	case SIOCGMIIREG:
3789 	case SIOCSMIIREG:
3790 		if (!dev->phydev)
3791 			return -EINVAL;
3792 		ret = phy_mii_ioctl(dev->phydev, rq, cmd);
3793 		break;
3794 	case SIOCSHWTSTAMP:
3795 		ret = stmmac_hwtstamp_set(dev, rq);
3796 		break;
3797 	case SIOCGHWTSTAMP:
3798 		ret = stmmac_hwtstamp_get(dev, rq);
3799 		break;
3800 	default:
3801 		break;
3802 	}
3803 
3804 	return ret;
3805 }
3806 
3807 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
3808 				    void *cb_priv)
3809 {
3810 	struct stmmac_priv *priv = cb_priv;
3811 	int ret = -EOPNOTSUPP;
3812 
3813 	stmmac_disable_all_queues(priv);
3814 
3815 	switch (type) {
3816 	case TC_SETUP_CLSU32:
3817 		if (tc_cls_can_offload_and_chain0(priv->dev, type_data))
3818 			ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
3819 		break;
3820 	default:
3821 		break;
3822 	}
3823 
3824 	stmmac_enable_all_queues(priv);
3825 	return ret;
3826 }
3827 
3828 static int stmmac_setup_tc_block(struct stmmac_priv *priv,
3829 				 struct tc_block_offload *f)
3830 {
3831 	if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
3832 		return -EOPNOTSUPP;
3833 
3834 	switch (f->command) {
3835 	case TC_BLOCK_BIND:
3836 		return tcf_block_cb_register(f->block, stmmac_setup_tc_block_cb,
3837 				priv, priv, f->extack);
3838 	case TC_BLOCK_UNBIND:
3839 		tcf_block_cb_unregister(f->block, stmmac_setup_tc_block_cb, priv);
3840 		return 0;
3841 	default:
3842 		return -EOPNOTSUPP;
3843 	}
3844 }
3845 
3846 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
3847 			   void *type_data)
3848 {
3849 	struct stmmac_priv *priv = netdev_priv(ndev);
3850 
3851 	switch (type) {
3852 	case TC_SETUP_BLOCK:
3853 		return stmmac_setup_tc_block(priv, type_data);
3854 	case TC_SETUP_QDISC_CBS:
3855 		return stmmac_tc_setup_cbs(priv, priv, type_data);
3856 	default:
3857 		return -EOPNOTSUPP;
3858 	}
3859 }
3860 
3861 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
3862 {
3863 	struct stmmac_priv *priv = netdev_priv(ndev);
3864 	int ret = 0;
3865 
3866 	ret = eth_mac_addr(ndev, addr);
3867 	if (ret)
3868 		return ret;
3869 
3870 	stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
3871 
3872 	return ret;
3873 }
3874 
3875 #ifdef CONFIG_DEBUG_FS
3876 static struct dentry *stmmac_fs_dir;
3877 
3878 static void sysfs_display_ring(void *head, int size, int extend_desc,
3879 			       struct seq_file *seq)
3880 {
3881 	int i;
3882 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
3883 	struct dma_desc *p = (struct dma_desc *)head;
3884 
3885 	for (i = 0; i < size; i++) {
3886 		if (extend_desc) {
3887 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
3888 				   i, (unsigned int)virt_to_phys(ep),
3889 				   le32_to_cpu(ep->basic.des0),
3890 				   le32_to_cpu(ep->basic.des1),
3891 				   le32_to_cpu(ep->basic.des2),
3892 				   le32_to_cpu(ep->basic.des3));
3893 			ep++;
3894 		} else {
3895 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
3896 				   i, (unsigned int)virt_to_phys(p),
3897 				   le32_to_cpu(p->des0), le32_to_cpu(p->des1),
3898 				   le32_to_cpu(p->des2), le32_to_cpu(p->des3));
3899 			p++;
3900 		}
3901 		seq_printf(seq, "\n");
3902 	}
3903 }
3904 
3905 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
3906 {
3907 	struct net_device *dev = seq->private;
3908 	struct stmmac_priv *priv = netdev_priv(dev);
3909 	u32 rx_count = priv->plat->rx_queues_to_use;
3910 	u32 tx_count = priv->plat->tx_queues_to_use;
3911 	u32 queue;
3912 
3913 	if ((dev->flags & IFF_UP) == 0)
3914 		return 0;
3915 
3916 	for (queue = 0; queue < rx_count; queue++) {
3917 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3918 
3919 		seq_printf(seq, "RX Queue %d:\n", queue);
3920 
3921 		if (priv->extend_desc) {
3922 			seq_printf(seq, "Extended descriptor ring:\n");
3923 			sysfs_display_ring((void *)rx_q->dma_erx,
3924 					   DMA_RX_SIZE, 1, seq);
3925 		} else {
3926 			seq_printf(seq, "Descriptor ring:\n");
3927 			sysfs_display_ring((void *)rx_q->dma_rx,
3928 					   DMA_RX_SIZE, 0, seq);
3929 		}
3930 	}
3931 
3932 	for (queue = 0; queue < tx_count; queue++) {
3933 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
3934 
3935 		seq_printf(seq, "TX Queue %d:\n", queue);
3936 
3937 		if (priv->extend_desc) {
3938 			seq_printf(seq, "Extended descriptor ring:\n");
3939 			sysfs_display_ring((void *)tx_q->dma_etx,
3940 					   DMA_TX_SIZE, 1, seq);
3941 		} else {
3942 			seq_printf(seq, "Descriptor ring:\n");
3943 			sysfs_display_ring((void *)tx_q->dma_tx,
3944 					   DMA_TX_SIZE, 0, seq);
3945 		}
3946 	}
3947 
3948 	return 0;
3949 }
3950 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
3951 
3952 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
3953 {
3954 	struct net_device *dev = seq->private;
3955 	struct stmmac_priv *priv = netdev_priv(dev);
3956 
3957 	if (!priv->hw_cap_support) {
3958 		seq_printf(seq, "DMA HW features not supported\n");
3959 		return 0;
3960 	}
3961 
3962 	seq_printf(seq, "==============================\n");
3963 	seq_printf(seq, "\tDMA HW features\n");
3964 	seq_printf(seq, "==============================\n");
3965 
3966 	seq_printf(seq, "\t10/100 Mbps: %s\n",
3967 		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
3968 	seq_printf(seq, "\t1000 Mbps: %s\n",
3969 		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
3970 	seq_printf(seq, "\tHalf duplex: %s\n",
3971 		   (priv->dma_cap.half_duplex) ? "Y" : "N");
3972 	seq_printf(seq, "\tHash Filter: %s\n",
3973 		   (priv->dma_cap.hash_filter) ? "Y" : "N");
3974 	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
3975 		   (priv->dma_cap.multi_addr) ? "Y" : "N");
3976 	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
3977 		   (priv->dma_cap.pcs) ? "Y" : "N");
3978 	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
3979 		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
3980 	seq_printf(seq, "\tPMT Remote wake up: %s\n",
3981 		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
3982 	seq_printf(seq, "\tPMT Magic Frame: %s\n",
3983 		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
3984 	seq_printf(seq, "\tRMON module: %s\n",
3985 		   (priv->dma_cap.rmon) ? "Y" : "N");
3986 	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
3987 		   (priv->dma_cap.time_stamp) ? "Y" : "N");
3988 	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
3989 		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
3990 	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
3991 		   (priv->dma_cap.eee) ? "Y" : "N");
3992 	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
3993 	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
3994 		   (priv->dma_cap.tx_coe) ? "Y" : "N");
3995 	if (priv->synopsys_id >= DWMAC_CORE_4_00) {
3996 		seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
3997 			   (priv->dma_cap.rx_coe) ? "Y" : "N");
3998 	} else {
3999 		seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
4000 			   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
4001 		seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
4002 			   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
4003 	}
4004 	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
4005 		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
4006 	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
4007 		   priv->dma_cap.number_rx_channel);
4008 	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
4009 		   priv->dma_cap.number_tx_channel);
4010 	seq_printf(seq, "\tEnhanced descriptors: %s\n",
4011 		   (priv->dma_cap.enh_desc) ? "Y" : "N");
4012 
4013 	return 0;
4014 }
4015 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
4016 
4017 static int stmmac_init_fs(struct net_device *dev)
4018 {
4019 	struct stmmac_priv *priv = netdev_priv(dev);
4020 
4021 	/* Create per netdev entries */
4022 	priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
4023 
4024 	if (!priv->dbgfs_dir || IS_ERR(priv->dbgfs_dir)) {
4025 		netdev_err(priv->dev, "ERROR failed to create debugfs directory\n");
4026 
4027 		return -ENOMEM;
4028 	}
4029 
4030 	/* Entry to report DMA RX/TX rings */
4031 	priv->dbgfs_rings_status =
4032 		debugfs_create_file("descriptors_status", 0444,
4033 				    priv->dbgfs_dir, dev,
4034 				    &stmmac_rings_status_fops);
4035 
4036 	if (!priv->dbgfs_rings_status || IS_ERR(priv->dbgfs_rings_status)) {
4037 		netdev_err(priv->dev, "ERROR creating stmmac ring debugfs file\n");
4038 		debugfs_remove_recursive(priv->dbgfs_dir);
4039 
4040 		return -ENOMEM;
4041 	}
4042 
4043 	/* Entry to report the DMA HW features */
4044 	priv->dbgfs_dma_cap = debugfs_create_file("dma_cap", 0444,
4045 						  priv->dbgfs_dir,
4046 						  dev, &stmmac_dma_cap_fops);
4047 
4048 	if (!priv->dbgfs_dma_cap || IS_ERR(priv->dbgfs_dma_cap)) {
4049 		netdev_err(priv->dev, "ERROR creating stmmac MMC debugfs file\n");
4050 		debugfs_remove_recursive(priv->dbgfs_dir);
4051 
4052 		return -ENOMEM;
4053 	}
4054 
4055 	return 0;
4056 }
4057 
4058 static void stmmac_exit_fs(struct net_device *dev)
4059 {
4060 	struct stmmac_priv *priv = netdev_priv(dev);
4061 
4062 	debugfs_remove_recursive(priv->dbgfs_dir);
4063 }
4064 #endif /* CONFIG_DEBUG_FS */
4065 
4066 static const struct net_device_ops stmmac_netdev_ops = {
4067 	.ndo_open = stmmac_open,
4068 	.ndo_start_xmit = stmmac_xmit,
4069 	.ndo_stop = stmmac_release,
4070 	.ndo_change_mtu = stmmac_change_mtu,
4071 	.ndo_fix_features = stmmac_fix_features,
4072 	.ndo_set_features = stmmac_set_features,
4073 	.ndo_set_rx_mode = stmmac_set_rx_mode,
4074 	.ndo_tx_timeout = stmmac_tx_timeout,
4075 	.ndo_do_ioctl = stmmac_ioctl,
4076 	.ndo_setup_tc = stmmac_setup_tc,
4077 #ifdef CONFIG_NET_POLL_CONTROLLER
4078 	.ndo_poll_controller = stmmac_poll_controller,
4079 #endif
4080 	.ndo_set_mac_address = stmmac_set_mac_address,
4081 };
4082 
4083 static void stmmac_reset_subtask(struct stmmac_priv *priv)
4084 {
4085 	if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
4086 		return;
4087 	if (test_bit(STMMAC_DOWN, &priv->state))
4088 		return;
4089 
4090 	netdev_err(priv->dev, "Reset adapter.\n");
4091 
4092 	rtnl_lock();
4093 	netif_trans_update(priv->dev);
4094 	while (test_and_set_bit(STMMAC_RESETING, &priv->state))
4095 		usleep_range(1000, 2000);
4096 
4097 	set_bit(STMMAC_DOWN, &priv->state);
4098 	dev_close(priv->dev);
4099 	dev_open(priv->dev, NULL);
4100 	clear_bit(STMMAC_DOWN, &priv->state);
4101 	clear_bit(STMMAC_RESETING, &priv->state);
4102 	rtnl_unlock();
4103 }
4104 
4105 static void stmmac_service_task(struct work_struct *work)
4106 {
4107 	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
4108 			service_task);
4109 
4110 	stmmac_reset_subtask(priv);
4111 	clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
4112 }
4113 
4114 /**
4115  *  stmmac_hw_init - Init the MAC device
4116  *  @priv: driver private structure
4117  *  Description: this function is to configure the MAC device according to
4118  *  some platform parameters or the HW capability register. It prepares the
4119  *  driver to use either ring or chain modes and to setup either enhanced or
4120  *  normal descriptors.
4121  */
4122 static int stmmac_hw_init(struct stmmac_priv *priv)
4123 {
4124 	int ret;
4125 
4126 	/* dwmac-sun8i only work in chain mode */
4127 	if (priv->plat->has_sun8i)
4128 		chain_mode = 1;
4129 	priv->chain_mode = chain_mode;
4130 
4131 	/* Initialize HW Interface */
4132 	ret = stmmac_hwif_init(priv);
4133 	if (ret)
4134 		return ret;
4135 
4136 	/* Get the HW capability (new GMAC newer than 3.50a) */
4137 	priv->hw_cap_support = stmmac_get_hw_features(priv);
4138 	if (priv->hw_cap_support) {
4139 		dev_info(priv->device, "DMA HW capability register supported\n");
4140 
4141 		/* We can override some gmac/dma configuration fields: e.g.
4142 		 * enh_desc, tx_coe (e.g. that are passed through the
4143 		 * platform) with the values from the HW capability
4144 		 * register (if supported).
4145 		 */
4146 		priv->plat->enh_desc = priv->dma_cap.enh_desc;
4147 		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
4148 		priv->hw->pmt = priv->plat->pmt;
4149 
4150 		/* TXCOE doesn't work in thresh DMA mode */
4151 		if (priv->plat->force_thresh_dma_mode)
4152 			priv->plat->tx_coe = 0;
4153 		else
4154 			priv->plat->tx_coe = priv->dma_cap.tx_coe;
4155 
4156 		/* In case of GMAC4 rx_coe is from HW cap register. */
4157 		priv->plat->rx_coe = priv->dma_cap.rx_coe;
4158 
4159 		if (priv->dma_cap.rx_coe_type2)
4160 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
4161 		else if (priv->dma_cap.rx_coe_type1)
4162 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
4163 
4164 	} else {
4165 		dev_info(priv->device, "No HW DMA feature register supported\n");
4166 	}
4167 
4168 	if (priv->plat->rx_coe) {
4169 		priv->hw->rx_csum = priv->plat->rx_coe;
4170 		dev_info(priv->device, "RX Checksum Offload Engine supported\n");
4171 		if (priv->synopsys_id < DWMAC_CORE_4_00)
4172 			dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
4173 	}
4174 	if (priv->plat->tx_coe)
4175 		dev_info(priv->device, "TX Checksum insertion supported\n");
4176 
4177 	if (priv->plat->pmt) {
4178 		dev_info(priv->device, "Wake-Up On Lan supported\n");
4179 		device_set_wakeup_capable(priv->device, 1);
4180 	}
4181 
4182 	if (priv->dma_cap.tsoen)
4183 		dev_info(priv->device, "TSO supported\n");
4184 
4185 	/* Run HW quirks, if any */
4186 	if (priv->hwif_quirks) {
4187 		ret = priv->hwif_quirks(priv);
4188 		if (ret)
4189 			return ret;
4190 	}
4191 
4192 	/* Rx Watchdog is available in the COREs newer than the 3.40.
4193 	 * In some case, for example on bugged HW this feature
4194 	 * has to be disable and this can be done by passing the
4195 	 * riwt_off field from the platform.
4196 	 */
4197 	if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
4198 	    (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
4199 		priv->use_riwt = 1;
4200 		dev_info(priv->device,
4201 			 "Enable RX Mitigation via HW Watchdog Timer\n");
4202 	}
4203 
4204 	return 0;
4205 }
4206 
4207 /**
4208  * stmmac_dvr_probe
4209  * @device: device pointer
4210  * @plat_dat: platform data pointer
4211  * @res: stmmac resource pointer
4212  * Description: this is the main probe function used to
4213  * call the alloc_etherdev, allocate the priv structure.
4214  * Return:
4215  * returns 0 on success, otherwise errno.
4216  */
4217 int stmmac_dvr_probe(struct device *device,
4218 		     struct plat_stmmacenet_data *plat_dat,
4219 		     struct stmmac_resources *res)
4220 {
4221 	struct net_device *ndev = NULL;
4222 	struct stmmac_priv *priv;
4223 	u32 queue, maxq;
4224 	int ret = 0;
4225 
4226 	ndev = alloc_etherdev_mqs(sizeof(struct stmmac_priv),
4227 				  MTL_MAX_TX_QUEUES,
4228 				  MTL_MAX_RX_QUEUES);
4229 	if (!ndev)
4230 		return -ENOMEM;
4231 
4232 	SET_NETDEV_DEV(ndev, device);
4233 
4234 	priv = netdev_priv(ndev);
4235 	priv->device = device;
4236 	priv->dev = ndev;
4237 
4238 	stmmac_set_ethtool_ops(ndev);
4239 	priv->pause = pause;
4240 	priv->plat = plat_dat;
4241 	priv->ioaddr = res->addr;
4242 	priv->dev->base_addr = (unsigned long)res->addr;
4243 
4244 	priv->dev->irq = res->irq;
4245 	priv->wol_irq = res->wol_irq;
4246 	priv->lpi_irq = res->lpi_irq;
4247 
4248 	if (res->mac)
4249 		memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
4250 
4251 	dev_set_drvdata(device, priv->dev);
4252 
4253 	/* Verify driver arguments */
4254 	stmmac_verify_args();
4255 
4256 	/* Allocate workqueue */
4257 	priv->wq = create_singlethread_workqueue("stmmac_wq");
4258 	if (!priv->wq) {
4259 		dev_err(priv->device, "failed to create workqueue\n");
4260 		ret = -ENOMEM;
4261 		goto error_wq;
4262 	}
4263 
4264 	INIT_WORK(&priv->service_task, stmmac_service_task);
4265 
4266 	/* Override with kernel parameters if supplied XXX CRS XXX
4267 	 * this needs to have multiple instances
4268 	 */
4269 	if ((phyaddr >= 0) && (phyaddr <= 31))
4270 		priv->plat->phy_addr = phyaddr;
4271 
4272 	if (priv->plat->stmmac_rst) {
4273 		ret = reset_control_assert(priv->plat->stmmac_rst);
4274 		reset_control_deassert(priv->plat->stmmac_rst);
4275 		/* Some reset controllers have only reset callback instead of
4276 		 * assert + deassert callbacks pair.
4277 		 */
4278 		if (ret == -ENOTSUPP)
4279 			reset_control_reset(priv->plat->stmmac_rst);
4280 	}
4281 
4282 	/* Init MAC and get the capabilities */
4283 	ret = stmmac_hw_init(priv);
4284 	if (ret)
4285 		goto error_hw_init;
4286 
4287 	/* Configure real RX and TX queues */
4288 	netif_set_real_num_rx_queues(ndev, priv->plat->rx_queues_to_use);
4289 	netif_set_real_num_tx_queues(ndev, priv->plat->tx_queues_to_use);
4290 
4291 	ndev->netdev_ops = &stmmac_netdev_ops;
4292 
4293 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4294 			    NETIF_F_RXCSUM;
4295 
4296 	ret = stmmac_tc_init(priv, priv);
4297 	if (!ret) {
4298 		ndev->hw_features |= NETIF_F_HW_TC;
4299 	}
4300 
4301 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
4302 		ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
4303 		priv->tso = true;
4304 		dev_info(priv->device, "TSO feature enabled\n");
4305 	}
4306 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
4307 	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
4308 #ifdef STMMAC_VLAN_TAG_USED
4309 	/* Both mac100 and gmac support receive VLAN tag detection */
4310 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
4311 #endif
4312 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
4313 
4314 	/* MTU range: 46 - hw-specific max */
4315 	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
4316 	if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
4317 		ndev->max_mtu = JUMBO_LEN;
4318 	else if (priv->plat->has_xgmac)
4319 		ndev->max_mtu = XGMAC_JUMBO_LEN;
4320 	else
4321 		ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
4322 	/* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
4323 	 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
4324 	 */
4325 	if ((priv->plat->maxmtu < ndev->max_mtu) &&
4326 	    (priv->plat->maxmtu >= ndev->min_mtu))
4327 		ndev->max_mtu = priv->plat->maxmtu;
4328 	else if (priv->plat->maxmtu < ndev->min_mtu)
4329 		dev_warn(priv->device,
4330 			 "%s: warning: maxmtu having invalid value (%d)\n",
4331 			 __func__, priv->plat->maxmtu);
4332 
4333 	if (flow_ctrl)
4334 		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
4335 
4336 	/* Setup channels NAPI */
4337 	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
4338 
4339 	for (queue = 0; queue < maxq; queue++) {
4340 		struct stmmac_channel *ch = &priv->channel[queue];
4341 
4342 		ch->priv_data = priv;
4343 		ch->index = queue;
4344 
4345 		if (queue < priv->plat->rx_queues_to_use)
4346 			ch->has_rx = true;
4347 		if (queue < priv->plat->tx_queues_to_use)
4348 			ch->has_tx = true;
4349 
4350 		netif_napi_add(ndev, &ch->napi, stmmac_napi_poll,
4351 			       NAPI_POLL_WEIGHT);
4352 	}
4353 
4354 	mutex_init(&priv->lock);
4355 
4356 	/* If a specific clk_csr value is passed from the platform
4357 	 * this means that the CSR Clock Range selection cannot be
4358 	 * changed at run-time and it is fixed. Viceversa the driver'll try to
4359 	 * set the MDC clock dynamically according to the csr actual
4360 	 * clock input.
4361 	 */
4362 	if (!priv->plat->clk_csr)
4363 		stmmac_clk_csr_set(priv);
4364 	else
4365 		priv->clk_csr = priv->plat->clk_csr;
4366 
4367 	stmmac_check_pcs_mode(priv);
4368 
4369 	if (priv->hw->pcs != STMMAC_PCS_RGMII  &&
4370 	    priv->hw->pcs != STMMAC_PCS_TBI &&
4371 	    priv->hw->pcs != STMMAC_PCS_RTBI) {
4372 		/* MDIO bus Registration */
4373 		ret = stmmac_mdio_register(ndev);
4374 		if (ret < 0) {
4375 			dev_err(priv->device,
4376 				"%s: MDIO bus (id: %d) registration failed",
4377 				__func__, priv->plat->bus_id);
4378 			goto error_mdio_register;
4379 		}
4380 	}
4381 
4382 	ret = register_netdev(ndev);
4383 	if (ret) {
4384 		dev_err(priv->device, "%s: ERROR %i registering the device\n",
4385 			__func__, ret);
4386 		goto error_netdev_register;
4387 	}
4388 
4389 #ifdef CONFIG_DEBUG_FS
4390 	ret = stmmac_init_fs(ndev);
4391 	if (ret < 0)
4392 		netdev_warn(priv->dev, "%s: failed debugFS registration\n",
4393 			    __func__);
4394 #endif
4395 
4396 	return ret;
4397 
4398 error_netdev_register:
4399 	if (priv->hw->pcs != STMMAC_PCS_RGMII &&
4400 	    priv->hw->pcs != STMMAC_PCS_TBI &&
4401 	    priv->hw->pcs != STMMAC_PCS_RTBI)
4402 		stmmac_mdio_unregister(ndev);
4403 error_mdio_register:
4404 	for (queue = 0; queue < maxq; queue++) {
4405 		struct stmmac_channel *ch = &priv->channel[queue];
4406 
4407 		netif_napi_del(&ch->napi);
4408 	}
4409 error_hw_init:
4410 	destroy_workqueue(priv->wq);
4411 error_wq:
4412 	free_netdev(ndev);
4413 
4414 	return ret;
4415 }
4416 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
4417 
4418 /**
4419  * stmmac_dvr_remove
4420  * @dev: device pointer
4421  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
4422  * changes the link status, releases the DMA descriptor rings.
4423  */
4424 int stmmac_dvr_remove(struct device *dev)
4425 {
4426 	struct net_device *ndev = dev_get_drvdata(dev);
4427 	struct stmmac_priv *priv = netdev_priv(ndev);
4428 
4429 	netdev_info(priv->dev, "%s: removing driver", __func__);
4430 
4431 #ifdef CONFIG_DEBUG_FS
4432 	stmmac_exit_fs(ndev);
4433 #endif
4434 	stmmac_stop_all_dma(priv);
4435 
4436 	stmmac_mac_set(priv, priv->ioaddr, false);
4437 	netif_carrier_off(ndev);
4438 	unregister_netdev(ndev);
4439 	if (priv->plat->stmmac_rst)
4440 		reset_control_assert(priv->plat->stmmac_rst);
4441 	clk_disable_unprepare(priv->plat->pclk);
4442 	clk_disable_unprepare(priv->plat->stmmac_clk);
4443 	if (priv->hw->pcs != STMMAC_PCS_RGMII &&
4444 	    priv->hw->pcs != STMMAC_PCS_TBI &&
4445 	    priv->hw->pcs != STMMAC_PCS_RTBI)
4446 		stmmac_mdio_unregister(ndev);
4447 	destroy_workqueue(priv->wq);
4448 	mutex_destroy(&priv->lock);
4449 	free_netdev(ndev);
4450 
4451 	return 0;
4452 }
4453 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
4454 
4455 /**
4456  * stmmac_suspend - suspend callback
4457  * @dev: device pointer
4458  * Description: this is the function to suspend the device and it is called
4459  * by the platform driver to stop the network queue, release the resources,
4460  * program the PMT register (for WoL), clean and release driver resources.
4461  */
4462 int stmmac_suspend(struct device *dev)
4463 {
4464 	struct net_device *ndev = dev_get_drvdata(dev);
4465 	struct stmmac_priv *priv = netdev_priv(ndev);
4466 
4467 	if (!ndev || !netif_running(ndev))
4468 		return 0;
4469 
4470 	if (ndev->phydev)
4471 		phy_stop(ndev->phydev);
4472 
4473 	mutex_lock(&priv->lock);
4474 
4475 	netif_device_detach(ndev);
4476 	stmmac_stop_all_queues(priv);
4477 
4478 	stmmac_disable_all_queues(priv);
4479 
4480 	/* Stop TX/RX DMA */
4481 	stmmac_stop_all_dma(priv);
4482 
4483 	/* Enable Power down mode by programming the PMT regs */
4484 	if (device_may_wakeup(priv->device)) {
4485 		stmmac_pmt(priv, priv->hw, priv->wolopts);
4486 		priv->irq_wake = 1;
4487 	} else {
4488 		stmmac_mac_set(priv, priv->ioaddr, false);
4489 		pinctrl_pm_select_sleep_state(priv->device);
4490 		/* Disable clock in case of PWM is off */
4491 		clk_disable(priv->plat->pclk);
4492 		clk_disable(priv->plat->stmmac_clk);
4493 	}
4494 	mutex_unlock(&priv->lock);
4495 
4496 	priv->oldlink = false;
4497 	priv->speed = SPEED_UNKNOWN;
4498 	priv->oldduplex = DUPLEX_UNKNOWN;
4499 	return 0;
4500 }
4501 EXPORT_SYMBOL_GPL(stmmac_suspend);
4502 
4503 /**
4504  * stmmac_reset_queues_param - reset queue parameters
4505  * @dev: device pointer
4506  */
4507 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
4508 {
4509 	u32 rx_cnt = priv->plat->rx_queues_to_use;
4510 	u32 tx_cnt = priv->plat->tx_queues_to_use;
4511 	u32 queue;
4512 
4513 	for (queue = 0; queue < rx_cnt; queue++) {
4514 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4515 
4516 		rx_q->cur_rx = 0;
4517 		rx_q->dirty_rx = 0;
4518 	}
4519 
4520 	for (queue = 0; queue < tx_cnt; queue++) {
4521 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4522 
4523 		tx_q->cur_tx = 0;
4524 		tx_q->dirty_tx = 0;
4525 		tx_q->mss = 0;
4526 	}
4527 }
4528 
4529 /**
4530  * stmmac_resume - resume callback
4531  * @dev: device pointer
4532  * Description: when resume this function is invoked to setup the DMA and CORE
4533  * in a usable state.
4534  */
4535 int stmmac_resume(struct device *dev)
4536 {
4537 	struct net_device *ndev = dev_get_drvdata(dev);
4538 	struct stmmac_priv *priv = netdev_priv(ndev);
4539 
4540 	if (!netif_running(ndev))
4541 		return 0;
4542 
4543 	/* Power Down bit, into the PM register, is cleared
4544 	 * automatically as soon as a magic packet or a Wake-up frame
4545 	 * is received. Anyway, it's better to manually clear
4546 	 * this bit because it can generate problems while resuming
4547 	 * from another devices (e.g. serial console).
4548 	 */
4549 	if (device_may_wakeup(priv->device)) {
4550 		mutex_lock(&priv->lock);
4551 		stmmac_pmt(priv, priv->hw, 0);
4552 		mutex_unlock(&priv->lock);
4553 		priv->irq_wake = 0;
4554 	} else {
4555 		pinctrl_pm_select_default_state(priv->device);
4556 		/* enable the clk previously disabled */
4557 		clk_enable(priv->plat->stmmac_clk);
4558 		clk_enable(priv->plat->pclk);
4559 		/* reset the phy so that it's ready */
4560 		if (priv->mii)
4561 			stmmac_mdio_reset(priv->mii);
4562 	}
4563 
4564 	netif_device_attach(ndev);
4565 
4566 	mutex_lock(&priv->lock);
4567 
4568 	stmmac_reset_queues_param(priv);
4569 
4570 	stmmac_clear_descriptors(priv);
4571 
4572 	stmmac_hw_setup(ndev, false);
4573 	stmmac_init_tx_coalesce(priv);
4574 	stmmac_set_rx_mode(ndev);
4575 
4576 	stmmac_enable_all_queues(priv);
4577 
4578 	stmmac_start_all_queues(priv);
4579 
4580 	mutex_unlock(&priv->lock);
4581 
4582 	if (ndev->phydev)
4583 		phy_start(ndev->phydev);
4584 
4585 	return 0;
4586 }
4587 EXPORT_SYMBOL_GPL(stmmac_resume);
4588 
4589 #ifndef MODULE
4590 static int __init stmmac_cmdline_opt(char *str)
4591 {
4592 	char *opt;
4593 
4594 	if (!str || !*str)
4595 		return -EINVAL;
4596 	while ((opt = strsep(&str, ",")) != NULL) {
4597 		if (!strncmp(opt, "debug:", 6)) {
4598 			if (kstrtoint(opt + 6, 0, &debug))
4599 				goto err;
4600 		} else if (!strncmp(opt, "phyaddr:", 8)) {
4601 			if (kstrtoint(opt + 8, 0, &phyaddr))
4602 				goto err;
4603 		} else if (!strncmp(opt, "buf_sz:", 7)) {
4604 			if (kstrtoint(opt + 7, 0, &buf_sz))
4605 				goto err;
4606 		} else if (!strncmp(opt, "tc:", 3)) {
4607 			if (kstrtoint(opt + 3, 0, &tc))
4608 				goto err;
4609 		} else if (!strncmp(opt, "watchdog:", 9)) {
4610 			if (kstrtoint(opt + 9, 0, &watchdog))
4611 				goto err;
4612 		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
4613 			if (kstrtoint(opt + 10, 0, &flow_ctrl))
4614 				goto err;
4615 		} else if (!strncmp(opt, "pause:", 6)) {
4616 			if (kstrtoint(opt + 6, 0, &pause))
4617 				goto err;
4618 		} else if (!strncmp(opt, "eee_timer:", 10)) {
4619 			if (kstrtoint(opt + 10, 0, &eee_timer))
4620 				goto err;
4621 		} else if (!strncmp(opt, "chain_mode:", 11)) {
4622 			if (kstrtoint(opt + 11, 0, &chain_mode))
4623 				goto err;
4624 		}
4625 	}
4626 	return 0;
4627 
4628 err:
4629 	pr_err("%s: ERROR broken module parameter conversion", __func__);
4630 	return -EINVAL;
4631 }
4632 
4633 __setup("stmmaceth=", stmmac_cmdline_opt);
4634 #endif /* MODULE */
4635 
4636 static int __init stmmac_init(void)
4637 {
4638 #ifdef CONFIG_DEBUG_FS
4639 	/* Create debugfs main directory if it doesn't exist yet */
4640 	if (!stmmac_fs_dir) {
4641 		stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
4642 
4643 		if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
4644 			pr_err("ERROR %s, debugfs create directory failed\n",
4645 			       STMMAC_RESOURCE_NAME);
4646 
4647 			return -ENOMEM;
4648 		}
4649 	}
4650 #endif
4651 
4652 	return 0;
4653 }
4654 
4655 static void __exit stmmac_exit(void)
4656 {
4657 #ifdef CONFIG_DEBUG_FS
4658 	debugfs_remove_recursive(stmmac_fs_dir);
4659 #endif
4660 }
4661 
4662 module_init(stmmac_init)
4663 module_exit(stmmac_exit)
4664 
4665 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
4666 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
4667 MODULE_LICENSE("GPL");
4668