xref: /linux/drivers/net/ethernet/stmicro/stmmac/stmmac_main.c (revision a508da6cc0093171833efb8376b00473f24221b9)
1 /*******************************************************************************
2   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3   ST Ethernet IPs are built around a Synopsys IP Core.
4 
5 	Copyright(C) 2007-2011 STMicroelectronics Ltd
6 
7   This program is free software; you can redistribute it and/or modify it
8   under the terms and conditions of the GNU General Public License,
9   version 2, as published by the Free Software Foundation.
10 
11   This program is distributed in the hope it will be useful, but WITHOUT
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14   more details.
15 
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc.,
18   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 
20   The full GNU General Public License is included in this distribution in
21   the file called "COPYING".
22 
23   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
24 
25   Documentation available at:
26 	http://www.stlinux.com
27   Support available at:
28 	https://bugzilla.stlinux.com/
29 *******************************************************************************/
30 
31 #include <linux/kernel.h>
32 #include <linux/interrupt.h>
33 #include <linux/ip.h>
34 #include <linux/tcp.h>
35 #include <linux/skbuff.h>
36 #include <linux/ethtool.h>
37 #include <linux/if_ether.h>
38 #include <linux/crc32.h>
39 #include <linux/mii.h>
40 #include <linux/if.h>
41 #include <linux/if_vlan.h>
42 #include <linux/dma-mapping.h>
43 #include <linux/slab.h>
44 #include <linux/prefetch.h>
45 #ifdef CONFIG_STMMAC_DEBUG_FS
46 #include <linux/debugfs.h>
47 #include <linux/seq_file.h>
48 #endif
49 #include "stmmac.h"
50 
51 #undef STMMAC_DEBUG
52 /*#define STMMAC_DEBUG*/
53 #ifdef STMMAC_DEBUG
54 #define DBG(nlevel, klevel, fmt, args...) \
55 		((void)(netif_msg_##nlevel(priv) && \
56 		printk(KERN_##klevel fmt, ## args)))
57 #else
58 #define DBG(nlevel, klevel, fmt, args...) do { } while (0)
59 #endif
60 
61 #undef STMMAC_RX_DEBUG
62 /*#define STMMAC_RX_DEBUG*/
63 #ifdef STMMAC_RX_DEBUG
64 #define RX_DBG(fmt, args...)  printk(fmt, ## args)
65 #else
66 #define RX_DBG(fmt, args...)  do { } while (0)
67 #endif
68 
69 #undef STMMAC_XMIT_DEBUG
70 /*#define STMMAC_XMIT_DEBUG*/
71 #ifdef STMMAC_TX_DEBUG
72 #define TX_DBG(fmt, args...)  printk(fmt, ## args)
73 #else
74 #define TX_DBG(fmt, args...)  do { } while (0)
75 #endif
76 
77 #define STMMAC_ALIGN(x)	L1_CACHE_ALIGN(x)
78 #define JUMBO_LEN	9000
79 
80 /* Module parameters */
81 #define TX_TIMEO 5000 /* default 5 seconds */
82 static int watchdog = TX_TIMEO;
83 module_param(watchdog, int, S_IRUGO | S_IWUSR);
84 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds");
85 
86 static int debug = -1;		/* -1: default, 0: no output, 16:  all */
87 module_param(debug, int, S_IRUGO | S_IWUSR);
88 MODULE_PARM_DESC(debug, "Message Level (0: no output, 16: all)");
89 
90 int phyaddr = -1;
91 module_param(phyaddr, int, S_IRUGO);
92 MODULE_PARM_DESC(phyaddr, "Physical device address");
93 
94 #define DMA_TX_SIZE 256
95 static int dma_txsize = DMA_TX_SIZE;
96 module_param(dma_txsize, int, S_IRUGO | S_IWUSR);
97 MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list");
98 
99 #define DMA_RX_SIZE 256
100 static int dma_rxsize = DMA_RX_SIZE;
101 module_param(dma_rxsize, int, S_IRUGO | S_IWUSR);
102 MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list");
103 
104 static int flow_ctrl = FLOW_OFF;
105 module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
106 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
107 
108 static int pause = PAUSE_TIME;
109 module_param(pause, int, S_IRUGO | S_IWUSR);
110 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
111 
112 #define TC_DEFAULT 64
113 static int tc = TC_DEFAULT;
114 module_param(tc, int, S_IRUGO | S_IWUSR);
115 MODULE_PARM_DESC(tc, "DMA threshold control value");
116 
117 /* Pay attention to tune this parameter; take care of both
118  * hardware capability and network stabitily/performance impact.
119  * Many tests showed that ~4ms latency seems to be good enough. */
120 #ifdef CONFIG_STMMAC_TIMER
121 #define DEFAULT_PERIODIC_RATE	256
122 static int tmrate = DEFAULT_PERIODIC_RATE;
123 module_param(tmrate, int, S_IRUGO | S_IWUSR);
124 MODULE_PARM_DESC(tmrate, "External timer freq. (default: 256Hz)");
125 #endif
126 
127 #define DMA_BUFFER_SIZE	BUF_SIZE_2KiB
128 static int buf_sz = DMA_BUFFER_SIZE;
129 module_param(buf_sz, int, S_IRUGO | S_IWUSR);
130 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
131 
132 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
133 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
134 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
135 
136 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
137 
138 #ifdef CONFIG_STMMAC_DEBUG_FS
139 static int stmmac_init_fs(struct net_device *dev);
140 static void stmmac_exit_fs(void);
141 #endif
142 
143 /**
144  * stmmac_verify_args - verify the driver parameters.
145  * Description: it verifies if some wrong parameter is passed to the driver.
146  * Note that wrong parameters are replaced with the default values.
147  */
148 static void stmmac_verify_args(void)
149 {
150 	if (unlikely(watchdog < 0))
151 		watchdog = TX_TIMEO;
152 	if (unlikely(dma_rxsize < 0))
153 		dma_rxsize = DMA_RX_SIZE;
154 	if (unlikely(dma_txsize < 0))
155 		dma_txsize = DMA_TX_SIZE;
156 	if (unlikely((buf_sz < DMA_BUFFER_SIZE) || (buf_sz > BUF_SIZE_16KiB)))
157 		buf_sz = DMA_BUFFER_SIZE;
158 	if (unlikely(flow_ctrl > 1))
159 		flow_ctrl = FLOW_AUTO;
160 	else if (likely(flow_ctrl < 0))
161 		flow_ctrl = FLOW_OFF;
162 	if (unlikely((pause < 0) || (pause > 0xffff)))
163 		pause = PAUSE_TIME;
164 }
165 
166 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
167 {
168 #ifdef CONFIG_HAVE_CLK
169 	u32 clk_rate;
170 
171 	if (IS_ERR(priv->stmmac_clk))
172 		return;
173 
174 	clk_rate = clk_get_rate(priv->stmmac_clk);
175 
176 	/* Platform provided default clk_csr would be assumed valid
177 	 * for all other cases except for the below mentioned ones. */
178 	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
179 		if (clk_rate < CSR_F_35M)
180 			priv->clk_csr = STMMAC_CSR_20_35M;
181 		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
182 			priv->clk_csr = STMMAC_CSR_35_60M;
183 		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
184 			priv->clk_csr = STMMAC_CSR_60_100M;
185 		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
186 			priv->clk_csr = STMMAC_CSR_100_150M;
187 		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
188 			priv->clk_csr = STMMAC_CSR_150_250M;
189 		else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
190 			priv->clk_csr = STMMAC_CSR_250_300M;
191 	} /* For values higher than the IEEE 802.3 specified frequency
192 	   * we can not estimate the proper divider as it is not known
193 	   * the frequency of clk_csr_i. So we do not change the default
194 	   * divider. */
195 #endif
196 }
197 
198 #if defined(STMMAC_XMIT_DEBUG) || defined(STMMAC_RX_DEBUG)
199 static void print_pkt(unsigned char *buf, int len)
200 {
201 	int j;
202 	pr_info("len = %d byte, buf addr: 0x%p", len, buf);
203 	for (j = 0; j < len; j++) {
204 		if ((j % 16) == 0)
205 			pr_info("\n %03x:", j);
206 		pr_info(" %02x", buf[j]);
207 	}
208 	pr_info("\n");
209 }
210 #endif
211 
212 /* minimum number of free TX descriptors required to wake up TX process */
213 #define STMMAC_TX_THRESH(x)	(x->dma_tx_size/4)
214 
215 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
216 {
217 	return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1;
218 }
219 
220 /* On some ST platforms, some HW system configuraton registers have to be
221  * set according to the link speed negotiated.
222  */
223 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
224 {
225 	struct phy_device *phydev = priv->phydev;
226 
227 	if (likely(priv->plat->fix_mac_speed))
228 		priv->plat->fix_mac_speed(priv->plat->bsp_priv,
229 					  phydev->speed);
230 }
231 
232 /**
233  * stmmac_adjust_link
234  * @dev: net device structure
235  * Description: it adjusts the link parameters.
236  */
237 static void stmmac_adjust_link(struct net_device *dev)
238 {
239 	struct stmmac_priv *priv = netdev_priv(dev);
240 	struct phy_device *phydev = priv->phydev;
241 	unsigned long flags;
242 	int new_state = 0;
243 	unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;
244 
245 	if (phydev == NULL)
246 		return;
247 
248 	DBG(probe, DEBUG, "stmmac_adjust_link: called.  address %d link %d\n",
249 	    phydev->addr, phydev->link);
250 
251 	spin_lock_irqsave(&priv->lock, flags);
252 	if (phydev->link) {
253 		u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
254 
255 		/* Now we make sure that we can be in full duplex mode.
256 		 * If not, we operate in half-duplex mode. */
257 		if (phydev->duplex != priv->oldduplex) {
258 			new_state = 1;
259 			if (!(phydev->duplex))
260 				ctrl &= ~priv->hw->link.duplex;
261 			else
262 				ctrl |= priv->hw->link.duplex;
263 			priv->oldduplex = phydev->duplex;
264 		}
265 		/* Flow Control operation */
266 		if (phydev->pause)
267 			priv->hw->mac->flow_ctrl(priv->ioaddr, phydev->duplex,
268 						 fc, pause_time);
269 
270 		if (phydev->speed != priv->speed) {
271 			new_state = 1;
272 			switch (phydev->speed) {
273 			case 1000:
274 				if (likely(priv->plat->has_gmac))
275 					ctrl &= ~priv->hw->link.port;
276 					stmmac_hw_fix_mac_speed(priv);
277 				break;
278 			case 100:
279 			case 10:
280 				if (priv->plat->has_gmac) {
281 					ctrl |= priv->hw->link.port;
282 					if (phydev->speed == SPEED_100) {
283 						ctrl |= priv->hw->link.speed;
284 					} else {
285 						ctrl &= ~(priv->hw->link.speed);
286 					}
287 				} else {
288 					ctrl &= ~priv->hw->link.port;
289 				}
290 				stmmac_hw_fix_mac_speed(priv);
291 				break;
292 			default:
293 				if (netif_msg_link(priv))
294 					pr_warning("%s: Speed (%d) is not 10"
295 				       " or 100!\n", dev->name, phydev->speed);
296 				break;
297 			}
298 
299 			priv->speed = phydev->speed;
300 		}
301 
302 		writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
303 
304 		if (!priv->oldlink) {
305 			new_state = 1;
306 			priv->oldlink = 1;
307 		}
308 	} else if (priv->oldlink) {
309 		new_state = 1;
310 		priv->oldlink = 0;
311 		priv->speed = 0;
312 		priv->oldduplex = -1;
313 	}
314 
315 	if (new_state && netif_msg_link(priv))
316 		phy_print_status(phydev);
317 
318 	spin_unlock_irqrestore(&priv->lock, flags);
319 
320 	DBG(probe, DEBUG, "stmmac_adjust_link: exiting\n");
321 }
322 
323 /**
324  * stmmac_init_phy - PHY initialization
325  * @dev: net device structure
326  * Description: it initializes the driver's PHY state, and attaches the PHY
327  * to the mac driver.
328  *  Return value:
329  *  0 on success
330  */
331 static int stmmac_init_phy(struct net_device *dev)
332 {
333 	struct stmmac_priv *priv = netdev_priv(dev);
334 	struct phy_device *phydev;
335 	char phy_id[MII_BUS_ID_SIZE + 3];
336 	char bus_id[MII_BUS_ID_SIZE];
337 	int interface = priv->plat->interface;
338 	priv->oldlink = 0;
339 	priv->speed = 0;
340 	priv->oldduplex = -1;
341 
342 	if (priv->plat->phy_bus_name)
343 		snprintf(bus_id, MII_BUS_ID_SIZE, "%s-%x",
344 				priv->plat->phy_bus_name, priv->plat->bus_id);
345 	else
346 		snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
347 				priv->plat->bus_id);
348 
349 	snprintf(phy_id, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
350 		 priv->plat->phy_addr);
351 	pr_debug("stmmac_init_phy:  trying to attach to %s\n", phy_id);
352 
353 	phydev = phy_connect(dev, phy_id, &stmmac_adjust_link, 0, interface);
354 
355 	if (IS_ERR(phydev)) {
356 		pr_err("%s: Could not attach to PHY\n", dev->name);
357 		return PTR_ERR(phydev);
358 	}
359 
360 	/* Stop Advertising 1000BASE Capability if interface is not GMII */
361 	if ((interface == PHY_INTERFACE_MODE_MII) ||
362 	    (interface == PHY_INTERFACE_MODE_RMII))
363 		phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
364 					 SUPPORTED_1000baseT_Full);
365 
366 	/*
367 	 * Broken HW is sometimes missing the pull-up resistor on the
368 	 * MDIO line, which results in reads to non-existent devices returning
369 	 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
370 	 * device as well.
371 	 * Note: phydev->phy_id is the result of reading the UID PHY registers.
372 	 */
373 	if (phydev->phy_id == 0) {
374 		phy_disconnect(phydev);
375 		return -ENODEV;
376 	}
377 	pr_debug("stmmac_init_phy:  %s: attached to PHY (UID 0x%x)"
378 		 " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
379 
380 	priv->phydev = phydev;
381 
382 	return 0;
383 }
384 
385 /**
386  * display_ring
387  * @p: pointer to the ring.
388  * @size: size of the ring.
389  * Description: display all the descriptors within the ring.
390  */
391 static void display_ring(struct dma_desc *p, int size)
392 {
393 	struct tmp_s {
394 		u64 a;
395 		unsigned int b;
396 		unsigned int c;
397 	};
398 	int i;
399 	for (i = 0; i < size; i++) {
400 		struct tmp_s *x = (struct tmp_s *)(p + i);
401 		pr_info("\t%d [0x%x]: DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
402 		       i, (unsigned int)virt_to_phys(&p[i]),
403 		       (unsigned int)(x->a), (unsigned int)((x->a) >> 32),
404 		       x->b, x->c);
405 		pr_info("\n");
406 	}
407 }
408 
409 static int stmmac_set_bfsize(int mtu, int bufsize)
410 {
411 	int ret = bufsize;
412 
413 	if (mtu >= BUF_SIZE_4KiB)
414 		ret = BUF_SIZE_8KiB;
415 	else if (mtu >= BUF_SIZE_2KiB)
416 		ret = BUF_SIZE_4KiB;
417 	else if (mtu >= DMA_BUFFER_SIZE)
418 		ret = BUF_SIZE_2KiB;
419 	else
420 		ret = DMA_BUFFER_SIZE;
421 
422 	return ret;
423 }
424 
425 /**
426  * init_dma_desc_rings - init the RX/TX descriptor rings
427  * @dev: net device structure
428  * Description:  this function initializes the DMA RX/TX descriptors
429  * and allocates the socket buffers. It suppors the chained and ring
430  * modes.
431  */
432 static void init_dma_desc_rings(struct net_device *dev)
433 {
434 	int i;
435 	struct stmmac_priv *priv = netdev_priv(dev);
436 	struct sk_buff *skb;
437 	unsigned int txsize = priv->dma_tx_size;
438 	unsigned int rxsize = priv->dma_rx_size;
439 	unsigned int bfsize;
440 	int dis_ic = 0;
441 	int des3_as_data_buf = 0;
442 
443 	/* Set the max buffer size according to the DESC mode
444 	 * and the MTU. Note that RING mode allows 16KiB bsize. */
445 	bfsize = priv->hw->ring->set_16kib_bfsize(dev->mtu);
446 
447 	if (bfsize == BUF_SIZE_16KiB)
448 		des3_as_data_buf = 1;
449 	else
450 		bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
451 
452 #ifdef CONFIG_STMMAC_TIMER
453 	/* Disable interrupts on completion for the reception if timer is on */
454 	if (likely(priv->tm->enable))
455 		dis_ic = 1;
456 #endif
457 
458 	DBG(probe, INFO, "stmmac: txsize %d, rxsize %d, bfsize %d\n",
459 	    txsize, rxsize, bfsize);
460 
461 	priv->rx_skbuff_dma = kmalloc(rxsize * sizeof(dma_addr_t), GFP_KERNEL);
462 	priv->rx_skbuff =
463 	    kmalloc(sizeof(struct sk_buff *) * rxsize, GFP_KERNEL);
464 	priv->dma_rx =
465 	    (struct dma_desc *)dma_alloc_coherent(priv->device,
466 						  rxsize *
467 						  sizeof(struct dma_desc),
468 						  &priv->dma_rx_phy,
469 						  GFP_KERNEL);
470 	priv->tx_skbuff = kmalloc(sizeof(struct sk_buff *) * txsize,
471 				       GFP_KERNEL);
472 	priv->dma_tx =
473 	    (struct dma_desc *)dma_alloc_coherent(priv->device,
474 						  txsize *
475 						  sizeof(struct dma_desc),
476 						  &priv->dma_tx_phy,
477 						  GFP_KERNEL);
478 
479 	if ((priv->dma_rx == NULL) || (priv->dma_tx == NULL)) {
480 		pr_err("%s:ERROR allocating the DMA Tx/Rx desc\n", __func__);
481 		return;
482 	}
483 
484 	DBG(probe, INFO, "stmmac (%s) DMA desc: virt addr (Rx %p, "
485 	    "Tx %p)\n\tDMA phy addr (Rx 0x%08x, Tx 0x%08x)\n",
486 	    dev->name, priv->dma_rx, priv->dma_tx,
487 	    (unsigned int)priv->dma_rx_phy, (unsigned int)priv->dma_tx_phy);
488 
489 	/* RX INITIALIZATION */
490 	DBG(probe, INFO, "stmmac: SKB addresses:\n"
491 			 "skb\t\tskb data\tdma data\n");
492 
493 	for (i = 0; i < rxsize; i++) {
494 		struct dma_desc *p = priv->dma_rx + i;
495 
496 		skb = __netdev_alloc_skb(dev, bfsize + NET_IP_ALIGN,
497 					 GFP_KERNEL);
498 		if (unlikely(skb == NULL)) {
499 			pr_err("%s: Rx init fails; skb is NULL\n", __func__);
500 			break;
501 		}
502 		skb_reserve(skb, NET_IP_ALIGN);
503 		priv->rx_skbuff[i] = skb;
504 		priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
505 						bfsize, DMA_FROM_DEVICE);
506 
507 		p->des2 = priv->rx_skbuff_dma[i];
508 
509 		priv->hw->ring->init_desc3(des3_as_data_buf, p);
510 
511 		DBG(probe, INFO, "[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
512 			priv->rx_skbuff[i]->data, priv->rx_skbuff_dma[i]);
513 	}
514 	priv->cur_rx = 0;
515 	priv->dirty_rx = (unsigned int)(i - rxsize);
516 	priv->dma_buf_sz = bfsize;
517 	buf_sz = bfsize;
518 
519 	/* TX INITIALIZATION */
520 	for (i = 0; i < txsize; i++) {
521 		priv->tx_skbuff[i] = NULL;
522 		priv->dma_tx[i].des2 = 0;
523 	}
524 
525 	/* In case of Chained mode this sets the des3 to the next
526 	 * element in the chain */
527 	priv->hw->ring->init_dma_chain(priv->dma_rx, priv->dma_rx_phy, rxsize);
528 	priv->hw->ring->init_dma_chain(priv->dma_tx, priv->dma_tx_phy, txsize);
529 
530 	priv->dirty_tx = 0;
531 	priv->cur_tx = 0;
532 
533 	/* Clear the Rx/Tx descriptors */
534 	priv->hw->desc->init_rx_desc(priv->dma_rx, rxsize, dis_ic);
535 	priv->hw->desc->init_tx_desc(priv->dma_tx, txsize);
536 
537 	if (netif_msg_hw(priv)) {
538 		pr_info("RX descriptor ring:\n");
539 		display_ring(priv->dma_rx, rxsize);
540 		pr_info("TX descriptor ring:\n");
541 		display_ring(priv->dma_tx, txsize);
542 	}
543 }
544 
545 static void dma_free_rx_skbufs(struct stmmac_priv *priv)
546 {
547 	int i;
548 
549 	for (i = 0; i < priv->dma_rx_size; i++) {
550 		if (priv->rx_skbuff[i]) {
551 			dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
552 					 priv->dma_buf_sz, DMA_FROM_DEVICE);
553 			dev_kfree_skb_any(priv->rx_skbuff[i]);
554 		}
555 		priv->rx_skbuff[i] = NULL;
556 	}
557 }
558 
559 static void dma_free_tx_skbufs(struct stmmac_priv *priv)
560 {
561 	int i;
562 
563 	for (i = 0; i < priv->dma_tx_size; i++) {
564 		if (priv->tx_skbuff[i] != NULL) {
565 			struct dma_desc *p = priv->dma_tx + i;
566 			if (p->des2)
567 				dma_unmap_single(priv->device, p->des2,
568 						 priv->hw->desc->get_tx_len(p),
569 						 DMA_TO_DEVICE);
570 			dev_kfree_skb_any(priv->tx_skbuff[i]);
571 			priv->tx_skbuff[i] = NULL;
572 		}
573 	}
574 }
575 
576 static void free_dma_desc_resources(struct stmmac_priv *priv)
577 {
578 	/* Release the DMA TX/RX socket buffers */
579 	dma_free_rx_skbufs(priv);
580 	dma_free_tx_skbufs(priv);
581 
582 	/* Free the region of consistent memory previously allocated for
583 	 * the DMA */
584 	dma_free_coherent(priv->device,
585 			  priv->dma_tx_size * sizeof(struct dma_desc),
586 			  priv->dma_tx, priv->dma_tx_phy);
587 	dma_free_coherent(priv->device,
588 			  priv->dma_rx_size * sizeof(struct dma_desc),
589 			  priv->dma_rx, priv->dma_rx_phy);
590 	kfree(priv->rx_skbuff_dma);
591 	kfree(priv->rx_skbuff);
592 	kfree(priv->tx_skbuff);
593 }
594 
595 /**
596  *  stmmac_dma_operation_mode - HW DMA operation mode
597  *  @priv : pointer to the private device structure.
598  *  Description: it sets the DMA operation mode: tx/rx DMA thresholds
599  *  or Store-And-Forward capability.
600  */
601 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
602 {
603 	if (likely(priv->plat->force_sf_dma_mode ||
604 		((priv->plat->tx_coe) && (!priv->no_csum_insertion)))) {
605 		/*
606 		 * In case of GMAC, SF mode can be enabled
607 		 * to perform the TX COE in HW. This depends on:
608 		 * 1) TX COE if actually supported
609 		 * 2) There is no bugged Jumbo frame support
610 		 *    that needs to not insert csum in the TDES.
611 		 */
612 		priv->hw->dma->dma_mode(priv->ioaddr,
613 					SF_DMA_MODE, SF_DMA_MODE);
614 		tc = SF_DMA_MODE;
615 	} else
616 		priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
617 }
618 
619 /**
620  * stmmac_tx:
621  * @priv: private driver structure
622  * Description: it reclaims resources after transmission completes.
623  */
624 static void stmmac_tx(struct stmmac_priv *priv)
625 {
626 	unsigned int txsize = priv->dma_tx_size;
627 
628 	spin_lock(&priv->tx_lock);
629 
630 	while (priv->dirty_tx != priv->cur_tx) {
631 		int last;
632 		unsigned int entry = priv->dirty_tx % txsize;
633 		struct sk_buff *skb = priv->tx_skbuff[entry];
634 		struct dma_desc *p = priv->dma_tx + entry;
635 
636 		/* Check if the descriptor is owned by the DMA. */
637 		if (priv->hw->desc->get_tx_owner(p))
638 			break;
639 
640 		/* Verify tx error by looking at the last segment */
641 		last = priv->hw->desc->get_tx_ls(p);
642 		if (likely(last)) {
643 			int tx_error =
644 				priv->hw->desc->tx_status(&priv->dev->stats,
645 							  &priv->xstats, p,
646 							  priv->ioaddr);
647 			if (likely(tx_error == 0)) {
648 				priv->dev->stats.tx_packets++;
649 				priv->xstats.tx_pkt_n++;
650 			} else
651 				priv->dev->stats.tx_errors++;
652 		}
653 		TX_DBG("%s: curr %d, dirty %d\n", __func__,
654 			priv->cur_tx, priv->dirty_tx);
655 
656 		if (likely(p->des2))
657 			dma_unmap_single(priv->device, p->des2,
658 					 priv->hw->desc->get_tx_len(p),
659 					 DMA_TO_DEVICE);
660 		priv->hw->ring->clean_desc3(p);
661 
662 		if (likely(skb != NULL)) {
663 			/*
664 			 * If there's room in the queue (limit it to size)
665 			 * we add this skb back into the pool,
666 			 * if it's the right size.
667 			 */
668 			if ((skb_queue_len(&priv->rx_recycle) <
669 				priv->dma_rx_size) &&
670 				skb_recycle_check(skb, priv->dma_buf_sz))
671 				__skb_queue_head(&priv->rx_recycle, skb);
672 			else
673 				dev_kfree_skb(skb);
674 
675 			priv->tx_skbuff[entry] = NULL;
676 		}
677 
678 		priv->hw->desc->release_tx_desc(p);
679 
680 		entry = (++priv->dirty_tx) % txsize;
681 	}
682 	if (unlikely(netif_queue_stopped(priv->dev) &&
683 		     stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) {
684 		netif_tx_lock(priv->dev);
685 		if (netif_queue_stopped(priv->dev) &&
686 		     stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) {
687 			TX_DBG("%s: restart transmit\n", __func__);
688 			netif_wake_queue(priv->dev);
689 		}
690 		netif_tx_unlock(priv->dev);
691 	}
692 	spin_unlock(&priv->tx_lock);
693 }
694 
695 static inline void stmmac_enable_irq(struct stmmac_priv *priv)
696 {
697 #ifdef CONFIG_STMMAC_TIMER
698 	if (likely(priv->tm->enable))
699 		priv->tm->timer_start(tmrate);
700 	else
701 #endif
702 		priv->hw->dma->enable_dma_irq(priv->ioaddr);
703 }
704 
705 static inline void stmmac_disable_irq(struct stmmac_priv *priv)
706 {
707 #ifdef CONFIG_STMMAC_TIMER
708 	if (likely(priv->tm->enable))
709 		priv->tm->timer_stop();
710 	else
711 #endif
712 		priv->hw->dma->disable_dma_irq(priv->ioaddr);
713 }
714 
715 static int stmmac_has_work(struct stmmac_priv *priv)
716 {
717 	unsigned int has_work = 0;
718 	int rxret, tx_work = 0;
719 
720 	rxret = priv->hw->desc->get_rx_owner(priv->dma_rx +
721 		(priv->cur_rx % priv->dma_rx_size));
722 
723 	if (priv->dirty_tx != priv->cur_tx)
724 		tx_work = 1;
725 
726 	if (likely(!rxret || tx_work))
727 		has_work = 1;
728 
729 	return has_work;
730 }
731 
732 static inline void _stmmac_schedule(struct stmmac_priv *priv)
733 {
734 	if (likely(stmmac_has_work(priv))) {
735 		stmmac_disable_irq(priv);
736 		napi_schedule(&priv->napi);
737 	}
738 }
739 
740 #ifdef CONFIG_STMMAC_TIMER
741 void stmmac_schedule(struct net_device *dev)
742 {
743 	struct stmmac_priv *priv = netdev_priv(dev);
744 
745 	priv->xstats.sched_timer_n++;
746 
747 	_stmmac_schedule(priv);
748 }
749 
750 static void stmmac_no_timer_started(unsigned int x)
751 {;
752 };
753 
754 static void stmmac_no_timer_stopped(void)
755 {;
756 };
757 #endif
758 
759 /**
760  * stmmac_tx_err:
761  * @priv: pointer to the private device structure
762  * Description: it cleans the descriptors and restarts the transmission
763  * in case of errors.
764  */
765 static void stmmac_tx_err(struct stmmac_priv *priv)
766 {
767 	netif_stop_queue(priv->dev);
768 
769 	priv->hw->dma->stop_tx(priv->ioaddr);
770 	dma_free_tx_skbufs(priv);
771 	priv->hw->desc->init_tx_desc(priv->dma_tx, priv->dma_tx_size);
772 	priv->dirty_tx = 0;
773 	priv->cur_tx = 0;
774 	priv->hw->dma->start_tx(priv->ioaddr);
775 
776 	priv->dev->stats.tx_errors++;
777 	netif_wake_queue(priv->dev);
778 }
779 
780 
781 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
782 {
783 	int status;
784 
785 	status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
786 	if (likely(status == handle_tx_rx))
787 		_stmmac_schedule(priv);
788 
789 	else if (unlikely(status == tx_hard_error_bump_tc)) {
790 		/* Try to bump up the dma threshold on this failure */
791 		if (unlikely(tc != SF_DMA_MODE) && (tc <= 256)) {
792 			tc += 64;
793 			priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
794 			priv->xstats.threshold = tc;
795 		}
796 	} else if (unlikely(status == tx_hard_error))
797 		stmmac_tx_err(priv);
798 }
799 
800 static void stmmac_mmc_setup(struct stmmac_priv *priv)
801 {
802 	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
803 			    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
804 
805 	/* Mask MMC irq, counters are managed in SW and registers
806 	 * are cleared on each READ eventually. */
807 	dwmac_mmc_intr_all_mask(priv->ioaddr);
808 
809 	if (priv->dma_cap.rmon) {
810 		dwmac_mmc_ctrl(priv->ioaddr, mode);
811 		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
812 	} else
813 		pr_info(" No MAC Management Counters available\n");
814 }
815 
816 static u32 stmmac_get_synopsys_id(struct stmmac_priv *priv)
817 {
818 	u32 hwid = priv->hw->synopsys_uid;
819 
820 	/* Only check valid Synopsys Id because old MAC chips
821 	 * have no HW registers where get the ID */
822 	if (likely(hwid)) {
823 		u32 uid = ((hwid & 0x0000ff00) >> 8);
824 		u32 synid = (hwid & 0x000000ff);
825 
826 		pr_info("stmmac - user ID: 0x%x, Synopsys ID: 0x%x\n",
827 			uid, synid);
828 
829 		return synid;
830 	}
831 	return 0;
832 }
833 
834 /**
835  * stmmac_selec_desc_mode
836  * @dev : device pointer
837  * Description: select the Enhanced/Alternate or Normal descriptors */
838 static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
839 {
840 	if (priv->plat->enh_desc) {
841 		pr_info(" Enhanced/Alternate descriptors\n");
842 		priv->hw->desc = &enh_desc_ops;
843 	} else {
844 		pr_info(" Normal descriptors\n");
845 		priv->hw->desc = &ndesc_ops;
846 	}
847 }
848 
849 /**
850  * stmmac_get_hw_features
851  * @priv : private device pointer
852  * Description:
853  *  new GMAC chip generations have a new register to indicate the
854  *  presence of the optional feature/functions.
855  *  This can be also used to override the value passed through the
856  *  platform and necessary for old MAC10/100 and GMAC chips.
857  */
858 static int stmmac_get_hw_features(struct stmmac_priv *priv)
859 {
860 	u32 hw_cap = 0;
861 
862 	if (priv->hw->dma->get_hw_feature) {
863 		hw_cap = priv->hw->dma->get_hw_feature(priv->ioaddr);
864 
865 		priv->dma_cap.mbps_10_100 = (hw_cap & DMA_HW_FEAT_MIISEL);
866 		priv->dma_cap.mbps_1000 = (hw_cap & DMA_HW_FEAT_GMIISEL) >> 1;
867 		priv->dma_cap.half_duplex = (hw_cap & DMA_HW_FEAT_HDSEL) >> 2;
868 		priv->dma_cap.hash_filter = (hw_cap & DMA_HW_FEAT_HASHSEL) >> 4;
869 		priv->dma_cap.multi_addr =
870 			(hw_cap & DMA_HW_FEAT_ADDMACADRSEL) >> 5;
871 		priv->dma_cap.pcs = (hw_cap & DMA_HW_FEAT_PCSSEL) >> 6;
872 		priv->dma_cap.sma_mdio = (hw_cap & DMA_HW_FEAT_SMASEL) >> 8;
873 		priv->dma_cap.pmt_remote_wake_up =
874 			(hw_cap & DMA_HW_FEAT_RWKSEL) >> 9;
875 		priv->dma_cap.pmt_magic_frame =
876 			(hw_cap & DMA_HW_FEAT_MGKSEL) >> 10;
877 		/* MMC */
878 		priv->dma_cap.rmon = (hw_cap & DMA_HW_FEAT_MMCSEL) >> 11;
879 		/* IEEE 1588-2002*/
880 		priv->dma_cap.time_stamp =
881 			(hw_cap & DMA_HW_FEAT_TSVER1SEL) >> 12;
882 		/* IEEE 1588-2008*/
883 		priv->dma_cap.atime_stamp =
884 			(hw_cap & DMA_HW_FEAT_TSVER2SEL) >> 13;
885 		/* 802.3az - Energy-Efficient Ethernet (EEE) */
886 		priv->dma_cap.eee = (hw_cap & DMA_HW_FEAT_EEESEL) >> 14;
887 		priv->dma_cap.av = (hw_cap & DMA_HW_FEAT_AVSEL) >> 15;
888 		/* TX and RX csum */
889 		priv->dma_cap.tx_coe = (hw_cap & DMA_HW_FEAT_TXCOESEL) >> 16;
890 		priv->dma_cap.rx_coe_type1 =
891 			(hw_cap & DMA_HW_FEAT_RXTYP1COE) >> 17;
892 		priv->dma_cap.rx_coe_type2 =
893 			(hw_cap & DMA_HW_FEAT_RXTYP2COE) >> 18;
894 		priv->dma_cap.rxfifo_over_2048 =
895 			(hw_cap & DMA_HW_FEAT_RXFIFOSIZE) >> 19;
896 		/* TX and RX number of channels */
897 		priv->dma_cap.number_rx_channel =
898 			(hw_cap & DMA_HW_FEAT_RXCHCNT) >> 20;
899 		priv->dma_cap.number_tx_channel =
900 			(hw_cap & DMA_HW_FEAT_TXCHCNT) >> 22;
901 		/* Alternate (enhanced) DESC mode*/
902 		priv->dma_cap.enh_desc =
903 			(hw_cap & DMA_HW_FEAT_ENHDESSEL) >> 24;
904 
905 	}
906 
907 	return hw_cap;
908 }
909 
910 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
911 {
912 	/* verify if the MAC address is valid, in case of failures it
913 	 * generates a random MAC address */
914 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
915 		priv->hw->mac->get_umac_addr((void __iomem *)
916 					     priv->dev->base_addr,
917 					     priv->dev->dev_addr, 0);
918 		if  (!is_valid_ether_addr(priv->dev->dev_addr))
919 			eth_hw_addr_random(priv->dev);
920 	}
921 	pr_warning("%s: device MAC address %pM\n", priv->dev->name,
922 						   priv->dev->dev_addr);
923 }
924 
925 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
926 {
927 	int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, burst_len = 0;
928 	int mixed_burst = 0;
929 
930 	/* Some DMA parameters can be passed from the platform;
931 	 * in case of these are not passed we keep a default
932 	 * (good for all the chips) and init the DMA! */
933 	if (priv->plat->dma_cfg) {
934 		pbl = priv->plat->dma_cfg->pbl;
935 		fixed_burst = priv->plat->dma_cfg->fixed_burst;
936 		mixed_burst = priv->plat->dma_cfg->mixed_burst;
937 		burst_len = priv->plat->dma_cfg->burst_len;
938 	}
939 
940 	return priv->hw->dma->init(priv->ioaddr, pbl, fixed_burst, mixed_burst,
941 				   burst_len, priv->dma_tx_phy,
942 				   priv->dma_rx_phy);
943 }
944 
945 /**
946  *  stmmac_open - open entry point of the driver
947  *  @dev : pointer to the device structure.
948  *  Description:
949  *  This function is the open entry point of the driver.
950  *  Return value:
951  *  0 on success and an appropriate (-)ve integer as defined in errno.h
952  *  file on failure.
953  */
954 static int stmmac_open(struct net_device *dev)
955 {
956 	struct stmmac_priv *priv = netdev_priv(dev);
957 	int ret;
958 
959 #ifdef CONFIG_STMMAC_TIMER
960 	priv->tm = kzalloc(sizeof(struct stmmac_timer *), GFP_KERNEL);
961 	if (unlikely(priv->tm == NULL))
962 		return -ENOMEM;
963 
964 	priv->tm->freq = tmrate;
965 
966 	/* Test if the external timer can be actually used.
967 	 * In case of failure continue without timer. */
968 	if (unlikely((stmmac_open_ext_timer(dev, priv->tm)) < 0)) {
969 		pr_warning("stmmaceth: cannot attach the external timer.\n");
970 		priv->tm->freq = 0;
971 		priv->tm->timer_start = stmmac_no_timer_started;
972 		priv->tm->timer_stop = stmmac_no_timer_stopped;
973 	} else
974 		priv->tm->enable = 1;
975 #endif
976 	stmmac_clk_enable(priv);
977 
978 	stmmac_check_ether_addr(priv);
979 
980 	ret = stmmac_init_phy(dev);
981 	if (unlikely(ret)) {
982 		pr_err("%s: Cannot attach to PHY (error: %d)\n", __func__, ret);
983 		goto open_error;
984 	}
985 
986 	/* Create and initialize the TX/RX descriptors chains. */
987 	priv->dma_tx_size = STMMAC_ALIGN(dma_txsize);
988 	priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize);
989 	priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
990 	init_dma_desc_rings(dev);
991 
992 	/* DMA initialization and SW reset */
993 	ret = stmmac_init_dma_engine(priv);
994 	if (ret < 0) {
995 		pr_err("%s: DMA initialization failed\n", __func__);
996 		goto open_error;
997 	}
998 
999 	/* Copy the MAC addr into the HW  */
1000 	priv->hw->mac->set_umac_addr(priv->ioaddr, dev->dev_addr, 0);
1001 
1002 	/* If required, perform hw setup of the bus. */
1003 	if (priv->plat->bus_setup)
1004 		priv->plat->bus_setup(priv->ioaddr);
1005 
1006 	/* Initialize the MAC Core */
1007 	priv->hw->mac->core_init(priv->ioaddr);
1008 
1009 	/* Request the IRQ lines */
1010 	ret = request_irq(dev->irq, stmmac_interrupt,
1011 			 IRQF_SHARED, dev->name, dev);
1012 	if (unlikely(ret < 0)) {
1013 		pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
1014 		       __func__, dev->irq, ret);
1015 		goto open_error;
1016 	}
1017 
1018 	/* Request the Wake IRQ in case of another line is used for WoL */
1019 	if (priv->wol_irq != dev->irq) {
1020 		ret = request_irq(priv->wol_irq, stmmac_interrupt,
1021 				  IRQF_SHARED, dev->name, dev);
1022 		if (unlikely(ret < 0)) {
1023 			pr_err("%s: ERROR: allocating the ext WoL IRQ %d "
1024 			       "(error: %d)\n",	__func__, priv->wol_irq, ret);
1025 			goto open_error_wolirq;
1026 		}
1027 	}
1028 
1029 	/* Enable the MAC Rx/Tx */
1030 	stmmac_set_mac(priv->ioaddr, true);
1031 
1032 	/* Set the HW DMA mode and the COE */
1033 	stmmac_dma_operation_mode(priv);
1034 
1035 	/* Extra statistics */
1036 	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
1037 	priv->xstats.threshold = tc;
1038 
1039 	stmmac_mmc_setup(priv);
1040 
1041 #ifdef CONFIG_STMMAC_DEBUG_FS
1042 	ret = stmmac_init_fs(dev);
1043 	if (ret < 0)
1044 		pr_warning("%s: failed debugFS registration\n", __func__);
1045 #endif
1046 	/* Start the ball rolling... */
1047 	DBG(probe, DEBUG, "%s: DMA RX/TX processes started...\n", dev->name);
1048 	priv->hw->dma->start_tx(priv->ioaddr);
1049 	priv->hw->dma->start_rx(priv->ioaddr);
1050 
1051 #ifdef CONFIG_STMMAC_TIMER
1052 	priv->tm->timer_start(tmrate);
1053 #endif
1054 
1055 	/* Dump DMA/MAC registers */
1056 	if (netif_msg_hw(priv)) {
1057 		priv->hw->mac->dump_regs(priv->ioaddr);
1058 		priv->hw->dma->dump_regs(priv->ioaddr);
1059 	}
1060 
1061 	if (priv->phydev)
1062 		phy_start(priv->phydev);
1063 
1064 	napi_enable(&priv->napi);
1065 	skb_queue_head_init(&priv->rx_recycle);
1066 	netif_start_queue(dev);
1067 
1068 	return 0;
1069 
1070 open_error_wolirq:
1071 	free_irq(dev->irq, dev);
1072 
1073 open_error:
1074 #ifdef CONFIG_STMMAC_TIMER
1075 	kfree(priv->tm);
1076 #endif
1077 	if (priv->phydev)
1078 		phy_disconnect(priv->phydev);
1079 
1080 	stmmac_clk_disable(priv);
1081 
1082 	return ret;
1083 }
1084 
1085 /**
1086  *  stmmac_release - close entry point of the driver
1087  *  @dev : device pointer.
1088  *  Description:
1089  *  This is the stop entry point of the driver.
1090  */
1091 static int stmmac_release(struct net_device *dev)
1092 {
1093 	struct stmmac_priv *priv = netdev_priv(dev);
1094 
1095 	/* Stop and disconnect the PHY */
1096 	if (priv->phydev) {
1097 		phy_stop(priv->phydev);
1098 		phy_disconnect(priv->phydev);
1099 		priv->phydev = NULL;
1100 	}
1101 
1102 	netif_stop_queue(dev);
1103 
1104 #ifdef CONFIG_STMMAC_TIMER
1105 	/* Stop and release the timer */
1106 	stmmac_close_ext_timer();
1107 	if (priv->tm != NULL)
1108 		kfree(priv->tm);
1109 #endif
1110 	napi_disable(&priv->napi);
1111 	skb_queue_purge(&priv->rx_recycle);
1112 
1113 	/* Free the IRQ lines */
1114 	free_irq(dev->irq, dev);
1115 	if (priv->wol_irq != dev->irq)
1116 		free_irq(priv->wol_irq, dev);
1117 
1118 	/* Stop TX/RX DMA and clear the descriptors */
1119 	priv->hw->dma->stop_tx(priv->ioaddr);
1120 	priv->hw->dma->stop_rx(priv->ioaddr);
1121 
1122 	/* Release and free the Rx/Tx resources */
1123 	free_dma_desc_resources(priv);
1124 
1125 	/* Disable the MAC Rx/Tx */
1126 	stmmac_set_mac(priv->ioaddr, false);
1127 
1128 	netif_carrier_off(dev);
1129 
1130 #ifdef CONFIG_STMMAC_DEBUG_FS
1131 	stmmac_exit_fs();
1132 #endif
1133 	stmmac_clk_disable(priv);
1134 
1135 	return 0;
1136 }
1137 
1138 /**
1139  *  stmmac_xmit:
1140  *  @skb : the socket buffer
1141  *  @dev : device pointer
1142  *  Description : Tx entry point of the driver.
1143  */
1144 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
1145 {
1146 	struct stmmac_priv *priv = netdev_priv(dev);
1147 	unsigned int txsize = priv->dma_tx_size;
1148 	unsigned int entry;
1149 	int i, csum_insertion = 0;
1150 	int nfrags = skb_shinfo(skb)->nr_frags;
1151 	struct dma_desc *desc, *first;
1152 	unsigned int nopaged_len = skb_headlen(skb);
1153 
1154 	if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
1155 		if (!netif_queue_stopped(dev)) {
1156 			netif_stop_queue(dev);
1157 			/* This is a hard error, log it. */
1158 			pr_err("%s: BUG! Tx Ring full when queue awake\n",
1159 				__func__);
1160 		}
1161 		return NETDEV_TX_BUSY;
1162 	}
1163 
1164 	spin_lock(&priv->tx_lock);
1165 
1166 	entry = priv->cur_tx % txsize;
1167 
1168 #ifdef STMMAC_XMIT_DEBUG
1169 	if ((skb->len > ETH_FRAME_LEN) || nfrags)
1170 		pr_info("stmmac xmit:\n"
1171 		       "\tskb addr %p - len: %d - nopaged_len: %d\n"
1172 		       "\tn_frags: %d - ip_summed: %d - %s gso\n",
1173 		       skb, skb->len, nopaged_len, nfrags, skb->ip_summed,
1174 		       !skb_is_gso(skb) ? "isn't" : "is");
1175 #endif
1176 
1177 	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
1178 
1179 	desc = priv->dma_tx + entry;
1180 	first = desc;
1181 
1182 #ifdef STMMAC_XMIT_DEBUG
1183 	if ((nfrags > 0) || (skb->len > ETH_FRAME_LEN))
1184 		pr_debug("stmmac xmit: skb len: %d, nopaged_len: %d,\n"
1185 		       "\t\tn_frags: %d, ip_summed: %d\n",
1186 		       skb->len, nopaged_len, nfrags, skb->ip_summed);
1187 #endif
1188 	priv->tx_skbuff[entry] = skb;
1189 
1190 	if (priv->hw->ring->is_jumbo_frm(skb->len, priv->plat->enh_desc)) {
1191 		entry = priv->hw->ring->jumbo_frm(priv, skb, csum_insertion);
1192 		desc = priv->dma_tx + entry;
1193 	} else {
1194 		desc->des2 = dma_map_single(priv->device, skb->data,
1195 					nopaged_len, DMA_TO_DEVICE);
1196 		priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
1197 						csum_insertion);
1198 	}
1199 
1200 	for (i = 0; i < nfrags; i++) {
1201 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1202 		int len = skb_frag_size(frag);
1203 
1204 		entry = (++priv->cur_tx) % txsize;
1205 		desc = priv->dma_tx + entry;
1206 
1207 		TX_DBG("\t[entry %d] segment len: %d\n", entry, len);
1208 		desc->des2 = skb_frag_dma_map(priv->device, frag, 0, len,
1209 					      DMA_TO_DEVICE);
1210 		priv->tx_skbuff[entry] = NULL;
1211 		priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion);
1212 		wmb();
1213 		priv->hw->desc->set_tx_owner(desc);
1214 	}
1215 
1216 	/* Interrupt on completition only for the latest segment */
1217 	priv->hw->desc->close_tx_desc(desc);
1218 
1219 #ifdef CONFIG_STMMAC_TIMER
1220 	/* Clean IC while using timer */
1221 	if (likely(priv->tm->enable))
1222 		priv->hw->desc->clear_tx_ic(desc);
1223 #endif
1224 
1225 	wmb();
1226 
1227 	/* To avoid raise condition */
1228 	priv->hw->desc->set_tx_owner(first);
1229 
1230 	priv->cur_tx++;
1231 
1232 #ifdef STMMAC_XMIT_DEBUG
1233 	if (netif_msg_pktdata(priv)) {
1234 		pr_info("stmmac xmit: current=%d, dirty=%d, entry=%d, "
1235 		       "first=%p, nfrags=%d\n",
1236 		       (priv->cur_tx % txsize), (priv->dirty_tx % txsize),
1237 		       entry, first, nfrags);
1238 		display_ring(priv->dma_tx, txsize);
1239 		pr_info(">>> frame to be transmitted: ");
1240 		print_pkt(skb->data, skb->len);
1241 	}
1242 #endif
1243 	if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
1244 		TX_DBG("%s: stop transmitted packets\n", __func__);
1245 		netif_stop_queue(dev);
1246 	}
1247 
1248 	dev->stats.tx_bytes += skb->len;
1249 
1250 	skb_tx_timestamp(skb);
1251 
1252 	priv->hw->dma->enable_dma_transmission(priv->ioaddr);
1253 
1254 	spin_unlock(&priv->tx_lock);
1255 
1256 	return NETDEV_TX_OK;
1257 }
1258 
1259 static inline void stmmac_rx_refill(struct stmmac_priv *priv)
1260 {
1261 	unsigned int rxsize = priv->dma_rx_size;
1262 	int bfsize = priv->dma_buf_sz;
1263 	struct dma_desc *p = priv->dma_rx;
1264 
1265 	for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) {
1266 		unsigned int entry = priv->dirty_rx % rxsize;
1267 		if (likely(priv->rx_skbuff[entry] == NULL)) {
1268 			struct sk_buff *skb;
1269 
1270 			skb = __skb_dequeue(&priv->rx_recycle);
1271 			if (skb == NULL)
1272 				skb = netdev_alloc_skb_ip_align(priv->dev,
1273 								bfsize);
1274 
1275 			if (unlikely(skb == NULL))
1276 				break;
1277 
1278 			priv->rx_skbuff[entry] = skb;
1279 			priv->rx_skbuff_dma[entry] =
1280 			    dma_map_single(priv->device, skb->data, bfsize,
1281 					   DMA_FROM_DEVICE);
1282 
1283 			(p + entry)->des2 = priv->rx_skbuff_dma[entry];
1284 
1285 			if (unlikely(priv->plat->has_gmac))
1286 				priv->hw->ring->refill_desc3(bfsize, p + entry);
1287 
1288 			RX_DBG(KERN_INFO "\trefill entry #%d\n", entry);
1289 		}
1290 		wmb();
1291 		priv->hw->desc->set_rx_owner(p + entry);
1292 	}
1293 }
1294 
1295 static int stmmac_rx(struct stmmac_priv *priv, int limit)
1296 {
1297 	unsigned int rxsize = priv->dma_rx_size;
1298 	unsigned int entry = priv->cur_rx % rxsize;
1299 	unsigned int next_entry;
1300 	unsigned int count = 0;
1301 	struct dma_desc *p = priv->dma_rx + entry;
1302 	struct dma_desc *p_next;
1303 
1304 #ifdef STMMAC_RX_DEBUG
1305 	if (netif_msg_hw(priv)) {
1306 		pr_debug(">>> stmmac_rx: descriptor ring:\n");
1307 		display_ring(priv->dma_rx, rxsize);
1308 	}
1309 #endif
1310 	count = 0;
1311 	while (!priv->hw->desc->get_rx_owner(p)) {
1312 		int status;
1313 
1314 		if (count >= limit)
1315 			break;
1316 
1317 		count++;
1318 
1319 		next_entry = (++priv->cur_rx) % rxsize;
1320 		p_next = priv->dma_rx + next_entry;
1321 		prefetch(p_next);
1322 
1323 		/* read the status of the incoming frame */
1324 		status = (priv->hw->desc->rx_status(&priv->dev->stats,
1325 						    &priv->xstats, p));
1326 		if (unlikely(status == discard_frame))
1327 			priv->dev->stats.rx_errors++;
1328 		else {
1329 			struct sk_buff *skb;
1330 			int frame_len;
1331 
1332 			frame_len = priv->hw->desc->get_rx_frame_len(p,
1333 					priv->plat->rx_coe);
1334 			/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
1335 			 * Type frames (LLC/LLC-SNAP) */
1336 			if (unlikely(status != llc_snap))
1337 				frame_len -= ETH_FCS_LEN;
1338 #ifdef STMMAC_RX_DEBUG
1339 			if (frame_len > ETH_FRAME_LEN)
1340 				pr_debug("\tRX frame size %d, COE status: %d\n",
1341 					frame_len, status);
1342 
1343 			if (netif_msg_hw(priv))
1344 				pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
1345 					p, entry, p->des2);
1346 #endif
1347 			skb = priv->rx_skbuff[entry];
1348 			if (unlikely(!skb)) {
1349 				pr_err("%s: Inconsistent Rx descriptor chain\n",
1350 					priv->dev->name);
1351 				priv->dev->stats.rx_dropped++;
1352 				break;
1353 			}
1354 			prefetch(skb->data - NET_IP_ALIGN);
1355 			priv->rx_skbuff[entry] = NULL;
1356 
1357 			skb_put(skb, frame_len);
1358 			dma_unmap_single(priv->device,
1359 					 priv->rx_skbuff_dma[entry],
1360 					 priv->dma_buf_sz, DMA_FROM_DEVICE);
1361 #ifdef STMMAC_RX_DEBUG
1362 			if (netif_msg_pktdata(priv)) {
1363 				pr_info(" frame received (%dbytes)", frame_len);
1364 				print_pkt(skb->data, frame_len);
1365 			}
1366 #endif
1367 			skb->protocol = eth_type_trans(skb, priv->dev);
1368 
1369 			if (unlikely(!priv->plat->rx_coe)) {
1370 				/* No RX COE for old mac10/100 devices */
1371 				skb_checksum_none_assert(skb);
1372 				netif_receive_skb(skb);
1373 			} else {
1374 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1375 				napi_gro_receive(&priv->napi, skb);
1376 			}
1377 
1378 			priv->dev->stats.rx_packets++;
1379 			priv->dev->stats.rx_bytes += frame_len;
1380 		}
1381 		entry = next_entry;
1382 		p = p_next;	/* use prefetched values */
1383 	}
1384 
1385 	stmmac_rx_refill(priv);
1386 
1387 	priv->xstats.rx_pkt_n += count;
1388 
1389 	return count;
1390 }
1391 
1392 /**
1393  *  stmmac_poll - stmmac poll method (NAPI)
1394  *  @napi : pointer to the napi structure.
1395  *  @budget : maximum number of packets that the current CPU can receive from
1396  *	      all interfaces.
1397  *  Description :
1398  *   This function implements the the reception process.
1399  *   Also it runs the TX completion thread
1400  */
1401 static int stmmac_poll(struct napi_struct *napi, int budget)
1402 {
1403 	struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
1404 	int work_done = 0;
1405 
1406 	priv->xstats.poll_n++;
1407 	stmmac_tx(priv);
1408 	work_done = stmmac_rx(priv, budget);
1409 
1410 	if (work_done < budget) {
1411 		napi_complete(napi);
1412 		stmmac_enable_irq(priv);
1413 	}
1414 	return work_done;
1415 }
1416 
1417 /**
1418  *  stmmac_tx_timeout
1419  *  @dev : Pointer to net device structure
1420  *  Description: this function is called when a packet transmission fails to
1421  *   complete within a reasonable tmrate. The driver will mark the error in the
1422  *   netdev structure and arrange for the device to be reset to a sane state
1423  *   in order to transmit a new packet.
1424  */
1425 static void stmmac_tx_timeout(struct net_device *dev)
1426 {
1427 	struct stmmac_priv *priv = netdev_priv(dev);
1428 
1429 	/* Clear Tx resources and restart transmitting again */
1430 	stmmac_tx_err(priv);
1431 }
1432 
1433 /* Configuration changes (passed on by ifconfig) */
1434 static int stmmac_config(struct net_device *dev, struct ifmap *map)
1435 {
1436 	if (dev->flags & IFF_UP)	/* can't act on a running interface */
1437 		return -EBUSY;
1438 
1439 	/* Don't allow changing the I/O address */
1440 	if (map->base_addr != dev->base_addr) {
1441 		pr_warning("%s: can't change I/O address\n", dev->name);
1442 		return -EOPNOTSUPP;
1443 	}
1444 
1445 	/* Don't allow changing the IRQ */
1446 	if (map->irq != dev->irq) {
1447 		pr_warning("%s: can't change IRQ number %d\n",
1448 		       dev->name, dev->irq);
1449 		return -EOPNOTSUPP;
1450 	}
1451 
1452 	/* ignore other fields */
1453 	return 0;
1454 }
1455 
1456 /**
1457  *  stmmac_set_rx_mode - entry point for multicast addressing
1458  *  @dev : pointer to the device structure
1459  *  Description:
1460  *  This function is a driver entry point which gets called by the kernel
1461  *  whenever multicast addresses must be enabled/disabled.
1462  *  Return value:
1463  *  void.
1464  */
1465 static void stmmac_set_rx_mode(struct net_device *dev)
1466 {
1467 	struct stmmac_priv *priv = netdev_priv(dev);
1468 
1469 	spin_lock(&priv->lock);
1470 	priv->hw->mac->set_filter(dev, priv->synopsys_id);
1471 	spin_unlock(&priv->lock);
1472 }
1473 
1474 /**
1475  *  stmmac_change_mtu - entry point to change MTU size for the device.
1476  *  @dev : device pointer.
1477  *  @new_mtu : the new MTU size for the device.
1478  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
1479  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
1480  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
1481  *  Return value:
1482  *  0 on success and an appropriate (-)ve integer as defined in errno.h
1483  *  file on failure.
1484  */
1485 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
1486 {
1487 	struct stmmac_priv *priv = netdev_priv(dev);
1488 	int max_mtu;
1489 
1490 	if (netif_running(dev)) {
1491 		pr_err("%s: must be stopped to change its MTU\n", dev->name);
1492 		return -EBUSY;
1493 	}
1494 
1495 	if (priv->plat->enh_desc)
1496 		max_mtu = JUMBO_LEN;
1497 	else
1498 		max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
1499 
1500 	if ((new_mtu < 46) || (new_mtu > max_mtu)) {
1501 		pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
1502 		return -EINVAL;
1503 	}
1504 
1505 	dev->mtu = new_mtu;
1506 	netdev_update_features(dev);
1507 
1508 	return 0;
1509 }
1510 
1511 static netdev_features_t stmmac_fix_features(struct net_device *dev,
1512 	netdev_features_t features)
1513 {
1514 	struct stmmac_priv *priv = netdev_priv(dev);
1515 
1516 	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
1517 		features &= ~NETIF_F_RXCSUM;
1518 	else if (priv->plat->rx_coe == STMMAC_RX_COE_TYPE1)
1519 		features &= ~NETIF_F_IPV6_CSUM;
1520 	if (!priv->plat->tx_coe)
1521 		features &= ~NETIF_F_ALL_CSUM;
1522 
1523 	/* Some GMAC devices have a bugged Jumbo frame support that
1524 	 * needs to have the Tx COE disabled for oversized frames
1525 	 * (due to limited buffer sizes). In this case we disable
1526 	 * the TX csum insertionin the TDES and not use SF. */
1527 	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
1528 		features &= ~NETIF_F_ALL_CSUM;
1529 
1530 	return features;
1531 }
1532 
1533 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
1534 {
1535 	struct net_device *dev = (struct net_device *)dev_id;
1536 	struct stmmac_priv *priv = netdev_priv(dev);
1537 
1538 	if (unlikely(!dev)) {
1539 		pr_err("%s: invalid dev pointer\n", __func__);
1540 		return IRQ_NONE;
1541 	}
1542 
1543 	if (priv->plat->has_gmac)
1544 		/* To handle GMAC own interrupts */
1545 		priv->hw->mac->host_irq_status((void __iomem *) dev->base_addr);
1546 
1547 	stmmac_dma_interrupt(priv);
1548 
1549 	return IRQ_HANDLED;
1550 }
1551 
1552 #ifdef CONFIG_NET_POLL_CONTROLLER
1553 /* Polling receive - used by NETCONSOLE and other diagnostic tools
1554  * to allow network I/O with interrupts disabled. */
1555 static void stmmac_poll_controller(struct net_device *dev)
1556 {
1557 	disable_irq(dev->irq);
1558 	stmmac_interrupt(dev->irq, dev);
1559 	enable_irq(dev->irq);
1560 }
1561 #endif
1562 
1563 /**
1564  *  stmmac_ioctl - Entry point for the Ioctl
1565  *  @dev: Device pointer.
1566  *  @rq: An IOCTL specefic structure, that can contain a pointer to
1567  *  a proprietary structure used to pass information to the driver.
1568  *  @cmd: IOCTL command
1569  *  Description:
1570  *  Currently there are no special functionality supported in IOCTL, just the
1571  *  phy_mii_ioctl(...) can be invoked.
1572  */
1573 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1574 {
1575 	struct stmmac_priv *priv = netdev_priv(dev);
1576 	int ret;
1577 
1578 	if (!netif_running(dev))
1579 		return -EINVAL;
1580 
1581 	if (!priv->phydev)
1582 		return -EINVAL;
1583 
1584 	ret = phy_mii_ioctl(priv->phydev, rq, cmd);
1585 
1586 	return ret;
1587 }
1588 
1589 #ifdef CONFIG_STMMAC_DEBUG_FS
1590 static struct dentry *stmmac_fs_dir;
1591 static struct dentry *stmmac_rings_status;
1592 static struct dentry *stmmac_dma_cap;
1593 
1594 static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
1595 {
1596 	struct tmp_s {
1597 		u64 a;
1598 		unsigned int b;
1599 		unsigned int c;
1600 	};
1601 	int i;
1602 	struct net_device *dev = seq->private;
1603 	struct stmmac_priv *priv = netdev_priv(dev);
1604 
1605 	seq_printf(seq, "=======================\n");
1606 	seq_printf(seq, " RX descriptor ring\n");
1607 	seq_printf(seq, "=======================\n");
1608 
1609 	for (i = 0; i < priv->dma_rx_size; i++) {
1610 		struct tmp_s *x = (struct tmp_s *)(priv->dma_rx + i);
1611 		seq_printf(seq, "[%d] DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
1612 			   i, (unsigned int)(x->a),
1613 			   (unsigned int)((x->a) >> 32), x->b, x->c);
1614 		seq_printf(seq, "\n");
1615 	}
1616 
1617 	seq_printf(seq, "\n");
1618 	seq_printf(seq, "=======================\n");
1619 	seq_printf(seq, "  TX descriptor ring\n");
1620 	seq_printf(seq, "=======================\n");
1621 
1622 	for (i = 0; i < priv->dma_tx_size; i++) {
1623 		struct tmp_s *x = (struct tmp_s *)(priv->dma_tx + i);
1624 		seq_printf(seq, "[%d] DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
1625 			   i, (unsigned int)(x->a),
1626 			   (unsigned int)((x->a) >> 32), x->b, x->c);
1627 		seq_printf(seq, "\n");
1628 	}
1629 
1630 	return 0;
1631 }
1632 
1633 static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
1634 {
1635 	return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
1636 }
1637 
1638 static const struct file_operations stmmac_rings_status_fops = {
1639 	.owner = THIS_MODULE,
1640 	.open = stmmac_sysfs_ring_open,
1641 	.read = seq_read,
1642 	.llseek = seq_lseek,
1643 	.release = seq_release,
1644 };
1645 
1646 static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
1647 {
1648 	struct net_device *dev = seq->private;
1649 	struct stmmac_priv *priv = netdev_priv(dev);
1650 
1651 	if (!priv->hw_cap_support) {
1652 		seq_printf(seq, "DMA HW features not supported\n");
1653 		return 0;
1654 	}
1655 
1656 	seq_printf(seq, "==============================\n");
1657 	seq_printf(seq, "\tDMA HW features\n");
1658 	seq_printf(seq, "==============================\n");
1659 
1660 	seq_printf(seq, "\t10/100 Mbps %s\n",
1661 		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
1662 	seq_printf(seq, "\t1000 Mbps %s\n",
1663 		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
1664 	seq_printf(seq, "\tHalf duple %s\n",
1665 		   (priv->dma_cap.half_duplex) ? "Y" : "N");
1666 	seq_printf(seq, "\tHash Filter: %s\n",
1667 		   (priv->dma_cap.hash_filter) ? "Y" : "N");
1668 	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
1669 		   (priv->dma_cap.multi_addr) ? "Y" : "N");
1670 	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
1671 		   (priv->dma_cap.pcs) ? "Y" : "N");
1672 	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
1673 		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
1674 	seq_printf(seq, "\tPMT Remote wake up: %s\n",
1675 		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
1676 	seq_printf(seq, "\tPMT Magic Frame: %s\n",
1677 		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
1678 	seq_printf(seq, "\tRMON module: %s\n",
1679 		   (priv->dma_cap.rmon) ? "Y" : "N");
1680 	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
1681 		   (priv->dma_cap.time_stamp) ? "Y" : "N");
1682 	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n",
1683 		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
1684 	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n",
1685 		   (priv->dma_cap.eee) ? "Y" : "N");
1686 	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
1687 	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
1688 		   (priv->dma_cap.tx_coe) ? "Y" : "N");
1689 	seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
1690 		   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
1691 	seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
1692 		   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
1693 	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
1694 		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
1695 	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
1696 		   priv->dma_cap.number_rx_channel);
1697 	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
1698 		   priv->dma_cap.number_tx_channel);
1699 	seq_printf(seq, "\tEnhanced descriptors: %s\n",
1700 		   (priv->dma_cap.enh_desc) ? "Y" : "N");
1701 
1702 	return 0;
1703 }
1704 
1705 static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
1706 {
1707 	return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
1708 }
1709 
1710 static const struct file_operations stmmac_dma_cap_fops = {
1711 	.owner = THIS_MODULE,
1712 	.open = stmmac_sysfs_dma_cap_open,
1713 	.read = seq_read,
1714 	.llseek = seq_lseek,
1715 	.release = seq_release,
1716 };
1717 
1718 static int stmmac_init_fs(struct net_device *dev)
1719 {
1720 	/* Create debugfs entries */
1721 	stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
1722 
1723 	if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
1724 		pr_err("ERROR %s, debugfs create directory failed\n",
1725 		       STMMAC_RESOURCE_NAME);
1726 
1727 		return -ENOMEM;
1728 	}
1729 
1730 	/* Entry to report DMA RX/TX rings */
1731 	stmmac_rings_status = debugfs_create_file("descriptors_status",
1732 					   S_IRUGO, stmmac_fs_dir, dev,
1733 					   &stmmac_rings_status_fops);
1734 
1735 	if (!stmmac_rings_status || IS_ERR(stmmac_rings_status)) {
1736 		pr_info("ERROR creating stmmac ring debugfs file\n");
1737 		debugfs_remove(stmmac_fs_dir);
1738 
1739 		return -ENOMEM;
1740 	}
1741 
1742 	/* Entry to report the DMA HW features */
1743 	stmmac_dma_cap = debugfs_create_file("dma_cap", S_IRUGO, stmmac_fs_dir,
1744 					     dev, &stmmac_dma_cap_fops);
1745 
1746 	if (!stmmac_dma_cap || IS_ERR(stmmac_dma_cap)) {
1747 		pr_info("ERROR creating stmmac MMC debugfs file\n");
1748 		debugfs_remove(stmmac_rings_status);
1749 		debugfs_remove(stmmac_fs_dir);
1750 
1751 		return -ENOMEM;
1752 	}
1753 
1754 	return 0;
1755 }
1756 
1757 static void stmmac_exit_fs(void)
1758 {
1759 	debugfs_remove(stmmac_rings_status);
1760 	debugfs_remove(stmmac_dma_cap);
1761 	debugfs_remove(stmmac_fs_dir);
1762 }
1763 #endif /* CONFIG_STMMAC_DEBUG_FS */
1764 
1765 static const struct net_device_ops stmmac_netdev_ops = {
1766 	.ndo_open = stmmac_open,
1767 	.ndo_start_xmit = stmmac_xmit,
1768 	.ndo_stop = stmmac_release,
1769 	.ndo_change_mtu = stmmac_change_mtu,
1770 	.ndo_fix_features = stmmac_fix_features,
1771 	.ndo_set_rx_mode = stmmac_set_rx_mode,
1772 	.ndo_tx_timeout = stmmac_tx_timeout,
1773 	.ndo_do_ioctl = stmmac_ioctl,
1774 	.ndo_set_config = stmmac_config,
1775 #ifdef CONFIG_NET_POLL_CONTROLLER
1776 	.ndo_poll_controller = stmmac_poll_controller,
1777 #endif
1778 	.ndo_set_mac_address = eth_mac_addr,
1779 };
1780 
1781 /**
1782  *  stmmac_hw_init - Init the MAC device
1783  *  @priv : pointer to the private device structure.
1784  *  Description: this function detects which MAC device
1785  *  (GMAC/MAC10-100) has to attached, checks the HW capability
1786  *  (if supported) and sets the driver's features (for example
1787  *  to use the ring or chaine mode or support the normal/enh
1788  *  descriptor structure).
1789  */
1790 static int stmmac_hw_init(struct stmmac_priv *priv)
1791 {
1792 	int ret = 0;
1793 	struct mac_device_info *mac;
1794 
1795 	/* Identify the MAC HW device */
1796 	if (priv->plat->has_gmac) {
1797 		priv->dev->priv_flags |= IFF_UNICAST_FLT;
1798 		mac = dwmac1000_setup(priv->ioaddr);
1799 	} else {
1800 		mac = dwmac100_setup(priv->ioaddr);
1801 	}
1802 	if (!mac)
1803 		return -ENOMEM;
1804 
1805 	priv->hw = mac;
1806 
1807 	/* To use the chained or ring mode */
1808 	priv->hw->ring = &ring_mode_ops;
1809 
1810 	/* Get and dump the chip ID */
1811 	priv->synopsys_id = stmmac_get_synopsys_id(priv);
1812 
1813 	/* Get the HW capability (new GMAC newer than 3.50a) */
1814 	priv->hw_cap_support = stmmac_get_hw_features(priv);
1815 	if (priv->hw_cap_support) {
1816 		pr_info(" DMA HW capability register supported");
1817 
1818 		/* We can override some gmac/dma configuration fields: e.g.
1819 		 * enh_desc, tx_coe (e.g. that are passed through the
1820 		 * platform) with the values from the HW capability
1821 		 * register (if supported).
1822 		 */
1823 		priv->plat->enh_desc = priv->dma_cap.enh_desc;
1824 		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
1825 
1826 		priv->plat->tx_coe = priv->dma_cap.tx_coe;
1827 
1828 		if (priv->dma_cap.rx_coe_type2)
1829 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
1830 		else if (priv->dma_cap.rx_coe_type1)
1831 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
1832 
1833 	} else
1834 		pr_info(" No HW DMA feature register supported");
1835 
1836 	/* Select the enhnaced/normal descriptor structures */
1837 	stmmac_selec_desc_mode(priv);
1838 
1839 	/* Enable the IPC (Checksum Offload) and check if the feature has been
1840 	 * enabled during the core configuration. */
1841 	ret = priv->hw->mac->rx_ipc(priv->ioaddr);
1842 	if (!ret) {
1843 		pr_warning(" RX IPC Checksum Offload not configured.\n");
1844 		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
1845 	}
1846 
1847 	if (priv->plat->rx_coe)
1848 		pr_info(" RX Checksum Offload Engine supported (type %d)\n",
1849 			priv->plat->rx_coe);
1850 	if (priv->plat->tx_coe)
1851 		pr_info(" TX Checksum insertion supported\n");
1852 
1853 	if (priv->plat->pmt) {
1854 		pr_info(" Wake-Up On Lan supported\n");
1855 		device_set_wakeup_capable(priv->device, 1);
1856 	}
1857 
1858 	return ret;
1859 }
1860 
1861 /**
1862  * stmmac_dvr_probe
1863  * @device: device pointer
1864  * Description: this is the main probe function used to
1865  * call the alloc_etherdev, allocate the priv structure.
1866  */
1867 struct stmmac_priv *stmmac_dvr_probe(struct device *device,
1868 				     struct plat_stmmacenet_data *plat_dat,
1869 				     void __iomem *addr)
1870 {
1871 	int ret = 0;
1872 	struct net_device *ndev = NULL;
1873 	struct stmmac_priv *priv;
1874 
1875 	ndev = alloc_etherdev(sizeof(struct stmmac_priv));
1876 	if (!ndev)
1877 		return NULL;
1878 
1879 	SET_NETDEV_DEV(ndev, device);
1880 
1881 	priv = netdev_priv(ndev);
1882 	priv->device = device;
1883 	priv->dev = ndev;
1884 
1885 	ether_setup(ndev);
1886 
1887 	stmmac_set_ethtool_ops(ndev);
1888 	priv->pause = pause;
1889 	priv->plat = plat_dat;
1890 	priv->ioaddr = addr;
1891 	priv->dev->base_addr = (unsigned long)addr;
1892 
1893 	/* Verify driver arguments */
1894 	stmmac_verify_args();
1895 
1896 	/* Override with kernel parameters if supplied XXX CRS XXX
1897 	 * this needs to have multiple instances */
1898 	if ((phyaddr >= 0) && (phyaddr <= 31))
1899 		priv->plat->phy_addr = phyaddr;
1900 
1901 	/* Init MAC and get the capabilities */
1902 	stmmac_hw_init(priv);
1903 
1904 	ndev->netdev_ops = &stmmac_netdev_ops;
1905 
1906 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1907 			    NETIF_F_RXCSUM;
1908 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
1909 	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
1910 #ifdef STMMAC_VLAN_TAG_USED
1911 	/* Both mac100 and gmac support receive VLAN tag detection */
1912 	ndev->features |= NETIF_F_HW_VLAN_RX;
1913 #endif
1914 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
1915 
1916 	if (flow_ctrl)
1917 		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
1918 
1919 	netif_napi_add(ndev, &priv->napi, stmmac_poll, 64);
1920 
1921 	spin_lock_init(&priv->lock);
1922 	spin_lock_init(&priv->tx_lock);
1923 
1924 	ret = register_netdev(ndev);
1925 	if (ret) {
1926 		pr_err("%s: ERROR %i registering the device\n", __func__, ret);
1927 		goto error;
1928 	}
1929 
1930 	if (stmmac_clk_get(priv))
1931 		pr_warning("%s: warning: cannot get CSR clock\n", __func__);
1932 
1933 	/* If a specific clk_csr value is passed from the platform
1934 	 * this means that the CSR Clock Range selection cannot be
1935 	 * changed at run-time and it is fixed. Viceversa the driver'll try to
1936 	 * set the MDC clock dynamically according to the csr actual
1937 	 * clock input.
1938 	 */
1939 	if (!priv->plat->clk_csr)
1940 		stmmac_clk_csr_set(priv);
1941 	else
1942 		priv->clk_csr = priv->plat->clk_csr;
1943 
1944 	/* MDIO bus Registration */
1945 	ret = stmmac_mdio_register(ndev);
1946 	if (ret < 0) {
1947 		pr_debug("%s: MDIO bus (id: %d) registration failed",
1948 			 __func__, priv->plat->bus_id);
1949 		goto error;
1950 	}
1951 
1952 	return priv;
1953 
1954 error:
1955 	netif_napi_del(&priv->napi);
1956 
1957 	unregister_netdev(ndev);
1958 	free_netdev(ndev);
1959 
1960 	return NULL;
1961 }
1962 
1963 /**
1964  * stmmac_dvr_remove
1965  * @ndev: net device pointer
1966  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
1967  * changes the link status, releases the DMA descriptor rings.
1968  */
1969 int stmmac_dvr_remove(struct net_device *ndev)
1970 {
1971 	struct stmmac_priv *priv = netdev_priv(ndev);
1972 
1973 	pr_info("%s:\n\tremoving driver", __func__);
1974 
1975 	priv->hw->dma->stop_rx(priv->ioaddr);
1976 	priv->hw->dma->stop_tx(priv->ioaddr);
1977 
1978 	stmmac_set_mac(priv->ioaddr, false);
1979 	stmmac_mdio_unregister(ndev);
1980 	netif_carrier_off(ndev);
1981 	unregister_netdev(ndev);
1982 	free_netdev(ndev);
1983 
1984 	return 0;
1985 }
1986 
1987 #ifdef CONFIG_PM
1988 int stmmac_suspend(struct net_device *ndev)
1989 {
1990 	struct stmmac_priv *priv = netdev_priv(ndev);
1991 	int dis_ic = 0;
1992 	unsigned long flags;
1993 
1994 	if (!ndev || !netif_running(ndev))
1995 		return 0;
1996 
1997 	if (priv->phydev)
1998 		phy_stop(priv->phydev);
1999 
2000 	spin_lock_irqsave(&priv->lock, flags);
2001 
2002 	netif_device_detach(ndev);
2003 	netif_stop_queue(ndev);
2004 
2005 #ifdef CONFIG_STMMAC_TIMER
2006 	priv->tm->timer_stop();
2007 	if (likely(priv->tm->enable))
2008 		dis_ic = 1;
2009 #endif
2010 	napi_disable(&priv->napi);
2011 
2012 	/* Stop TX/RX DMA */
2013 	priv->hw->dma->stop_tx(priv->ioaddr);
2014 	priv->hw->dma->stop_rx(priv->ioaddr);
2015 	/* Clear the Rx/Tx descriptors */
2016 	priv->hw->desc->init_rx_desc(priv->dma_rx, priv->dma_rx_size,
2017 				     dis_ic);
2018 	priv->hw->desc->init_tx_desc(priv->dma_tx, priv->dma_tx_size);
2019 
2020 	/* Enable Power down mode by programming the PMT regs */
2021 	if (device_may_wakeup(priv->device))
2022 		priv->hw->mac->pmt(priv->ioaddr, priv->wolopts);
2023 	else {
2024 		stmmac_set_mac(priv->ioaddr, false);
2025 		/* Disable clock in case of PWM is off */
2026 		stmmac_clk_disable(priv);
2027 	}
2028 	spin_unlock_irqrestore(&priv->lock, flags);
2029 	return 0;
2030 }
2031 
2032 int stmmac_resume(struct net_device *ndev)
2033 {
2034 	struct stmmac_priv *priv = netdev_priv(ndev);
2035 	unsigned long flags;
2036 
2037 	if (!netif_running(ndev))
2038 		return 0;
2039 
2040 	spin_lock_irqsave(&priv->lock, flags);
2041 
2042 	/* Power Down bit, into the PM register, is cleared
2043 	 * automatically as soon as a magic packet or a Wake-up frame
2044 	 * is received. Anyway, it's better to manually clear
2045 	 * this bit because it can generate problems while resuming
2046 	 * from another devices (e.g. serial console). */
2047 	if (device_may_wakeup(priv->device))
2048 		priv->hw->mac->pmt(priv->ioaddr, 0);
2049 	else
2050 		/* enable the clk prevously disabled */
2051 		stmmac_clk_enable(priv);
2052 
2053 	netif_device_attach(ndev);
2054 
2055 	/* Enable the MAC and DMA */
2056 	stmmac_set_mac(priv->ioaddr, true);
2057 	priv->hw->dma->start_tx(priv->ioaddr);
2058 	priv->hw->dma->start_rx(priv->ioaddr);
2059 
2060 #ifdef CONFIG_STMMAC_TIMER
2061 	if (likely(priv->tm->enable))
2062 		priv->tm->timer_start(tmrate);
2063 #endif
2064 	napi_enable(&priv->napi);
2065 
2066 	netif_start_queue(ndev);
2067 
2068 	spin_unlock_irqrestore(&priv->lock, flags);
2069 
2070 	if (priv->phydev)
2071 		phy_start(priv->phydev);
2072 
2073 	return 0;
2074 }
2075 
2076 int stmmac_freeze(struct net_device *ndev)
2077 {
2078 	if (!ndev || !netif_running(ndev))
2079 		return 0;
2080 
2081 	return stmmac_release(ndev);
2082 }
2083 
2084 int stmmac_restore(struct net_device *ndev)
2085 {
2086 	if (!ndev || !netif_running(ndev))
2087 		return 0;
2088 
2089 	return stmmac_open(ndev);
2090 }
2091 #endif /* CONFIG_PM */
2092 
2093 #ifndef MODULE
2094 static int __init stmmac_cmdline_opt(char *str)
2095 {
2096 	char *opt;
2097 
2098 	if (!str || !*str)
2099 		return -EINVAL;
2100 	while ((opt = strsep(&str, ",")) != NULL) {
2101 		if (!strncmp(opt, "debug:", 6)) {
2102 			if (strict_strtoul(opt + 6, 0, (unsigned long *)&debug))
2103 				goto err;
2104 		} else if (!strncmp(opt, "phyaddr:", 8)) {
2105 			if (strict_strtoul(opt + 8, 0,
2106 					   (unsigned long *)&phyaddr))
2107 				goto err;
2108 		} else if (!strncmp(opt, "dma_txsize:", 11)) {
2109 			if (strict_strtoul(opt + 11, 0,
2110 					   (unsigned long *)&dma_txsize))
2111 				goto err;
2112 		} else if (!strncmp(opt, "dma_rxsize:", 11)) {
2113 			if (strict_strtoul(opt + 11, 0,
2114 					   (unsigned long *)&dma_rxsize))
2115 				goto err;
2116 		} else if (!strncmp(opt, "buf_sz:", 7)) {
2117 			if (strict_strtoul(opt + 7, 0,
2118 					   (unsigned long *)&buf_sz))
2119 				goto err;
2120 		} else if (!strncmp(opt, "tc:", 3)) {
2121 			if (strict_strtoul(opt + 3, 0, (unsigned long *)&tc))
2122 				goto err;
2123 		} else if (!strncmp(opt, "watchdog:", 9)) {
2124 			if (strict_strtoul(opt + 9, 0,
2125 					   (unsigned long *)&watchdog))
2126 				goto err;
2127 		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
2128 			if (strict_strtoul(opt + 10, 0,
2129 					   (unsigned long *)&flow_ctrl))
2130 				goto err;
2131 		} else if (!strncmp(opt, "pause:", 6)) {
2132 			if (strict_strtoul(opt + 6, 0, (unsigned long *)&pause))
2133 				goto err;
2134 #ifdef CONFIG_STMMAC_TIMER
2135 		} else if (!strncmp(opt, "tmrate:", 7)) {
2136 			if (strict_strtoul(opt + 7, 0,
2137 					   (unsigned long *)&tmrate))
2138 				goto err;
2139 #endif
2140 		}
2141 	}
2142 	return 0;
2143 
2144 err:
2145 	pr_err("%s: ERROR broken module parameter conversion", __func__);
2146 	return -EINVAL;
2147 }
2148 
2149 __setup("stmmaceth=", stmmac_cmdline_opt);
2150 #endif
2151 
2152 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
2153 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
2154 MODULE_LICENSE("GPL");
2155