xref: /linux/drivers/net/ethernet/stmicro/stmmac/stmmac_main.c (revision a44e4f3ab16bc808590763a543a93b6fbf3abcc4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*******************************************************************************
3   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
4   ST Ethernet IPs are built around a Synopsys IP Core.
5 
6 	Copyright(C) 2007-2011 STMicroelectronics Ltd
7 
8 
9   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
10 
11   Documentation available at:
12 	http://www.stlinux.com
13   Support available at:
14 	https://bugzilla.stlinux.com/
15 *******************************************************************************/
16 
17 #include <linux/clk.h>
18 #include <linux/kernel.h>
19 #include <linux/interrupt.h>
20 #include <linux/ip.h>
21 #include <linux/tcp.h>
22 #include <linux/skbuff.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_ether.h>
25 #include <linux/crc32.h>
26 #include <linux/mii.h>
27 #include <linux/if.h>
28 #include <linux/if_vlan.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/slab.h>
31 #include <linux/prefetch.h>
32 #include <linux/pinctrl/consumer.h>
33 #ifdef CONFIG_DEBUG_FS
34 #include <linux/debugfs.h>
35 #include <linux/seq_file.h>
36 #endif /* CONFIG_DEBUG_FS */
37 #include <linux/net_tstamp.h>
38 #include <linux/phylink.h>
39 #include <net/pkt_cls.h>
40 #include "stmmac_ptp.h"
41 #include "stmmac.h"
42 #include <linux/reset.h>
43 #include <linux/of_mdio.h>
44 #include "dwmac1000.h"
45 #include "dwxgmac2.h"
46 #include "hwif.h"
47 
48 #define	STMMAC_ALIGN(x)		__ALIGN_KERNEL(x, SMP_CACHE_BYTES)
49 #define	TSO_MAX_BUFF_SIZE	(SZ_16K - 1)
50 
51 /* Module parameters */
52 #define TX_TIMEO	5000
53 static int watchdog = TX_TIMEO;
54 module_param(watchdog, int, 0644);
55 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
56 
57 static int debug = -1;
58 module_param(debug, int, 0644);
59 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
60 
61 static int phyaddr = -1;
62 module_param(phyaddr, int, 0444);
63 MODULE_PARM_DESC(phyaddr, "Physical device address");
64 
65 #define STMMAC_TX_THRESH	(DMA_TX_SIZE / 4)
66 #define STMMAC_RX_THRESH	(DMA_RX_SIZE / 4)
67 
68 static int flow_ctrl = FLOW_AUTO;
69 module_param(flow_ctrl, int, 0644);
70 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
71 
72 static int pause = PAUSE_TIME;
73 module_param(pause, int, 0644);
74 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
75 
76 #define TC_DEFAULT 64
77 static int tc = TC_DEFAULT;
78 module_param(tc, int, 0644);
79 MODULE_PARM_DESC(tc, "DMA threshold control value");
80 
81 #define	DEFAULT_BUFSIZE	1536
82 static int buf_sz = DEFAULT_BUFSIZE;
83 module_param(buf_sz, int, 0644);
84 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
85 
86 #define	STMMAC_RX_COPYBREAK	256
87 
88 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
89 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
90 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
91 
92 #define STMMAC_DEFAULT_LPI_TIMER	1000
93 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
94 module_param(eee_timer, int, 0644);
95 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
96 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
97 
98 /* By default the driver will use the ring mode to manage tx and rx descriptors,
99  * but allow user to force to use the chain instead of the ring
100  */
101 static unsigned int chain_mode;
102 module_param(chain_mode, int, 0444);
103 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
104 
105 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
106 
107 #ifdef CONFIG_DEBUG_FS
108 static void stmmac_init_fs(struct net_device *dev);
109 static void stmmac_exit_fs(struct net_device *dev);
110 #endif
111 
112 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
113 
114 /**
115  * stmmac_verify_args - verify the driver parameters.
116  * Description: it checks the driver parameters and set a default in case of
117  * errors.
118  */
119 static void stmmac_verify_args(void)
120 {
121 	if (unlikely(watchdog < 0))
122 		watchdog = TX_TIMEO;
123 	if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
124 		buf_sz = DEFAULT_BUFSIZE;
125 	if (unlikely(flow_ctrl > 1))
126 		flow_ctrl = FLOW_AUTO;
127 	else if (likely(flow_ctrl < 0))
128 		flow_ctrl = FLOW_OFF;
129 	if (unlikely((pause < 0) || (pause > 0xffff)))
130 		pause = PAUSE_TIME;
131 	if (eee_timer < 0)
132 		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
133 }
134 
135 /**
136  * stmmac_disable_all_queues - Disable all queues
137  * @priv: driver private structure
138  */
139 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
140 {
141 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
142 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
143 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
144 	u32 queue;
145 
146 	for (queue = 0; queue < maxq; queue++) {
147 		struct stmmac_channel *ch = &priv->channel[queue];
148 
149 		if (queue < rx_queues_cnt)
150 			napi_disable(&ch->rx_napi);
151 		if (queue < tx_queues_cnt)
152 			napi_disable(&ch->tx_napi);
153 	}
154 }
155 
156 /**
157  * stmmac_enable_all_queues - Enable all queues
158  * @priv: driver private structure
159  */
160 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
161 {
162 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
163 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
164 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
165 	u32 queue;
166 
167 	for (queue = 0; queue < maxq; queue++) {
168 		struct stmmac_channel *ch = &priv->channel[queue];
169 
170 		if (queue < rx_queues_cnt)
171 			napi_enable(&ch->rx_napi);
172 		if (queue < tx_queues_cnt)
173 			napi_enable(&ch->tx_napi);
174 	}
175 }
176 
177 /**
178  * stmmac_stop_all_queues - Stop all queues
179  * @priv: driver private structure
180  */
181 static void stmmac_stop_all_queues(struct stmmac_priv *priv)
182 {
183 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
184 	u32 queue;
185 
186 	for (queue = 0; queue < tx_queues_cnt; queue++)
187 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
188 }
189 
190 /**
191  * stmmac_start_all_queues - Start all queues
192  * @priv: driver private structure
193  */
194 static void stmmac_start_all_queues(struct stmmac_priv *priv)
195 {
196 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
197 	u32 queue;
198 
199 	for (queue = 0; queue < tx_queues_cnt; queue++)
200 		netif_tx_start_queue(netdev_get_tx_queue(priv->dev, queue));
201 }
202 
203 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
204 {
205 	if (!test_bit(STMMAC_DOWN, &priv->state) &&
206 	    !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
207 		queue_work(priv->wq, &priv->service_task);
208 }
209 
210 static void stmmac_global_err(struct stmmac_priv *priv)
211 {
212 	netif_carrier_off(priv->dev);
213 	set_bit(STMMAC_RESET_REQUESTED, &priv->state);
214 	stmmac_service_event_schedule(priv);
215 }
216 
217 /**
218  * stmmac_clk_csr_set - dynamically set the MDC clock
219  * @priv: driver private structure
220  * Description: this is to dynamically set the MDC clock according to the csr
221  * clock input.
222  * Note:
223  *	If a specific clk_csr value is passed from the platform
224  *	this means that the CSR Clock Range selection cannot be
225  *	changed at run-time and it is fixed (as reported in the driver
226  *	documentation). Viceversa the driver will try to set the MDC
227  *	clock dynamically according to the actual clock input.
228  */
229 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
230 {
231 	u32 clk_rate;
232 
233 	clk_rate = clk_get_rate(priv->plat->stmmac_clk);
234 
235 	/* Platform provided default clk_csr would be assumed valid
236 	 * for all other cases except for the below mentioned ones.
237 	 * For values higher than the IEEE 802.3 specified frequency
238 	 * we can not estimate the proper divider as it is not known
239 	 * the frequency of clk_csr_i. So we do not change the default
240 	 * divider.
241 	 */
242 	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
243 		if (clk_rate < CSR_F_35M)
244 			priv->clk_csr = STMMAC_CSR_20_35M;
245 		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
246 			priv->clk_csr = STMMAC_CSR_35_60M;
247 		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
248 			priv->clk_csr = STMMAC_CSR_60_100M;
249 		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
250 			priv->clk_csr = STMMAC_CSR_100_150M;
251 		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
252 			priv->clk_csr = STMMAC_CSR_150_250M;
253 		else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
254 			priv->clk_csr = STMMAC_CSR_250_300M;
255 	}
256 
257 	if (priv->plat->has_sun8i) {
258 		if (clk_rate > 160000000)
259 			priv->clk_csr = 0x03;
260 		else if (clk_rate > 80000000)
261 			priv->clk_csr = 0x02;
262 		else if (clk_rate > 40000000)
263 			priv->clk_csr = 0x01;
264 		else
265 			priv->clk_csr = 0;
266 	}
267 
268 	if (priv->plat->has_xgmac) {
269 		if (clk_rate > 400000000)
270 			priv->clk_csr = 0x5;
271 		else if (clk_rate > 350000000)
272 			priv->clk_csr = 0x4;
273 		else if (clk_rate > 300000000)
274 			priv->clk_csr = 0x3;
275 		else if (clk_rate > 250000000)
276 			priv->clk_csr = 0x2;
277 		else if (clk_rate > 150000000)
278 			priv->clk_csr = 0x1;
279 		else
280 			priv->clk_csr = 0x0;
281 	}
282 }
283 
284 static void print_pkt(unsigned char *buf, int len)
285 {
286 	pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
287 	print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
288 }
289 
290 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
291 {
292 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
293 	u32 avail;
294 
295 	if (tx_q->dirty_tx > tx_q->cur_tx)
296 		avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
297 	else
298 		avail = DMA_TX_SIZE - tx_q->cur_tx + tx_q->dirty_tx - 1;
299 
300 	return avail;
301 }
302 
303 /**
304  * stmmac_rx_dirty - Get RX queue dirty
305  * @priv: driver private structure
306  * @queue: RX queue index
307  */
308 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
309 {
310 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
311 	u32 dirty;
312 
313 	if (rx_q->dirty_rx <= rx_q->cur_rx)
314 		dirty = rx_q->cur_rx - rx_q->dirty_rx;
315 	else
316 		dirty = DMA_RX_SIZE - rx_q->dirty_rx + rx_q->cur_rx;
317 
318 	return dirty;
319 }
320 
321 /**
322  * stmmac_enable_eee_mode - check and enter in LPI mode
323  * @priv: driver private structure
324  * Description: this function is to verify and enter in LPI mode in case of
325  * EEE.
326  */
327 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
328 {
329 	u32 tx_cnt = priv->plat->tx_queues_to_use;
330 	u32 queue;
331 
332 	/* check if all TX queues have the work finished */
333 	for (queue = 0; queue < tx_cnt; queue++) {
334 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
335 
336 		if (tx_q->dirty_tx != tx_q->cur_tx)
337 			return; /* still unfinished work */
338 	}
339 
340 	/* Check and enter in LPI mode */
341 	if (!priv->tx_path_in_lpi_mode)
342 		stmmac_set_eee_mode(priv, priv->hw,
343 				priv->plat->en_tx_lpi_clockgating);
344 }
345 
346 /**
347  * stmmac_disable_eee_mode - disable and exit from LPI mode
348  * @priv: driver private structure
349  * Description: this function is to exit and disable EEE in case of
350  * LPI state is true. This is called by the xmit.
351  */
352 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
353 {
354 	stmmac_reset_eee_mode(priv, priv->hw);
355 	del_timer_sync(&priv->eee_ctrl_timer);
356 	priv->tx_path_in_lpi_mode = false;
357 }
358 
359 /**
360  * stmmac_eee_ctrl_timer - EEE TX SW timer.
361  * @arg : data hook
362  * Description:
363  *  if there is no data transfer and if we are not in LPI state,
364  *  then MAC Transmitter can be moved to LPI state.
365  */
366 static void stmmac_eee_ctrl_timer(struct timer_list *t)
367 {
368 	struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
369 
370 	stmmac_enable_eee_mode(priv);
371 	mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
372 }
373 
374 /**
375  * stmmac_eee_init - init EEE
376  * @priv: driver private structure
377  * Description:
378  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
379  *  can also manage EEE, this function enable the LPI state and start related
380  *  timer.
381  */
382 bool stmmac_eee_init(struct stmmac_priv *priv)
383 {
384 	int tx_lpi_timer = priv->tx_lpi_timer;
385 
386 	/* Using PCS we cannot dial with the phy registers at this stage
387 	 * so we do not support extra feature like EEE.
388 	 */
389 	if ((priv->hw->pcs == STMMAC_PCS_RGMII) ||
390 	    (priv->hw->pcs == STMMAC_PCS_TBI) ||
391 	    (priv->hw->pcs == STMMAC_PCS_RTBI))
392 		return false;
393 
394 	/* Check if MAC core supports the EEE feature. */
395 	if (!priv->dma_cap.eee)
396 		return false;
397 
398 	mutex_lock(&priv->lock);
399 
400 	/* Check if it needs to be deactivated */
401 	if (!priv->eee_active) {
402 		if (priv->eee_enabled) {
403 			netdev_dbg(priv->dev, "disable EEE\n");
404 			del_timer_sync(&priv->eee_ctrl_timer);
405 			stmmac_set_eee_timer(priv, priv->hw, 0, tx_lpi_timer);
406 		}
407 		mutex_unlock(&priv->lock);
408 		return false;
409 	}
410 
411 	if (priv->eee_active && !priv->eee_enabled) {
412 		timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
413 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
414 		stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
415 				     tx_lpi_timer);
416 	}
417 
418 	mutex_unlock(&priv->lock);
419 	netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
420 	return true;
421 }
422 
423 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
424  * @priv: driver private structure
425  * @p : descriptor pointer
426  * @skb : the socket buffer
427  * Description :
428  * This function will read timestamp from the descriptor & pass it to stack.
429  * and also perform some sanity checks.
430  */
431 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
432 				   struct dma_desc *p, struct sk_buff *skb)
433 {
434 	struct skb_shared_hwtstamps shhwtstamp;
435 	bool found = false;
436 	u64 ns = 0;
437 
438 	if (!priv->hwts_tx_en)
439 		return;
440 
441 	/* exit if skb doesn't support hw tstamp */
442 	if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
443 		return;
444 
445 	/* check tx tstamp status */
446 	if (stmmac_get_tx_timestamp_status(priv, p)) {
447 		stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
448 		found = true;
449 	} else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) {
450 		found = true;
451 	}
452 
453 	if (found) {
454 		memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
455 		shhwtstamp.hwtstamp = ns_to_ktime(ns);
456 
457 		netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
458 		/* pass tstamp to stack */
459 		skb_tstamp_tx(skb, &shhwtstamp);
460 	}
461 }
462 
463 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
464  * @priv: driver private structure
465  * @p : descriptor pointer
466  * @np : next descriptor pointer
467  * @skb : the socket buffer
468  * Description :
469  * This function will read received packet's timestamp from the descriptor
470  * and pass it to stack. It also perform some sanity checks.
471  */
472 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
473 				   struct dma_desc *np, struct sk_buff *skb)
474 {
475 	struct skb_shared_hwtstamps *shhwtstamp = NULL;
476 	struct dma_desc *desc = p;
477 	u64 ns = 0;
478 
479 	if (!priv->hwts_rx_en)
480 		return;
481 	/* For GMAC4, the valid timestamp is from CTX next desc. */
482 	if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
483 		desc = np;
484 
485 	/* Check if timestamp is available */
486 	if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
487 		stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
488 		netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
489 		shhwtstamp = skb_hwtstamps(skb);
490 		memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
491 		shhwtstamp->hwtstamp = ns_to_ktime(ns);
492 	} else  {
493 		netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
494 	}
495 }
496 
497 /**
498  *  stmmac_hwtstamp_set - control hardware timestamping.
499  *  @dev: device pointer.
500  *  @ifr: An IOCTL specific structure, that can contain a pointer to
501  *  a proprietary structure used to pass information to the driver.
502  *  Description:
503  *  This function configures the MAC to enable/disable both outgoing(TX)
504  *  and incoming(RX) packets time stamping based on user input.
505  *  Return Value:
506  *  0 on success and an appropriate -ve integer on failure.
507  */
508 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
509 {
510 	struct stmmac_priv *priv = netdev_priv(dev);
511 	struct hwtstamp_config config;
512 	struct timespec64 now;
513 	u64 temp = 0;
514 	u32 ptp_v2 = 0;
515 	u32 tstamp_all = 0;
516 	u32 ptp_over_ipv4_udp = 0;
517 	u32 ptp_over_ipv6_udp = 0;
518 	u32 ptp_over_ethernet = 0;
519 	u32 snap_type_sel = 0;
520 	u32 ts_master_en = 0;
521 	u32 ts_event_en = 0;
522 	u32 sec_inc = 0;
523 	u32 value = 0;
524 	bool xmac;
525 
526 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
527 
528 	if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
529 		netdev_alert(priv->dev, "No support for HW time stamping\n");
530 		priv->hwts_tx_en = 0;
531 		priv->hwts_rx_en = 0;
532 
533 		return -EOPNOTSUPP;
534 	}
535 
536 	if (copy_from_user(&config, ifr->ifr_data,
537 			   sizeof(config)))
538 		return -EFAULT;
539 
540 	netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
541 		   __func__, config.flags, config.tx_type, config.rx_filter);
542 
543 	/* reserved for future extensions */
544 	if (config.flags)
545 		return -EINVAL;
546 
547 	if (config.tx_type != HWTSTAMP_TX_OFF &&
548 	    config.tx_type != HWTSTAMP_TX_ON)
549 		return -ERANGE;
550 
551 	if (priv->adv_ts) {
552 		switch (config.rx_filter) {
553 		case HWTSTAMP_FILTER_NONE:
554 			/* time stamp no incoming packet at all */
555 			config.rx_filter = HWTSTAMP_FILTER_NONE;
556 			break;
557 
558 		case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
559 			/* PTP v1, UDP, any kind of event packet */
560 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
561 			/* 'xmac' hardware can support Sync, Pdelay_Req and
562 			 * Pdelay_resp by setting bit14 and bits17/16 to 01
563 			 * This leaves Delay_Req timestamps out.
564 			 * Enable all events *and* general purpose message
565 			 * timestamping
566 			 */
567 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
568 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
569 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
570 			break;
571 
572 		case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
573 			/* PTP v1, UDP, Sync packet */
574 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
575 			/* take time stamp for SYNC messages only */
576 			ts_event_en = PTP_TCR_TSEVNTENA;
577 
578 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
579 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
580 			break;
581 
582 		case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
583 			/* PTP v1, UDP, Delay_req packet */
584 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
585 			/* take time stamp for Delay_Req messages only */
586 			ts_master_en = PTP_TCR_TSMSTRENA;
587 			ts_event_en = PTP_TCR_TSEVNTENA;
588 
589 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
590 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
591 			break;
592 
593 		case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
594 			/* PTP v2, UDP, any kind of event packet */
595 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
596 			ptp_v2 = PTP_TCR_TSVER2ENA;
597 			/* take time stamp for all event messages */
598 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
599 
600 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
601 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
602 			break;
603 
604 		case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
605 			/* PTP v2, UDP, Sync packet */
606 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
607 			ptp_v2 = PTP_TCR_TSVER2ENA;
608 			/* take time stamp for SYNC messages only */
609 			ts_event_en = PTP_TCR_TSEVNTENA;
610 
611 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
612 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
613 			break;
614 
615 		case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
616 			/* PTP v2, UDP, Delay_req packet */
617 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
618 			ptp_v2 = PTP_TCR_TSVER2ENA;
619 			/* take time stamp for Delay_Req messages only */
620 			ts_master_en = PTP_TCR_TSMSTRENA;
621 			ts_event_en = PTP_TCR_TSEVNTENA;
622 
623 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
624 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
625 			break;
626 
627 		case HWTSTAMP_FILTER_PTP_V2_EVENT:
628 			/* PTP v2/802.AS1 any layer, any kind of event packet */
629 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
630 			ptp_v2 = PTP_TCR_TSVER2ENA;
631 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
632 			ts_event_en = PTP_TCR_TSEVNTENA;
633 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
634 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
635 			ptp_over_ethernet = PTP_TCR_TSIPENA;
636 			break;
637 
638 		case HWTSTAMP_FILTER_PTP_V2_SYNC:
639 			/* PTP v2/802.AS1, any layer, Sync packet */
640 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
641 			ptp_v2 = PTP_TCR_TSVER2ENA;
642 			/* take time stamp for SYNC messages only */
643 			ts_event_en = PTP_TCR_TSEVNTENA;
644 
645 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
646 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
647 			ptp_over_ethernet = PTP_TCR_TSIPENA;
648 			break;
649 
650 		case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
651 			/* PTP v2/802.AS1, any layer, Delay_req packet */
652 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
653 			ptp_v2 = PTP_TCR_TSVER2ENA;
654 			/* take time stamp for Delay_Req messages only */
655 			ts_master_en = PTP_TCR_TSMSTRENA;
656 			ts_event_en = PTP_TCR_TSEVNTENA;
657 
658 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
659 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
660 			ptp_over_ethernet = PTP_TCR_TSIPENA;
661 			break;
662 
663 		case HWTSTAMP_FILTER_NTP_ALL:
664 		case HWTSTAMP_FILTER_ALL:
665 			/* time stamp any incoming packet */
666 			config.rx_filter = HWTSTAMP_FILTER_ALL;
667 			tstamp_all = PTP_TCR_TSENALL;
668 			break;
669 
670 		default:
671 			return -ERANGE;
672 		}
673 	} else {
674 		switch (config.rx_filter) {
675 		case HWTSTAMP_FILTER_NONE:
676 			config.rx_filter = HWTSTAMP_FILTER_NONE;
677 			break;
678 		default:
679 			/* PTP v1, UDP, any kind of event packet */
680 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
681 			break;
682 		}
683 	}
684 	priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
685 	priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
686 
687 	if (!priv->hwts_tx_en && !priv->hwts_rx_en)
688 		stmmac_config_hw_tstamping(priv, priv->ptpaddr, 0);
689 	else {
690 		value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
691 			 tstamp_all | ptp_v2 | ptp_over_ethernet |
692 			 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
693 			 ts_master_en | snap_type_sel);
694 		stmmac_config_hw_tstamping(priv, priv->ptpaddr, value);
695 
696 		/* program Sub Second Increment reg */
697 		stmmac_config_sub_second_increment(priv,
698 				priv->ptpaddr, priv->plat->clk_ptp_rate,
699 				xmac, &sec_inc);
700 		temp = div_u64(1000000000ULL, sec_inc);
701 
702 		/* Store sub second increment and flags for later use */
703 		priv->sub_second_inc = sec_inc;
704 		priv->systime_flags = value;
705 
706 		/* calculate default added value:
707 		 * formula is :
708 		 * addend = (2^32)/freq_div_ratio;
709 		 * where, freq_div_ratio = 1e9ns/sec_inc
710 		 */
711 		temp = (u64)(temp << 32);
712 		priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
713 		stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
714 
715 		/* initialize system time */
716 		ktime_get_real_ts64(&now);
717 
718 		/* lower 32 bits of tv_sec are safe until y2106 */
719 		stmmac_init_systime(priv, priv->ptpaddr,
720 				(u32)now.tv_sec, now.tv_nsec);
721 	}
722 
723 	memcpy(&priv->tstamp_config, &config, sizeof(config));
724 
725 	return copy_to_user(ifr->ifr_data, &config,
726 			    sizeof(config)) ? -EFAULT : 0;
727 }
728 
729 /**
730  *  stmmac_hwtstamp_get - read hardware timestamping.
731  *  @dev: device pointer.
732  *  @ifr: An IOCTL specific structure, that can contain a pointer to
733  *  a proprietary structure used to pass information to the driver.
734  *  Description:
735  *  This function obtain the current hardware timestamping settings
736     as requested.
737  */
738 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
739 {
740 	struct stmmac_priv *priv = netdev_priv(dev);
741 	struct hwtstamp_config *config = &priv->tstamp_config;
742 
743 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
744 		return -EOPNOTSUPP;
745 
746 	return copy_to_user(ifr->ifr_data, config,
747 			    sizeof(*config)) ? -EFAULT : 0;
748 }
749 
750 /**
751  * stmmac_init_ptp - init PTP
752  * @priv: driver private structure
753  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
754  * This is done by looking at the HW cap. register.
755  * This function also registers the ptp driver.
756  */
757 static int stmmac_init_ptp(struct stmmac_priv *priv)
758 {
759 	bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
760 
761 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
762 		return -EOPNOTSUPP;
763 
764 	priv->adv_ts = 0;
765 	/* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
766 	if (xmac && priv->dma_cap.atime_stamp)
767 		priv->adv_ts = 1;
768 	/* Dwmac 3.x core with extend_desc can support adv_ts */
769 	else if (priv->extend_desc && priv->dma_cap.atime_stamp)
770 		priv->adv_ts = 1;
771 
772 	if (priv->dma_cap.time_stamp)
773 		netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
774 
775 	if (priv->adv_ts)
776 		netdev_info(priv->dev,
777 			    "IEEE 1588-2008 Advanced Timestamp supported\n");
778 
779 	priv->hwts_tx_en = 0;
780 	priv->hwts_rx_en = 0;
781 
782 	stmmac_ptp_register(priv);
783 
784 	return 0;
785 }
786 
787 static void stmmac_release_ptp(struct stmmac_priv *priv)
788 {
789 	if (priv->plat->clk_ptp_ref)
790 		clk_disable_unprepare(priv->plat->clk_ptp_ref);
791 	stmmac_ptp_unregister(priv);
792 }
793 
794 /**
795  *  stmmac_mac_flow_ctrl - Configure flow control in all queues
796  *  @priv: driver private structure
797  *  Description: It is used for configuring the flow control in all queues
798  */
799 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
800 {
801 	u32 tx_cnt = priv->plat->tx_queues_to_use;
802 
803 	stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
804 			priv->pause, tx_cnt);
805 }
806 
807 static void stmmac_validate(struct phylink_config *config,
808 			    unsigned long *supported,
809 			    struct phylink_link_state *state)
810 {
811 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
812 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mac_supported) = { 0, };
813 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
814 	int tx_cnt = priv->plat->tx_queues_to_use;
815 	int max_speed = priv->plat->max_speed;
816 
817 	phylink_set(mac_supported, 10baseT_Half);
818 	phylink_set(mac_supported, 10baseT_Full);
819 	phylink_set(mac_supported, 100baseT_Half);
820 	phylink_set(mac_supported, 100baseT_Full);
821 	phylink_set(mac_supported, 1000baseT_Half);
822 	phylink_set(mac_supported, 1000baseT_Full);
823 	phylink_set(mac_supported, 1000baseKX_Full);
824 
825 	phylink_set(mac_supported, Autoneg);
826 	phylink_set(mac_supported, Pause);
827 	phylink_set(mac_supported, Asym_Pause);
828 	phylink_set_port_modes(mac_supported);
829 
830 	/* Cut down 1G if asked to */
831 	if ((max_speed > 0) && (max_speed < 1000)) {
832 		phylink_set(mask, 1000baseT_Full);
833 		phylink_set(mask, 1000baseX_Full);
834 	} else if (priv->plat->has_xgmac) {
835 		if (!max_speed || (max_speed >= 2500)) {
836 			phylink_set(mac_supported, 2500baseT_Full);
837 			phylink_set(mac_supported, 2500baseX_Full);
838 		}
839 		if (!max_speed || (max_speed >= 5000)) {
840 			phylink_set(mac_supported, 5000baseT_Full);
841 		}
842 		if (!max_speed || (max_speed >= 10000)) {
843 			phylink_set(mac_supported, 10000baseSR_Full);
844 			phylink_set(mac_supported, 10000baseLR_Full);
845 			phylink_set(mac_supported, 10000baseER_Full);
846 			phylink_set(mac_supported, 10000baseLRM_Full);
847 			phylink_set(mac_supported, 10000baseT_Full);
848 			phylink_set(mac_supported, 10000baseKX4_Full);
849 			phylink_set(mac_supported, 10000baseKR_Full);
850 		}
851 	}
852 
853 	/* Half-Duplex can only work with single queue */
854 	if (tx_cnt > 1) {
855 		phylink_set(mask, 10baseT_Half);
856 		phylink_set(mask, 100baseT_Half);
857 		phylink_set(mask, 1000baseT_Half);
858 	}
859 
860 	bitmap_and(supported, supported, mac_supported,
861 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
862 	bitmap_andnot(supported, supported, mask,
863 		      __ETHTOOL_LINK_MODE_MASK_NBITS);
864 	bitmap_and(state->advertising, state->advertising, mac_supported,
865 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
866 	bitmap_andnot(state->advertising, state->advertising, mask,
867 		      __ETHTOOL_LINK_MODE_MASK_NBITS);
868 }
869 
870 static int stmmac_mac_link_state(struct phylink_config *config,
871 				 struct phylink_link_state *state)
872 {
873 	return -EOPNOTSUPP;
874 }
875 
876 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
877 			      const struct phylink_link_state *state)
878 {
879 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
880 	u32 ctrl;
881 
882 	ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
883 	ctrl &= ~priv->hw->link.speed_mask;
884 
885 	if (state->interface == PHY_INTERFACE_MODE_USXGMII) {
886 		switch (state->speed) {
887 		case SPEED_10000:
888 			ctrl |= priv->hw->link.xgmii.speed10000;
889 			break;
890 		case SPEED_5000:
891 			ctrl |= priv->hw->link.xgmii.speed5000;
892 			break;
893 		case SPEED_2500:
894 			ctrl |= priv->hw->link.xgmii.speed2500;
895 			break;
896 		default:
897 			return;
898 		}
899 	} else {
900 		switch (state->speed) {
901 		case SPEED_2500:
902 			ctrl |= priv->hw->link.speed2500;
903 			break;
904 		case SPEED_1000:
905 			ctrl |= priv->hw->link.speed1000;
906 			break;
907 		case SPEED_100:
908 			ctrl |= priv->hw->link.speed100;
909 			break;
910 		case SPEED_10:
911 			ctrl |= priv->hw->link.speed10;
912 			break;
913 		default:
914 			return;
915 		}
916 	}
917 
918 	priv->speed = state->speed;
919 
920 	if (priv->plat->fix_mac_speed)
921 		priv->plat->fix_mac_speed(priv->plat->bsp_priv, state->speed);
922 
923 	if (!state->duplex)
924 		ctrl &= ~priv->hw->link.duplex;
925 	else
926 		ctrl |= priv->hw->link.duplex;
927 
928 	/* Flow Control operation */
929 	if (state->pause)
930 		stmmac_mac_flow_ctrl(priv, state->duplex);
931 
932 	writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
933 }
934 
935 static void stmmac_mac_an_restart(struct phylink_config *config)
936 {
937 	/* Not Supported */
938 }
939 
940 static void stmmac_mac_link_down(struct phylink_config *config,
941 				 unsigned int mode, phy_interface_t interface)
942 {
943 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
944 
945 	stmmac_mac_set(priv, priv->ioaddr, false);
946 	priv->eee_active = false;
947 	stmmac_eee_init(priv);
948 	stmmac_set_eee_pls(priv, priv->hw, false);
949 }
950 
951 static void stmmac_mac_link_up(struct phylink_config *config,
952 			       unsigned int mode, phy_interface_t interface,
953 			       struct phy_device *phy)
954 {
955 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
956 
957 	stmmac_mac_set(priv, priv->ioaddr, true);
958 	if (phy && priv->dma_cap.eee) {
959 		priv->eee_active = phy_init_eee(phy, 1) >= 0;
960 		priv->eee_enabled = stmmac_eee_init(priv);
961 		stmmac_set_eee_pls(priv, priv->hw, true);
962 	}
963 }
964 
965 static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
966 	.validate = stmmac_validate,
967 	.mac_link_state = stmmac_mac_link_state,
968 	.mac_config = stmmac_mac_config,
969 	.mac_an_restart = stmmac_mac_an_restart,
970 	.mac_link_down = stmmac_mac_link_down,
971 	.mac_link_up = stmmac_mac_link_up,
972 };
973 
974 /**
975  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
976  * @priv: driver private structure
977  * Description: this is to verify if the HW supports the PCS.
978  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
979  * configured for the TBI, RTBI, or SGMII PHY interface.
980  */
981 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
982 {
983 	int interface = priv->plat->interface;
984 
985 	if (priv->dma_cap.pcs) {
986 		if ((interface == PHY_INTERFACE_MODE_RGMII) ||
987 		    (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
988 		    (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
989 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
990 			netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
991 			priv->hw->pcs = STMMAC_PCS_RGMII;
992 		} else if (interface == PHY_INTERFACE_MODE_SGMII) {
993 			netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
994 			priv->hw->pcs = STMMAC_PCS_SGMII;
995 		}
996 	}
997 }
998 
999 /**
1000  * stmmac_init_phy - PHY initialization
1001  * @dev: net device structure
1002  * Description: it initializes the driver's PHY state, and attaches the PHY
1003  * to the mac driver.
1004  *  Return value:
1005  *  0 on success
1006  */
1007 static int stmmac_init_phy(struct net_device *dev)
1008 {
1009 	struct stmmac_priv *priv = netdev_priv(dev);
1010 	struct device_node *node;
1011 	int ret;
1012 
1013 	node = priv->plat->phylink_node;
1014 
1015 	if (node)
1016 		ret = phylink_of_phy_connect(priv->phylink, node, 0);
1017 
1018 	/* Some DT bindings do not set-up the PHY handle. Let's try to
1019 	 * manually parse it
1020 	 */
1021 	if (!node || ret) {
1022 		int addr = priv->plat->phy_addr;
1023 		struct phy_device *phydev;
1024 
1025 		phydev = mdiobus_get_phy(priv->mii, addr);
1026 		if (!phydev) {
1027 			netdev_err(priv->dev, "no phy at addr %d\n", addr);
1028 			return -ENODEV;
1029 		}
1030 
1031 		ret = phylink_connect_phy(priv->phylink, phydev);
1032 	}
1033 
1034 	return ret;
1035 }
1036 
1037 static int stmmac_phy_setup(struct stmmac_priv *priv)
1038 {
1039 	struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node);
1040 	int mode = priv->plat->phy_interface;
1041 	struct phylink *phylink;
1042 
1043 	priv->phylink_config.dev = &priv->dev->dev;
1044 	priv->phylink_config.type = PHYLINK_NETDEV;
1045 
1046 	phylink = phylink_create(&priv->phylink_config, fwnode,
1047 				 mode, &stmmac_phylink_mac_ops);
1048 	if (IS_ERR(phylink))
1049 		return PTR_ERR(phylink);
1050 
1051 	priv->phylink = phylink;
1052 	return 0;
1053 }
1054 
1055 static void stmmac_display_rx_rings(struct stmmac_priv *priv)
1056 {
1057 	u32 rx_cnt = priv->plat->rx_queues_to_use;
1058 	void *head_rx;
1059 	u32 queue;
1060 
1061 	/* Display RX rings */
1062 	for (queue = 0; queue < rx_cnt; queue++) {
1063 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1064 
1065 		pr_info("\tRX Queue %u rings\n", queue);
1066 
1067 		if (priv->extend_desc)
1068 			head_rx = (void *)rx_q->dma_erx;
1069 		else
1070 			head_rx = (void *)rx_q->dma_rx;
1071 
1072 		/* Display RX ring */
1073 		stmmac_display_ring(priv, head_rx, DMA_RX_SIZE, true);
1074 	}
1075 }
1076 
1077 static void stmmac_display_tx_rings(struct stmmac_priv *priv)
1078 {
1079 	u32 tx_cnt = priv->plat->tx_queues_to_use;
1080 	void *head_tx;
1081 	u32 queue;
1082 
1083 	/* Display TX rings */
1084 	for (queue = 0; queue < tx_cnt; queue++) {
1085 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1086 
1087 		pr_info("\tTX Queue %d rings\n", queue);
1088 
1089 		if (priv->extend_desc)
1090 			head_tx = (void *)tx_q->dma_etx;
1091 		else
1092 			head_tx = (void *)tx_q->dma_tx;
1093 
1094 		stmmac_display_ring(priv, head_tx, DMA_TX_SIZE, false);
1095 	}
1096 }
1097 
1098 static void stmmac_display_rings(struct stmmac_priv *priv)
1099 {
1100 	/* Display RX ring */
1101 	stmmac_display_rx_rings(priv);
1102 
1103 	/* Display TX ring */
1104 	stmmac_display_tx_rings(priv);
1105 }
1106 
1107 static int stmmac_set_bfsize(int mtu, int bufsize)
1108 {
1109 	int ret = bufsize;
1110 
1111 	if (mtu >= BUF_SIZE_4KiB)
1112 		ret = BUF_SIZE_8KiB;
1113 	else if (mtu >= BUF_SIZE_2KiB)
1114 		ret = BUF_SIZE_4KiB;
1115 	else if (mtu > DEFAULT_BUFSIZE)
1116 		ret = BUF_SIZE_2KiB;
1117 	else
1118 		ret = DEFAULT_BUFSIZE;
1119 
1120 	return ret;
1121 }
1122 
1123 /**
1124  * stmmac_clear_rx_descriptors - clear RX descriptors
1125  * @priv: driver private structure
1126  * @queue: RX queue index
1127  * Description: this function is called to clear the RX descriptors
1128  * in case of both basic and extended descriptors are used.
1129  */
1130 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue)
1131 {
1132 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1133 	int i;
1134 
1135 	/* Clear the RX descriptors */
1136 	for (i = 0; i < DMA_RX_SIZE; i++)
1137 		if (priv->extend_desc)
1138 			stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1139 					priv->use_riwt, priv->mode,
1140 					(i == DMA_RX_SIZE - 1),
1141 					priv->dma_buf_sz);
1142 		else
1143 			stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1144 					priv->use_riwt, priv->mode,
1145 					(i == DMA_RX_SIZE - 1),
1146 					priv->dma_buf_sz);
1147 }
1148 
1149 /**
1150  * stmmac_clear_tx_descriptors - clear tx descriptors
1151  * @priv: driver private structure
1152  * @queue: TX queue index.
1153  * Description: this function is called to clear the TX descriptors
1154  * in case of both basic and extended descriptors are used.
1155  */
1156 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue)
1157 {
1158 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1159 	int i;
1160 
1161 	/* Clear the TX descriptors */
1162 	for (i = 0; i < DMA_TX_SIZE; i++)
1163 		if (priv->extend_desc)
1164 			stmmac_init_tx_desc(priv, &tx_q->dma_etx[i].basic,
1165 					priv->mode, (i == DMA_TX_SIZE - 1));
1166 		else
1167 			stmmac_init_tx_desc(priv, &tx_q->dma_tx[i],
1168 					priv->mode, (i == DMA_TX_SIZE - 1));
1169 }
1170 
1171 /**
1172  * stmmac_clear_descriptors - clear descriptors
1173  * @priv: driver private structure
1174  * Description: this function is called to clear the TX and RX descriptors
1175  * in case of both basic and extended descriptors are used.
1176  */
1177 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
1178 {
1179 	u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1180 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1181 	u32 queue;
1182 
1183 	/* Clear the RX descriptors */
1184 	for (queue = 0; queue < rx_queue_cnt; queue++)
1185 		stmmac_clear_rx_descriptors(priv, queue);
1186 
1187 	/* Clear the TX descriptors */
1188 	for (queue = 0; queue < tx_queue_cnt; queue++)
1189 		stmmac_clear_tx_descriptors(priv, queue);
1190 }
1191 
1192 /**
1193  * stmmac_init_rx_buffers - init the RX descriptor buffer.
1194  * @priv: driver private structure
1195  * @p: descriptor pointer
1196  * @i: descriptor index
1197  * @flags: gfp flag
1198  * @queue: RX queue index
1199  * Description: this function is called to allocate a receive buffer, perform
1200  * the DMA mapping and init the descriptor.
1201  */
1202 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
1203 				  int i, gfp_t flags, u32 queue)
1204 {
1205 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1206 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1207 
1208 	buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
1209 	if (!buf->page)
1210 		return -ENOMEM;
1211 
1212 	if (priv->sph) {
1213 		buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
1214 		if (!buf->sec_page)
1215 			return -ENOMEM;
1216 
1217 		buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
1218 		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr);
1219 	} else {
1220 		buf->sec_page = NULL;
1221 	}
1222 
1223 	buf->addr = page_pool_get_dma_addr(buf->page);
1224 	stmmac_set_desc_addr(priv, p, buf->addr);
1225 	if (priv->dma_buf_sz == BUF_SIZE_16KiB)
1226 		stmmac_init_desc3(priv, p);
1227 
1228 	return 0;
1229 }
1230 
1231 /**
1232  * stmmac_free_rx_buffer - free RX dma buffers
1233  * @priv: private structure
1234  * @queue: RX queue index
1235  * @i: buffer index.
1236  */
1237 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1238 {
1239 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1240 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1241 
1242 	if (buf->page)
1243 		page_pool_put_page(rx_q->page_pool, buf->page, false);
1244 	buf->page = NULL;
1245 
1246 	if (buf->sec_page)
1247 		page_pool_put_page(rx_q->page_pool, buf->sec_page, false);
1248 	buf->sec_page = NULL;
1249 }
1250 
1251 /**
1252  * stmmac_free_tx_buffer - free RX dma buffers
1253  * @priv: private structure
1254  * @queue: RX queue index
1255  * @i: buffer index.
1256  */
1257 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1258 {
1259 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1260 
1261 	if (tx_q->tx_skbuff_dma[i].buf) {
1262 		if (tx_q->tx_skbuff_dma[i].map_as_page)
1263 			dma_unmap_page(priv->device,
1264 				       tx_q->tx_skbuff_dma[i].buf,
1265 				       tx_q->tx_skbuff_dma[i].len,
1266 				       DMA_TO_DEVICE);
1267 		else
1268 			dma_unmap_single(priv->device,
1269 					 tx_q->tx_skbuff_dma[i].buf,
1270 					 tx_q->tx_skbuff_dma[i].len,
1271 					 DMA_TO_DEVICE);
1272 	}
1273 
1274 	if (tx_q->tx_skbuff[i]) {
1275 		dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1276 		tx_q->tx_skbuff[i] = NULL;
1277 		tx_q->tx_skbuff_dma[i].buf = 0;
1278 		tx_q->tx_skbuff_dma[i].map_as_page = false;
1279 	}
1280 }
1281 
1282 /**
1283  * init_dma_rx_desc_rings - init the RX descriptor rings
1284  * @dev: net device structure
1285  * @flags: gfp flag.
1286  * Description: this function initializes the DMA RX descriptors
1287  * and allocates the socket buffers. It supports the chained and ring
1288  * modes.
1289  */
1290 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags)
1291 {
1292 	struct stmmac_priv *priv = netdev_priv(dev);
1293 	u32 rx_count = priv->plat->rx_queues_to_use;
1294 	int ret = -ENOMEM;
1295 	int bfsize = 0;
1296 	int queue;
1297 	int i;
1298 
1299 	bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu);
1300 	if (bfsize < 0)
1301 		bfsize = 0;
1302 
1303 	if (bfsize < BUF_SIZE_16KiB)
1304 		bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
1305 
1306 	priv->dma_buf_sz = bfsize;
1307 
1308 	/* RX INITIALIZATION */
1309 	netif_dbg(priv, probe, priv->dev,
1310 		  "SKB addresses:\nskb\t\tskb data\tdma data\n");
1311 
1312 	for (queue = 0; queue < rx_count; queue++) {
1313 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1314 
1315 		netif_dbg(priv, probe, priv->dev,
1316 			  "(%s) dma_rx_phy=0x%08x\n", __func__,
1317 			  (u32)rx_q->dma_rx_phy);
1318 
1319 		stmmac_clear_rx_descriptors(priv, queue);
1320 
1321 		for (i = 0; i < DMA_RX_SIZE; i++) {
1322 			struct dma_desc *p;
1323 
1324 			if (priv->extend_desc)
1325 				p = &((rx_q->dma_erx + i)->basic);
1326 			else
1327 				p = rx_q->dma_rx + i;
1328 
1329 			ret = stmmac_init_rx_buffers(priv, p, i, flags,
1330 						     queue);
1331 			if (ret)
1332 				goto err_init_rx_buffers;
1333 		}
1334 
1335 		rx_q->cur_rx = 0;
1336 		rx_q->dirty_rx = (unsigned int)(i - DMA_RX_SIZE);
1337 
1338 		/* Setup the chained descriptor addresses */
1339 		if (priv->mode == STMMAC_CHAIN_MODE) {
1340 			if (priv->extend_desc)
1341 				stmmac_mode_init(priv, rx_q->dma_erx,
1342 						rx_q->dma_rx_phy, DMA_RX_SIZE, 1);
1343 			else
1344 				stmmac_mode_init(priv, rx_q->dma_rx,
1345 						rx_q->dma_rx_phy, DMA_RX_SIZE, 0);
1346 		}
1347 	}
1348 
1349 	buf_sz = bfsize;
1350 
1351 	return 0;
1352 
1353 err_init_rx_buffers:
1354 	while (queue >= 0) {
1355 		while (--i >= 0)
1356 			stmmac_free_rx_buffer(priv, queue, i);
1357 
1358 		if (queue == 0)
1359 			break;
1360 
1361 		i = DMA_RX_SIZE;
1362 		queue--;
1363 	}
1364 
1365 	return ret;
1366 }
1367 
1368 /**
1369  * init_dma_tx_desc_rings - init the TX descriptor rings
1370  * @dev: net device structure.
1371  * Description: this function initializes the DMA TX descriptors
1372  * and allocates the socket buffers. It supports the chained and ring
1373  * modes.
1374  */
1375 static int init_dma_tx_desc_rings(struct net_device *dev)
1376 {
1377 	struct stmmac_priv *priv = netdev_priv(dev);
1378 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1379 	u32 queue;
1380 	int i;
1381 
1382 	for (queue = 0; queue < tx_queue_cnt; queue++) {
1383 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1384 
1385 		netif_dbg(priv, probe, priv->dev,
1386 			  "(%s) dma_tx_phy=0x%08x\n", __func__,
1387 			 (u32)tx_q->dma_tx_phy);
1388 
1389 		/* Setup the chained descriptor addresses */
1390 		if (priv->mode == STMMAC_CHAIN_MODE) {
1391 			if (priv->extend_desc)
1392 				stmmac_mode_init(priv, tx_q->dma_etx,
1393 						tx_q->dma_tx_phy, DMA_TX_SIZE, 1);
1394 			else
1395 				stmmac_mode_init(priv, tx_q->dma_tx,
1396 						tx_q->dma_tx_phy, DMA_TX_SIZE, 0);
1397 		}
1398 
1399 		for (i = 0; i < DMA_TX_SIZE; i++) {
1400 			struct dma_desc *p;
1401 			if (priv->extend_desc)
1402 				p = &((tx_q->dma_etx + i)->basic);
1403 			else
1404 				p = tx_q->dma_tx + i;
1405 
1406 			stmmac_clear_desc(priv, p);
1407 
1408 			tx_q->tx_skbuff_dma[i].buf = 0;
1409 			tx_q->tx_skbuff_dma[i].map_as_page = false;
1410 			tx_q->tx_skbuff_dma[i].len = 0;
1411 			tx_q->tx_skbuff_dma[i].last_segment = false;
1412 			tx_q->tx_skbuff[i] = NULL;
1413 		}
1414 
1415 		tx_q->dirty_tx = 0;
1416 		tx_q->cur_tx = 0;
1417 		tx_q->mss = 0;
1418 
1419 		netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
1420 	}
1421 
1422 	return 0;
1423 }
1424 
1425 /**
1426  * init_dma_desc_rings - init the RX/TX descriptor rings
1427  * @dev: net device structure
1428  * @flags: gfp flag.
1429  * Description: this function initializes the DMA RX/TX descriptors
1430  * and allocates the socket buffers. It supports the chained and ring
1431  * modes.
1432  */
1433 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1434 {
1435 	struct stmmac_priv *priv = netdev_priv(dev);
1436 	int ret;
1437 
1438 	ret = init_dma_rx_desc_rings(dev, flags);
1439 	if (ret)
1440 		return ret;
1441 
1442 	ret = init_dma_tx_desc_rings(dev);
1443 
1444 	stmmac_clear_descriptors(priv);
1445 
1446 	if (netif_msg_hw(priv))
1447 		stmmac_display_rings(priv);
1448 
1449 	return ret;
1450 }
1451 
1452 /**
1453  * dma_free_rx_skbufs - free RX dma buffers
1454  * @priv: private structure
1455  * @queue: RX queue index
1456  */
1457 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue)
1458 {
1459 	int i;
1460 
1461 	for (i = 0; i < DMA_RX_SIZE; i++)
1462 		stmmac_free_rx_buffer(priv, queue, i);
1463 }
1464 
1465 /**
1466  * dma_free_tx_skbufs - free TX dma buffers
1467  * @priv: private structure
1468  * @queue: TX queue index
1469  */
1470 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue)
1471 {
1472 	int i;
1473 
1474 	for (i = 0; i < DMA_TX_SIZE; i++)
1475 		stmmac_free_tx_buffer(priv, queue, i);
1476 }
1477 
1478 /**
1479  * free_dma_rx_desc_resources - free RX dma desc resources
1480  * @priv: private structure
1481  */
1482 static void free_dma_rx_desc_resources(struct stmmac_priv *priv)
1483 {
1484 	u32 rx_count = priv->plat->rx_queues_to_use;
1485 	u32 queue;
1486 
1487 	/* Free RX queue resources */
1488 	for (queue = 0; queue < rx_count; queue++) {
1489 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1490 
1491 		/* Release the DMA RX socket buffers */
1492 		dma_free_rx_skbufs(priv, queue);
1493 
1494 		/* Free DMA regions of consistent memory previously allocated */
1495 		if (!priv->extend_desc)
1496 			dma_free_coherent(priv->device,
1497 					  DMA_RX_SIZE * sizeof(struct dma_desc),
1498 					  rx_q->dma_rx, rx_q->dma_rx_phy);
1499 		else
1500 			dma_free_coherent(priv->device, DMA_RX_SIZE *
1501 					  sizeof(struct dma_extended_desc),
1502 					  rx_q->dma_erx, rx_q->dma_rx_phy);
1503 
1504 		kfree(rx_q->buf_pool);
1505 		if (rx_q->page_pool) {
1506 			page_pool_request_shutdown(rx_q->page_pool);
1507 			page_pool_destroy(rx_q->page_pool);
1508 		}
1509 	}
1510 }
1511 
1512 /**
1513  * free_dma_tx_desc_resources - free TX dma desc resources
1514  * @priv: private structure
1515  */
1516 static void free_dma_tx_desc_resources(struct stmmac_priv *priv)
1517 {
1518 	u32 tx_count = priv->plat->tx_queues_to_use;
1519 	u32 queue;
1520 
1521 	/* Free TX queue resources */
1522 	for (queue = 0; queue < tx_count; queue++) {
1523 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1524 
1525 		/* Release the DMA TX socket buffers */
1526 		dma_free_tx_skbufs(priv, queue);
1527 
1528 		/* Free DMA regions of consistent memory previously allocated */
1529 		if (!priv->extend_desc)
1530 			dma_free_coherent(priv->device,
1531 					  DMA_TX_SIZE * sizeof(struct dma_desc),
1532 					  tx_q->dma_tx, tx_q->dma_tx_phy);
1533 		else
1534 			dma_free_coherent(priv->device, DMA_TX_SIZE *
1535 					  sizeof(struct dma_extended_desc),
1536 					  tx_q->dma_etx, tx_q->dma_tx_phy);
1537 
1538 		kfree(tx_q->tx_skbuff_dma);
1539 		kfree(tx_q->tx_skbuff);
1540 	}
1541 }
1542 
1543 /**
1544  * alloc_dma_rx_desc_resources - alloc RX resources.
1545  * @priv: private structure
1546  * Description: according to which descriptor can be used (extend or basic)
1547  * this function allocates the resources for TX and RX paths. In case of
1548  * reception, for example, it pre-allocated the RX socket buffer in order to
1549  * allow zero-copy mechanism.
1550  */
1551 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv)
1552 {
1553 	u32 rx_count = priv->plat->rx_queues_to_use;
1554 	int ret = -ENOMEM;
1555 	u32 queue;
1556 
1557 	/* RX queues buffers and DMA */
1558 	for (queue = 0; queue < rx_count; queue++) {
1559 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1560 		struct page_pool_params pp_params = { 0 };
1561 		unsigned int num_pages;
1562 
1563 		rx_q->queue_index = queue;
1564 		rx_q->priv_data = priv;
1565 
1566 		pp_params.flags = PP_FLAG_DMA_MAP;
1567 		pp_params.pool_size = DMA_RX_SIZE;
1568 		num_pages = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE);
1569 		pp_params.order = ilog2(num_pages);
1570 		pp_params.nid = dev_to_node(priv->device);
1571 		pp_params.dev = priv->device;
1572 		pp_params.dma_dir = DMA_FROM_DEVICE;
1573 
1574 		rx_q->page_pool = page_pool_create(&pp_params);
1575 		if (IS_ERR(rx_q->page_pool)) {
1576 			ret = PTR_ERR(rx_q->page_pool);
1577 			rx_q->page_pool = NULL;
1578 			goto err_dma;
1579 		}
1580 
1581 		rx_q->buf_pool = kcalloc(DMA_RX_SIZE, sizeof(*rx_q->buf_pool),
1582 					 GFP_KERNEL);
1583 		if (!rx_q->buf_pool)
1584 			goto err_dma;
1585 
1586 		if (priv->extend_desc) {
1587 			rx_q->dma_erx = dma_alloc_coherent(priv->device,
1588 							   DMA_RX_SIZE * sizeof(struct dma_extended_desc),
1589 							   &rx_q->dma_rx_phy,
1590 							   GFP_KERNEL);
1591 			if (!rx_q->dma_erx)
1592 				goto err_dma;
1593 
1594 		} else {
1595 			rx_q->dma_rx = dma_alloc_coherent(priv->device,
1596 							  DMA_RX_SIZE * sizeof(struct dma_desc),
1597 							  &rx_q->dma_rx_phy,
1598 							  GFP_KERNEL);
1599 			if (!rx_q->dma_rx)
1600 				goto err_dma;
1601 		}
1602 	}
1603 
1604 	return 0;
1605 
1606 err_dma:
1607 	free_dma_rx_desc_resources(priv);
1608 
1609 	return ret;
1610 }
1611 
1612 /**
1613  * alloc_dma_tx_desc_resources - alloc TX resources.
1614  * @priv: private structure
1615  * Description: according to which descriptor can be used (extend or basic)
1616  * this function allocates the resources for TX and RX paths. In case of
1617  * reception, for example, it pre-allocated the RX socket buffer in order to
1618  * allow zero-copy mechanism.
1619  */
1620 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv)
1621 {
1622 	u32 tx_count = priv->plat->tx_queues_to_use;
1623 	int ret = -ENOMEM;
1624 	u32 queue;
1625 
1626 	/* TX queues buffers and DMA */
1627 	for (queue = 0; queue < tx_count; queue++) {
1628 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1629 
1630 		tx_q->queue_index = queue;
1631 		tx_q->priv_data = priv;
1632 
1633 		tx_q->tx_skbuff_dma = kcalloc(DMA_TX_SIZE,
1634 					      sizeof(*tx_q->tx_skbuff_dma),
1635 					      GFP_KERNEL);
1636 		if (!tx_q->tx_skbuff_dma)
1637 			goto err_dma;
1638 
1639 		tx_q->tx_skbuff = kcalloc(DMA_TX_SIZE,
1640 					  sizeof(struct sk_buff *),
1641 					  GFP_KERNEL);
1642 		if (!tx_q->tx_skbuff)
1643 			goto err_dma;
1644 
1645 		if (priv->extend_desc) {
1646 			tx_q->dma_etx = dma_alloc_coherent(priv->device,
1647 							   DMA_TX_SIZE * sizeof(struct dma_extended_desc),
1648 							   &tx_q->dma_tx_phy,
1649 							   GFP_KERNEL);
1650 			if (!tx_q->dma_etx)
1651 				goto err_dma;
1652 		} else {
1653 			tx_q->dma_tx = dma_alloc_coherent(priv->device,
1654 							  DMA_TX_SIZE * sizeof(struct dma_desc),
1655 							  &tx_q->dma_tx_phy,
1656 							  GFP_KERNEL);
1657 			if (!tx_q->dma_tx)
1658 				goto err_dma;
1659 		}
1660 	}
1661 
1662 	return 0;
1663 
1664 err_dma:
1665 	free_dma_tx_desc_resources(priv);
1666 
1667 	return ret;
1668 }
1669 
1670 /**
1671  * alloc_dma_desc_resources - alloc TX/RX resources.
1672  * @priv: private structure
1673  * Description: according to which descriptor can be used (extend or basic)
1674  * this function allocates the resources for TX and RX paths. In case of
1675  * reception, for example, it pre-allocated the RX socket buffer in order to
1676  * allow zero-copy mechanism.
1677  */
1678 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1679 {
1680 	/* RX Allocation */
1681 	int ret = alloc_dma_rx_desc_resources(priv);
1682 
1683 	if (ret)
1684 		return ret;
1685 
1686 	ret = alloc_dma_tx_desc_resources(priv);
1687 
1688 	return ret;
1689 }
1690 
1691 /**
1692  * free_dma_desc_resources - free dma desc resources
1693  * @priv: private structure
1694  */
1695 static void free_dma_desc_resources(struct stmmac_priv *priv)
1696 {
1697 	/* Release the DMA RX socket buffers */
1698 	free_dma_rx_desc_resources(priv);
1699 
1700 	/* Release the DMA TX socket buffers */
1701 	free_dma_tx_desc_resources(priv);
1702 }
1703 
1704 /**
1705  *  stmmac_mac_enable_rx_queues - Enable MAC rx queues
1706  *  @priv: driver private structure
1707  *  Description: It is used for enabling the rx queues in the MAC
1708  */
1709 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
1710 {
1711 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
1712 	int queue;
1713 	u8 mode;
1714 
1715 	for (queue = 0; queue < rx_queues_count; queue++) {
1716 		mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
1717 		stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
1718 	}
1719 }
1720 
1721 /**
1722  * stmmac_start_rx_dma - start RX DMA channel
1723  * @priv: driver private structure
1724  * @chan: RX channel index
1725  * Description:
1726  * This starts a RX DMA channel
1727  */
1728 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
1729 {
1730 	netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
1731 	stmmac_start_rx(priv, priv->ioaddr, chan);
1732 }
1733 
1734 /**
1735  * stmmac_start_tx_dma - start TX DMA channel
1736  * @priv: driver private structure
1737  * @chan: TX channel index
1738  * Description:
1739  * This starts a TX DMA channel
1740  */
1741 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
1742 {
1743 	netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
1744 	stmmac_start_tx(priv, priv->ioaddr, chan);
1745 }
1746 
1747 /**
1748  * stmmac_stop_rx_dma - stop RX DMA channel
1749  * @priv: driver private structure
1750  * @chan: RX channel index
1751  * Description:
1752  * This stops a RX DMA channel
1753  */
1754 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
1755 {
1756 	netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
1757 	stmmac_stop_rx(priv, priv->ioaddr, chan);
1758 }
1759 
1760 /**
1761  * stmmac_stop_tx_dma - stop TX DMA channel
1762  * @priv: driver private structure
1763  * @chan: TX channel index
1764  * Description:
1765  * This stops a TX DMA channel
1766  */
1767 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
1768 {
1769 	netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
1770 	stmmac_stop_tx(priv, priv->ioaddr, chan);
1771 }
1772 
1773 /**
1774  * stmmac_start_all_dma - start all RX and TX DMA channels
1775  * @priv: driver private structure
1776  * Description:
1777  * This starts all the RX and TX DMA channels
1778  */
1779 static void stmmac_start_all_dma(struct stmmac_priv *priv)
1780 {
1781 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1782 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1783 	u32 chan = 0;
1784 
1785 	for (chan = 0; chan < rx_channels_count; chan++)
1786 		stmmac_start_rx_dma(priv, chan);
1787 
1788 	for (chan = 0; chan < tx_channels_count; chan++)
1789 		stmmac_start_tx_dma(priv, chan);
1790 }
1791 
1792 /**
1793  * stmmac_stop_all_dma - stop all RX and TX DMA channels
1794  * @priv: driver private structure
1795  * Description:
1796  * This stops the RX and TX DMA channels
1797  */
1798 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
1799 {
1800 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1801 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1802 	u32 chan = 0;
1803 
1804 	for (chan = 0; chan < rx_channels_count; chan++)
1805 		stmmac_stop_rx_dma(priv, chan);
1806 
1807 	for (chan = 0; chan < tx_channels_count; chan++)
1808 		stmmac_stop_tx_dma(priv, chan);
1809 }
1810 
1811 /**
1812  *  stmmac_dma_operation_mode - HW DMA operation mode
1813  *  @priv: driver private structure
1814  *  Description: it is used for configuring the DMA operation mode register in
1815  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1816  */
1817 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1818 {
1819 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1820 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1821 	int rxfifosz = priv->plat->rx_fifo_size;
1822 	int txfifosz = priv->plat->tx_fifo_size;
1823 	u32 txmode = 0;
1824 	u32 rxmode = 0;
1825 	u32 chan = 0;
1826 	u8 qmode = 0;
1827 
1828 	if (rxfifosz == 0)
1829 		rxfifosz = priv->dma_cap.rx_fifo_size;
1830 	if (txfifosz == 0)
1831 		txfifosz = priv->dma_cap.tx_fifo_size;
1832 
1833 	/* Adjust for real per queue fifo size */
1834 	rxfifosz /= rx_channels_count;
1835 	txfifosz /= tx_channels_count;
1836 
1837 	if (priv->plat->force_thresh_dma_mode) {
1838 		txmode = tc;
1839 		rxmode = tc;
1840 	} else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1841 		/*
1842 		 * In case of GMAC, SF mode can be enabled
1843 		 * to perform the TX COE in HW. This depends on:
1844 		 * 1) TX COE if actually supported
1845 		 * 2) There is no bugged Jumbo frame support
1846 		 *    that needs to not insert csum in the TDES.
1847 		 */
1848 		txmode = SF_DMA_MODE;
1849 		rxmode = SF_DMA_MODE;
1850 		priv->xstats.threshold = SF_DMA_MODE;
1851 	} else {
1852 		txmode = tc;
1853 		rxmode = SF_DMA_MODE;
1854 	}
1855 
1856 	/* configure all channels */
1857 	for (chan = 0; chan < rx_channels_count; chan++) {
1858 		qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
1859 
1860 		stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
1861 				rxfifosz, qmode);
1862 		stmmac_set_dma_bfsize(priv, priv->ioaddr, priv->dma_buf_sz,
1863 				chan);
1864 	}
1865 
1866 	for (chan = 0; chan < tx_channels_count; chan++) {
1867 		qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
1868 
1869 		stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
1870 				txfifosz, qmode);
1871 	}
1872 }
1873 
1874 /**
1875  * stmmac_tx_clean - to manage the transmission completion
1876  * @priv: driver private structure
1877  * @queue: TX queue index
1878  * Description: it reclaims the transmit resources after transmission completes.
1879  */
1880 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
1881 {
1882 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1883 	unsigned int bytes_compl = 0, pkts_compl = 0;
1884 	unsigned int entry, count = 0;
1885 
1886 	__netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
1887 
1888 	priv->xstats.tx_clean++;
1889 
1890 	entry = tx_q->dirty_tx;
1891 	while ((entry != tx_q->cur_tx) && (count < budget)) {
1892 		struct sk_buff *skb = tx_q->tx_skbuff[entry];
1893 		struct dma_desc *p;
1894 		int status;
1895 
1896 		if (priv->extend_desc)
1897 			p = (struct dma_desc *)(tx_q->dma_etx + entry);
1898 		else
1899 			p = tx_q->dma_tx + entry;
1900 
1901 		status = stmmac_tx_status(priv, &priv->dev->stats,
1902 				&priv->xstats, p, priv->ioaddr);
1903 		/* Check if the descriptor is owned by the DMA */
1904 		if (unlikely(status & tx_dma_own))
1905 			break;
1906 
1907 		count++;
1908 
1909 		/* Make sure descriptor fields are read after reading
1910 		 * the own bit.
1911 		 */
1912 		dma_rmb();
1913 
1914 		/* Just consider the last segment and ...*/
1915 		if (likely(!(status & tx_not_ls))) {
1916 			/* ... verify the status error condition */
1917 			if (unlikely(status & tx_err)) {
1918 				priv->dev->stats.tx_errors++;
1919 			} else {
1920 				priv->dev->stats.tx_packets++;
1921 				priv->xstats.tx_pkt_n++;
1922 			}
1923 			stmmac_get_tx_hwtstamp(priv, p, skb);
1924 		}
1925 
1926 		if (likely(tx_q->tx_skbuff_dma[entry].buf)) {
1927 			if (tx_q->tx_skbuff_dma[entry].map_as_page)
1928 				dma_unmap_page(priv->device,
1929 					       tx_q->tx_skbuff_dma[entry].buf,
1930 					       tx_q->tx_skbuff_dma[entry].len,
1931 					       DMA_TO_DEVICE);
1932 			else
1933 				dma_unmap_single(priv->device,
1934 						 tx_q->tx_skbuff_dma[entry].buf,
1935 						 tx_q->tx_skbuff_dma[entry].len,
1936 						 DMA_TO_DEVICE);
1937 			tx_q->tx_skbuff_dma[entry].buf = 0;
1938 			tx_q->tx_skbuff_dma[entry].len = 0;
1939 			tx_q->tx_skbuff_dma[entry].map_as_page = false;
1940 		}
1941 
1942 		stmmac_clean_desc3(priv, tx_q, p);
1943 
1944 		tx_q->tx_skbuff_dma[entry].last_segment = false;
1945 		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
1946 
1947 		if (likely(skb != NULL)) {
1948 			pkts_compl++;
1949 			bytes_compl += skb->len;
1950 			dev_consume_skb_any(skb);
1951 			tx_q->tx_skbuff[entry] = NULL;
1952 		}
1953 
1954 		stmmac_release_tx_desc(priv, p, priv->mode);
1955 
1956 		entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
1957 	}
1958 	tx_q->dirty_tx = entry;
1959 
1960 	netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
1961 				  pkts_compl, bytes_compl);
1962 
1963 	if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
1964 								queue))) &&
1965 	    stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH) {
1966 
1967 		netif_dbg(priv, tx_done, priv->dev,
1968 			  "%s: restart transmit\n", __func__);
1969 		netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
1970 	}
1971 
1972 	if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1973 		stmmac_enable_eee_mode(priv);
1974 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1975 	}
1976 
1977 	/* We still have pending packets, let's call for a new scheduling */
1978 	if (tx_q->dirty_tx != tx_q->cur_tx)
1979 		mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(10));
1980 
1981 	__netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
1982 
1983 	return count;
1984 }
1985 
1986 /**
1987  * stmmac_tx_err - to manage the tx error
1988  * @priv: driver private structure
1989  * @chan: channel index
1990  * Description: it cleans the descriptors and restarts the transmission
1991  * in case of transmission errors.
1992  */
1993 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
1994 {
1995 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
1996 	int i;
1997 
1998 	netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
1999 
2000 	stmmac_stop_tx_dma(priv, chan);
2001 	dma_free_tx_skbufs(priv, chan);
2002 	for (i = 0; i < DMA_TX_SIZE; i++)
2003 		if (priv->extend_desc)
2004 			stmmac_init_tx_desc(priv, &tx_q->dma_etx[i].basic,
2005 					priv->mode, (i == DMA_TX_SIZE - 1));
2006 		else
2007 			stmmac_init_tx_desc(priv, &tx_q->dma_tx[i],
2008 					priv->mode, (i == DMA_TX_SIZE - 1));
2009 	tx_q->dirty_tx = 0;
2010 	tx_q->cur_tx = 0;
2011 	tx_q->mss = 0;
2012 	netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan));
2013 	stmmac_start_tx_dma(priv, chan);
2014 
2015 	priv->dev->stats.tx_errors++;
2016 	netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
2017 }
2018 
2019 /**
2020  *  stmmac_set_dma_operation_mode - Set DMA operation mode by channel
2021  *  @priv: driver private structure
2022  *  @txmode: TX operating mode
2023  *  @rxmode: RX operating mode
2024  *  @chan: channel index
2025  *  Description: it is used for configuring of the DMA operation mode in
2026  *  runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
2027  *  mode.
2028  */
2029 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
2030 					  u32 rxmode, u32 chan)
2031 {
2032 	u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2033 	u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2034 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2035 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2036 	int rxfifosz = priv->plat->rx_fifo_size;
2037 	int txfifosz = priv->plat->tx_fifo_size;
2038 
2039 	if (rxfifosz == 0)
2040 		rxfifosz = priv->dma_cap.rx_fifo_size;
2041 	if (txfifosz == 0)
2042 		txfifosz = priv->dma_cap.tx_fifo_size;
2043 
2044 	/* Adjust for real per queue fifo size */
2045 	rxfifosz /= rx_channels_count;
2046 	txfifosz /= tx_channels_count;
2047 
2048 	stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2049 	stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2050 }
2051 
2052 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2053 {
2054 	int ret;
2055 
2056 	ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2057 			priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2058 	if (ret && (ret != -EINVAL)) {
2059 		stmmac_global_err(priv);
2060 		return true;
2061 	}
2062 
2063 	return false;
2064 }
2065 
2066 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan)
2067 {
2068 	int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2069 						 &priv->xstats, chan);
2070 	struct stmmac_channel *ch = &priv->channel[chan];
2071 
2072 	if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2073 		if (napi_schedule_prep(&ch->rx_napi)) {
2074 			stmmac_disable_dma_irq(priv, priv->ioaddr, chan);
2075 			__napi_schedule_irqoff(&ch->rx_napi);
2076 			status |= handle_tx;
2077 		}
2078 	}
2079 
2080 	if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use))
2081 		napi_schedule_irqoff(&ch->tx_napi);
2082 
2083 	return status;
2084 }
2085 
2086 /**
2087  * stmmac_dma_interrupt - DMA ISR
2088  * @priv: driver private structure
2089  * Description: this is the DMA ISR. It is called by the main ISR.
2090  * It calls the dwmac dma routine and schedule poll method in case of some
2091  * work can be done.
2092  */
2093 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2094 {
2095 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2096 	u32 rx_channel_count = priv->plat->rx_queues_to_use;
2097 	u32 channels_to_check = tx_channel_count > rx_channel_count ?
2098 				tx_channel_count : rx_channel_count;
2099 	u32 chan;
2100 	int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2101 
2102 	/* Make sure we never check beyond our status buffer. */
2103 	if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2104 		channels_to_check = ARRAY_SIZE(status);
2105 
2106 	for (chan = 0; chan < channels_to_check; chan++)
2107 		status[chan] = stmmac_napi_check(priv, chan);
2108 
2109 	for (chan = 0; chan < tx_channel_count; chan++) {
2110 		if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2111 			/* Try to bump up the dma threshold on this failure */
2112 			if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
2113 			    (tc <= 256)) {
2114 				tc += 64;
2115 				if (priv->plat->force_thresh_dma_mode)
2116 					stmmac_set_dma_operation_mode(priv,
2117 								      tc,
2118 								      tc,
2119 								      chan);
2120 				else
2121 					stmmac_set_dma_operation_mode(priv,
2122 								    tc,
2123 								    SF_DMA_MODE,
2124 								    chan);
2125 				priv->xstats.threshold = tc;
2126 			}
2127 		} else if (unlikely(status[chan] == tx_hard_error)) {
2128 			stmmac_tx_err(priv, chan);
2129 		}
2130 	}
2131 }
2132 
2133 /**
2134  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2135  * @priv: driver private structure
2136  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2137  */
2138 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2139 {
2140 	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2141 			    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2142 
2143 	stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2144 
2145 	if (priv->dma_cap.rmon) {
2146 		stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2147 		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2148 	} else
2149 		netdev_info(priv->dev, "No MAC Management Counters available\n");
2150 }
2151 
2152 /**
2153  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2154  * @priv: driver private structure
2155  * Description:
2156  *  new GMAC chip generations have a new register to indicate the
2157  *  presence of the optional feature/functions.
2158  *  This can be also used to override the value passed through the
2159  *  platform and necessary for old MAC10/100 and GMAC chips.
2160  */
2161 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2162 {
2163 	return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2164 }
2165 
2166 /**
2167  * stmmac_check_ether_addr - check if the MAC addr is valid
2168  * @priv: driver private structure
2169  * Description:
2170  * it is to verify if the MAC address is valid, in case of failures it
2171  * generates a random MAC address
2172  */
2173 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2174 {
2175 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2176 		stmmac_get_umac_addr(priv, priv->hw, priv->dev->dev_addr, 0);
2177 		if (!is_valid_ether_addr(priv->dev->dev_addr))
2178 			eth_hw_addr_random(priv->dev);
2179 		dev_info(priv->device, "device MAC address %pM\n",
2180 			 priv->dev->dev_addr);
2181 	}
2182 }
2183 
2184 /**
2185  * stmmac_init_dma_engine - DMA init.
2186  * @priv: driver private structure
2187  * Description:
2188  * It inits the DMA invoking the specific MAC/GMAC callback.
2189  * Some DMA parameters can be passed from the platform;
2190  * in case of these are not passed a default is kept for the MAC or GMAC.
2191  */
2192 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2193 {
2194 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2195 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2196 	u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2197 	struct stmmac_rx_queue *rx_q;
2198 	struct stmmac_tx_queue *tx_q;
2199 	u32 chan = 0;
2200 	int atds = 0;
2201 	int ret = 0;
2202 
2203 	if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2204 		dev_err(priv->device, "Invalid DMA configuration\n");
2205 		return -EINVAL;
2206 	}
2207 
2208 	if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2209 		atds = 1;
2210 
2211 	ret = stmmac_reset(priv, priv->ioaddr);
2212 	if (ret) {
2213 		dev_err(priv->device, "Failed to reset the dma\n");
2214 		return ret;
2215 	}
2216 
2217 	/* DMA Configuration */
2218 	stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2219 
2220 	if (priv->plat->axi)
2221 		stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2222 
2223 	/* DMA CSR Channel configuration */
2224 	for (chan = 0; chan < dma_csr_ch; chan++)
2225 		stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2226 
2227 	/* DMA RX Channel Configuration */
2228 	for (chan = 0; chan < rx_channels_count; chan++) {
2229 		rx_q = &priv->rx_queue[chan];
2230 
2231 		stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2232 				    rx_q->dma_rx_phy, chan);
2233 
2234 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2235 			    (DMA_RX_SIZE * sizeof(struct dma_desc));
2236 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2237 				       rx_q->rx_tail_addr, chan);
2238 	}
2239 
2240 	/* DMA TX Channel Configuration */
2241 	for (chan = 0; chan < tx_channels_count; chan++) {
2242 		tx_q = &priv->tx_queue[chan];
2243 
2244 		stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2245 				    tx_q->dma_tx_phy, chan);
2246 
2247 		tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2248 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2249 				       tx_q->tx_tail_addr, chan);
2250 	}
2251 
2252 	return ret;
2253 }
2254 
2255 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2256 {
2257 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2258 
2259 	mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer));
2260 }
2261 
2262 /**
2263  * stmmac_tx_timer - mitigation sw timer for tx.
2264  * @data: data pointer
2265  * Description:
2266  * This is the timer handler to directly invoke the stmmac_tx_clean.
2267  */
2268 static void stmmac_tx_timer(struct timer_list *t)
2269 {
2270 	struct stmmac_tx_queue *tx_q = from_timer(tx_q, t, txtimer);
2271 	struct stmmac_priv *priv = tx_q->priv_data;
2272 	struct stmmac_channel *ch;
2273 
2274 	ch = &priv->channel[tx_q->queue_index];
2275 
2276 	/*
2277 	 * If NAPI is already running we can miss some events. Let's rearm
2278 	 * the timer and try again.
2279 	 */
2280 	if (likely(napi_schedule_prep(&ch->tx_napi)))
2281 		__napi_schedule(&ch->tx_napi);
2282 	else
2283 		mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(10));
2284 }
2285 
2286 /**
2287  * stmmac_init_coalesce - init mitigation options.
2288  * @priv: driver private structure
2289  * Description:
2290  * This inits the coalesce parameters: i.e. timer rate,
2291  * timer handler and default threshold used for enabling the
2292  * interrupt on completion bit.
2293  */
2294 static void stmmac_init_coalesce(struct stmmac_priv *priv)
2295 {
2296 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2297 	u32 chan;
2298 
2299 	priv->tx_coal_frames = STMMAC_TX_FRAMES;
2300 	priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
2301 	priv->rx_coal_frames = STMMAC_RX_FRAMES;
2302 
2303 	for (chan = 0; chan < tx_channel_count; chan++) {
2304 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2305 
2306 		timer_setup(&tx_q->txtimer, stmmac_tx_timer, 0);
2307 	}
2308 }
2309 
2310 static void stmmac_set_rings_length(struct stmmac_priv *priv)
2311 {
2312 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2313 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2314 	u32 chan;
2315 
2316 	/* set TX ring length */
2317 	for (chan = 0; chan < tx_channels_count; chan++)
2318 		stmmac_set_tx_ring_len(priv, priv->ioaddr,
2319 				(DMA_TX_SIZE - 1), chan);
2320 
2321 	/* set RX ring length */
2322 	for (chan = 0; chan < rx_channels_count; chan++)
2323 		stmmac_set_rx_ring_len(priv, priv->ioaddr,
2324 				(DMA_RX_SIZE - 1), chan);
2325 }
2326 
2327 /**
2328  *  stmmac_set_tx_queue_weight - Set TX queue weight
2329  *  @priv: driver private structure
2330  *  Description: It is used for setting TX queues weight
2331  */
2332 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
2333 {
2334 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2335 	u32 weight;
2336 	u32 queue;
2337 
2338 	for (queue = 0; queue < tx_queues_count; queue++) {
2339 		weight = priv->plat->tx_queues_cfg[queue].weight;
2340 		stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
2341 	}
2342 }
2343 
2344 /**
2345  *  stmmac_configure_cbs - Configure CBS in TX queue
2346  *  @priv: driver private structure
2347  *  Description: It is used for configuring CBS in AVB TX queues
2348  */
2349 static void stmmac_configure_cbs(struct stmmac_priv *priv)
2350 {
2351 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2352 	u32 mode_to_use;
2353 	u32 queue;
2354 
2355 	/* queue 0 is reserved for legacy traffic */
2356 	for (queue = 1; queue < tx_queues_count; queue++) {
2357 		mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
2358 		if (mode_to_use == MTL_QUEUE_DCB)
2359 			continue;
2360 
2361 		stmmac_config_cbs(priv, priv->hw,
2362 				priv->plat->tx_queues_cfg[queue].send_slope,
2363 				priv->plat->tx_queues_cfg[queue].idle_slope,
2364 				priv->plat->tx_queues_cfg[queue].high_credit,
2365 				priv->plat->tx_queues_cfg[queue].low_credit,
2366 				queue);
2367 	}
2368 }
2369 
2370 /**
2371  *  stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
2372  *  @priv: driver private structure
2373  *  Description: It is used for mapping RX queues to RX dma channels
2374  */
2375 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
2376 {
2377 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2378 	u32 queue;
2379 	u32 chan;
2380 
2381 	for (queue = 0; queue < rx_queues_count; queue++) {
2382 		chan = priv->plat->rx_queues_cfg[queue].chan;
2383 		stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
2384 	}
2385 }
2386 
2387 /**
2388  *  stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
2389  *  @priv: driver private structure
2390  *  Description: It is used for configuring the RX Queue Priority
2391  */
2392 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
2393 {
2394 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2395 	u32 queue;
2396 	u32 prio;
2397 
2398 	for (queue = 0; queue < rx_queues_count; queue++) {
2399 		if (!priv->plat->rx_queues_cfg[queue].use_prio)
2400 			continue;
2401 
2402 		prio = priv->plat->rx_queues_cfg[queue].prio;
2403 		stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
2404 	}
2405 }
2406 
2407 /**
2408  *  stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
2409  *  @priv: driver private structure
2410  *  Description: It is used for configuring the TX Queue Priority
2411  */
2412 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
2413 {
2414 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2415 	u32 queue;
2416 	u32 prio;
2417 
2418 	for (queue = 0; queue < tx_queues_count; queue++) {
2419 		if (!priv->plat->tx_queues_cfg[queue].use_prio)
2420 			continue;
2421 
2422 		prio = priv->plat->tx_queues_cfg[queue].prio;
2423 		stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
2424 	}
2425 }
2426 
2427 /**
2428  *  stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
2429  *  @priv: driver private structure
2430  *  Description: It is used for configuring the RX queue routing
2431  */
2432 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
2433 {
2434 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2435 	u32 queue;
2436 	u8 packet;
2437 
2438 	for (queue = 0; queue < rx_queues_count; queue++) {
2439 		/* no specific packet type routing specified for the queue */
2440 		if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
2441 			continue;
2442 
2443 		packet = priv->plat->rx_queues_cfg[queue].pkt_route;
2444 		stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
2445 	}
2446 }
2447 
2448 static void stmmac_mac_config_rss(struct stmmac_priv *priv)
2449 {
2450 	if (!priv->dma_cap.rssen || !priv->plat->rss_en) {
2451 		priv->rss.enable = false;
2452 		return;
2453 	}
2454 
2455 	if (priv->dev->features & NETIF_F_RXHASH)
2456 		priv->rss.enable = true;
2457 	else
2458 		priv->rss.enable = false;
2459 
2460 	stmmac_rss_configure(priv, priv->hw, &priv->rss,
2461 			     priv->plat->rx_queues_to_use);
2462 }
2463 
2464 /**
2465  *  stmmac_mtl_configuration - Configure MTL
2466  *  @priv: driver private structure
2467  *  Description: It is used for configurring MTL
2468  */
2469 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
2470 {
2471 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2472 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2473 
2474 	if (tx_queues_count > 1)
2475 		stmmac_set_tx_queue_weight(priv);
2476 
2477 	/* Configure MTL RX algorithms */
2478 	if (rx_queues_count > 1)
2479 		stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
2480 				priv->plat->rx_sched_algorithm);
2481 
2482 	/* Configure MTL TX algorithms */
2483 	if (tx_queues_count > 1)
2484 		stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
2485 				priv->plat->tx_sched_algorithm);
2486 
2487 	/* Configure CBS in AVB TX queues */
2488 	if (tx_queues_count > 1)
2489 		stmmac_configure_cbs(priv);
2490 
2491 	/* Map RX MTL to DMA channels */
2492 	stmmac_rx_queue_dma_chan_map(priv);
2493 
2494 	/* Enable MAC RX Queues */
2495 	stmmac_mac_enable_rx_queues(priv);
2496 
2497 	/* Set RX priorities */
2498 	if (rx_queues_count > 1)
2499 		stmmac_mac_config_rx_queues_prio(priv);
2500 
2501 	/* Set TX priorities */
2502 	if (tx_queues_count > 1)
2503 		stmmac_mac_config_tx_queues_prio(priv);
2504 
2505 	/* Set RX routing */
2506 	if (rx_queues_count > 1)
2507 		stmmac_mac_config_rx_queues_routing(priv);
2508 
2509 	/* Receive Side Scaling */
2510 	if (rx_queues_count > 1)
2511 		stmmac_mac_config_rss(priv);
2512 }
2513 
2514 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
2515 {
2516 	if (priv->dma_cap.asp) {
2517 		netdev_info(priv->dev, "Enabling Safety Features\n");
2518 		stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp);
2519 	} else {
2520 		netdev_info(priv->dev, "No Safety Features support found\n");
2521 	}
2522 }
2523 
2524 /**
2525  * stmmac_hw_setup - setup mac in a usable state.
2526  *  @dev : pointer to the device structure.
2527  *  Description:
2528  *  this is the main function to setup the HW in a usable state because the
2529  *  dma engine is reset, the core registers are configured (e.g. AXI,
2530  *  Checksum features, timers). The DMA is ready to start receiving and
2531  *  transmitting.
2532  *  Return value:
2533  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2534  *  file on failure.
2535  */
2536 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
2537 {
2538 	struct stmmac_priv *priv = netdev_priv(dev);
2539 	u32 rx_cnt = priv->plat->rx_queues_to_use;
2540 	u32 tx_cnt = priv->plat->tx_queues_to_use;
2541 	u32 chan;
2542 	int ret;
2543 
2544 	/* DMA initialization and SW reset */
2545 	ret = stmmac_init_dma_engine(priv);
2546 	if (ret < 0) {
2547 		netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
2548 			   __func__);
2549 		return ret;
2550 	}
2551 
2552 	/* Copy the MAC addr into the HW  */
2553 	stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
2554 
2555 	/* PS and related bits will be programmed according to the speed */
2556 	if (priv->hw->pcs) {
2557 		int speed = priv->plat->mac_port_sel_speed;
2558 
2559 		if ((speed == SPEED_10) || (speed == SPEED_100) ||
2560 		    (speed == SPEED_1000)) {
2561 			priv->hw->ps = speed;
2562 		} else {
2563 			dev_warn(priv->device, "invalid port speed\n");
2564 			priv->hw->ps = 0;
2565 		}
2566 	}
2567 
2568 	/* Initialize the MAC Core */
2569 	stmmac_core_init(priv, priv->hw, dev);
2570 
2571 	/* Initialize MTL*/
2572 	stmmac_mtl_configuration(priv);
2573 
2574 	/* Initialize Safety Features */
2575 	stmmac_safety_feat_configuration(priv);
2576 
2577 	ret = stmmac_rx_ipc(priv, priv->hw);
2578 	if (!ret) {
2579 		netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
2580 		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
2581 		priv->hw->rx_csum = 0;
2582 	}
2583 
2584 	/* Enable the MAC Rx/Tx */
2585 	stmmac_mac_set(priv, priv->ioaddr, true);
2586 
2587 	/* Set the HW DMA mode and the COE */
2588 	stmmac_dma_operation_mode(priv);
2589 
2590 	stmmac_mmc_setup(priv);
2591 
2592 	if (init_ptp) {
2593 		ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
2594 		if (ret < 0)
2595 			netdev_warn(priv->dev, "failed to enable PTP reference clock: %d\n", ret);
2596 
2597 		ret = stmmac_init_ptp(priv);
2598 		if (ret == -EOPNOTSUPP)
2599 			netdev_warn(priv->dev, "PTP not supported by HW\n");
2600 		else if (ret)
2601 			netdev_warn(priv->dev, "PTP init failed\n");
2602 	}
2603 
2604 	priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
2605 
2606 	if (priv->use_riwt) {
2607 		ret = stmmac_rx_watchdog(priv, priv->ioaddr, MIN_DMA_RIWT, rx_cnt);
2608 		if (!ret)
2609 			priv->rx_riwt = MIN_DMA_RIWT;
2610 	}
2611 
2612 	if (priv->hw->pcs)
2613 		stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0);
2614 
2615 	/* set TX and RX rings length */
2616 	stmmac_set_rings_length(priv);
2617 
2618 	/* Enable TSO */
2619 	if (priv->tso) {
2620 		for (chan = 0; chan < tx_cnt; chan++)
2621 			stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
2622 	}
2623 
2624 	/* Enable Split Header */
2625 	if (priv->sph && priv->hw->rx_csum) {
2626 		for (chan = 0; chan < rx_cnt; chan++)
2627 			stmmac_enable_sph(priv, priv->ioaddr, 1, chan);
2628 	}
2629 
2630 	/* VLAN Tag Insertion */
2631 	if (priv->dma_cap.vlins)
2632 		stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT);
2633 
2634 	/* Start the ball rolling... */
2635 	stmmac_start_all_dma(priv);
2636 
2637 	return 0;
2638 }
2639 
2640 static void stmmac_hw_teardown(struct net_device *dev)
2641 {
2642 	struct stmmac_priv *priv = netdev_priv(dev);
2643 
2644 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
2645 }
2646 
2647 /**
2648  *  stmmac_open - open entry point of the driver
2649  *  @dev : pointer to the device structure.
2650  *  Description:
2651  *  This function is the open entry point of the driver.
2652  *  Return value:
2653  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2654  *  file on failure.
2655  */
2656 static int stmmac_open(struct net_device *dev)
2657 {
2658 	struct stmmac_priv *priv = netdev_priv(dev);
2659 	u32 chan;
2660 	int ret;
2661 
2662 	if (priv->hw->pcs != STMMAC_PCS_RGMII &&
2663 	    priv->hw->pcs != STMMAC_PCS_TBI &&
2664 	    priv->hw->pcs != STMMAC_PCS_RTBI) {
2665 		ret = stmmac_init_phy(dev);
2666 		if (ret) {
2667 			netdev_err(priv->dev,
2668 				   "%s: Cannot attach to PHY (error: %d)\n",
2669 				   __func__, ret);
2670 			return ret;
2671 		}
2672 	}
2673 
2674 	/* Extra statistics */
2675 	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
2676 	priv->xstats.threshold = tc;
2677 
2678 	priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
2679 	priv->rx_copybreak = STMMAC_RX_COPYBREAK;
2680 
2681 	ret = alloc_dma_desc_resources(priv);
2682 	if (ret < 0) {
2683 		netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
2684 			   __func__);
2685 		goto dma_desc_error;
2686 	}
2687 
2688 	ret = init_dma_desc_rings(dev, GFP_KERNEL);
2689 	if (ret < 0) {
2690 		netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
2691 			   __func__);
2692 		goto init_error;
2693 	}
2694 
2695 	ret = stmmac_hw_setup(dev, true);
2696 	if (ret < 0) {
2697 		netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
2698 		goto init_error;
2699 	}
2700 
2701 	stmmac_init_coalesce(priv);
2702 
2703 	phylink_start(priv->phylink);
2704 
2705 	/* Request the IRQ lines */
2706 	ret = request_irq(dev->irq, stmmac_interrupt,
2707 			  IRQF_SHARED, dev->name, dev);
2708 	if (unlikely(ret < 0)) {
2709 		netdev_err(priv->dev,
2710 			   "%s: ERROR: allocating the IRQ %d (error: %d)\n",
2711 			   __func__, dev->irq, ret);
2712 		goto irq_error;
2713 	}
2714 
2715 	/* Request the Wake IRQ in case of another line is used for WoL */
2716 	if (priv->wol_irq != dev->irq) {
2717 		ret = request_irq(priv->wol_irq, stmmac_interrupt,
2718 				  IRQF_SHARED, dev->name, dev);
2719 		if (unlikely(ret < 0)) {
2720 			netdev_err(priv->dev,
2721 				   "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
2722 				   __func__, priv->wol_irq, ret);
2723 			goto wolirq_error;
2724 		}
2725 	}
2726 
2727 	/* Request the IRQ lines */
2728 	if (priv->lpi_irq > 0) {
2729 		ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
2730 				  dev->name, dev);
2731 		if (unlikely(ret < 0)) {
2732 			netdev_err(priv->dev,
2733 				   "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
2734 				   __func__, priv->lpi_irq, ret);
2735 			goto lpiirq_error;
2736 		}
2737 	}
2738 
2739 	stmmac_enable_all_queues(priv);
2740 	stmmac_start_all_queues(priv);
2741 
2742 	return 0;
2743 
2744 lpiirq_error:
2745 	if (priv->wol_irq != dev->irq)
2746 		free_irq(priv->wol_irq, dev);
2747 wolirq_error:
2748 	free_irq(dev->irq, dev);
2749 irq_error:
2750 	phylink_stop(priv->phylink);
2751 
2752 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2753 		del_timer_sync(&priv->tx_queue[chan].txtimer);
2754 
2755 	stmmac_hw_teardown(dev);
2756 init_error:
2757 	free_dma_desc_resources(priv);
2758 dma_desc_error:
2759 	phylink_disconnect_phy(priv->phylink);
2760 	return ret;
2761 }
2762 
2763 /**
2764  *  stmmac_release - close entry point of the driver
2765  *  @dev : device pointer.
2766  *  Description:
2767  *  This is the stop entry point of the driver.
2768  */
2769 static int stmmac_release(struct net_device *dev)
2770 {
2771 	struct stmmac_priv *priv = netdev_priv(dev);
2772 	u32 chan;
2773 
2774 	if (priv->eee_enabled)
2775 		del_timer_sync(&priv->eee_ctrl_timer);
2776 
2777 	/* Stop and disconnect the PHY */
2778 	phylink_stop(priv->phylink);
2779 	phylink_disconnect_phy(priv->phylink);
2780 
2781 	stmmac_stop_all_queues(priv);
2782 
2783 	stmmac_disable_all_queues(priv);
2784 
2785 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2786 		del_timer_sync(&priv->tx_queue[chan].txtimer);
2787 
2788 	/* Free the IRQ lines */
2789 	free_irq(dev->irq, dev);
2790 	if (priv->wol_irq != dev->irq)
2791 		free_irq(priv->wol_irq, dev);
2792 	if (priv->lpi_irq > 0)
2793 		free_irq(priv->lpi_irq, dev);
2794 
2795 	/* Stop TX/RX DMA and clear the descriptors */
2796 	stmmac_stop_all_dma(priv);
2797 
2798 	/* Release and free the Rx/Tx resources */
2799 	free_dma_desc_resources(priv);
2800 
2801 	/* Disable the MAC Rx/Tx */
2802 	stmmac_mac_set(priv, priv->ioaddr, false);
2803 
2804 	netif_carrier_off(dev);
2805 
2806 	stmmac_release_ptp(priv);
2807 
2808 	return 0;
2809 }
2810 
2811 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb,
2812 			       struct stmmac_tx_queue *tx_q)
2813 {
2814 	u16 tag = 0x0, inner_tag = 0x0;
2815 	u32 inner_type = 0x0;
2816 	struct dma_desc *p;
2817 
2818 	if (!priv->dma_cap.vlins)
2819 		return false;
2820 	if (!skb_vlan_tag_present(skb))
2821 		return false;
2822 	if (skb->vlan_proto == htons(ETH_P_8021AD)) {
2823 		inner_tag = skb_vlan_tag_get(skb);
2824 		inner_type = STMMAC_VLAN_INSERT;
2825 	}
2826 
2827 	tag = skb_vlan_tag_get(skb);
2828 
2829 	p = tx_q->dma_tx + tx_q->cur_tx;
2830 	if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type))
2831 		return false;
2832 
2833 	stmmac_set_tx_owner(priv, p);
2834 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2835 	return true;
2836 }
2837 
2838 /**
2839  *  stmmac_tso_allocator - close entry point of the driver
2840  *  @priv: driver private structure
2841  *  @des: buffer start address
2842  *  @total_len: total length to fill in descriptors
2843  *  @last_segmant: condition for the last descriptor
2844  *  @queue: TX queue index
2845  *  Description:
2846  *  This function fills descriptor and request new descriptors according to
2847  *  buffer length to fill
2848  */
2849 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
2850 				 int total_len, bool last_segment, u32 queue)
2851 {
2852 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2853 	struct dma_desc *desc;
2854 	u32 buff_size;
2855 	int tmp_len;
2856 
2857 	tmp_len = total_len;
2858 
2859 	while (tmp_len > 0) {
2860 		dma_addr_t curr_addr;
2861 
2862 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2863 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
2864 		desc = tx_q->dma_tx + tx_q->cur_tx;
2865 
2866 		curr_addr = des + (total_len - tmp_len);
2867 		if (priv->dma_cap.addr64 <= 32)
2868 			desc->des0 = cpu_to_le32(curr_addr);
2869 		else
2870 			stmmac_set_desc_addr(priv, desc, curr_addr);
2871 
2872 		buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
2873 			    TSO_MAX_BUFF_SIZE : tmp_len;
2874 
2875 		stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
2876 				0, 1,
2877 				(last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
2878 				0, 0);
2879 
2880 		tmp_len -= TSO_MAX_BUFF_SIZE;
2881 	}
2882 }
2883 
2884 /**
2885  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
2886  *  @skb : the socket buffer
2887  *  @dev : device pointer
2888  *  Description: this is the transmit function that is called on TSO frames
2889  *  (support available on GMAC4 and newer chips).
2890  *  Diagram below show the ring programming in case of TSO frames:
2891  *
2892  *  First Descriptor
2893  *   --------
2894  *   | DES0 |---> buffer1 = L2/L3/L4 header
2895  *   | DES1 |---> TCP Payload (can continue on next descr...)
2896  *   | DES2 |---> buffer 1 and 2 len
2897  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
2898  *   --------
2899  *	|
2900  *     ...
2901  *	|
2902  *   --------
2903  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
2904  *   | DES1 | --|
2905  *   | DES2 | --> buffer 1 and 2 len
2906  *   | DES3 |
2907  *   --------
2908  *
2909  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
2910  */
2911 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
2912 {
2913 	struct dma_desc *desc, *first, *mss_desc = NULL;
2914 	struct stmmac_priv *priv = netdev_priv(dev);
2915 	int nfrags = skb_shinfo(skb)->nr_frags;
2916 	u32 queue = skb_get_queue_mapping(skb);
2917 	struct stmmac_tx_queue *tx_q;
2918 	unsigned int first_entry;
2919 	int tmp_pay_len = 0;
2920 	u32 pay_len, mss;
2921 	u8 proto_hdr_len;
2922 	dma_addr_t des;
2923 	bool has_vlan;
2924 	int i;
2925 
2926 	tx_q = &priv->tx_queue[queue];
2927 
2928 	/* Compute header lengths */
2929 	proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2930 
2931 	/* Desc availability based on threshold should be enough safe */
2932 	if (unlikely(stmmac_tx_avail(priv, queue) <
2933 		(((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
2934 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
2935 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
2936 								queue));
2937 			/* This is a hard error, log it. */
2938 			netdev_err(priv->dev,
2939 				   "%s: Tx Ring full when queue awake\n",
2940 				   __func__);
2941 		}
2942 		return NETDEV_TX_BUSY;
2943 	}
2944 
2945 	pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
2946 
2947 	mss = skb_shinfo(skb)->gso_size;
2948 
2949 	/* set new MSS value if needed */
2950 	if (mss != tx_q->mss) {
2951 		mss_desc = tx_q->dma_tx + tx_q->cur_tx;
2952 		stmmac_set_mss(priv, mss_desc, mss);
2953 		tx_q->mss = mss;
2954 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2955 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
2956 	}
2957 
2958 	if (netif_msg_tx_queued(priv)) {
2959 		pr_info("%s: tcphdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
2960 			__func__, tcp_hdrlen(skb), proto_hdr_len, pay_len, mss);
2961 		pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
2962 			skb->data_len);
2963 	}
2964 
2965 	/* Check if VLAN can be inserted by HW */
2966 	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
2967 
2968 	first_entry = tx_q->cur_tx;
2969 	WARN_ON(tx_q->tx_skbuff[first_entry]);
2970 
2971 	desc = tx_q->dma_tx + first_entry;
2972 	first = desc;
2973 
2974 	if (has_vlan)
2975 		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
2976 
2977 	/* first descriptor: fill Headers on Buf1 */
2978 	des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
2979 			     DMA_TO_DEVICE);
2980 	if (dma_mapping_error(priv->device, des))
2981 		goto dma_map_err;
2982 
2983 	tx_q->tx_skbuff_dma[first_entry].buf = des;
2984 	tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
2985 
2986 	if (priv->dma_cap.addr64 <= 32) {
2987 		first->des0 = cpu_to_le32(des);
2988 
2989 		/* Fill start of payload in buff2 of first descriptor */
2990 		if (pay_len)
2991 			first->des1 = cpu_to_le32(des + proto_hdr_len);
2992 
2993 		/* If needed take extra descriptors to fill the remaining payload */
2994 		tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
2995 	} else {
2996 		stmmac_set_desc_addr(priv, first, des);
2997 		tmp_pay_len = pay_len;
2998 		des += proto_hdr_len;
2999 		pay_len = 0;
3000 	}
3001 
3002 	stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
3003 
3004 	/* Prepare fragments */
3005 	for (i = 0; i < nfrags; i++) {
3006 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3007 
3008 		des = skb_frag_dma_map(priv->device, frag, 0,
3009 				       skb_frag_size(frag),
3010 				       DMA_TO_DEVICE);
3011 		if (dma_mapping_error(priv->device, des))
3012 			goto dma_map_err;
3013 
3014 		stmmac_tso_allocator(priv, des, skb_frag_size(frag),
3015 				     (i == nfrags - 1), queue);
3016 
3017 		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
3018 		tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
3019 		tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
3020 	}
3021 
3022 	tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
3023 
3024 	/* Only the last descriptor gets to point to the skb. */
3025 	tx_q->tx_skbuff[tx_q->cur_tx] = skb;
3026 
3027 	/* Manage tx mitigation */
3028 	tx_q->tx_count_frames += nfrags + 1;
3029 	if (likely(priv->tx_coal_frames > tx_q->tx_count_frames) &&
3030 	    !((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3031 	      priv->hwts_tx_en)) {
3032 		stmmac_tx_timer_arm(priv, queue);
3033 	} else {
3034 		desc = &tx_q->dma_tx[tx_q->cur_tx];
3035 		tx_q->tx_count_frames = 0;
3036 		stmmac_set_tx_ic(priv, desc);
3037 		priv->xstats.tx_set_ic_bit++;
3038 	}
3039 
3040 	/* We've used all descriptors we need for this skb, however,
3041 	 * advance cur_tx so that it references a fresh descriptor.
3042 	 * ndo_start_xmit will fill this descriptor the next time it's
3043 	 * called and stmmac_tx_clean may clean up to this descriptor.
3044 	 */
3045 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
3046 
3047 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3048 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3049 			  __func__);
3050 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3051 	}
3052 
3053 	dev->stats.tx_bytes += skb->len;
3054 	priv->xstats.tx_tso_frames++;
3055 	priv->xstats.tx_tso_nfrags += nfrags;
3056 
3057 	if (priv->sarc_type)
3058 		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
3059 
3060 	skb_tx_timestamp(skb);
3061 
3062 	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3063 		     priv->hwts_tx_en)) {
3064 		/* declare that device is doing timestamping */
3065 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3066 		stmmac_enable_tx_timestamp(priv, first);
3067 	}
3068 
3069 	/* Complete the first descriptor before granting the DMA */
3070 	stmmac_prepare_tso_tx_desc(priv, first, 1,
3071 			proto_hdr_len,
3072 			pay_len,
3073 			1, tx_q->tx_skbuff_dma[first_entry].last_segment,
3074 			tcp_hdrlen(skb) / 4, (skb->len - proto_hdr_len));
3075 
3076 	/* If context desc is used to change MSS */
3077 	if (mss_desc) {
3078 		/* Make sure that first descriptor has been completely
3079 		 * written, including its own bit. This is because MSS is
3080 		 * actually before first descriptor, so we need to make
3081 		 * sure that MSS's own bit is the last thing written.
3082 		 */
3083 		dma_wmb();
3084 		stmmac_set_tx_owner(priv, mss_desc);
3085 	}
3086 
3087 	/* The own bit must be the latest setting done when prepare the
3088 	 * descriptor and then barrier is needed to make sure that
3089 	 * all is coherent before granting the DMA engine.
3090 	 */
3091 	wmb();
3092 
3093 	if (netif_msg_pktdata(priv)) {
3094 		pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
3095 			__func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3096 			tx_q->cur_tx, first, nfrags);
3097 
3098 		stmmac_display_ring(priv, (void *)tx_q->dma_tx, DMA_TX_SIZE, 0);
3099 
3100 		pr_info(">>> frame to be transmitted: ");
3101 		print_pkt(skb->data, skb_headlen(skb));
3102 	}
3103 
3104 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3105 
3106 	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * sizeof(*desc));
3107 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3108 
3109 	return NETDEV_TX_OK;
3110 
3111 dma_map_err:
3112 	dev_err(priv->device, "Tx dma map failed\n");
3113 	dev_kfree_skb(skb);
3114 	priv->dev->stats.tx_dropped++;
3115 	return NETDEV_TX_OK;
3116 }
3117 
3118 /**
3119  *  stmmac_xmit - Tx entry point of the driver
3120  *  @skb : the socket buffer
3121  *  @dev : device pointer
3122  *  Description : this is the tx entry point of the driver.
3123  *  It programs the chain or the ring and supports oversized frames
3124  *  and SG feature.
3125  */
3126 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
3127 {
3128 	struct stmmac_priv *priv = netdev_priv(dev);
3129 	unsigned int nopaged_len = skb_headlen(skb);
3130 	int i, csum_insertion = 0, is_jumbo = 0;
3131 	u32 queue = skb_get_queue_mapping(skb);
3132 	int nfrags = skb_shinfo(skb)->nr_frags;
3133 	struct dma_desc *desc, *first;
3134 	struct stmmac_tx_queue *tx_q;
3135 	unsigned int first_entry;
3136 	unsigned int enh_desc;
3137 	dma_addr_t des;
3138 	bool has_vlan;
3139 	int entry;
3140 
3141 	tx_q = &priv->tx_queue[queue];
3142 
3143 	if (priv->tx_path_in_lpi_mode)
3144 		stmmac_disable_eee_mode(priv);
3145 
3146 	/* Manage oversized TCP frames for GMAC4 device */
3147 	if (skb_is_gso(skb) && priv->tso) {
3148 		if (skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
3149 			return stmmac_tso_xmit(skb, dev);
3150 	}
3151 
3152 	if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
3153 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3154 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3155 								queue));
3156 			/* This is a hard error, log it. */
3157 			netdev_err(priv->dev,
3158 				   "%s: Tx Ring full when queue awake\n",
3159 				   __func__);
3160 		}
3161 		return NETDEV_TX_BUSY;
3162 	}
3163 
3164 	/* Check if VLAN can be inserted by HW */
3165 	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
3166 
3167 	entry = tx_q->cur_tx;
3168 	first_entry = entry;
3169 	WARN_ON(tx_q->tx_skbuff[first_entry]);
3170 
3171 	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
3172 
3173 	if (likely(priv->extend_desc))
3174 		desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3175 	else
3176 		desc = tx_q->dma_tx + entry;
3177 
3178 	first = desc;
3179 
3180 	if (has_vlan)
3181 		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
3182 
3183 	enh_desc = priv->plat->enh_desc;
3184 	/* To program the descriptors according to the size of the frame */
3185 	if (enh_desc)
3186 		is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
3187 
3188 	if (unlikely(is_jumbo)) {
3189 		entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
3190 		if (unlikely(entry < 0) && (entry != -EINVAL))
3191 			goto dma_map_err;
3192 	}
3193 
3194 	for (i = 0; i < nfrags; i++) {
3195 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3196 		int len = skb_frag_size(frag);
3197 		bool last_segment = (i == (nfrags - 1));
3198 
3199 		entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
3200 		WARN_ON(tx_q->tx_skbuff[entry]);
3201 
3202 		if (likely(priv->extend_desc))
3203 			desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3204 		else
3205 			desc = tx_q->dma_tx + entry;
3206 
3207 		des = skb_frag_dma_map(priv->device, frag, 0, len,
3208 				       DMA_TO_DEVICE);
3209 		if (dma_mapping_error(priv->device, des))
3210 			goto dma_map_err; /* should reuse desc w/o issues */
3211 
3212 		tx_q->tx_skbuff_dma[entry].buf = des;
3213 
3214 		stmmac_set_desc_addr(priv, desc, des);
3215 
3216 		tx_q->tx_skbuff_dma[entry].map_as_page = true;
3217 		tx_q->tx_skbuff_dma[entry].len = len;
3218 		tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
3219 
3220 		/* Prepare the descriptor and set the own bit too */
3221 		stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
3222 				priv->mode, 1, last_segment, skb->len);
3223 	}
3224 
3225 	/* Only the last descriptor gets to point to the skb. */
3226 	tx_q->tx_skbuff[entry] = skb;
3227 
3228 	/* According to the coalesce parameter the IC bit for the latest
3229 	 * segment is reset and the timer re-started to clean the tx status.
3230 	 * This approach takes care about the fragments: desc is the first
3231 	 * element in case of no SG.
3232 	 */
3233 	tx_q->tx_count_frames += nfrags + 1;
3234 	if (likely(priv->tx_coal_frames > tx_q->tx_count_frames) &&
3235 	    !((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3236 	      priv->hwts_tx_en)) {
3237 		stmmac_tx_timer_arm(priv, queue);
3238 	} else {
3239 		if (likely(priv->extend_desc))
3240 			desc = &tx_q->dma_etx[entry].basic;
3241 		else
3242 			desc = &tx_q->dma_tx[entry];
3243 
3244 		tx_q->tx_count_frames = 0;
3245 		stmmac_set_tx_ic(priv, desc);
3246 		priv->xstats.tx_set_ic_bit++;
3247 	}
3248 
3249 	/* We've used all descriptors we need for this skb, however,
3250 	 * advance cur_tx so that it references a fresh descriptor.
3251 	 * ndo_start_xmit will fill this descriptor the next time it's
3252 	 * called and stmmac_tx_clean may clean up to this descriptor.
3253 	 */
3254 	entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
3255 	tx_q->cur_tx = entry;
3256 
3257 	if (netif_msg_pktdata(priv)) {
3258 		void *tx_head;
3259 
3260 		netdev_dbg(priv->dev,
3261 			   "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
3262 			   __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3263 			   entry, first, nfrags);
3264 
3265 		if (priv->extend_desc)
3266 			tx_head = (void *)tx_q->dma_etx;
3267 		else
3268 			tx_head = (void *)tx_q->dma_tx;
3269 
3270 		stmmac_display_ring(priv, tx_head, DMA_TX_SIZE, false);
3271 
3272 		netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
3273 		print_pkt(skb->data, skb->len);
3274 	}
3275 
3276 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3277 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3278 			  __func__);
3279 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3280 	}
3281 
3282 	dev->stats.tx_bytes += skb->len;
3283 
3284 	if (priv->sarc_type)
3285 		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
3286 
3287 	skb_tx_timestamp(skb);
3288 
3289 	/* Ready to fill the first descriptor and set the OWN bit w/o any
3290 	 * problems because all the descriptors are actually ready to be
3291 	 * passed to the DMA engine.
3292 	 */
3293 	if (likely(!is_jumbo)) {
3294 		bool last_segment = (nfrags == 0);
3295 
3296 		des = dma_map_single(priv->device, skb->data,
3297 				     nopaged_len, DMA_TO_DEVICE);
3298 		if (dma_mapping_error(priv->device, des))
3299 			goto dma_map_err;
3300 
3301 		tx_q->tx_skbuff_dma[first_entry].buf = des;
3302 
3303 		stmmac_set_desc_addr(priv, first, des);
3304 
3305 		tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
3306 		tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
3307 
3308 		if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3309 			     priv->hwts_tx_en)) {
3310 			/* declare that device is doing timestamping */
3311 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3312 			stmmac_enable_tx_timestamp(priv, first);
3313 		}
3314 
3315 		/* Prepare the first descriptor setting the OWN bit too */
3316 		stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
3317 				csum_insertion, priv->mode, 1, last_segment,
3318 				skb->len);
3319 	} else {
3320 		stmmac_set_tx_owner(priv, first);
3321 	}
3322 
3323 	/* The own bit must be the latest setting done when prepare the
3324 	 * descriptor and then barrier is needed to make sure that
3325 	 * all is coherent before granting the DMA engine.
3326 	 */
3327 	wmb();
3328 
3329 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3330 
3331 	stmmac_enable_dma_transmission(priv, priv->ioaddr);
3332 
3333 	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * sizeof(*desc));
3334 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3335 
3336 	return NETDEV_TX_OK;
3337 
3338 dma_map_err:
3339 	netdev_err(priv->dev, "Tx DMA map failed\n");
3340 	dev_kfree_skb(skb);
3341 	priv->dev->stats.tx_dropped++;
3342 	return NETDEV_TX_OK;
3343 }
3344 
3345 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
3346 {
3347 	struct vlan_ethhdr *veth;
3348 	__be16 vlan_proto;
3349 	u16 vlanid;
3350 
3351 	veth = (struct vlan_ethhdr *)skb->data;
3352 	vlan_proto = veth->h_vlan_proto;
3353 
3354 	if ((vlan_proto == htons(ETH_P_8021Q) &&
3355 	     dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
3356 	    (vlan_proto == htons(ETH_P_8021AD) &&
3357 	     dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
3358 		/* pop the vlan tag */
3359 		vlanid = ntohs(veth->h_vlan_TCI);
3360 		memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
3361 		skb_pull(skb, VLAN_HLEN);
3362 		__vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
3363 	}
3364 }
3365 
3366 
3367 static inline int stmmac_rx_threshold_count(struct stmmac_rx_queue *rx_q)
3368 {
3369 	if (rx_q->rx_zeroc_thresh < STMMAC_RX_THRESH)
3370 		return 0;
3371 
3372 	return 1;
3373 }
3374 
3375 /**
3376  * stmmac_rx_refill - refill used skb preallocated buffers
3377  * @priv: driver private structure
3378  * @queue: RX queue index
3379  * Description : this is to reallocate the skb for the reception process
3380  * that is based on zero-copy.
3381  */
3382 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
3383 {
3384 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3385 	int len, dirty = stmmac_rx_dirty(priv, queue);
3386 	unsigned int entry = rx_q->dirty_rx;
3387 
3388 	len = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE) * PAGE_SIZE;
3389 
3390 	while (dirty-- > 0) {
3391 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
3392 		struct dma_desc *p;
3393 		bool use_rx_wd;
3394 
3395 		if (priv->extend_desc)
3396 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
3397 		else
3398 			p = rx_q->dma_rx + entry;
3399 
3400 		if (!buf->page) {
3401 			buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
3402 			if (!buf->page)
3403 				break;
3404 		}
3405 
3406 		if (priv->sph && !buf->sec_page) {
3407 			buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
3408 			if (!buf->sec_page)
3409 				break;
3410 
3411 			buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
3412 
3413 			dma_sync_single_for_device(priv->device, buf->sec_addr,
3414 						   len, DMA_FROM_DEVICE);
3415 		}
3416 
3417 		buf->addr = page_pool_get_dma_addr(buf->page);
3418 
3419 		/* Sync whole allocation to device. This will invalidate old
3420 		 * data.
3421 		 */
3422 		dma_sync_single_for_device(priv->device, buf->addr, len,
3423 					   DMA_FROM_DEVICE);
3424 
3425 		stmmac_set_desc_addr(priv, p, buf->addr);
3426 		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr);
3427 		stmmac_refill_desc3(priv, rx_q, p);
3428 
3429 		rx_q->rx_count_frames++;
3430 		rx_q->rx_count_frames += priv->rx_coal_frames;
3431 		if (rx_q->rx_count_frames > priv->rx_coal_frames)
3432 			rx_q->rx_count_frames = 0;
3433 		use_rx_wd = priv->use_riwt && rx_q->rx_count_frames;
3434 
3435 		dma_wmb();
3436 		stmmac_set_rx_owner(priv, p, use_rx_wd);
3437 
3438 		entry = STMMAC_GET_ENTRY(entry, DMA_RX_SIZE);
3439 	}
3440 	rx_q->dirty_rx = entry;
3441 	rx_q->rx_tail_addr = rx_q->dma_rx_phy +
3442 			    (rx_q->dirty_rx * sizeof(struct dma_desc));
3443 	stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
3444 }
3445 
3446 /**
3447  * stmmac_rx - manage the receive process
3448  * @priv: driver private structure
3449  * @limit: napi bugget
3450  * @queue: RX queue index.
3451  * Description :  this the function called by the napi poll method.
3452  * It gets all the frames inside the ring.
3453  */
3454 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
3455 {
3456 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3457 	struct stmmac_channel *ch = &priv->channel[queue];
3458 	unsigned int count = 0, error = 0, len = 0;
3459 	int status = 0, coe = priv->hw->rx_csum;
3460 	unsigned int next_entry = rx_q->cur_rx;
3461 	struct sk_buff *skb = NULL;
3462 
3463 	if (netif_msg_rx_status(priv)) {
3464 		void *rx_head;
3465 
3466 		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
3467 		if (priv->extend_desc)
3468 			rx_head = (void *)rx_q->dma_erx;
3469 		else
3470 			rx_head = (void *)rx_q->dma_rx;
3471 
3472 		stmmac_display_ring(priv, rx_head, DMA_RX_SIZE, true);
3473 	}
3474 	while (count < limit) {
3475 		unsigned int hlen = 0, prev_len = 0;
3476 		enum pkt_hash_types hash_type;
3477 		struct stmmac_rx_buffer *buf;
3478 		struct dma_desc *np, *p;
3479 		unsigned int sec_len;
3480 		int entry;
3481 		u32 hash;
3482 
3483 		if (!count && rx_q->state_saved) {
3484 			skb = rx_q->state.skb;
3485 			error = rx_q->state.error;
3486 			len = rx_q->state.len;
3487 		} else {
3488 			rx_q->state_saved = false;
3489 			skb = NULL;
3490 			error = 0;
3491 			len = 0;
3492 		}
3493 
3494 		if (count >= limit)
3495 			break;
3496 
3497 read_again:
3498 		sec_len = 0;
3499 		entry = next_entry;
3500 		buf = &rx_q->buf_pool[entry];
3501 
3502 		if (priv->extend_desc)
3503 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
3504 		else
3505 			p = rx_q->dma_rx + entry;
3506 
3507 		/* read the status of the incoming frame */
3508 		status = stmmac_rx_status(priv, &priv->dev->stats,
3509 				&priv->xstats, p);
3510 		/* check if managed by the DMA otherwise go ahead */
3511 		if (unlikely(status & dma_own))
3512 			break;
3513 
3514 		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, DMA_RX_SIZE);
3515 		next_entry = rx_q->cur_rx;
3516 
3517 		if (priv->extend_desc)
3518 			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
3519 		else
3520 			np = rx_q->dma_rx + next_entry;
3521 
3522 		prefetch(np);
3523 		prefetch(page_address(buf->page));
3524 
3525 		if (priv->extend_desc)
3526 			stmmac_rx_extended_status(priv, &priv->dev->stats,
3527 					&priv->xstats, rx_q->dma_erx + entry);
3528 		if (unlikely(status == discard_frame)) {
3529 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
3530 			buf->page = NULL;
3531 			error = 1;
3532 			if (!priv->hwts_rx_en)
3533 				priv->dev->stats.rx_errors++;
3534 		}
3535 
3536 		if (unlikely(error && (status & rx_not_ls)))
3537 			goto read_again;
3538 		if (unlikely(error)) {
3539 			dev_kfree_skb(skb);
3540 			count++;
3541 			continue;
3542 		}
3543 
3544 		/* Buffer is good. Go on. */
3545 
3546 		if (likely(status & rx_not_ls)) {
3547 			len += priv->dma_buf_sz;
3548 		} else {
3549 			prev_len = len;
3550 			len = stmmac_get_rx_frame_len(priv, p, coe);
3551 
3552 			/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
3553 			 * Type frames (LLC/LLC-SNAP)
3554 			 *
3555 			 * llc_snap is never checked in GMAC >= 4, so this ACS
3556 			 * feature is always disabled and packets need to be
3557 			 * stripped manually.
3558 			 */
3559 			if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
3560 			    unlikely(status != llc_snap))
3561 				len -= ETH_FCS_LEN;
3562 		}
3563 
3564 		if (!skb) {
3565 			int ret = stmmac_get_rx_header_len(priv, p, &hlen);
3566 
3567 			if (priv->sph && !ret && (hlen > 0)) {
3568 				sec_len = len;
3569 				if (!(status & rx_not_ls))
3570 					sec_len = sec_len - hlen;
3571 				len = hlen;
3572 
3573 				prefetch(page_address(buf->sec_page));
3574 				priv->xstats.rx_split_hdr_pkt_n++;
3575 			}
3576 
3577 			skb = napi_alloc_skb(&ch->rx_napi, len);
3578 			if (!skb) {
3579 				priv->dev->stats.rx_dropped++;
3580 				count++;
3581 				continue;
3582 			}
3583 
3584 			dma_sync_single_for_cpu(priv->device, buf->addr, len,
3585 						DMA_FROM_DEVICE);
3586 			skb_copy_to_linear_data(skb, page_address(buf->page),
3587 						len);
3588 			skb_put(skb, len);
3589 
3590 			/* Data payload copied into SKB, page ready for recycle */
3591 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
3592 			buf->page = NULL;
3593 		} else {
3594 			unsigned int buf_len = len - prev_len;
3595 
3596 			if (likely(status & rx_not_ls))
3597 				buf_len = priv->dma_buf_sz;
3598 
3599 			dma_sync_single_for_cpu(priv->device, buf->addr,
3600 						buf_len, DMA_FROM_DEVICE);
3601 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
3602 					buf->page, 0, buf_len,
3603 					priv->dma_buf_sz);
3604 
3605 			/* Data payload appended into SKB */
3606 			page_pool_release_page(rx_q->page_pool, buf->page);
3607 			buf->page = NULL;
3608 		}
3609 
3610 		if (sec_len > 0) {
3611 			dma_sync_single_for_cpu(priv->device, buf->sec_addr,
3612 						sec_len, DMA_FROM_DEVICE);
3613 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
3614 					buf->sec_page, 0, sec_len,
3615 					priv->dma_buf_sz);
3616 
3617 			len += sec_len;
3618 
3619 			/* Data payload appended into SKB */
3620 			page_pool_release_page(rx_q->page_pool, buf->sec_page);
3621 			buf->sec_page = NULL;
3622 		}
3623 
3624 		if (likely(status & rx_not_ls))
3625 			goto read_again;
3626 
3627 		/* Got entire packet into SKB. Finish it. */
3628 
3629 		stmmac_get_rx_hwtstamp(priv, p, np, skb);
3630 		stmmac_rx_vlan(priv->dev, skb);
3631 		skb->protocol = eth_type_trans(skb, priv->dev);
3632 
3633 		if (unlikely(!coe))
3634 			skb_checksum_none_assert(skb);
3635 		else
3636 			skb->ip_summed = CHECKSUM_UNNECESSARY;
3637 
3638 		if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
3639 			skb_set_hash(skb, hash, hash_type);
3640 
3641 		skb_record_rx_queue(skb, queue);
3642 		napi_gro_receive(&ch->rx_napi, skb);
3643 
3644 		priv->dev->stats.rx_packets++;
3645 		priv->dev->stats.rx_bytes += len;
3646 		count++;
3647 	}
3648 
3649 	if (status & rx_not_ls) {
3650 		rx_q->state_saved = true;
3651 		rx_q->state.skb = skb;
3652 		rx_q->state.error = error;
3653 		rx_q->state.len = len;
3654 	}
3655 
3656 	stmmac_rx_refill(priv, queue);
3657 
3658 	priv->xstats.rx_pkt_n += count;
3659 
3660 	return count;
3661 }
3662 
3663 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
3664 {
3665 	struct stmmac_channel *ch =
3666 		container_of(napi, struct stmmac_channel, rx_napi);
3667 	struct stmmac_priv *priv = ch->priv_data;
3668 	u32 chan = ch->index;
3669 	int work_done;
3670 
3671 	priv->xstats.napi_poll++;
3672 
3673 	work_done = stmmac_rx(priv, budget, chan);
3674 	if (work_done < budget && napi_complete_done(napi, work_done))
3675 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan);
3676 	return work_done;
3677 }
3678 
3679 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
3680 {
3681 	struct stmmac_channel *ch =
3682 		container_of(napi, struct stmmac_channel, tx_napi);
3683 	struct stmmac_priv *priv = ch->priv_data;
3684 	struct stmmac_tx_queue *tx_q;
3685 	u32 chan = ch->index;
3686 	int work_done;
3687 
3688 	priv->xstats.napi_poll++;
3689 
3690 	work_done = stmmac_tx_clean(priv, DMA_TX_SIZE, chan);
3691 	work_done = min(work_done, budget);
3692 
3693 	if (work_done < budget)
3694 		napi_complete_done(napi, work_done);
3695 
3696 	/* Force transmission restart */
3697 	tx_q = &priv->tx_queue[chan];
3698 	if (tx_q->cur_tx != tx_q->dirty_tx) {
3699 		stmmac_enable_dma_transmission(priv, priv->ioaddr);
3700 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr,
3701 				       chan);
3702 	}
3703 
3704 	return work_done;
3705 }
3706 
3707 /**
3708  *  stmmac_tx_timeout
3709  *  @dev : Pointer to net device structure
3710  *  Description: this function is called when a packet transmission fails to
3711  *   complete within a reasonable time. The driver will mark the error in the
3712  *   netdev structure and arrange for the device to be reset to a sane state
3713  *   in order to transmit a new packet.
3714  */
3715 static void stmmac_tx_timeout(struct net_device *dev)
3716 {
3717 	struct stmmac_priv *priv = netdev_priv(dev);
3718 
3719 	stmmac_global_err(priv);
3720 }
3721 
3722 /**
3723  *  stmmac_set_rx_mode - entry point for multicast addressing
3724  *  @dev : pointer to the device structure
3725  *  Description:
3726  *  This function is a driver entry point which gets called by the kernel
3727  *  whenever multicast addresses must be enabled/disabled.
3728  *  Return value:
3729  *  void.
3730  */
3731 static void stmmac_set_rx_mode(struct net_device *dev)
3732 {
3733 	struct stmmac_priv *priv = netdev_priv(dev);
3734 
3735 	stmmac_set_filter(priv, priv->hw, dev);
3736 }
3737 
3738 /**
3739  *  stmmac_change_mtu - entry point to change MTU size for the device.
3740  *  @dev : device pointer.
3741  *  @new_mtu : the new MTU size for the device.
3742  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
3743  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
3744  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
3745  *  Return value:
3746  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3747  *  file on failure.
3748  */
3749 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
3750 {
3751 	struct stmmac_priv *priv = netdev_priv(dev);
3752 
3753 	if (netif_running(dev)) {
3754 		netdev_err(priv->dev, "must be stopped to change its MTU\n");
3755 		return -EBUSY;
3756 	}
3757 
3758 	dev->mtu = new_mtu;
3759 
3760 	netdev_update_features(dev);
3761 
3762 	return 0;
3763 }
3764 
3765 static netdev_features_t stmmac_fix_features(struct net_device *dev,
3766 					     netdev_features_t features)
3767 {
3768 	struct stmmac_priv *priv = netdev_priv(dev);
3769 
3770 	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
3771 		features &= ~NETIF_F_RXCSUM;
3772 
3773 	if (!priv->plat->tx_coe)
3774 		features &= ~NETIF_F_CSUM_MASK;
3775 
3776 	/* Some GMAC devices have a bugged Jumbo frame support that
3777 	 * needs to have the Tx COE disabled for oversized frames
3778 	 * (due to limited buffer sizes). In this case we disable
3779 	 * the TX csum insertion in the TDES and not use SF.
3780 	 */
3781 	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
3782 		features &= ~NETIF_F_CSUM_MASK;
3783 
3784 	/* Disable tso if asked by ethtool */
3785 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
3786 		if (features & NETIF_F_TSO)
3787 			priv->tso = true;
3788 		else
3789 			priv->tso = false;
3790 	}
3791 
3792 	return features;
3793 }
3794 
3795 static int stmmac_set_features(struct net_device *netdev,
3796 			       netdev_features_t features)
3797 {
3798 	struct stmmac_priv *priv = netdev_priv(netdev);
3799 	bool sph_en;
3800 	u32 chan;
3801 
3802 	/* Keep the COE Type in case of csum is supporting */
3803 	if (features & NETIF_F_RXCSUM)
3804 		priv->hw->rx_csum = priv->plat->rx_coe;
3805 	else
3806 		priv->hw->rx_csum = 0;
3807 	/* No check needed because rx_coe has been set before and it will be
3808 	 * fixed in case of issue.
3809 	 */
3810 	stmmac_rx_ipc(priv, priv->hw);
3811 
3812 	sph_en = (priv->hw->rx_csum > 0) && priv->sph;
3813 	for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++)
3814 		stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
3815 
3816 	return 0;
3817 }
3818 
3819 /**
3820  *  stmmac_interrupt - main ISR
3821  *  @irq: interrupt number.
3822  *  @dev_id: to pass the net device pointer.
3823  *  Description: this is the main driver interrupt service routine.
3824  *  It can call:
3825  *  o DMA service routine (to manage incoming frame reception and transmission
3826  *    status)
3827  *  o Core interrupts to manage: remote wake-up, management counter, LPI
3828  *    interrupts.
3829  */
3830 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
3831 {
3832 	struct net_device *dev = (struct net_device *)dev_id;
3833 	struct stmmac_priv *priv = netdev_priv(dev);
3834 	u32 rx_cnt = priv->plat->rx_queues_to_use;
3835 	u32 tx_cnt = priv->plat->tx_queues_to_use;
3836 	u32 queues_count;
3837 	u32 queue;
3838 	bool xmac;
3839 
3840 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
3841 	queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
3842 
3843 	if (priv->irq_wake)
3844 		pm_wakeup_event(priv->device, 0);
3845 
3846 	if (unlikely(!dev)) {
3847 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
3848 		return IRQ_NONE;
3849 	}
3850 
3851 	/* Check if adapter is up */
3852 	if (test_bit(STMMAC_DOWN, &priv->state))
3853 		return IRQ_HANDLED;
3854 	/* Check if a fatal error happened */
3855 	if (stmmac_safety_feat_interrupt(priv))
3856 		return IRQ_HANDLED;
3857 
3858 	/* To handle GMAC own interrupts */
3859 	if ((priv->plat->has_gmac) || xmac) {
3860 		int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
3861 		int mtl_status;
3862 
3863 		if (unlikely(status)) {
3864 			/* For LPI we need to save the tx status */
3865 			if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
3866 				priv->tx_path_in_lpi_mode = true;
3867 			if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
3868 				priv->tx_path_in_lpi_mode = false;
3869 		}
3870 
3871 		for (queue = 0; queue < queues_count; queue++) {
3872 			struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3873 
3874 			mtl_status = stmmac_host_mtl_irq_status(priv, priv->hw,
3875 								queue);
3876 			if (mtl_status != -EINVAL)
3877 				status |= mtl_status;
3878 
3879 			if (status & CORE_IRQ_MTL_RX_OVERFLOW)
3880 				stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
3881 						       rx_q->rx_tail_addr,
3882 						       queue);
3883 		}
3884 
3885 		/* PCS link status */
3886 		if (priv->hw->pcs) {
3887 			if (priv->xstats.pcs_link)
3888 				netif_carrier_on(dev);
3889 			else
3890 				netif_carrier_off(dev);
3891 		}
3892 	}
3893 
3894 	/* To handle DMA interrupts */
3895 	stmmac_dma_interrupt(priv);
3896 
3897 	return IRQ_HANDLED;
3898 }
3899 
3900 #ifdef CONFIG_NET_POLL_CONTROLLER
3901 /* Polling receive - used by NETCONSOLE and other diagnostic tools
3902  * to allow network I/O with interrupts disabled.
3903  */
3904 static void stmmac_poll_controller(struct net_device *dev)
3905 {
3906 	disable_irq(dev->irq);
3907 	stmmac_interrupt(dev->irq, dev);
3908 	enable_irq(dev->irq);
3909 }
3910 #endif
3911 
3912 /**
3913  *  stmmac_ioctl - Entry point for the Ioctl
3914  *  @dev: Device pointer.
3915  *  @rq: An IOCTL specefic structure, that can contain a pointer to
3916  *  a proprietary structure used to pass information to the driver.
3917  *  @cmd: IOCTL command
3918  *  Description:
3919  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
3920  */
3921 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3922 {
3923 	struct stmmac_priv *priv = netdev_priv (dev);
3924 	int ret = -EOPNOTSUPP;
3925 
3926 	if (!netif_running(dev))
3927 		return -EINVAL;
3928 
3929 	switch (cmd) {
3930 	case SIOCGMIIPHY:
3931 	case SIOCGMIIREG:
3932 	case SIOCSMIIREG:
3933 		ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
3934 		break;
3935 	case SIOCSHWTSTAMP:
3936 		ret = stmmac_hwtstamp_set(dev, rq);
3937 		break;
3938 	case SIOCGHWTSTAMP:
3939 		ret = stmmac_hwtstamp_get(dev, rq);
3940 		break;
3941 	default:
3942 		break;
3943 	}
3944 
3945 	return ret;
3946 }
3947 
3948 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
3949 				    void *cb_priv)
3950 {
3951 	struct stmmac_priv *priv = cb_priv;
3952 	int ret = -EOPNOTSUPP;
3953 
3954 	if (!tc_cls_can_offload_and_chain0(priv->dev, type_data))
3955 		return ret;
3956 
3957 	stmmac_disable_all_queues(priv);
3958 
3959 	switch (type) {
3960 	case TC_SETUP_CLSU32:
3961 		ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
3962 		break;
3963 	case TC_SETUP_CLSFLOWER:
3964 		ret = stmmac_tc_setup_cls(priv, priv, type_data);
3965 		break;
3966 	default:
3967 		break;
3968 	}
3969 
3970 	stmmac_enable_all_queues(priv);
3971 	return ret;
3972 }
3973 
3974 static LIST_HEAD(stmmac_block_cb_list);
3975 
3976 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
3977 			   void *type_data)
3978 {
3979 	struct stmmac_priv *priv = netdev_priv(ndev);
3980 
3981 	switch (type) {
3982 	case TC_SETUP_BLOCK:
3983 		return flow_block_cb_setup_simple(type_data,
3984 						  &stmmac_block_cb_list,
3985 						  stmmac_setup_tc_block_cb,
3986 						  priv, priv, true);
3987 	case TC_SETUP_QDISC_CBS:
3988 		return stmmac_tc_setup_cbs(priv, priv, type_data);
3989 	default:
3990 		return -EOPNOTSUPP;
3991 	}
3992 }
3993 
3994 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
3995 			       struct net_device *sb_dev)
3996 {
3997 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
3998 		/*
3999 		 * There is no way to determine the number of TSO
4000 		 * capable Queues. Let's use always the Queue 0
4001 		 * because if TSO is supported then at least this
4002 		 * one will be capable.
4003 		 */
4004 		return 0;
4005 	}
4006 
4007 	return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
4008 }
4009 
4010 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
4011 {
4012 	struct stmmac_priv *priv = netdev_priv(ndev);
4013 	int ret = 0;
4014 
4015 	ret = eth_mac_addr(ndev, addr);
4016 	if (ret)
4017 		return ret;
4018 
4019 	stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
4020 
4021 	return ret;
4022 }
4023 
4024 #ifdef CONFIG_DEBUG_FS
4025 static struct dentry *stmmac_fs_dir;
4026 
4027 static void sysfs_display_ring(void *head, int size, int extend_desc,
4028 			       struct seq_file *seq)
4029 {
4030 	int i;
4031 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
4032 	struct dma_desc *p = (struct dma_desc *)head;
4033 
4034 	for (i = 0; i < size; i++) {
4035 		if (extend_desc) {
4036 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
4037 				   i, (unsigned int)virt_to_phys(ep),
4038 				   le32_to_cpu(ep->basic.des0),
4039 				   le32_to_cpu(ep->basic.des1),
4040 				   le32_to_cpu(ep->basic.des2),
4041 				   le32_to_cpu(ep->basic.des3));
4042 			ep++;
4043 		} else {
4044 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
4045 				   i, (unsigned int)virt_to_phys(p),
4046 				   le32_to_cpu(p->des0), le32_to_cpu(p->des1),
4047 				   le32_to_cpu(p->des2), le32_to_cpu(p->des3));
4048 			p++;
4049 		}
4050 		seq_printf(seq, "\n");
4051 	}
4052 }
4053 
4054 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
4055 {
4056 	struct net_device *dev = seq->private;
4057 	struct stmmac_priv *priv = netdev_priv(dev);
4058 	u32 rx_count = priv->plat->rx_queues_to_use;
4059 	u32 tx_count = priv->plat->tx_queues_to_use;
4060 	u32 queue;
4061 
4062 	if ((dev->flags & IFF_UP) == 0)
4063 		return 0;
4064 
4065 	for (queue = 0; queue < rx_count; queue++) {
4066 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4067 
4068 		seq_printf(seq, "RX Queue %d:\n", queue);
4069 
4070 		if (priv->extend_desc) {
4071 			seq_printf(seq, "Extended descriptor ring:\n");
4072 			sysfs_display_ring((void *)rx_q->dma_erx,
4073 					   DMA_RX_SIZE, 1, seq);
4074 		} else {
4075 			seq_printf(seq, "Descriptor ring:\n");
4076 			sysfs_display_ring((void *)rx_q->dma_rx,
4077 					   DMA_RX_SIZE, 0, seq);
4078 		}
4079 	}
4080 
4081 	for (queue = 0; queue < tx_count; queue++) {
4082 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4083 
4084 		seq_printf(seq, "TX Queue %d:\n", queue);
4085 
4086 		if (priv->extend_desc) {
4087 			seq_printf(seq, "Extended descriptor ring:\n");
4088 			sysfs_display_ring((void *)tx_q->dma_etx,
4089 					   DMA_TX_SIZE, 1, seq);
4090 		} else {
4091 			seq_printf(seq, "Descriptor ring:\n");
4092 			sysfs_display_ring((void *)tx_q->dma_tx,
4093 					   DMA_TX_SIZE, 0, seq);
4094 		}
4095 	}
4096 
4097 	return 0;
4098 }
4099 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
4100 
4101 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
4102 {
4103 	struct net_device *dev = seq->private;
4104 	struct stmmac_priv *priv = netdev_priv(dev);
4105 
4106 	if (!priv->hw_cap_support) {
4107 		seq_printf(seq, "DMA HW features not supported\n");
4108 		return 0;
4109 	}
4110 
4111 	seq_printf(seq, "==============================\n");
4112 	seq_printf(seq, "\tDMA HW features\n");
4113 	seq_printf(seq, "==============================\n");
4114 
4115 	seq_printf(seq, "\t10/100 Mbps: %s\n",
4116 		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
4117 	seq_printf(seq, "\t1000 Mbps: %s\n",
4118 		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
4119 	seq_printf(seq, "\tHalf duplex: %s\n",
4120 		   (priv->dma_cap.half_duplex) ? "Y" : "N");
4121 	seq_printf(seq, "\tHash Filter: %s\n",
4122 		   (priv->dma_cap.hash_filter) ? "Y" : "N");
4123 	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
4124 		   (priv->dma_cap.multi_addr) ? "Y" : "N");
4125 	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
4126 		   (priv->dma_cap.pcs) ? "Y" : "N");
4127 	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
4128 		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
4129 	seq_printf(seq, "\tPMT Remote wake up: %s\n",
4130 		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
4131 	seq_printf(seq, "\tPMT Magic Frame: %s\n",
4132 		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
4133 	seq_printf(seq, "\tRMON module: %s\n",
4134 		   (priv->dma_cap.rmon) ? "Y" : "N");
4135 	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
4136 		   (priv->dma_cap.time_stamp) ? "Y" : "N");
4137 	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
4138 		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
4139 	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
4140 		   (priv->dma_cap.eee) ? "Y" : "N");
4141 	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
4142 	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
4143 		   (priv->dma_cap.tx_coe) ? "Y" : "N");
4144 	if (priv->synopsys_id >= DWMAC_CORE_4_00) {
4145 		seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
4146 			   (priv->dma_cap.rx_coe) ? "Y" : "N");
4147 	} else {
4148 		seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
4149 			   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
4150 		seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
4151 			   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
4152 	}
4153 	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
4154 		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
4155 	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
4156 		   priv->dma_cap.number_rx_channel);
4157 	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
4158 		   priv->dma_cap.number_tx_channel);
4159 	seq_printf(seq, "\tEnhanced descriptors: %s\n",
4160 		   (priv->dma_cap.enh_desc) ? "Y" : "N");
4161 
4162 	return 0;
4163 }
4164 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
4165 
4166 static void stmmac_init_fs(struct net_device *dev)
4167 {
4168 	struct stmmac_priv *priv = netdev_priv(dev);
4169 
4170 	/* Create per netdev entries */
4171 	priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
4172 
4173 	/* Entry to report DMA RX/TX rings */
4174 	debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev,
4175 			    &stmmac_rings_status_fops);
4176 
4177 	/* Entry to report the DMA HW features */
4178 	debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev,
4179 			    &stmmac_dma_cap_fops);
4180 }
4181 
4182 static void stmmac_exit_fs(struct net_device *dev)
4183 {
4184 	struct stmmac_priv *priv = netdev_priv(dev);
4185 
4186 	debugfs_remove_recursive(priv->dbgfs_dir);
4187 }
4188 #endif /* CONFIG_DEBUG_FS */
4189 
4190 static u32 stmmac_vid_crc32_le(__le16 vid_le)
4191 {
4192 	unsigned char *data = (unsigned char *)&vid_le;
4193 	unsigned char data_byte = 0;
4194 	u32 crc = ~0x0;
4195 	u32 temp = 0;
4196 	int i, bits;
4197 
4198 	bits = get_bitmask_order(VLAN_VID_MASK);
4199 	for (i = 0; i < bits; i++) {
4200 		if ((i % 8) == 0)
4201 			data_byte = data[i / 8];
4202 
4203 		temp = ((crc & 1) ^ data_byte) & 1;
4204 		crc >>= 1;
4205 		data_byte >>= 1;
4206 
4207 		if (temp)
4208 			crc ^= 0xedb88320;
4209 	}
4210 
4211 	return crc;
4212 }
4213 
4214 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double)
4215 {
4216 	u32 crc, hash = 0;
4217 	u16 vid;
4218 
4219 	for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
4220 		__le16 vid_le = cpu_to_le16(vid);
4221 		crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28;
4222 		hash |= (1 << crc);
4223 	}
4224 
4225 	return stmmac_update_vlan_hash(priv, priv->hw, hash, is_double);
4226 }
4227 
4228 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
4229 {
4230 	struct stmmac_priv *priv = netdev_priv(ndev);
4231 	bool is_double = false;
4232 	int ret;
4233 
4234 	if (!priv->dma_cap.vlhash)
4235 		return -EOPNOTSUPP;
4236 	if (be16_to_cpu(proto) == ETH_P_8021AD)
4237 		is_double = true;
4238 
4239 	set_bit(vid, priv->active_vlans);
4240 	ret = stmmac_vlan_update(priv, is_double);
4241 	if (ret) {
4242 		clear_bit(vid, priv->active_vlans);
4243 		return ret;
4244 	}
4245 
4246 	return ret;
4247 }
4248 
4249 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
4250 {
4251 	struct stmmac_priv *priv = netdev_priv(ndev);
4252 	bool is_double = false;
4253 
4254 	if (!priv->dma_cap.vlhash)
4255 		return -EOPNOTSUPP;
4256 	if (be16_to_cpu(proto) == ETH_P_8021AD)
4257 		is_double = true;
4258 
4259 	clear_bit(vid, priv->active_vlans);
4260 	return stmmac_vlan_update(priv, is_double);
4261 }
4262 
4263 static const struct net_device_ops stmmac_netdev_ops = {
4264 	.ndo_open = stmmac_open,
4265 	.ndo_start_xmit = stmmac_xmit,
4266 	.ndo_stop = stmmac_release,
4267 	.ndo_change_mtu = stmmac_change_mtu,
4268 	.ndo_fix_features = stmmac_fix_features,
4269 	.ndo_set_features = stmmac_set_features,
4270 	.ndo_set_rx_mode = stmmac_set_rx_mode,
4271 	.ndo_tx_timeout = stmmac_tx_timeout,
4272 	.ndo_do_ioctl = stmmac_ioctl,
4273 	.ndo_setup_tc = stmmac_setup_tc,
4274 	.ndo_select_queue = stmmac_select_queue,
4275 #ifdef CONFIG_NET_POLL_CONTROLLER
4276 	.ndo_poll_controller = stmmac_poll_controller,
4277 #endif
4278 	.ndo_set_mac_address = stmmac_set_mac_address,
4279 	.ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid,
4280 	.ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid,
4281 };
4282 
4283 static void stmmac_reset_subtask(struct stmmac_priv *priv)
4284 {
4285 	if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
4286 		return;
4287 	if (test_bit(STMMAC_DOWN, &priv->state))
4288 		return;
4289 
4290 	netdev_err(priv->dev, "Reset adapter.\n");
4291 
4292 	rtnl_lock();
4293 	netif_trans_update(priv->dev);
4294 	while (test_and_set_bit(STMMAC_RESETING, &priv->state))
4295 		usleep_range(1000, 2000);
4296 
4297 	set_bit(STMMAC_DOWN, &priv->state);
4298 	dev_close(priv->dev);
4299 	dev_open(priv->dev, NULL);
4300 	clear_bit(STMMAC_DOWN, &priv->state);
4301 	clear_bit(STMMAC_RESETING, &priv->state);
4302 	rtnl_unlock();
4303 }
4304 
4305 static void stmmac_service_task(struct work_struct *work)
4306 {
4307 	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
4308 			service_task);
4309 
4310 	stmmac_reset_subtask(priv);
4311 	clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
4312 }
4313 
4314 /**
4315  *  stmmac_hw_init - Init the MAC device
4316  *  @priv: driver private structure
4317  *  Description: this function is to configure the MAC device according to
4318  *  some platform parameters or the HW capability register. It prepares the
4319  *  driver to use either ring or chain modes and to setup either enhanced or
4320  *  normal descriptors.
4321  */
4322 static int stmmac_hw_init(struct stmmac_priv *priv)
4323 {
4324 	int ret;
4325 
4326 	/* dwmac-sun8i only work in chain mode */
4327 	if (priv->plat->has_sun8i)
4328 		chain_mode = 1;
4329 	priv->chain_mode = chain_mode;
4330 
4331 	/* Initialize HW Interface */
4332 	ret = stmmac_hwif_init(priv);
4333 	if (ret)
4334 		return ret;
4335 
4336 	/* Get the HW capability (new GMAC newer than 3.50a) */
4337 	priv->hw_cap_support = stmmac_get_hw_features(priv);
4338 	if (priv->hw_cap_support) {
4339 		dev_info(priv->device, "DMA HW capability register supported\n");
4340 
4341 		/* We can override some gmac/dma configuration fields: e.g.
4342 		 * enh_desc, tx_coe (e.g. that are passed through the
4343 		 * platform) with the values from the HW capability
4344 		 * register (if supported).
4345 		 */
4346 		priv->plat->enh_desc = priv->dma_cap.enh_desc;
4347 		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
4348 		priv->hw->pmt = priv->plat->pmt;
4349 		if (priv->dma_cap.hash_tb_sz) {
4350 			priv->hw->multicast_filter_bins =
4351 					(BIT(priv->dma_cap.hash_tb_sz) << 5);
4352 			priv->hw->mcast_bits_log2 =
4353 					ilog2(priv->hw->multicast_filter_bins);
4354 		}
4355 
4356 		/* TXCOE doesn't work in thresh DMA mode */
4357 		if (priv->plat->force_thresh_dma_mode)
4358 			priv->plat->tx_coe = 0;
4359 		else
4360 			priv->plat->tx_coe = priv->dma_cap.tx_coe;
4361 
4362 		/* In case of GMAC4 rx_coe is from HW cap register. */
4363 		priv->plat->rx_coe = priv->dma_cap.rx_coe;
4364 
4365 		if (priv->dma_cap.rx_coe_type2)
4366 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
4367 		else if (priv->dma_cap.rx_coe_type1)
4368 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
4369 
4370 	} else {
4371 		dev_info(priv->device, "No HW DMA feature register supported\n");
4372 	}
4373 
4374 	if (priv->plat->rx_coe) {
4375 		priv->hw->rx_csum = priv->plat->rx_coe;
4376 		dev_info(priv->device, "RX Checksum Offload Engine supported\n");
4377 		if (priv->synopsys_id < DWMAC_CORE_4_00)
4378 			dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
4379 	}
4380 	if (priv->plat->tx_coe)
4381 		dev_info(priv->device, "TX Checksum insertion supported\n");
4382 
4383 	if (priv->plat->pmt) {
4384 		dev_info(priv->device, "Wake-Up On Lan supported\n");
4385 		device_set_wakeup_capable(priv->device, 1);
4386 	}
4387 
4388 	if (priv->dma_cap.tsoen)
4389 		dev_info(priv->device, "TSO supported\n");
4390 
4391 	/* Run HW quirks, if any */
4392 	if (priv->hwif_quirks) {
4393 		ret = priv->hwif_quirks(priv);
4394 		if (ret)
4395 			return ret;
4396 	}
4397 
4398 	/* Rx Watchdog is available in the COREs newer than the 3.40.
4399 	 * In some case, for example on bugged HW this feature
4400 	 * has to be disable and this can be done by passing the
4401 	 * riwt_off field from the platform.
4402 	 */
4403 	if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
4404 	    (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
4405 		priv->use_riwt = 1;
4406 		dev_info(priv->device,
4407 			 "Enable RX Mitigation via HW Watchdog Timer\n");
4408 	}
4409 
4410 	return 0;
4411 }
4412 
4413 /**
4414  * stmmac_dvr_probe
4415  * @device: device pointer
4416  * @plat_dat: platform data pointer
4417  * @res: stmmac resource pointer
4418  * Description: this is the main probe function used to
4419  * call the alloc_etherdev, allocate the priv structure.
4420  * Return:
4421  * returns 0 on success, otherwise errno.
4422  */
4423 int stmmac_dvr_probe(struct device *device,
4424 		     struct plat_stmmacenet_data *plat_dat,
4425 		     struct stmmac_resources *res)
4426 {
4427 	struct net_device *ndev = NULL;
4428 	struct stmmac_priv *priv;
4429 	u32 queue, rxq, maxq;
4430 	int i, ret = 0;
4431 
4432 	ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
4433 				       MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
4434 	if (!ndev)
4435 		return -ENOMEM;
4436 
4437 	SET_NETDEV_DEV(ndev, device);
4438 
4439 	priv = netdev_priv(ndev);
4440 	priv->device = device;
4441 	priv->dev = ndev;
4442 
4443 	stmmac_set_ethtool_ops(ndev);
4444 	priv->pause = pause;
4445 	priv->plat = plat_dat;
4446 	priv->ioaddr = res->addr;
4447 	priv->dev->base_addr = (unsigned long)res->addr;
4448 
4449 	priv->dev->irq = res->irq;
4450 	priv->wol_irq = res->wol_irq;
4451 	priv->lpi_irq = res->lpi_irq;
4452 
4453 	if (!IS_ERR_OR_NULL(res->mac))
4454 		memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
4455 
4456 	dev_set_drvdata(device, priv->dev);
4457 
4458 	/* Verify driver arguments */
4459 	stmmac_verify_args();
4460 
4461 	/* Allocate workqueue */
4462 	priv->wq = create_singlethread_workqueue("stmmac_wq");
4463 	if (!priv->wq) {
4464 		dev_err(priv->device, "failed to create workqueue\n");
4465 		return -ENOMEM;
4466 	}
4467 
4468 	INIT_WORK(&priv->service_task, stmmac_service_task);
4469 
4470 	/* Override with kernel parameters if supplied XXX CRS XXX
4471 	 * this needs to have multiple instances
4472 	 */
4473 	if ((phyaddr >= 0) && (phyaddr <= 31))
4474 		priv->plat->phy_addr = phyaddr;
4475 
4476 	if (priv->plat->stmmac_rst) {
4477 		ret = reset_control_assert(priv->plat->stmmac_rst);
4478 		reset_control_deassert(priv->plat->stmmac_rst);
4479 		/* Some reset controllers have only reset callback instead of
4480 		 * assert + deassert callbacks pair.
4481 		 */
4482 		if (ret == -ENOTSUPP)
4483 			reset_control_reset(priv->plat->stmmac_rst);
4484 	}
4485 
4486 	/* Init MAC and get the capabilities */
4487 	ret = stmmac_hw_init(priv);
4488 	if (ret)
4489 		goto error_hw_init;
4490 
4491 	stmmac_check_ether_addr(priv);
4492 
4493 	/* Configure real RX and TX queues */
4494 	netif_set_real_num_rx_queues(ndev, priv->plat->rx_queues_to_use);
4495 	netif_set_real_num_tx_queues(ndev, priv->plat->tx_queues_to_use);
4496 
4497 	ndev->netdev_ops = &stmmac_netdev_ops;
4498 
4499 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4500 			    NETIF_F_RXCSUM;
4501 
4502 	ret = stmmac_tc_init(priv, priv);
4503 	if (!ret) {
4504 		ndev->hw_features |= NETIF_F_HW_TC;
4505 	}
4506 
4507 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
4508 		ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
4509 		priv->tso = true;
4510 		dev_info(priv->device, "TSO feature enabled\n");
4511 	}
4512 
4513 	if (priv->dma_cap.sphen) {
4514 		ndev->hw_features |= NETIF_F_GRO;
4515 		priv->sph = true;
4516 		dev_info(priv->device, "SPH feature enabled\n");
4517 	}
4518 
4519 	if (priv->dma_cap.addr64) {
4520 		ret = dma_set_mask_and_coherent(device,
4521 				DMA_BIT_MASK(priv->dma_cap.addr64));
4522 		if (!ret) {
4523 			dev_info(priv->device, "Using %d bits DMA width\n",
4524 				 priv->dma_cap.addr64);
4525 		} else {
4526 			ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
4527 			if (ret) {
4528 				dev_err(priv->device, "Failed to set DMA Mask\n");
4529 				goto error_hw_init;
4530 			}
4531 
4532 			priv->dma_cap.addr64 = 32;
4533 		}
4534 	}
4535 
4536 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
4537 	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
4538 #ifdef STMMAC_VLAN_TAG_USED
4539 	/* Both mac100 and gmac support receive VLAN tag detection */
4540 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
4541 	if (priv->dma_cap.vlhash) {
4542 		ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4543 		ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER;
4544 	}
4545 	if (priv->dma_cap.vlins) {
4546 		ndev->features |= NETIF_F_HW_VLAN_CTAG_TX;
4547 		if (priv->dma_cap.dvlan)
4548 			ndev->features |= NETIF_F_HW_VLAN_STAG_TX;
4549 	}
4550 #endif
4551 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
4552 
4553 	/* Initialize RSS */
4554 	rxq = priv->plat->rx_queues_to_use;
4555 	netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key));
4556 	for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
4557 		priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq);
4558 
4559 	if (priv->dma_cap.rssen && priv->plat->rss_en)
4560 		ndev->features |= NETIF_F_RXHASH;
4561 
4562 	/* MTU range: 46 - hw-specific max */
4563 	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
4564 	if (priv->plat->has_xgmac)
4565 		ndev->max_mtu = XGMAC_JUMBO_LEN;
4566 	else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
4567 		ndev->max_mtu = JUMBO_LEN;
4568 	else
4569 		ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
4570 	/* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
4571 	 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
4572 	 */
4573 	if ((priv->plat->maxmtu < ndev->max_mtu) &&
4574 	    (priv->plat->maxmtu >= ndev->min_mtu))
4575 		ndev->max_mtu = priv->plat->maxmtu;
4576 	else if (priv->plat->maxmtu < ndev->min_mtu)
4577 		dev_warn(priv->device,
4578 			 "%s: warning: maxmtu having invalid value (%d)\n",
4579 			 __func__, priv->plat->maxmtu);
4580 
4581 	if (flow_ctrl)
4582 		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
4583 
4584 	/* Setup channels NAPI */
4585 	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
4586 
4587 	for (queue = 0; queue < maxq; queue++) {
4588 		struct stmmac_channel *ch = &priv->channel[queue];
4589 
4590 		ch->priv_data = priv;
4591 		ch->index = queue;
4592 
4593 		if (queue < priv->plat->rx_queues_to_use) {
4594 			netif_napi_add(ndev, &ch->rx_napi, stmmac_napi_poll_rx,
4595 				       NAPI_POLL_WEIGHT);
4596 		}
4597 		if (queue < priv->plat->tx_queues_to_use) {
4598 			netif_tx_napi_add(ndev, &ch->tx_napi,
4599 					  stmmac_napi_poll_tx,
4600 					  NAPI_POLL_WEIGHT);
4601 		}
4602 	}
4603 
4604 	mutex_init(&priv->lock);
4605 
4606 	/* If a specific clk_csr value is passed from the platform
4607 	 * this means that the CSR Clock Range selection cannot be
4608 	 * changed at run-time and it is fixed. Viceversa the driver'll try to
4609 	 * set the MDC clock dynamically according to the csr actual
4610 	 * clock input.
4611 	 */
4612 	if (priv->plat->clk_csr >= 0)
4613 		priv->clk_csr = priv->plat->clk_csr;
4614 	else
4615 		stmmac_clk_csr_set(priv);
4616 
4617 	stmmac_check_pcs_mode(priv);
4618 
4619 	if (priv->hw->pcs != STMMAC_PCS_RGMII  &&
4620 	    priv->hw->pcs != STMMAC_PCS_TBI &&
4621 	    priv->hw->pcs != STMMAC_PCS_RTBI) {
4622 		/* MDIO bus Registration */
4623 		ret = stmmac_mdio_register(ndev);
4624 		if (ret < 0) {
4625 			dev_err(priv->device,
4626 				"%s: MDIO bus (id: %d) registration failed",
4627 				__func__, priv->plat->bus_id);
4628 			goto error_mdio_register;
4629 		}
4630 	}
4631 
4632 	ret = stmmac_phy_setup(priv);
4633 	if (ret) {
4634 		netdev_err(ndev, "failed to setup phy (%d)\n", ret);
4635 		goto error_phy_setup;
4636 	}
4637 
4638 	ret = register_netdev(ndev);
4639 	if (ret) {
4640 		dev_err(priv->device, "%s: ERROR %i registering the device\n",
4641 			__func__, ret);
4642 		goto error_netdev_register;
4643 	}
4644 
4645 #ifdef CONFIG_DEBUG_FS
4646 	stmmac_init_fs(ndev);
4647 #endif
4648 
4649 	return ret;
4650 
4651 error_netdev_register:
4652 	phylink_destroy(priv->phylink);
4653 error_phy_setup:
4654 	if (priv->hw->pcs != STMMAC_PCS_RGMII &&
4655 	    priv->hw->pcs != STMMAC_PCS_TBI &&
4656 	    priv->hw->pcs != STMMAC_PCS_RTBI)
4657 		stmmac_mdio_unregister(ndev);
4658 error_mdio_register:
4659 	for (queue = 0; queue < maxq; queue++) {
4660 		struct stmmac_channel *ch = &priv->channel[queue];
4661 
4662 		if (queue < priv->plat->rx_queues_to_use)
4663 			netif_napi_del(&ch->rx_napi);
4664 		if (queue < priv->plat->tx_queues_to_use)
4665 			netif_napi_del(&ch->tx_napi);
4666 	}
4667 error_hw_init:
4668 	destroy_workqueue(priv->wq);
4669 
4670 	return ret;
4671 }
4672 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
4673 
4674 /**
4675  * stmmac_dvr_remove
4676  * @dev: device pointer
4677  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
4678  * changes the link status, releases the DMA descriptor rings.
4679  */
4680 int stmmac_dvr_remove(struct device *dev)
4681 {
4682 	struct net_device *ndev = dev_get_drvdata(dev);
4683 	struct stmmac_priv *priv = netdev_priv(ndev);
4684 
4685 	netdev_info(priv->dev, "%s: removing driver", __func__);
4686 
4687 #ifdef CONFIG_DEBUG_FS
4688 	stmmac_exit_fs(ndev);
4689 #endif
4690 	stmmac_stop_all_dma(priv);
4691 
4692 	stmmac_mac_set(priv, priv->ioaddr, false);
4693 	netif_carrier_off(ndev);
4694 	unregister_netdev(ndev);
4695 	phylink_destroy(priv->phylink);
4696 	if (priv->plat->stmmac_rst)
4697 		reset_control_assert(priv->plat->stmmac_rst);
4698 	clk_disable_unprepare(priv->plat->pclk);
4699 	clk_disable_unprepare(priv->plat->stmmac_clk);
4700 	if (priv->hw->pcs != STMMAC_PCS_RGMII &&
4701 	    priv->hw->pcs != STMMAC_PCS_TBI &&
4702 	    priv->hw->pcs != STMMAC_PCS_RTBI)
4703 		stmmac_mdio_unregister(ndev);
4704 	destroy_workqueue(priv->wq);
4705 	mutex_destroy(&priv->lock);
4706 
4707 	return 0;
4708 }
4709 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
4710 
4711 /**
4712  * stmmac_suspend - suspend callback
4713  * @dev: device pointer
4714  * Description: this is the function to suspend the device and it is called
4715  * by the platform driver to stop the network queue, release the resources,
4716  * program the PMT register (for WoL), clean and release driver resources.
4717  */
4718 int stmmac_suspend(struct device *dev)
4719 {
4720 	struct net_device *ndev = dev_get_drvdata(dev);
4721 	struct stmmac_priv *priv = netdev_priv(ndev);
4722 
4723 	if (!ndev || !netif_running(ndev))
4724 		return 0;
4725 
4726 	phylink_mac_change(priv->phylink, false);
4727 
4728 	mutex_lock(&priv->lock);
4729 
4730 	netif_device_detach(ndev);
4731 	stmmac_stop_all_queues(priv);
4732 
4733 	stmmac_disable_all_queues(priv);
4734 
4735 	/* Stop TX/RX DMA */
4736 	stmmac_stop_all_dma(priv);
4737 
4738 	/* Enable Power down mode by programming the PMT regs */
4739 	if (device_may_wakeup(priv->device)) {
4740 		stmmac_pmt(priv, priv->hw, priv->wolopts);
4741 		priv->irq_wake = 1;
4742 	} else {
4743 		mutex_unlock(&priv->lock);
4744 		rtnl_lock();
4745 		phylink_stop(priv->phylink);
4746 		rtnl_unlock();
4747 		mutex_lock(&priv->lock);
4748 
4749 		stmmac_mac_set(priv, priv->ioaddr, false);
4750 		pinctrl_pm_select_sleep_state(priv->device);
4751 		/* Disable clock in case of PWM is off */
4752 		if (priv->plat->clk_ptp_ref)
4753 			clk_disable_unprepare(priv->plat->clk_ptp_ref);
4754 		clk_disable_unprepare(priv->plat->pclk);
4755 		clk_disable_unprepare(priv->plat->stmmac_clk);
4756 	}
4757 	mutex_unlock(&priv->lock);
4758 
4759 	priv->speed = SPEED_UNKNOWN;
4760 	return 0;
4761 }
4762 EXPORT_SYMBOL_GPL(stmmac_suspend);
4763 
4764 /**
4765  * stmmac_reset_queues_param - reset queue parameters
4766  * @dev: device pointer
4767  */
4768 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
4769 {
4770 	u32 rx_cnt = priv->plat->rx_queues_to_use;
4771 	u32 tx_cnt = priv->plat->tx_queues_to_use;
4772 	u32 queue;
4773 
4774 	for (queue = 0; queue < rx_cnt; queue++) {
4775 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4776 
4777 		rx_q->cur_rx = 0;
4778 		rx_q->dirty_rx = 0;
4779 	}
4780 
4781 	for (queue = 0; queue < tx_cnt; queue++) {
4782 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4783 
4784 		tx_q->cur_tx = 0;
4785 		tx_q->dirty_tx = 0;
4786 		tx_q->mss = 0;
4787 	}
4788 }
4789 
4790 /**
4791  * stmmac_resume - resume callback
4792  * @dev: device pointer
4793  * Description: when resume this function is invoked to setup the DMA and CORE
4794  * in a usable state.
4795  */
4796 int stmmac_resume(struct device *dev)
4797 {
4798 	struct net_device *ndev = dev_get_drvdata(dev);
4799 	struct stmmac_priv *priv = netdev_priv(ndev);
4800 
4801 	if (!netif_running(ndev))
4802 		return 0;
4803 
4804 	/* Power Down bit, into the PM register, is cleared
4805 	 * automatically as soon as a magic packet or a Wake-up frame
4806 	 * is received. Anyway, it's better to manually clear
4807 	 * this bit because it can generate problems while resuming
4808 	 * from another devices (e.g. serial console).
4809 	 */
4810 	if (device_may_wakeup(priv->device)) {
4811 		mutex_lock(&priv->lock);
4812 		stmmac_pmt(priv, priv->hw, 0);
4813 		mutex_unlock(&priv->lock);
4814 		priv->irq_wake = 0;
4815 	} else {
4816 		pinctrl_pm_select_default_state(priv->device);
4817 		/* enable the clk previously disabled */
4818 		clk_prepare_enable(priv->plat->stmmac_clk);
4819 		clk_prepare_enable(priv->plat->pclk);
4820 		if (priv->plat->clk_ptp_ref)
4821 			clk_prepare_enable(priv->plat->clk_ptp_ref);
4822 		/* reset the phy so that it's ready */
4823 		if (priv->mii)
4824 			stmmac_mdio_reset(priv->mii);
4825 	}
4826 
4827 	netif_device_attach(ndev);
4828 
4829 	mutex_lock(&priv->lock);
4830 
4831 	stmmac_reset_queues_param(priv);
4832 
4833 	stmmac_clear_descriptors(priv);
4834 
4835 	stmmac_hw_setup(ndev, false);
4836 	stmmac_init_coalesce(priv);
4837 	stmmac_set_rx_mode(ndev);
4838 
4839 	stmmac_enable_all_queues(priv);
4840 
4841 	stmmac_start_all_queues(priv);
4842 
4843 	mutex_unlock(&priv->lock);
4844 
4845 	if (!device_may_wakeup(priv->device)) {
4846 		rtnl_lock();
4847 		phylink_start(priv->phylink);
4848 		rtnl_unlock();
4849 	}
4850 
4851 	phylink_mac_change(priv->phylink, true);
4852 
4853 	return 0;
4854 }
4855 EXPORT_SYMBOL_GPL(stmmac_resume);
4856 
4857 #ifndef MODULE
4858 static int __init stmmac_cmdline_opt(char *str)
4859 {
4860 	char *opt;
4861 
4862 	if (!str || !*str)
4863 		return -EINVAL;
4864 	while ((opt = strsep(&str, ",")) != NULL) {
4865 		if (!strncmp(opt, "debug:", 6)) {
4866 			if (kstrtoint(opt + 6, 0, &debug))
4867 				goto err;
4868 		} else if (!strncmp(opt, "phyaddr:", 8)) {
4869 			if (kstrtoint(opt + 8, 0, &phyaddr))
4870 				goto err;
4871 		} else if (!strncmp(opt, "buf_sz:", 7)) {
4872 			if (kstrtoint(opt + 7, 0, &buf_sz))
4873 				goto err;
4874 		} else if (!strncmp(opt, "tc:", 3)) {
4875 			if (kstrtoint(opt + 3, 0, &tc))
4876 				goto err;
4877 		} else if (!strncmp(opt, "watchdog:", 9)) {
4878 			if (kstrtoint(opt + 9, 0, &watchdog))
4879 				goto err;
4880 		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
4881 			if (kstrtoint(opt + 10, 0, &flow_ctrl))
4882 				goto err;
4883 		} else if (!strncmp(opt, "pause:", 6)) {
4884 			if (kstrtoint(opt + 6, 0, &pause))
4885 				goto err;
4886 		} else if (!strncmp(opt, "eee_timer:", 10)) {
4887 			if (kstrtoint(opt + 10, 0, &eee_timer))
4888 				goto err;
4889 		} else if (!strncmp(opt, "chain_mode:", 11)) {
4890 			if (kstrtoint(opt + 11, 0, &chain_mode))
4891 				goto err;
4892 		}
4893 	}
4894 	return 0;
4895 
4896 err:
4897 	pr_err("%s: ERROR broken module parameter conversion", __func__);
4898 	return -EINVAL;
4899 }
4900 
4901 __setup("stmmaceth=", stmmac_cmdline_opt);
4902 #endif /* MODULE */
4903 
4904 static int __init stmmac_init(void)
4905 {
4906 #ifdef CONFIG_DEBUG_FS
4907 	/* Create debugfs main directory if it doesn't exist yet */
4908 	if (!stmmac_fs_dir)
4909 		stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
4910 #endif
4911 
4912 	return 0;
4913 }
4914 
4915 static void __exit stmmac_exit(void)
4916 {
4917 #ifdef CONFIG_DEBUG_FS
4918 	debugfs_remove_recursive(stmmac_fs_dir);
4919 #endif
4920 }
4921 
4922 module_init(stmmac_init)
4923 module_exit(stmmac_exit)
4924 
4925 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
4926 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
4927 MODULE_LICENSE("GPL");
4928