1 // SPDX-License-Identifier: GPL-2.0-only 2 /******************************************************************************* 3 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers. 4 ST Ethernet IPs are built around a Synopsys IP Core. 5 6 Copyright(C) 2007-2011 STMicroelectronics Ltd 7 8 9 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com> 10 11 Documentation available at: 12 http://www.stlinux.com 13 Support available at: 14 https://bugzilla.stlinux.com/ 15 *******************************************************************************/ 16 17 #include <linux/clk.h> 18 #include <linux/kernel.h> 19 #include <linux/interrupt.h> 20 #include <linux/ip.h> 21 #include <linux/tcp.h> 22 #include <linux/skbuff.h> 23 #include <linux/ethtool.h> 24 #include <linux/if_ether.h> 25 #include <linux/crc32.h> 26 #include <linux/mii.h> 27 #include <linux/if.h> 28 #include <linux/if_vlan.h> 29 #include <linux/dma-mapping.h> 30 #include <linux/slab.h> 31 #include <linux/pm_runtime.h> 32 #include <linux/prefetch.h> 33 #include <linux/pinctrl/consumer.h> 34 #ifdef CONFIG_DEBUG_FS 35 #include <linux/debugfs.h> 36 #include <linux/seq_file.h> 37 #endif /* CONFIG_DEBUG_FS */ 38 #include <linux/net_tstamp.h> 39 #include <linux/phylink.h> 40 #include <linux/udp.h> 41 #include <linux/bpf_trace.h> 42 #include <net/pkt_cls.h> 43 #include <net/xdp_sock_drv.h> 44 #include "stmmac_ptp.h" 45 #include "stmmac.h" 46 #include "stmmac_xdp.h" 47 #include <linux/reset.h> 48 #include <linux/of_mdio.h> 49 #include "dwmac1000.h" 50 #include "dwxgmac2.h" 51 #include "hwif.h" 52 53 #define STMMAC_ALIGN(x) ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16) 54 #define TSO_MAX_BUFF_SIZE (SZ_16K - 1) 55 56 /* Module parameters */ 57 #define TX_TIMEO 5000 58 static int watchdog = TX_TIMEO; 59 module_param(watchdog, int, 0644); 60 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)"); 61 62 static int debug = -1; 63 module_param(debug, int, 0644); 64 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)"); 65 66 static int phyaddr = -1; 67 module_param(phyaddr, int, 0444); 68 MODULE_PARM_DESC(phyaddr, "Physical device address"); 69 70 #define STMMAC_TX_THRESH(x) ((x)->dma_tx_size / 4) 71 #define STMMAC_RX_THRESH(x) ((x)->dma_rx_size / 4) 72 73 /* Limit to make sure XDP TX and slow path can coexist */ 74 #define STMMAC_XSK_TX_BUDGET_MAX 256 75 #define STMMAC_TX_XSK_AVAIL 16 76 #define STMMAC_RX_FILL_BATCH 16 77 78 #define STMMAC_XDP_PASS 0 79 #define STMMAC_XDP_CONSUMED BIT(0) 80 #define STMMAC_XDP_TX BIT(1) 81 #define STMMAC_XDP_REDIRECT BIT(2) 82 83 static int flow_ctrl = FLOW_AUTO; 84 module_param(flow_ctrl, int, 0644); 85 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]"); 86 87 static int pause = PAUSE_TIME; 88 module_param(pause, int, 0644); 89 MODULE_PARM_DESC(pause, "Flow Control Pause Time"); 90 91 #define TC_DEFAULT 64 92 static int tc = TC_DEFAULT; 93 module_param(tc, int, 0644); 94 MODULE_PARM_DESC(tc, "DMA threshold control value"); 95 96 #define DEFAULT_BUFSIZE 1536 97 static int buf_sz = DEFAULT_BUFSIZE; 98 module_param(buf_sz, int, 0644); 99 MODULE_PARM_DESC(buf_sz, "DMA buffer size"); 100 101 #define STMMAC_RX_COPYBREAK 256 102 103 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE | 104 NETIF_MSG_LINK | NETIF_MSG_IFUP | 105 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER); 106 107 #define STMMAC_DEFAULT_LPI_TIMER 1000 108 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER; 109 module_param(eee_timer, int, 0644); 110 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec"); 111 #define STMMAC_LPI_T(x) (jiffies + usecs_to_jiffies(x)) 112 113 /* By default the driver will use the ring mode to manage tx and rx descriptors, 114 * but allow user to force to use the chain instead of the ring 115 */ 116 static unsigned int chain_mode; 117 module_param(chain_mode, int, 0444); 118 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode"); 119 120 static irqreturn_t stmmac_interrupt(int irq, void *dev_id); 121 /* For MSI interrupts handling */ 122 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id); 123 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id); 124 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data); 125 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data); 126 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue); 127 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue); 128 129 #ifdef CONFIG_DEBUG_FS 130 static const struct net_device_ops stmmac_netdev_ops; 131 static void stmmac_init_fs(struct net_device *dev); 132 static void stmmac_exit_fs(struct net_device *dev); 133 #endif 134 135 #define STMMAC_COAL_TIMER(x) (ns_to_ktime((x) * NSEC_PER_USEC)) 136 137 int stmmac_bus_clks_config(struct stmmac_priv *priv, bool enabled) 138 { 139 int ret = 0; 140 141 if (enabled) { 142 ret = clk_prepare_enable(priv->plat->stmmac_clk); 143 if (ret) 144 return ret; 145 ret = clk_prepare_enable(priv->plat->pclk); 146 if (ret) { 147 clk_disable_unprepare(priv->plat->stmmac_clk); 148 return ret; 149 } 150 if (priv->plat->clks_config) { 151 ret = priv->plat->clks_config(priv->plat->bsp_priv, enabled); 152 if (ret) { 153 clk_disable_unprepare(priv->plat->stmmac_clk); 154 clk_disable_unprepare(priv->plat->pclk); 155 return ret; 156 } 157 } 158 } else { 159 clk_disable_unprepare(priv->plat->stmmac_clk); 160 clk_disable_unprepare(priv->plat->pclk); 161 if (priv->plat->clks_config) 162 priv->plat->clks_config(priv->plat->bsp_priv, enabled); 163 } 164 165 return ret; 166 } 167 EXPORT_SYMBOL_GPL(stmmac_bus_clks_config); 168 169 /** 170 * stmmac_verify_args - verify the driver parameters. 171 * Description: it checks the driver parameters and set a default in case of 172 * errors. 173 */ 174 static void stmmac_verify_args(void) 175 { 176 if (unlikely(watchdog < 0)) 177 watchdog = TX_TIMEO; 178 if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB))) 179 buf_sz = DEFAULT_BUFSIZE; 180 if (unlikely(flow_ctrl > 1)) 181 flow_ctrl = FLOW_AUTO; 182 else if (likely(flow_ctrl < 0)) 183 flow_ctrl = FLOW_OFF; 184 if (unlikely((pause < 0) || (pause > 0xffff))) 185 pause = PAUSE_TIME; 186 if (eee_timer < 0) 187 eee_timer = STMMAC_DEFAULT_LPI_TIMER; 188 } 189 190 static void __stmmac_disable_all_queues(struct stmmac_priv *priv) 191 { 192 u32 rx_queues_cnt = priv->plat->rx_queues_to_use; 193 u32 tx_queues_cnt = priv->plat->tx_queues_to_use; 194 u32 maxq = max(rx_queues_cnt, tx_queues_cnt); 195 u32 queue; 196 197 for (queue = 0; queue < maxq; queue++) { 198 struct stmmac_channel *ch = &priv->channel[queue]; 199 200 if (stmmac_xdp_is_enabled(priv) && 201 test_bit(queue, priv->af_xdp_zc_qps)) { 202 napi_disable(&ch->rxtx_napi); 203 continue; 204 } 205 206 if (queue < rx_queues_cnt) 207 napi_disable(&ch->rx_napi); 208 if (queue < tx_queues_cnt) 209 napi_disable(&ch->tx_napi); 210 } 211 } 212 213 /** 214 * stmmac_disable_all_queues - Disable all queues 215 * @priv: driver private structure 216 */ 217 static void stmmac_disable_all_queues(struct stmmac_priv *priv) 218 { 219 u32 rx_queues_cnt = priv->plat->rx_queues_to_use; 220 struct stmmac_rx_queue *rx_q; 221 u32 queue; 222 223 /* synchronize_rcu() needed for pending XDP buffers to drain */ 224 for (queue = 0; queue < rx_queues_cnt; queue++) { 225 rx_q = &priv->rx_queue[queue]; 226 if (rx_q->xsk_pool) { 227 synchronize_rcu(); 228 break; 229 } 230 } 231 232 __stmmac_disable_all_queues(priv); 233 } 234 235 /** 236 * stmmac_enable_all_queues - Enable all queues 237 * @priv: driver private structure 238 */ 239 static void stmmac_enable_all_queues(struct stmmac_priv *priv) 240 { 241 u32 rx_queues_cnt = priv->plat->rx_queues_to_use; 242 u32 tx_queues_cnt = priv->plat->tx_queues_to_use; 243 u32 maxq = max(rx_queues_cnt, tx_queues_cnt); 244 u32 queue; 245 246 for (queue = 0; queue < maxq; queue++) { 247 struct stmmac_channel *ch = &priv->channel[queue]; 248 249 if (stmmac_xdp_is_enabled(priv) && 250 test_bit(queue, priv->af_xdp_zc_qps)) { 251 napi_enable(&ch->rxtx_napi); 252 continue; 253 } 254 255 if (queue < rx_queues_cnt) 256 napi_enable(&ch->rx_napi); 257 if (queue < tx_queues_cnt) 258 napi_enable(&ch->tx_napi); 259 } 260 } 261 262 static void stmmac_service_event_schedule(struct stmmac_priv *priv) 263 { 264 if (!test_bit(STMMAC_DOWN, &priv->state) && 265 !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state)) 266 queue_work(priv->wq, &priv->service_task); 267 } 268 269 static void stmmac_global_err(struct stmmac_priv *priv) 270 { 271 netif_carrier_off(priv->dev); 272 set_bit(STMMAC_RESET_REQUESTED, &priv->state); 273 stmmac_service_event_schedule(priv); 274 } 275 276 /** 277 * stmmac_clk_csr_set - dynamically set the MDC clock 278 * @priv: driver private structure 279 * Description: this is to dynamically set the MDC clock according to the csr 280 * clock input. 281 * Note: 282 * If a specific clk_csr value is passed from the platform 283 * this means that the CSR Clock Range selection cannot be 284 * changed at run-time and it is fixed (as reported in the driver 285 * documentation). Viceversa the driver will try to set the MDC 286 * clock dynamically according to the actual clock input. 287 */ 288 static void stmmac_clk_csr_set(struct stmmac_priv *priv) 289 { 290 u32 clk_rate; 291 292 clk_rate = clk_get_rate(priv->plat->stmmac_clk); 293 294 /* Platform provided default clk_csr would be assumed valid 295 * for all other cases except for the below mentioned ones. 296 * For values higher than the IEEE 802.3 specified frequency 297 * we can not estimate the proper divider as it is not known 298 * the frequency of clk_csr_i. So we do not change the default 299 * divider. 300 */ 301 if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) { 302 if (clk_rate < CSR_F_35M) 303 priv->clk_csr = STMMAC_CSR_20_35M; 304 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M)) 305 priv->clk_csr = STMMAC_CSR_35_60M; 306 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M)) 307 priv->clk_csr = STMMAC_CSR_60_100M; 308 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M)) 309 priv->clk_csr = STMMAC_CSR_100_150M; 310 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M)) 311 priv->clk_csr = STMMAC_CSR_150_250M; 312 else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M)) 313 priv->clk_csr = STMMAC_CSR_250_300M; 314 } 315 316 if (priv->plat->has_sun8i) { 317 if (clk_rate > 160000000) 318 priv->clk_csr = 0x03; 319 else if (clk_rate > 80000000) 320 priv->clk_csr = 0x02; 321 else if (clk_rate > 40000000) 322 priv->clk_csr = 0x01; 323 else 324 priv->clk_csr = 0; 325 } 326 327 if (priv->plat->has_xgmac) { 328 if (clk_rate > 400000000) 329 priv->clk_csr = 0x5; 330 else if (clk_rate > 350000000) 331 priv->clk_csr = 0x4; 332 else if (clk_rate > 300000000) 333 priv->clk_csr = 0x3; 334 else if (clk_rate > 250000000) 335 priv->clk_csr = 0x2; 336 else if (clk_rate > 150000000) 337 priv->clk_csr = 0x1; 338 else 339 priv->clk_csr = 0x0; 340 } 341 } 342 343 static void print_pkt(unsigned char *buf, int len) 344 { 345 pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf); 346 print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len); 347 } 348 349 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue) 350 { 351 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 352 u32 avail; 353 354 if (tx_q->dirty_tx > tx_q->cur_tx) 355 avail = tx_q->dirty_tx - tx_q->cur_tx - 1; 356 else 357 avail = priv->dma_tx_size - tx_q->cur_tx + tx_q->dirty_tx - 1; 358 359 return avail; 360 } 361 362 /** 363 * stmmac_rx_dirty - Get RX queue dirty 364 * @priv: driver private structure 365 * @queue: RX queue index 366 */ 367 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue) 368 { 369 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 370 u32 dirty; 371 372 if (rx_q->dirty_rx <= rx_q->cur_rx) 373 dirty = rx_q->cur_rx - rx_q->dirty_rx; 374 else 375 dirty = priv->dma_rx_size - rx_q->dirty_rx + rx_q->cur_rx; 376 377 return dirty; 378 } 379 380 static void stmmac_lpi_entry_timer_config(struct stmmac_priv *priv, bool en) 381 { 382 int tx_lpi_timer; 383 384 /* Clear/set the SW EEE timer flag based on LPI ET enablement */ 385 priv->eee_sw_timer_en = en ? 0 : 1; 386 tx_lpi_timer = en ? priv->tx_lpi_timer : 0; 387 stmmac_set_eee_lpi_timer(priv, priv->hw, tx_lpi_timer); 388 } 389 390 /** 391 * stmmac_enable_eee_mode - check and enter in LPI mode 392 * @priv: driver private structure 393 * Description: this function is to verify and enter in LPI mode in case of 394 * EEE. 395 */ 396 static void stmmac_enable_eee_mode(struct stmmac_priv *priv) 397 { 398 u32 tx_cnt = priv->plat->tx_queues_to_use; 399 u32 queue; 400 401 /* check if all TX queues have the work finished */ 402 for (queue = 0; queue < tx_cnt; queue++) { 403 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 404 405 if (tx_q->dirty_tx != tx_q->cur_tx) 406 return; /* still unfinished work */ 407 } 408 409 /* Check and enter in LPI mode */ 410 if (!priv->tx_path_in_lpi_mode) 411 stmmac_set_eee_mode(priv, priv->hw, 412 priv->plat->en_tx_lpi_clockgating); 413 } 414 415 /** 416 * stmmac_disable_eee_mode - disable and exit from LPI mode 417 * @priv: driver private structure 418 * Description: this function is to exit and disable EEE in case of 419 * LPI state is true. This is called by the xmit. 420 */ 421 void stmmac_disable_eee_mode(struct stmmac_priv *priv) 422 { 423 if (!priv->eee_sw_timer_en) { 424 stmmac_lpi_entry_timer_config(priv, 0); 425 return; 426 } 427 428 stmmac_reset_eee_mode(priv, priv->hw); 429 del_timer_sync(&priv->eee_ctrl_timer); 430 priv->tx_path_in_lpi_mode = false; 431 } 432 433 /** 434 * stmmac_eee_ctrl_timer - EEE TX SW timer. 435 * @t: timer_list struct containing private info 436 * Description: 437 * if there is no data transfer and if we are not in LPI state, 438 * then MAC Transmitter can be moved to LPI state. 439 */ 440 static void stmmac_eee_ctrl_timer(struct timer_list *t) 441 { 442 struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer); 443 444 stmmac_enable_eee_mode(priv); 445 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer)); 446 } 447 448 /** 449 * stmmac_eee_init - init EEE 450 * @priv: driver private structure 451 * Description: 452 * if the GMAC supports the EEE (from the HW cap reg) and the phy device 453 * can also manage EEE, this function enable the LPI state and start related 454 * timer. 455 */ 456 bool stmmac_eee_init(struct stmmac_priv *priv) 457 { 458 int eee_tw_timer = priv->eee_tw_timer; 459 460 /* Using PCS we cannot dial with the phy registers at this stage 461 * so we do not support extra feature like EEE. 462 */ 463 if (priv->hw->pcs == STMMAC_PCS_TBI || 464 priv->hw->pcs == STMMAC_PCS_RTBI) 465 return false; 466 467 /* Check if MAC core supports the EEE feature. */ 468 if (!priv->dma_cap.eee) 469 return false; 470 471 mutex_lock(&priv->lock); 472 473 /* Check if it needs to be deactivated */ 474 if (!priv->eee_active) { 475 if (priv->eee_enabled) { 476 netdev_dbg(priv->dev, "disable EEE\n"); 477 stmmac_lpi_entry_timer_config(priv, 0); 478 del_timer_sync(&priv->eee_ctrl_timer); 479 stmmac_set_eee_timer(priv, priv->hw, 0, eee_tw_timer); 480 } 481 mutex_unlock(&priv->lock); 482 return false; 483 } 484 485 if (priv->eee_active && !priv->eee_enabled) { 486 timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0); 487 stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS, 488 eee_tw_timer); 489 } 490 491 if (priv->plat->has_gmac4 && priv->tx_lpi_timer <= STMMAC_ET_MAX) { 492 del_timer_sync(&priv->eee_ctrl_timer); 493 priv->tx_path_in_lpi_mode = false; 494 stmmac_lpi_entry_timer_config(priv, 1); 495 } else { 496 stmmac_lpi_entry_timer_config(priv, 0); 497 mod_timer(&priv->eee_ctrl_timer, 498 STMMAC_LPI_T(priv->tx_lpi_timer)); 499 } 500 501 mutex_unlock(&priv->lock); 502 netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n"); 503 return true; 504 } 505 506 /* stmmac_get_tx_hwtstamp - get HW TX timestamps 507 * @priv: driver private structure 508 * @p : descriptor pointer 509 * @skb : the socket buffer 510 * Description : 511 * This function will read timestamp from the descriptor & pass it to stack. 512 * and also perform some sanity checks. 513 */ 514 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv, 515 struct dma_desc *p, struct sk_buff *skb) 516 { 517 struct skb_shared_hwtstamps shhwtstamp; 518 bool found = false; 519 s64 adjust = 0; 520 u64 ns = 0; 521 522 if (!priv->hwts_tx_en) 523 return; 524 525 /* exit if skb doesn't support hw tstamp */ 526 if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))) 527 return; 528 529 /* check tx tstamp status */ 530 if (stmmac_get_tx_timestamp_status(priv, p)) { 531 stmmac_get_timestamp(priv, p, priv->adv_ts, &ns); 532 found = true; 533 } else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) { 534 found = true; 535 } 536 537 if (found) { 538 /* Correct the clk domain crossing(CDC) error */ 539 if (priv->plat->has_gmac4 && priv->plat->clk_ptp_rate) { 540 adjust += -(2 * (NSEC_PER_SEC / 541 priv->plat->clk_ptp_rate)); 542 ns += adjust; 543 } 544 545 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps)); 546 shhwtstamp.hwtstamp = ns_to_ktime(ns); 547 548 netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns); 549 /* pass tstamp to stack */ 550 skb_tstamp_tx(skb, &shhwtstamp); 551 } 552 } 553 554 /* stmmac_get_rx_hwtstamp - get HW RX timestamps 555 * @priv: driver private structure 556 * @p : descriptor pointer 557 * @np : next descriptor pointer 558 * @skb : the socket buffer 559 * Description : 560 * This function will read received packet's timestamp from the descriptor 561 * and pass it to stack. It also perform some sanity checks. 562 */ 563 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p, 564 struct dma_desc *np, struct sk_buff *skb) 565 { 566 struct skb_shared_hwtstamps *shhwtstamp = NULL; 567 struct dma_desc *desc = p; 568 u64 adjust = 0; 569 u64 ns = 0; 570 571 if (!priv->hwts_rx_en) 572 return; 573 /* For GMAC4, the valid timestamp is from CTX next desc. */ 574 if (priv->plat->has_gmac4 || priv->plat->has_xgmac) 575 desc = np; 576 577 /* Check if timestamp is available */ 578 if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) { 579 stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns); 580 581 /* Correct the clk domain crossing(CDC) error */ 582 if (priv->plat->has_gmac4 && priv->plat->clk_ptp_rate) { 583 adjust += 2 * (NSEC_PER_SEC / priv->plat->clk_ptp_rate); 584 ns -= adjust; 585 } 586 587 netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns); 588 shhwtstamp = skb_hwtstamps(skb); 589 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps)); 590 shhwtstamp->hwtstamp = ns_to_ktime(ns); 591 } else { 592 netdev_dbg(priv->dev, "cannot get RX hw timestamp\n"); 593 } 594 } 595 596 /** 597 * stmmac_hwtstamp_set - control hardware timestamping. 598 * @dev: device pointer. 599 * @ifr: An IOCTL specific structure, that can contain a pointer to 600 * a proprietary structure used to pass information to the driver. 601 * Description: 602 * This function configures the MAC to enable/disable both outgoing(TX) 603 * and incoming(RX) packets time stamping based on user input. 604 * Return Value: 605 * 0 on success and an appropriate -ve integer on failure. 606 */ 607 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr) 608 { 609 struct stmmac_priv *priv = netdev_priv(dev); 610 struct hwtstamp_config config; 611 struct timespec64 now; 612 u64 temp = 0; 613 u32 ptp_v2 = 0; 614 u32 tstamp_all = 0; 615 u32 ptp_over_ipv4_udp = 0; 616 u32 ptp_over_ipv6_udp = 0; 617 u32 ptp_over_ethernet = 0; 618 u32 snap_type_sel = 0; 619 u32 ts_master_en = 0; 620 u32 ts_event_en = 0; 621 u32 sec_inc = 0; 622 u32 value = 0; 623 bool xmac; 624 625 xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; 626 627 if (!(priv->dma_cap.time_stamp || priv->adv_ts)) { 628 netdev_alert(priv->dev, "No support for HW time stamping\n"); 629 priv->hwts_tx_en = 0; 630 priv->hwts_rx_en = 0; 631 632 return -EOPNOTSUPP; 633 } 634 635 if (copy_from_user(&config, ifr->ifr_data, 636 sizeof(config))) 637 return -EFAULT; 638 639 netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n", 640 __func__, config.flags, config.tx_type, config.rx_filter); 641 642 /* reserved for future extensions */ 643 if (config.flags) 644 return -EINVAL; 645 646 if (config.tx_type != HWTSTAMP_TX_OFF && 647 config.tx_type != HWTSTAMP_TX_ON) 648 return -ERANGE; 649 650 if (priv->adv_ts) { 651 switch (config.rx_filter) { 652 case HWTSTAMP_FILTER_NONE: 653 /* time stamp no incoming packet at all */ 654 config.rx_filter = HWTSTAMP_FILTER_NONE; 655 break; 656 657 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 658 /* PTP v1, UDP, any kind of event packet */ 659 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 660 /* 'xmac' hardware can support Sync, Pdelay_Req and 661 * Pdelay_resp by setting bit14 and bits17/16 to 01 662 * This leaves Delay_Req timestamps out. 663 * Enable all events *and* general purpose message 664 * timestamping 665 */ 666 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 667 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 668 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 669 break; 670 671 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 672 /* PTP v1, UDP, Sync packet */ 673 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC; 674 /* take time stamp for SYNC messages only */ 675 ts_event_en = PTP_TCR_TSEVNTENA; 676 677 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 678 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 679 break; 680 681 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 682 /* PTP v1, UDP, Delay_req packet */ 683 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ; 684 /* take time stamp for Delay_Req messages only */ 685 ts_master_en = PTP_TCR_TSMSTRENA; 686 ts_event_en = PTP_TCR_TSEVNTENA; 687 688 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 689 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 690 break; 691 692 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 693 /* PTP v2, UDP, any kind of event packet */ 694 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT; 695 ptp_v2 = PTP_TCR_TSVER2ENA; 696 /* take time stamp for all event messages */ 697 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 698 699 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 700 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 701 break; 702 703 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 704 /* PTP v2, UDP, Sync packet */ 705 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC; 706 ptp_v2 = PTP_TCR_TSVER2ENA; 707 /* take time stamp for SYNC messages only */ 708 ts_event_en = PTP_TCR_TSEVNTENA; 709 710 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 711 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 712 break; 713 714 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 715 /* PTP v2, UDP, Delay_req packet */ 716 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ; 717 ptp_v2 = PTP_TCR_TSVER2ENA; 718 /* take time stamp for Delay_Req messages only */ 719 ts_master_en = PTP_TCR_TSMSTRENA; 720 ts_event_en = PTP_TCR_TSEVNTENA; 721 722 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 723 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 724 break; 725 726 case HWTSTAMP_FILTER_PTP_V2_EVENT: 727 /* PTP v2/802.AS1 any layer, any kind of event packet */ 728 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 729 ptp_v2 = PTP_TCR_TSVER2ENA; 730 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 731 if (priv->synopsys_id != DWMAC_CORE_5_10) 732 ts_event_en = PTP_TCR_TSEVNTENA; 733 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 734 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 735 ptp_over_ethernet = PTP_TCR_TSIPENA; 736 break; 737 738 case HWTSTAMP_FILTER_PTP_V2_SYNC: 739 /* PTP v2/802.AS1, any layer, Sync packet */ 740 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC; 741 ptp_v2 = PTP_TCR_TSVER2ENA; 742 /* take time stamp for SYNC messages only */ 743 ts_event_en = PTP_TCR_TSEVNTENA; 744 745 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 746 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 747 ptp_over_ethernet = PTP_TCR_TSIPENA; 748 break; 749 750 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 751 /* PTP v2/802.AS1, any layer, Delay_req packet */ 752 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ; 753 ptp_v2 = PTP_TCR_TSVER2ENA; 754 /* take time stamp for Delay_Req messages only */ 755 ts_master_en = PTP_TCR_TSMSTRENA; 756 ts_event_en = PTP_TCR_TSEVNTENA; 757 758 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 759 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 760 ptp_over_ethernet = PTP_TCR_TSIPENA; 761 break; 762 763 case HWTSTAMP_FILTER_NTP_ALL: 764 case HWTSTAMP_FILTER_ALL: 765 /* time stamp any incoming packet */ 766 config.rx_filter = HWTSTAMP_FILTER_ALL; 767 tstamp_all = PTP_TCR_TSENALL; 768 break; 769 770 default: 771 return -ERANGE; 772 } 773 } else { 774 switch (config.rx_filter) { 775 case HWTSTAMP_FILTER_NONE: 776 config.rx_filter = HWTSTAMP_FILTER_NONE; 777 break; 778 default: 779 /* PTP v1, UDP, any kind of event packet */ 780 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 781 break; 782 } 783 } 784 priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1); 785 priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON; 786 787 if (!priv->hwts_tx_en && !priv->hwts_rx_en) 788 stmmac_config_hw_tstamping(priv, priv->ptpaddr, 0); 789 else { 790 value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR | 791 tstamp_all | ptp_v2 | ptp_over_ethernet | 792 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en | 793 ts_master_en | snap_type_sel); 794 stmmac_config_hw_tstamping(priv, priv->ptpaddr, value); 795 796 /* program Sub Second Increment reg */ 797 stmmac_config_sub_second_increment(priv, 798 priv->ptpaddr, priv->plat->clk_ptp_rate, 799 xmac, &sec_inc); 800 temp = div_u64(1000000000ULL, sec_inc); 801 802 /* Store sub second increment and flags for later use */ 803 priv->sub_second_inc = sec_inc; 804 priv->systime_flags = value; 805 806 /* calculate default added value: 807 * formula is : 808 * addend = (2^32)/freq_div_ratio; 809 * where, freq_div_ratio = 1e9ns/sec_inc 810 */ 811 temp = (u64)(temp << 32); 812 priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate); 813 stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend); 814 815 /* initialize system time */ 816 ktime_get_real_ts64(&now); 817 818 /* lower 32 bits of tv_sec are safe until y2106 */ 819 stmmac_init_systime(priv, priv->ptpaddr, 820 (u32)now.tv_sec, now.tv_nsec); 821 } 822 823 memcpy(&priv->tstamp_config, &config, sizeof(config)); 824 825 return copy_to_user(ifr->ifr_data, &config, 826 sizeof(config)) ? -EFAULT : 0; 827 } 828 829 /** 830 * stmmac_hwtstamp_get - read hardware timestamping. 831 * @dev: device pointer. 832 * @ifr: An IOCTL specific structure, that can contain a pointer to 833 * a proprietary structure used to pass information to the driver. 834 * Description: 835 * This function obtain the current hardware timestamping settings 836 * as requested. 837 */ 838 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr) 839 { 840 struct stmmac_priv *priv = netdev_priv(dev); 841 struct hwtstamp_config *config = &priv->tstamp_config; 842 843 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp)) 844 return -EOPNOTSUPP; 845 846 return copy_to_user(ifr->ifr_data, config, 847 sizeof(*config)) ? -EFAULT : 0; 848 } 849 850 /** 851 * stmmac_init_ptp - init PTP 852 * @priv: driver private structure 853 * Description: this is to verify if the HW supports the PTPv1 or PTPv2. 854 * This is done by looking at the HW cap. register. 855 * This function also registers the ptp driver. 856 */ 857 static int stmmac_init_ptp(struct stmmac_priv *priv) 858 { 859 bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; 860 861 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp)) 862 return -EOPNOTSUPP; 863 864 priv->adv_ts = 0; 865 /* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */ 866 if (xmac && priv->dma_cap.atime_stamp) 867 priv->adv_ts = 1; 868 /* Dwmac 3.x core with extend_desc can support adv_ts */ 869 else if (priv->extend_desc && priv->dma_cap.atime_stamp) 870 priv->adv_ts = 1; 871 872 if (priv->dma_cap.time_stamp) 873 netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n"); 874 875 if (priv->adv_ts) 876 netdev_info(priv->dev, 877 "IEEE 1588-2008 Advanced Timestamp supported\n"); 878 879 priv->hwts_tx_en = 0; 880 priv->hwts_rx_en = 0; 881 882 stmmac_ptp_register(priv); 883 884 return 0; 885 } 886 887 static void stmmac_release_ptp(struct stmmac_priv *priv) 888 { 889 clk_disable_unprepare(priv->plat->clk_ptp_ref); 890 stmmac_ptp_unregister(priv); 891 } 892 893 /** 894 * stmmac_mac_flow_ctrl - Configure flow control in all queues 895 * @priv: driver private structure 896 * @duplex: duplex passed to the next function 897 * Description: It is used for configuring the flow control in all queues 898 */ 899 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex) 900 { 901 u32 tx_cnt = priv->plat->tx_queues_to_use; 902 903 stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl, 904 priv->pause, tx_cnt); 905 } 906 907 static void stmmac_validate(struct phylink_config *config, 908 unsigned long *supported, 909 struct phylink_link_state *state) 910 { 911 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); 912 __ETHTOOL_DECLARE_LINK_MODE_MASK(mac_supported) = { 0, }; 913 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; 914 int tx_cnt = priv->plat->tx_queues_to_use; 915 int max_speed = priv->plat->max_speed; 916 917 phylink_set(mac_supported, 10baseT_Half); 918 phylink_set(mac_supported, 10baseT_Full); 919 phylink_set(mac_supported, 100baseT_Half); 920 phylink_set(mac_supported, 100baseT_Full); 921 phylink_set(mac_supported, 1000baseT_Half); 922 phylink_set(mac_supported, 1000baseT_Full); 923 phylink_set(mac_supported, 1000baseKX_Full); 924 925 phylink_set(mac_supported, Autoneg); 926 phylink_set(mac_supported, Pause); 927 phylink_set(mac_supported, Asym_Pause); 928 phylink_set_port_modes(mac_supported); 929 930 /* Cut down 1G if asked to */ 931 if ((max_speed > 0) && (max_speed < 1000)) { 932 phylink_set(mask, 1000baseT_Full); 933 phylink_set(mask, 1000baseX_Full); 934 } else if (priv->plat->has_xgmac) { 935 if (!max_speed || (max_speed >= 2500)) { 936 phylink_set(mac_supported, 2500baseT_Full); 937 phylink_set(mac_supported, 2500baseX_Full); 938 } 939 if (!max_speed || (max_speed >= 5000)) { 940 phylink_set(mac_supported, 5000baseT_Full); 941 } 942 if (!max_speed || (max_speed >= 10000)) { 943 phylink_set(mac_supported, 10000baseSR_Full); 944 phylink_set(mac_supported, 10000baseLR_Full); 945 phylink_set(mac_supported, 10000baseER_Full); 946 phylink_set(mac_supported, 10000baseLRM_Full); 947 phylink_set(mac_supported, 10000baseT_Full); 948 phylink_set(mac_supported, 10000baseKX4_Full); 949 phylink_set(mac_supported, 10000baseKR_Full); 950 } 951 if (!max_speed || (max_speed >= 25000)) { 952 phylink_set(mac_supported, 25000baseCR_Full); 953 phylink_set(mac_supported, 25000baseKR_Full); 954 phylink_set(mac_supported, 25000baseSR_Full); 955 } 956 if (!max_speed || (max_speed >= 40000)) { 957 phylink_set(mac_supported, 40000baseKR4_Full); 958 phylink_set(mac_supported, 40000baseCR4_Full); 959 phylink_set(mac_supported, 40000baseSR4_Full); 960 phylink_set(mac_supported, 40000baseLR4_Full); 961 } 962 if (!max_speed || (max_speed >= 50000)) { 963 phylink_set(mac_supported, 50000baseCR2_Full); 964 phylink_set(mac_supported, 50000baseKR2_Full); 965 phylink_set(mac_supported, 50000baseSR2_Full); 966 phylink_set(mac_supported, 50000baseKR_Full); 967 phylink_set(mac_supported, 50000baseSR_Full); 968 phylink_set(mac_supported, 50000baseCR_Full); 969 phylink_set(mac_supported, 50000baseLR_ER_FR_Full); 970 phylink_set(mac_supported, 50000baseDR_Full); 971 } 972 if (!max_speed || (max_speed >= 100000)) { 973 phylink_set(mac_supported, 100000baseKR4_Full); 974 phylink_set(mac_supported, 100000baseSR4_Full); 975 phylink_set(mac_supported, 100000baseCR4_Full); 976 phylink_set(mac_supported, 100000baseLR4_ER4_Full); 977 phylink_set(mac_supported, 100000baseKR2_Full); 978 phylink_set(mac_supported, 100000baseSR2_Full); 979 phylink_set(mac_supported, 100000baseCR2_Full); 980 phylink_set(mac_supported, 100000baseLR2_ER2_FR2_Full); 981 phylink_set(mac_supported, 100000baseDR2_Full); 982 } 983 } 984 985 /* Half-Duplex can only work with single queue */ 986 if (tx_cnt > 1) { 987 phylink_set(mask, 10baseT_Half); 988 phylink_set(mask, 100baseT_Half); 989 phylink_set(mask, 1000baseT_Half); 990 } 991 992 linkmode_and(supported, supported, mac_supported); 993 linkmode_andnot(supported, supported, mask); 994 995 linkmode_and(state->advertising, state->advertising, mac_supported); 996 linkmode_andnot(state->advertising, state->advertising, mask); 997 998 /* If PCS is supported, check which modes it supports. */ 999 stmmac_xpcs_validate(priv, &priv->hw->xpcs_args, supported, state); 1000 } 1001 1002 static void stmmac_mac_pcs_get_state(struct phylink_config *config, 1003 struct phylink_link_state *state) 1004 { 1005 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); 1006 1007 state->link = 0; 1008 stmmac_xpcs_get_state(priv, &priv->hw->xpcs_args, state); 1009 } 1010 1011 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode, 1012 const struct phylink_link_state *state) 1013 { 1014 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); 1015 1016 stmmac_xpcs_config(priv, &priv->hw->xpcs_args, state); 1017 } 1018 1019 static void stmmac_mac_an_restart(struct phylink_config *config) 1020 { 1021 /* Not Supported */ 1022 } 1023 1024 static void stmmac_fpe_link_state_handle(struct stmmac_priv *priv, bool is_up) 1025 { 1026 struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg; 1027 enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state; 1028 enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state; 1029 bool *hs_enable = &fpe_cfg->hs_enable; 1030 1031 if (is_up && *hs_enable) { 1032 stmmac_fpe_send_mpacket(priv, priv->ioaddr, MPACKET_VERIFY); 1033 } else { 1034 *lo_state = FPE_EVENT_UNKNOWN; 1035 *lp_state = FPE_EVENT_UNKNOWN; 1036 } 1037 } 1038 1039 static void stmmac_mac_link_down(struct phylink_config *config, 1040 unsigned int mode, phy_interface_t interface) 1041 { 1042 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); 1043 1044 stmmac_mac_set(priv, priv->ioaddr, false); 1045 priv->eee_active = false; 1046 priv->tx_lpi_enabled = false; 1047 stmmac_eee_init(priv); 1048 stmmac_set_eee_pls(priv, priv->hw, false); 1049 1050 if (priv->dma_cap.fpesel) 1051 stmmac_fpe_link_state_handle(priv, false); 1052 } 1053 1054 static void stmmac_mac_link_up(struct phylink_config *config, 1055 struct phy_device *phy, 1056 unsigned int mode, phy_interface_t interface, 1057 int speed, int duplex, 1058 bool tx_pause, bool rx_pause) 1059 { 1060 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); 1061 u32 ctrl; 1062 1063 stmmac_xpcs_link_up(priv, &priv->hw->xpcs_args, speed, interface); 1064 1065 ctrl = readl(priv->ioaddr + MAC_CTRL_REG); 1066 ctrl &= ~priv->hw->link.speed_mask; 1067 1068 if (interface == PHY_INTERFACE_MODE_USXGMII) { 1069 switch (speed) { 1070 case SPEED_10000: 1071 ctrl |= priv->hw->link.xgmii.speed10000; 1072 break; 1073 case SPEED_5000: 1074 ctrl |= priv->hw->link.xgmii.speed5000; 1075 break; 1076 case SPEED_2500: 1077 ctrl |= priv->hw->link.xgmii.speed2500; 1078 break; 1079 default: 1080 return; 1081 } 1082 } else if (interface == PHY_INTERFACE_MODE_XLGMII) { 1083 switch (speed) { 1084 case SPEED_100000: 1085 ctrl |= priv->hw->link.xlgmii.speed100000; 1086 break; 1087 case SPEED_50000: 1088 ctrl |= priv->hw->link.xlgmii.speed50000; 1089 break; 1090 case SPEED_40000: 1091 ctrl |= priv->hw->link.xlgmii.speed40000; 1092 break; 1093 case SPEED_25000: 1094 ctrl |= priv->hw->link.xlgmii.speed25000; 1095 break; 1096 case SPEED_10000: 1097 ctrl |= priv->hw->link.xgmii.speed10000; 1098 break; 1099 case SPEED_2500: 1100 ctrl |= priv->hw->link.speed2500; 1101 break; 1102 case SPEED_1000: 1103 ctrl |= priv->hw->link.speed1000; 1104 break; 1105 default: 1106 return; 1107 } 1108 } else { 1109 switch (speed) { 1110 case SPEED_2500: 1111 ctrl |= priv->hw->link.speed2500; 1112 break; 1113 case SPEED_1000: 1114 ctrl |= priv->hw->link.speed1000; 1115 break; 1116 case SPEED_100: 1117 ctrl |= priv->hw->link.speed100; 1118 break; 1119 case SPEED_10: 1120 ctrl |= priv->hw->link.speed10; 1121 break; 1122 default: 1123 return; 1124 } 1125 } 1126 1127 priv->speed = speed; 1128 1129 if (priv->plat->fix_mac_speed) 1130 priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed); 1131 1132 if (!duplex) 1133 ctrl &= ~priv->hw->link.duplex; 1134 else 1135 ctrl |= priv->hw->link.duplex; 1136 1137 /* Flow Control operation */ 1138 if (tx_pause && rx_pause) 1139 stmmac_mac_flow_ctrl(priv, duplex); 1140 1141 writel(ctrl, priv->ioaddr + MAC_CTRL_REG); 1142 1143 stmmac_mac_set(priv, priv->ioaddr, true); 1144 if (phy && priv->dma_cap.eee) { 1145 priv->eee_active = phy_init_eee(phy, 1) >= 0; 1146 priv->eee_enabled = stmmac_eee_init(priv); 1147 priv->tx_lpi_enabled = priv->eee_enabled; 1148 stmmac_set_eee_pls(priv, priv->hw, true); 1149 } 1150 1151 if (priv->dma_cap.fpesel) 1152 stmmac_fpe_link_state_handle(priv, true); 1153 } 1154 1155 static const struct phylink_mac_ops stmmac_phylink_mac_ops = { 1156 .validate = stmmac_validate, 1157 .mac_pcs_get_state = stmmac_mac_pcs_get_state, 1158 .mac_config = stmmac_mac_config, 1159 .mac_an_restart = stmmac_mac_an_restart, 1160 .mac_link_down = stmmac_mac_link_down, 1161 .mac_link_up = stmmac_mac_link_up, 1162 }; 1163 1164 /** 1165 * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported 1166 * @priv: driver private structure 1167 * Description: this is to verify if the HW supports the PCS. 1168 * Physical Coding Sublayer (PCS) interface that can be used when the MAC is 1169 * configured for the TBI, RTBI, or SGMII PHY interface. 1170 */ 1171 static void stmmac_check_pcs_mode(struct stmmac_priv *priv) 1172 { 1173 int interface = priv->plat->interface; 1174 1175 if (priv->dma_cap.pcs) { 1176 if ((interface == PHY_INTERFACE_MODE_RGMII) || 1177 (interface == PHY_INTERFACE_MODE_RGMII_ID) || 1178 (interface == PHY_INTERFACE_MODE_RGMII_RXID) || 1179 (interface == PHY_INTERFACE_MODE_RGMII_TXID)) { 1180 netdev_dbg(priv->dev, "PCS RGMII support enabled\n"); 1181 priv->hw->pcs = STMMAC_PCS_RGMII; 1182 } else if (interface == PHY_INTERFACE_MODE_SGMII) { 1183 netdev_dbg(priv->dev, "PCS SGMII support enabled\n"); 1184 priv->hw->pcs = STMMAC_PCS_SGMII; 1185 } 1186 } 1187 } 1188 1189 /** 1190 * stmmac_init_phy - PHY initialization 1191 * @dev: net device structure 1192 * Description: it initializes the driver's PHY state, and attaches the PHY 1193 * to the mac driver. 1194 * Return value: 1195 * 0 on success 1196 */ 1197 static int stmmac_init_phy(struct net_device *dev) 1198 { 1199 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL }; 1200 struct stmmac_priv *priv = netdev_priv(dev); 1201 struct device_node *node; 1202 int ret; 1203 1204 node = priv->plat->phylink_node; 1205 1206 if (node) 1207 ret = phylink_of_phy_connect(priv->phylink, node, 0); 1208 1209 /* Some DT bindings do not set-up the PHY handle. Let's try to 1210 * manually parse it 1211 */ 1212 if (!node || ret) { 1213 int addr = priv->plat->phy_addr; 1214 struct phy_device *phydev; 1215 1216 phydev = mdiobus_get_phy(priv->mii, addr); 1217 if (!phydev) { 1218 netdev_err(priv->dev, "no phy at addr %d\n", addr); 1219 return -ENODEV; 1220 } 1221 1222 ret = phylink_connect_phy(priv->phylink, phydev); 1223 } 1224 1225 phylink_ethtool_get_wol(priv->phylink, &wol); 1226 device_set_wakeup_capable(priv->device, !!wol.supported); 1227 1228 return ret; 1229 } 1230 1231 static int stmmac_phy_setup(struct stmmac_priv *priv) 1232 { 1233 struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node); 1234 int mode = priv->plat->phy_interface; 1235 struct phylink *phylink; 1236 1237 priv->phylink_config.dev = &priv->dev->dev; 1238 priv->phylink_config.type = PHYLINK_NETDEV; 1239 priv->phylink_config.pcs_poll = true; 1240 priv->phylink_config.ovr_an_inband = 1241 priv->plat->mdio_bus_data->xpcs_an_inband; 1242 1243 if (!fwnode) 1244 fwnode = dev_fwnode(priv->device); 1245 1246 phylink = phylink_create(&priv->phylink_config, fwnode, 1247 mode, &stmmac_phylink_mac_ops); 1248 if (IS_ERR(phylink)) 1249 return PTR_ERR(phylink); 1250 1251 priv->phylink = phylink; 1252 return 0; 1253 } 1254 1255 static void stmmac_display_rx_rings(struct stmmac_priv *priv) 1256 { 1257 u32 rx_cnt = priv->plat->rx_queues_to_use; 1258 unsigned int desc_size; 1259 void *head_rx; 1260 u32 queue; 1261 1262 /* Display RX rings */ 1263 for (queue = 0; queue < rx_cnt; queue++) { 1264 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1265 1266 pr_info("\tRX Queue %u rings\n", queue); 1267 1268 if (priv->extend_desc) { 1269 head_rx = (void *)rx_q->dma_erx; 1270 desc_size = sizeof(struct dma_extended_desc); 1271 } else { 1272 head_rx = (void *)rx_q->dma_rx; 1273 desc_size = sizeof(struct dma_desc); 1274 } 1275 1276 /* Display RX ring */ 1277 stmmac_display_ring(priv, head_rx, priv->dma_rx_size, true, 1278 rx_q->dma_rx_phy, desc_size); 1279 } 1280 } 1281 1282 static void stmmac_display_tx_rings(struct stmmac_priv *priv) 1283 { 1284 u32 tx_cnt = priv->plat->tx_queues_to_use; 1285 unsigned int desc_size; 1286 void *head_tx; 1287 u32 queue; 1288 1289 /* Display TX rings */ 1290 for (queue = 0; queue < tx_cnt; queue++) { 1291 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1292 1293 pr_info("\tTX Queue %d rings\n", queue); 1294 1295 if (priv->extend_desc) { 1296 head_tx = (void *)tx_q->dma_etx; 1297 desc_size = sizeof(struct dma_extended_desc); 1298 } else if (tx_q->tbs & STMMAC_TBS_AVAIL) { 1299 head_tx = (void *)tx_q->dma_entx; 1300 desc_size = sizeof(struct dma_edesc); 1301 } else { 1302 head_tx = (void *)tx_q->dma_tx; 1303 desc_size = sizeof(struct dma_desc); 1304 } 1305 1306 stmmac_display_ring(priv, head_tx, priv->dma_tx_size, false, 1307 tx_q->dma_tx_phy, desc_size); 1308 } 1309 } 1310 1311 static void stmmac_display_rings(struct stmmac_priv *priv) 1312 { 1313 /* Display RX ring */ 1314 stmmac_display_rx_rings(priv); 1315 1316 /* Display TX ring */ 1317 stmmac_display_tx_rings(priv); 1318 } 1319 1320 static int stmmac_set_bfsize(int mtu, int bufsize) 1321 { 1322 int ret = bufsize; 1323 1324 if (mtu >= BUF_SIZE_8KiB) 1325 ret = BUF_SIZE_16KiB; 1326 else if (mtu >= BUF_SIZE_4KiB) 1327 ret = BUF_SIZE_8KiB; 1328 else if (mtu >= BUF_SIZE_2KiB) 1329 ret = BUF_SIZE_4KiB; 1330 else if (mtu > DEFAULT_BUFSIZE) 1331 ret = BUF_SIZE_2KiB; 1332 else 1333 ret = DEFAULT_BUFSIZE; 1334 1335 return ret; 1336 } 1337 1338 /** 1339 * stmmac_clear_rx_descriptors - clear RX descriptors 1340 * @priv: driver private structure 1341 * @queue: RX queue index 1342 * Description: this function is called to clear the RX descriptors 1343 * in case of both basic and extended descriptors are used. 1344 */ 1345 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue) 1346 { 1347 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1348 int i; 1349 1350 /* Clear the RX descriptors */ 1351 for (i = 0; i < priv->dma_rx_size; i++) 1352 if (priv->extend_desc) 1353 stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic, 1354 priv->use_riwt, priv->mode, 1355 (i == priv->dma_rx_size - 1), 1356 priv->dma_buf_sz); 1357 else 1358 stmmac_init_rx_desc(priv, &rx_q->dma_rx[i], 1359 priv->use_riwt, priv->mode, 1360 (i == priv->dma_rx_size - 1), 1361 priv->dma_buf_sz); 1362 } 1363 1364 /** 1365 * stmmac_clear_tx_descriptors - clear tx descriptors 1366 * @priv: driver private structure 1367 * @queue: TX queue index. 1368 * Description: this function is called to clear the TX descriptors 1369 * in case of both basic and extended descriptors are used. 1370 */ 1371 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue) 1372 { 1373 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1374 int i; 1375 1376 /* Clear the TX descriptors */ 1377 for (i = 0; i < priv->dma_tx_size; i++) { 1378 int last = (i == (priv->dma_tx_size - 1)); 1379 struct dma_desc *p; 1380 1381 if (priv->extend_desc) 1382 p = &tx_q->dma_etx[i].basic; 1383 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 1384 p = &tx_q->dma_entx[i].basic; 1385 else 1386 p = &tx_q->dma_tx[i]; 1387 1388 stmmac_init_tx_desc(priv, p, priv->mode, last); 1389 } 1390 } 1391 1392 /** 1393 * stmmac_clear_descriptors - clear descriptors 1394 * @priv: driver private structure 1395 * Description: this function is called to clear the TX and RX descriptors 1396 * in case of both basic and extended descriptors are used. 1397 */ 1398 static void stmmac_clear_descriptors(struct stmmac_priv *priv) 1399 { 1400 u32 rx_queue_cnt = priv->plat->rx_queues_to_use; 1401 u32 tx_queue_cnt = priv->plat->tx_queues_to_use; 1402 u32 queue; 1403 1404 /* Clear the RX descriptors */ 1405 for (queue = 0; queue < rx_queue_cnt; queue++) 1406 stmmac_clear_rx_descriptors(priv, queue); 1407 1408 /* Clear the TX descriptors */ 1409 for (queue = 0; queue < tx_queue_cnt; queue++) 1410 stmmac_clear_tx_descriptors(priv, queue); 1411 } 1412 1413 /** 1414 * stmmac_init_rx_buffers - init the RX descriptor buffer. 1415 * @priv: driver private structure 1416 * @p: descriptor pointer 1417 * @i: descriptor index 1418 * @flags: gfp flag 1419 * @queue: RX queue index 1420 * Description: this function is called to allocate a receive buffer, perform 1421 * the DMA mapping and init the descriptor. 1422 */ 1423 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p, 1424 int i, gfp_t flags, u32 queue) 1425 { 1426 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1427 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i]; 1428 1429 if (!buf->page) { 1430 buf->page = page_pool_dev_alloc_pages(rx_q->page_pool); 1431 if (!buf->page) 1432 return -ENOMEM; 1433 buf->page_offset = stmmac_rx_offset(priv); 1434 } 1435 1436 if (priv->sph && !buf->sec_page) { 1437 buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool); 1438 if (!buf->sec_page) 1439 return -ENOMEM; 1440 1441 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page); 1442 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true); 1443 } else { 1444 buf->sec_page = NULL; 1445 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false); 1446 } 1447 1448 buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset; 1449 1450 stmmac_set_desc_addr(priv, p, buf->addr); 1451 if (priv->dma_buf_sz == BUF_SIZE_16KiB) 1452 stmmac_init_desc3(priv, p); 1453 1454 return 0; 1455 } 1456 1457 /** 1458 * stmmac_free_rx_buffer - free RX dma buffers 1459 * @priv: private structure 1460 * @queue: RX queue index 1461 * @i: buffer index. 1462 */ 1463 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i) 1464 { 1465 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1466 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i]; 1467 1468 if (buf->page) 1469 page_pool_put_full_page(rx_q->page_pool, buf->page, false); 1470 buf->page = NULL; 1471 1472 if (buf->sec_page) 1473 page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false); 1474 buf->sec_page = NULL; 1475 } 1476 1477 /** 1478 * stmmac_free_tx_buffer - free RX dma buffers 1479 * @priv: private structure 1480 * @queue: RX queue index 1481 * @i: buffer index. 1482 */ 1483 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i) 1484 { 1485 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1486 1487 if (tx_q->tx_skbuff_dma[i].buf && 1488 tx_q->tx_skbuff_dma[i].buf_type != STMMAC_TXBUF_T_XDP_TX) { 1489 if (tx_q->tx_skbuff_dma[i].map_as_page) 1490 dma_unmap_page(priv->device, 1491 tx_q->tx_skbuff_dma[i].buf, 1492 tx_q->tx_skbuff_dma[i].len, 1493 DMA_TO_DEVICE); 1494 else 1495 dma_unmap_single(priv->device, 1496 tx_q->tx_skbuff_dma[i].buf, 1497 tx_q->tx_skbuff_dma[i].len, 1498 DMA_TO_DEVICE); 1499 } 1500 1501 if (tx_q->xdpf[i] && 1502 (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_TX || 1503 tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_NDO)) { 1504 xdp_return_frame(tx_q->xdpf[i]); 1505 tx_q->xdpf[i] = NULL; 1506 } 1507 1508 if (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XSK_TX) 1509 tx_q->xsk_frames_done++; 1510 1511 if (tx_q->tx_skbuff[i] && 1512 tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_SKB) { 1513 dev_kfree_skb_any(tx_q->tx_skbuff[i]); 1514 tx_q->tx_skbuff[i] = NULL; 1515 } 1516 1517 tx_q->tx_skbuff_dma[i].buf = 0; 1518 tx_q->tx_skbuff_dma[i].map_as_page = false; 1519 } 1520 1521 /** 1522 * dma_free_rx_skbufs - free RX dma buffers 1523 * @priv: private structure 1524 * @queue: RX queue index 1525 */ 1526 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue) 1527 { 1528 int i; 1529 1530 for (i = 0; i < priv->dma_rx_size; i++) 1531 stmmac_free_rx_buffer(priv, queue, i); 1532 } 1533 1534 static int stmmac_alloc_rx_buffers(struct stmmac_priv *priv, u32 queue, 1535 gfp_t flags) 1536 { 1537 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1538 int i; 1539 1540 for (i = 0; i < priv->dma_rx_size; i++) { 1541 struct dma_desc *p; 1542 int ret; 1543 1544 if (priv->extend_desc) 1545 p = &((rx_q->dma_erx + i)->basic); 1546 else 1547 p = rx_q->dma_rx + i; 1548 1549 ret = stmmac_init_rx_buffers(priv, p, i, flags, 1550 queue); 1551 if (ret) 1552 return ret; 1553 1554 rx_q->buf_alloc_num++; 1555 } 1556 1557 return 0; 1558 } 1559 1560 /** 1561 * dma_free_rx_xskbufs - free RX dma buffers from XSK pool 1562 * @priv: private structure 1563 * @queue: RX queue index 1564 */ 1565 static void dma_free_rx_xskbufs(struct stmmac_priv *priv, u32 queue) 1566 { 1567 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1568 int i; 1569 1570 for (i = 0; i < priv->dma_rx_size; i++) { 1571 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i]; 1572 1573 if (!buf->xdp) 1574 continue; 1575 1576 xsk_buff_free(buf->xdp); 1577 buf->xdp = NULL; 1578 } 1579 } 1580 1581 static int stmmac_alloc_rx_buffers_zc(struct stmmac_priv *priv, u32 queue) 1582 { 1583 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1584 int i; 1585 1586 for (i = 0; i < priv->dma_rx_size; i++) { 1587 struct stmmac_rx_buffer *buf; 1588 dma_addr_t dma_addr; 1589 struct dma_desc *p; 1590 1591 if (priv->extend_desc) 1592 p = (struct dma_desc *)(rx_q->dma_erx + i); 1593 else 1594 p = rx_q->dma_rx + i; 1595 1596 buf = &rx_q->buf_pool[i]; 1597 1598 buf->xdp = xsk_buff_alloc(rx_q->xsk_pool); 1599 if (!buf->xdp) 1600 return -ENOMEM; 1601 1602 dma_addr = xsk_buff_xdp_get_dma(buf->xdp); 1603 stmmac_set_desc_addr(priv, p, dma_addr); 1604 rx_q->buf_alloc_num++; 1605 } 1606 1607 return 0; 1608 } 1609 1610 static struct xsk_buff_pool *stmmac_get_xsk_pool(struct stmmac_priv *priv, u32 queue) 1611 { 1612 if (!stmmac_xdp_is_enabled(priv) || !test_bit(queue, priv->af_xdp_zc_qps)) 1613 return NULL; 1614 1615 return xsk_get_pool_from_qid(priv->dev, queue); 1616 } 1617 1618 /** 1619 * __init_dma_rx_desc_rings - init the RX descriptor ring (per queue) 1620 * @priv: driver private structure 1621 * @queue: RX queue index 1622 * @flags: gfp flag. 1623 * Description: this function initializes the DMA RX descriptors 1624 * and allocates the socket buffers. It supports the chained and ring 1625 * modes. 1626 */ 1627 static int __init_dma_rx_desc_rings(struct stmmac_priv *priv, u32 queue, gfp_t flags) 1628 { 1629 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1630 int ret; 1631 1632 netif_dbg(priv, probe, priv->dev, 1633 "(%s) dma_rx_phy=0x%08x\n", __func__, 1634 (u32)rx_q->dma_rx_phy); 1635 1636 stmmac_clear_rx_descriptors(priv, queue); 1637 1638 xdp_rxq_info_unreg_mem_model(&rx_q->xdp_rxq); 1639 1640 rx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue); 1641 1642 if (rx_q->xsk_pool) { 1643 WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq, 1644 MEM_TYPE_XSK_BUFF_POOL, 1645 NULL)); 1646 netdev_info(priv->dev, 1647 "Register MEM_TYPE_XSK_BUFF_POOL RxQ-%d\n", 1648 rx_q->queue_index); 1649 xsk_pool_set_rxq_info(rx_q->xsk_pool, &rx_q->xdp_rxq); 1650 } else { 1651 WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq, 1652 MEM_TYPE_PAGE_POOL, 1653 rx_q->page_pool)); 1654 netdev_info(priv->dev, 1655 "Register MEM_TYPE_PAGE_POOL RxQ-%d\n", 1656 rx_q->queue_index); 1657 } 1658 1659 if (rx_q->xsk_pool) { 1660 /* RX XDP ZC buffer pool may not be populated, e.g. 1661 * xdpsock TX-only. 1662 */ 1663 stmmac_alloc_rx_buffers_zc(priv, queue); 1664 } else { 1665 ret = stmmac_alloc_rx_buffers(priv, queue, flags); 1666 if (ret < 0) 1667 return -ENOMEM; 1668 } 1669 1670 rx_q->cur_rx = 0; 1671 rx_q->dirty_rx = 0; 1672 1673 /* Setup the chained descriptor addresses */ 1674 if (priv->mode == STMMAC_CHAIN_MODE) { 1675 if (priv->extend_desc) 1676 stmmac_mode_init(priv, rx_q->dma_erx, 1677 rx_q->dma_rx_phy, 1678 priv->dma_rx_size, 1); 1679 else 1680 stmmac_mode_init(priv, rx_q->dma_rx, 1681 rx_q->dma_rx_phy, 1682 priv->dma_rx_size, 0); 1683 } 1684 1685 return 0; 1686 } 1687 1688 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags) 1689 { 1690 struct stmmac_priv *priv = netdev_priv(dev); 1691 u32 rx_count = priv->plat->rx_queues_to_use; 1692 u32 queue; 1693 int ret; 1694 1695 /* RX INITIALIZATION */ 1696 netif_dbg(priv, probe, priv->dev, 1697 "SKB addresses:\nskb\t\tskb data\tdma data\n"); 1698 1699 for (queue = 0; queue < rx_count; queue++) { 1700 ret = __init_dma_rx_desc_rings(priv, queue, flags); 1701 if (ret) 1702 goto err_init_rx_buffers; 1703 } 1704 1705 return 0; 1706 1707 err_init_rx_buffers: 1708 while (queue >= 0) { 1709 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1710 1711 if (rx_q->xsk_pool) 1712 dma_free_rx_xskbufs(priv, queue); 1713 else 1714 dma_free_rx_skbufs(priv, queue); 1715 1716 rx_q->buf_alloc_num = 0; 1717 rx_q->xsk_pool = NULL; 1718 1719 if (queue == 0) 1720 break; 1721 1722 queue--; 1723 } 1724 1725 return ret; 1726 } 1727 1728 /** 1729 * __init_dma_tx_desc_rings - init the TX descriptor ring (per queue) 1730 * @priv: driver private structure 1731 * @queue : TX queue index 1732 * Description: this function initializes the DMA TX descriptors 1733 * and allocates the socket buffers. It supports the chained and ring 1734 * modes. 1735 */ 1736 static int __init_dma_tx_desc_rings(struct stmmac_priv *priv, u32 queue) 1737 { 1738 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1739 int i; 1740 1741 netif_dbg(priv, probe, priv->dev, 1742 "(%s) dma_tx_phy=0x%08x\n", __func__, 1743 (u32)tx_q->dma_tx_phy); 1744 1745 /* Setup the chained descriptor addresses */ 1746 if (priv->mode == STMMAC_CHAIN_MODE) { 1747 if (priv->extend_desc) 1748 stmmac_mode_init(priv, tx_q->dma_etx, 1749 tx_q->dma_tx_phy, 1750 priv->dma_tx_size, 1); 1751 else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) 1752 stmmac_mode_init(priv, tx_q->dma_tx, 1753 tx_q->dma_tx_phy, 1754 priv->dma_tx_size, 0); 1755 } 1756 1757 tx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue); 1758 1759 for (i = 0; i < priv->dma_tx_size; i++) { 1760 struct dma_desc *p; 1761 1762 if (priv->extend_desc) 1763 p = &((tx_q->dma_etx + i)->basic); 1764 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 1765 p = &((tx_q->dma_entx + i)->basic); 1766 else 1767 p = tx_q->dma_tx + i; 1768 1769 stmmac_clear_desc(priv, p); 1770 1771 tx_q->tx_skbuff_dma[i].buf = 0; 1772 tx_q->tx_skbuff_dma[i].map_as_page = false; 1773 tx_q->tx_skbuff_dma[i].len = 0; 1774 tx_q->tx_skbuff_dma[i].last_segment = false; 1775 tx_q->tx_skbuff[i] = NULL; 1776 } 1777 1778 tx_q->dirty_tx = 0; 1779 tx_q->cur_tx = 0; 1780 tx_q->mss = 0; 1781 1782 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue)); 1783 1784 return 0; 1785 } 1786 1787 static int init_dma_tx_desc_rings(struct net_device *dev) 1788 { 1789 struct stmmac_priv *priv = netdev_priv(dev); 1790 u32 tx_queue_cnt; 1791 u32 queue; 1792 1793 tx_queue_cnt = priv->plat->tx_queues_to_use; 1794 1795 for (queue = 0; queue < tx_queue_cnt; queue++) 1796 __init_dma_tx_desc_rings(priv, queue); 1797 1798 return 0; 1799 } 1800 1801 /** 1802 * init_dma_desc_rings - init the RX/TX descriptor rings 1803 * @dev: net device structure 1804 * @flags: gfp flag. 1805 * Description: this function initializes the DMA RX/TX descriptors 1806 * and allocates the socket buffers. It supports the chained and ring 1807 * modes. 1808 */ 1809 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags) 1810 { 1811 struct stmmac_priv *priv = netdev_priv(dev); 1812 int ret; 1813 1814 ret = init_dma_rx_desc_rings(dev, flags); 1815 if (ret) 1816 return ret; 1817 1818 ret = init_dma_tx_desc_rings(dev); 1819 1820 stmmac_clear_descriptors(priv); 1821 1822 if (netif_msg_hw(priv)) 1823 stmmac_display_rings(priv); 1824 1825 return ret; 1826 } 1827 1828 /** 1829 * dma_free_tx_skbufs - free TX dma buffers 1830 * @priv: private structure 1831 * @queue: TX queue index 1832 */ 1833 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue) 1834 { 1835 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1836 int i; 1837 1838 tx_q->xsk_frames_done = 0; 1839 1840 for (i = 0; i < priv->dma_tx_size; i++) 1841 stmmac_free_tx_buffer(priv, queue, i); 1842 1843 if (tx_q->xsk_pool && tx_q->xsk_frames_done) { 1844 xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done); 1845 tx_q->xsk_frames_done = 0; 1846 tx_q->xsk_pool = NULL; 1847 } 1848 } 1849 1850 /** 1851 * stmmac_free_tx_skbufs - free TX skb buffers 1852 * @priv: private structure 1853 */ 1854 static void stmmac_free_tx_skbufs(struct stmmac_priv *priv) 1855 { 1856 u32 tx_queue_cnt = priv->plat->tx_queues_to_use; 1857 u32 queue; 1858 1859 for (queue = 0; queue < tx_queue_cnt; queue++) 1860 dma_free_tx_skbufs(priv, queue); 1861 } 1862 1863 /** 1864 * __free_dma_rx_desc_resources - free RX dma desc resources (per queue) 1865 * @priv: private structure 1866 * @queue: RX queue index 1867 */ 1868 static void __free_dma_rx_desc_resources(struct stmmac_priv *priv, u32 queue) 1869 { 1870 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1871 1872 /* Release the DMA RX socket buffers */ 1873 if (rx_q->xsk_pool) 1874 dma_free_rx_xskbufs(priv, queue); 1875 else 1876 dma_free_rx_skbufs(priv, queue); 1877 1878 rx_q->buf_alloc_num = 0; 1879 rx_q->xsk_pool = NULL; 1880 1881 /* Free DMA regions of consistent memory previously allocated */ 1882 if (!priv->extend_desc) 1883 dma_free_coherent(priv->device, priv->dma_rx_size * 1884 sizeof(struct dma_desc), 1885 rx_q->dma_rx, rx_q->dma_rx_phy); 1886 else 1887 dma_free_coherent(priv->device, priv->dma_rx_size * 1888 sizeof(struct dma_extended_desc), 1889 rx_q->dma_erx, rx_q->dma_rx_phy); 1890 1891 if (xdp_rxq_info_is_reg(&rx_q->xdp_rxq)) 1892 xdp_rxq_info_unreg(&rx_q->xdp_rxq); 1893 1894 kfree(rx_q->buf_pool); 1895 if (rx_q->page_pool) 1896 page_pool_destroy(rx_q->page_pool); 1897 } 1898 1899 static void free_dma_rx_desc_resources(struct stmmac_priv *priv) 1900 { 1901 u32 rx_count = priv->plat->rx_queues_to_use; 1902 u32 queue; 1903 1904 /* Free RX queue resources */ 1905 for (queue = 0; queue < rx_count; queue++) 1906 __free_dma_rx_desc_resources(priv, queue); 1907 } 1908 1909 /** 1910 * __free_dma_tx_desc_resources - free TX dma desc resources (per queue) 1911 * @priv: private structure 1912 * @queue: TX queue index 1913 */ 1914 static void __free_dma_tx_desc_resources(struct stmmac_priv *priv, u32 queue) 1915 { 1916 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1917 size_t size; 1918 void *addr; 1919 1920 /* Release the DMA TX socket buffers */ 1921 dma_free_tx_skbufs(priv, queue); 1922 1923 if (priv->extend_desc) { 1924 size = sizeof(struct dma_extended_desc); 1925 addr = tx_q->dma_etx; 1926 } else if (tx_q->tbs & STMMAC_TBS_AVAIL) { 1927 size = sizeof(struct dma_edesc); 1928 addr = tx_q->dma_entx; 1929 } else { 1930 size = sizeof(struct dma_desc); 1931 addr = tx_q->dma_tx; 1932 } 1933 1934 size *= priv->dma_tx_size; 1935 1936 dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy); 1937 1938 kfree(tx_q->tx_skbuff_dma); 1939 kfree(tx_q->tx_skbuff); 1940 } 1941 1942 static void free_dma_tx_desc_resources(struct stmmac_priv *priv) 1943 { 1944 u32 tx_count = priv->plat->tx_queues_to_use; 1945 u32 queue; 1946 1947 /* Free TX queue resources */ 1948 for (queue = 0; queue < tx_count; queue++) 1949 __free_dma_tx_desc_resources(priv, queue); 1950 } 1951 1952 /** 1953 * __alloc_dma_rx_desc_resources - alloc RX resources (per queue). 1954 * @priv: private structure 1955 * @queue: RX queue index 1956 * Description: according to which descriptor can be used (extend or basic) 1957 * this function allocates the resources for TX and RX paths. In case of 1958 * reception, for example, it pre-allocated the RX socket buffer in order to 1959 * allow zero-copy mechanism. 1960 */ 1961 static int __alloc_dma_rx_desc_resources(struct stmmac_priv *priv, u32 queue) 1962 { 1963 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1964 struct stmmac_channel *ch = &priv->channel[queue]; 1965 bool xdp_prog = stmmac_xdp_is_enabled(priv); 1966 struct page_pool_params pp_params = { 0 }; 1967 unsigned int num_pages; 1968 unsigned int napi_id; 1969 int ret; 1970 1971 rx_q->queue_index = queue; 1972 rx_q->priv_data = priv; 1973 1974 pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV; 1975 pp_params.pool_size = priv->dma_rx_size; 1976 num_pages = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE); 1977 pp_params.order = ilog2(num_pages); 1978 pp_params.nid = dev_to_node(priv->device); 1979 pp_params.dev = priv->device; 1980 pp_params.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE; 1981 pp_params.offset = stmmac_rx_offset(priv); 1982 pp_params.max_len = STMMAC_MAX_RX_BUF_SIZE(num_pages); 1983 1984 rx_q->page_pool = page_pool_create(&pp_params); 1985 if (IS_ERR(rx_q->page_pool)) { 1986 ret = PTR_ERR(rx_q->page_pool); 1987 rx_q->page_pool = NULL; 1988 return ret; 1989 } 1990 1991 rx_q->buf_pool = kcalloc(priv->dma_rx_size, 1992 sizeof(*rx_q->buf_pool), 1993 GFP_KERNEL); 1994 if (!rx_q->buf_pool) 1995 return -ENOMEM; 1996 1997 if (priv->extend_desc) { 1998 rx_q->dma_erx = dma_alloc_coherent(priv->device, 1999 priv->dma_rx_size * 2000 sizeof(struct dma_extended_desc), 2001 &rx_q->dma_rx_phy, 2002 GFP_KERNEL); 2003 if (!rx_q->dma_erx) 2004 return -ENOMEM; 2005 2006 } else { 2007 rx_q->dma_rx = dma_alloc_coherent(priv->device, 2008 priv->dma_rx_size * 2009 sizeof(struct dma_desc), 2010 &rx_q->dma_rx_phy, 2011 GFP_KERNEL); 2012 if (!rx_q->dma_rx) 2013 return -ENOMEM; 2014 } 2015 2016 if (stmmac_xdp_is_enabled(priv) && 2017 test_bit(queue, priv->af_xdp_zc_qps)) 2018 napi_id = ch->rxtx_napi.napi_id; 2019 else 2020 napi_id = ch->rx_napi.napi_id; 2021 2022 ret = xdp_rxq_info_reg(&rx_q->xdp_rxq, priv->dev, 2023 rx_q->queue_index, 2024 napi_id); 2025 if (ret) { 2026 netdev_err(priv->dev, "Failed to register xdp rxq info\n"); 2027 return -EINVAL; 2028 } 2029 2030 return 0; 2031 } 2032 2033 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv) 2034 { 2035 u32 rx_count = priv->plat->rx_queues_to_use; 2036 u32 queue; 2037 int ret; 2038 2039 /* RX queues buffers and DMA */ 2040 for (queue = 0; queue < rx_count; queue++) { 2041 ret = __alloc_dma_rx_desc_resources(priv, queue); 2042 if (ret) 2043 goto err_dma; 2044 } 2045 2046 return 0; 2047 2048 err_dma: 2049 free_dma_rx_desc_resources(priv); 2050 2051 return ret; 2052 } 2053 2054 /** 2055 * __alloc_dma_tx_desc_resources - alloc TX resources (per queue). 2056 * @priv: private structure 2057 * @queue: TX queue index 2058 * Description: according to which descriptor can be used (extend or basic) 2059 * this function allocates the resources for TX and RX paths. In case of 2060 * reception, for example, it pre-allocated the RX socket buffer in order to 2061 * allow zero-copy mechanism. 2062 */ 2063 static int __alloc_dma_tx_desc_resources(struct stmmac_priv *priv, u32 queue) 2064 { 2065 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 2066 size_t size; 2067 void *addr; 2068 2069 tx_q->queue_index = queue; 2070 tx_q->priv_data = priv; 2071 2072 tx_q->tx_skbuff_dma = kcalloc(priv->dma_tx_size, 2073 sizeof(*tx_q->tx_skbuff_dma), 2074 GFP_KERNEL); 2075 if (!tx_q->tx_skbuff_dma) 2076 return -ENOMEM; 2077 2078 tx_q->tx_skbuff = kcalloc(priv->dma_tx_size, 2079 sizeof(struct sk_buff *), 2080 GFP_KERNEL); 2081 if (!tx_q->tx_skbuff) 2082 return -ENOMEM; 2083 2084 if (priv->extend_desc) 2085 size = sizeof(struct dma_extended_desc); 2086 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 2087 size = sizeof(struct dma_edesc); 2088 else 2089 size = sizeof(struct dma_desc); 2090 2091 size *= priv->dma_tx_size; 2092 2093 addr = dma_alloc_coherent(priv->device, size, 2094 &tx_q->dma_tx_phy, GFP_KERNEL); 2095 if (!addr) 2096 return -ENOMEM; 2097 2098 if (priv->extend_desc) 2099 tx_q->dma_etx = addr; 2100 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 2101 tx_q->dma_entx = addr; 2102 else 2103 tx_q->dma_tx = addr; 2104 2105 return 0; 2106 } 2107 2108 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv) 2109 { 2110 u32 tx_count = priv->plat->tx_queues_to_use; 2111 u32 queue; 2112 int ret; 2113 2114 /* TX queues buffers and DMA */ 2115 for (queue = 0; queue < tx_count; queue++) { 2116 ret = __alloc_dma_tx_desc_resources(priv, queue); 2117 if (ret) 2118 goto err_dma; 2119 } 2120 2121 return 0; 2122 2123 err_dma: 2124 free_dma_tx_desc_resources(priv); 2125 return ret; 2126 } 2127 2128 /** 2129 * alloc_dma_desc_resources - alloc TX/RX resources. 2130 * @priv: private structure 2131 * Description: according to which descriptor can be used (extend or basic) 2132 * this function allocates the resources for TX and RX paths. In case of 2133 * reception, for example, it pre-allocated the RX socket buffer in order to 2134 * allow zero-copy mechanism. 2135 */ 2136 static int alloc_dma_desc_resources(struct stmmac_priv *priv) 2137 { 2138 /* RX Allocation */ 2139 int ret = alloc_dma_rx_desc_resources(priv); 2140 2141 if (ret) 2142 return ret; 2143 2144 ret = alloc_dma_tx_desc_resources(priv); 2145 2146 return ret; 2147 } 2148 2149 /** 2150 * free_dma_desc_resources - free dma desc resources 2151 * @priv: private structure 2152 */ 2153 static void free_dma_desc_resources(struct stmmac_priv *priv) 2154 { 2155 /* Release the DMA TX socket buffers */ 2156 free_dma_tx_desc_resources(priv); 2157 2158 /* Release the DMA RX socket buffers later 2159 * to ensure all pending XDP_TX buffers are returned. 2160 */ 2161 free_dma_rx_desc_resources(priv); 2162 } 2163 2164 /** 2165 * stmmac_mac_enable_rx_queues - Enable MAC rx queues 2166 * @priv: driver private structure 2167 * Description: It is used for enabling the rx queues in the MAC 2168 */ 2169 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv) 2170 { 2171 u32 rx_queues_count = priv->plat->rx_queues_to_use; 2172 int queue; 2173 u8 mode; 2174 2175 for (queue = 0; queue < rx_queues_count; queue++) { 2176 mode = priv->plat->rx_queues_cfg[queue].mode_to_use; 2177 stmmac_rx_queue_enable(priv, priv->hw, mode, queue); 2178 } 2179 } 2180 2181 /** 2182 * stmmac_start_rx_dma - start RX DMA channel 2183 * @priv: driver private structure 2184 * @chan: RX channel index 2185 * Description: 2186 * This starts a RX DMA channel 2187 */ 2188 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan) 2189 { 2190 netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan); 2191 stmmac_start_rx(priv, priv->ioaddr, chan); 2192 } 2193 2194 /** 2195 * stmmac_start_tx_dma - start TX DMA channel 2196 * @priv: driver private structure 2197 * @chan: TX channel index 2198 * Description: 2199 * This starts a TX DMA channel 2200 */ 2201 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan) 2202 { 2203 netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan); 2204 stmmac_start_tx(priv, priv->ioaddr, chan); 2205 } 2206 2207 /** 2208 * stmmac_stop_rx_dma - stop RX DMA channel 2209 * @priv: driver private structure 2210 * @chan: RX channel index 2211 * Description: 2212 * This stops a RX DMA channel 2213 */ 2214 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan) 2215 { 2216 netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan); 2217 stmmac_stop_rx(priv, priv->ioaddr, chan); 2218 } 2219 2220 /** 2221 * stmmac_stop_tx_dma - stop TX DMA channel 2222 * @priv: driver private structure 2223 * @chan: TX channel index 2224 * Description: 2225 * This stops a TX DMA channel 2226 */ 2227 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan) 2228 { 2229 netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan); 2230 stmmac_stop_tx(priv, priv->ioaddr, chan); 2231 } 2232 2233 /** 2234 * stmmac_start_all_dma - start all RX and TX DMA channels 2235 * @priv: driver private structure 2236 * Description: 2237 * This starts all the RX and TX DMA channels 2238 */ 2239 static void stmmac_start_all_dma(struct stmmac_priv *priv) 2240 { 2241 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2242 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2243 u32 chan = 0; 2244 2245 for (chan = 0; chan < rx_channels_count; chan++) 2246 stmmac_start_rx_dma(priv, chan); 2247 2248 for (chan = 0; chan < tx_channels_count; chan++) 2249 stmmac_start_tx_dma(priv, chan); 2250 } 2251 2252 /** 2253 * stmmac_stop_all_dma - stop all RX and TX DMA channels 2254 * @priv: driver private structure 2255 * Description: 2256 * This stops the RX and TX DMA channels 2257 */ 2258 static void stmmac_stop_all_dma(struct stmmac_priv *priv) 2259 { 2260 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2261 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2262 u32 chan = 0; 2263 2264 for (chan = 0; chan < rx_channels_count; chan++) 2265 stmmac_stop_rx_dma(priv, chan); 2266 2267 for (chan = 0; chan < tx_channels_count; chan++) 2268 stmmac_stop_tx_dma(priv, chan); 2269 } 2270 2271 /** 2272 * stmmac_dma_operation_mode - HW DMA operation mode 2273 * @priv: driver private structure 2274 * Description: it is used for configuring the DMA operation mode register in 2275 * order to program the tx/rx DMA thresholds or Store-And-Forward mode. 2276 */ 2277 static void stmmac_dma_operation_mode(struct stmmac_priv *priv) 2278 { 2279 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2280 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2281 int rxfifosz = priv->plat->rx_fifo_size; 2282 int txfifosz = priv->plat->tx_fifo_size; 2283 u32 txmode = 0; 2284 u32 rxmode = 0; 2285 u32 chan = 0; 2286 u8 qmode = 0; 2287 2288 if (rxfifosz == 0) 2289 rxfifosz = priv->dma_cap.rx_fifo_size; 2290 if (txfifosz == 0) 2291 txfifosz = priv->dma_cap.tx_fifo_size; 2292 2293 /* Adjust for real per queue fifo size */ 2294 rxfifosz /= rx_channels_count; 2295 txfifosz /= tx_channels_count; 2296 2297 if (priv->plat->force_thresh_dma_mode) { 2298 txmode = tc; 2299 rxmode = tc; 2300 } else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) { 2301 /* 2302 * In case of GMAC, SF mode can be enabled 2303 * to perform the TX COE in HW. This depends on: 2304 * 1) TX COE if actually supported 2305 * 2) There is no bugged Jumbo frame support 2306 * that needs to not insert csum in the TDES. 2307 */ 2308 txmode = SF_DMA_MODE; 2309 rxmode = SF_DMA_MODE; 2310 priv->xstats.threshold = SF_DMA_MODE; 2311 } else { 2312 txmode = tc; 2313 rxmode = SF_DMA_MODE; 2314 } 2315 2316 /* configure all channels */ 2317 for (chan = 0; chan < rx_channels_count; chan++) { 2318 struct stmmac_rx_queue *rx_q = &priv->rx_queue[chan]; 2319 u32 buf_size; 2320 2321 qmode = priv->plat->rx_queues_cfg[chan].mode_to_use; 2322 2323 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, 2324 rxfifosz, qmode); 2325 2326 if (rx_q->xsk_pool) { 2327 buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool); 2328 stmmac_set_dma_bfsize(priv, priv->ioaddr, 2329 buf_size, 2330 chan); 2331 } else { 2332 stmmac_set_dma_bfsize(priv, priv->ioaddr, 2333 priv->dma_buf_sz, 2334 chan); 2335 } 2336 } 2337 2338 for (chan = 0; chan < tx_channels_count; chan++) { 2339 qmode = priv->plat->tx_queues_cfg[chan].mode_to_use; 2340 2341 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, 2342 txfifosz, qmode); 2343 } 2344 } 2345 2346 static bool stmmac_xdp_xmit_zc(struct stmmac_priv *priv, u32 queue, u32 budget) 2347 { 2348 struct netdev_queue *nq = netdev_get_tx_queue(priv->dev, queue); 2349 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 2350 struct xsk_buff_pool *pool = tx_q->xsk_pool; 2351 unsigned int entry = tx_q->cur_tx; 2352 struct dma_desc *tx_desc = NULL; 2353 struct xdp_desc xdp_desc; 2354 bool work_done = true; 2355 2356 /* Avoids TX time-out as we are sharing with slow path */ 2357 nq->trans_start = jiffies; 2358 2359 budget = min(budget, stmmac_tx_avail(priv, queue)); 2360 2361 while (budget-- > 0) { 2362 dma_addr_t dma_addr; 2363 bool set_ic; 2364 2365 /* We are sharing with slow path and stop XSK TX desc submission when 2366 * available TX ring is less than threshold. 2367 */ 2368 if (unlikely(stmmac_tx_avail(priv, queue) < STMMAC_TX_XSK_AVAIL) || 2369 !netif_carrier_ok(priv->dev)) { 2370 work_done = false; 2371 break; 2372 } 2373 2374 if (!xsk_tx_peek_desc(pool, &xdp_desc)) 2375 break; 2376 2377 if (likely(priv->extend_desc)) 2378 tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry); 2379 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 2380 tx_desc = &tx_q->dma_entx[entry].basic; 2381 else 2382 tx_desc = tx_q->dma_tx + entry; 2383 2384 dma_addr = xsk_buff_raw_get_dma(pool, xdp_desc.addr); 2385 xsk_buff_raw_dma_sync_for_device(pool, dma_addr, xdp_desc.len); 2386 2387 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XSK_TX; 2388 2389 /* To return XDP buffer to XSK pool, we simple call 2390 * xsk_tx_completed(), so we don't need to fill up 2391 * 'buf' and 'xdpf'. 2392 */ 2393 tx_q->tx_skbuff_dma[entry].buf = 0; 2394 tx_q->xdpf[entry] = NULL; 2395 2396 tx_q->tx_skbuff_dma[entry].map_as_page = false; 2397 tx_q->tx_skbuff_dma[entry].len = xdp_desc.len; 2398 tx_q->tx_skbuff_dma[entry].last_segment = true; 2399 tx_q->tx_skbuff_dma[entry].is_jumbo = false; 2400 2401 stmmac_set_desc_addr(priv, tx_desc, dma_addr); 2402 2403 tx_q->tx_count_frames++; 2404 2405 if (!priv->tx_coal_frames[queue]) 2406 set_ic = false; 2407 else if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0) 2408 set_ic = true; 2409 else 2410 set_ic = false; 2411 2412 if (set_ic) { 2413 tx_q->tx_count_frames = 0; 2414 stmmac_set_tx_ic(priv, tx_desc); 2415 priv->xstats.tx_set_ic_bit++; 2416 } 2417 2418 stmmac_prepare_tx_desc(priv, tx_desc, 1, xdp_desc.len, 2419 true, priv->mode, true, true, 2420 xdp_desc.len); 2421 2422 stmmac_enable_dma_transmission(priv, priv->ioaddr); 2423 2424 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size); 2425 entry = tx_q->cur_tx; 2426 } 2427 2428 if (tx_desc) { 2429 stmmac_flush_tx_descriptors(priv, queue); 2430 xsk_tx_release(pool); 2431 } 2432 2433 /* Return true if all of the 3 conditions are met 2434 * a) TX Budget is still available 2435 * b) work_done = true when XSK TX desc peek is empty (no more 2436 * pending XSK TX for transmission) 2437 */ 2438 return !!budget && work_done; 2439 } 2440 2441 /** 2442 * stmmac_tx_clean - to manage the transmission completion 2443 * @priv: driver private structure 2444 * @budget: napi budget limiting this functions packet handling 2445 * @queue: TX queue index 2446 * Description: it reclaims the transmit resources after transmission completes. 2447 */ 2448 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue) 2449 { 2450 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 2451 unsigned int bytes_compl = 0, pkts_compl = 0; 2452 unsigned int entry, xmits = 0, count = 0; 2453 2454 __netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue)); 2455 2456 priv->xstats.tx_clean++; 2457 2458 tx_q->xsk_frames_done = 0; 2459 2460 entry = tx_q->dirty_tx; 2461 2462 /* Try to clean all TX complete frame in 1 shot */ 2463 while ((entry != tx_q->cur_tx) && count < priv->dma_tx_size) { 2464 struct xdp_frame *xdpf; 2465 struct sk_buff *skb; 2466 struct dma_desc *p; 2467 int status; 2468 2469 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX || 2470 tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) { 2471 xdpf = tx_q->xdpf[entry]; 2472 skb = NULL; 2473 } else if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) { 2474 xdpf = NULL; 2475 skb = tx_q->tx_skbuff[entry]; 2476 } else { 2477 xdpf = NULL; 2478 skb = NULL; 2479 } 2480 2481 if (priv->extend_desc) 2482 p = (struct dma_desc *)(tx_q->dma_etx + entry); 2483 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 2484 p = &tx_q->dma_entx[entry].basic; 2485 else 2486 p = tx_q->dma_tx + entry; 2487 2488 status = stmmac_tx_status(priv, &priv->dev->stats, 2489 &priv->xstats, p, priv->ioaddr); 2490 /* Check if the descriptor is owned by the DMA */ 2491 if (unlikely(status & tx_dma_own)) 2492 break; 2493 2494 count++; 2495 2496 /* Make sure descriptor fields are read after reading 2497 * the own bit. 2498 */ 2499 dma_rmb(); 2500 2501 /* Just consider the last segment and ...*/ 2502 if (likely(!(status & tx_not_ls))) { 2503 /* ... verify the status error condition */ 2504 if (unlikely(status & tx_err)) { 2505 priv->dev->stats.tx_errors++; 2506 } else { 2507 priv->dev->stats.tx_packets++; 2508 priv->xstats.tx_pkt_n++; 2509 } 2510 if (skb) 2511 stmmac_get_tx_hwtstamp(priv, p, skb); 2512 } 2513 2514 if (likely(tx_q->tx_skbuff_dma[entry].buf && 2515 tx_q->tx_skbuff_dma[entry].buf_type != STMMAC_TXBUF_T_XDP_TX)) { 2516 if (tx_q->tx_skbuff_dma[entry].map_as_page) 2517 dma_unmap_page(priv->device, 2518 tx_q->tx_skbuff_dma[entry].buf, 2519 tx_q->tx_skbuff_dma[entry].len, 2520 DMA_TO_DEVICE); 2521 else 2522 dma_unmap_single(priv->device, 2523 tx_q->tx_skbuff_dma[entry].buf, 2524 tx_q->tx_skbuff_dma[entry].len, 2525 DMA_TO_DEVICE); 2526 tx_q->tx_skbuff_dma[entry].buf = 0; 2527 tx_q->tx_skbuff_dma[entry].len = 0; 2528 tx_q->tx_skbuff_dma[entry].map_as_page = false; 2529 } 2530 2531 stmmac_clean_desc3(priv, tx_q, p); 2532 2533 tx_q->tx_skbuff_dma[entry].last_segment = false; 2534 tx_q->tx_skbuff_dma[entry].is_jumbo = false; 2535 2536 if (xdpf && 2537 tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX) { 2538 xdp_return_frame_rx_napi(xdpf); 2539 tx_q->xdpf[entry] = NULL; 2540 } 2541 2542 if (xdpf && 2543 tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) { 2544 xdp_return_frame(xdpf); 2545 tx_q->xdpf[entry] = NULL; 2546 } 2547 2548 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XSK_TX) 2549 tx_q->xsk_frames_done++; 2550 2551 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) { 2552 if (likely(skb)) { 2553 pkts_compl++; 2554 bytes_compl += skb->len; 2555 dev_consume_skb_any(skb); 2556 tx_q->tx_skbuff[entry] = NULL; 2557 } 2558 } 2559 2560 stmmac_release_tx_desc(priv, p, priv->mode); 2561 2562 entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size); 2563 } 2564 tx_q->dirty_tx = entry; 2565 2566 netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue), 2567 pkts_compl, bytes_compl); 2568 2569 if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev, 2570 queue))) && 2571 stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH(priv)) { 2572 2573 netif_dbg(priv, tx_done, priv->dev, 2574 "%s: restart transmit\n", __func__); 2575 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue)); 2576 } 2577 2578 if (tx_q->xsk_pool) { 2579 bool work_done; 2580 2581 if (tx_q->xsk_frames_done) 2582 xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done); 2583 2584 if (xsk_uses_need_wakeup(tx_q->xsk_pool)) 2585 xsk_set_tx_need_wakeup(tx_q->xsk_pool); 2586 2587 /* For XSK TX, we try to send as many as possible. 2588 * If XSK work done (XSK TX desc empty and budget still 2589 * available), return "budget - 1" to reenable TX IRQ. 2590 * Else, return "budget" to make NAPI continue polling. 2591 */ 2592 work_done = stmmac_xdp_xmit_zc(priv, queue, 2593 STMMAC_XSK_TX_BUDGET_MAX); 2594 if (work_done) 2595 xmits = budget - 1; 2596 else 2597 xmits = budget; 2598 } 2599 2600 if (priv->eee_enabled && !priv->tx_path_in_lpi_mode && 2601 priv->eee_sw_timer_en) { 2602 stmmac_enable_eee_mode(priv); 2603 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer)); 2604 } 2605 2606 /* We still have pending packets, let's call for a new scheduling */ 2607 if (tx_q->dirty_tx != tx_q->cur_tx) 2608 hrtimer_start(&tx_q->txtimer, 2609 STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]), 2610 HRTIMER_MODE_REL); 2611 2612 __netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue)); 2613 2614 /* Combine decisions from TX clean and XSK TX */ 2615 return max(count, xmits); 2616 } 2617 2618 /** 2619 * stmmac_tx_err - to manage the tx error 2620 * @priv: driver private structure 2621 * @chan: channel index 2622 * Description: it cleans the descriptors and restarts the transmission 2623 * in case of transmission errors. 2624 */ 2625 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan) 2626 { 2627 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 2628 2629 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan)); 2630 2631 stmmac_stop_tx_dma(priv, chan); 2632 dma_free_tx_skbufs(priv, chan); 2633 stmmac_clear_tx_descriptors(priv, chan); 2634 tx_q->dirty_tx = 0; 2635 tx_q->cur_tx = 0; 2636 tx_q->mss = 0; 2637 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan)); 2638 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 2639 tx_q->dma_tx_phy, chan); 2640 stmmac_start_tx_dma(priv, chan); 2641 2642 priv->dev->stats.tx_errors++; 2643 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan)); 2644 } 2645 2646 /** 2647 * stmmac_set_dma_operation_mode - Set DMA operation mode by channel 2648 * @priv: driver private structure 2649 * @txmode: TX operating mode 2650 * @rxmode: RX operating mode 2651 * @chan: channel index 2652 * Description: it is used for configuring of the DMA operation mode in 2653 * runtime in order to program the tx/rx DMA thresholds or Store-And-Forward 2654 * mode. 2655 */ 2656 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode, 2657 u32 rxmode, u32 chan) 2658 { 2659 u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use; 2660 u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use; 2661 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2662 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2663 int rxfifosz = priv->plat->rx_fifo_size; 2664 int txfifosz = priv->plat->tx_fifo_size; 2665 2666 if (rxfifosz == 0) 2667 rxfifosz = priv->dma_cap.rx_fifo_size; 2668 if (txfifosz == 0) 2669 txfifosz = priv->dma_cap.tx_fifo_size; 2670 2671 /* Adjust for real per queue fifo size */ 2672 rxfifosz /= rx_channels_count; 2673 txfifosz /= tx_channels_count; 2674 2675 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode); 2676 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode); 2677 } 2678 2679 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv) 2680 { 2681 int ret; 2682 2683 ret = stmmac_safety_feat_irq_status(priv, priv->dev, 2684 priv->ioaddr, priv->dma_cap.asp, &priv->sstats); 2685 if (ret && (ret != -EINVAL)) { 2686 stmmac_global_err(priv); 2687 return true; 2688 } 2689 2690 return false; 2691 } 2692 2693 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan, u32 dir) 2694 { 2695 int status = stmmac_dma_interrupt_status(priv, priv->ioaddr, 2696 &priv->xstats, chan, dir); 2697 struct stmmac_rx_queue *rx_q = &priv->rx_queue[chan]; 2698 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 2699 struct stmmac_channel *ch = &priv->channel[chan]; 2700 struct napi_struct *rx_napi; 2701 struct napi_struct *tx_napi; 2702 unsigned long flags; 2703 2704 rx_napi = rx_q->xsk_pool ? &ch->rxtx_napi : &ch->rx_napi; 2705 tx_napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi; 2706 2707 if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) { 2708 if (napi_schedule_prep(rx_napi)) { 2709 spin_lock_irqsave(&ch->lock, flags); 2710 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0); 2711 spin_unlock_irqrestore(&ch->lock, flags); 2712 __napi_schedule(rx_napi); 2713 } 2714 } 2715 2716 if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) { 2717 if (napi_schedule_prep(tx_napi)) { 2718 spin_lock_irqsave(&ch->lock, flags); 2719 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1); 2720 spin_unlock_irqrestore(&ch->lock, flags); 2721 __napi_schedule(tx_napi); 2722 } 2723 } 2724 2725 return status; 2726 } 2727 2728 /** 2729 * stmmac_dma_interrupt - DMA ISR 2730 * @priv: driver private structure 2731 * Description: this is the DMA ISR. It is called by the main ISR. 2732 * It calls the dwmac dma routine and schedule poll method in case of some 2733 * work can be done. 2734 */ 2735 static void stmmac_dma_interrupt(struct stmmac_priv *priv) 2736 { 2737 u32 tx_channel_count = priv->plat->tx_queues_to_use; 2738 u32 rx_channel_count = priv->plat->rx_queues_to_use; 2739 u32 channels_to_check = tx_channel_count > rx_channel_count ? 2740 tx_channel_count : rx_channel_count; 2741 u32 chan; 2742 int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)]; 2743 2744 /* Make sure we never check beyond our status buffer. */ 2745 if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status))) 2746 channels_to_check = ARRAY_SIZE(status); 2747 2748 for (chan = 0; chan < channels_to_check; chan++) 2749 status[chan] = stmmac_napi_check(priv, chan, 2750 DMA_DIR_RXTX); 2751 2752 for (chan = 0; chan < tx_channel_count; chan++) { 2753 if (unlikely(status[chan] & tx_hard_error_bump_tc)) { 2754 /* Try to bump up the dma threshold on this failure */ 2755 if (unlikely(priv->xstats.threshold != SF_DMA_MODE) && 2756 (tc <= 256)) { 2757 tc += 64; 2758 if (priv->plat->force_thresh_dma_mode) 2759 stmmac_set_dma_operation_mode(priv, 2760 tc, 2761 tc, 2762 chan); 2763 else 2764 stmmac_set_dma_operation_mode(priv, 2765 tc, 2766 SF_DMA_MODE, 2767 chan); 2768 priv->xstats.threshold = tc; 2769 } 2770 } else if (unlikely(status[chan] == tx_hard_error)) { 2771 stmmac_tx_err(priv, chan); 2772 } 2773 } 2774 } 2775 2776 /** 2777 * stmmac_mmc_setup: setup the Mac Management Counters (MMC) 2778 * @priv: driver private structure 2779 * Description: this masks the MMC irq, in fact, the counters are managed in SW. 2780 */ 2781 static void stmmac_mmc_setup(struct stmmac_priv *priv) 2782 { 2783 unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET | 2784 MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET; 2785 2786 stmmac_mmc_intr_all_mask(priv, priv->mmcaddr); 2787 2788 if (priv->dma_cap.rmon) { 2789 stmmac_mmc_ctrl(priv, priv->mmcaddr, mode); 2790 memset(&priv->mmc, 0, sizeof(struct stmmac_counters)); 2791 } else 2792 netdev_info(priv->dev, "No MAC Management Counters available\n"); 2793 } 2794 2795 /** 2796 * stmmac_get_hw_features - get MAC capabilities from the HW cap. register. 2797 * @priv: driver private structure 2798 * Description: 2799 * new GMAC chip generations have a new register to indicate the 2800 * presence of the optional feature/functions. 2801 * This can be also used to override the value passed through the 2802 * platform and necessary for old MAC10/100 and GMAC chips. 2803 */ 2804 static int stmmac_get_hw_features(struct stmmac_priv *priv) 2805 { 2806 return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0; 2807 } 2808 2809 /** 2810 * stmmac_check_ether_addr - check if the MAC addr is valid 2811 * @priv: driver private structure 2812 * Description: 2813 * it is to verify if the MAC address is valid, in case of failures it 2814 * generates a random MAC address 2815 */ 2816 static void stmmac_check_ether_addr(struct stmmac_priv *priv) 2817 { 2818 if (!is_valid_ether_addr(priv->dev->dev_addr)) { 2819 stmmac_get_umac_addr(priv, priv->hw, priv->dev->dev_addr, 0); 2820 if (!is_valid_ether_addr(priv->dev->dev_addr)) 2821 eth_hw_addr_random(priv->dev); 2822 dev_info(priv->device, "device MAC address %pM\n", 2823 priv->dev->dev_addr); 2824 } 2825 } 2826 2827 /** 2828 * stmmac_init_dma_engine - DMA init. 2829 * @priv: driver private structure 2830 * Description: 2831 * It inits the DMA invoking the specific MAC/GMAC callback. 2832 * Some DMA parameters can be passed from the platform; 2833 * in case of these are not passed a default is kept for the MAC or GMAC. 2834 */ 2835 static int stmmac_init_dma_engine(struct stmmac_priv *priv) 2836 { 2837 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2838 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2839 u32 dma_csr_ch = max(rx_channels_count, tx_channels_count); 2840 struct stmmac_rx_queue *rx_q; 2841 struct stmmac_tx_queue *tx_q; 2842 u32 chan = 0; 2843 int atds = 0; 2844 int ret = 0; 2845 2846 if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) { 2847 dev_err(priv->device, "Invalid DMA configuration\n"); 2848 return -EINVAL; 2849 } 2850 2851 if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE)) 2852 atds = 1; 2853 2854 ret = stmmac_reset(priv, priv->ioaddr); 2855 if (ret) { 2856 dev_err(priv->device, "Failed to reset the dma\n"); 2857 return ret; 2858 } 2859 2860 /* DMA Configuration */ 2861 stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds); 2862 2863 if (priv->plat->axi) 2864 stmmac_axi(priv, priv->ioaddr, priv->plat->axi); 2865 2866 /* DMA CSR Channel configuration */ 2867 for (chan = 0; chan < dma_csr_ch; chan++) 2868 stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan); 2869 2870 /* DMA RX Channel Configuration */ 2871 for (chan = 0; chan < rx_channels_count; chan++) { 2872 rx_q = &priv->rx_queue[chan]; 2873 2874 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 2875 rx_q->dma_rx_phy, chan); 2876 2877 rx_q->rx_tail_addr = rx_q->dma_rx_phy + 2878 (rx_q->buf_alloc_num * 2879 sizeof(struct dma_desc)); 2880 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, 2881 rx_q->rx_tail_addr, chan); 2882 } 2883 2884 /* DMA TX Channel Configuration */ 2885 for (chan = 0; chan < tx_channels_count; chan++) { 2886 tx_q = &priv->tx_queue[chan]; 2887 2888 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 2889 tx_q->dma_tx_phy, chan); 2890 2891 tx_q->tx_tail_addr = tx_q->dma_tx_phy; 2892 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, 2893 tx_q->tx_tail_addr, chan); 2894 } 2895 2896 return ret; 2897 } 2898 2899 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue) 2900 { 2901 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 2902 2903 hrtimer_start(&tx_q->txtimer, 2904 STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]), 2905 HRTIMER_MODE_REL); 2906 } 2907 2908 /** 2909 * stmmac_tx_timer - mitigation sw timer for tx. 2910 * @t: data pointer 2911 * Description: 2912 * This is the timer handler to directly invoke the stmmac_tx_clean. 2913 */ 2914 static enum hrtimer_restart stmmac_tx_timer(struct hrtimer *t) 2915 { 2916 struct stmmac_tx_queue *tx_q = container_of(t, struct stmmac_tx_queue, txtimer); 2917 struct stmmac_priv *priv = tx_q->priv_data; 2918 struct stmmac_channel *ch; 2919 struct napi_struct *napi; 2920 2921 ch = &priv->channel[tx_q->queue_index]; 2922 napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi; 2923 2924 if (likely(napi_schedule_prep(napi))) { 2925 unsigned long flags; 2926 2927 spin_lock_irqsave(&ch->lock, flags); 2928 stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1); 2929 spin_unlock_irqrestore(&ch->lock, flags); 2930 __napi_schedule(napi); 2931 } 2932 2933 return HRTIMER_NORESTART; 2934 } 2935 2936 /** 2937 * stmmac_init_coalesce - init mitigation options. 2938 * @priv: driver private structure 2939 * Description: 2940 * This inits the coalesce parameters: i.e. timer rate, 2941 * timer handler and default threshold used for enabling the 2942 * interrupt on completion bit. 2943 */ 2944 static void stmmac_init_coalesce(struct stmmac_priv *priv) 2945 { 2946 u32 tx_channel_count = priv->plat->tx_queues_to_use; 2947 u32 rx_channel_count = priv->plat->rx_queues_to_use; 2948 u32 chan; 2949 2950 for (chan = 0; chan < tx_channel_count; chan++) { 2951 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 2952 2953 priv->tx_coal_frames[chan] = STMMAC_TX_FRAMES; 2954 priv->tx_coal_timer[chan] = STMMAC_COAL_TX_TIMER; 2955 2956 hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2957 tx_q->txtimer.function = stmmac_tx_timer; 2958 } 2959 2960 for (chan = 0; chan < rx_channel_count; chan++) 2961 priv->rx_coal_frames[chan] = STMMAC_RX_FRAMES; 2962 } 2963 2964 static void stmmac_set_rings_length(struct stmmac_priv *priv) 2965 { 2966 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2967 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2968 u32 chan; 2969 2970 /* set TX ring length */ 2971 for (chan = 0; chan < tx_channels_count; chan++) 2972 stmmac_set_tx_ring_len(priv, priv->ioaddr, 2973 (priv->dma_tx_size - 1), chan); 2974 2975 /* set RX ring length */ 2976 for (chan = 0; chan < rx_channels_count; chan++) 2977 stmmac_set_rx_ring_len(priv, priv->ioaddr, 2978 (priv->dma_rx_size - 1), chan); 2979 } 2980 2981 /** 2982 * stmmac_set_tx_queue_weight - Set TX queue weight 2983 * @priv: driver private structure 2984 * Description: It is used for setting TX queues weight 2985 */ 2986 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv) 2987 { 2988 u32 tx_queues_count = priv->plat->tx_queues_to_use; 2989 u32 weight; 2990 u32 queue; 2991 2992 for (queue = 0; queue < tx_queues_count; queue++) { 2993 weight = priv->plat->tx_queues_cfg[queue].weight; 2994 stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue); 2995 } 2996 } 2997 2998 /** 2999 * stmmac_configure_cbs - Configure CBS in TX queue 3000 * @priv: driver private structure 3001 * Description: It is used for configuring CBS in AVB TX queues 3002 */ 3003 static void stmmac_configure_cbs(struct stmmac_priv *priv) 3004 { 3005 u32 tx_queues_count = priv->plat->tx_queues_to_use; 3006 u32 mode_to_use; 3007 u32 queue; 3008 3009 /* queue 0 is reserved for legacy traffic */ 3010 for (queue = 1; queue < tx_queues_count; queue++) { 3011 mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use; 3012 if (mode_to_use == MTL_QUEUE_DCB) 3013 continue; 3014 3015 stmmac_config_cbs(priv, priv->hw, 3016 priv->plat->tx_queues_cfg[queue].send_slope, 3017 priv->plat->tx_queues_cfg[queue].idle_slope, 3018 priv->plat->tx_queues_cfg[queue].high_credit, 3019 priv->plat->tx_queues_cfg[queue].low_credit, 3020 queue); 3021 } 3022 } 3023 3024 /** 3025 * stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel 3026 * @priv: driver private structure 3027 * Description: It is used for mapping RX queues to RX dma channels 3028 */ 3029 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv) 3030 { 3031 u32 rx_queues_count = priv->plat->rx_queues_to_use; 3032 u32 queue; 3033 u32 chan; 3034 3035 for (queue = 0; queue < rx_queues_count; queue++) { 3036 chan = priv->plat->rx_queues_cfg[queue].chan; 3037 stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan); 3038 } 3039 } 3040 3041 /** 3042 * stmmac_mac_config_rx_queues_prio - Configure RX Queue priority 3043 * @priv: driver private structure 3044 * Description: It is used for configuring the RX Queue Priority 3045 */ 3046 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv) 3047 { 3048 u32 rx_queues_count = priv->plat->rx_queues_to_use; 3049 u32 queue; 3050 u32 prio; 3051 3052 for (queue = 0; queue < rx_queues_count; queue++) { 3053 if (!priv->plat->rx_queues_cfg[queue].use_prio) 3054 continue; 3055 3056 prio = priv->plat->rx_queues_cfg[queue].prio; 3057 stmmac_rx_queue_prio(priv, priv->hw, prio, queue); 3058 } 3059 } 3060 3061 /** 3062 * stmmac_mac_config_tx_queues_prio - Configure TX Queue priority 3063 * @priv: driver private structure 3064 * Description: It is used for configuring the TX Queue Priority 3065 */ 3066 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv) 3067 { 3068 u32 tx_queues_count = priv->plat->tx_queues_to_use; 3069 u32 queue; 3070 u32 prio; 3071 3072 for (queue = 0; queue < tx_queues_count; queue++) { 3073 if (!priv->plat->tx_queues_cfg[queue].use_prio) 3074 continue; 3075 3076 prio = priv->plat->tx_queues_cfg[queue].prio; 3077 stmmac_tx_queue_prio(priv, priv->hw, prio, queue); 3078 } 3079 } 3080 3081 /** 3082 * stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing 3083 * @priv: driver private structure 3084 * Description: It is used for configuring the RX queue routing 3085 */ 3086 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv) 3087 { 3088 u32 rx_queues_count = priv->plat->rx_queues_to_use; 3089 u32 queue; 3090 u8 packet; 3091 3092 for (queue = 0; queue < rx_queues_count; queue++) { 3093 /* no specific packet type routing specified for the queue */ 3094 if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0) 3095 continue; 3096 3097 packet = priv->plat->rx_queues_cfg[queue].pkt_route; 3098 stmmac_rx_queue_routing(priv, priv->hw, packet, queue); 3099 } 3100 } 3101 3102 static void stmmac_mac_config_rss(struct stmmac_priv *priv) 3103 { 3104 if (!priv->dma_cap.rssen || !priv->plat->rss_en) { 3105 priv->rss.enable = false; 3106 return; 3107 } 3108 3109 if (priv->dev->features & NETIF_F_RXHASH) 3110 priv->rss.enable = true; 3111 else 3112 priv->rss.enable = false; 3113 3114 stmmac_rss_configure(priv, priv->hw, &priv->rss, 3115 priv->plat->rx_queues_to_use); 3116 } 3117 3118 /** 3119 * stmmac_mtl_configuration - Configure MTL 3120 * @priv: driver private structure 3121 * Description: It is used for configurring MTL 3122 */ 3123 static void stmmac_mtl_configuration(struct stmmac_priv *priv) 3124 { 3125 u32 rx_queues_count = priv->plat->rx_queues_to_use; 3126 u32 tx_queues_count = priv->plat->tx_queues_to_use; 3127 3128 if (tx_queues_count > 1) 3129 stmmac_set_tx_queue_weight(priv); 3130 3131 /* Configure MTL RX algorithms */ 3132 if (rx_queues_count > 1) 3133 stmmac_prog_mtl_rx_algorithms(priv, priv->hw, 3134 priv->plat->rx_sched_algorithm); 3135 3136 /* Configure MTL TX algorithms */ 3137 if (tx_queues_count > 1) 3138 stmmac_prog_mtl_tx_algorithms(priv, priv->hw, 3139 priv->plat->tx_sched_algorithm); 3140 3141 /* Configure CBS in AVB TX queues */ 3142 if (tx_queues_count > 1) 3143 stmmac_configure_cbs(priv); 3144 3145 /* Map RX MTL to DMA channels */ 3146 stmmac_rx_queue_dma_chan_map(priv); 3147 3148 /* Enable MAC RX Queues */ 3149 stmmac_mac_enable_rx_queues(priv); 3150 3151 /* Set RX priorities */ 3152 if (rx_queues_count > 1) 3153 stmmac_mac_config_rx_queues_prio(priv); 3154 3155 /* Set TX priorities */ 3156 if (tx_queues_count > 1) 3157 stmmac_mac_config_tx_queues_prio(priv); 3158 3159 /* Set RX routing */ 3160 if (rx_queues_count > 1) 3161 stmmac_mac_config_rx_queues_routing(priv); 3162 3163 /* Receive Side Scaling */ 3164 if (rx_queues_count > 1) 3165 stmmac_mac_config_rss(priv); 3166 } 3167 3168 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv) 3169 { 3170 if (priv->dma_cap.asp) { 3171 netdev_info(priv->dev, "Enabling Safety Features\n"); 3172 stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp); 3173 } else { 3174 netdev_info(priv->dev, "No Safety Features support found\n"); 3175 } 3176 } 3177 3178 static int stmmac_fpe_start_wq(struct stmmac_priv *priv) 3179 { 3180 char *name; 3181 3182 clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state); 3183 3184 name = priv->wq_name; 3185 sprintf(name, "%s-fpe", priv->dev->name); 3186 3187 priv->fpe_wq = create_singlethread_workqueue(name); 3188 if (!priv->fpe_wq) { 3189 netdev_err(priv->dev, "%s: Failed to create workqueue\n", name); 3190 3191 return -ENOMEM; 3192 } 3193 netdev_info(priv->dev, "FPE workqueue start"); 3194 3195 return 0; 3196 } 3197 3198 /** 3199 * stmmac_hw_setup - setup mac in a usable state. 3200 * @dev : pointer to the device structure. 3201 * @init_ptp: initialize PTP if set 3202 * Description: 3203 * this is the main function to setup the HW in a usable state because the 3204 * dma engine is reset, the core registers are configured (e.g. AXI, 3205 * Checksum features, timers). The DMA is ready to start receiving and 3206 * transmitting. 3207 * Return value: 3208 * 0 on success and an appropriate (-)ve integer as defined in errno.h 3209 * file on failure. 3210 */ 3211 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp) 3212 { 3213 struct stmmac_priv *priv = netdev_priv(dev); 3214 u32 rx_cnt = priv->plat->rx_queues_to_use; 3215 u32 tx_cnt = priv->plat->tx_queues_to_use; 3216 bool sph_en; 3217 u32 chan; 3218 int ret; 3219 3220 /* DMA initialization and SW reset */ 3221 ret = stmmac_init_dma_engine(priv); 3222 if (ret < 0) { 3223 netdev_err(priv->dev, "%s: DMA engine initialization failed\n", 3224 __func__); 3225 return ret; 3226 } 3227 3228 /* Copy the MAC addr into the HW */ 3229 stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0); 3230 3231 /* PS and related bits will be programmed according to the speed */ 3232 if (priv->hw->pcs) { 3233 int speed = priv->plat->mac_port_sel_speed; 3234 3235 if ((speed == SPEED_10) || (speed == SPEED_100) || 3236 (speed == SPEED_1000)) { 3237 priv->hw->ps = speed; 3238 } else { 3239 dev_warn(priv->device, "invalid port speed\n"); 3240 priv->hw->ps = 0; 3241 } 3242 } 3243 3244 /* Initialize the MAC Core */ 3245 stmmac_core_init(priv, priv->hw, dev); 3246 3247 /* Initialize MTL*/ 3248 stmmac_mtl_configuration(priv); 3249 3250 /* Initialize Safety Features */ 3251 stmmac_safety_feat_configuration(priv); 3252 3253 ret = stmmac_rx_ipc(priv, priv->hw); 3254 if (!ret) { 3255 netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n"); 3256 priv->plat->rx_coe = STMMAC_RX_COE_NONE; 3257 priv->hw->rx_csum = 0; 3258 } 3259 3260 /* Enable the MAC Rx/Tx */ 3261 stmmac_mac_set(priv, priv->ioaddr, true); 3262 3263 /* Set the HW DMA mode and the COE */ 3264 stmmac_dma_operation_mode(priv); 3265 3266 stmmac_mmc_setup(priv); 3267 3268 if (init_ptp) { 3269 ret = clk_prepare_enable(priv->plat->clk_ptp_ref); 3270 if (ret < 0) 3271 netdev_warn(priv->dev, "failed to enable PTP reference clock: %d\n", ret); 3272 3273 ret = stmmac_init_ptp(priv); 3274 if (ret == -EOPNOTSUPP) 3275 netdev_warn(priv->dev, "PTP not supported by HW\n"); 3276 else if (ret) 3277 netdev_warn(priv->dev, "PTP init failed\n"); 3278 } 3279 3280 priv->eee_tw_timer = STMMAC_DEFAULT_TWT_LS; 3281 3282 /* Convert the timer from msec to usec */ 3283 if (!priv->tx_lpi_timer) 3284 priv->tx_lpi_timer = eee_timer * 1000; 3285 3286 if (priv->use_riwt) { 3287 u32 queue; 3288 3289 for (queue = 0; queue < rx_cnt; queue++) { 3290 if (!priv->rx_riwt[queue]) 3291 priv->rx_riwt[queue] = DEF_DMA_RIWT; 3292 3293 stmmac_rx_watchdog(priv, priv->ioaddr, 3294 priv->rx_riwt[queue], queue); 3295 } 3296 } 3297 3298 if (priv->hw->pcs) 3299 stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0); 3300 3301 /* set TX and RX rings length */ 3302 stmmac_set_rings_length(priv); 3303 3304 /* Enable TSO */ 3305 if (priv->tso) { 3306 for (chan = 0; chan < tx_cnt; chan++) { 3307 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 3308 3309 /* TSO and TBS cannot co-exist */ 3310 if (tx_q->tbs & STMMAC_TBS_AVAIL) 3311 continue; 3312 3313 stmmac_enable_tso(priv, priv->ioaddr, 1, chan); 3314 } 3315 } 3316 3317 /* Enable Split Header */ 3318 sph_en = (priv->hw->rx_csum > 0) && priv->sph; 3319 for (chan = 0; chan < rx_cnt; chan++) 3320 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan); 3321 3322 3323 /* VLAN Tag Insertion */ 3324 if (priv->dma_cap.vlins) 3325 stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT); 3326 3327 /* TBS */ 3328 for (chan = 0; chan < tx_cnt; chan++) { 3329 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 3330 int enable = tx_q->tbs & STMMAC_TBS_AVAIL; 3331 3332 stmmac_enable_tbs(priv, priv->ioaddr, enable, chan); 3333 } 3334 3335 /* Configure real RX and TX queues */ 3336 netif_set_real_num_rx_queues(dev, priv->plat->rx_queues_to_use); 3337 netif_set_real_num_tx_queues(dev, priv->plat->tx_queues_to_use); 3338 3339 /* Start the ball rolling... */ 3340 stmmac_start_all_dma(priv); 3341 3342 if (priv->dma_cap.fpesel) { 3343 stmmac_fpe_start_wq(priv); 3344 3345 if (priv->plat->fpe_cfg->enable) 3346 stmmac_fpe_handshake(priv, true); 3347 } 3348 3349 return 0; 3350 } 3351 3352 static void stmmac_hw_teardown(struct net_device *dev) 3353 { 3354 struct stmmac_priv *priv = netdev_priv(dev); 3355 3356 clk_disable_unprepare(priv->plat->clk_ptp_ref); 3357 } 3358 3359 static void stmmac_free_irq(struct net_device *dev, 3360 enum request_irq_err irq_err, int irq_idx) 3361 { 3362 struct stmmac_priv *priv = netdev_priv(dev); 3363 int j; 3364 3365 switch (irq_err) { 3366 case REQ_IRQ_ERR_ALL: 3367 irq_idx = priv->plat->tx_queues_to_use; 3368 fallthrough; 3369 case REQ_IRQ_ERR_TX: 3370 for (j = irq_idx - 1; j >= 0; j--) { 3371 if (priv->tx_irq[j] > 0) { 3372 irq_set_affinity_hint(priv->tx_irq[j], NULL); 3373 free_irq(priv->tx_irq[j], &priv->tx_queue[j]); 3374 } 3375 } 3376 irq_idx = priv->plat->rx_queues_to_use; 3377 fallthrough; 3378 case REQ_IRQ_ERR_RX: 3379 for (j = irq_idx - 1; j >= 0; j--) { 3380 if (priv->rx_irq[j] > 0) { 3381 irq_set_affinity_hint(priv->rx_irq[j], NULL); 3382 free_irq(priv->rx_irq[j], &priv->rx_queue[j]); 3383 } 3384 } 3385 3386 if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq) 3387 free_irq(priv->sfty_ue_irq, dev); 3388 fallthrough; 3389 case REQ_IRQ_ERR_SFTY_UE: 3390 if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq) 3391 free_irq(priv->sfty_ce_irq, dev); 3392 fallthrough; 3393 case REQ_IRQ_ERR_SFTY_CE: 3394 if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) 3395 free_irq(priv->lpi_irq, dev); 3396 fallthrough; 3397 case REQ_IRQ_ERR_LPI: 3398 if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) 3399 free_irq(priv->wol_irq, dev); 3400 fallthrough; 3401 case REQ_IRQ_ERR_WOL: 3402 free_irq(dev->irq, dev); 3403 fallthrough; 3404 case REQ_IRQ_ERR_MAC: 3405 case REQ_IRQ_ERR_NO: 3406 /* If MAC IRQ request error, no more IRQ to free */ 3407 break; 3408 } 3409 } 3410 3411 static int stmmac_request_irq_multi_msi(struct net_device *dev) 3412 { 3413 enum request_irq_err irq_err = REQ_IRQ_ERR_NO; 3414 struct stmmac_priv *priv = netdev_priv(dev); 3415 cpumask_t cpu_mask; 3416 int irq_idx = 0; 3417 char *int_name; 3418 int ret; 3419 int i; 3420 3421 /* For common interrupt */ 3422 int_name = priv->int_name_mac; 3423 sprintf(int_name, "%s:%s", dev->name, "mac"); 3424 ret = request_irq(dev->irq, stmmac_mac_interrupt, 3425 0, int_name, dev); 3426 if (unlikely(ret < 0)) { 3427 netdev_err(priv->dev, 3428 "%s: alloc mac MSI %d (error: %d)\n", 3429 __func__, dev->irq, ret); 3430 irq_err = REQ_IRQ_ERR_MAC; 3431 goto irq_error; 3432 } 3433 3434 /* Request the Wake IRQ in case of another line 3435 * is used for WoL 3436 */ 3437 if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) { 3438 int_name = priv->int_name_wol; 3439 sprintf(int_name, "%s:%s", dev->name, "wol"); 3440 ret = request_irq(priv->wol_irq, 3441 stmmac_mac_interrupt, 3442 0, int_name, dev); 3443 if (unlikely(ret < 0)) { 3444 netdev_err(priv->dev, 3445 "%s: alloc wol MSI %d (error: %d)\n", 3446 __func__, priv->wol_irq, ret); 3447 irq_err = REQ_IRQ_ERR_WOL; 3448 goto irq_error; 3449 } 3450 } 3451 3452 /* Request the LPI IRQ in case of another line 3453 * is used for LPI 3454 */ 3455 if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) { 3456 int_name = priv->int_name_lpi; 3457 sprintf(int_name, "%s:%s", dev->name, "lpi"); 3458 ret = request_irq(priv->lpi_irq, 3459 stmmac_mac_interrupt, 3460 0, int_name, dev); 3461 if (unlikely(ret < 0)) { 3462 netdev_err(priv->dev, 3463 "%s: alloc lpi MSI %d (error: %d)\n", 3464 __func__, priv->lpi_irq, ret); 3465 irq_err = REQ_IRQ_ERR_LPI; 3466 goto irq_error; 3467 } 3468 } 3469 3470 /* Request the Safety Feature Correctible Error line in 3471 * case of another line is used 3472 */ 3473 if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq) { 3474 int_name = priv->int_name_sfty_ce; 3475 sprintf(int_name, "%s:%s", dev->name, "safety-ce"); 3476 ret = request_irq(priv->sfty_ce_irq, 3477 stmmac_safety_interrupt, 3478 0, int_name, dev); 3479 if (unlikely(ret < 0)) { 3480 netdev_err(priv->dev, 3481 "%s: alloc sfty ce MSI %d (error: %d)\n", 3482 __func__, priv->sfty_ce_irq, ret); 3483 irq_err = REQ_IRQ_ERR_SFTY_CE; 3484 goto irq_error; 3485 } 3486 } 3487 3488 /* Request the Safety Feature Uncorrectible Error line in 3489 * case of another line is used 3490 */ 3491 if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq) { 3492 int_name = priv->int_name_sfty_ue; 3493 sprintf(int_name, "%s:%s", dev->name, "safety-ue"); 3494 ret = request_irq(priv->sfty_ue_irq, 3495 stmmac_safety_interrupt, 3496 0, int_name, dev); 3497 if (unlikely(ret < 0)) { 3498 netdev_err(priv->dev, 3499 "%s: alloc sfty ue MSI %d (error: %d)\n", 3500 __func__, priv->sfty_ue_irq, ret); 3501 irq_err = REQ_IRQ_ERR_SFTY_UE; 3502 goto irq_error; 3503 } 3504 } 3505 3506 /* Request Rx MSI irq */ 3507 for (i = 0; i < priv->plat->rx_queues_to_use; i++) { 3508 if (priv->rx_irq[i] == 0) 3509 continue; 3510 3511 int_name = priv->int_name_rx_irq[i]; 3512 sprintf(int_name, "%s:%s-%d", dev->name, "rx", i); 3513 ret = request_irq(priv->rx_irq[i], 3514 stmmac_msi_intr_rx, 3515 0, int_name, &priv->rx_queue[i]); 3516 if (unlikely(ret < 0)) { 3517 netdev_err(priv->dev, 3518 "%s: alloc rx-%d MSI %d (error: %d)\n", 3519 __func__, i, priv->rx_irq[i], ret); 3520 irq_err = REQ_IRQ_ERR_RX; 3521 irq_idx = i; 3522 goto irq_error; 3523 } 3524 cpumask_clear(&cpu_mask); 3525 cpumask_set_cpu(i % num_online_cpus(), &cpu_mask); 3526 irq_set_affinity_hint(priv->rx_irq[i], &cpu_mask); 3527 } 3528 3529 /* Request Tx MSI irq */ 3530 for (i = 0; i < priv->plat->tx_queues_to_use; i++) { 3531 if (priv->tx_irq[i] == 0) 3532 continue; 3533 3534 int_name = priv->int_name_tx_irq[i]; 3535 sprintf(int_name, "%s:%s-%d", dev->name, "tx", i); 3536 ret = request_irq(priv->tx_irq[i], 3537 stmmac_msi_intr_tx, 3538 0, int_name, &priv->tx_queue[i]); 3539 if (unlikely(ret < 0)) { 3540 netdev_err(priv->dev, 3541 "%s: alloc tx-%d MSI %d (error: %d)\n", 3542 __func__, i, priv->tx_irq[i], ret); 3543 irq_err = REQ_IRQ_ERR_TX; 3544 irq_idx = i; 3545 goto irq_error; 3546 } 3547 cpumask_clear(&cpu_mask); 3548 cpumask_set_cpu(i % num_online_cpus(), &cpu_mask); 3549 irq_set_affinity_hint(priv->tx_irq[i], &cpu_mask); 3550 } 3551 3552 return 0; 3553 3554 irq_error: 3555 stmmac_free_irq(dev, irq_err, irq_idx); 3556 return ret; 3557 } 3558 3559 static int stmmac_request_irq_single(struct net_device *dev) 3560 { 3561 enum request_irq_err irq_err = REQ_IRQ_ERR_NO; 3562 struct stmmac_priv *priv = netdev_priv(dev); 3563 int ret; 3564 3565 ret = request_irq(dev->irq, stmmac_interrupt, 3566 IRQF_SHARED, dev->name, dev); 3567 if (unlikely(ret < 0)) { 3568 netdev_err(priv->dev, 3569 "%s: ERROR: allocating the IRQ %d (error: %d)\n", 3570 __func__, dev->irq, ret); 3571 irq_err = REQ_IRQ_ERR_MAC; 3572 return ret; 3573 } 3574 3575 /* Request the Wake IRQ in case of another line 3576 * is used for WoL 3577 */ 3578 if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) { 3579 ret = request_irq(priv->wol_irq, stmmac_interrupt, 3580 IRQF_SHARED, dev->name, dev); 3581 if (unlikely(ret < 0)) { 3582 netdev_err(priv->dev, 3583 "%s: ERROR: allocating the WoL IRQ %d (%d)\n", 3584 __func__, priv->wol_irq, ret); 3585 irq_err = REQ_IRQ_ERR_WOL; 3586 return ret; 3587 } 3588 } 3589 3590 /* Request the IRQ lines */ 3591 if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) { 3592 ret = request_irq(priv->lpi_irq, stmmac_interrupt, 3593 IRQF_SHARED, dev->name, dev); 3594 if (unlikely(ret < 0)) { 3595 netdev_err(priv->dev, 3596 "%s: ERROR: allocating the LPI IRQ %d (%d)\n", 3597 __func__, priv->lpi_irq, ret); 3598 irq_err = REQ_IRQ_ERR_LPI; 3599 goto irq_error; 3600 } 3601 } 3602 3603 return 0; 3604 3605 irq_error: 3606 stmmac_free_irq(dev, irq_err, 0); 3607 return ret; 3608 } 3609 3610 static int stmmac_request_irq(struct net_device *dev) 3611 { 3612 struct stmmac_priv *priv = netdev_priv(dev); 3613 int ret; 3614 3615 /* Request the IRQ lines */ 3616 if (priv->plat->multi_msi_en) 3617 ret = stmmac_request_irq_multi_msi(dev); 3618 else 3619 ret = stmmac_request_irq_single(dev); 3620 3621 return ret; 3622 } 3623 3624 /** 3625 * stmmac_open - open entry point of the driver 3626 * @dev : pointer to the device structure. 3627 * Description: 3628 * This function is the open entry point of the driver. 3629 * Return value: 3630 * 0 on success and an appropriate (-)ve integer as defined in errno.h 3631 * file on failure. 3632 */ 3633 int stmmac_open(struct net_device *dev) 3634 { 3635 struct stmmac_priv *priv = netdev_priv(dev); 3636 int bfsize = 0; 3637 u32 chan; 3638 int ret; 3639 3640 ret = pm_runtime_get_sync(priv->device); 3641 if (ret < 0) { 3642 pm_runtime_put_noidle(priv->device); 3643 return ret; 3644 } 3645 3646 if (priv->hw->pcs != STMMAC_PCS_TBI && 3647 priv->hw->pcs != STMMAC_PCS_RTBI && 3648 priv->hw->xpcs_args.an_mode != DW_AN_C73) { 3649 ret = stmmac_init_phy(dev); 3650 if (ret) { 3651 netdev_err(priv->dev, 3652 "%s: Cannot attach to PHY (error: %d)\n", 3653 __func__, ret); 3654 goto init_phy_error; 3655 } 3656 } 3657 3658 /* Extra statistics */ 3659 memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats)); 3660 priv->xstats.threshold = tc; 3661 3662 bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu); 3663 if (bfsize < 0) 3664 bfsize = 0; 3665 3666 if (bfsize < BUF_SIZE_16KiB) 3667 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz); 3668 3669 priv->dma_buf_sz = bfsize; 3670 buf_sz = bfsize; 3671 3672 priv->rx_copybreak = STMMAC_RX_COPYBREAK; 3673 3674 if (!priv->dma_tx_size) 3675 priv->dma_tx_size = DMA_DEFAULT_TX_SIZE; 3676 if (!priv->dma_rx_size) 3677 priv->dma_rx_size = DMA_DEFAULT_RX_SIZE; 3678 3679 /* Earlier check for TBS */ 3680 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) { 3681 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 3682 int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en; 3683 3684 /* Setup per-TXQ tbs flag before TX descriptor alloc */ 3685 tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0; 3686 } 3687 3688 ret = alloc_dma_desc_resources(priv); 3689 if (ret < 0) { 3690 netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n", 3691 __func__); 3692 goto dma_desc_error; 3693 } 3694 3695 ret = init_dma_desc_rings(dev, GFP_KERNEL); 3696 if (ret < 0) { 3697 netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n", 3698 __func__); 3699 goto init_error; 3700 } 3701 3702 ret = stmmac_hw_setup(dev, true); 3703 if (ret < 0) { 3704 netdev_err(priv->dev, "%s: Hw setup failed\n", __func__); 3705 goto init_error; 3706 } 3707 3708 stmmac_init_coalesce(priv); 3709 3710 phylink_start(priv->phylink); 3711 /* We may have called phylink_speed_down before */ 3712 phylink_speed_up(priv->phylink); 3713 3714 ret = stmmac_request_irq(dev); 3715 if (ret) 3716 goto irq_error; 3717 3718 stmmac_enable_all_queues(priv); 3719 netif_tx_start_all_queues(priv->dev); 3720 3721 return 0; 3722 3723 irq_error: 3724 phylink_stop(priv->phylink); 3725 3726 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 3727 hrtimer_cancel(&priv->tx_queue[chan].txtimer); 3728 3729 stmmac_hw_teardown(dev); 3730 init_error: 3731 free_dma_desc_resources(priv); 3732 dma_desc_error: 3733 phylink_disconnect_phy(priv->phylink); 3734 init_phy_error: 3735 pm_runtime_put(priv->device); 3736 return ret; 3737 } 3738 3739 static void stmmac_fpe_stop_wq(struct stmmac_priv *priv) 3740 { 3741 set_bit(__FPE_REMOVING, &priv->fpe_task_state); 3742 3743 if (priv->fpe_wq) 3744 destroy_workqueue(priv->fpe_wq); 3745 3746 netdev_info(priv->dev, "FPE workqueue stop"); 3747 } 3748 3749 /** 3750 * stmmac_release - close entry point of the driver 3751 * @dev : device pointer. 3752 * Description: 3753 * This is the stop entry point of the driver. 3754 */ 3755 int stmmac_release(struct net_device *dev) 3756 { 3757 struct stmmac_priv *priv = netdev_priv(dev); 3758 u32 chan; 3759 3760 if (device_may_wakeup(priv->device)) 3761 phylink_speed_down(priv->phylink, false); 3762 /* Stop and disconnect the PHY */ 3763 phylink_stop(priv->phylink); 3764 phylink_disconnect_phy(priv->phylink); 3765 3766 stmmac_disable_all_queues(priv); 3767 3768 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 3769 hrtimer_cancel(&priv->tx_queue[chan].txtimer); 3770 3771 /* Free the IRQ lines */ 3772 stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0); 3773 3774 if (priv->eee_enabled) { 3775 priv->tx_path_in_lpi_mode = false; 3776 del_timer_sync(&priv->eee_ctrl_timer); 3777 } 3778 3779 /* Stop TX/RX DMA and clear the descriptors */ 3780 stmmac_stop_all_dma(priv); 3781 3782 /* Release and free the Rx/Tx resources */ 3783 free_dma_desc_resources(priv); 3784 3785 /* Disable the MAC Rx/Tx */ 3786 stmmac_mac_set(priv, priv->ioaddr, false); 3787 3788 netif_carrier_off(dev); 3789 3790 stmmac_release_ptp(priv); 3791 3792 pm_runtime_put(priv->device); 3793 3794 if (priv->dma_cap.fpesel) 3795 stmmac_fpe_stop_wq(priv); 3796 3797 return 0; 3798 } 3799 3800 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb, 3801 struct stmmac_tx_queue *tx_q) 3802 { 3803 u16 tag = 0x0, inner_tag = 0x0; 3804 u32 inner_type = 0x0; 3805 struct dma_desc *p; 3806 3807 if (!priv->dma_cap.vlins) 3808 return false; 3809 if (!skb_vlan_tag_present(skb)) 3810 return false; 3811 if (skb->vlan_proto == htons(ETH_P_8021AD)) { 3812 inner_tag = skb_vlan_tag_get(skb); 3813 inner_type = STMMAC_VLAN_INSERT; 3814 } 3815 3816 tag = skb_vlan_tag_get(skb); 3817 3818 if (tx_q->tbs & STMMAC_TBS_AVAIL) 3819 p = &tx_q->dma_entx[tx_q->cur_tx].basic; 3820 else 3821 p = &tx_q->dma_tx[tx_q->cur_tx]; 3822 3823 if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type)) 3824 return false; 3825 3826 stmmac_set_tx_owner(priv, p); 3827 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size); 3828 return true; 3829 } 3830 3831 /** 3832 * stmmac_tso_allocator - close entry point of the driver 3833 * @priv: driver private structure 3834 * @des: buffer start address 3835 * @total_len: total length to fill in descriptors 3836 * @last_segment: condition for the last descriptor 3837 * @queue: TX queue index 3838 * Description: 3839 * This function fills descriptor and request new descriptors according to 3840 * buffer length to fill 3841 */ 3842 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des, 3843 int total_len, bool last_segment, u32 queue) 3844 { 3845 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 3846 struct dma_desc *desc; 3847 u32 buff_size; 3848 int tmp_len; 3849 3850 tmp_len = total_len; 3851 3852 while (tmp_len > 0) { 3853 dma_addr_t curr_addr; 3854 3855 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, 3856 priv->dma_tx_size); 3857 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]); 3858 3859 if (tx_q->tbs & STMMAC_TBS_AVAIL) 3860 desc = &tx_q->dma_entx[tx_q->cur_tx].basic; 3861 else 3862 desc = &tx_q->dma_tx[tx_q->cur_tx]; 3863 3864 curr_addr = des + (total_len - tmp_len); 3865 if (priv->dma_cap.addr64 <= 32) 3866 desc->des0 = cpu_to_le32(curr_addr); 3867 else 3868 stmmac_set_desc_addr(priv, desc, curr_addr); 3869 3870 buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ? 3871 TSO_MAX_BUFF_SIZE : tmp_len; 3872 3873 stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size, 3874 0, 1, 3875 (last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE), 3876 0, 0); 3877 3878 tmp_len -= TSO_MAX_BUFF_SIZE; 3879 } 3880 } 3881 3882 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue) 3883 { 3884 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 3885 int desc_size; 3886 3887 if (likely(priv->extend_desc)) 3888 desc_size = sizeof(struct dma_extended_desc); 3889 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 3890 desc_size = sizeof(struct dma_edesc); 3891 else 3892 desc_size = sizeof(struct dma_desc); 3893 3894 /* The own bit must be the latest setting done when prepare the 3895 * descriptor and then barrier is needed to make sure that 3896 * all is coherent before granting the DMA engine. 3897 */ 3898 wmb(); 3899 3900 tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size); 3901 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue); 3902 } 3903 3904 /** 3905 * stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO) 3906 * @skb : the socket buffer 3907 * @dev : device pointer 3908 * Description: this is the transmit function that is called on TSO frames 3909 * (support available on GMAC4 and newer chips). 3910 * Diagram below show the ring programming in case of TSO frames: 3911 * 3912 * First Descriptor 3913 * -------- 3914 * | DES0 |---> buffer1 = L2/L3/L4 header 3915 * | DES1 |---> TCP Payload (can continue on next descr...) 3916 * | DES2 |---> buffer 1 and 2 len 3917 * | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0] 3918 * -------- 3919 * | 3920 * ... 3921 * | 3922 * -------- 3923 * | DES0 | --| Split TCP Payload on Buffers 1 and 2 3924 * | DES1 | --| 3925 * | DES2 | --> buffer 1 and 2 len 3926 * | DES3 | 3927 * -------- 3928 * 3929 * mss is fixed when enable tso, so w/o programming the TDES3 ctx field. 3930 */ 3931 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev) 3932 { 3933 struct dma_desc *desc, *first, *mss_desc = NULL; 3934 struct stmmac_priv *priv = netdev_priv(dev); 3935 int nfrags = skb_shinfo(skb)->nr_frags; 3936 u32 queue = skb_get_queue_mapping(skb); 3937 unsigned int first_entry, tx_packets; 3938 int tmp_pay_len = 0, first_tx; 3939 struct stmmac_tx_queue *tx_q; 3940 bool has_vlan, set_ic; 3941 u8 proto_hdr_len, hdr; 3942 u32 pay_len, mss; 3943 dma_addr_t des; 3944 int i; 3945 3946 tx_q = &priv->tx_queue[queue]; 3947 first_tx = tx_q->cur_tx; 3948 3949 /* Compute header lengths */ 3950 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { 3951 proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr); 3952 hdr = sizeof(struct udphdr); 3953 } else { 3954 proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 3955 hdr = tcp_hdrlen(skb); 3956 } 3957 3958 /* Desc availability based on threshold should be enough safe */ 3959 if (unlikely(stmmac_tx_avail(priv, queue) < 3960 (((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) { 3961 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) { 3962 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, 3963 queue)); 3964 /* This is a hard error, log it. */ 3965 netdev_err(priv->dev, 3966 "%s: Tx Ring full when queue awake\n", 3967 __func__); 3968 } 3969 return NETDEV_TX_BUSY; 3970 } 3971 3972 pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */ 3973 3974 mss = skb_shinfo(skb)->gso_size; 3975 3976 /* set new MSS value if needed */ 3977 if (mss != tx_q->mss) { 3978 if (tx_q->tbs & STMMAC_TBS_AVAIL) 3979 mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic; 3980 else 3981 mss_desc = &tx_q->dma_tx[tx_q->cur_tx]; 3982 3983 stmmac_set_mss(priv, mss_desc, mss); 3984 tx_q->mss = mss; 3985 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, 3986 priv->dma_tx_size); 3987 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]); 3988 } 3989 3990 if (netif_msg_tx_queued(priv)) { 3991 pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n", 3992 __func__, hdr, proto_hdr_len, pay_len, mss); 3993 pr_info("\tskb->len %d, skb->data_len %d\n", skb->len, 3994 skb->data_len); 3995 } 3996 3997 /* Check if VLAN can be inserted by HW */ 3998 has_vlan = stmmac_vlan_insert(priv, skb, tx_q); 3999 4000 first_entry = tx_q->cur_tx; 4001 WARN_ON(tx_q->tx_skbuff[first_entry]); 4002 4003 if (tx_q->tbs & STMMAC_TBS_AVAIL) 4004 desc = &tx_q->dma_entx[first_entry].basic; 4005 else 4006 desc = &tx_q->dma_tx[first_entry]; 4007 first = desc; 4008 4009 if (has_vlan) 4010 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT); 4011 4012 /* first descriptor: fill Headers on Buf1 */ 4013 des = dma_map_single(priv->device, skb->data, skb_headlen(skb), 4014 DMA_TO_DEVICE); 4015 if (dma_mapping_error(priv->device, des)) 4016 goto dma_map_err; 4017 4018 tx_q->tx_skbuff_dma[first_entry].buf = des; 4019 tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb); 4020 tx_q->tx_skbuff_dma[first_entry].map_as_page = false; 4021 tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB; 4022 4023 if (priv->dma_cap.addr64 <= 32) { 4024 first->des0 = cpu_to_le32(des); 4025 4026 /* Fill start of payload in buff2 of first descriptor */ 4027 if (pay_len) 4028 first->des1 = cpu_to_le32(des + proto_hdr_len); 4029 4030 /* If needed take extra descriptors to fill the remaining payload */ 4031 tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE; 4032 } else { 4033 stmmac_set_desc_addr(priv, first, des); 4034 tmp_pay_len = pay_len; 4035 des += proto_hdr_len; 4036 pay_len = 0; 4037 } 4038 4039 stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue); 4040 4041 /* Prepare fragments */ 4042 for (i = 0; i < nfrags; i++) { 4043 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4044 4045 des = skb_frag_dma_map(priv->device, frag, 0, 4046 skb_frag_size(frag), 4047 DMA_TO_DEVICE); 4048 if (dma_mapping_error(priv->device, des)) 4049 goto dma_map_err; 4050 4051 stmmac_tso_allocator(priv, des, skb_frag_size(frag), 4052 (i == nfrags - 1), queue); 4053 4054 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des; 4055 tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag); 4056 tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true; 4057 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB; 4058 } 4059 4060 tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true; 4061 4062 /* Only the last descriptor gets to point to the skb. */ 4063 tx_q->tx_skbuff[tx_q->cur_tx] = skb; 4064 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB; 4065 4066 /* Manage tx mitigation */ 4067 tx_packets = (tx_q->cur_tx + 1) - first_tx; 4068 tx_q->tx_count_frames += tx_packets; 4069 4070 if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en) 4071 set_ic = true; 4072 else if (!priv->tx_coal_frames[queue]) 4073 set_ic = false; 4074 else if (tx_packets > priv->tx_coal_frames[queue]) 4075 set_ic = true; 4076 else if ((tx_q->tx_count_frames % 4077 priv->tx_coal_frames[queue]) < tx_packets) 4078 set_ic = true; 4079 else 4080 set_ic = false; 4081 4082 if (set_ic) { 4083 if (tx_q->tbs & STMMAC_TBS_AVAIL) 4084 desc = &tx_q->dma_entx[tx_q->cur_tx].basic; 4085 else 4086 desc = &tx_q->dma_tx[tx_q->cur_tx]; 4087 4088 tx_q->tx_count_frames = 0; 4089 stmmac_set_tx_ic(priv, desc); 4090 priv->xstats.tx_set_ic_bit++; 4091 } 4092 4093 /* We've used all descriptors we need for this skb, however, 4094 * advance cur_tx so that it references a fresh descriptor. 4095 * ndo_start_xmit will fill this descriptor the next time it's 4096 * called and stmmac_tx_clean may clean up to this descriptor. 4097 */ 4098 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size); 4099 4100 if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) { 4101 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n", 4102 __func__); 4103 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue)); 4104 } 4105 4106 dev->stats.tx_bytes += skb->len; 4107 priv->xstats.tx_tso_frames++; 4108 priv->xstats.tx_tso_nfrags += nfrags; 4109 4110 if (priv->sarc_type) 4111 stmmac_set_desc_sarc(priv, first, priv->sarc_type); 4112 4113 skb_tx_timestamp(skb); 4114 4115 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 4116 priv->hwts_tx_en)) { 4117 /* declare that device is doing timestamping */ 4118 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 4119 stmmac_enable_tx_timestamp(priv, first); 4120 } 4121 4122 /* Complete the first descriptor before granting the DMA */ 4123 stmmac_prepare_tso_tx_desc(priv, first, 1, 4124 proto_hdr_len, 4125 pay_len, 4126 1, tx_q->tx_skbuff_dma[first_entry].last_segment, 4127 hdr / 4, (skb->len - proto_hdr_len)); 4128 4129 /* If context desc is used to change MSS */ 4130 if (mss_desc) { 4131 /* Make sure that first descriptor has been completely 4132 * written, including its own bit. This is because MSS is 4133 * actually before first descriptor, so we need to make 4134 * sure that MSS's own bit is the last thing written. 4135 */ 4136 dma_wmb(); 4137 stmmac_set_tx_owner(priv, mss_desc); 4138 } 4139 4140 if (netif_msg_pktdata(priv)) { 4141 pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n", 4142 __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry, 4143 tx_q->cur_tx, first, nfrags); 4144 pr_info(">>> frame to be transmitted: "); 4145 print_pkt(skb->data, skb_headlen(skb)); 4146 } 4147 4148 netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len); 4149 4150 stmmac_flush_tx_descriptors(priv, queue); 4151 stmmac_tx_timer_arm(priv, queue); 4152 4153 return NETDEV_TX_OK; 4154 4155 dma_map_err: 4156 dev_err(priv->device, "Tx dma map failed\n"); 4157 dev_kfree_skb(skb); 4158 priv->dev->stats.tx_dropped++; 4159 return NETDEV_TX_OK; 4160 } 4161 4162 /** 4163 * stmmac_xmit - Tx entry point of the driver 4164 * @skb : the socket buffer 4165 * @dev : device pointer 4166 * Description : this is the tx entry point of the driver. 4167 * It programs the chain or the ring and supports oversized frames 4168 * and SG feature. 4169 */ 4170 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev) 4171 { 4172 unsigned int first_entry, tx_packets, enh_desc; 4173 struct stmmac_priv *priv = netdev_priv(dev); 4174 unsigned int nopaged_len = skb_headlen(skb); 4175 int i, csum_insertion = 0, is_jumbo = 0; 4176 u32 queue = skb_get_queue_mapping(skb); 4177 int nfrags = skb_shinfo(skb)->nr_frags; 4178 int gso = skb_shinfo(skb)->gso_type; 4179 struct dma_edesc *tbs_desc = NULL; 4180 struct dma_desc *desc, *first; 4181 struct stmmac_tx_queue *tx_q; 4182 bool has_vlan, set_ic; 4183 int entry, first_tx; 4184 dma_addr_t des; 4185 4186 tx_q = &priv->tx_queue[queue]; 4187 first_tx = tx_q->cur_tx; 4188 4189 if (priv->tx_path_in_lpi_mode && priv->eee_sw_timer_en) 4190 stmmac_disable_eee_mode(priv); 4191 4192 /* Manage oversized TCP frames for GMAC4 device */ 4193 if (skb_is_gso(skb) && priv->tso) { 4194 if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) 4195 return stmmac_tso_xmit(skb, dev); 4196 if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4)) 4197 return stmmac_tso_xmit(skb, dev); 4198 } 4199 4200 if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) { 4201 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) { 4202 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, 4203 queue)); 4204 /* This is a hard error, log it. */ 4205 netdev_err(priv->dev, 4206 "%s: Tx Ring full when queue awake\n", 4207 __func__); 4208 } 4209 return NETDEV_TX_BUSY; 4210 } 4211 4212 /* Check if VLAN can be inserted by HW */ 4213 has_vlan = stmmac_vlan_insert(priv, skb, tx_q); 4214 4215 entry = tx_q->cur_tx; 4216 first_entry = entry; 4217 WARN_ON(tx_q->tx_skbuff[first_entry]); 4218 4219 csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL); 4220 4221 if (likely(priv->extend_desc)) 4222 desc = (struct dma_desc *)(tx_q->dma_etx + entry); 4223 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 4224 desc = &tx_q->dma_entx[entry].basic; 4225 else 4226 desc = tx_q->dma_tx + entry; 4227 4228 first = desc; 4229 4230 if (has_vlan) 4231 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT); 4232 4233 enh_desc = priv->plat->enh_desc; 4234 /* To program the descriptors according to the size of the frame */ 4235 if (enh_desc) 4236 is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc); 4237 4238 if (unlikely(is_jumbo)) { 4239 entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion); 4240 if (unlikely(entry < 0) && (entry != -EINVAL)) 4241 goto dma_map_err; 4242 } 4243 4244 for (i = 0; i < nfrags; i++) { 4245 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4246 int len = skb_frag_size(frag); 4247 bool last_segment = (i == (nfrags - 1)); 4248 4249 entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size); 4250 WARN_ON(tx_q->tx_skbuff[entry]); 4251 4252 if (likely(priv->extend_desc)) 4253 desc = (struct dma_desc *)(tx_q->dma_etx + entry); 4254 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 4255 desc = &tx_q->dma_entx[entry].basic; 4256 else 4257 desc = tx_q->dma_tx + entry; 4258 4259 des = skb_frag_dma_map(priv->device, frag, 0, len, 4260 DMA_TO_DEVICE); 4261 if (dma_mapping_error(priv->device, des)) 4262 goto dma_map_err; /* should reuse desc w/o issues */ 4263 4264 tx_q->tx_skbuff_dma[entry].buf = des; 4265 4266 stmmac_set_desc_addr(priv, desc, des); 4267 4268 tx_q->tx_skbuff_dma[entry].map_as_page = true; 4269 tx_q->tx_skbuff_dma[entry].len = len; 4270 tx_q->tx_skbuff_dma[entry].last_segment = last_segment; 4271 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB; 4272 4273 /* Prepare the descriptor and set the own bit too */ 4274 stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion, 4275 priv->mode, 1, last_segment, skb->len); 4276 } 4277 4278 /* Only the last descriptor gets to point to the skb. */ 4279 tx_q->tx_skbuff[entry] = skb; 4280 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB; 4281 4282 /* According to the coalesce parameter the IC bit for the latest 4283 * segment is reset and the timer re-started to clean the tx status. 4284 * This approach takes care about the fragments: desc is the first 4285 * element in case of no SG. 4286 */ 4287 tx_packets = (entry + 1) - first_tx; 4288 tx_q->tx_count_frames += tx_packets; 4289 4290 if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en) 4291 set_ic = true; 4292 else if (!priv->tx_coal_frames[queue]) 4293 set_ic = false; 4294 else if (tx_packets > priv->tx_coal_frames[queue]) 4295 set_ic = true; 4296 else if ((tx_q->tx_count_frames % 4297 priv->tx_coal_frames[queue]) < tx_packets) 4298 set_ic = true; 4299 else 4300 set_ic = false; 4301 4302 if (set_ic) { 4303 if (likely(priv->extend_desc)) 4304 desc = &tx_q->dma_etx[entry].basic; 4305 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 4306 desc = &tx_q->dma_entx[entry].basic; 4307 else 4308 desc = &tx_q->dma_tx[entry]; 4309 4310 tx_q->tx_count_frames = 0; 4311 stmmac_set_tx_ic(priv, desc); 4312 priv->xstats.tx_set_ic_bit++; 4313 } 4314 4315 /* We've used all descriptors we need for this skb, however, 4316 * advance cur_tx so that it references a fresh descriptor. 4317 * ndo_start_xmit will fill this descriptor the next time it's 4318 * called and stmmac_tx_clean may clean up to this descriptor. 4319 */ 4320 entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size); 4321 tx_q->cur_tx = entry; 4322 4323 if (netif_msg_pktdata(priv)) { 4324 netdev_dbg(priv->dev, 4325 "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d", 4326 __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry, 4327 entry, first, nfrags); 4328 4329 netdev_dbg(priv->dev, ">>> frame to be transmitted: "); 4330 print_pkt(skb->data, skb->len); 4331 } 4332 4333 if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) { 4334 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n", 4335 __func__); 4336 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue)); 4337 } 4338 4339 dev->stats.tx_bytes += skb->len; 4340 4341 if (priv->sarc_type) 4342 stmmac_set_desc_sarc(priv, first, priv->sarc_type); 4343 4344 skb_tx_timestamp(skb); 4345 4346 /* Ready to fill the first descriptor and set the OWN bit w/o any 4347 * problems because all the descriptors are actually ready to be 4348 * passed to the DMA engine. 4349 */ 4350 if (likely(!is_jumbo)) { 4351 bool last_segment = (nfrags == 0); 4352 4353 des = dma_map_single(priv->device, skb->data, 4354 nopaged_len, DMA_TO_DEVICE); 4355 if (dma_mapping_error(priv->device, des)) 4356 goto dma_map_err; 4357 4358 tx_q->tx_skbuff_dma[first_entry].buf = des; 4359 tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB; 4360 tx_q->tx_skbuff_dma[first_entry].map_as_page = false; 4361 4362 stmmac_set_desc_addr(priv, first, des); 4363 4364 tx_q->tx_skbuff_dma[first_entry].len = nopaged_len; 4365 tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment; 4366 4367 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 4368 priv->hwts_tx_en)) { 4369 /* declare that device is doing timestamping */ 4370 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 4371 stmmac_enable_tx_timestamp(priv, first); 4372 } 4373 4374 /* Prepare the first descriptor setting the OWN bit too */ 4375 stmmac_prepare_tx_desc(priv, first, 1, nopaged_len, 4376 csum_insertion, priv->mode, 0, last_segment, 4377 skb->len); 4378 } 4379 4380 if (tx_q->tbs & STMMAC_TBS_EN) { 4381 struct timespec64 ts = ns_to_timespec64(skb->tstamp); 4382 4383 tbs_desc = &tx_q->dma_entx[first_entry]; 4384 stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec); 4385 } 4386 4387 stmmac_set_tx_owner(priv, first); 4388 4389 netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len); 4390 4391 stmmac_enable_dma_transmission(priv, priv->ioaddr); 4392 4393 stmmac_flush_tx_descriptors(priv, queue); 4394 stmmac_tx_timer_arm(priv, queue); 4395 4396 return NETDEV_TX_OK; 4397 4398 dma_map_err: 4399 netdev_err(priv->dev, "Tx DMA map failed\n"); 4400 dev_kfree_skb(skb); 4401 priv->dev->stats.tx_dropped++; 4402 return NETDEV_TX_OK; 4403 } 4404 4405 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb) 4406 { 4407 struct vlan_ethhdr *veth; 4408 __be16 vlan_proto; 4409 u16 vlanid; 4410 4411 veth = (struct vlan_ethhdr *)skb->data; 4412 vlan_proto = veth->h_vlan_proto; 4413 4414 if ((vlan_proto == htons(ETH_P_8021Q) && 4415 dev->features & NETIF_F_HW_VLAN_CTAG_RX) || 4416 (vlan_proto == htons(ETH_P_8021AD) && 4417 dev->features & NETIF_F_HW_VLAN_STAG_RX)) { 4418 /* pop the vlan tag */ 4419 vlanid = ntohs(veth->h_vlan_TCI); 4420 memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2); 4421 skb_pull(skb, VLAN_HLEN); 4422 __vlan_hwaccel_put_tag(skb, vlan_proto, vlanid); 4423 } 4424 } 4425 4426 /** 4427 * stmmac_rx_refill - refill used skb preallocated buffers 4428 * @priv: driver private structure 4429 * @queue: RX queue index 4430 * Description : this is to reallocate the skb for the reception process 4431 * that is based on zero-copy. 4432 */ 4433 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue) 4434 { 4435 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 4436 int dirty = stmmac_rx_dirty(priv, queue); 4437 unsigned int entry = rx_q->dirty_rx; 4438 4439 while (dirty-- > 0) { 4440 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry]; 4441 struct dma_desc *p; 4442 bool use_rx_wd; 4443 4444 if (priv->extend_desc) 4445 p = (struct dma_desc *)(rx_q->dma_erx + entry); 4446 else 4447 p = rx_q->dma_rx + entry; 4448 4449 if (!buf->page) { 4450 buf->page = page_pool_dev_alloc_pages(rx_q->page_pool); 4451 if (!buf->page) 4452 break; 4453 } 4454 4455 if (priv->sph && !buf->sec_page) { 4456 buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool); 4457 if (!buf->sec_page) 4458 break; 4459 4460 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page); 4461 } 4462 4463 buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset; 4464 4465 stmmac_set_desc_addr(priv, p, buf->addr); 4466 if (priv->sph) 4467 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true); 4468 else 4469 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false); 4470 stmmac_refill_desc3(priv, rx_q, p); 4471 4472 rx_q->rx_count_frames++; 4473 rx_q->rx_count_frames += priv->rx_coal_frames[queue]; 4474 if (rx_q->rx_count_frames > priv->rx_coal_frames[queue]) 4475 rx_q->rx_count_frames = 0; 4476 4477 use_rx_wd = !priv->rx_coal_frames[queue]; 4478 use_rx_wd |= rx_q->rx_count_frames > 0; 4479 if (!priv->use_riwt) 4480 use_rx_wd = false; 4481 4482 dma_wmb(); 4483 stmmac_set_rx_owner(priv, p, use_rx_wd); 4484 4485 entry = STMMAC_GET_ENTRY(entry, priv->dma_rx_size); 4486 } 4487 rx_q->dirty_rx = entry; 4488 rx_q->rx_tail_addr = rx_q->dma_rx_phy + 4489 (rx_q->dirty_rx * sizeof(struct dma_desc)); 4490 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue); 4491 } 4492 4493 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv, 4494 struct dma_desc *p, 4495 int status, unsigned int len) 4496 { 4497 unsigned int plen = 0, hlen = 0; 4498 int coe = priv->hw->rx_csum; 4499 4500 /* Not first descriptor, buffer is always zero */ 4501 if (priv->sph && len) 4502 return 0; 4503 4504 /* First descriptor, get split header length */ 4505 stmmac_get_rx_header_len(priv, p, &hlen); 4506 if (priv->sph && hlen) { 4507 priv->xstats.rx_split_hdr_pkt_n++; 4508 return hlen; 4509 } 4510 4511 /* First descriptor, not last descriptor and not split header */ 4512 if (status & rx_not_ls) 4513 return priv->dma_buf_sz; 4514 4515 plen = stmmac_get_rx_frame_len(priv, p, coe); 4516 4517 /* First descriptor and last descriptor and not split header */ 4518 return min_t(unsigned int, priv->dma_buf_sz, plen); 4519 } 4520 4521 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv, 4522 struct dma_desc *p, 4523 int status, unsigned int len) 4524 { 4525 int coe = priv->hw->rx_csum; 4526 unsigned int plen = 0; 4527 4528 /* Not split header, buffer is not available */ 4529 if (!priv->sph) 4530 return 0; 4531 4532 /* Not last descriptor */ 4533 if (status & rx_not_ls) 4534 return priv->dma_buf_sz; 4535 4536 plen = stmmac_get_rx_frame_len(priv, p, coe); 4537 4538 /* Last descriptor */ 4539 return plen - len; 4540 } 4541 4542 static int stmmac_xdp_xmit_xdpf(struct stmmac_priv *priv, int queue, 4543 struct xdp_frame *xdpf, bool dma_map) 4544 { 4545 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 4546 unsigned int entry = tx_q->cur_tx; 4547 struct dma_desc *tx_desc; 4548 dma_addr_t dma_addr; 4549 bool set_ic; 4550 4551 if (stmmac_tx_avail(priv, queue) < STMMAC_TX_THRESH(priv)) 4552 return STMMAC_XDP_CONSUMED; 4553 4554 if (likely(priv->extend_desc)) 4555 tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry); 4556 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 4557 tx_desc = &tx_q->dma_entx[entry].basic; 4558 else 4559 tx_desc = tx_q->dma_tx + entry; 4560 4561 if (dma_map) { 4562 dma_addr = dma_map_single(priv->device, xdpf->data, 4563 xdpf->len, DMA_TO_DEVICE); 4564 if (dma_mapping_error(priv->device, dma_addr)) 4565 return STMMAC_XDP_CONSUMED; 4566 4567 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_NDO; 4568 } else { 4569 struct page *page = virt_to_page(xdpf->data); 4570 4571 dma_addr = page_pool_get_dma_addr(page) + sizeof(*xdpf) + 4572 xdpf->headroom; 4573 dma_sync_single_for_device(priv->device, dma_addr, 4574 xdpf->len, DMA_BIDIRECTIONAL); 4575 4576 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_TX; 4577 } 4578 4579 tx_q->tx_skbuff_dma[entry].buf = dma_addr; 4580 tx_q->tx_skbuff_dma[entry].map_as_page = false; 4581 tx_q->tx_skbuff_dma[entry].len = xdpf->len; 4582 tx_q->tx_skbuff_dma[entry].last_segment = true; 4583 tx_q->tx_skbuff_dma[entry].is_jumbo = false; 4584 4585 tx_q->xdpf[entry] = xdpf; 4586 4587 stmmac_set_desc_addr(priv, tx_desc, dma_addr); 4588 4589 stmmac_prepare_tx_desc(priv, tx_desc, 1, xdpf->len, 4590 true, priv->mode, true, true, 4591 xdpf->len); 4592 4593 tx_q->tx_count_frames++; 4594 4595 if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0) 4596 set_ic = true; 4597 else 4598 set_ic = false; 4599 4600 if (set_ic) { 4601 tx_q->tx_count_frames = 0; 4602 stmmac_set_tx_ic(priv, tx_desc); 4603 priv->xstats.tx_set_ic_bit++; 4604 } 4605 4606 stmmac_enable_dma_transmission(priv, priv->ioaddr); 4607 4608 entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size); 4609 tx_q->cur_tx = entry; 4610 4611 return STMMAC_XDP_TX; 4612 } 4613 4614 static int stmmac_xdp_get_tx_queue(struct stmmac_priv *priv, 4615 int cpu) 4616 { 4617 int index = cpu; 4618 4619 if (unlikely(index < 0)) 4620 index = 0; 4621 4622 while (index >= priv->plat->tx_queues_to_use) 4623 index -= priv->plat->tx_queues_to_use; 4624 4625 return index; 4626 } 4627 4628 static int stmmac_xdp_xmit_back(struct stmmac_priv *priv, 4629 struct xdp_buff *xdp) 4630 { 4631 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp); 4632 int cpu = smp_processor_id(); 4633 struct netdev_queue *nq; 4634 int queue; 4635 int res; 4636 4637 if (unlikely(!xdpf)) 4638 return STMMAC_XDP_CONSUMED; 4639 4640 queue = stmmac_xdp_get_tx_queue(priv, cpu); 4641 nq = netdev_get_tx_queue(priv->dev, queue); 4642 4643 __netif_tx_lock(nq, cpu); 4644 /* Avoids TX time-out as we are sharing with slow path */ 4645 nq->trans_start = jiffies; 4646 4647 res = stmmac_xdp_xmit_xdpf(priv, queue, xdpf, false); 4648 if (res == STMMAC_XDP_TX) 4649 stmmac_flush_tx_descriptors(priv, queue); 4650 4651 __netif_tx_unlock(nq); 4652 4653 return res; 4654 } 4655 4656 /* This function assumes rcu_read_lock() is held by the caller. */ 4657 static int __stmmac_xdp_run_prog(struct stmmac_priv *priv, 4658 struct bpf_prog *prog, 4659 struct xdp_buff *xdp) 4660 { 4661 u32 act; 4662 int res; 4663 4664 act = bpf_prog_run_xdp(prog, xdp); 4665 switch (act) { 4666 case XDP_PASS: 4667 res = STMMAC_XDP_PASS; 4668 break; 4669 case XDP_TX: 4670 res = stmmac_xdp_xmit_back(priv, xdp); 4671 break; 4672 case XDP_REDIRECT: 4673 if (xdp_do_redirect(priv->dev, xdp, prog) < 0) 4674 res = STMMAC_XDP_CONSUMED; 4675 else 4676 res = STMMAC_XDP_REDIRECT; 4677 break; 4678 default: 4679 bpf_warn_invalid_xdp_action(act); 4680 fallthrough; 4681 case XDP_ABORTED: 4682 trace_xdp_exception(priv->dev, prog, act); 4683 fallthrough; 4684 case XDP_DROP: 4685 res = STMMAC_XDP_CONSUMED; 4686 break; 4687 } 4688 4689 return res; 4690 } 4691 4692 static struct sk_buff *stmmac_xdp_run_prog(struct stmmac_priv *priv, 4693 struct xdp_buff *xdp) 4694 { 4695 struct bpf_prog *prog; 4696 int res; 4697 4698 rcu_read_lock(); 4699 4700 prog = READ_ONCE(priv->xdp_prog); 4701 if (!prog) { 4702 res = STMMAC_XDP_PASS; 4703 goto unlock; 4704 } 4705 4706 res = __stmmac_xdp_run_prog(priv, prog, xdp); 4707 unlock: 4708 rcu_read_unlock(); 4709 return ERR_PTR(-res); 4710 } 4711 4712 static void stmmac_finalize_xdp_rx(struct stmmac_priv *priv, 4713 int xdp_status) 4714 { 4715 int cpu = smp_processor_id(); 4716 int queue; 4717 4718 queue = stmmac_xdp_get_tx_queue(priv, cpu); 4719 4720 if (xdp_status & STMMAC_XDP_TX) 4721 stmmac_tx_timer_arm(priv, queue); 4722 4723 if (xdp_status & STMMAC_XDP_REDIRECT) 4724 xdp_do_flush(); 4725 } 4726 4727 static struct sk_buff *stmmac_construct_skb_zc(struct stmmac_channel *ch, 4728 struct xdp_buff *xdp) 4729 { 4730 unsigned int metasize = xdp->data - xdp->data_meta; 4731 unsigned int datasize = xdp->data_end - xdp->data; 4732 struct sk_buff *skb; 4733 4734 skb = __napi_alloc_skb(&ch->rxtx_napi, 4735 xdp->data_end - xdp->data_hard_start, 4736 GFP_ATOMIC | __GFP_NOWARN); 4737 if (unlikely(!skb)) 4738 return NULL; 4739 4740 skb_reserve(skb, xdp->data - xdp->data_hard_start); 4741 memcpy(__skb_put(skb, datasize), xdp->data, datasize); 4742 if (metasize) 4743 skb_metadata_set(skb, metasize); 4744 4745 return skb; 4746 } 4747 4748 static void stmmac_dispatch_skb_zc(struct stmmac_priv *priv, u32 queue, 4749 struct dma_desc *p, struct dma_desc *np, 4750 struct xdp_buff *xdp) 4751 { 4752 struct stmmac_channel *ch = &priv->channel[queue]; 4753 unsigned int len = xdp->data_end - xdp->data; 4754 enum pkt_hash_types hash_type; 4755 int coe = priv->hw->rx_csum; 4756 struct sk_buff *skb; 4757 u32 hash; 4758 4759 skb = stmmac_construct_skb_zc(ch, xdp); 4760 if (!skb) { 4761 priv->dev->stats.rx_dropped++; 4762 return; 4763 } 4764 4765 stmmac_get_rx_hwtstamp(priv, p, np, skb); 4766 stmmac_rx_vlan(priv->dev, skb); 4767 skb->protocol = eth_type_trans(skb, priv->dev); 4768 4769 if (unlikely(!coe)) 4770 skb_checksum_none_assert(skb); 4771 else 4772 skb->ip_summed = CHECKSUM_UNNECESSARY; 4773 4774 if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type)) 4775 skb_set_hash(skb, hash, hash_type); 4776 4777 skb_record_rx_queue(skb, queue); 4778 napi_gro_receive(&ch->rxtx_napi, skb); 4779 4780 priv->dev->stats.rx_packets++; 4781 priv->dev->stats.rx_bytes += len; 4782 } 4783 4784 static bool stmmac_rx_refill_zc(struct stmmac_priv *priv, u32 queue, u32 budget) 4785 { 4786 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 4787 unsigned int entry = rx_q->dirty_rx; 4788 struct dma_desc *rx_desc = NULL; 4789 bool ret = true; 4790 4791 budget = min(budget, stmmac_rx_dirty(priv, queue)); 4792 4793 while (budget-- > 0 && entry != rx_q->cur_rx) { 4794 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry]; 4795 dma_addr_t dma_addr; 4796 bool use_rx_wd; 4797 4798 if (!buf->xdp) { 4799 buf->xdp = xsk_buff_alloc(rx_q->xsk_pool); 4800 if (!buf->xdp) { 4801 ret = false; 4802 break; 4803 } 4804 } 4805 4806 if (priv->extend_desc) 4807 rx_desc = (struct dma_desc *)(rx_q->dma_erx + entry); 4808 else 4809 rx_desc = rx_q->dma_rx + entry; 4810 4811 dma_addr = xsk_buff_xdp_get_dma(buf->xdp); 4812 stmmac_set_desc_addr(priv, rx_desc, dma_addr); 4813 stmmac_set_desc_sec_addr(priv, rx_desc, 0, false); 4814 stmmac_refill_desc3(priv, rx_q, rx_desc); 4815 4816 rx_q->rx_count_frames++; 4817 rx_q->rx_count_frames += priv->rx_coal_frames[queue]; 4818 if (rx_q->rx_count_frames > priv->rx_coal_frames[queue]) 4819 rx_q->rx_count_frames = 0; 4820 4821 use_rx_wd = !priv->rx_coal_frames[queue]; 4822 use_rx_wd |= rx_q->rx_count_frames > 0; 4823 if (!priv->use_riwt) 4824 use_rx_wd = false; 4825 4826 dma_wmb(); 4827 stmmac_set_rx_owner(priv, rx_desc, use_rx_wd); 4828 4829 entry = STMMAC_GET_ENTRY(entry, priv->dma_rx_size); 4830 } 4831 4832 if (rx_desc) { 4833 rx_q->dirty_rx = entry; 4834 rx_q->rx_tail_addr = rx_q->dma_rx_phy + 4835 (rx_q->dirty_rx * sizeof(struct dma_desc)); 4836 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue); 4837 } 4838 4839 return ret; 4840 } 4841 4842 static int stmmac_rx_zc(struct stmmac_priv *priv, int limit, u32 queue) 4843 { 4844 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 4845 unsigned int count = 0, error = 0, len = 0; 4846 int dirty = stmmac_rx_dirty(priv, queue); 4847 unsigned int next_entry = rx_q->cur_rx; 4848 unsigned int desc_size; 4849 struct bpf_prog *prog; 4850 bool failure = false; 4851 int xdp_status = 0; 4852 int status = 0; 4853 4854 if (netif_msg_rx_status(priv)) { 4855 void *rx_head; 4856 4857 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__); 4858 if (priv->extend_desc) { 4859 rx_head = (void *)rx_q->dma_erx; 4860 desc_size = sizeof(struct dma_extended_desc); 4861 } else { 4862 rx_head = (void *)rx_q->dma_rx; 4863 desc_size = sizeof(struct dma_desc); 4864 } 4865 4866 stmmac_display_ring(priv, rx_head, priv->dma_rx_size, true, 4867 rx_q->dma_rx_phy, desc_size); 4868 } 4869 while (count < limit) { 4870 struct stmmac_rx_buffer *buf; 4871 unsigned int buf1_len = 0; 4872 struct dma_desc *np, *p; 4873 int entry; 4874 int res; 4875 4876 if (!count && rx_q->state_saved) { 4877 error = rx_q->state.error; 4878 len = rx_q->state.len; 4879 } else { 4880 rx_q->state_saved = false; 4881 error = 0; 4882 len = 0; 4883 } 4884 4885 if (count >= limit) 4886 break; 4887 4888 read_again: 4889 buf1_len = 0; 4890 entry = next_entry; 4891 buf = &rx_q->buf_pool[entry]; 4892 4893 if (dirty >= STMMAC_RX_FILL_BATCH) { 4894 failure = failure || 4895 !stmmac_rx_refill_zc(priv, queue, dirty); 4896 dirty = 0; 4897 } 4898 4899 if (priv->extend_desc) 4900 p = (struct dma_desc *)(rx_q->dma_erx + entry); 4901 else 4902 p = rx_q->dma_rx + entry; 4903 4904 /* read the status of the incoming frame */ 4905 status = stmmac_rx_status(priv, &priv->dev->stats, 4906 &priv->xstats, p); 4907 /* check if managed by the DMA otherwise go ahead */ 4908 if (unlikely(status & dma_own)) 4909 break; 4910 4911 /* Prefetch the next RX descriptor */ 4912 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, 4913 priv->dma_rx_size); 4914 next_entry = rx_q->cur_rx; 4915 4916 if (priv->extend_desc) 4917 np = (struct dma_desc *)(rx_q->dma_erx + next_entry); 4918 else 4919 np = rx_q->dma_rx + next_entry; 4920 4921 prefetch(np); 4922 4923 if (priv->extend_desc) 4924 stmmac_rx_extended_status(priv, &priv->dev->stats, 4925 &priv->xstats, 4926 rx_q->dma_erx + entry); 4927 if (unlikely(status == discard_frame)) { 4928 xsk_buff_free(buf->xdp); 4929 buf->xdp = NULL; 4930 dirty++; 4931 error = 1; 4932 if (!priv->hwts_rx_en) 4933 priv->dev->stats.rx_errors++; 4934 } 4935 4936 if (unlikely(error && (status & rx_not_ls))) 4937 goto read_again; 4938 if (unlikely(error)) { 4939 count++; 4940 continue; 4941 } 4942 4943 /* Ensure a valid XSK buffer before proceed */ 4944 if (!buf->xdp) 4945 break; 4946 4947 /* XSK pool expects RX frame 1:1 mapped to XSK buffer */ 4948 if (likely(status & rx_not_ls)) { 4949 xsk_buff_free(buf->xdp); 4950 buf->xdp = NULL; 4951 dirty++; 4952 count++; 4953 goto read_again; 4954 } 4955 4956 /* XDP ZC Frame only support primary buffers for now */ 4957 buf1_len = stmmac_rx_buf1_len(priv, p, status, len); 4958 len += buf1_len; 4959 4960 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3 4961 * Type frames (LLC/LLC-SNAP) 4962 * 4963 * llc_snap is never checked in GMAC >= 4, so this ACS 4964 * feature is always disabled and packets need to be 4965 * stripped manually. 4966 */ 4967 if (likely(!(status & rx_not_ls)) && 4968 (likely(priv->synopsys_id >= DWMAC_CORE_4_00) || 4969 unlikely(status != llc_snap))) { 4970 buf1_len -= ETH_FCS_LEN; 4971 len -= ETH_FCS_LEN; 4972 } 4973 4974 /* RX buffer is good and fit into a XSK pool buffer */ 4975 buf->xdp->data_end = buf->xdp->data + buf1_len; 4976 xsk_buff_dma_sync_for_cpu(buf->xdp, rx_q->xsk_pool); 4977 4978 rcu_read_lock(); 4979 prog = READ_ONCE(priv->xdp_prog); 4980 res = __stmmac_xdp_run_prog(priv, prog, buf->xdp); 4981 rcu_read_unlock(); 4982 4983 switch (res) { 4984 case STMMAC_XDP_PASS: 4985 stmmac_dispatch_skb_zc(priv, queue, p, np, buf->xdp); 4986 xsk_buff_free(buf->xdp); 4987 break; 4988 case STMMAC_XDP_CONSUMED: 4989 xsk_buff_free(buf->xdp); 4990 priv->dev->stats.rx_dropped++; 4991 break; 4992 case STMMAC_XDP_TX: 4993 case STMMAC_XDP_REDIRECT: 4994 xdp_status |= res; 4995 break; 4996 } 4997 4998 buf->xdp = NULL; 4999 dirty++; 5000 count++; 5001 } 5002 5003 if (status & rx_not_ls) { 5004 rx_q->state_saved = true; 5005 rx_q->state.error = error; 5006 rx_q->state.len = len; 5007 } 5008 5009 stmmac_finalize_xdp_rx(priv, xdp_status); 5010 5011 if (xsk_uses_need_wakeup(rx_q->xsk_pool)) { 5012 if (failure || stmmac_rx_dirty(priv, queue) > 0) 5013 xsk_set_rx_need_wakeup(rx_q->xsk_pool); 5014 else 5015 xsk_clear_rx_need_wakeup(rx_q->xsk_pool); 5016 5017 return (int)count; 5018 } 5019 5020 return failure ? limit : (int)count; 5021 } 5022 5023 /** 5024 * stmmac_rx - manage the receive process 5025 * @priv: driver private structure 5026 * @limit: napi bugget 5027 * @queue: RX queue index. 5028 * Description : this the function called by the napi poll method. 5029 * It gets all the frames inside the ring. 5030 */ 5031 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue) 5032 { 5033 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 5034 struct stmmac_channel *ch = &priv->channel[queue]; 5035 unsigned int count = 0, error = 0, len = 0; 5036 int status = 0, coe = priv->hw->rx_csum; 5037 unsigned int next_entry = rx_q->cur_rx; 5038 enum dma_data_direction dma_dir; 5039 unsigned int desc_size; 5040 struct sk_buff *skb = NULL; 5041 struct xdp_buff xdp; 5042 int xdp_status = 0; 5043 int buf_sz; 5044 5045 dma_dir = page_pool_get_dma_dir(rx_q->page_pool); 5046 buf_sz = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE) * PAGE_SIZE; 5047 5048 if (netif_msg_rx_status(priv)) { 5049 void *rx_head; 5050 5051 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__); 5052 if (priv->extend_desc) { 5053 rx_head = (void *)rx_q->dma_erx; 5054 desc_size = sizeof(struct dma_extended_desc); 5055 } else { 5056 rx_head = (void *)rx_q->dma_rx; 5057 desc_size = sizeof(struct dma_desc); 5058 } 5059 5060 stmmac_display_ring(priv, rx_head, priv->dma_rx_size, true, 5061 rx_q->dma_rx_phy, desc_size); 5062 } 5063 while (count < limit) { 5064 unsigned int buf1_len = 0, buf2_len = 0; 5065 enum pkt_hash_types hash_type; 5066 struct stmmac_rx_buffer *buf; 5067 struct dma_desc *np, *p; 5068 int entry; 5069 u32 hash; 5070 5071 if (!count && rx_q->state_saved) { 5072 skb = rx_q->state.skb; 5073 error = rx_q->state.error; 5074 len = rx_q->state.len; 5075 } else { 5076 rx_q->state_saved = false; 5077 skb = NULL; 5078 error = 0; 5079 len = 0; 5080 } 5081 5082 if (count >= limit) 5083 break; 5084 5085 read_again: 5086 buf1_len = 0; 5087 buf2_len = 0; 5088 entry = next_entry; 5089 buf = &rx_q->buf_pool[entry]; 5090 5091 if (priv->extend_desc) 5092 p = (struct dma_desc *)(rx_q->dma_erx + entry); 5093 else 5094 p = rx_q->dma_rx + entry; 5095 5096 /* read the status of the incoming frame */ 5097 status = stmmac_rx_status(priv, &priv->dev->stats, 5098 &priv->xstats, p); 5099 /* check if managed by the DMA otherwise go ahead */ 5100 if (unlikely(status & dma_own)) 5101 break; 5102 5103 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, 5104 priv->dma_rx_size); 5105 next_entry = rx_q->cur_rx; 5106 5107 if (priv->extend_desc) 5108 np = (struct dma_desc *)(rx_q->dma_erx + next_entry); 5109 else 5110 np = rx_q->dma_rx + next_entry; 5111 5112 prefetch(np); 5113 5114 if (priv->extend_desc) 5115 stmmac_rx_extended_status(priv, &priv->dev->stats, 5116 &priv->xstats, rx_q->dma_erx + entry); 5117 if (unlikely(status == discard_frame)) { 5118 page_pool_recycle_direct(rx_q->page_pool, buf->page); 5119 buf->page = NULL; 5120 error = 1; 5121 if (!priv->hwts_rx_en) 5122 priv->dev->stats.rx_errors++; 5123 } 5124 5125 if (unlikely(error && (status & rx_not_ls))) 5126 goto read_again; 5127 if (unlikely(error)) { 5128 dev_kfree_skb(skb); 5129 skb = NULL; 5130 count++; 5131 continue; 5132 } 5133 5134 /* Buffer is good. Go on. */ 5135 5136 prefetch(page_address(buf->page)); 5137 if (buf->sec_page) 5138 prefetch(page_address(buf->sec_page)); 5139 5140 buf1_len = stmmac_rx_buf1_len(priv, p, status, len); 5141 len += buf1_len; 5142 buf2_len = stmmac_rx_buf2_len(priv, p, status, len); 5143 len += buf2_len; 5144 5145 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3 5146 * Type frames (LLC/LLC-SNAP) 5147 * 5148 * llc_snap is never checked in GMAC >= 4, so this ACS 5149 * feature is always disabled and packets need to be 5150 * stripped manually. 5151 */ 5152 if (likely(!(status & rx_not_ls)) && 5153 (likely(priv->synopsys_id >= DWMAC_CORE_4_00) || 5154 unlikely(status != llc_snap))) { 5155 if (buf2_len) 5156 buf2_len -= ETH_FCS_LEN; 5157 else 5158 buf1_len -= ETH_FCS_LEN; 5159 5160 len -= ETH_FCS_LEN; 5161 } 5162 5163 if (!skb) { 5164 unsigned int pre_len, sync_len; 5165 5166 dma_sync_single_for_cpu(priv->device, buf->addr, 5167 buf1_len, dma_dir); 5168 5169 xdp.data = page_address(buf->page) + buf->page_offset; 5170 xdp.data_end = xdp.data + buf1_len; 5171 xdp.data_hard_start = page_address(buf->page); 5172 xdp_set_data_meta_invalid(&xdp); 5173 xdp.frame_sz = buf_sz; 5174 xdp.rxq = &rx_q->xdp_rxq; 5175 5176 pre_len = xdp.data_end - xdp.data_hard_start - 5177 buf->page_offset; 5178 skb = stmmac_xdp_run_prog(priv, &xdp); 5179 /* Due xdp_adjust_tail: DMA sync for_device 5180 * cover max len CPU touch 5181 */ 5182 sync_len = xdp.data_end - xdp.data_hard_start - 5183 buf->page_offset; 5184 sync_len = max(sync_len, pre_len); 5185 5186 /* For Not XDP_PASS verdict */ 5187 if (IS_ERR(skb)) { 5188 unsigned int xdp_res = -PTR_ERR(skb); 5189 5190 if (xdp_res & STMMAC_XDP_CONSUMED) { 5191 page_pool_put_page(rx_q->page_pool, 5192 virt_to_head_page(xdp.data), 5193 sync_len, true); 5194 buf->page = NULL; 5195 priv->dev->stats.rx_dropped++; 5196 5197 /* Clear skb as it was set as 5198 * status by XDP program. 5199 */ 5200 skb = NULL; 5201 5202 if (unlikely((status & rx_not_ls))) 5203 goto read_again; 5204 5205 count++; 5206 continue; 5207 } else if (xdp_res & (STMMAC_XDP_TX | 5208 STMMAC_XDP_REDIRECT)) { 5209 xdp_status |= xdp_res; 5210 buf->page = NULL; 5211 skb = NULL; 5212 count++; 5213 continue; 5214 } 5215 } 5216 } 5217 5218 if (!skb) { 5219 /* XDP program may expand or reduce tail */ 5220 buf1_len = xdp.data_end - xdp.data; 5221 5222 skb = napi_alloc_skb(&ch->rx_napi, buf1_len); 5223 if (!skb) { 5224 priv->dev->stats.rx_dropped++; 5225 count++; 5226 goto drain_data; 5227 } 5228 5229 /* XDP program may adjust header */ 5230 skb_copy_to_linear_data(skb, xdp.data, buf1_len); 5231 skb_put(skb, buf1_len); 5232 5233 /* Data payload copied into SKB, page ready for recycle */ 5234 page_pool_recycle_direct(rx_q->page_pool, buf->page); 5235 buf->page = NULL; 5236 } else if (buf1_len) { 5237 dma_sync_single_for_cpu(priv->device, buf->addr, 5238 buf1_len, dma_dir); 5239 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, 5240 buf->page, buf->page_offset, buf1_len, 5241 priv->dma_buf_sz); 5242 5243 /* Data payload appended into SKB */ 5244 page_pool_release_page(rx_q->page_pool, buf->page); 5245 buf->page = NULL; 5246 } 5247 5248 if (buf2_len) { 5249 dma_sync_single_for_cpu(priv->device, buf->sec_addr, 5250 buf2_len, dma_dir); 5251 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, 5252 buf->sec_page, 0, buf2_len, 5253 priv->dma_buf_sz); 5254 5255 /* Data payload appended into SKB */ 5256 page_pool_release_page(rx_q->page_pool, buf->sec_page); 5257 buf->sec_page = NULL; 5258 } 5259 5260 drain_data: 5261 if (likely(status & rx_not_ls)) 5262 goto read_again; 5263 if (!skb) 5264 continue; 5265 5266 /* Got entire packet into SKB. Finish it. */ 5267 5268 stmmac_get_rx_hwtstamp(priv, p, np, skb); 5269 stmmac_rx_vlan(priv->dev, skb); 5270 skb->protocol = eth_type_trans(skb, priv->dev); 5271 5272 if (unlikely(!coe)) 5273 skb_checksum_none_assert(skb); 5274 else 5275 skb->ip_summed = CHECKSUM_UNNECESSARY; 5276 5277 if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type)) 5278 skb_set_hash(skb, hash, hash_type); 5279 5280 skb_record_rx_queue(skb, queue); 5281 napi_gro_receive(&ch->rx_napi, skb); 5282 skb = NULL; 5283 5284 priv->dev->stats.rx_packets++; 5285 priv->dev->stats.rx_bytes += len; 5286 count++; 5287 } 5288 5289 if (status & rx_not_ls || skb) { 5290 rx_q->state_saved = true; 5291 rx_q->state.skb = skb; 5292 rx_q->state.error = error; 5293 rx_q->state.len = len; 5294 } 5295 5296 stmmac_finalize_xdp_rx(priv, xdp_status); 5297 5298 stmmac_rx_refill(priv, queue); 5299 5300 priv->xstats.rx_pkt_n += count; 5301 5302 return count; 5303 } 5304 5305 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget) 5306 { 5307 struct stmmac_channel *ch = 5308 container_of(napi, struct stmmac_channel, rx_napi); 5309 struct stmmac_priv *priv = ch->priv_data; 5310 u32 chan = ch->index; 5311 int work_done; 5312 5313 priv->xstats.napi_poll++; 5314 5315 work_done = stmmac_rx(priv, budget, chan); 5316 if (work_done < budget && napi_complete_done(napi, work_done)) { 5317 unsigned long flags; 5318 5319 spin_lock_irqsave(&ch->lock, flags); 5320 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0); 5321 spin_unlock_irqrestore(&ch->lock, flags); 5322 } 5323 5324 return work_done; 5325 } 5326 5327 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget) 5328 { 5329 struct stmmac_channel *ch = 5330 container_of(napi, struct stmmac_channel, tx_napi); 5331 struct stmmac_priv *priv = ch->priv_data; 5332 u32 chan = ch->index; 5333 int work_done; 5334 5335 priv->xstats.napi_poll++; 5336 5337 work_done = stmmac_tx_clean(priv, budget, chan); 5338 work_done = min(work_done, budget); 5339 5340 if (work_done < budget && napi_complete_done(napi, work_done)) { 5341 unsigned long flags; 5342 5343 spin_lock_irqsave(&ch->lock, flags); 5344 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1); 5345 spin_unlock_irqrestore(&ch->lock, flags); 5346 } 5347 5348 return work_done; 5349 } 5350 5351 static int stmmac_napi_poll_rxtx(struct napi_struct *napi, int budget) 5352 { 5353 struct stmmac_channel *ch = 5354 container_of(napi, struct stmmac_channel, rxtx_napi); 5355 struct stmmac_priv *priv = ch->priv_data; 5356 int rx_done, tx_done; 5357 u32 chan = ch->index; 5358 5359 priv->xstats.napi_poll++; 5360 5361 tx_done = stmmac_tx_clean(priv, budget, chan); 5362 tx_done = min(tx_done, budget); 5363 5364 rx_done = stmmac_rx_zc(priv, budget, chan); 5365 5366 /* If either TX or RX work is not complete, return budget 5367 * and keep pooling 5368 */ 5369 if (tx_done >= budget || rx_done >= budget) 5370 return budget; 5371 5372 /* all work done, exit the polling mode */ 5373 if (napi_complete_done(napi, rx_done)) { 5374 unsigned long flags; 5375 5376 spin_lock_irqsave(&ch->lock, flags); 5377 /* Both RX and TX work done are compelte, 5378 * so enable both RX & TX IRQs. 5379 */ 5380 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1); 5381 spin_unlock_irqrestore(&ch->lock, flags); 5382 } 5383 5384 return min(rx_done, budget - 1); 5385 } 5386 5387 /** 5388 * stmmac_tx_timeout 5389 * @dev : Pointer to net device structure 5390 * @txqueue: the index of the hanging transmit queue 5391 * Description: this function is called when a packet transmission fails to 5392 * complete within a reasonable time. The driver will mark the error in the 5393 * netdev structure and arrange for the device to be reset to a sane state 5394 * in order to transmit a new packet. 5395 */ 5396 static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue) 5397 { 5398 struct stmmac_priv *priv = netdev_priv(dev); 5399 5400 stmmac_global_err(priv); 5401 } 5402 5403 /** 5404 * stmmac_set_rx_mode - entry point for multicast addressing 5405 * @dev : pointer to the device structure 5406 * Description: 5407 * This function is a driver entry point which gets called by the kernel 5408 * whenever multicast addresses must be enabled/disabled. 5409 * Return value: 5410 * void. 5411 */ 5412 static void stmmac_set_rx_mode(struct net_device *dev) 5413 { 5414 struct stmmac_priv *priv = netdev_priv(dev); 5415 5416 stmmac_set_filter(priv, priv->hw, dev); 5417 } 5418 5419 /** 5420 * stmmac_change_mtu - entry point to change MTU size for the device. 5421 * @dev : device pointer. 5422 * @new_mtu : the new MTU size for the device. 5423 * Description: the Maximum Transfer Unit (MTU) is used by the network layer 5424 * to drive packet transmission. Ethernet has an MTU of 1500 octets 5425 * (ETH_DATA_LEN). This value can be changed with ifconfig. 5426 * Return value: 5427 * 0 on success and an appropriate (-)ve integer as defined in errno.h 5428 * file on failure. 5429 */ 5430 static int stmmac_change_mtu(struct net_device *dev, int new_mtu) 5431 { 5432 struct stmmac_priv *priv = netdev_priv(dev); 5433 int txfifosz = priv->plat->tx_fifo_size; 5434 const int mtu = new_mtu; 5435 5436 if (txfifosz == 0) 5437 txfifosz = priv->dma_cap.tx_fifo_size; 5438 5439 txfifosz /= priv->plat->tx_queues_to_use; 5440 5441 if (netif_running(dev)) { 5442 netdev_err(priv->dev, "must be stopped to change its MTU\n"); 5443 return -EBUSY; 5444 } 5445 5446 if (stmmac_xdp_is_enabled(priv) && new_mtu > ETH_DATA_LEN) { 5447 netdev_dbg(priv->dev, "Jumbo frames not supported for XDP\n"); 5448 return -EINVAL; 5449 } 5450 5451 new_mtu = STMMAC_ALIGN(new_mtu); 5452 5453 /* If condition true, FIFO is too small or MTU too large */ 5454 if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB)) 5455 return -EINVAL; 5456 5457 dev->mtu = mtu; 5458 5459 netdev_update_features(dev); 5460 5461 return 0; 5462 } 5463 5464 static netdev_features_t stmmac_fix_features(struct net_device *dev, 5465 netdev_features_t features) 5466 { 5467 struct stmmac_priv *priv = netdev_priv(dev); 5468 5469 if (priv->plat->rx_coe == STMMAC_RX_COE_NONE) 5470 features &= ~NETIF_F_RXCSUM; 5471 5472 if (!priv->plat->tx_coe) 5473 features &= ~NETIF_F_CSUM_MASK; 5474 5475 /* Some GMAC devices have a bugged Jumbo frame support that 5476 * needs to have the Tx COE disabled for oversized frames 5477 * (due to limited buffer sizes). In this case we disable 5478 * the TX csum insertion in the TDES and not use SF. 5479 */ 5480 if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN)) 5481 features &= ~NETIF_F_CSUM_MASK; 5482 5483 /* Disable tso if asked by ethtool */ 5484 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) { 5485 if (features & NETIF_F_TSO) 5486 priv->tso = true; 5487 else 5488 priv->tso = false; 5489 } 5490 5491 return features; 5492 } 5493 5494 static int stmmac_set_features(struct net_device *netdev, 5495 netdev_features_t features) 5496 { 5497 struct stmmac_priv *priv = netdev_priv(netdev); 5498 bool sph_en; 5499 u32 chan; 5500 5501 /* Keep the COE Type in case of csum is supporting */ 5502 if (features & NETIF_F_RXCSUM) 5503 priv->hw->rx_csum = priv->plat->rx_coe; 5504 else 5505 priv->hw->rx_csum = 0; 5506 /* No check needed because rx_coe has been set before and it will be 5507 * fixed in case of issue. 5508 */ 5509 stmmac_rx_ipc(priv, priv->hw); 5510 5511 sph_en = (priv->hw->rx_csum > 0) && priv->sph; 5512 5513 for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++) 5514 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan); 5515 5516 return 0; 5517 } 5518 5519 static void stmmac_fpe_event_status(struct stmmac_priv *priv, int status) 5520 { 5521 struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg; 5522 enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state; 5523 enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state; 5524 bool *hs_enable = &fpe_cfg->hs_enable; 5525 5526 if (status == FPE_EVENT_UNKNOWN || !*hs_enable) 5527 return; 5528 5529 /* If LP has sent verify mPacket, LP is FPE capable */ 5530 if ((status & FPE_EVENT_RVER) == FPE_EVENT_RVER) { 5531 if (*lp_state < FPE_STATE_CAPABLE) 5532 *lp_state = FPE_STATE_CAPABLE; 5533 5534 /* If user has requested FPE enable, quickly response */ 5535 if (*hs_enable) 5536 stmmac_fpe_send_mpacket(priv, priv->ioaddr, 5537 MPACKET_RESPONSE); 5538 } 5539 5540 /* If Local has sent verify mPacket, Local is FPE capable */ 5541 if ((status & FPE_EVENT_TVER) == FPE_EVENT_TVER) { 5542 if (*lo_state < FPE_STATE_CAPABLE) 5543 *lo_state = FPE_STATE_CAPABLE; 5544 } 5545 5546 /* If LP has sent response mPacket, LP is entering FPE ON */ 5547 if ((status & FPE_EVENT_RRSP) == FPE_EVENT_RRSP) 5548 *lp_state = FPE_STATE_ENTERING_ON; 5549 5550 /* If Local has sent response mPacket, Local is entering FPE ON */ 5551 if ((status & FPE_EVENT_TRSP) == FPE_EVENT_TRSP) 5552 *lo_state = FPE_STATE_ENTERING_ON; 5553 5554 if (!test_bit(__FPE_REMOVING, &priv->fpe_task_state) && 5555 !test_and_set_bit(__FPE_TASK_SCHED, &priv->fpe_task_state) && 5556 priv->fpe_wq) { 5557 queue_work(priv->fpe_wq, &priv->fpe_task); 5558 } 5559 } 5560 5561 static void stmmac_common_interrupt(struct stmmac_priv *priv) 5562 { 5563 u32 rx_cnt = priv->plat->rx_queues_to_use; 5564 u32 tx_cnt = priv->plat->tx_queues_to_use; 5565 u32 queues_count; 5566 u32 queue; 5567 bool xmac; 5568 5569 xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; 5570 queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt; 5571 5572 if (priv->irq_wake) 5573 pm_wakeup_event(priv->device, 0); 5574 5575 if (priv->dma_cap.estsel) 5576 stmmac_est_irq_status(priv, priv->ioaddr, priv->dev, 5577 &priv->xstats, tx_cnt); 5578 5579 if (priv->dma_cap.fpesel) { 5580 int status = stmmac_fpe_irq_status(priv, priv->ioaddr, 5581 priv->dev); 5582 5583 stmmac_fpe_event_status(priv, status); 5584 } 5585 5586 /* To handle GMAC own interrupts */ 5587 if ((priv->plat->has_gmac) || xmac) { 5588 int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats); 5589 int mtl_status; 5590 5591 if (unlikely(status)) { 5592 /* For LPI we need to save the tx status */ 5593 if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE) 5594 priv->tx_path_in_lpi_mode = true; 5595 if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE) 5596 priv->tx_path_in_lpi_mode = false; 5597 } 5598 5599 for (queue = 0; queue < queues_count; queue++) { 5600 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 5601 5602 mtl_status = stmmac_host_mtl_irq_status(priv, priv->hw, 5603 queue); 5604 if (mtl_status != -EINVAL) 5605 status |= mtl_status; 5606 5607 if (status & CORE_IRQ_MTL_RX_OVERFLOW) 5608 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, 5609 rx_q->rx_tail_addr, 5610 queue); 5611 } 5612 5613 /* PCS link status */ 5614 if (priv->hw->pcs) { 5615 if (priv->xstats.pcs_link) 5616 netif_carrier_on(priv->dev); 5617 else 5618 netif_carrier_off(priv->dev); 5619 } 5620 5621 stmmac_timestamp_interrupt(priv, priv); 5622 } 5623 } 5624 5625 /** 5626 * stmmac_interrupt - main ISR 5627 * @irq: interrupt number. 5628 * @dev_id: to pass the net device pointer. 5629 * Description: this is the main driver interrupt service routine. 5630 * It can call: 5631 * o DMA service routine (to manage incoming frame reception and transmission 5632 * status) 5633 * o Core interrupts to manage: remote wake-up, management counter, LPI 5634 * interrupts. 5635 */ 5636 static irqreturn_t stmmac_interrupt(int irq, void *dev_id) 5637 { 5638 struct net_device *dev = (struct net_device *)dev_id; 5639 struct stmmac_priv *priv = netdev_priv(dev); 5640 5641 /* Check if adapter is up */ 5642 if (test_bit(STMMAC_DOWN, &priv->state)) 5643 return IRQ_HANDLED; 5644 5645 /* Check if a fatal error happened */ 5646 if (stmmac_safety_feat_interrupt(priv)) 5647 return IRQ_HANDLED; 5648 5649 /* To handle Common interrupts */ 5650 stmmac_common_interrupt(priv); 5651 5652 /* To handle DMA interrupts */ 5653 stmmac_dma_interrupt(priv); 5654 5655 return IRQ_HANDLED; 5656 } 5657 5658 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id) 5659 { 5660 struct net_device *dev = (struct net_device *)dev_id; 5661 struct stmmac_priv *priv = netdev_priv(dev); 5662 5663 if (unlikely(!dev)) { 5664 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__); 5665 return IRQ_NONE; 5666 } 5667 5668 /* Check if adapter is up */ 5669 if (test_bit(STMMAC_DOWN, &priv->state)) 5670 return IRQ_HANDLED; 5671 5672 /* To handle Common interrupts */ 5673 stmmac_common_interrupt(priv); 5674 5675 return IRQ_HANDLED; 5676 } 5677 5678 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id) 5679 { 5680 struct net_device *dev = (struct net_device *)dev_id; 5681 struct stmmac_priv *priv = netdev_priv(dev); 5682 5683 if (unlikely(!dev)) { 5684 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__); 5685 return IRQ_NONE; 5686 } 5687 5688 /* Check if adapter is up */ 5689 if (test_bit(STMMAC_DOWN, &priv->state)) 5690 return IRQ_HANDLED; 5691 5692 /* Check if a fatal error happened */ 5693 stmmac_safety_feat_interrupt(priv); 5694 5695 return IRQ_HANDLED; 5696 } 5697 5698 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data) 5699 { 5700 struct stmmac_tx_queue *tx_q = (struct stmmac_tx_queue *)data; 5701 int chan = tx_q->queue_index; 5702 struct stmmac_priv *priv; 5703 int status; 5704 5705 priv = container_of(tx_q, struct stmmac_priv, tx_queue[chan]); 5706 5707 if (unlikely(!data)) { 5708 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__); 5709 return IRQ_NONE; 5710 } 5711 5712 /* Check if adapter is up */ 5713 if (test_bit(STMMAC_DOWN, &priv->state)) 5714 return IRQ_HANDLED; 5715 5716 status = stmmac_napi_check(priv, chan, DMA_DIR_TX); 5717 5718 if (unlikely(status & tx_hard_error_bump_tc)) { 5719 /* Try to bump up the dma threshold on this failure */ 5720 if (unlikely(priv->xstats.threshold != SF_DMA_MODE) && 5721 tc <= 256) { 5722 tc += 64; 5723 if (priv->plat->force_thresh_dma_mode) 5724 stmmac_set_dma_operation_mode(priv, 5725 tc, 5726 tc, 5727 chan); 5728 else 5729 stmmac_set_dma_operation_mode(priv, 5730 tc, 5731 SF_DMA_MODE, 5732 chan); 5733 priv->xstats.threshold = tc; 5734 } 5735 } else if (unlikely(status == tx_hard_error)) { 5736 stmmac_tx_err(priv, chan); 5737 } 5738 5739 return IRQ_HANDLED; 5740 } 5741 5742 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data) 5743 { 5744 struct stmmac_rx_queue *rx_q = (struct stmmac_rx_queue *)data; 5745 int chan = rx_q->queue_index; 5746 struct stmmac_priv *priv; 5747 5748 priv = container_of(rx_q, struct stmmac_priv, rx_queue[chan]); 5749 5750 if (unlikely(!data)) { 5751 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__); 5752 return IRQ_NONE; 5753 } 5754 5755 /* Check if adapter is up */ 5756 if (test_bit(STMMAC_DOWN, &priv->state)) 5757 return IRQ_HANDLED; 5758 5759 stmmac_napi_check(priv, chan, DMA_DIR_RX); 5760 5761 return IRQ_HANDLED; 5762 } 5763 5764 #ifdef CONFIG_NET_POLL_CONTROLLER 5765 /* Polling receive - used by NETCONSOLE and other diagnostic tools 5766 * to allow network I/O with interrupts disabled. 5767 */ 5768 static void stmmac_poll_controller(struct net_device *dev) 5769 { 5770 struct stmmac_priv *priv = netdev_priv(dev); 5771 int i; 5772 5773 /* If adapter is down, do nothing */ 5774 if (test_bit(STMMAC_DOWN, &priv->state)) 5775 return; 5776 5777 if (priv->plat->multi_msi_en) { 5778 for (i = 0; i < priv->plat->rx_queues_to_use; i++) 5779 stmmac_msi_intr_rx(0, &priv->rx_queue[i]); 5780 5781 for (i = 0; i < priv->plat->tx_queues_to_use; i++) 5782 stmmac_msi_intr_tx(0, &priv->tx_queue[i]); 5783 } else { 5784 disable_irq(dev->irq); 5785 stmmac_interrupt(dev->irq, dev); 5786 enable_irq(dev->irq); 5787 } 5788 } 5789 #endif 5790 5791 /** 5792 * stmmac_ioctl - Entry point for the Ioctl 5793 * @dev: Device pointer. 5794 * @rq: An IOCTL specefic structure, that can contain a pointer to 5795 * a proprietary structure used to pass information to the driver. 5796 * @cmd: IOCTL command 5797 * Description: 5798 * Currently it supports the phy_mii_ioctl(...) and HW time stamping. 5799 */ 5800 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 5801 { 5802 struct stmmac_priv *priv = netdev_priv (dev); 5803 int ret = -EOPNOTSUPP; 5804 5805 if (!netif_running(dev)) 5806 return -EINVAL; 5807 5808 switch (cmd) { 5809 case SIOCGMIIPHY: 5810 case SIOCGMIIREG: 5811 case SIOCSMIIREG: 5812 ret = phylink_mii_ioctl(priv->phylink, rq, cmd); 5813 break; 5814 case SIOCSHWTSTAMP: 5815 ret = stmmac_hwtstamp_set(dev, rq); 5816 break; 5817 case SIOCGHWTSTAMP: 5818 ret = stmmac_hwtstamp_get(dev, rq); 5819 break; 5820 default: 5821 break; 5822 } 5823 5824 return ret; 5825 } 5826 5827 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 5828 void *cb_priv) 5829 { 5830 struct stmmac_priv *priv = cb_priv; 5831 int ret = -EOPNOTSUPP; 5832 5833 if (!tc_cls_can_offload_and_chain0(priv->dev, type_data)) 5834 return ret; 5835 5836 __stmmac_disable_all_queues(priv); 5837 5838 switch (type) { 5839 case TC_SETUP_CLSU32: 5840 ret = stmmac_tc_setup_cls_u32(priv, priv, type_data); 5841 break; 5842 case TC_SETUP_CLSFLOWER: 5843 ret = stmmac_tc_setup_cls(priv, priv, type_data); 5844 break; 5845 default: 5846 break; 5847 } 5848 5849 stmmac_enable_all_queues(priv); 5850 return ret; 5851 } 5852 5853 static LIST_HEAD(stmmac_block_cb_list); 5854 5855 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type, 5856 void *type_data) 5857 { 5858 struct stmmac_priv *priv = netdev_priv(ndev); 5859 5860 switch (type) { 5861 case TC_SETUP_BLOCK: 5862 return flow_block_cb_setup_simple(type_data, 5863 &stmmac_block_cb_list, 5864 stmmac_setup_tc_block_cb, 5865 priv, priv, true); 5866 case TC_SETUP_QDISC_CBS: 5867 return stmmac_tc_setup_cbs(priv, priv, type_data); 5868 case TC_SETUP_QDISC_TAPRIO: 5869 return stmmac_tc_setup_taprio(priv, priv, type_data); 5870 case TC_SETUP_QDISC_ETF: 5871 return stmmac_tc_setup_etf(priv, priv, type_data); 5872 default: 5873 return -EOPNOTSUPP; 5874 } 5875 } 5876 5877 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb, 5878 struct net_device *sb_dev) 5879 { 5880 int gso = skb_shinfo(skb)->gso_type; 5881 5882 if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) { 5883 /* 5884 * There is no way to determine the number of TSO/USO 5885 * capable Queues. Let's use always the Queue 0 5886 * because if TSO/USO is supported then at least this 5887 * one will be capable. 5888 */ 5889 return 0; 5890 } 5891 5892 return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues; 5893 } 5894 5895 static int stmmac_set_mac_address(struct net_device *ndev, void *addr) 5896 { 5897 struct stmmac_priv *priv = netdev_priv(ndev); 5898 int ret = 0; 5899 5900 ret = eth_mac_addr(ndev, addr); 5901 if (ret) 5902 return ret; 5903 5904 stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0); 5905 5906 return ret; 5907 } 5908 5909 #ifdef CONFIG_DEBUG_FS 5910 static struct dentry *stmmac_fs_dir; 5911 5912 static void sysfs_display_ring(void *head, int size, int extend_desc, 5913 struct seq_file *seq, dma_addr_t dma_phy_addr) 5914 { 5915 int i; 5916 struct dma_extended_desc *ep = (struct dma_extended_desc *)head; 5917 struct dma_desc *p = (struct dma_desc *)head; 5918 dma_addr_t dma_addr; 5919 5920 for (i = 0; i < size; i++) { 5921 if (extend_desc) { 5922 dma_addr = dma_phy_addr + i * sizeof(*ep); 5923 seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n", 5924 i, &dma_addr, 5925 le32_to_cpu(ep->basic.des0), 5926 le32_to_cpu(ep->basic.des1), 5927 le32_to_cpu(ep->basic.des2), 5928 le32_to_cpu(ep->basic.des3)); 5929 ep++; 5930 } else { 5931 dma_addr = dma_phy_addr + i * sizeof(*p); 5932 seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n", 5933 i, &dma_addr, 5934 le32_to_cpu(p->des0), le32_to_cpu(p->des1), 5935 le32_to_cpu(p->des2), le32_to_cpu(p->des3)); 5936 p++; 5937 } 5938 seq_printf(seq, "\n"); 5939 } 5940 } 5941 5942 static int stmmac_rings_status_show(struct seq_file *seq, void *v) 5943 { 5944 struct net_device *dev = seq->private; 5945 struct stmmac_priv *priv = netdev_priv(dev); 5946 u32 rx_count = priv->plat->rx_queues_to_use; 5947 u32 tx_count = priv->plat->tx_queues_to_use; 5948 u32 queue; 5949 5950 if ((dev->flags & IFF_UP) == 0) 5951 return 0; 5952 5953 for (queue = 0; queue < rx_count; queue++) { 5954 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 5955 5956 seq_printf(seq, "RX Queue %d:\n", queue); 5957 5958 if (priv->extend_desc) { 5959 seq_printf(seq, "Extended descriptor ring:\n"); 5960 sysfs_display_ring((void *)rx_q->dma_erx, 5961 priv->dma_rx_size, 1, seq, rx_q->dma_rx_phy); 5962 } else { 5963 seq_printf(seq, "Descriptor ring:\n"); 5964 sysfs_display_ring((void *)rx_q->dma_rx, 5965 priv->dma_rx_size, 0, seq, rx_q->dma_rx_phy); 5966 } 5967 } 5968 5969 for (queue = 0; queue < tx_count; queue++) { 5970 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 5971 5972 seq_printf(seq, "TX Queue %d:\n", queue); 5973 5974 if (priv->extend_desc) { 5975 seq_printf(seq, "Extended descriptor ring:\n"); 5976 sysfs_display_ring((void *)tx_q->dma_etx, 5977 priv->dma_tx_size, 1, seq, tx_q->dma_tx_phy); 5978 } else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) { 5979 seq_printf(seq, "Descriptor ring:\n"); 5980 sysfs_display_ring((void *)tx_q->dma_tx, 5981 priv->dma_tx_size, 0, seq, tx_q->dma_tx_phy); 5982 } 5983 } 5984 5985 return 0; 5986 } 5987 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status); 5988 5989 static int stmmac_dma_cap_show(struct seq_file *seq, void *v) 5990 { 5991 struct net_device *dev = seq->private; 5992 struct stmmac_priv *priv = netdev_priv(dev); 5993 5994 if (!priv->hw_cap_support) { 5995 seq_printf(seq, "DMA HW features not supported\n"); 5996 return 0; 5997 } 5998 5999 seq_printf(seq, "==============================\n"); 6000 seq_printf(seq, "\tDMA HW features\n"); 6001 seq_printf(seq, "==============================\n"); 6002 6003 seq_printf(seq, "\t10/100 Mbps: %s\n", 6004 (priv->dma_cap.mbps_10_100) ? "Y" : "N"); 6005 seq_printf(seq, "\t1000 Mbps: %s\n", 6006 (priv->dma_cap.mbps_1000) ? "Y" : "N"); 6007 seq_printf(seq, "\tHalf duplex: %s\n", 6008 (priv->dma_cap.half_duplex) ? "Y" : "N"); 6009 seq_printf(seq, "\tHash Filter: %s\n", 6010 (priv->dma_cap.hash_filter) ? "Y" : "N"); 6011 seq_printf(seq, "\tMultiple MAC address registers: %s\n", 6012 (priv->dma_cap.multi_addr) ? "Y" : "N"); 6013 seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n", 6014 (priv->dma_cap.pcs) ? "Y" : "N"); 6015 seq_printf(seq, "\tSMA (MDIO) Interface: %s\n", 6016 (priv->dma_cap.sma_mdio) ? "Y" : "N"); 6017 seq_printf(seq, "\tPMT Remote wake up: %s\n", 6018 (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N"); 6019 seq_printf(seq, "\tPMT Magic Frame: %s\n", 6020 (priv->dma_cap.pmt_magic_frame) ? "Y" : "N"); 6021 seq_printf(seq, "\tRMON module: %s\n", 6022 (priv->dma_cap.rmon) ? "Y" : "N"); 6023 seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n", 6024 (priv->dma_cap.time_stamp) ? "Y" : "N"); 6025 seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n", 6026 (priv->dma_cap.atime_stamp) ? "Y" : "N"); 6027 seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n", 6028 (priv->dma_cap.eee) ? "Y" : "N"); 6029 seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N"); 6030 seq_printf(seq, "\tChecksum Offload in TX: %s\n", 6031 (priv->dma_cap.tx_coe) ? "Y" : "N"); 6032 if (priv->synopsys_id >= DWMAC_CORE_4_00) { 6033 seq_printf(seq, "\tIP Checksum Offload in RX: %s\n", 6034 (priv->dma_cap.rx_coe) ? "Y" : "N"); 6035 } else { 6036 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n", 6037 (priv->dma_cap.rx_coe_type1) ? "Y" : "N"); 6038 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n", 6039 (priv->dma_cap.rx_coe_type2) ? "Y" : "N"); 6040 } 6041 seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n", 6042 (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N"); 6043 seq_printf(seq, "\tNumber of Additional RX channel: %d\n", 6044 priv->dma_cap.number_rx_channel); 6045 seq_printf(seq, "\tNumber of Additional TX channel: %d\n", 6046 priv->dma_cap.number_tx_channel); 6047 seq_printf(seq, "\tNumber of Additional RX queues: %d\n", 6048 priv->dma_cap.number_rx_queues); 6049 seq_printf(seq, "\tNumber of Additional TX queues: %d\n", 6050 priv->dma_cap.number_tx_queues); 6051 seq_printf(seq, "\tEnhanced descriptors: %s\n", 6052 (priv->dma_cap.enh_desc) ? "Y" : "N"); 6053 seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size); 6054 seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size); 6055 seq_printf(seq, "\tHash Table Size: %d\n", priv->dma_cap.hash_tb_sz); 6056 seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N"); 6057 seq_printf(seq, "\tNumber of PPS Outputs: %d\n", 6058 priv->dma_cap.pps_out_num); 6059 seq_printf(seq, "\tSafety Features: %s\n", 6060 priv->dma_cap.asp ? "Y" : "N"); 6061 seq_printf(seq, "\tFlexible RX Parser: %s\n", 6062 priv->dma_cap.frpsel ? "Y" : "N"); 6063 seq_printf(seq, "\tEnhanced Addressing: %d\n", 6064 priv->dma_cap.addr64); 6065 seq_printf(seq, "\tReceive Side Scaling: %s\n", 6066 priv->dma_cap.rssen ? "Y" : "N"); 6067 seq_printf(seq, "\tVLAN Hash Filtering: %s\n", 6068 priv->dma_cap.vlhash ? "Y" : "N"); 6069 seq_printf(seq, "\tSplit Header: %s\n", 6070 priv->dma_cap.sphen ? "Y" : "N"); 6071 seq_printf(seq, "\tVLAN TX Insertion: %s\n", 6072 priv->dma_cap.vlins ? "Y" : "N"); 6073 seq_printf(seq, "\tDouble VLAN: %s\n", 6074 priv->dma_cap.dvlan ? "Y" : "N"); 6075 seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n", 6076 priv->dma_cap.l3l4fnum); 6077 seq_printf(seq, "\tARP Offloading: %s\n", 6078 priv->dma_cap.arpoffsel ? "Y" : "N"); 6079 seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n", 6080 priv->dma_cap.estsel ? "Y" : "N"); 6081 seq_printf(seq, "\tFrame Preemption (FPE): %s\n", 6082 priv->dma_cap.fpesel ? "Y" : "N"); 6083 seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n", 6084 priv->dma_cap.tbssel ? "Y" : "N"); 6085 return 0; 6086 } 6087 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap); 6088 6089 /* Use network device events to rename debugfs file entries. 6090 */ 6091 static int stmmac_device_event(struct notifier_block *unused, 6092 unsigned long event, void *ptr) 6093 { 6094 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 6095 struct stmmac_priv *priv = netdev_priv(dev); 6096 6097 if (dev->netdev_ops != &stmmac_netdev_ops) 6098 goto done; 6099 6100 switch (event) { 6101 case NETDEV_CHANGENAME: 6102 if (priv->dbgfs_dir) 6103 priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir, 6104 priv->dbgfs_dir, 6105 stmmac_fs_dir, 6106 dev->name); 6107 break; 6108 } 6109 done: 6110 return NOTIFY_DONE; 6111 } 6112 6113 static struct notifier_block stmmac_notifier = { 6114 .notifier_call = stmmac_device_event, 6115 }; 6116 6117 static void stmmac_init_fs(struct net_device *dev) 6118 { 6119 struct stmmac_priv *priv = netdev_priv(dev); 6120 6121 rtnl_lock(); 6122 6123 /* Create per netdev entries */ 6124 priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir); 6125 6126 /* Entry to report DMA RX/TX rings */ 6127 debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev, 6128 &stmmac_rings_status_fops); 6129 6130 /* Entry to report the DMA HW features */ 6131 debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev, 6132 &stmmac_dma_cap_fops); 6133 6134 rtnl_unlock(); 6135 } 6136 6137 static void stmmac_exit_fs(struct net_device *dev) 6138 { 6139 struct stmmac_priv *priv = netdev_priv(dev); 6140 6141 debugfs_remove_recursive(priv->dbgfs_dir); 6142 } 6143 #endif /* CONFIG_DEBUG_FS */ 6144 6145 static u32 stmmac_vid_crc32_le(__le16 vid_le) 6146 { 6147 unsigned char *data = (unsigned char *)&vid_le; 6148 unsigned char data_byte = 0; 6149 u32 crc = ~0x0; 6150 u32 temp = 0; 6151 int i, bits; 6152 6153 bits = get_bitmask_order(VLAN_VID_MASK); 6154 for (i = 0; i < bits; i++) { 6155 if ((i % 8) == 0) 6156 data_byte = data[i / 8]; 6157 6158 temp = ((crc & 1) ^ data_byte) & 1; 6159 crc >>= 1; 6160 data_byte >>= 1; 6161 6162 if (temp) 6163 crc ^= 0xedb88320; 6164 } 6165 6166 return crc; 6167 } 6168 6169 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double) 6170 { 6171 u32 crc, hash = 0; 6172 __le16 pmatch = 0; 6173 int count = 0; 6174 u16 vid = 0; 6175 6176 for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) { 6177 __le16 vid_le = cpu_to_le16(vid); 6178 crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28; 6179 hash |= (1 << crc); 6180 count++; 6181 } 6182 6183 if (!priv->dma_cap.vlhash) { 6184 if (count > 2) /* VID = 0 always passes filter */ 6185 return -EOPNOTSUPP; 6186 6187 pmatch = cpu_to_le16(vid); 6188 hash = 0; 6189 } 6190 6191 return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double); 6192 } 6193 6194 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid) 6195 { 6196 struct stmmac_priv *priv = netdev_priv(ndev); 6197 bool is_double = false; 6198 int ret; 6199 6200 ret = pm_runtime_get_sync(priv->device); 6201 if (ret < 0) { 6202 pm_runtime_put_noidle(priv->device); 6203 return ret; 6204 } 6205 6206 if (be16_to_cpu(proto) == ETH_P_8021AD) 6207 is_double = true; 6208 6209 set_bit(vid, priv->active_vlans); 6210 ret = stmmac_vlan_update(priv, is_double); 6211 if (ret) { 6212 clear_bit(vid, priv->active_vlans); 6213 return ret; 6214 } 6215 6216 if (priv->hw->num_vlan) { 6217 ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid); 6218 if (ret) 6219 return ret; 6220 } 6221 6222 return 0; 6223 } 6224 6225 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid) 6226 { 6227 struct stmmac_priv *priv = netdev_priv(ndev); 6228 bool is_double = false; 6229 int ret; 6230 6231 if (be16_to_cpu(proto) == ETH_P_8021AD) 6232 is_double = true; 6233 6234 clear_bit(vid, priv->active_vlans); 6235 6236 if (priv->hw->num_vlan) { 6237 ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid); 6238 if (ret) 6239 goto del_vlan_error; 6240 } 6241 6242 ret = stmmac_vlan_update(priv, is_double); 6243 6244 del_vlan_error: 6245 pm_runtime_put(priv->device); 6246 6247 return ret; 6248 } 6249 6250 static int stmmac_bpf(struct net_device *dev, struct netdev_bpf *bpf) 6251 { 6252 struct stmmac_priv *priv = netdev_priv(dev); 6253 6254 switch (bpf->command) { 6255 case XDP_SETUP_PROG: 6256 return stmmac_xdp_set_prog(priv, bpf->prog, bpf->extack); 6257 case XDP_SETUP_XSK_POOL: 6258 return stmmac_xdp_setup_pool(priv, bpf->xsk.pool, 6259 bpf->xsk.queue_id); 6260 default: 6261 return -EOPNOTSUPP; 6262 } 6263 } 6264 6265 static int stmmac_xdp_xmit(struct net_device *dev, int num_frames, 6266 struct xdp_frame **frames, u32 flags) 6267 { 6268 struct stmmac_priv *priv = netdev_priv(dev); 6269 int cpu = smp_processor_id(); 6270 struct netdev_queue *nq; 6271 int i, nxmit = 0; 6272 int queue; 6273 6274 if (unlikely(test_bit(STMMAC_DOWN, &priv->state))) 6275 return -ENETDOWN; 6276 6277 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 6278 return -EINVAL; 6279 6280 queue = stmmac_xdp_get_tx_queue(priv, cpu); 6281 nq = netdev_get_tx_queue(priv->dev, queue); 6282 6283 __netif_tx_lock(nq, cpu); 6284 /* Avoids TX time-out as we are sharing with slow path */ 6285 nq->trans_start = jiffies; 6286 6287 for (i = 0; i < num_frames; i++) { 6288 int res; 6289 6290 res = stmmac_xdp_xmit_xdpf(priv, queue, frames[i], true); 6291 if (res == STMMAC_XDP_CONSUMED) 6292 break; 6293 6294 nxmit++; 6295 } 6296 6297 if (flags & XDP_XMIT_FLUSH) { 6298 stmmac_flush_tx_descriptors(priv, queue); 6299 stmmac_tx_timer_arm(priv, queue); 6300 } 6301 6302 __netif_tx_unlock(nq); 6303 6304 return nxmit; 6305 } 6306 6307 void stmmac_disable_rx_queue(struct stmmac_priv *priv, u32 queue) 6308 { 6309 struct stmmac_channel *ch = &priv->channel[queue]; 6310 unsigned long flags; 6311 6312 spin_lock_irqsave(&ch->lock, flags); 6313 stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 1, 0); 6314 spin_unlock_irqrestore(&ch->lock, flags); 6315 6316 stmmac_stop_rx_dma(priv, queue); 6317 __free_dma_rx_desc_resources(priv, queue); 6318 } 6319 6320 void stmmac_enable_rx_queue(struct stmmac_priv *priv, u32 queue) 6321 { 6322 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 6323 struct stmmac_channel *ch = &priv->channel[queue]; 6324 unsigned long flags; 6325 u32 buf_size; 6326 int ret; 6327 6328 ret = __alloc_dma_rx_desc_resources(priv, queue); 6329 if (ret) { 6330 netdev_err(priv->dev, "Failed to alloc RX desc.\n"); 6331 return; 6332 } 6333 6334 ret = __init_dma_rx_desc_rings(priv, queue, GFP_KERNEL); 6335 if (ret) { 6336 __free_dma_rx_desc_resources(priv, queue); 6337 netdev_err(priv->dev, "Failed to init RX desc.\n"); 6338 return; 6339 } 6340 6341 stmmac_clear_rx_descriptors(priv, queue); 6342 6343 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 6344 rx_q->dma_rx_phy, rx_q->queue_index); 6345 6346 rx_q->rx_tail_addr = rx_q->dma_rx_phy + (rx_q->buf_alloc_num * 6347 sizeof(struct dma_desc)); 6348 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, 6349 rx_q->rx_tail_addr, rx_q->queue_index); 6350 6351 if (rx_q->xsk_pool && rx_q->buf_alloc_num) { 6352 buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool); 6353 stmmac_set_dma_bfsize(priv, priv->ioaddr, 6354 buf_size, 6355 rx_q->queue_index); 6356 } else { 6357 stmmac_set_dma_bfsize(priv, priv->ioaddr, 6358 priv->dma_buf_sz, 6359 rx_q->queue_index); 6360 } 6361 6362 stmmac_start_rx_dma(priv, queue); 6363 6364 spin_lock_irqsave(&ch->lock, flags); 6365 stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 1, 0); 6366 spin_unlock_irqrestore(&ch->lock, flags); 6367 } 6368 6369 void stmmac_disable_tx_queue(struct stmmac_priv *priv, u32 queue) 6370 { 6371 struct stmmac_channel *ch = &priv->channel[queue]; 6372 unsigned long flags; 6373 6374 spin_lock_irqsave(&ch->lock, flags); 6375 stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 0, 1); 6376 spin_unlock_irqrestore(&ch->lock, flags); 6377 6378 stmmac_stop_tx_dma(priv, queue); 6379 __free_dma_tx_desc_resources(priv, queue); 6380 } 6381 6382 void stmmac_enable_tx_queue(struct stmmac_priv *priv, u32 queue) 6383 { 6384 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 6385 struct stmmac_channel *ch = &priv->channel[queue]; 6386 unsigned long flags; 6387 int ret; 6388 6389 ret = __alloc_dma_tx_desc_resources(priv, queue); 6390 if (ret) { 6391 netdev_err(priv->dev, "Failed to alloc TX desc.\n"); 6392 return; 6393 } 6394 6395 ret = __init_dma_tx_desc_rings(priv, queue); 6396 if (ret) { 6397 __free_dma_tx_desc_resources(priv, queue); 6398 netdev_err(priv->dev, "Failed to init TX desc.\n"); 6399 return; 6400 } 6401 6402 stmmac_clear_tx_descriptors(priv, queue); 6403 6404 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 6405 tx_q->dma_tx_phy, tx_q->queue_index); 6406 6407 if (tx_q->tbs & STMMAC_TBS_AVAIL) 6408 stmmac_enable_tbs(priv, priv->ioaddr, 1, tx_q->queue_index); 6409 6410 tx_q->tx_tail_addr = tx_q->dma_tx_phy; 6411 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, 6412 tx_q->tx_tail_addr, tx_q->queue_index); 6413 6414 stmmac_start_tx_dma(priv, queue); 6415 6416 spin_lock_irqsave(&ch->lock, flags); 6417 stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 0, 1); 6418 spin_unlock_irqrestore(&ch->lock, flags); 6419 } 6420 6421 int stmmac_xsk_wakeup(struct net_device *dev, u32 queue, u32 flags) 6422 { 6423 struct stmmac_priv *priv = netdev_priv(dev); 6424 struct stmmac_rx_queue *rx_q; 6425 struct stmmac_tx_queue *tx_q; 6426 struct stmmac_channel *ch; 6427 6428 if (test_bit(STMMAC_DOWN, &priv->state) || 6429 !netif_carrier_ok(priv->dev)) 6430 return -ENETDOWN; 6431 6432 if (!stmmac_xdp_is_enabled(priv)) 6433 return -ENXIO; 6434 6435 if (queue >= priv->plat->rx_queues_to_use || 6436 queue >= priv->plat->tx_queues_to_use) 6437 return -EINVAL; 6438 6439 rx_q = &priv->rx_queue[queue]; 6440 tx_q = &priv->tx_queue[queue]; 6441 ch = &priv->channel[queue]; 6442 6443 if (!rx_q->xsk_pool && !tx_q->xsk_pool) 6444 return -ENXIO; 6445 6446 if (!napi_if_scheduled_mark_missed(&ch->rxtx_napi)) { 6447 /* EQoS does not have per-DMA channel SW interrupt, 6448 * so we schedule RX Napi straight-away. 6449 */ 6450 if (likely(napi_schedule_prep(&ch->rxtx_napi))) 6451 __napi_schedule(&ch->rxtx_napi); 6452 } 6453 6454 return 0; 6455 } 6456 6457 static const struct net_device_ops stmmac_netdev_ops = { 6458 .ndo_open = stmmac_open, 6459 .ndo_start_xmit = stmmac_xmit, 6460 .ndo_stop = stmmac_release, 6461 .ndo_change_mtu = stmmac_change_mtu, 6462 .ndo_fix_features = stmmac_fix_features, 6463 .ndo_set_features = stmmac_set_features, 6464 .ndo_set_rx_mode = stmmac_set_rx_mode, 6465 .ndo_tx_timeout = stmmac_tx_timeout, 6466 .ndo_do_ioctl = stmmac_ioctl, 6467 .ndo_setup_tc = stmmac_setup_tc, 6468 .ndo_select_queue = stmmac_select_queue, 6469 #ifdef CONFIG_NET_POLL_CONTROLLER 6470 .ndo_poll_controller = stmmac_poll_controller, 6471 #endif 6472 .ndo_set_mac_address = stmmac_set_mac_address, 6473 .ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid, 6474 .ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid, 6475 .ndo_bpf = stmmac_bpf, 6476 .ndo_xdp_xmit = stmmac_xdp_xmit, 6477 .ndo_xsk_wakeup = stmmac_xsk_wakeup, 6478 }; 6479 6480 static void stmmac_reset_subtask(struct stmmac_priv *priv) 6481 { 6482 if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state)) 6483 return; 6484 if (test_bit(STMMAC_DOWN, &priv->state)) 6485 return; 6486 6487 netdev_err(priv->dev, "Reset adapter.\n"); 6488 6489 rtnl_lock(); 6490 netif_trans_update(priv->dev); 6491 while (test_and_set_bit(STMMAC_RESETING, &priv->state)) 6492 usleep_range(1000, 2000); 6493 6494 set_bit(STMMAC_DOWN, &priv->state); 6495 dev_close(priv->dev); 6496 dev_open(priv->dev, NULL); 6497 clear_bit(STMMAC_DOWN, &priv->state); 6498 clear_bit(STMMAC_RESETING, &priv->state); 6499 rtnl_unlock(); 6500 } 6501 6502 static void stmmac_service_task(struct work_struct *work) 6503 { 6504 struct stmmac_priv *priv = container_of(work, struct stmmac_priv, 6505 service_task); 6506 6507 stmmac_reset_subtask(priv); 6508 clear_bit(STMMAC_SERVICE_SCHED, &priv->state); 6509 } 6510 6511 /** 6512 * stmmac_hw_init - Init the MAC device 6513 * @priv: driver private structure 6514 * Description: this function is to configure the MAC device according to 6515 * some platform parameters or the HW capability register. It prepares the 6516 * driver to use either ring or chain modes and to setup either enhanced or 6517 * normal descriptors. 6518 */ 6519 static int stmmac_hw_init(struct stmmac_priv *priv) 6520 { 6521 int ret; 6522 6523 /* dwmac-sun8i only work in chain mode */ 6524 if (priv->plat->has_sun8i) 6525 chain_mode = 1; 6526 priv->chain_mode = chain_mode; 6527 6528 /* Initialize HW Interface */ 6529 ret = stmmac_hwif_init(priv); 6530 if (ret) 6531 return ret; 6532 6533 /* Get the HW capability (new GMAC newer than 3.50a) */ 6534 priv->hw_cap_support = stmmac_get_hw_features(priv); 6535 if (priv->hw_cap_support) { 6536 dev_info(priv->device, "DMA HW capability register supported\n"); 6537 6538 /* We can override some gmac/dma configuration fields: e.g. 6539 * enh_desc, tx_coe (e.g. that are passed through the 6540 * platform) with the values from the HW capability 6541 * register (if supported). 6542 */ 6543 priv->plat->enh_desc = priv->dma_cap.enh_desc; 6544 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up; 6545 priv->hw->pmt = priv->plat->pmt; 6546 if (priv->dma_cap.hash_tb_sz) { 6547 priv->hw->multicast_filter_bins = 6548 (BIT(priv->dma_cap.hash_tb_sz) << 5); 6549 priv->hw->mcast_bits_log2 = 6550 ilog2(priv->hw->multicast_filter_bins); 6551 } 6552 6553 /* TXCOE doesn't work in thresh DMA mode */ 6554 if (priv->plat->force_thresh_dma_mode) 6555 priv->plat->tx_coe = 0; 6556 else 6557 priv->plat->tx_coe = priv->dma_cap.tx_coe; 6558 6559 /* In case of GMAC4 rx_coe is from HW cap register. */ 6560 priv->plat->rx_coe = priv->dma_cap.rx_coe; 6561 6562 if (priv->dma_cap.rx_coe_type2) 6563 priv->plat->rx_coe = STMMAC_RX_COE_TYPE2; 6564 else if (priv->dma_cap.rx_coe_type1) 6565 priv->plat->rx_coe = STMMAC_RX_COE_TYPE1; 6566 6567 } else { 6568 dev_info(priv->device, "No HW DMA feature register supported\n"); 6569 } 6570 6571 if (priv->plat->rx_coe) { 6572 priv->hw->rx_csum = priv->plat->rx_coe; 6573 dev_info(priv->device, "RX Checksum Offload Engine supported\n"); 6574 if (priv->synopsys_id < DWMAC_CORE_4_00) 6575 dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum); 6576 } 6577 if (priv->plat->tx_coe) 6578 dev_info(priv->device, "TX Checksum insertion supported\n"); 6579 6580 if (priv->plat->pmt) { 6581 dev_info(priv->device, "Wake-Up On Lan supported\n"); 6582 device_set_wakeup_capable(priv->device, 1); 6583 } 6584 6585 if (priv->dma_cap.tsoen) 6586 dev_info(priv->device, "TSO supported\n"); 6587 6588 priv->hw->vlan_fail_q_en = priv->plat->vlan_fail_q_en; 6589 priv->hw->vlan_fail_q = priv->plat->vlan_fail_q; 6590 6591 /* Run HW quirks, if any */ 6592 if (priv->hwif_quirks) { 6593 ret = priv->hwif_quirks(priv); 6594 if (ret) 6595 return ret; 6596 } 6597 6598 /* Rx Watchdog is available in the COREs newer than the 3.40. 6599 * In some case, for example on bugged HW this feature 6600 * has to be disable and this can be done by passing the 6601 * riwt_off field from the platform. 6602 */ 6603 if (((priv->synopsys_id >= DWMAC_CORE_3_50) || 6604 (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) { 6605 priv->use_riwt = 1; 6606 dev_info(priv->device, 6607 "Enable RX Mitigation via HW Watchdog Timer\n"); 6608 } 6609 6610 return 0; 6611 } 6612 6613 static void stmmac_napi_add(struct net_device *dev) 6614 { 6615 struct stmmac_priv *priv = netdev_priv(dev); 6616 u32 queue, maxq; 6617 6618 maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use); 6619 6620 for (queue = 0; queue < maxq; queue++) { 6621 struct stmmac_channel *ch = &priv->channel[queue]; 6622 6623 ch->priv_data = priv; 6624 ch->index = queue; 6625 spin_lock_init(&ch->lock); 6626 6627 if (queue < priv->plat->rx_queues_to_use) { 6628 netif_napi_add(dev, &ch->rx_napi, stmmac_napi_poll_rx, 6629 NAPI_POLL_WEIGHT); 6630 } 6631 if (queue < priv->plat->tx_queues_to_use) { 6632 netif_tx_napi_add(dev, &ch->tx_napi, 6633 stmmac_napi_poll_tx, 6634 NAPI_POLL_WEIGHT); 6635 } 6636 if (queue < priv->plat->rx_queues_to_use && 6637 queue < priv->plat->tx_queues_to_use) { 6638 netif_napi_add(dev, &ch->rxtx_napi, 6639 stmmac_napi_poll_rxtx, 6640 NAPI_POLL_WEIGHT); 6641 } 6642 } 6643 } 6644 6645 static void stmmac_napi_del(struct net_device *dev) 6646 { 6647 struct stmmac_priv *priv = netdev_priv(dev); 6648 u32 queue, maxq; 6649 6650 maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use); 6651 6652 for (queue = 0; queue < maxq; queue++) { 6653 struct stmmac_channel *ch = &priv->channel[queue]; 6654 6655 if (queue < priv->plat->rx_queues_to_use) 6656 netif_napi_del(&ch->rx_napi); 6657 if (queue < priv->plat->tx_queues_to_use) 6658 netif_napi_del(&ch->tx_napi); 6659 if (queue < priv->plat->rx_queues_to_use && 6660 queue < priv->plat->tx_queues_to_use) { 6661 netif_napi_del(&ch->rxtx_napi); 6662 } 6663 } 6664 } 6665 6666 int stmmac_reinit_queues(struct net_device *dev, u32 rx_cnt, u32 tx_cnt) 6667 { 6668 struct stmmac_priv *priv = netdev_priv(dev); 6669 int ret = 0; 6670 6671 if (netif_running(dev)) 6672 stmmac_release(dev); 6673 6674 stmmac_napi_del(dev); 6675 6676 priv->plat->rx_queues_to_use = rx_cnt; 6677 priv->plat->tx_queues_to_use = tx_cnt; 6678 6679 stmmac_napi_add(dev); 6680 6681 if (netif_running(dev)) 6682 ret = stmmac_open(dev); 6683 6684 return ret; 6685 } 6686 6687 int stmmac_reinit_ringparam(struct net_device *dev, u32 rx_size, u32 tx_size) 6688 { 6689 struct stmmac_priv *priv = netdev_priv(dev); 6690 int ret = 0; 6691 6692 if (netif_running(dev)) 6693 stmmac_release(dev); 6694 6695 priv->dma_rx_size = rx_size; 6696 priv->dma_tx_size = tx_size; 6697 6698 if (netif_running(dev)) 6699 ret = stmmac_open(dev); 6700 6701 return ret; 6702 } 6703 6704 #define SEND_VERIFY_MPAKCET_FMT "Send Verify mPacket lo_state=%d lp_state=%d\n" 6705 static void stmmac_fpe_lp_task(struct work_struct *work) 6706 { 6707 struct stmmac_priv *priv = container_of(work, struct stmmac_priv, 6708 fpe_task); 6709 struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg; 6710 enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state; 6711 enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state; 6712 bool *hs_enable = &fpe_cfg->hs_enable; 6713 bool *enable = &fpe_cfg->enable; 6714 int retries = 20; 6715 6716 while (retries-- > 0) { 6717 /* Bail out immediately if FPE handshake is OFF */ 6718 if (*lo_state == FPE_STATE_OFF || !*hs_enable) 6719 break; 6720 6721 if (*lo_state == FPE_STATE_ENTERING_ON && 6722 *lp_state == FPE_STATE_ENTERING_ON) { 6723 stmmac_fpe_configure(priv, priv->ioaddr, 6724 priv->plat->tx_queues_to_use, 6725 priv->plat->rx_queues_to_use, 6726 *enable); 6727 6728 netdev_info(priv->dev, "configured FPE\n"); 6729 6730 *lo_state = FPE_STATE_ON; 6731 *lp_state = FPE_STATE_ON; 6732 netdev_info(priv->dev, "!!! BOTH FPE stations ON\n"); 6733 break; 6734 } 6735 6736 if ((*lo_state == FPE_STATE_CAPABLE || 6737 *lo_state == FPE_STATE_ENTERING_ON) && 6738 *lp_state != FPE_STATE_ON) { 6739 netdev_info(priv->dev, SEND_VERIFY_MPAKCET_FMT, 6740 *lo_state, *lp_state); 6741 stmmac_fpe_send_mpacket(priv, priv->ioaddr, 6742 MPACKET_VERIFY); 6743 } 6744 /* Sleep then retry */ 6745 msleep(500); 6746 } 6747 6748 clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state); 6749 } 6750 6751 void stmmac_fpe_handshake(struct stmmac_priv *priv, bool enable) 6752 { 6753 if (priv->plat->fpe_cfg->hs_enable != enable) { 6754 if (enable) { 6755 stmmac_fpe_send_mpacket(priv, priv->ioaddr, 6756 MPACKET_VERIFY); 6757 } else { 6758 priv->plat->fpe_cfg->lo_fpe_state = FPE_STATE_OFF; 6759 priv->plat->fpe_cfg->lp_fpe_state = FPE_STATE_OFF; 6760 } 6761 6762 priv->plat->fpe_cfg->hs_enable = enable; 6763 } 6764 } 6765 6766 /** 6767 * stmmac_dvr_probe 6768 * @device: device pointer 6769 * @plat_dat: platform data pointer 6770 * @res: stmmac resource pointer 6771 * Description: this is the main probe function used to 6772 * call the alloc_etherdev, allocate the priv structure. 6773 * Return: 6774 * returns 0 on success, otherwise errno. 6775 */ 6776 int stmmac_dvr_probe(struct device *device, 6777 struct plat_stmmacenet_data *plat_dat, 6778 struct stmmac_resources *res) 6779 { 6780 struct net_device *ndev = NULL; 6781 struct stmmac_priv *priv; 6782 u32 rxq; 6783 int i, ret = 0; 6784 6785 ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv), 6786 MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES); 6787 if (!ndev) 6788 return -ENOMEM; 6789 6790 SET_NETDEV_DEV(ndev, device); 6791 6792 priv = netdev_priv(ndev); 6793 priv->device = device; 6794 priv->dev = ndev; 6795 6796 stmmac_set_ethtool_ops(ndev); 6797 priv->pause = pause; 6798 priv->plat = plat_dat; 6799 priv->ioaddr = res->addr; 6800 priv->dev->base_addr = (unsigned long)res->addr; 6801 priv->plat->dma_cfg->multi_msi_en = priv->plat->multi_msi_en; 6802 6803 priv->dev->irq = res->irq; 6804 priv->wol_irq = res->wol_irq; 6805 priv->lpi_irq = res->lpi_irq; 6806 priv->sfty_ce_irq = res->sfty_ce_irq; 6807 priv->sfty_ue_irq = res->sfty_ue_irq; 6808 for (i = 0; i < MTL_MAX_RX_QUEUES; i++) 6809 priv->rx_irq[i] = res->rx_irq[i]; 6810 for (i = 0; i < MTL_MAX_TX_QUEUES; i++) 6811 priv->tx_irq[i] = res->tx_irq[i]; 6812 6813 if (!is_zero_ether_addr(res->mac)) 6814 memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN); 6815 6816 dev_set_drvdata(device, priv->dev); 6817 6818 /* Verify driver arguments */ 6819 stmmac_verify_args(); 6820 6821 priv->af_xdp_zc_qps = bitmap_zalloc(MTL_MAX_TX_QUEUES, GFP_KERNEL); 6822 if (!priv->af_xdp_zc_qps) 6823 return -ENOMEM; 6824 6825 /* Allocate workqueue */ 6826 priv->wq = create_singlethread_workqueue("stmmac_wq"); 6827 if (!priv->wq) { 6828 dev_err(priv->device, "failed to create workqueue\n"); 6829 return -ENOMEM; 6830 } 6831 6832 INIT_WORK(&priv->service_task, stmmac_service_task); 6833 6834 /* Initialize Link Partner FPE workqueue */ 6835 INIT_WORK(&priv->fpe_task, stmmac_fpe_lp_task); 6836 6837 /* Override with kernel parameters if supplied XXX CRS XXX 6838 * this needs to have multiple instances 6839 */ 6840 if ((phyaddr >= 0) && (phyaddr <= 31)) 6841 priv->plat->phy_addr = phyaddr; 6842 6843 if (priv->plat->stmmac_rst) { 6844 ret = reset_control_assert(priv->plat->stmmac_rst); 6845 reset_control_deassert(priv->plat->stmmac_rst); 6846 /* Some reset controllers have only reset callback instead of 6847 * assert + deassert callbacks pair. 6848 */ 6849 if (ret == -ENOTSUPP) 6850 reset_control_reset(priv->plat->stmmac_rst); 6851 } 6852 6853 /* Init MAC and get the capabilities */ 6854 ret = stmmac_hw_init(priv); 6855 if (ret) 6856 goto error_hw_init; 6857 6858 /* Only DWMAC core version 5.20 onwards supports HW descriptor prefetch. 6859 */ 6860 if (priv->synopsys_id < DWMAC_CORE_5_20) 6861 priv->plat->dma_cfg->dche = false; 6862 6863 stmmac_check_ether_addr(priv); 6864 6865 ndev->netdev_ops = &stmmac_netdev_ops; 6866 6867 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 6868 NETIF_F_RXCSUM; 6869 6870 ret = stmmac_tc_init(priv, priv); 6871 if (!ret) { 6872 ndev->hw_features |= NETIF_F_HW_TC; 6873 } 6874 6875 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) { 6876 ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6; 6877 if (priv->plat->has_gmac4) 6878 ndev->hw_features |= NETIF_F_GSO_UDP_L4; 6879 priv->tso = true; 6880 dev_info(priv->device, "TSO feature enabled\n"); 6881 } 6882 6883 if (priv->dma_cap.sphen) { 6884 ndev->hw_features |= NETIF_F_GRO; 6885 priv->sph_cap = true; 6886 priv->sph = priv->sph_cap; 6887 dev_info(priv->device, "SPH feature enabled\n"); 6888 } 6889 6890 /* The current IP register MAC_HW_Feature1[ADDR64] only define 6891 * 32/40/64 bit width, but some SOC support others like i.MX8MP 6892 * support 34 bits but it map to 40 bits width in MAC_HW_Feature1[ADDR64]. 6893 * So overwrite dma_cap.addr64 according to HW real design. 6894 */ 6895 if (priv->plat->addr64) 6896 priv->dma_cap.addr64 = priv->plat->addr64; 6897 6898 if (priv->dma_cap.addr64) { 6899 ret = dma_set_mask_and_coherent(device, 6900 DMA_BIT_MASK(priv->dma_cap.addr64)); 6901 if (!ret) { 6902 dev_info(priv->device, "Using %d bits DMA width\n", 6903 priv->dma_cap.addr64); 6904 6905 /* 6906 * If more than 32 bits can be addressed, make sure to 6907 * enable enhanced addressing mode. 6908 */ 6909 if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT)) 6910 priv->plat->dma_cfg->eame = true; 6911 } else { 6912 ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32)); 6913 if (ret) { 6914 dev_err(priv->device, "Failed to set DMA Mask\n"); 6915 goto error_hw_init; 6916 } 6917 6918 priv->dma_cap.addr64 = 32; 6919 } 6920 } 6921 6922 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA; 6923 ndev->watchdog_timeo = msecs_to_jiffies(watchdog); 6924 #ifdef STMMAC_VLAN_TAG_USED 6925 /* Both mac100 and gmac support receive VLAN tag detection */ 6926 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX; 6927 if (priv->dma_cap.vlhash) { 6928 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 6929 ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER; 6930 } 6931 if (priv->dma_cap.vlins) { 6932 ndev->features |= NETIF_F_HW_VLAN_CTAG_TX; 6933 if (priv->dma_cap.dvlan) 6934 ndev->features |= NETIF_F_HW_VLAN_STAG_TX; 6935 } 6936 #endif 6937 priv->msg_enable = netif_msg_init(debug, default_msg_level); 6938 6939 /* Initialize RSS */ 6940 rxq = priv->plat->rx_queues_to_use; 6941 netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key)); 6942 for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++) 6943 priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq); 6944 6945 if (priv->dma_cap.rssen && priv->plat->rss_en) 6946 ndev->features |= NETIF_F_RXHASH; 6947 6948 /* MTU range: 46 - hw-specific max */ 6949 ndev->min_mtu = ETH_ZLEN - ETH_HLEN; 6950 if (priv->plat->has_xgmac) 6951 ndev->max_mtu = XGMAC_JUMBO_LEN; 6952 else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00)) 6953 ndev->max_mtu = JUMBO_LEN; 6954 else 6955 ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN); 6956 /* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu 6957 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range. 6958 */ 6959 if ((priv->plat->maxmtu < ndev->max_mtu) && 6960 (priv->plat->maxmtu >= ndev->min_mtu)) 6961 ndev->max_mtu = priv->plat->maxmtu; 6962 else if (priv->plat->maxmtu < ndev->min_mtu) 6963 dev_warn(priv->device, 6964 "%s: warning: maxmtu having invalid value (%d)\n", 6965 __func__, priv->plat->maxmtu); 6966 6967 if (flow_ctrl) 6968 priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */ 6969 6970 /* Setup channels NAPI */ 6971 stmmac_napi_add(ndev); 6972 6973 mutex_init(&priv->lock); 6974 6975 /* If a specific clk_csr value is passed from the platform 6976 * this means that the CSR Clock Range selection cannot be 6977 * changed at run-time and it is fixed. Viceversa the driver'll try to 6978 * set the MDC clock dynamically according to the csr actual 6979 * clock input. 6980 */ 6981 if (priv->plat->clk_csr >= 0) 6982 priv->clk_csr = priv->plat->clk_csr; 6983 else 6984 stmmac_clk_csr_set(priv); 6985 6986 stmmac_check_pcs_mode(priv); 6987 6988 pm_runtime_get_noresume(device); 6989 pm_runtime_set_active(device); 6990 pm_runtime_enable(device); 6991 6992 if (priv->hw->pcs != STMMAC_PCS_TBI && 6993 priv->hw->pcs != STMMAC_PCS_RTBI) { 6994 /* MDIO bus Registration */ 6995 ret = stmmac_mdio_register(ndev); 6996 if (ret < 0) { 6997 dev_err(priv->device, 6998 "%s: MDIO bus (id: %d) registration failed", 6999 __func__, priv->plat->bus_id); 7000 goto error_mdio_register; 7001 } 7002 } 7003 7004 ret = stmmac_phy_setup(priv); 7005 if (ret) { 7006 netdev_err(ndev, "failed to setup phy (%d)\n", ret); 7007 goto error_phy_setup; 7008 } 7009 7010 ret = register_netdev(ndev); 7011 if (ret) { 7012 dev_err(priv->device, "%s: ERROR %i registering the device\n", 7013 __func__, ret); 7014 goto error_netdev_register; 7015 } 7016 7017 if (priv->plat->serdes_powerup) { 7018 ret = priv->plat->serdes_powerup(ndev, 7019 priv->plat->bsp_priv); 7020 7021 if (ret < 0) 7022 goto error_serdes_powerup; 7023 } 7024 7025 #ifdef CONFIG_DEBUG_FS 7026 stmmac_init_fs(ndev); 7027 #endif 7028 7029 /* Let pm_runtime_put() disable the clocks. 7030 * If CONFIG_PM is not enabled, the clocks will stay powered. 7031 */ 7032 pm_runtime_put(device); 7033 7034 return ret; 7035 7036 error_serdes_powerup: 7037 unregister_netdev(ndev); 7038 error_netdev_register: 7039 phylink_destroy(priv->phylink); 7040 error_phy_setup: 7041 if (priv->hw->pcs != STMMAC_PCS_TBI && 7042 priv->hw->pcs != STMMAC_PCS_RTBI) 7043 stmmac_mdio_unregister(ndev); 7044 error_mdio_register: 7045 stmmac_napi_del(ndev); 7046 error_hw_init: 7047 destroy_workqueue(priv->wq); 7048 stmmac_bus_clks_config(priv, false); 7049 bitmap_free(priv->af_xdp_zc_qps); 7050 7051 return ret; 7052 } 7053 EXPORT_SYMBOL_GPL(stmmac_dvr_probe); 7054 7055 /** 7056 * stmmac_dvr_remove 7057 * @dev: device pointer 7058 * Description: this function resets the TX/RX processes, disables the MAC RX/TX 7059 * changes the link status, releases the DMA descriptor rings. 7060 */ 7061 int stmmac_dvr_remove(struct device *dev) 7062 { 7063 struct net_device *ndev = dev_get_drvdata(dev); 7064 struct stmmac_priv *priv = netdev_priv(ndev); 7065 7066 netdev_info(priv->dev, "%s: removing driver", __func__); 7067 7068 stmmac_stop_all_dma(priv); 7069 stmmac_mac_set(priv, priv->ioaddr, false); 7070 netif_carrier_off(ndev); 7071 unregister_netdev(ndev); 7072 7073 /* Serdes power down needs to happen after VLAN filter 7074 * is deleted that is triggered by unregister_netdev(). 7075 */ 7076 if (priv->plat->serdes_powerdown) 7077 priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv); 7078 7079 #ifdef CONFIG_DEBUG_FS 7080 stmmac_exit_fs(ndev); 7081 #endif 7082 phylink_destroy(priv->phylink); 7083 if (priv->plat->stmmac_rst) 7084 reset_control_assert(priv->plat->stmmac_rst); 7085 pm_runtime_put(dev); 7086 pm_runtime_disable(dev); 7087 if (priv->hw->pcs != STMMAC_PCS_TBI && 7088 priv->hw->pcs != STMMAC_PCS_RTBI) 7089 stmmac_mdio_unregister(ndev); 7090 destroy_workqueue(priv->wq); 7091 mutex_destroy(&priv->lock); 7092 bitmap_free(priv->af_xdp_zc_qps); 7093 7094 return 0; 7095 } 7096 EXPORT_SYMBOL_GPL(stmmac_dvr_remove); 7097 7098 /** 7099 * stmmac_suspend - suspend callback 7100 * @dev: device pointer 7101 * Description: this is the function to suspend the device and it is called 7102 * by the platform driver to stop the network queue, release the resources, 7103 * program the PMT register (for WoL), clean and release driver resources. 7104 */ 7105 int stmmac_suspend(struct device *dev) 7106 { 7107 struct net_device *ndev = dev_get_drvdata(dev); 7108 struct stmmac_priv *priv = netdev_priv(ndev); 7109 u32 chan; 7110 int ret; 7111 7112 if (!ndev || !netif_running(ndev)) 7113 return 0; 7114 7115 phylink_mac_change(priv->phylink, false); 7116 7117 mutex_lock(&priv->lock); 7118 7119 netif_device_detach(ndev); 7120 7121 stmmac_disable_all_queues(priv); 7122 7123 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 7124 hrtimer_cancel(&priv->tx_queue[chan].txtimer); 7125 7126 if (priv->eee_enabled) { 7127 priv->tx_path_in_lpi_mode = false; 7128 del_timer_sync(&priv->eee_ctrl_timer); 7129 } 7130 7131 /* Stop TX/RX DMA */ 7132 stmmac_stop_all_dma(priv); 7133 7134 if (priv->plat->serdes_powerdown) 7135 priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv); 7136 7137 /* Enable Power down mode by programming the PMT regs */ 7138 if (device_may_wakeup(priv->device) && priv->plat->pmt) { 7139 stmmac_pmt(priv, priv->hw, priv->wolopts); 7140 priv->irq_wake = 1; 7141 } else { 7142 mutex_unlock(&priv->lock); 7143 rtnl_lock(); 7144 if (device_may_wakeup(priv->device)) 7145 phylink_speed_down(priv->phylink, false); 7146 phylink_stop(priv->phylink); 7147 rtnl_unlock(); 7148 mutex_lock(&priv->lock); 7149 7150 stmmac_mac_set(priv, priv->ioaddr, false); 7151 pinctrl_pm_select_sleep_state(priv->device); 7152 /* Disable clock in case of PWM is off */ 7153 clk_disable_unprepare(priv->plat->clk_ptp_ref); 7154 ret = pm_runtime_force_suspend(dev); 7155 if (ret) { 7156 mutex_unlock(&priv->lock); 7157 return ret; 7158 } 7159 } 7160 7161 mutex_unlock(&priv->lock); 7162 7163 if (priv->dma_cap.fpesel) { 7164 /* Disable FPE */ 7165 stmmac_fpe_configure(priv, priv->ioaddr, 7166 priv->plat->tx_queues_to_use, 7167 priv->plat->rx_queues_to_use, false); 7168 7169 stmmac_fpe_handshake(priv, false); 7170 } 7171 7172 priv->speed = SPEED_UNKNOWN; 7173 return 0; 7174 } 7175 EXPORT_SYMBOL_GPL(stmmac_suspend); 7176 7177 /** 7178 * stmmac_reset_queues_param - reset queue parameters 7179 * @priv: device pointer 7180 */ 7181 static void stmmac_reset_queues_param(struct stmmac_priv *priv) 7182 { 7183 u32 rx_cnt = priv->plat->rx_queues_to_use; 7184 u32 tx_cnt = priv->plat->tx_queues_to_use; 7185 u32 queue; 7186 7187 for (queue = 0; queue < rx_cnt; queue++) { 7188 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 7189 7190 rx_q->cur_rx = 0; 7191 rx_q->dirty_rx = 0; 7192 } 7193 7194 for (queue = 0; queue < tx_cnt; queue++) { 7195 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 7196 7197 tx_q->cur_tx = 0; 7198 tx_q->dirty_tx = 0; 7199 tx_q->mss = 0; 7200 7201 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue)); 7202 } 7203 } 7204 7205 /** 7206 * stmmac_resume - resume callback 7207 * @dev: device pointer 7208 * Description: when resume this function is invoked to setup the DMA and CORE 7209 * in a usable state. 7210 */ 7211 int stmmac_resume(struct device *dev) 7212 { 7213 struct net_device *ndev = dev_get_drvdata(dev); 7214 struct stmmac_priv *priv = netdev_priv(ndev); 7215 int ret; 7216 7217 if (!netif_running(ndev)) 7218 return 0; 7219 7220 /* Power Down bit, into the PM register, is cleared 7221 * automatically as soon as a magic packet or a Wake-up frame 7222 * is received. Anyway, it's better to manually clear 7223 * this bit because it can generate problems while resuming 7224 * from another devices (e.g. serial console). 7225 */ 7226 if (device_may_wakeup(priv->device) && priv->plat->pmt) { 7227 mutex_lock(&priv->lock); 7228 stmmac_pmt(priv, priv->hw, 0); 7229 mutex_unlock(&priv->lock); 7230 priv->irq_wake = 0; 7231 } else { 7232 pinctrl_pm_select_default_state(priv->device); 7233 /* enable the clk previously disabled */ 7234 ret = pm_runtime_force_resume(dev); 7235 if (ret) 7236 return ret; 7237 if (priv->plat->clk_ptp_ref) 7238 clk_prepare_enable(priv->plat->clk_ptp_ref); 7239 /* reset the phy so that it's ready */ 7240 if (priv->mii) 7241 stmmac_mdio_reset(priv->mii); 7242 } 7243 7244 if (priv->plat->serdes_powerup) { 7245 ret = priv->plat->serdes_powerup(ndev, 7246 priv->plat->bsp_priv); 7247 7248 if (ret < 0) 7249 return ret; 7250 } 7251 7252 if (!device_may_wakeup(priv->device) || !priv->plat->pmt) { 7253 rtnl_lock(); 7254 phylink_start(priv->phylink); 7255 /* We may have called phylink_speed_down before */ 7256 phylink_speed_up(priv->phylink); 7257 rtnl_unlock(); 7258 } 7259 7260 rtnl_lock(); 7261 mutex_lock(&priv->lock); 7262 7263 stmmac_reset_queues_param(priv); 7264 7265 stmmac_free_tx_skbufs(priv); 7266 stmmac_clear_descriptors(priv); 7267 7268 stmmac_hw_setup(ndev, false); 7269 stmmac_init_coalesce(priv); 7270 stmmac_set_rx_mode(ndev); 7271 7272 stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw); 7273 7274 stmmac_enable_all_queues(priv); 7275 7276 mutex_unlock(&priv->lock); 7277 rtnl_unlock(); 7278 7279 phylink_mac_change(priv->phylink, true); 7280 7281 netif_device_attach(ndev); 7282 7283 return 0; 7284 } 7285 EXPORT_SYMBOL_GPL(stmmac_resume); 7286 7287 #ifndef MODULE 7288 static int __init stmmac_cmdline_opt(char *str) 7289 { 7290 char *opt; 7291 7292 if (!str || !*str) 7293 return -EINVAL; 7294 while ((opt = strsep(&str, ",")) != NULL) { 7295 if (!strncmp(opt, "debug:", 6)) { 7296 if (kstrtoint(opt + 6, 0, &debug)) 7297 goto err; 7298 } else if (!strncmp(opt, "phyaddr:", 8)) { 7299 if (kstrtoint(opt + 8, 0, &phyaddr)) 7300 goto err; 7301 } else if (!strncmp(opt, "buf_sz:", 7)) { 7302 if (kstrtoint(opt + 7, 0, &buf_sz)) 7303 goto err; 7304 } else if (!strncmp(opt, "tc:", 3)) { 7305 if (kstrtoint(opt + 3, 0, &tc)) 7306 goto err; 7307 } else if (!strncmp(opt, "watchdog:", 9)) { 7308 if (kstrtoint(opt + 9, 0, &watchdog)) 7309 goto err; 7310 } else if (!strncmp(opt, "flow_ctrl:", 10)) { 7311 if (kstrtoint(opt + 10, 0, &flow_ctrl)) 7312 goto err; 7313 } else if (!strncmp(opt, "pause:", 6)) { 7314 if (kstrtoint(opt + 6, 0, &pause)) 7315 goto err; 7316 } else if (!strncmp(opt, "eee_timer:", 10)) { 7317 if (kstrtoint(opt + 10, 0, &eee_timer)) 7318 goto err; 7319 } else if (!strncmp(opt, "chain_mode:", 11)) { 7320 if (kstrtoint(opt + 11, 0, &chain_mode)) 7321 goto err; 7322 } 7323 } 7324 return 0; 7325 7326 err: 7327 pr_err("%s: ERROR broken module parameter conversion", __func__); 7328 return -EINVAL; 7329 } 7330 7331 __setup("stmmaceth=", stmmac_cmdline_opt); 7332 #endif /* MODULE */ 7333 7334 static int __init stmmac_init(void) 7335 { 7336 #ifdef CONFIG_DEBUG_FS 7337 /* Create debugfs main directory if it doesn't exist yet */ 7338 if (!stmmac_fs_dir) 7339 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL); 7340 register_netdevice_notifier(&stmmac_notifier); 7341 #endif 7342 7343 return 0; 7344 } 7345 7346 static void __exit stmmac_exit(void) 7347 { 7348 #ifdef CONFIG_DEBUG_FS 7349 unregister_netdevice_notifier(&stmmac_notifier); 7350 debugfs_remove_recursive(stmmac_fs_dir); 7351 #endif 7352 } 7353 7354 module_init(stmmac_init) 7355 module_exit(stmmac_exit) 7356 7357 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver"); 7358 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>"); 7359 MODULE_LICENSE("GPL"); 7360