xref: /linux/drivers/net/ethernet/stmicro/stmmac/stmmac_main.c (revision 3f3a1675b731e532d479e65570f2904878fbd9f0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*******************************************************************************
3   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
4   ST Ethernet IPs are built around a Synopsys IP Core.
5 
6 	Copyright(C) 2007-2011 STMicroelectronics Ltd
7 
8 
9   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
10 
11   Documentation available at:
12 	http://www.stlinux.com
13   Support available at:
14 	https://bugzilla.stlinux.com/
15 *******************************************************************************/
16 
17 #include <linux/clk.h>
18 #include <linux/kernel.h>
19 #include <linux/interrupt.h>
20 #include <linux/ip.h>
21 #include <linux/tcp.h>
22 #include <linux/skbuff.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_ether.h>
25 #include <linux/crc32.h>
26 #include <linux/mii.h>
27 #include <linux/if.h>
28 #include <linux/if_vlan.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/slab.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/prefetch.h>
33 #include <linux/pinctrl/consumer.h>
34 #ifdef CONFIG_DEBUG_FS
35 #include <linux/debugfs.h>
36 #include <linux/seq_file.h>
37 #endif /* CONFIG_DEBUG_FS */
38 #include <linux/net_tstamp.h>
39 #include <linux/phylink.h>
40 #include <linux/udp.h>
41 #include <linux/bpf_trace.h>
42 #include <net/pkt_cls.h>
43 #include <net/xdp_sock_drv.h>
44 #include "stmmac_ptp.h"
45 #include "stmmac.h"
46 #include "stmmac_xdp.h"
47 #include <linux/reset.h>
48 #include <linux/of_mdio.h>
49 #include "dwmac1000.h"
50 #include "dwxgmac2.h"
51 #include "hwif.h"
52 
53 /* As long as the interface is active, we keep the timestamping counter enabled
54  * with fine resolution and binary rollover. This avoid non-monotonic behavior
55  * (clock jumps) when changing timestamping settings at runtime.
56  */
57 #define STMMAC_HWTS_ACTIVE	(PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | \
58 				 PTP_TCR_TSCTRLSSR)
59 
60 #define	STMMAC_ALIGN(x)		ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16)
61 #define	TSO_MAX_BUFF_SIZE	(SZ_16K - 1)
62 
63 /* Module parameters */
64 #define TX_TIMEO	5000
65 static int watchdog = TX_TIMEO;
66 module_param(watchdog, int, 0644);
67 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
68 
69 static int debug = -1;
70 module_param(debug, int, 0644);
71 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
72 
73 static int phyaddr = -1;
74 module_param(phyaddr, int, 0444);
75 MODULE_PARM_DESC(phyaddr, "Physical device address");
76 
77 #define STMMAC_TX_THRESH(x)	((x)->dma_conf.dma_tx_size / 4)
78 #define STMMAC_RX_THRESH(x)	((x)->dma_conf.dma_rx_size / 4)
79 
80 /* Limit to make sure XDP TX and slow path can coexist */
81 #define STMMAC_XSK_TX_BUDGET_MAX	256
82 #define STMMAC_TX_XSK_AVAIL		16
83 #define STMMAC_RX_FILL_BATCH		16
84 
85 #define STMMAC_XDP_PASS		0
86 #define STMMAC_XDP_CONSUMED	BIT(0)
87 #define STMMAC_XDP_TX		BIT(1)
88 #define STMMAC_XDP_REDIRECT	BIT(2)
89 
90 static int flow_ctrl = FLOW_AUTO;
91 module_param(flow_ctrl, int, 0644);
92 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
93 
94 static int pause = PAUSE_TIME;
95 module_param(pause, int, 0644);
96 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
97 
98 #define TC_DEFAULT 64
99 static int tc = TC_DEFAULT;
100 module_param(tc, int, 0644);
101 MODULE_PARM_DESC(tc, "DMA threshold control value");
102 
103 #define	DEFAULT_BUFSIZE	1536
104 static int buf_sz = DEFAULT_BUFSIZE;
105 module_param(buf_sz, int, 0644);
106 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
107 
108 #define	STMMAC_RX_COPYBREAK	256
109 
110 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
111 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
112 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
113 
114 #define STMMAC_DEFAULT_LPI_TIMER	1000
115 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
116 module_param(eee_timer, int, 0644);
117 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
118 #define STMMAC_LPI_T(x) (jiffies + usecs_to_jiffies(x))
119 
120 /* By default the driver will use the ring mode to manage tx and rx descriptors,
121  * but allow user to force to use the chain instead of the ring
122  */
123 static unsigned int chain_mode;
124 module_param(chain_mode, int, 0444);
125 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
126 
127 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
128 /* For MSI interrupts handling */
129 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id);
130 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id);
131 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data);
132 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data);
133 static void stmmac_reset_rx_queue(struct stmmac_priv *priv, u32 queue);
134 static void stmmac_reset_tx_queue(struct stmmac_priv *priv, u32 queue);
135 static void stmmac_reset_queues_param(struct stmmac_priv *priv);
136 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue);
137 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue);
138 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
139 					  u32 rxmode, u32 chan);
140 
141 #ifdef CONFIG_DEBUG_FS
142 static const struct net_device_ops stmmac_netdev_ops;
143 static void stmmac_init_fs(struct net_device *dev);
144 static void stmmac_exit_fs(struct net_device *dev);
145 #endif
146 
147 #define STMMAC_COAL_TIMER(x) (ns_to_ktime((x) * NSEC_PER_USEC))
148 
149 int stmmac_bus_clks_config(struct stmmac_priv *priv, bool enabled)
150 {
151 	int ret = 0;
152 
153 	if (enabled) {
154 		ret = clk_prepare_enable(priv->plat->stmmac_clk);
155 		if (ret)
156 			return ret;
157 		ret = clk_prepare_enable(priv->plat->pclk);
158 		if (ret) {
159 			clk_disable_unprepare(priv->plat->stmmac_clk);
160 			return ret;
161 		}
162 		if (priv->plat->clks_config) {
163 			ret = priv->plat->clks_config(priv->plat->bsp_priv, enabled);
164 			if (ret) {
165 				clk_disable_unprepare(priv->plat->stmmac_clk);
166 				clk_disable_unprepare(priv->plat->pclk);
167 				return ret;
168 			}
169 		}
170 	} else {
171 		clk_disable_unprepare(priv->plat->stmmac_clk);
172 		clk_disable_unprepare(priv->plat->pclk);
173 		if (priv->plat->clks_config)
174 			priv->plat->clks_config(priv->plat->bsp_priv, enabled);
175 	}
176 
177 	return ret;
178 }
179 EXPORT_SYMBOL_GPL(stmmac_bus_clks_config);
180 
181 /**
182  * stmmac_verify_args - verify the driver parameters.
183  * Description: it checks the driver parameters and set a default in case of
184  * errors.
185  */
186 static void stmmac_verify_args(void)
187 {
188 	if (unlikely(watchdog < 0))
189 		watchdog = TX_TIMEO;
190 	if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
191 		buf_sz = DEFAULT_BUFSIZE;
192 	if (unlikely(flow_ctrl > 1))
193 		flow_ctrl = FLOW_AUTO;
194 	else if (likely(flow_ctrl < 0))
195 		flow_ctrl = FLOW_OFF;
196 	if (unlikely((pause < 0) || (pause > 0xffff)))
197 		pause = PAUSE_TIME;
198 	if (eee_timer < 0)
199 		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
200 }
201 
202 static void __stmmac_disable_all_queues(struct stmmac_priv *priv)
203 {
204 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
205 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
206 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
207 	u32 queue;
208 
209 	for (queue = 0; queue < maxq; queue++) {
210 		struct stmmac_channel *ch = &priv->channel[queue];
211 
212 		if (stmmac_xdp_is_enabled(priv) &&
213 		    test_bit(queue, priv->af_xdp_zc_qps)) {
214 			napi_disable(&ch->rxtx_napi);
215 			continue;
216 		}
217 
218 		if (queue < rx_queues_cnt)
219 			napi_disable(&ch->rx_napi);
220 		if (queue < tx_queues_cnt)
221 			napi_disable(&ch->tx_napi);
222 	}
223 }
224 
225 /**
226  * stmmac_disable_all_queues - Disable all queues
227  * @priv: driver private structure
228  */
229 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
230 {
231 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
232 	struct stmmac_rx_queue *rx_q;
233 	u32 queue;
234 
235 	/* synchronize_rcu() needed for pending XDP buffers to drain */
236 	for (queue = 0; queue < rx_queues_cnt; queue++) {
237 		rx_q = &priv->dma_conf.rx_queue[queue];
238 		if (rx_q->xsk_pool) {
239 			synchronize_rcu();
240 			break;
241 		}
242 	}
243 
244 	__stmmac_disable_all_queues(priv);
245 }
246 
247 /**
248  * stmmac_enable_all_queues - Enable all queues
249  * @priv: driver private structure
250  */
251 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
252 {
253 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
254 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
255 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
256 	u32 queue;
257 
258 	for (queue = 0; queue < maxq; queue++) {
259 		struct stmmac_channel *ch = &priv->channel[queue];
260 
261 		if (stmmac_xdp_is_enabled(priv) &&
262 		    test_bit(queue, priv->af_xdp_zc_qps)) {
263 			napi_enable(&ch->rxtx_napi);
264 			continue;
265 		}
266 
267 		if (queue < rx_queues_cnt)
268 			napi_enable(&ch->rx_napi);
269 		if (queue < tx_queues_cnt)
270 			napi_enable(&ch->tx_napi);
271 	}
272 }
273 
274 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
275 {
276 	if (!test_bit(STMMAC_DOWN, &priv->state) &&
277 	    !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
278 		queue_work(priv->wq, &priv->service_task);
279 }
280 
281 static void stmmac_global_err(struct stmmac_priv *priv)
282 {
283 	netif_carrier_off(priv->dev);
284 	set_bit(STMMAC_RESET_REQUESTED, &priv->state);
285 	stmmac_service_event_schedule(priv);
286 }
287 
288 /**
289  * stmmac_clk_csr_set - dynamically set the MDC clock
290  * @priv: driver private structure
291  * Description: this is to dynamically set the MDC clock according to the csr
292  * clock input.
293  * Note:
294  *	If a specific clk_csr value is passed from the platform
295  *	this means that the CSR Clock Range selection cannot be
296  *	changed at run-time and it is fixed (as reported in the driver
297  *	documentation). Viceversa the driver will try to set the MDC
298  *	clock dynamically according to the actual clock input.
299  */
300 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
301 {
302 	u32 clk_rate;
303 
304 	clk_rate = clk_get_rate(priv->plat->stmmac_clk);
305 
306 	/* Platform provided default clk_csr would be assumed valid
307 	 * for all other cases except for the below mentioned ones.
308 	 * For values higher than the IEEE 802.3 specified frequency
309 	 * we can not estimate the proper divider as it is not known
310 	 * the frequency of clk_csr_i. So we do not change the default
311 	 * divider.
312 	 */
313 	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
314 		if (clk_rate < CSR_F_35M)
315 			priv->clk_csr = STMMAC_CSR_20_35M;
316 		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
317 			priv->clk_csr = STMMAC_CSR_35_60M;
318 		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
319 			priv->clk_csr = STMMAC_CSR_60_100M;
320 		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
321 			priv->clk_csr = STMMAC_CSR_100_150M;
322 		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
323 			priv->clk_csr = STMMAC_CSR_150_250M;
324 		else if ((clk_rate >= CSR_F_250M) && (clk_rate <= CSR_F_300M))
325 			priv->clk_csr = STMMAC_CSR_250_300M;
326 	}
327 
328 	if (priv->plat->has_sun8i) {
329 		if (clk_rate > 160000000)
330 			priv->clk_csr = 0x03;
331 		else if (clk_rate > 80000000)
332 			priv->clk_csr = 0x02;
333 		else if (clk_rate > 40000000)
334 			priv->clk_csr = 0x01;
335 		else
336 			priv->clk_csr = 0;
337 	}
338 
339 	if (priv->plat->has_xgmac) {
340 		if (clk_rate > 400000000)
341 			priv->clk_csr = 0x5;
342 		else if (clk_rate > 350000000)
343 			priv->clk_csr = 0x4;
344 		else if (clk_rate > 300000000)
345 			priv->clk_csr = 0x3;
346 		else if (clk_rate > 250000000)
347 			priv->clk_csr = 0x2;
348 		else if (clk_rate > 150000000)
349 			priv->clk_csr = 0x1;
350 		else
351 			priv->clk_csr = 0x0;
352 	}
353 }
354 
355 static void print_pkt(unsigned char *buf, int len)
356 {
357 	pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
358 	print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
359 }
360 
361 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
362 {
363 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
364 	u32 avail;
365 
366 	if (tx_q->dirty_tx > tx_q->cur_tx)
367 		avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
368 	else
369 		avail = priv->dma_conf.dma_tx_size - tx_q->cur_tx + tx_q->dirty_tx - 1;
370 
371 	return avail;
372 }
373 
374 /**
375  * stmmac_rx_dirty - Get RX queue dirty
376  * @priv: driver private structure
377  * @queue: RX queue index
378  */
379 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
380 {
381 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
382 	u32 dirty;
383 
384 	if (rx_q->dirty_rx <= rx_q->cur_rx)
385 		dirty = rx_q->cur_rx - rx_q->dirty_rx;
386 	else
387 		dirty = priv->dma_conf.dma_rx_size - rx_q->dirty_rx + rx_q->cur_rx;
388 
389 	return dirty;
390 }
391 
392 static void stmmac_lpi_entry_timer_config(struct stmmac_priv *priv, bool en)
393 {
394 	int tx_lpi_timer;
395 
396 	/* Clear/set the SW EEE timer flag based on LPI ET enablement */
397 	priv->eee_sw_timer_en = en ? 0 : 1;
398 	tx_lpi_timer  = en ? priv->tx_lpi_timer : 0;
399 	stmmac_set_eee_lpi_timer(priv, priv->hw, tx_lpi_timer);
400 }
401 
402 /**
403  * stmmac_enable_eee_mode - check and enter in LPI mode
404  * @priv: driver private structure
405  * Description: this function is to verify and enter in LPI mode in case of
406  * EEE.
407  */
408 static int stmmac_enable_eee_mode(struct stmmac_priv *priv)
409 {
410 	u32 tx_cnt = priv->plat->tx_queues_to_use;
411 	u32 queue;
412 
413 	/* check if all TX queues have the work finished */
414 	for (queue = 0; queue < tx_cnt; queue++) {
415 		struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
416 
417 		if (tx_q->dirty_tx != tx_q->cur_tx)
418 			return -EBUSY; /* still unfinished work */
419 	}
420 
421 	/* Check and enter in LPI mode */
422 	if (!priv->tx_path_in_lpi_mode)
423 		stmmac_set_eee_mode(priv, priv->hw,
424 				priv->plat->en_tx_lpi_clockgating);
425 	return 0;
426 }
427 
428 /**
429  * stmmac_disable_eee_mode - disable and exit from LPI mode
430  * @priv: driver private structure
431  * Description: this function is to exit and disable EEE in case of
432  * LPI state is true. This is called by the xmit.
433  */
434 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
435 {
436 	if (!priv->eee_sw_timer_en) {
437 		stmmac_lpi_entry_timer_config(priv, 0);
438 		return;
439 	}
440 
441 	stmmac_reset_eee_mode(priv, priv->hw);
442 	del_timer_sync(&priv->eee_ctrl_timer);
443 	priv->tx_path_in_lpi_mode = false;
444 }
445 
446 /**
447  * stmmac_eee_ctrl_timer - EEE TX SW timer.
448  * @t:  timer_list struct containing private info
449  * Description:
450  *  if there is no data transfer and if we are not in LPI state,
451  *  then MAC Transmitter can be moved to LPI state.
452  */
453 static void stmmac_eee_ctrl_timer(struct timer_list *t)
454 {
455 	struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
456 
457 	if (stmmac_enable_eee_mode(priv))
458 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
459 }
460 
461 /**
462  * stmmac_eee_init - init EEE
463  * @priv: driver private structure
464  * Description:
465  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
466  *  can also manage EEE, this function enable the LPI state and start related
467  *  timer.
468  */
469 bool stmmac_eee_init(struct stmmac_priv *priv)
470 {
471 	int eee_tw_timer = priv->eee_tw_timer;
472 
473 	/* Using PCS we cannot dial with the phy registers at this stage
474 	 * so we do not support extra feature like EEE.
475 	 */
476 	if (priv->hw->pcs == STMMAC_PCS_TBI ||
477 	    priv->hw->pcs == STMMAC_PCS_RTBI)
478 		return false;
479 
480 	/* Check if MAC core supports the EEE feature. */
481 	if (!priv->dma_cap.eee)
482 		return false;
483 
484 	mutex_lock(&priv->lock);
485 
486 	/* Check if it needs to be deactivated */
487 	if (!priv->eee_active) {
488 		if (priv->eee_enabled) {
489 			netdev_dbg(priv->dev, "disable EEE\n");
490 			stmmac_lpi_entry_timer_config(priv, 0);
491 			del_timer_sync(&priv->eee_ctrl_timer);
492 			stmmac_set_eee_timer(priv, priv->hw, 0, eee_tw_timer);
493 			if (priv->hw->xpcs)
494 				xpcs_config_eee(priv->hw->xpcs,
495 						priv->plat->mult_fact_100ns,
496 						false);
497 		}
498 		mutex_unlock(&priv->lock);
499 		return false;
500 	}
501 
502 	if (priv->eee_active && !priv->eee_enabled) {
503 		timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
504 		stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
505 				     eee_tw_timer);
506 		if (priv->hw->xpcs)
507 			xpcs_config_eee(priv->hw->xpcs,
508 					priv->plat->mult_fact_100ns,
509 					true);
510 	}
511 
512 	if (priv->plat->has_gmac4 && priv->tx_lpi_timer <= STMMAC_ET_MAX) {
513 		del_timer_sync(&priv->eee_ctrl_timer);
514 		priv->tx_path_in_lpi_mode = false;
515 		stmmac_lpi_entry_timer_config(priv, 1);
516 	} else {
517 		stmmac_lpi_entry_timer_config(priv, 0);
518 		mod_timer(&priv->eee_ctrl_timer,
519 			  STMMAC_LPI_T(priv->tx_lpi_timer));
520 	}
521 
522 	mutex_unlock(&priv->lock);
523 	netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
524 	return true;
525 }
526 
527 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
528  * @priv: driver private structure
529  * @p : descriptor pointer
530  * @skb : the socket buffer
531  * Description :
532  * This function will read timestamp from the descriptor & pass it to stack.
533  * and also perform some sanity checks.
534  */
535 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
536 				   struct dma_desc *p, struct sk_buff *skb)
537 {
538 	struct skb_shared_hwtstamps shhwtstamp;
539 	bool found = false;
540 	u64 ns = 0;
541 
542 	if (!priv->hwts_tx_en)
543 		return;
544 
545 	/* exit if skb doesn't support hw tstamp */
546 	if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
547 		return;
548 
549 	/* check tx tstamp status */
550 	if (stmmac_get_tx_timestamp_status(priv, p)) {
551 		stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
552 		found = true;
553 	} else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) {
554 		found = true;
555 	}
556 
557 	if (found) {
558 		ns -= priv->plat->cdc_error_adj;
559 
560 		memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
561 		shhwtstamp.hwtstamp = ns_to_ktime(ns);
562 
563 		netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
564 		/* pass tstamp to stack */
565 		skb_tstamp_tx(skb, &shhwtstamp);
566 	}
567 }
568 
569 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
570  * @priv: driver private structure
571  * @p : descriptor pointer
572  * @np : next descriptor pointer
573  * @skb : the socket buffer
574  * Description :
575  * This function will read received packet's timestamp from the descriptor
576  * and pass it to stack. It also perform some sanity checks.
577  */
578 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
579 				   struct dma_desc *np, struct sk_buff *skb)
580 {
581 	struct skb_shared_hwtstamps *shhwtstamp = NULL;
582 	struct dma_desc *desc = p;
583 	u64 ns = 0;
584 
585 	if (!priv->hwts_rx_en)
586 		return;
587 	/* For GMAC4, the valid timestamp is from CTX next desc. */
588 	if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
589 		desc = np;
590 
591 	/* Check if timestamp is available */
592 	if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
593 		stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
594 
595 		ns -= priv->plat->cdc_error_adj;
596 
597 		netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
598 		shhwtstamp = skb_hwtstamps(skb);
599 		memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
600 		shhwtstamp->hwtstamp = ns_to_ktime(ns);
601 	} else  {
602 		netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
603 	}
604 }
605 
606 /**
607  *  stmmac_hwtstamp_set - control hardware timestamping.
608  *  @dev: device pointer.
609  *  @ifr: An IOCTL specific structure, that can contain a pointer to
610  *  a proprietary structure used to pass information to the driver.
611  *  Description:
612  *  This function configures the MAC to enable/disable both outgoing(TX)
613  *  and incoming(RX) packets time stamping based on user input.
614  *  Return Value:
615  *  0 on success and an appropriate -ve integer on failure.
616  */
617 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
618 {
619 	struct stmmac_priv *priv = netdev_priv(dev);
620 	struct hwtstamp_config config;
621 	u32 ptp_v2 = 0;
622 	u32 tstamp_all = 0;
623 	u32 ptp_over_ipv4_udp = 0;
624 	u32 ptp_over_ipv6_udp = 0;
625 	u32 ptp_over_ethernet = 0;
626 	u32 snap_type_sel = 0;
627 	u32 ts_master_en = 0;
628 	u32 ts_event_en = 0;
629 
630 	if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
631 		netdev_alert(priv->dev, "No support for HW time stamping\n");
632 		priv->hwts_tx_en = 0;
633 		priv->hwts_rx_en = 0;
634 
635 		return -EOPNOTSUPP;
636 	}
637 
638 	if (copy_from_user(&config, ifr->ifr_data,
639 			   sizeof(config)))
640 		return -EFAULT;
641 
642 	netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
643 		   __func__, config.flags, config.tx_type, config.rx_filter);
644 
645 	if (config.tx_type != HWTSTAMP_TX_OFF &&
646 	    config.tx_type != HWTSTAMP_TX_ON)
647 		return -ERANGE;
648 
649 	if (priv->adv_ts) {
650 		switch (config.rx_filter) {
651 		case HWTSTAMP_FILTER_NONE:
652 			/* time stamp no incoming packet at all */
653 			config.rx_filter = HWTSTAMP_FILTER_NONE;
654 			break;
655 
656 		case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
657 			/* PTP v1, UDP, any kind of event packet */
658 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
659 			/* 'xmac' hardware can support Sync, Pdelay_Req and
660 			 * Pdelay_resp by setting bit14 and bits17/16 to 01
661 			 * This leaves Delay_Req timestamps out.
662 			 * Enable all events *and* general purpose message
663 			 * timestamping
664 			 */
665 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
666 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
667 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
668 			break;
669 
670 		case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
671 			/* PTP v1, UDP, Sync packet */
672 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
673 			/* take time stamp for SYNC messages only */
674 			ts_event_en = PTP_TCR_TSEVNTENA;
675 
676 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
677 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
678 			break;
679 
680 		case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
681 			/* PTP v1, UDP, Delay_req packet */
682 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
683 			/* take time stamp for Delay_Req messages only */
684 			ts_master_en = PTP_TCR_TSMSTRENA;
685 			ts_event_en = PTP_TCR_TSEVNTENA;
686 
687 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
688 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
689 			break;
690 
691 		case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
692 			/* PTP v2, UDP, any kind of event packet */
693 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
694 			ptp_v2 = PTP_TCR_TSVER2ENA;
695 			/* take time stamp for all event messages */
696 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
697 
698 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
699 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
700 			break;
701 
702 		case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
703 			/* PTP v2, UDP, Sync packet */
704 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
705 			ptp_v2 = PTP_TCR_TSVER2ENA;
706 			/* take time stamp for SYNC messages only */
707 			ts_event_en = PTP_TCR_TSEVNTENA;
708 
709 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
710 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
711 			break;
712 
713 		case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
714 			/* PTP v2, UDP, Delay_req packet */
715 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
716 			ptp_v2 = PTP_TCR_TSVER2ENA;
717 			/* take time stamp for Delay_Req messages only */
718 			ts_master_en = PTP_TCR_TSMSTRENA;
719 			ts_event_en = PTP_TCR_TSEVNTENA;
720 
721 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
722 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
723 			break;
724 
725 		case HWTSTAMP_FILTER_PTP_V2_EVENT:
726 			/* PTP v2/802.AS1 any layer, any kind of event packet */
727 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
728 			ptp_v2 = PTP_TCR_TSVER2ENA;
729 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
730 			if (priv->synopsys_id < DWMAC_CORE_4_10)
731 				ts_event_en = PTP_TCR_TSEVNTENA;
732 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
733 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
734 			ptp_over_ethernet = PTP_TCR_TSIPENA;
735 			break;
736 
737 		case HWTSTAMP_FILTER_PTP_V2_SYNC:
738 			/* PTP v2/802.AS1, any layer, Sync packet */
739 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
740 			ptp_v2 = PTP_TCR_TSVER2ENA;
741 			/* take time stamp for SYNC messages only */
742 			ts_event_en = PTP_TCR_TSEVNTENA;
743 
744 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
745 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
746 			ptp_over_ethernet = PTP_TCR_TSIPENA;
747 			break;
748 
749 		case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
750 			/* PTP v2/802.AS1, any layer, Delay_req packet */
751 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
752 			ptp_v2 = PTP_TCR_TSVER2ENA;
753 			/* take time stamp for Delay_Req messages only */
754 			ts_master_en = PTP_TCR_TSMSTRENA;
755 			ts_event_en = PTP_TCR_TSEVNTENA;
756 
757 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
758 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
759 			ptp_over_ethernet = PTP_TCR_TSIPENA;
760 			break;
761 
762 		case HWTSTAMP_FILTER_NTP_ALL:
763 		case HWTSTAMP_FILTER_ALL:
764 			/* time stamp any incoming packet */
765 			config.rx_filter = HWTSTAMP_FILTER_ALL;
766 			tstamp_all = PTP_TCR_TSENALL;
767 			break;
768 
769 		default:
770 			return -ERANGE;
771 		}
772 	} else {
773 		switch (config.rx_filter) {
774 		case HWTSTAMP_FILTER_NONE:
775 			config.rx_filter = HWTSTAMP_FILTER_NONE;
776 			break;
777 		default:
778 			/* PTP v1, UDP, any kind of event packet */
779 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
780 			break;
781 		}
782 	}
783 	priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
784 	priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
785 
786 	priv->systime_flags = STMMAC_HWTS_ACTIVE;
787 
788 	if (priv->hwts_tx_en || priv->hwts_rx_en) {
789 		priv->systime_flags |= tstamp_all | ptp_v2 |
790 				       ptp_over_ethernet | ptp_over_ipv6_udp |
791 				       ptp_over_ipv4_udp | ts_event_en |
792 				       ts_master_en | snap_type_sel;
793 	}
794 
795 	stmmac_config_hw_tstamping(priv, priv->ptpaddr, priv->systime_flags);
796 
797 	memcpy(&priv->tstamp_config, &config, sizeof(config));
798 
799 	return copy_to_user(ifr->ifr_data, &config,
800 			    sizeof(config)) ? -EFAULT : 0;
801 }
802 
803 /**
804  *  stmmac_hwtstamp_get - read hardware timestamping.
805  *  @dev: device pointer.
806  *  @ifr: An IOCTL specific structure, that can contain a pointer to
807  *  a proprietary structure used to pass information to the driver.
808  *  Description:
809  *  This function obtain the current hardware timestamping settings
810  *  as requested.
811  */
812 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
813 {
814 	struct stmmac_priv *priv = netdev_priv(dev);
815 	struct hwtstamp_config *config = &priv->tstamp_config;
816 
817 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
818 		return -EOPNOTSUPP;
819 
820 	return copy_to_user(ifr->ifr_data, config,
821 			    sizeof(*config)) ? -EFAULT : 0;
822 }
823 
824 /**
825  * stmmac_init_tstamp_counter - init hardware timestamping counter
826  * @priv: driver private structure
827  * @systime_flags: timestamping flags
828  * Description:
829  * Initialize hardware counter for packet timestamping.
830  * This is valid as long as the interface is open and not suspended.
831  * Will be rerun after resuming from suspend, case in which the timestamping
832  * flags updated by stmmac_hwtstamp_set() also need to be restored.
833  */
834 int stmmac_init_tstamp_counter(struct stmmac_priv *priv, u32 systime_flags)
835 {
836 	bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
837 	struct timespec64 now;
838 	u32 sec_inc = 0;
839 	u64 temp = 0;
840 
841 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
842 		return -EOPNOTSUPP;
843 
844 	stmmac_config_hw_tstamping(priv, priv->ptpaddr, systime_flags);
845 	priv->systime_flags = systime_flags;
846 
847 	/* program Sub Second Increment reg */
848 	stmmac_config_sub_second_increment(priv, priv->ptpaddr,
849 					   priv->plat->clk_ptp_rate,
850 					   xmac, &sec_inc);
851 	temp = div_u64(1000000000ULL, sec_inc);
852 
853 	/* Store sub second increment for later use */
854 	priv->sub_second_inc = sec_inc;
855 
856 	/* calculate default added value:
857 	 * formula is :
858 	 * addend = (2^32)/freq_div_ratio;
859 	 * where, freq_div_ratio = 1e9ns/sec_inc
860 	 */
861 	temp = (u64)(temp << 32);
862 	priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
863 	stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
864 
865 	/* initialize system time */
866 	ktime_get_real_ts64(&now);
867 
868 	/* lower 32 bits of tv_sec are safe until y2106 */
869 	stmmac_init_systime(priv, priv->ptpaddr, (u32)now.tv_sec, now.tv_nsec);
870 
871 	return 0;
872 }
873 EXPORT_SYMBOL_GPL(stmmac_init_tstamp_counter);
874 
875 /**
876  * stmmac_init_ptp - init PTP
877  * @priv: driver private structure
878  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
879  * This is done by looking at the HW cap. register.
880  * This function also registers the ptp driver.
881  */
882 static int stmmac_init_ptp(struct stmmac_priv *priv)
883 {
884 	bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
885 	int ret;
886 
887 	if (priv->plat->ptp_clk_freq_config)
888 		priv->plat->ptp_clk_freq_config(priv);
889 
890 	ret = stmmac_init_tstamp_counter(priv, STMMAC_HWTS_ACTIVE);
891 	if (ret)
892 		return ret;
893 
894 	priv->adv_ts = 0;
895 	/* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
896 	if (xmac && priv->dma_cap.atime_stamp)
897 		priv->adv_ts = 1;
898 	/* Dwmac 3.x core with extend_desc can support adv_ts */
899 	else if (priv->extend_desc && priv->dma_cap.atime_stamp)
900 		priv->adv_ts = 1;
901 
902 	if (priv->dma_cap.time_stamp)
903 		netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
904 
905 	if (priv->adv_ts)
906 		netdev_info(priv->dev,
907 			    "IEEE 1588-2008 Advanced Timestamp supported\n");
908 
909 	priv->hwts_tx_en = 0;
910 	priv->hwts_rx_en = 0;
911 
912 	return 0;
913 }
914 
915 static void stmmac_release_ptp(struct stmmac_priv *priv)
916 {
917 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
918 	stmmac_ptp_unregister(priv);
919 }
920 
921 /**
922  *  stmmac_mac_flow_ctrl - Configure flow control in all queues
923  *  @priv: driver private structure
924  *  @duplex: duplex passed to the next function
925  *  Description: It is used for configuring the flow control in all queues
926  */
927 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
928 {
929 	u32 tx_cnt = priv->plat->tx_queues_to_use;
930 
931 	stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
932 			priv->pause, tx_cnt);
933 }
934 
935 static struct phylink_pcs *stmmac_mac_select_pcs(struct phylink_config *config,
936 						 phy_interface_t interface)
937 {
938 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
939 
940 	if (!priv->hw->xpcs)
941 		return NULL;
942 
943 	return &priv->hw->xpcs->pcs;
944 }
945 
946 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
947 			      const struct phylink_link_state *state)
948 {
949 	/* Nothing to do, xpcs_config() handles everything */
950 }
951 
952 static void stmmac_fpe_link_state_handle(struct stmmac_priv *priv, bool is_up)
953 {
954 	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
955 	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
956 	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
957 	bool *hs_enable = &fpe_cfg->hs_enable;
958 
959 	if (is_up && *hs_enable) {
960 		stmmac_fpe_send_mpacket(priv, priv->ioaddr, MPACKET_VERIFY);
961 	} else {
962 		*lo_state = FPE_STATE_OFF;
963 		*lp_state = FPE_STATE_OFF;
964 	}
965 }
966 
967 static void stmmac_mac_link_down(struct phylink_config *config,
968 				 unsigned int mode, phy_interface_t interface)
969 {
970 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
971 
972 	stmmac_mac_set(priv, priv->ioaddr, false);
973 	priv->eee_active = false;
974 	priv->tx_lpi_enabled = false;
975 	priv->eee_enabled = stmmac_eee_init(priv);
976 	stmmac_set_eee_pls(priv, priv->hw, false);
977 
978 	if (priv->dma_cap.fpesel)
979 		stmmac_fpe_link_state_handle(priv, false);
980 }
981 
982 static void stmmac_mac_link_up(struct phylink_config *config,
983 			       struct phy_device *phy,
984 			       unsigned int mode, phy_interface_t interface,
985 			       int speed, int duplex,
986 			       bool tx_pause, bool rx_pause)
987 {
988 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
989 	u32 old_ctrl, ctrl;
990 
991 	if (priv->plat->serdes_up_after_phy_linkup && priv->plat->serdes_powerup)
992 		priv->plat->serdes_powerup(priv->dev, priv->plat->bsp_priv);
993 
994 	old_ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
995 	ctrl = old_ctrl & ~priv->hw->link.speed_mask;
996 
997 	if (interface == PHY_INTERFACE_MODE_USXGMII) {
998 		switch (speed) {
999 		case SPEED_10000:
1000 			ctrl |= priv->hw->link.xgmii.speed10000;
1001 			break;
1002 		case SPEED_5000:
1003 			ctrl |= priv->hw->link.xgmii.speed5000;
1004 			break;
1005 		case SPEED_2500:
1006 			ctrl |= priv->hw->link.xgmii.speed2500;
1007 			break;
1008 		default:
1009 			return;
1010 		}
1011 	} else if (interface == PHY_INTERFACE_MODE_XLGMII) {
1012 		switch (speed) {
1013 		case SPEED_100000:
1014 			ctrl |= priv->hw->link.xlgmii.speed100000;
1015 			break;
1016 		case SPEED_50000:
1017 			ctrl |= priv->hw->link.xlgmii.speed50000;
1018 			break;
1019 		case SPEED_40000:
1020 			ctrl |= priv->hw->link.xlgmii.speed40000;
1021 			break;
1022 		case SPEED_25000:
1023 			ctrl |= priv->hw->link.xlgmii.speed25000;
1024 			break;
1025 		case SPEED_10000:
1026 			ctrl |= priv->hw->link.xgmii.speed10000;
1027 			break;
1028 		case SPEED_2500:
1029 			ctrl |= priv->hw->link.speed2500;
1030 			break;
1031 		case SPEED_1000:
1032 			ctrl |= priv->hw->link.speed1000;
1033 			break;
1034 		default:
1035 			return;
1036 		}
1037 	} else {
1038 		switch (speed) {
1039 		case SPEED_2500:
1040 			ctrl |= priv->hw->link.speed2500;
1041 			break;
1042 		case SPEED_1000:
1043 			ctrl |= priv->hw->link.speed1000;
1044 			break;
1045 		case SPEED_100:
1046 			ctrl |= priv->hw->link.speed100;
1047 			break;
1048 		case SPEED_10:
1049 			ctrl |= priv->hw->link.speed10;
1050 			break;
1051 		default:
1052 			return;
1053 		}
1054 	}
1055 
1056 	priv->speed = speed;
1057 
1058 	if (priv->plat->fix_mac_speed)
1059 		priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed);
1060 
1061 	if (!duplex)
1062 		ctrl &= ~priv->hw->link.duplex;
1063 	else
1064 		ctrl |= priv->hw->link.duplex;
1065 
1066 	/* Flow Control operation */
1067 	if (rx_pause && tx_pause)
1068 		priv->flow_ctrl = FLOW_AUTO;
1069 	else if (rx_pause && !tx_pause)
1070 		priv->flow_ctrl = FLOW_RX;
1071 	else if (!rx_pause && tx_pause)
1072 		priv->flow_ctrl = FLOW_TX;
1073 	else
1074 		priv->flow_ctrl = FLOW_OFF;
1075 
1076 	stmmac_mac_flow_ctrl(priv, duplex);
1077 
1078 	if (ctrl != old_ctrl)
1079 		writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
1080 
1081 	stmmac_mac_set(priv, priv->ioaddr, true);
1082 	if (phy && priv->dma_cap.eee) {
1083 		priv->eee_active =
1084 			phy_init_eee(phy, !priv->plat->rx_clk_runs_in_lpi) >= 0;
1085 		priv->eee_enabled = stmmac_eee_init(priv);
1086 		priv->tx_lpi_enabled = priv->eee_enabled;
1087 		stmmac_set_eee_pls(priv, priv->hw, true);
1088 	}
1089 
1090 	if (priv->dma_cap.fpesel)
1091 		stmmac_fpe_link_state_handle(priv, true);
1092 }
1093 
1094 static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
1095 	.mac_select_pcs = stmmac_mac_select_pcs,
1096 	.mac_config = stmmac_mac_config,
1097 	.mac_link_down = stmmac_mac_link_down,
1098 	.mac_link_up = stmmac_mac_link_up,
1099 };
1100 
1101 /**
1102  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
1103  * @priv: driver private structure
1104  * Description: this is to verify if the HW supports the PCS.
1105  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
1106  * configured for the TBI, RTBI, or SGMII PHY interface.
1107  */
1108 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
1109 {
1110 	int interface = priv->plat->interface;
1111 
1112 	if (priv->dma_cap.pcs) {
1113 		if ((interface == PHY_INTERFACE_MODE_RGMII) ||
1114 		    (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
1115 		    (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
1116 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
1117 			netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
1118 			priv->hw->pcs = STMMAC_PCS_RGMII;
1119 		} else if (interface == PHY_INTERFACE_MODE_SGMII) {
1120 			netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
1121 			priv->hw->pcs = STMMAC_PCS_SGMII;
1122 		}
1123 	}
1124 }
1125 
1126 /**
1127  * stmmac_init_phy - PHY initialization
1128  * @dev: net device structure
1129  * Description: it initializes the driver's PHY state, and attaches the PHY
1130  * to the mac driver.
1131  *  Return value:
1132  *  0 on success
1133  */
1134 static int stmmac_init_phy(struct net_device *dev)
1135 {
1136 	struct stmmac_priv *priv = netdev_priv(dev);
1137 	struct fwnode_handle *phy_fwnode;
1138 	struct fwnode_handle *fwnode;
1139 	int ret;
1140 
1141 	if (!phylink_expects_phy(priv->phylink))
1142 		return 0;
1143 
1144 	fwnode = of_fwnode_handle(priv->plat->phylink_node);
1145 	if (!fwnode)
1146 		fwnode = dev_fwnode(priv->device);
1147 
1148 	if (fwnode)
1149 		phy_fwnode = fwnode_get_phy_node(fwnode);
1150 	else
1151 		phy_fwnode = NULL;
1152 
1153 	/* Some DT bindings do not set-up the PHY handle. Let's try to
1154 	 * manually parse it
1155 	 */
1156 	if (!phy_fwnode || IS_ERR(phy_fwnode)) {
1157 		int addr = priv->plat->phy_addr;
1158 		struct phy_device *phydev;
1159 
1160 		if (addr < 0) {
1161 			netdev_err(priv->dev, "no phy found\n");
1162 			return -ENODEV;
1163 		}
1164 
1165 		phydev = mdiobus_get_phy(priv->mii, addr);
1166 		if (!phydev) {
1167 			netdev_err(priv->dev, "no phy at addr %d\n", addr);
1168 			return -ENODEV;
1169 		}
1170 
1171 		ret = phylink_connect_phy(priv->phylink, phydev);
1172 	} else {
1173 		fwnode_handle_put(phy_fwnode);
1174 		ret = phylink_fwnode_phy_connect(priv->phylink, fwnode, 0);
1175 	}
1176 
1177 	if (!priv->plat->pmt) {
1178 		struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
1179 
1180 		phylink_ethtool_get_wol(priv->phylink, &wol);
1181 		device_set_wakeup_capable(priv->device, !!wol.supported);
1182 		device_set_wakeup_enable(priv->device, !!wol.wolopts);
1183 	}
1184 
1185 	return ret;
1186 }
1187 
1188 static int stmmac_phy_setup(struct stmmac_priv *priv)
1189 {
1190 	struct stmmac_mdio_bus_data *mdio_bus_data = priv->plat->mdio_bus_data;
1191 	struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node);
1192 	int max_speed = priv->plat->max_speed;
1193 	int mode = priv->plat->phy_interface;
1194 	struct phylink *phylink;
1195 
1196 	priv->phylink_config.dev = &priv->dev->dev;
1197 	priv->phylink_config.type = PHYLINK_NETDEV;
1198 	if (priv->plat->mdio_bus_data)
1199 		priv->phylink_config.ovr_an_inband =
1200 			mdio_bus_data->xpcs_an_inband;
1201 
1202 	if (!fwnode)
1203 		fwnode = dev_fwnode(priv->device);
1204 
1205 	/* Set the platform/firmware specified interface mode */
1206 	__set_bit(mode, priv->phylink_config.supported_interfaces);
1207 
1208 	/* If we have an xpcs, it defines which PHY interfaces are supported. */
1209 	if (priv->hw->xpcs)
1210 		xpcs_get_interfaces(priv->hw->xpcs,
1211 				    priv->phylink_config.supported_interfaces);
1212 
1213 	priv->phylink_config.mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
1214 		MAC_10 | MAC_100;
1215 
1216 	if (!max_speed || max_speed >= 1000)
1217 		priv->phylink_config.mac_capabilities |= MAC_1000;
1218 
1219 	if (priv->plat->has_gmac4) {
1220 		if (!max_speed || max_speed >= 2500)
1221 			priv->phylink_config.mac_capabilities |= MAC_2500FD;
1222 	} else if (priv->plat->has_xgmac) {
1223 		if (!max_speed || max_speed >= 2500)
1224 			priv->phylink_config.mac_capabilities |= MAC_2500FD;
1225 		if (!max_speed || max_speed >= 5000)
1226 			priv->phylink_config.mac_capabilities |= MAC_5000FD;
1227 		if (!max_speed || max_speed >= 10000)
1228 			priv->phylink_config.mac_capabilities |= MAC_10000FD;
1229 		if (!max_speed || max_speed >= 25000)
1230 			priv->phylink_config.mac_capabilities |= MAC_25000FD;
1231 		if (!max_speed || max_speed >= 40000)
1232 			priv->phylink_config.mac_capabilities |= MAC_40000FD;
1233 		if (!max_speed || max_speed >= 50000)
1234 			priv->phylink_config.mac_capabilities |= MAC_50000FD;
1235 		if (!max_speed || max_speed >= 100000)
1236 			priv->phylink_config.mac_capabilities |= MAC_100000FD;
1237 	}
1238 
1239 	/* Half-Duplex can only work with single queue */
1240 	if (priv->plat->tx_queues_to_use > 1)
1241 		priv->phylink_config.mac_capabilities &=
1242 			~(MAC_10HD | MAC_100HD | MAC_1000HD);
1243 	priv->phylink_config.mac_managed_pm = true;
1244 
1245 	phylink = phylink_create(&priv->phylink_config, fwnode,
1246 				 mode, &stmmac_phylink_mac_ops);
1247 	if (IS_ERR(phylink))
1248 		return PTR_ERR(phylink);
1249 
1250 	priv->phylink = phylink;
1251 	return 0;
1252 }
1253 
1254 static void stmmac_display_rx_rings(struct stmmac_priv *priv,
1255 				    struct stmmac_dma_conf *dma_conf)
1256 {
1257 	u32 rx_cnt = priv->plat->rx_queues_to_use;
1258 	unsigned int desc_size;
1259 	void *head_rx;
1260 	u32 queue;
1261 
1262 	/* Display RX rings */
1263 	for (queue = 0; queue < rx_cnt; queue++) {
1264 		struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1265 
1266 		pr_info("\tRX Queue %u rings\n", queue);
1267 
1268 		if (priv->extend_desc) {
1269 			head_rx = (void *)rx_q->dma_erx;
1270 			desc_size = sizeof(struct dma_extended_desc);
1271 		} else {
1272 			head_rx = (void *)rx_q->dma_rx;
1273 			desc_size = sizeof(struct dma_desc);
1274 		}
1275 
1276 		/* Display RX ring */
1277 		stmmac_display_ring(priv, head_rx, dma_conf->dma_rx_size, true,
1278 				    rx_q->dma_rx_phy, desc_size);
1279 	}
1280 }
1281 
1282 static void stmmac_display_tx_rings(struct stmmac_priv *priv,
1283 				    struct stmmac_dma_conf *dma_conf)
1284 {
1285 	u32 tx_cnt = priv->plat->tx_queues_to_use;
1286 	unsigned int desc_size;
1287 	void *head_tx;
1288 	u32 queue;
1289 
1290 	/* Display TX rings */
1291 	for (queue = 0; queue < tx_cnt; queue++) {
1292 		struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1293 
1294 		pr_info("\tTX Queue %d rings\n", queue);
1295 
1296 		if (priv->extend_desc) {
1297 			head_tx = (void *)tx_q->dma_etx;
1298 			desc_size = sizeof(struct dma_extended_desc);
1299 		} else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1300 			head_tx = (void *)tx_q->dma_entx;
1301 			desc_size = sizeof(struct dma_edesc);
1302 		} else {
1303 			head_tx = (void *)tx_q->dma_tx;
1304 			desc_size = sizeof(struct dma_desc);
1305 		}
1306 
1307 		stmmac_display_ring(priv, head_tx, dma_conf->dma_tx_size, false,
1308 				    tx_q->dma_tx_phy, desc_size);
1309 	}
1310 }
1311 
1312 static void stmmac_display_rings(struct stmmac_priv *priv,
1313 				 struct stmmac_dma_conf *dma_conf)
1314 {
1315 	/* Display RX ring */
1316 	stmmac_display_rx_rings(priv, dma_conf);
1317 
1318 	/* Display TX ring */
1319 	stmmac_display_tx_rings(priv, dma_conf);
1320 }
1321 
1322 static int stmmac_set_bfsize(int mtu, int bufsize)
1323 {
1324 	int ret = bufsize;
1325 
1326 	if (mtu >= BUF_SIZE_8KiB)
1327 		ret = BUF_SIZE_16KiB;
1328 	else if (mtu >= BUF_SIZE_4KiB)
1329 		ret = BUF_SIZE_8KiB;
1330 	else if (mtu >= BUF_SIZE_2KiB)
1331 		ret = BUF_SIZE_4KiB;
1332 	else if (mtu > DEFAULT_BUFSIZE)
1333 		ret = BUF_SIZE_2KiB;
1334 	else
1335 		ret = DEFAULT_BUFSIZE;
1336 
1337 	return ret;
1338 }
1339 
1340 /**
1341  * stmmac_clear_rx_descriptors - clear RX descriptors
1342  * @priv: driver private structure
1343  * @dma_conf: structure to take the dma data
1344  * @queue: RX queue index
1345  * Description: this function is called to clear the RX descriptors
1346  * in case of both basic and extended descriptors are used.
1347  */
1348 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv,
1349 					struct stmmac_dma_conf *dma_conf,
1350 					u32 queue)
1351 {
1352 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1353 	int i;
1354 
1355 	/* Clear the RX descriptors */
1356 	for (i = 0; i < dma_conf->dma_rx_size; i++)
1357 		if (priv->extend_desc)
1358 			stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1359 					priv->use_riwt, priv->mode,
1360 					(i == dma_conf->dma_rx_size - 1),
1361 					dma_conf->dma_buf_sz);
1362 		else
1363 			stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1364 					priv->use_riwt, priv->mode,
1365 					(i == dma_conf->dma_rx_size - 1),
1366 					dma_conf->dma_buf_sz);
1367 }
1368 
1369 /**
1370  * stmmac_clear_tx_descriptors - clear tx descriptors
1371  * @priv: driver private structure
1372  * @dma_conf: structure to take the dma data
1373  * @queue: TX queue index.
1374  * Description: this function is called to clear the TX descriptors
1375  * in case of both basic and extended descriptors are used.
1376  */
1377 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv,
1378 					struct stmmac_dma_conf *dma_conf,
1379 					u32 queue)
1380 {
1381 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1382 	int i;
1383 
1384 	/* Clear the TX descriptors */
1385 	for (i = 0; i < dma_conf->dma_tx_size; i++) {
1386 		int last = (i == (dma_conf->dma_tx_size - 1));
1387 		struct dma_desc *p;
1388 
1389 		if (priv->extend_desc)
1390 			p = &tx_q->dma_etx[i].basic;
1391 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1392 			p = &tx_q->dma_entx[i].basic;
1393 		else
1394 			p = &tx_q->dma_tx[i];
1395 
1396 		stmmac_init_tx_desc(priv, p, priv->mode, last);
1397 	}
1398 }
1399 
1400 /**
1401  * stmmac_clear_descriptors - clear descriptors
1402  * @priv: driver private structure
1403  * @dma_conf: structure to take the dma data
1404  * Description: this function is called to clear the TX and RX descriptors
1405  * in case of both basic and extended descriptors are used.
1406  */
1407 static void stmmac_clear_descriptors(struct stmmac_priv *priv,
1408 				     struct stmmac_dma_conf *dma_conf)
1409 {
1410 	u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1411 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1412 	u32 queue;
1413 
1414 	/* Clear the RX descriptors */
1415 	for (queue = 0; queue < rx_queue_cnt; queue++)
1416 		stmmac_clear_rx_descriptors(priv, dma_conf, queue);
1417 
1418 	/* Clear the TX descriptors */
1419 	for (queue = 0; queue < tx_queue_cnt; queue++)
1420 		stmmac_clear_tx_descriptors(priv, dma_conf, queue);
1421 }
1422 
1423 /**
1424  * stmmac_init_rx_buffers - init the RX descriptor buffer.
1425  * @priv: driver private structure
1426  * @dma_conf: structure to take the dma data
1427  * @p: descriptor pointer
1428  * @i: descriptor index
1429  * @flags: gfp flag
1430  * @queue: RX queue index
1431  * Description: this function is called to allocate a receive buffer, perform
1432  * the DMA mapping and init the descriptor.
1433  */
1434 static int stmmac_init_rx_buffers(struct stmmac_priv *priv,
1435 				  struct stmmac_dma_conf *dma_conf,
1436 				  struct dma_desc *p,
1437 				  int i, gfp_t flags, u32 queue)
1438 {
1439 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1440 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1441 	gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
1442 
1443 	if (priv->dma_cap.host_dma_width <= 32)
1444 		gfp |= GFP_DMA32;
1445 
1446 	if (!buf->page) {
1447 		buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp);
1448 		if (!buf->page)
1449 			return -ENOMEM;
1450 		buf->page_offset = stmmac_rx_offset(priv);
1451 	}
1452 
1453 	if (priv->sph && !buf->sec_page) {
1454 		buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp);
1455 		if (!buf->sec_page)
1456 			return -ENOMEM;
1457 
1458 		buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
1459 		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
1460 	} else {
1461 		buf->sec_page = NULL;
1462 		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
1463 	}
1464 
1465 	buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
1466 
1467 	stmmac_set_desc_addr(priv, p, buf->addr);
1468 	if (dma_conf->dma_buf_sz == BUF_SIZE_16KiB)
1469 		stmmac_init_desc3(priv, p);
1470 
1471 	return 0;
1472 }
1473 
1474 /**
1475  * stmmac_free_rx_buffer - free RX dma buffers
1476  * @priv: private structure
1477  * @rx_q: RX queue
1478  * @i: buffer index.
1479  */
1480 static void stmmac_free_rx_buffer(struct stmmac_priv *priv,
1481 				  struct stmmac_rx_queue *rx_q,
1482 				  int i)
1483 {
1484 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1485 
1486 	if (buf->page)
1487 		page_pool_put_full_page(rx_q->page_pool, buf->page, false);
1488 	buf->page = NULL;
1489 
1490 	if (buf->sec_page)
1491 		page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false);
1492 	buf->sec_page = NULL;
1493 }
1494 
1495 /**
1496  * stmmac_free_tx_buffer - free RX dma buffers
1497  * @priv: private structure
1498  * @dma_conf: structure to take the dma data
1499  * @queue: RX queue index
1500  * @i: buffer index.
1501  */
1502 static void stmmac_free_tx_buffer(struct stmmac_priv *priv,
1503 				  struct stmmac_dma_conf *dma_conf,
1504 				  u32 queue, int i)
1505 {
1506 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1507 
1508 	if (tx_q->tx_skbuff_dma[i].buf &&
1509 	    tx_q->tx_skbuff_dma[i].buf_type != STMMAC_TXBUF_T_XDP_TX) {
1510 		if (tx_q->tx_skbuff_dma[i].map_as_page)
1511 			dma_unmap_page(priv->device,
1512 				       tx_q->tx_skbuff_dma[i].buf,
1513 				       tx_q->tx_skbuff_dma[i].len,
1514 				       DMA_TO_DEVICE);
1515 		else
1516 			dma_unmap_single(priv->device,
1517 					 tx_q->tx_skbuff_dma[i].buf,
1518 					 tx_q->tx_skbuff_dma[i].len,
1519 					 DMA_TO_DEVICE);
1520 	}
1521 
1522 	if (tx_q->xdpf[i] &&
1523 	    (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_TX ||
1524 	     tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_NDO)) {
1525 		xdp_return_frame(tx_q->xdpf[i]);
1526 		tx_q->xdpf[i] = NULL;
1527 	}
1528 
1529 	if (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XSK_TX)
1530 		tx_q->xsk_frames_done++;
1531 
1532 	if (tx_q->tx_skbuff[i] &&
1533 	    tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_SKB) {
1534 		dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1535 		tx_q->tx_skbuff[i] = NULL;
1536 	}
1537 
1538 	tx_q->tx_skbuff_dma[i].buf = 0;
1539 	tx_q->tx_skbuff_dma[i].map_as_page = false;
1540 }
1541 
1542 /**
1543  * dma_free_rx_skbufs - free RX dma buffers
1544  * @priv: private structure
1545  * @dma_conf: structure to take the dma data
1546  * @queue: RX queue index
1547  */
1548 static void dma_free_rx_skbufs(struct stmmac_priv *priv,
1549 			       struct stmmac_dma_conf *dma_conf,
1550 			       u32 queue)
1551 {
1552 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1553 	int i;
1554 
1555 	for (i = 0; i < dma_conf->dma_rx_size; i++)
1556 		stmmac_free_rx_buffer(priv, rx_q, i);
1557 }
1558 
1559 static int stmmac_alloc_rx_buffers(struct stmmac_priv *priv,
1560 				   struct stmmac_dma_conf *dma_conf,
1561 				   u32 queue, gfp_t flags)
1562 {
1563 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1564 	int i;
1565 
1566 	for (i = 0; i < dma_conf->dma_rx_size; i++) {
1567 		struct dma_desc *p;
1568 		int ret;
1569 
1570 		if (priv->extend_desc)
1571 			p = &((rx_q->dma_erx + i)->basic);
1572 		else
1573 			p = rx_q->dma_rx + i;
1574 
1575 		ret = stmmac_init_rx_buffers(priv, dma_conf, p, i, flags,
1576 					     queue);
1577 		if (ret)
1578 			return ret;
1579 
1580 		rx_q->buf_alloc_num++;
1581 	}
1582 
1583 	return 0;
1584 }
1585 
1586 /**
1587  * dma_free_rx_xskbufs - free RX dma buffers from XSK pool
1588  * @priv: private structure
1589  * @dma_conf: structure to take the dma data
1590  * @queue: RX queue index
1591  */
1592 static void dma_free_rx_xskbufs(struct stmmac_priv *priv,
1593 				struct stmmac_dma_conf *dma_conf,
1594 				u32 queue)
1595 {
1596 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1597 	int i;
1598 
1599 	for (i = 0; i < dma_conf->dma_rx_size; i++) {
1600 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1601 
1602 		if (!buf->xdp)
1603 			continue;
1604 
1605 		xsk_buff_free(buf->xdp);
1606 		buf->xdp = NULL;
1607 	}
1608 }
1609 
1610 static int stmmac_alloc_rx_buffers_zc(struct stmmac_priv *priv,
1611 				      struct stmmac_dma_conf *dma_conf,
1612 				      u32 queue)
1613 {
1614 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1615 	int i;
1616 
1617 	for (i = 0; i < dma_conf->dma_rx_size; i++) {
1618 		struct stmmac_rx_buffer *buf;
1619 		dma_addr_t dma_addr;
1620 		struct dma_desc *p;
1621 
1622 		if (priv->extend_desc)
1623 			p = (struct dma_desc *)(rx_q->dma_erx + i);
1624 		else
1625 			p = rx_q->dma_rx + i;
1626 
1627 		buf = &rx_q->buf_pool[i];
1628 
1629 		buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
1630 		if (!buf->xdp)
1631 			return -ENOMEM;
1632 
1633 		dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
1634 		stmmac_set_desc_addr(priv, p, dma_addr);
1635 		rx_q->buf_alloc_num++;
1636 	}
1637 
1638 	return 0;
1639 }
1640 
1641 static struct xsk_buff_pool *stmmac_get_xsk_pool(struct stmmac_priv *priv, u32 queue)
1642 {
1643 	if (!stmmac_xdp_is_enabled(priv) || !test_bit(queue, priv->af_xdp_zc_qps))
1644 		return NULL;
1645 
1646 	return xsk_get_pool_from_qid(priv->dev, queue);
1647 }
1648 
1649 /**
1650  * __init_dma_rx_desc_rings - init the RX descriptor ring (per queue)
1651  * @priv: driver private structure
1652  * @dma_conf: structure to take the dma data
1653  * @queue: RX queue index
1654  * @flags: gfp flag.
1655  * Description: this function initializes the DMA RX descriptors
1656  * and allocates the socket buffers. It supports the chained and ring
1657  * modes.
1658  */
1659 static int __init_dma_rx_desc_rings(struct stmmac_priv *priv,
1660 				    struct stmmac_dma_conf *dma_conf,
1661 				    u32 queue, gfp_t flags)
1662 {
1663 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1664 	int ret;
1665 
1666 	netif_dbg(priv, probe, priv->dev,
1667 		  "(%s) dma_rx_phy=0x%08x\n", __func__,
1668 		  (u32)rx_q->dma_rx_phy);
1669 
1670 	stmmac_clear_rx_descriptors(priv, dma_conf, queue);
1671 
1672 	xdp_rxq_info_unreg_mem_model(&rx_q->xdp_rxq);
1673 
1674 	rx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1675 
1676 	if (rx_q->xsk_pool) {
1677 		WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1678 						   MEM_TYPE_XSK_BUFF_POOL,
1679 						   NULL));
1680 		netdev_info(priv->dev,
1681 			    "Register MEM_TYPE_XSK_BUFF_POOL RxQ-%d\n",
1682 			    rx_q->queue_index);
1683 		xsk_pool_set_rxq_info(rx_q->xsk_pool, &rx_q->xdp_rxq);
1684 	} else {
1685 		WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1686 						   MEM_TYPE_PAGE_POOL,
1687 						   rx_q->page_pool));
1688 		netdev_info(priv->dev,
1689 			    "Register MEM_TYPE_PAGE_POOL RxQ-%d\n",
1690 			    rx_q->queue_index);
1691 	}
1692 
1693 	if (rx_q->xsk_pool) {
1694 		/* RX XDP ZC buffer pool may not be populated, e.g.
1695 		 * xdpsock TX-only.
1696 		 */
1697 		stmmac_alloc_rx_buffers_zc(priv, dma_conf, queue);
1698 	} else {
1699 		ret = stmmac_alloc_rx_buffers(priv, dma_conf, queue, flags);
1700 		if (ret < 0)
1701 			return -ENOMEM;
1702 	}
1703 
1704 	/* Setup the chained descriptor addresses */
1705 	if (priv->mode == STMMAC_CHAIN_MODE) {
1706 		if (priv->extend_desc)
1707 			stmmac_mode_init(priv, rx_q->dma_erx,
1708 					 rx_q->dma_rx_phy,
1709 					 dma_conf->dma_rx_size, 1);
1710 		else
1711 			stmmac_mode_init(priv, rx_q->dma_rx,
1712 					 rx_q->dma_rx_phy,
1713 					 dma_conf->dma_rx_size, 0);
1714 	}
1715 
1716 	return 0;
1717 }
1718 
1719 static int init_dma_rx_desc_rings(struct net_device *dev,
1720 				  struct stmmac_dma_conf *dma_conf,
1721 				  gfp_t flags)
1722 {
1723 	struct stmmac_priv *priv = netdev_priv(dev);
1724 	u32 rx_count = priv->plat->rx_queues_to_use;
1725 	int queue;
1726 	int ret;
1727 
1728 	/* RX INITIALIZATION */
1729 	netif_dbg(priv, probe, priv->dev,
1730 		  "SKB addresses:\nskb\t\tskb data\tdma data\n");
1731 
1732 	for (queue = 0; queue < rx_count; queue++) {
1733 		ret = __init_dma_rx_desc_rings(priv, dma_conf, queue, flags);
1734 		if (ret)
1735 			goto err_init_rx_buffers;
1736 	}
1737 
1738 	return 0;
1739 
1740 err_init_rx_buffers:
1741 	while (queue >= 0) {
1742 		struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1743 
1744 		if (rx_q->xsk_pool)
1745 			dma_free_rx_xskbufs(priv, dma_conf, queue);
1746 		else
1747 			dma_free_rx_skbufs(priv, dma_conf, queue);
1748 
1749 		rx_q->buf_alloc_num = 0;
1750 		rx_q->xsk_pool = NULL;
1751 
1752 		queue--;
1753 	}
1754 
1755 	return ret;
1756 }
1757 
1758 /**
1759  * __init_dma_tx_desc_rings - init the TX descriptor ring (per queue)
1760  * @priv: driver private structure
1761  * @dma_conf: structure to take the dma data
1762  * @queue: TX queue index
1763  * Description: this function initializes the DMA TX descriptors
1764  * and allocates the socket buffers. It supports the chained and ring
1765  * modes.
1766  */
1767 static int __init_dma_tx_desc_rings(struct stmmac_priv *priv,
1768 				    struct stmmac_dma_conf *dma_conf,
1769 				    u32 queue)
1770 {
1771 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1772 	int i;
1773 
1774 	netif_dbg(priv, probe, priv->dev,
1775 		  "(%s) dma_tx_phy=0x%08x\n", __func__,
1776 		  (u32)tx_q->dma_tx_phy);
1777 
1778 	/* Setup the chained descriptor addresses */
1779 	if (priv->mode == STMMAC_CHAIN_MODE) {
1780 		if (priv->extend_desc)
1781 			stmmac_mode_init(priv, tx_q->dma_etx,
1782 					 tx_q->dma_tx_phy,
1783 					 dma_conf->dma_tx_size, 1);
1784 		else if (!(tx_q->tbs & STMMAC_TBS_AVAIL))
1785 			stmmac_mode_init(priv, tx_q->dma_tx,
1786 					 tx_q->dma_tx_phy,
1787 					 dma_conf->dma_tx_size, 0);
1788 	}
1789 
1790 	tx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1791 
1792 	for (i = 0; i < dma_conf->dma_tx_size; i++) {
1793 		struct dma_desc *p;
1794 
1795 		if (priv->extend_desc)
1796 			p = &((tx_q->dma_etx + i)->basic);
1797 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1798 			p = &((tx_q->dma_entx + i)->basic);
1799 		else
1800 			p = tx_q->dma_tx + i;
1801 
1802 		stmmac_clear_desc(priv, p);
1803 
1804 		tx_q->tx_skbuff_dma[i].buf = 0;
1805 		tx_q->tx_skbuff_dma[i].map_as_page = false;
1806 		tx_q->tx_skbuff_dma[i].len = 0;
1807 		tx_q->tx_skbuff_dma[i].last_segment = false;
1808 		tx_q->tx_skbuff[i] = NULL;
1809 	}
1810 
1811 	return 0;
1812 }
1813 
1814 static int init_dma_tx_desc_rings(struct net_device *dev,
1815 				  struct stmmac_dma_conf *dma_conf)
1816 {
1817 	struct stmmac_priv *priv = netdev_priv(dev);
1818 	u32 tx_queue_cnt;
1819 	u32 queue;
1820 
1821 	tx_queue_cnt = priv->plat->tx_queues_to_use;
1822 
1823 	for (queue = 0; queue < tx_queue_cnt; queue++)
1824 		__init_dma_tx_desc_rings(priv, dma_conf, queue);
1825 
1826 	return 0;
1827 }
1828 
1829 /**
1830  * init_dma_desc_rings - init the RX/TX descriptor rings
1831  * @dev: net device structure
1832  * @dma_conf: structure to take the dma data
1833  * @flags: gfp flag.
1834  * Description: this function initializes the DMA RX/TX descriptors
1835  * and allocates the socket buffers. It supports the chained and ring
1836  * modes.
1837  */
1838 static int init_dma_desc_rings(struct net_device *dev,
1839 			       struct stmmac_dma_conf *dma_conf,
1840 			       gfp_t flags)
1841 {
1842 	struct stmmac_priv *priv = netdev_priv(dev);
1843 	int ret;
1844 
1845 	ret = init_dma_rx_desc_rings(dev, dma_conf, flags);
1846 	if (ret)
1847 		return ret;
1848 
1849 	ret = init_dma_tx_desc_rings(dev, dma_conf);
1850 
1851 	stmmac_clear_descriptors(priv, dma_conf);
1852 
1853 	if (netif_msg_hw(priv))
1854 		stmmac_display_rings(priv, dma_conf);
1855 
1856 	return ret;
1857 }
1858 
1859 /**
1860  * dma_free_tx_skbufs - free TX dma buffers
1861  * @priv: private structure
1862  * @dma_conf: structure to take the dma data
1863  * @queue: TX queue index
1864  */
1865 static void dma_free_tx_skbufs(struct stmmac_priv *priv,
1866 			       struct stmmac_dma_conf *dma_conf,
1867 			       u32 queue)
1868 {
1869 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1870 	int i;
1871 
1872 	tx_q->xsk_frames_done = 0;
1873 
1874 	for (i = 0; i < dma_conf->dma_tx_size; i++)
1875 		stmmac_free_tx_buffer(priv, dma_conf, queue, i);
1876 
1877 	if (tx_q->xsk_pool && tx_q->xsk_frames_done) {
1878 		xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
1879 		tx_q->xsk_frames_done = 0;
1880 		tx_q->xsk_pool = NULL;
1881 	}
1882 }
1883 
1884 /**
1885  * stmmac_free_tx_skbufs - free TX skb buffers
1886  * @priv: private structure
1887  */
1888 static void stmmac_free_tx_skbufs(struct stmmac_priv *priv)
1889 {
1890 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1891 	u32 queue;
1892 
1893 	for (queue = 0; queue < tx_queue_cnt; queue++)
1894 		dma_free_tx_skbufs(priv, &priv->dma_conf, queue);
1895 }
1896 
1897 /**
1898  * __free_dma_rx_desc_resources - free RX dma desc resources (per queue)
1899  * @priv: private structure
1900  * @dma_conf: structure to take the dma data
1901  * @queue: RX queue index
1902  */
1903 static void __free_dma_rx_desc_resources(struct stmmac_priv *priv,
1904 					 struct stmmac_dma_conf *dma_conf,
1905 					 u32 queue)
1906 {
1907 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1908 
1909 	/* Release the DMA RX socket buffers */
1910 	if (rx_q->xsk_pool)
1911 		dma_free_rx_xskbufs(priv, dma_conf, queue);
1912 	else
1913 		dma_free_rx_skbufs(priv, dma_conf, queue);
1914 
1915 	rx_q->buf_alloc_num = 0;
1916 	rx_q->xsk_pool = NULL;
1917 
1918 	/* Free DMA regions of consistent memory previously allocated */
1919 	if (!priv->extend_desc)
1920 		dma_free_coherent(priv->device, dma_conf->dma_rx_size *
1921 				  sizeof(struct dma_desc),
1922 				  rx_q->dma_rx, rx_q->dma_rx_phy);
1923 	else
1924 		dma_free_coherent(priv->device, dma_conf->dma_rx_size *
1925 				  sizeof(struct dma_extended_desc),
1926 				  rx_q->dma_erx, rx_q->dma_rx_phy);
1927 
1928 	if (xdp_rxq_info_is_reg(&rx_q->xdp_rxq))
1929 		xdp_rxq_info_unreg(&rx_q->xdp_rxq);
1930 
1931 	kfree(rx_q->buf_pool);
1932 	if (rx_q->page_pool)
1933 		page_pool_destroy(rx_q->page_pool);
1934 }
1935 
1936 static void free_dma_rx_desc_resources(struct stmmac_priv *priv,
1937 				       struct stmmac_dma_conf *dma_conf)
1938 {
1939 	u32 rx_count = priv->plat->rx_queues_to_use;
1940 	u32 queue;
1941 
1942 	/* Free RX queue resources */
1943 	for (queue = 0; queue < rx_count; queue++)
1944 		__free_dma_rx_desc_resources(priv, dma_conf, queue);
1945 }
1946 
1947 /**
1948  * __free_dma_tx_desc_resources - free TX dma desc resources (per queue)
1949  * @priv: private structure
1950  * @dma_conf: structure to take the dma data
1951  * @queue: TX queue index
1952  */
1953 static void __free_dma_tx_desc_resources(struct stmmac_priv *priv,
1954 					 struct stmmac_dma_conf *dma_conf,
1955 					 u32 queue)
1956 {
1957 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1958 	size_t size;
1959 	void *addr;
1960 
1961 	/* Release the DMA TX socket buffers */
1962 	dma_free_tx_skbufs(priv, dma_conf, queue);
1963 
1964 	if (priv->extend_desc) {
1965 		size = sizeof(struct dma_extended_desc);
1966 		addr = tx_q->dma_etx;
1967 	} else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1968 		size = sizeof(struct dma_edesc);
1969 		addr = tx_q->dma_entx;
1970 	} else {
1971 		size = sizeof(struct dma_desc);
1972 		addr = tx_q->dma_tx;
1973 	}
1974 
1975 	size *= dma_conf->dma_tx_size;
1976 
1977 	dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy);
1978 
1979 	kfree(tx_q->tx_skbuff_dma);
1980 	kfree(tx_q->tx_skbuff);
1981 }
1982 
1983 static void free_dma_tx_desc_resources(struct stmmac_priv *priv,
1984 				       struct stmmac_dma_conf *dma_conf)
1985 {
1986 	u32 tx_count = priv->plat->tx_queues_to_use;
1987 	u32 queue;
1988 
1989 	/* Free TX queue resources */
1990 	for (queue = 0; queue < tx_count; queue++)
1991 		__free_dma_tx_desc_resources(priv, dma_conf, queue);
1992 }
1993 
1994 /**
1995  * __alloc_dma_rx_desc_resources - alloc RX resources (per queue).
1996  * @priv: private structure
1997  * @dma_conf: structure to take the dma data
1998  * @queue: RX queue index
1999  * Description: according to which descriptor can be used (extend or basic)
2000  * this function allocates the resources for TX and RX paths. In case of
2001  * reception, for example, it pre-allocated the RX socket buffer in order to
2002  * allow zero-copy mechanism.
2003  */
2004 static int __alloc_dma_rx_desc_resources(struct stmmac_priv *priv,
2005 					 struct stmmac_dma_conf *dma_conf,
2006 					 u32 queue)
2007 {
2008 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
2009 	struct stmmac_channel *ch = &priv->channel[queue];
2010 	bool xdp_prog = stmmac_xdp_is_enabled(priv);
2011 	struct page_pool_params pp_params = { 0 };
2012 	unsigned int num_pages;
2013 	unsigned int napi_id;
2014 	int ret;
2015 
2016 	rx_q->queue_index = queue;
2017 	rx_q->priv_data = priv;
2018 
2019 	pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV;
2020 	pp_params.pool_size = dma_conf->dma_rx_size;
2021 	num_pages = DIV_ROUND_UP(dma_conf->dma_buf_sz, PAGE_SIZE);
2022 	pp_params.order = ilog2(num_pages);
2023 	pp_params.nid = dev_to_node(priv->device);
2024 	pp_params.dev = priv->device;
2025 	pp_params.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
2026 	pp_params.offset = stmmac_rx_offset(priv);
2027 	pp_params.max_len = STMMAC_MAX_RX_BUF_SIZE(num_pages);
2028 
2029 	rx_q->page_pool = page_pool_create(&pp_params);
2030 	if (IS_ERR(rx_q->page_pool)) {
2031 		ret = PTR_ERR(rx_q->page_pool);
2032 		rx_q->page_pool = NULL;
2033 		return ret;
2034 	}
2035 
2036 	rx_q->buf_pool = kcalloc(dma_conf->dma_rx_size,
2037 				 sizeof(*rx_q->buf_pool),
2038 				 GFP_KERNEL);
2039 	if (!rx_q->buf_pool)
2040 		return -ENOMEM;
2041 
2042 	if (priv->extend_desc) {
2043 		rx_q->dma_erx = dma_alloc_coherent(priv->device,
2044 						   dma_conf->dma_rx_size *
2045 						   sizeof(struct dma_extended_desc),
2046 						   &rx_q->dma_rx_phy,
2047 						   GFP_KERNEL);
2048 		if (!rx_q->dma_erx)
2049 			return -ENOMEM;
2050 
2051 	} else {
2052 		rx_q->dma_rx = dma_alloc_coherent(priv->device,
2053 						  dma_conf->dma_rx_size *
2054 						  sizeof(struct dma_desc),
2055 						  &rx_q->dma_rx_phy,
2056 						  GFP_KERNEL);
2057 		if (!rx_q->dma_rx)
2058 			return -ENOMEM;
2059 	}
2060 
2061 	if (stmmac_xdp_is_enabled(priv) &&
2062 	    test_bit(queue, priv->af_xdp_zc_qps))
2063 		napi_id = ch->rxtx_napi.napi_id;
2064 	else
2065 		napi_id = ch->rx_napi.napi_id;
2066 
2067 	ret = xdp_rxq_info_reg(&rx_q->xdp_rxq, priv->dev,
2068 			       rx_q->queue_index,
2069 			       napi_id);
2070 	if (ret) {
2071 		netdev_err(priv->dev, "Failed to register xdp rxq info\n");
2072 		return -EINVAL;
2073 	}
2074 
2075 	return 0;
2076 }
2077 
2078 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv,
2079 				       struct stmmac_dma_conf *dma_conf)
2080 {
2081 	u32 rx_count = priv->plat->rx_queues_to_use;
2082 	u32 queue;
2083 	int ret;
2084 
2085 	/* RX queues buffers and DMA */
2086 	for (queue = 0; queue < rx_count; queue++) {
2087 		ret = __alloc_dma_rx_desc_resources(priv, dma_conf, queue);
2088 		if (ret)
2089 			goto err_dma;
2090 	}
2091 
2092 	return 0;
2093 
2094 err_dma:
2095 	free_dma_rx_desc_resources(priv, dma_conf);
2096 
2097 	return ret;
2098 }
2099 
2100 /**
2101  * __alloc_dma_tx_desc_resources - alloc TX resources (per queue).
2102  * @priv: private structure
2103  * @dma_conf: structure to take the dma data
2104  * @queue: TX queue index
2105  * Description: according to which descriptor can be used (extend or basic)
2106  * this function allocates the resources for TX and RX paths. In case of
2107  * reception, for example, it pre-allocated the RX socket buffer in order to
2108  * allow zero-copy mechanism.
2109  */
2110 static int __alloc_dma_tx_desc_resources(struct stmmac_priv *priv,
2111 					 struct stmmac_dma_conf *dma_conf,
2112 					 u32 queue)
2113 {
2114 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
2115 	size_t size;
2116 	void *addr;
2117 
2118 	tx_q->queue_index = queue;
2119 	tx_q->priv_data = priv;
2120 
2121 	tx_q->tx_skbuff_dma = kcalloc(dma_conf->dma_tx_size,
2122 				      sizeof(*tx_q->tx_skbuff_dma),
2123 				      GFP_KERNEL);
2124 	if (!tx_q->tx_skbuff_dma)
2125 		return -ENOMEM;
2126 
2127 	tx_q->tx_skbuff = kcalloc(dma_conf->dma_tx_size,
2128 				  sizeof(struct sk_buff *),
2129 				  GFP_KERNEL);
2130 	if (!tx_q->tx_skbuff)
2131 		return -ENOMEM;
2132 
2133 	if (priv->extend_desc)
2134 		size = sizeof(struct dma_extended_desc);
2135 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2136 		size = sizeof(struct dma_edesc);
2137 	else
2138 		size = sizeof(struct dma_desc);
2139 
2140 	size *= dma_conf->dma_tx_size;
2141 
2142 	addr = dma_alloc_coherent(priv->device, size,
2143 				  &tx_q->dma_tx_phy, GFP_KERNEL);
2144 	if (!addr)
2145 		return -ENOMEM;
2146 
2147 	if (priv->extend_desc)
2148 		tx_q->dma_etx = addr;
2149 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2150 		tx_q->dma_entx = addr;
2151 	else
2152 		tx_q->dma_tx = addr;
2153 
2154 	return 0;
2155 }
2156 
2157 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv,
2158 				       struct stmmac_dma_conf *dma_conf)
2159 {
2160 	u32 tx_count = priv->plat->tx_queues_to_use;
2161 	u32 queue;
2162 	int ret;
2163 
2164 	/* TX queues buffers and DMA */
2165 	for (queue = 0; queue < tx_count; queue++) {
2166 		ret = __alloc_dma_tx_desc_resources(priv, dma_conf, queue);
2167 		if (ret)
2168 			goto err_dma;
2169 	}
2170 
2171 	return 0;
2172 
2173 err_dma:
2174 	free_dma_tx_desc_resources(priv, dma_conf);
2175 	return ret;
2176 }
2177 
2178 /**
2179  * alloc_dma_desc_resources - alloc TX/RX resources.
2180  * @priv: private structure
2181  * @dma_conf: structure to take the dma data
2182  * Description: according to which descriptor can be used (extend or basic)
2183  * this function allocates the resources for TX and RX paths. In case of
2184  * reception, for example, it pre-allocated the RX socket buffer in order to
2185  * allow zero-copy mechanism.
2186  */
2187 static int alloc_dma_desc_resources(struct stmmac_priv *priv,
2188 				    struct stmmac_dma_conf *dma_conf)
2189 {
2190 	/* RX Allocation */
2191 	int ret = alloc_dma_rx_desc_resources(priv, dma_conf);
2192 
2193 	if (ret)
2194 		return ret;
2195 
2196 	ret = alloc_dma_tx_desc_resources(priv, dma_conf);
2197 
2198 	return ret;
2199 }
2200 
2201 /**
2202  * free_dma_desc_resources - free dma desc resources
2203  * @priv: private structure
2204  * @dma_conf: structure to take the dma data
2205  */
2206 static void free_dma_desc_resources(struct stmmac_priv *priv,
2207 				    struct stmmac_dma_conf *dma_conf)
2208 {
2209 	/* Release the DMA TX socket buffers */
2210 	free_dma_tx_desc_resources(priv, dma_conf);
2211 
2212 	/* Release the DMA RX socket buffers later
2213 	 * to ensure all pending XDP_TX buffers are returned.
2214 	 */
2215 	free_dma_rx_desc_resources(priv, dma_conf);
2216 }
2217 
2218 /**
2219  *  stmmac_mac_enable_rx_queues - Enable MAC rx queues
2220  *  @priv: driver private structure
2221  *  Description: It is used for enabling the rx queues in the MAC
2222  */
2223 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
2224 {
2225 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2226 	int queue;
2227 	u8 mode;
2228 
2229 	for (queue = 0; queue < rx_queues_count; queue++) {
2230 		mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
2231 		stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
2232 	}
2233 }
2234 
2235 /**
2236  * stmmac_start_rx_dma - start RX DMA channel
2237  * @priv: driver private structure
2238  * @chan: RX channel index
2239  * Description:
2240  * This starts a RX DMA channel
2241  */
2242 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
2243 {
2244 	netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
2245 	stmmac_start_rx(priv, priv->ioaddr, chan);
2246 }
2247 
2248 /**
2249  * stmmac_start_tx_dma - start TX DMA channel
2250  * @priv: driver private structure
2251  * @chan: TX channel index
2252  * Description:
2253  * This starts a TX DMA channel
2254  */
2255 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
2256 {
2257 	netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
2258 	stmmac_start_tx(priv, priv->ioaddr, chan);
2259 }
2260 
2261 /**
2262  * stmmac_stop_rx_dma - stop RX DMA channel
2263  * @priv: driver private structure
2264  * @chan: RX channel index
2265  * Description:
2266  * This stops a RX DMA channel
2267  */
2268 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
2269 {
2270 	netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
2271 	stmmac_stop_rx(priv, priv->ioaddr, chan);
2272 }
2273 
2274 /**
2275  * stmmac_stop_tx_dma - stop TX DMA channel
2276  * @priv: driver private structure
2277  * @chan: TX channel index
2278  * Description:
2279  * This stops a TX DMA channel
2280  */
2281 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
2282 {
2283 	netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
2284 	stmmac_stop_tx(priv, priv->ioaddr, chan);
2285 }
2286 
2287 static void stmmac_enable_all_dma_irq(struct stmmac_priv *priv)
2288 {
2289 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2290 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2291 	u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2292 	u32 chan;
2293 
2294 	for (chan = 0; chan < dma_csr_ch; chan++) {
2295 		struct stmmac_channel *ch = &priv->channel[chan];
2296 		unsigned long flags;
2297 
2298 		spin_lock_irqsave(&ch->lock, flags);
2299 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
2300 		spin_unlock_irqrestore(&ch->lock, flags);
2301 	}
2302 }
2303 
2304 /**
2305  * stmmac_start_all_dma - start all RX and TX DMA channels
2306  * @priv: driver private structure
2307  * Description:
2308  * This starts all the RX and TX DMA channels
2309  */
2310 static void stmmac_start_all_dma(struct stmmac_priv *priv)
2311 {
2312 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2313 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2314 	u32 chan = 0;
2315 
2316 	for (chan = 0; chan < rx_channels_count; chan++)
2317 		stmmac_start_rx_dma(priv, chan);
2318 
2319 	for (chan = 0; chan < tx_channels_count; chan++)
2320 		stmmac_start_tx_dma(priv, chan);
2321 }
2322 
2323 /**
2324  * stmmac_stop_all_dma - stop all RX and TX DMA channels
2325  * @priv: driver private structure
2326  * Description:
2327  * This stops the RX and TX DMA channels
2328  */
2329 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
2330 {
2331 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2332 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2333 	u32 chan = 0;
2334 
2335 	for (chan = 0; chan < rx_channels_count; chan++)
2336 		stmmac_stop_rx_dma(priv, chan);
2337 
2338 	for (chan = 0; chan < tx_channels_count; chan++)
2339 		stmmac_stop_tx_dma(priv, chan);
2340 }
2341 
2342 /**
2343  *  stmmac_dma_operation_mode - HW DMA operation mode
2344  *  @priv: driver private structure
2345  *  Description: it is used for configuring the DMA operation mode register in
2346  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
2347  */
2348 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
2349 {
2350 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2351 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2352 	int rxfifosz = priv->plat->rx_fifo_size;
2353 	int txfifosz = priv->plat->tx_fifo_size;
2354 	u32 txmode = 0;
2355 	u32 rxmode = 0;
2356 	u32 chan = 0;
2357 	u8 qmode = 0;
2358 
2359 	if (rxfifosz == 0)
2360 		rxfifosz = priv->dma_cap.rx_fifo_size;
2361 	if (txfifosz == 0)
2362 		txfifosz = priv->dma_cap.tx_fifo_size;
2363 
2364 	/* Adjust for real per queue fifo size */
2365 	rxfifosz /= rx_channels_count;
2366 	txfifosz /= tx_channels_count;
2367 
2368 	if (priv->plat->force_thresh_dma_mode) {
2369 		txmode = tc;
2370 		rxmode = tc;
2371 	} else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
2372 		/*
2373 		 * In case of GMAC, SF mode can be enabled
2374 		 * to perform the TX COE in HW. This depends on:
2375 		 * 1) TX COE if actually supported
2376 		 * 2) There is no bugged Jumbo frame support
2377 		 *    that needs to not insert csum in the TDES.
2378 		 */
2379 		txmode = SF_DMA_MODE;
2380 		rxmode = SF_DMA_MODE;
2381 		priv->xstats.threshold = SF_DMA_MODE;
2382 	} else {
2383 		txmode = tc;
2384 		rxmode = SF_DMA_MODE;
2385 	}
2386 
2387 	/* configure all channels */
2388 	for (chan = 0; chan < rx_channels_count; chan++) {
2389 		struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[chan];
2390 		u32 buf_size;
2391 
2392 		qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2393 
2394 		stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
2395 				rxfifosz, qmode);
2396 
2397 		if (rx_q->xsk_pool) {
2398 			buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
2399 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
2400 					      buf_size,
2401 					      chan);
2402 		} else {
2403 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
2404 					      priv->dma_conf.dma_buf_sz,
2405 					      chan);
2406 		}
2407 	}
2408 
2409 	for (chan = 0; chan < tx_channels_count; chan++) {
2410 		qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2411 
2412 		stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
2413 				txfifosz, qmode);
2414 	}
2415 }
2416 
2417 static bool stmmac_xdp_xmit_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
2418 {
2419 	struct netdev_queue *nq = netdev_get_tx_queue(priv->dev, queue);
2420 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
2421 	struct xsk_buff_pool *pool = tx_q->xsk_pool;
2422 	unsigned int entry = tx_q->cur_tx;
2423 	struct dma_desc *tx_desc = NULL;
2424 	struct xdp_desc xdp_desc;
2425 	bool work_done = true;
2426 
2427 	/* Avoids TX time-out as we are sharing with slow path */
2428 	txq_trans_cond_update(nq);
2429 
2430 	budget = min(budget, stmmac_tx_avail(priv, queue));
2431 
2432 	while (budget-- > 0) {
2433 		dma_addr_t dma_addr;
2434 		bool set_ic;
2435 
2436 		/* We are sharing with slow path and stop XSK TX desc submission when
2437 		 * available TX ring is less than threshold.
2438 		 */
2439 		if (unlikely(stmmac_tx_avail(priv, queue) < STMMAC_TX_XSK_AVAIL) ||
2440 		    !netif_carrier_ok(priv->dev)) {
2441 			work_done = false;
2442 			break;
2443 		}
2444 
2445 		if (!xsk_tx_peek_desc(pool, &xdp_desc))
2446 			break;
2447 
2448 		if (likely(priv->extend_desc))
2449 			tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
2450 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2451 			tx_desc = &tx_q->dma_entx[entry].basic;
2452 		else
2453 			tx_desc = tx_q->dma_tx + entry;
2454 
2455 		dma_addr = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
2456 		xsk_buff_raw_dma_sync_for_device(pool, dma_addr, xdp_desc.len);
2457 
2458 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XSK_TX;
2459 
2460 		/* To return XDP buffer to XSK pool, we simple call
2461 		 * xsk_tx_completed(), so we don't need to fill up
2462 		 * 'buf' and 'xdpf'.
2463 		 */
2464 		tx_q->tx_skbuff_dma[entry].buf = 0;
2465 		tx_q->xdpf[entry] = NULL;
2466 
2467 		tx_q->tx_skbuff_dma[entry].map_as_page = false;
2468 		tx_q->tx_skbuff_dma[entry].len = xdp_desc.len;
2469 		tx_q->tx_skbuff_dma[entry].last_segment = true;
2470 		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2471 
2472 		stmmac_set_desc_addr(priv, tx_desc, dma_addr);
2473 
2474 		tx_q->tx_count_frames++;
2475 
2476 		if (!priv->tx_coal_frames[queue])
2477 			set_ic = false;
2478 		else if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
2479 			set_ic = true;
2480 		else
2481 			set_ic = false;
2482 
2483 		if (set_ic) {
2484 			tx_q->tx_count_frames = 0;
2485 			stmmac_set_tx_ic(priv, tx_desc);
2486 			priv->xstats.tx_set_ic_bit++;
2487 		}
2488 
2489 		stmmac_prepare_tx_desc(priv, tx_desc, 1, xdp_desc.len,
2490 				       true, priv->mode, true, true,
2491 				       xdp_desc.len);
2492 
2493 		stmmac_enable_dma_transmission(priv, priv->ioaddr);
2494 
2495 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size);
2496 		entry = tx_q->cur_tx;
2497 	}
2498 
2499 	if (tx_desc) {
2500 		stmmac_flush_tx_descriptors(priv, queue);
2501 		xsk_tx_release(pool);
2502 	}
2503 
2504 	/* Return true if all of the 3 conditions are met
2505 	 *  a) TX Budget is still available
2506 	 *  b) work_done = true when XSK TX desc peek is empty (no more
2507 	 *     pending XSK TX for transmission)
2508 	 */
2509 	return !!budget && work_done;
2510 }
2511 
2512 static void stmmac_bump_dma_threshold(struct stmmac_priv *priv, u32 chan)
2513 {
2514 	if (unlikely(priv->xstats.threshold != SF_DMA_MODE) && tc <= 256) {
2515 		tc += 64;
2516 
2517 		if (priv->plat->force_thresh_dma_mode)
2518 			stmmac_set_dma_operation_mode(priv, tc, tc, chan);
2519 		else
2520 			stmmac_set_dma_operation_mode(priv, tc, SF_DMA_MODE,
2521 						      chan);
2522 
2523 		priv->xstats.threshold = tc;
2524 	}
2525 }
2526 
2527 /**
2528  * stmmac_tx_clean - to manage the transmission completion
2529  * @priv: driver private structure
2530  * @budget: napi budget limiting this functions packet handling
2531  * @queue: TX queue index
2532  * Description: it reclaims the transmit resources after transmission completes.
2533  */
2534 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
2535 {
2536 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
2537 	unsigned int bytes_compl = 0, pkts_compl = 0;
2538 	unsigned int entry, xmits = 0, count = 0;
2539 
2540 	__netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
2541 
2542 	priv->xstats.tx_clean++;
2543 
2544 	tx_q->xsk_frames_done = 0;
2545 
2546 	entry = tx_q->dirty_tx;
2547 
2548 	/* Try to clean all TX complete frame in 1 shot */
2549 	while ((entry != tx_q->cur_tx) && count < priv->dma_conf.dma_tx_size) {
2550 		struct xdp_frame *xdpf;
2551 		struct sk_buff *skb;
2552 		struct dma_desc *p;
2553 		int status;
2554 
2555 		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX ||
2556 		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2557 			xdpf = tx_q->xdpf[entry];
2558 			skb = NULL;
2559 		} else if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2560 			xdpf = NULL;
2561 			skb = tx_q->tx_skbuff[entry];
2562 		} else {
2563 			xdpf = NULL;
2564 			skb = NULL;
2565 		}
2566 
2567 		if (priv->extend_desc)
2568 			p = (struct dma_desc *)(tx_q->dma_etx + entry);
2569 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2570 			p = &tx_q->dma_entx[entry].basic;
2571 		else
2572 			p = tx_q->dma_tx + entry;
2573 
2574 		status = stmmac_tx_status(priv, &priv->dev->stats,
2575 				&priv->xstats, p, priv->ioaddr);
2576 		/* Check if the descriptor is owned by the DMA */
2577 		if (unlikely(status & tx_dma_own))
2578 			break;
2579 
2580 		count++;
2581 
2582 		/* Make sure descriptor fields are read after reading
2583 		 * the own bit.
2584 		 */
2585 		dma_rmb();
2586 
2587 		/* Just consider the last segment and ...*/
2588 		if (likely(!(status & tx_not_ls))) {
2589 			/* ... verify the status error condition */
2590 			if (unlikely(status & tx_err)) {
2591 				priv->dev->stats.tx_errors++;
2592 				if (unlikely(status & tx_err_bump_tc))
2593 					stmmac_bump_dma_threshold(priv, queue);
2594 			} else {
2595 				priv->dev->stats.tx_packets++;
2596 				priv->xstats.tx_pkt_n++;
2597 				priv->xstats.txq_stats[queue].tx_pkt_n++;
2598 			}
2599 			if (skb)
2600 				stmmac_get_tx_hwtstamp(priv, p, skb);
2601 		}
2602 
2603 		if (likely(tx_q->tx_skbuff_dma[entry].buf &&
2604 			   tx_q->tx_skbuff_dma[entry].buf_type != STMMAC_TXBUF_T_XDP_TX)) {
2605 			if (tx_q->tx_skbuff_dma[entry].map_as_page)
2606 				dma_unmap_page(priv->device,
2607 					       tx_q->tx_skbuff_dma[entry].buf,
2608 					       tx_q->tx_skbuff_dma[entry].len,
2609 					       DMA_TO_DEVICE);
2610 			else
2611 				dma_unmap_single(priv->device,
2612 						 tx_q->tx_skbuff_dma[entry].buf,
2613 						 tx_q->tx_skbuff_dma[entry].len,
2614 						 DMA_TO_DEVICE);
2615 			tx_q->tx_skbuff_dma[entry].buf = 0;
2616 			tx_q->tx_skbuff_dma[entry].len = 0;
2617 			tx_q->tx_skbuff_dma[entry].map_as_page = false;
2618 		}
2619 
2620 		stmmac_clean_desc3(priv, tx_q, p);
2621 
2622 		tx_q->tx_skbuff_dma[entry].last_segment = false;
2623 		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2624 
2625 		if (xdpf &&
2626 		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX) {
2627 			xdp_return_frame_rx_napi(xdpf);
2628 			tx_q->xdpf[entry] = NULL;
2629 		}
2630 
2631 		if (xdpf &&
2632 		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2633 			xdp_return_frame(xdpf);
2634 			tx_q->xdpf[entry] = NULL;
2635 		}
2636 
2637 		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XSK_TX)
2638 			tx_q->xsk_frames_done++;
2639 
2640 		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2641 			if (likely(skb)) {
2642 				pkts_compl++;
2643 				bytes_compl += skb->len;
2644 				dev_consume_skb_any(skb);
2645 				tx_q->tx_skbuff[entry] = NULL;
2646 			}
2647 		}
2648 
2649 		stmmac_release_tx_desc(priv, p, priv->mode);
2650 
2651 		entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
2652 	}
2653 	tx_q->dirty_tx = entry;
2654 
2655 	netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
2656 				  pkts_compl, bytes_compl);
2657 
2658 	if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
2659 								queue))) &&
2660 	    stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH(priv)) {
2661 
2662 		netif_dbg(priv, tx_done, priv->dev,
2663 			  "%s: restart transmit\n", __func__);
2664 		netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
2665 	}
2666 
2667 	if (tx_q->xsk_pool) {
2668 		bool work_done;
2669 
2670 		if (tx_q->xsk_frames_done)
2671 			xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
2672 
2673 		if (xsk_uses_need_wakeup(tx_q->xsk_pool))
2674 			xsk_set_tx_need_wakeup(tx_q->xsk_pool);
2675 
2676 		/* For XSK TX, we try to send as many as possible.
2677 		 * If XSK work done (XSK TX desc empty and budget still
2678 		 * available), return "budget - 1" to reenable TX IRQ.
2679 		 * Else, return "budget" to make NAPI continue polling.
2680 		 */
2681 		work_done = stmmac_xdp_xmit_zc(priv, queue,
2682 					       STMMAC_XSK_TX_BUDGET_MAX);
2683 		if (work_done)
2684 			xmits = budget - 1;
2685 		else
2686 			xmits = budget;
2687 	}
2688 
2689 	if (priv->eee_enabled && !priv->tx_path_in_lpi_mode &&
2690 	    priv->eee_sw_timer_en) {
2691 		if (stmmac_enable_eee_mode(priv))
2692 			mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
2693 	}
2694 
2695 	/* We still have pending packets, let's call for a new scheduling */
2696 	if (tx_q->dirty_tx != tx_q->cur_tx)
2697 		hrtimer_start(&tx_q->txtimer,
2698 			      STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]),
2699 			      HRTIMER_MODE_REL);
2700 
2701 	__netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
2702 
2703 	/* Combine decisions from TX clean and XSK TX */
2704 	return max(count, xmits);
2705 }
2706 
2707 /**
2708  * stmmac_tx_err - to manage the tx error
2709  * @priv: driver private structure
2710  * @chan: channel index
2711  * Description: it cleans the descriptors and restarts the transmission
2712  * in case of transmission errors.
2713  */
2714 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
2715 {
2716 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
2717 
2718 	netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
2719 
2720 	stmmac_stop_tx_dma(priv, chan);
2721 	dma_free_tx_skbufs(priv, &priv->dma_conf, chan);
2722 	stmmac_clear_tx_descriptors(priv, &priv->dma_conf, chan);
2723 	stmmac_reset_tx_queue(priv, chan);
2724 	stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2725 			    tx_q->dma_tx_phy, chan);
2726 	stmmac_start_tx_dma(priv, chan);
2727 
2728 	priv->dev->stats.tx_errors++;
2729 	netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
2730 }
2731 
2732 /**
2733  *  stmmac_set_dma_operation_mode - Set DMA operation mode by channel
2734  *  @priv: driver private structure
2735  *  @txmode: TX operating mode
2736  *  @rxmode: RX operating mode
2737  *  @chan: channel index
2738  *  Description: it is used for configuring of the DMA operation mode in
2739  *  runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
2740  *  mode.
2741  */
2742 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
2743 					  u32 rxmode, u32 chan)
2744 {
2745 	u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2746 	u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2747 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2748 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2749 	int rxfifosz = priv->plat->rx_fifo_size;
2750 	int txfifosz = priv->plat->tx_fifo_size;
2751 
2752 	if (rxfifosz == 0)
2753 		rxfifosz = priv->dma_cap.rx_fifo_size;
2754 	if (txfifosz == 0)
2755 		txfifosz = priv->dma_cap.tx_fifo_size;
2756 
2757 	/* Adjust for real per queue fifo size */
2758 	rxfifosz /= rx_channels_count;
2759 	txfifosz /= tx_channels_count;
2760 
2761 	stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2762 	stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2763 }
2764 
2765 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2766 {
2767 	int ret;
2768 
2769 	ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2770 			priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2771 	if (ret && (ret != -EINVAL)) {
2772 		stmmac_global_err(priv);
2773 		return true;
2774 	}
2775 
2776 	return false;
2777 }
2778 
2779 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan, u32 dir)
2780 {
2781 	int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2782 						 &priv->xstats, chan, dir);
2783 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[chan];
2784 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
2785 	struct stmmac_channel *ch = &priv->channel[chan];
2786 	struct napi_struct *rx_napi;
2787 	struct napi_struct *tx_napi;
2788 	unsigned long flags;
2789 
2790 	rx_napi = rx_q->xsk_pool ? &ch->rxtx_napi : &ch->rx_napi;
2791 	tx_napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
2792 
2793 	if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2794 		if (napi_schedule_prep(rx_napi)) {
2795 			spin_lock_irqsave(&ch->lock, flags);
2796 			stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
2797 			spin_unlock_irqrestore(&ch->lock, flags);
2798 			__napi_schedule(rx_napi);
2799 		}
2800 	}
2801 
2802 	if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) {
2803 		if (napi_schedule_prep(tx_napi)) {
2804 			spin_lock_irqsave(&ch->lock, flags);
2805 			stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
2806 			spin_unlock_irqrestore(&ch->lock, flags);
2807 			__napi_schedule(tx_napi);
2808 		}
2809 	}
2810 
2811 	return status;
2812 }
2813 
2814 /**
2815  * stmmac_dma_interrupt - DMA ISR
2816  * @priv: driver private structure
2817  * Description: this is the DMA ISR. It is called by the main ISR.
2818  * It calls the dwmac dma routine and schedule poll method in case of some
2819  * work can be done.
2820  */
2821 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2822 {
2823 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2824 	u32 rx_channel_count = priv->plat->rx_queues_to_use;
2825 	u32 channels_to_check = tx_channel_count > rx_channel_count ?
2826 				tx_channel_count : rx_channel_count;
2827 	u32 chan;
2828 	int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2829 
2830 	/* Make sure we never check beyond our status buffer. */
2831 	if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2832 		channels_to_check = ARRAY_SIZE(status);
2833 
2834 	for (chan = 0; chan < channels_to_check; chan++)
2835 		status[chan] = stmmac_napi_check(priv, chan,
2836 						 DMA_DIR_RXTX);
2837 
2838 	for (chan = 0; chan < tx_channel_count; chan++) {
2839 		if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2840 			/* Try to bump up the dma threshold on this failure */
2841 			stmmac_bump_dma_threshold(priv, chan);
2842 		} else if (unlikely(status[chan] == tx_hard_error)) {
2843 			stmmac_tx_err(priv, chan);
2844 		}
2845 	}
2846 }
2847 
2848 /**
2849  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2850  * @priv: driver private structure
2851  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2852  */
2853 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2854 {
2855 	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2856 			    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2857 
2858 	stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2859 
2860 	if (priv->dma_cap.rmon) {
2861 		stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2862 		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2863 	} else
2864 		netdev_info(priv->dev, "No MAC Management Counters available\n");
2865 }
2866 
2867 /**
2868  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2869  * @priv: driver private structure
2870  * Description:
2871  *  new GMAC chip generations have a new register to indicate the
2872  *  presence of the optional feature/functions.
2873  *  This can be also used to override the value passed through the
2874  *  platform and necessary for old MAC10/100 and GMAC chips.
2875  */
2876 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2877 {
2878 	return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2879 }
2880 
2881 /**
2882  * stmmac_check_ether_addr - check if the MAC addr is valid
2883  * @priv: driver private structure
2884  * Description:
2885  * it is to verify if the MAC address is valid, in case of failures it
2886  * generates a random MAC address
2887  */
2888 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2889 {
2890 	u8 addr[ETH_ALEN];
2891 
2892 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2893 		stmmac_get_umac_addr(priv, priv->hw, addr, 0);
2894 		if (is_valid_ether_addr(addr))
2895 			eth_hw_addr_set(priv->dev, addr);
2896 		else
2897 			eth_hw_addr_random(priv->dev);
2898 		dev_info(priv->device, "device MAC address %pM\n",
2899 			 priv->dev->dev_addr);
2900 	}
2901 }
2902 
2903 /**
2904  * stmmac_init_dma_engine - DMA init.
2905  * @priv: driver private structure
2906  * Description:
2907  * It inits the DMA invoking the specific MAC/GMAC callback.
2908  * Some DMA parameters can be passed from the platform;
2909  * in case of these are not passed a default is kept for the MAC or GMAC.
2910  */
2911 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2912 {
2913 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2914 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2915 	u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2916 	struct stmmac_rx_queue *rx_q;
2917 	struct stmmac_tx_queue *tx_q;
2918 	u32 chan = 0;
2919 	int atds = 0;
2920 	int ret = 0;
2921 
2922 	if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2923 		dev_err(priv->device, "Invalid DMA configuration\n");
2924 		return -EINVAL;
2925 	}
2926 
2927 	if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2928 		atds = 1;
2929 
2930 	ret = stmmac_reset(priv, priv->ioaddr);
2931 	if (ret) {
2932 		dev_err(priv->device, "Failed to reset the dma\n");
2933 		return ret;
2934 	}
2935 
2936 	/* DMA Configuration */
2937 	stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2938 
2939 	if (priv->plat->axi)
2940 		stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2941 
2942 	/* DMA CSR Channel configuration */
2943 	for (chan = 0; chan < dma_csr_ch; chan++) {
2944 		stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2945 		stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
2946 	}
2947 
2948 	/* DMA RX Channel Configuration */
2949 	for (chan = 0; chan < rx_channels_count; chan++) {
2950 		rx_q = &priv->dma_conf.rx_queue[chan];
2951 
2952 		stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2953 				    rx_q->dma_rx_phy, chan);
2954 
2955 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2956 				     (rx_q->buf_alloc_num *
2957 				      sizeof(struct dma_desc));
2958 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2959 				       rx_q->rx_tail_addr, chan);
2960 	}
2961 
2962 	/* DMA TX Channel Configuration */
2963 	for (chan = 0; chan < tx_channels_count; chan++) {
2964 		tx_q = &priv->dma_conf.tx_queue[chan];
2965 
2966 		stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2967 				    tx_q->dma_tx_phy, chan);
2968 
2969 		tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2970 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2971 				       tx_q->tx_tail_addr, chan);
2972 	}
2973 
2974 	return ret;
2975 }
2976 
2977 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2978 {
2979 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
2980 
2981 	hrtimer_start(&tx_q->txtimer,
2982 		      STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]),
2983 		      HRTIMER_MODE_REL);
2984 }
2985 
2986 /**
2987  * stmmac_tx_timer - mitigation sw timer for tx.
2988  * @t: data pointer
2989  * Description:
2990  * This is the timer handler to directly invoke the stmmac_tx_clean.
2991  */
2992 static enum hrtimer_restart stmmac_tx_timer(struct hrtimer *t)
2993 {
2994 	struct stmmac_tx_queue *tx_q = container_of(t, struct stmmac_tx_queue, txtimer);
2995 	struct stmmac_priv *priv = tx_q->priv_data;
2996 	struct stmmac_channel *ch;
2997 	struct napi_struct *napi;
2998 
2999 	ch = &priv->channel[tx_q->queue_index];
3000 	napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
3001 
3002 	if (likely(napi_schedule_prep(napi))) {
3003 		unsigned long flags;
3004 
3005 		spin_lock_irqsave(&ch->lock, flags);
3006 		stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1);
3007 		spin_unlock_irqrestore(&ch->lock, flags);
3008 		__napi_schedule(napi);
3009 	}
3010 
3011 	return HRTIMER_NORESTART;
3012 }
3013 
3014 /**
3015  * stmmac_init_coalesce - init mitigation options.
3016  * @priv: driver private structure
3017  * Description:
3018  * This inits the coalesce parameters: i.e. timer rate,
3019  * timer handler and default threshold used for enabling the
3020  * interrupt on completion bit.
3021  */
3022 static void stmmac_init_coalesce(struct stmmac_priv *priv)
3023 {
3024 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
3025 	u32 rx_channel_count = priv->plat->rx_queues_to_use;
3026 	u32 chan;
3027 
3028 	for (chan = 0; chan < tx_channel_count; chan++) {
3029 		struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
3030 
3031 		priv->tx_coal_frames[chan] = STMMAC_TX_FRAMES;
3032 		priv->tx_coal_timer[chan] = STMMAC_COAL_TX_TIMER;
3033 
3034 		hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3035 		tx_q->txtimer.function = stmmac_tx_timer;
3036 	}
3037 
3038 	for (chan = 0; chan < rx_channel_count; chan++)
3039 		priv->rx_coal_frames[chan] = STMMAC_RX_FRAMES;
3040 }
3041 
3042 static void stmmac_set_rings_length(struct stmmac_priv *priv)
3043 {
3044 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
3045 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
3046 	u32 chan;
3047 
3048 	/* set TX ring length */
3049 	for (chan = 0; chan < tx_channels_count; chan++)
3050 		stmmac_set_tx_ring_len(priv, priv->ioaddr,
3051 				       (priv->dma_conf.dma_tx_size - 1), chan);
3052 
3053 	/* set RX ring length */
3054 	for (chan = 0; chan < rx_channels_count; chan++)
3055 		stmmac_set_rx_ring_len(priv, priv->ioaddr,
3056 				       (priv->dma_conf.dma_rx_size - 1), chan);
3057 }
3058 
3059 /**
3060  *  stmmac_set_tx_queue_weight - Set TX queue weight
3061  *  @priv: driver private structure
3062  *  Description: It is used for setting TX queues weight
3063  */
3064 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
3065 {
3066 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3067 	u32 weight;
3068 	u32 queue;
3069 
3070 	for (queue = 0; queue < tx_queues_count; queue++) {
3071 		weight = priv->plat->tx_queues_cfg[queue].weight;
3072 		stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
3073 	}
3074 }
3075 
3076 /**
3077  *  stmmac_configure_cbs - Configure CBS in TX queue
3078  *  @priv: driver private structure
3079  *  Description: It is used for configuring CBS in AVB TX queues
3080  */
3081 static void stmmac_configure_cbs(struct stmmac_priv *priv)
3082 {
3083 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3084 	u32 mode_to_use;
3085 	u32 queue;
3086 
3087 	/* queue 0 is reserved for legacy traffic */
3088 	for (queue = 1; queue < tx_queues_count; queue++) {
3089 		mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
3090 		if (mode_to_use == MTL_QUEUE_DCB)
3091 			continue;
3092 
3093 		stmmac_config_cbs(priv, priv->hw,
3094 				priv->plat->tx_queues_cfg[queue].send_slope,
3095 				priv->plat->tx_queues_cfg[queue].idle_slope,
3096 				priv->plat->tx_queues_cfg[queue].high_credit,
3097 				priv->plat->tx_queues_cfg[queue].low_credit,
3098 				queue);
3099 	}
3100 }
3101 
3102 /**
3103  *  stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
3104  *  @priv: driver private structure
3105  *  Description: It is used for mapping RX queues to RX dma channels
3106  */
3107 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
3108 {
3109 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3110 	u32 queue;
3111 	u32 chan;
3112 
3113 	for (queue = 0; queue < rx_queues_count; queue++) {
3114 		chan = priv->plat->rx_queues_cfg[queue].chan;
3115 		stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
3116 	}
3117 }
3118 
3119 /**
3120  *  stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
3121  *  @priv: driver private structure
3122  *  Description: It is used for configuring the RX Queue Priority
3123  */
3124 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
3125 {
3126 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3127 	u32 queue;
3128 	u32 prio;
3129 
3130 	for (queue = 0; queue < rx_queues_count; queue++) {
3131 		if (!priv->plat->rx_queues_cfg[queue].use_prio)
3132 			continue;
3133 
3134 		prio = priv->plat->rx_queues_cfg[queue].prio;
3135 		stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
3136 	}
3137 }
3138 
3139 /**
3140  *  stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
3141  *  @priv: driver private structure
3142  *  Description: It is used for configuring the TX Queue Priority
3143  */
3144 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
3145 {
3146 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3147 	u32 queue;
3148 	u32 prio;
3149 
3150 	for (queue = 0; queue < tx_queues_count; queue++) {
3151 		if (!priv->plat->tx_queues_cfg[queue].use_prio)
3152 			continue;
3153 
3154 		prio = priv->plat->tx_queues_cfg[queue].prio;
3155 		stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
3156 	}
3157 }
3158 
3159 /**
3160  *  stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
3161  *  @priv: driver private structure
3162  *  Description: It is used for configuring the RX queue routing
3163  */
3164 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
3165 {
3166 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3167 	u32 queue;
3168 	u8 packet;
3169 
3170 	for (queue = 0; queue < rx_queues_count; queue++) {
3171 		/* no specific packet type routing specified for the queue */
3172 		if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
3173 			continue;
3174 
3175 		packet = priv->plat->rx_queues_cfg[queue].pkt_route;
3176 		stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
3177 	}
3178 }
3179 
3180 static void stmmac_mac_config_rss(struct stmmac_priv *priv)
3181 {
3182 	if (!priv->dma_cap.rssen || !priv->plat->rss_en) {
3183 		priv->rss.enable = false;
3184 		return;
3185 	}
3186 
3187 	if (priv->dev->features & NETIF_F_RXHASH)
3188 		priv->rss.enable = true;
3189 	else
3190 		priv->rss.enable = false;
3191 
3192 	stmmac_rss_configure(priv, priv->hw, &priv->rss,
3193 			     priv->plat->rx_queues_to_use);
3194 }
3195 
3196 /**
3197  *  stmmac_mtl_configuration - Configure MTL
3198  *  @priv: driver private structure
3199  *  Description: It is used for configurring MTL
3200  */
3201 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
3202 {
3203 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3204 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3205 
3206 	if (tx_queues_count > 1)
3207 		stmmac_set_tx_queue_weight(priv);
3208 
3209 	/* Configure MTL RX algorithms */
3210 	if (rx_queues_count > 1)
3211 		stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
3212 				priv->plat->rx_sched_algorithm);
3213 
3214 	/* Configure MTL TX algorithms */
3215 	if (tx_queues_count > 1)
3216 		stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
3217 				priv->plat->tx_sched_algorithm);
3218 
3219 	/* Configure CBS in AVB TX queues */
3220 	if (tx_queues_count > 1)
3221 		stmmac_configure_cbs(priv);
3222 
3223 	/* Map RX MTL to DMA channels */
3224 	stmmac_rx_queue_dma_chan_map(priv);
3225 
3226 	/* Enable MAC RX Queues */
3227 	stmmac_mac_enable_rx_queues(priv);
3228 
3229 	/* Set RX priorities */
3230 	if (rx_queues_count > 1)
3231 		stmmac_mac_config_rx_queues_prio(priv);
3232 
3233 	/* Set TX priorities */
3234 	if (tx_queues_count > 1)
3235 		stmmac_mac_config_tx_queues_prio(priv);
3236 
3237 	/* Set RX routing */
3238 	if (rx_queues_count > 1)
3239 		stmmac_mac_config_rx_queues_routing(priv);
3240 
3241 	/* Receive Side Scaling */
3242 	if (rx_queues_count > 1)
3243 		stmmac_mac_config_rss(priv);
3244 }
3245 
3246 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
3247 {
3248 	if (priv->dma_cap.asp) {
3249 		netdev_info(priv->dev, "Enabling Safety Features\n");
3250 		stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp,
3251 					  priv->plat->safety_feat_cfg);
3252 	} else {
3253 		netdev_info(priv->dev, "No Safety Features support found\n");
3254 	}
3255 }
3256 
3257 static int stmmac_fpe_start_wq(struct stmmac_priv *priv)
3258 {
3259 	char *name;
3260 
3261 	clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
3262 	clear_bit(__FPE_REMOVING,  &priv->fpe_task_state);
3263 
3264 	name = priv->wq_name;
3265 	sprintf(name, "%s-fpe", priv->dev->name);
3266 
3267 	priv->fpe_wq = create_singlethread_workqueue(name);
3268 	if (!priv->fpe_wq) {
3269 		netdev_err(priv->dev, "%s: Failed to create workqueue\n", name);
3270 
3271 		return -ENOMEM;
3272 	}
3273 	netdev_info(priv->dev, "FPE workqueue start");
3274 
3275 	return 0;
3276 }
3277 
3278 /**
3279  * stmmac_hw_setup - setup mac in a usable state.
3280  *  @dev : pointer to the device structure.
3281  *  @ptp_register: register PTP if set
3282  *  Description:
3283  *  this is the main function to setup the HW in a usable state because the
3284  *  dma engine is reset, the core registers are configured (e.g. AXI,
3285  *  Checksum features, timers). The DMA is ready to start receiving and
3286  *  transmitting.
3287  *  Return value:
3288  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3289  *  file on failure.
3290  */
3291 static int stmmac_hw_setup(struct net_device *dev, bool ptp_register)
3292 {
3293 	struct stmmac_priv *priv = netdev_priv(dev);
3294 	u32 rx_cnt = priv->plat->rx_queues_to_use;
3295 	u32 tx_cnt = priv->plat->tx_queues_to_use;
3296 	bool sph_en;
3297 	u32 chan;
3298 	int ret;
3299 
3300 	/* DMA initialization and SW reset */
3301 	ret = stmmac_init_dma_engine(priv);
3302 	if (ret < 0) {
3303 		netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
3304 			   __func__);
3305 		return ret;
3306 	}
3307 
3308 	/* Copy the MAC addr into the HW  */
3309 	stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
3310 
3311 	/* PS and related bits will be programmed according to the speed */
3312 	if (priv->hw->pcs) {
3313 		int speed = priv->plat->mac_port_sel_speed;
3314 
3315 		if ((speed == SPEED_10) || (speed == SPEED_100) ||
3316 		    (speed == SPEED_1000)) {
3317 			priv->hw->ps = speed;
3318 		} else {
3319 			dev_warn(priv->device, "invalid port speed\n");
3320 			priv->hw->ps = 0;
3321 		}
3322 	}
3323 
3324 	/* Initialize the MAC Core */
3325 	stmmac_core_init(priv, priv->hw, dev);
3326 
3327 	/* Initialize MTL*/
3328 	stmmac_mtl_configuration(priv);
3329 
3330 	/* Initialize Safety Features */
3331 	stmmac_safety_feat_configuration(priv);
3332 
3333 	ret = stmmac_rx_ipc(priv, priv->hw);
3334 	if (!ret) {
3335 		netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
3336 		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
3337 		priv->hw->rx_csum = 0;
3338 	}
3339 
3340 	/* Enable the MAC Rx/Tx */
3341 	stmmac_mac_set(priv, priv->ioaddr, true);
3342 
3343 	/* Set the HW DMA mode and the COE */
3344 	stmmac_dma_operation_mode(priv);
3345 
3346 	stmmac_mmc_setup(priv);
3347 
3348 	if (ptp_register) {
3349 		ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
3350 		if (ret < 0)
3351 			netdev_warn(priv->dev,
3352 				    "failed to enable PTP reference clock: %pe\n",
3353 				    ERR_PTR(ret));
3354 	}
3355 
3356 	ret = stmmac_init_ptp(priv);
3357 	if (ret == -EOPNOTSUPP)
3358 		netdev_info(priv->dev, "PTP not supported by HW\n");
3359 	else if (ret)
3360 		netdev_warn(priv->dev, "PTP init failed\n");
3361 	else if (ptp_register)
3362 		stmmac_ptp_register(priv);
3363 
3364 	priv->eee_tw_timer = STMMAC_DEFAULT_TWT_LS;
3365 
3366 	/* Convert the timer from msec to usec */
3367 	if (!priv->tx_lpi_timer)
3368 		priv->tx_lpi_timer = eee_timer * 1000;
3369 
3370 	if (priv->use_riwt) {
3371 		u32 queue;
3372 
3373 		for (queue = 0; queue < rx_cnt; queue++) {
3374 			if (!priv->rx_riwt[queue])
3375 				priv->rx_riwt[queue] = DEF_DMA_RIWT;
3376 
3377 			stmmac_rx_watchdog(priv, priv->ioaddr,
3378 					   priv->rx_riwt[queue], queue);
3379 		}
3380 	}
3381 
3382 	if (priv->hw->pcs)
3383 		stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0);
3384 
3385 	/* set TX and RX rings length */
3386 	stmmac_set_rings_length(priv);
3387 
3388 	/* Enable TSO */
3389 	if (priv->tso) {
3390 		for (chan = 0; chan < tx_cnt; chan++) {
3391 			struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
3392 
3393 			/* TSO and TBS cannot co-exist */
3394 			if (tx_q->tbs & STMMAC_TBS_AVAIL)
3395 				continue;
3396 
3397 			stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
3398 		}
3399 	}
3400 
3401 	/* Enable Split Header */
3402 	sph_en = (priv->hw->rx_csum > 0) && priv->sph;
3403 	for (chan = 0; chan < rx_cnt; chan++)
3404 		stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
3405 
3406 
3407 	/* VLAN Tag Insertion */
3408 	if (priv->dma_cap.vlins)
3409 		stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT);
3410 
3411 	/* TBS */
3412 	for (chan = 0; chan < tx_cnt; chan++) {
3413 		struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
3414 		int enable = tx_q->tbs & STMMAC_TBS_AVAIL;
3415 
3416 		stmmac_enable_tbs(priv, priv->ioaddr, enable, chan);
3417 	}
3418 
3419 	/* Configure real RX and TX queues */
3420 	netif_set_real_num_rx_queues(dev, priv->plat->rx_queues_to_use);
3421 	netif_set_real_num_tx_queues(dev, priv->plat->tx_queues_to_use);
3422 
3423 	/* Start the ball rolling... */
3424 	stmmac_start_all_dma(priv);
3425 
3426 	if (priv->dma_cap.fpesel) {
3427 		stmmac_fpe_start_wq(priv);
3428 
3429 		if (priv->plat->fpe_cfg->enable)
3430 			stmmac_fpe_handshake(priv, true);
3431 	}
3432 
3433 	return 0;
3434 }
3435 
3436 static void stmmac_hw_teardown(struct net_device *dev)
3437 {
3438 	struct stmmac_priv *priv = netdev_priv(dev);
3439 
3440 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
3441 }
3442 
3443 static void stmmac_free_irq(struct net_device *dev,
3444 			    enum request_irq_err irq_err, int irq_idx)
3445 {
3446 	struct stmmac_priv *priv = netdev_priv(dev);
3447 	int j;
3448 
3449 	switch (irq_err) {
3450 	case REQ_IRQ_ERR_ALL:
3451 		irq_idx = priv->plat->tx_queues_to_use;
3452 		fallthrough;
3453 	case REQ_IRQ_ERR_TX:
3454 		for (j = irq_idx - 1; j >= 0; j--) {
3455 			if (priv->tx_irq[j] > 0) {
3456 				irq_set_affinity_hint(priv->tx_irq[j], NULL);
3457 				free_irq(priv->tx_irq[j], &priv->dma_conf.tx_queue[j]);
3458 			}
3459 		}
3460 		irq_idx = priv->plat->rx_queues_to_use;
3461 		fallthrough;
3462 	case REQ_IRQ_ERR_RX:
3463 		for (j = irq_idx - 1; j >= 0; j--) {
3464 			if (priv->rx_irq[j] > 0) {
3465 				irq_set_affinity_hint(priv->rx_irq[j], NULL);
3466 				free_irq(priv->rx_irq[j], &priv->dma_conf.rx_queue[j]);
3467 			}
3468 		}
3469 
3470 		if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq)
3471 			free_irq(priv->sfty_ue_irq, dev);
3472 		fallthrough;
3473 	case REQ_IRQ_ERR_SFTY_UE:
3474 		if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq)
3475 			free_irq(priv->sfty_ce_irq, dev);
3476 		fallthrough;
3477 	case REQ_IRQ_ERR_SFTY_CE:
3478 		if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq)
3479 			free_irq(priv->lpi_irq, dev);
3480 		fallthrough;
3481 	case REQ_IRQ_ERR_LPI:
3482 		if (priv->wol_irq > 0 && priv->wol_irq != dev->irq)
3483 			free_irq(priv->wol_irq, dev);
3484 		fallthrough;
3485 	case REQ_IRQ_ERR_WOL:
3486 		free_irq(dev->irq, dev);
3487 		fallthrough;
3488 	case REQ_IRQ_ERR_MAC:
3489 	case REQ_IRQ_ERR_NO:
3490 		/* If MAC IRQ request error, no more IRQ to free */
3491 		break;
3492 	}
3493 }
3494 
3495 static int stmmac_request_irq_multi_msi(struct net_device *dev)
3496 {
3497 	struct stmmac_priv *priv = netdev_priv(dev);
3498 	enum request_irq_err irq_err;
3499 	cpumask_t cpu_mask;
3500 	int irq_idx = 0;
3501 	char *int_name;
3502 	int ret;
3503 	int i;
3504 
3505 	/* For common interrupt */
3506 	int_name = priv->int_name_mac;
3507 	sprintf(int_name, "%s:%s", dev->name, "mac");
3508 	ret = request_irq(dev->irq, stmmac_mac_interrupt,
3509 			  0, int_name, dev);
3510 	if (unlikely(ret < 0)) {
3511 		netdev_err(priv->dev,
3512 			   "%s: alloc mac MSI %d (error: %d)\n",
3513 			   __func__, dev->irq, ret);
3514 		irq_err = REQ_IRQ_ERR_MAC;
3515 		goto irq_error;
3516 	}
3517 
3518 	/* Request the Wake IRQ in case of another line
3519 	 * is used for WoL
3520 	 */
3521 	if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3522 		int_name = priv->int_name_wol;
3523 		sprintf(int_name, "%s:%s", dev->name, "wol");
3524 		ret = request_irq(priv->wol_irq,
3525 				  stmmac_mac_interrupt,
3526 				  0, int_name, dev);
3527 		if (unlikely(ret < 0)) {
3528 			netdev_err(priv->dev,
3529 				   "%s: alloc wol MSI %d (error: %d)\n",
3530 				   __func__, priv->wol_irq, ret);
3531 			irq_err = REQ_IRQ_ERR_WOL;
3532 			goto irq_error;
3533 		}
3534 	}
3535 
3536 	/* Request the LPI IRQ in case of another line
3537 	 * is used for LPI
3538 	 */
3539 	if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3540 		int_name = priv->int_name_lpi;
3541 		sprintf(int_name, "%s:%s", dev->name, "lpi");
3542 		ret = request_irq(priv->lpi_irq,
3543 				  stmmac_mac_interrupt,
3544 				  0, int_name, dev);
3545 		if (unlikely(ret < 0)) {
3546 			netdev_err(priv->dev,
3547 				   "%s: alloc lpi MSI %d (error: %d)\n",
3548 				   __func__, priv->lpi_irq, ret);
3549 			irq_err = REQ_IRQ_ERR_LPI;
3550 			goto irq_error;
3551 		}
3552 	}
3553 
3554 	/* Request the Safety Feature Correctible Error line in
3555 	 * case of another line is used
3556 	 */
3557 	if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq) {
3558 		int_name = priv->int_name_sfty_ce;
3559 		sprintf(int_name, "%s:%s", dev->name, "safety-ce");
3560 		ret = request_irq(priv->sfty_ce_irq,
3561 				  stmmac_safety_interrupt,
3562 				  0, int_name, dev);
3563 		if (unlikely(ret < 0)) {
3564 			netdev_err(priv->dev,
3565 				   "%s: alloc sfty ce MSI %d (error: %d)\n",
3566 				   __func__, priv->sfty_ce_irq, ret);
3567 			irq_err = REQ_IRQ_ERR_SFTY_CE;
3568 			goto irq_error;
3569 		}
3570 	}
3571 
3572 	/* Request the Safety Feature Uncorrectible Error line in
3573 	 * case of another line is used
3574 	 */
3575 	if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq) {
3576 		int_name = priv->int_name_sfty_ue;
3577 		sprintf(int_name, "%s:%s", dev->name, "safety-ue");
3578 		ret = request_irq(priv->sfty_ue_irq,
3579 				  stmmac_safety_interrupt,
3580 				  0, int_name, dev);
3581 		if (unlikely(ret < 0)) {
3582 			netdev_err(priv->dev,
3583 				   "%s: alloc sfty ue MSI %d (error: %d)\n",
3584 				   __func__, priv->sfty_ue_irq, ret);
3585 			irq_err = REQ_IRQ_ERR_SFTY_UE;
3586 			goto irq_error;
3587 		}
3588 	}
3589 
3590 	/* Request Rx MSI irq */
3591 	for (i = 0; i < priv->plat->rx_queues_to_use; i++) {
3592 		if (i >= MTL_MAX_RX_QUEUES)
3593 			break;
3594 		if (priv->rx_irq[i] == 0)
3595 			continue;
3596 
3597 		int_name = priv->int_name_rx_irq[i];
3598 		sprintf(int_name, "%s:%s-%d", dev->name, "rx", i);
3599 		ret = request_irq(priv->rx_irq[i],
3600 				  stmmac_msi_intr_rx,
3601 				  0, int_name, &priv->dma_conf.rx_queue[i]);
3602 		if (unlikely(ret < 0)) {
3603 			netdev_err(priv->dev,
3604 				   "%s: alloc rx-%d  MSI %d (error: %d)\n",
3605 				   __func__, i, priv->rx_irq[i], ret);
3606 			irq_err = REQ_IRQ_ERR_RX;
3607 			irq_idx = i;
3608 			goto irq_error;
3609 		}
3610 		cpumask_clear(&cpu_mask);
3611 		cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3612 		irq_set_affinity_hint(priv->rx_irq[i], &cpu_mask);
3613 	}
3614 
3615 	/* Request Tx MSI irq */
3616 	for (i = 0; i < priv->plat->tx_queues_to_use; i++) {
3617 		if (i >= MTL_MAX_TX_QUEUES)
3618 			break;
3619 		if (priv->tx_irq[i] == 0)
3620 			continue;
3621 
3622 		int_name = priv->int_name_tx_irq[i];
3623 		sprintf(int_name, "%s:%s-%d", dev->name, "tx", i);
3624 		ret = request_irq(priv->tx_irq[i],
3625 				  stmmac_msi_intr_tx,
3626 				  0, int_name, &priv->dma_conf.tx_queue[i]);
3627 		if (unlikely(ret < 0)) {
3628 			netdev_err(priv->dev,
3629 				   "%s: alloc tx-%d  MSI %d (error: %d)\n",
3630 				   __func__, i, priv->tx_irq[i], ret);
3631 			irq_err = REQ_IRQ_ERR_TX;
3632 			irq_idx = i;
3633 			goto irq_error;
3634 		}
3635 		cpumask_clear(&cpu_mask);
3636 		cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3637 		irq_set_affinity_hint(priv->tx_irq[i], &cpu_mask);
3638 	}
3639 
3640 	return 0;
3641 
3642 irq_error:
3643 	stmmac_free_irq(dev, irq_err, irq_idx);
3644 	return ret;
3645 }
3646 
3647 static int stmmac_request_irq_single(struct net_device *dev)
3648 {
3649 	struct stmmac_priv *priv = netdev_priv(dev);
3650 	enum request_irq_err irq_err;
3651 	int ret;
3652 
3653 	ret = request_irq(dev->irq, stmmac_interrupt,
3654 			  IRQF_SHARED, dev->name, dev);
3655 	if (unlikely(ret < 0)) {
3656 		netdev_err(priv->dev,
3657 			   "%s: ERROR: allocating the IRQ %d (error: %d)\n",
3658 			   __func__, dev->irq, ret);
3659 		irq_err = REQ_IRQ_ERR_MAC;
3660 		goto irq_error;
3661 	}
3662 
3663 	/* Request the Wake IRQ in case of another line
3664 	 * is used for WoL
3665 	 */
3666 	if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3667 		ret = request_irq(priv->wol_irq, stmmac_interrupt,
3668 				  IRQF_SHARED, dev->name, dev);
3669 		if (unlikely(ret < 0)) {
3670 			netdev_err(priv->dev,
3671 				   "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
3672 				   __func__, priv->wol_irq, ret);
3673 			irq_err = REQ_IRQ_ERR_WOL;
3674 			goto irq_error;
3675 		}
3676 	}
3677 
3678 	/* Request the IRQ lines */
3679 	if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3680 		ret = request_irq(priv->lpi_irq, stmmac_interrupt,
3681 				  IRQF_SHARED, dev->name, dev);
3682 		if (unlikely(ret < 0)) {
3683 			netdev_err(priv->dev,
3684 				   "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
3685 				   __func__, priv->lpi_irq, ret);
3686 			irq_err = REQ_IRQ_ERR_LPI;
3687 			goto irq_error;
3688 		}
3689 	}
3690 
3691 	return 0;
3692 
3693 irq_error:
3694 	stmmac_free_irq(dev, irq_err, 0);
3695 	return ret;
3696 }
3697 
3698 static int stmmac_request_irq(struct net_device *dev)
3699 {
3700 	struct stmmac_priv *priv = netdev_priv(dev);
3701 	int ret;
3702 
3703 	/* Request the IRQ lines */
3704 	if (priv->plat->multi_msi_en)
3705 		ret = stmmac_request_irq_multi_msi(dev);
3706 	else
3707 		ret = stmmac_request_irq_single(dev);
3708 
3709 	return ret;
3710 }
3711 
3712 /**
3713  *  stmmac_setup_dma_desc - Generate a dma_conf and allocate DMA queue
3714  *  @priv: driver private structure
3715  *  @mtu: MTU to setup the dma queue and buf with
3716  *  Description: Allocate and generate a dma_conf based on the provided MTU.
3717  *  Allocate the Tx/Rx DMA queue and init them.
3718  *  Return value:
3719  *  the dma_conf allocated struct on success and an appropriate ERR_PTR on failure.
3720  */
3721 static struct stmmac_dma_conf *
3722 stmmac_setup_dma_desc(struct stmmac_priv *priv, unsigned int mtu)
3723 {
3724 	struct stmmac_dma_conf *dma_conf;
3725 	int chan, bfsize, ret;
3726 
3727 	dma_conf = kzalloc(sizeof(*dma_conf), GFP_KERNEL);
3728 	if (!dma_conf) {
3729 		netdev_err(priv->dev, "%s: DMA conf allocation failed\n",
3730 			   __func__);
3731 		return ERR_PTR(-ENOMEM);
3732 	}
3733 
3734 	bfsize = stmmac_set_16kib_bfsize(priv, mtu);
3735 	if (bfsize < 0)
3736 		bfsize = 0;
3737 
3738 	if (bfsize < BUF_SIZE_16KiB)
3739 		bfsize = stmmac_set_bfsize(mtu, 0);
3740 
3741 	dma_conf->dma_buf_sz = bfsize;
3742 	/* Chose the tx/rx size from the already defined one in the
3743 	 * priv struct. (if defined)
3744 	 */
3745 	dma_conf->dma_tx_size = priv->dma_conf.dma_tx_size;
3746 	dma_conf->dma_rx_size = priv->dma_conf.dma_rx_size;
3747 
3748 	if (!dma_conf->dma_tx_size)
3749 		dma_conf->dma_tx_size = DMA_DEFAULT_TX_SIZE;
3750 	if (!dma_conf->dma_rx_size)
3751 		dma_conf->dma_rx_size = DMA_DEFAULT_RX_SIZE;
3752 
3753 	/* Earlier check for TBS */
3754 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) {
3755 		struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[chan];
3756 		int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en;
3757 
3758 		/* Setup per-TXQ tbs flag before TX descriptor alloc */
3759 		tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0;
3760 	}
3761 
3762 	ret = alloc_dma_desc_resources(priv, dma_conf);
3763 	if (ret < 0) {
3764 		netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
3765 			   __func__);
3766 		goto alloc_error;
3767 	}
3768 
3769 	ret = init_dma_desc_rings(priv->dev, dma_conf, GFP_KERNEL);
3770 	if (ret < 0) {
3771 		netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
3772 			   __func__);
3773 		goto init_error;
3774 	}
3775 
3776 	return dma_conf;
3777 
3778 init_error:
3779 	free_dma_desc_resources(priv, dma_conf);
3780 alloc_error:
3781 	kfree(dma_conf);
3782 	return ERR_PTR(ret);
3783 }
3784 
3785 /**
3786  *  __stmmac_open - open entry point of the driver
3787  *  @dev : pointer to the device structure.
3788  *  @dma_conf :  structure to take the dma data
3789  *  Description:
3790  *  This function is the open entry point of the driver.
3791  *  Return value:
3792  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3793  *  file on failure.
3794  */
3795 static int __stmmac_open(struct net_device *dev,
3796 			 struct stmmac_dma_conf *dma_conf)
3797 {
3798 	struct stmmac_priv *priv = netdev_priv(dev);
3799 	int mode = priv->plat->phy_interface;
3800 	u32 chan;
3801 	int ret;
3802 
3803 	ret = pm_runtime_resume_and_get(priv->device);
3804 	if (ret < 0)
3805 		return ret;
3806 
3807 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
3808 	    priv->hw->pcs != STMMAC_PCS_RTBI &&
3809 	    (!priv->hw->xpcs ||
3810 	     xpcs_get_an_mode(priv->hw->xpcs, mode) != DW_AN_C73)) {
3811 		ret = stmmac_init_phy(dev);
3812 		if (ret) {
3813 			netdev_err(priv->dev,
3814 				   "%s: Cannot attach to PHY (error: %d)\n",
3815 				   __func__, ret);
3816 			goto init_phy_error;
3817 		}
3818 	}
3819 
3820 	/* Extra statistics */
3821 	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
3822 	priv->xstats.threshold = tc;
3823 
3824 	priv->rx_copybreak = STMMAC_RX_COPYBREAK;
3825 
3826 	buf_sz = dma_conf->dma_buf_sz;
3827 	memcpy(&priv->dma_conf, dma_conf, sizeof(*dma_conf));
3828 
3829 	stmmac_reset_queues_param(priv);
3830 
3831 	if (!priv->plat->serdes_up_after_phy_linkup && priv->plat->serdes_powerup) {
3832 		ret = priv->plat->serdes_powerup(dev, priv->plat->bsp_priv);
3833 		if (ret < 0) {
3834 			netdev_err(priv->dev, "%s: Serdes powerup failed\n",
3835 				   __func__);
3836 			goto init_error;
3837 		}
3838 	}
3839 
3840 	ret = stmmac_hw_setup(dev, true);
3841 	if (ret < 0) {
3842 		netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
3843 		goto init_error;
3844 	}
3845 
3846 	stmmac_init_coalesce(priv);
3847 
3848 	phylink_start(priv->phylink);
3849 	/* We may have called phylink_speed_down before */
3850 	phylink_speed_up(priv->phylink);
3851 
3852 	ret = stmmac_request_irq(dev);
3853 	if (ret)
3854 		goto irq_error;
3855 
3856 	stmmac_enable_all_queues(priv);
3857 	netif_tx_start_all_queues(priv->dev);
3858 	stmmac_enable_all_dma_irq(priv);
3859 
3860 	return 0;
3861 
3862 irq_error:
3863 	phylink_stop(priv->phylink);
3864 
3865 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3866 		hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
3867 
3868 	stmmac_hw_teardown(dev);
3869 init_error:
3870 	free_dma_desc_resources(priv, &priv->dma_conf);
3871 	phylink_disconnect_phy(priv->phylink);
3872 init_phy_error:
3873 	pm_runtime_put(priv->device);
3874 	return ret;
3875 }
3876 
3877 static int stmmac_open(struct net_device *dev)
3878 {
3879 	struct stmmac_priv *priv = netdev_priv(dev);
3880 	struct stmmac_dma_conf *dma_conf;
3881 	int ret;
3882 
3883 	dma_conf = stmmac_setup_dma_desc(priv, dev->mtu);
3884 	if (IS_ERR(dma_conf))
3885 		return PTR_ERR(dma_conf);
3886 
3887 	ret = __stmmac_open(dev, dma_conf);
3888 	kfree(dma_conf);
3889 	return ret;
3890 }
3891 
3892 static void stmmac_fpe_stop_wq(struct stmmac_priv *priv)
3893 {
3894 	set_bit(__FPE_REMOVING, &priv->fpe_task_state);
3895 
3896 	if (priv->fpe_wq)
3897 		destroy_workqueue(priv->fpe_wq);
3898 
3899 	netdev_info(priv->dev, "FPE workqueue stop");
3900 }
3901 
3902 /**
3903  *  stmmac_release - close entry point of the driver
3904  *  @dev : device pointer.
3905  *  Description:
3906  *  This is the stop entry point of the driver.
3907  */
3908 static int stmmac_release(struct net_device *dev)
3909 {
3910 	struct stmmac_priv *priv = netdev_priv(dev);
3911 	u32 chan;
3912 
3913 	if (device_may_wakeup(priv->device))
3914 		phylink_speed_down(priv->phylink, false);
3915 	/* Stop and disconnect the PHY */
3916 	phylink_stop(priv->phylink);
3917 	phylink_disconnect_phy(priv->phylink);
3918 
3919 	stmmac_disable_all_queues(priv);
3920 
3921 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3922 		hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
3923 
3924 	netif_tx_disable(dev);
3925 
3926 	/* Free the IRQ lines */
3927 	stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0);
3928 
3929 	if (priv->eee_enabled) {
3930 		priv->tx_path_in_lpi_mode = false;
3931 		del_timer_sync(&priv->eee_ctrl_timer);
3932 	}
3933 
3934 	/* Stop TX/RX DMA and clear the descriptors */
3935 	stmmac_stop_all_dma(priv);
3936 
3937 	/* Release and free the Rx/Tx resources */
3938 	free_dma_desc_resources(priv, &priv->dma_conf);
3939 
3940 	/* Disable the MAC Rx/Tx */
3941 	stmmac_mac_set(priv, priv->ioaddr, false);
3942 
3943 	/* Powerdown Serdes if there is */
3944 	if (priv->plat->serdes_powerdown)
3945 		priv->plat->serdes_powerdown(dev, priv->plat->bsp_priv);
3946 
3947 	netif_carrier_off(dev);
3948 
3949 	stmmac_release_ptp(priv);
3950 
3951 	pm_runtime_put(priv->device);
3952 
3953 	if (priv->dma_cap.fpesel)
3954 		stmmac_fpe_stop_wq(priv);
3955 
3956 	return 0;
3957 }
3958 
3959 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb,
3960 			       struct stmmac_tx_queue *tx_q)
3961 {
3962 	u16 tag = 0x0, inner_tag = 0x0;
3963 	u32 inner_type = 0x0;
3964 	struct dma_desc *p;
3965 
3966 	if (!priv->dma_cap.vlins)
3967 		return false;
3968 	if (!skb_vlan_tag_present(skb))
3969 		return false;
3970 	if (skb->vlan_proto == htons(ETH_P_8021AD)) {
3971 		inner_tag = skb_vlan_tag_get(skb);
3972 		inner_type = STMMAC_VLAN_INSERT;
3973 	}
3974 
3975 	tag = skb_vlan_tag_get(skb);
3976 
3977 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
3978 		p = &tx_q->dma_entx[tx_q->cur_tx].basic;
3979 	else
3980 		p = &tx_q->dma_tx[tx_q->cur_tx];
3981 
3982 	if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type))
3983 		return false;
3984 
3985 	stmmac_set_tx_owner(priv, p);
3986 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size);
3987 	return true;
3988 }
3989 
3990 /**
3991  *  stmmac_tso_allocator - close entry point of the driver
3992  *  @priv: driver private structure
3993  *  @des: buffer start address
3994  *  @total_len: total length to fill in descriptors
3995  *  @last_segment: condition for the last descriptor
3996  *  @queue: TX queue index
3997  *  Description:
3998  *  This function fills descriptor and request new descriptors according to
3999  *  buffer length to fill
4000  */
4001 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
4002 				 int total_len, bool last_segment, u32 queue)
4003 {
4004 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
4005 	struct dma_desc *desc;
4006 	u32 buff_size;
4007 	int tmp_len;
4008 
4009 	tmp_len = total_len;
4010 
4011 	while (tmp_len > 0) {
4012 		dma_addr_t curr_addr;
4013 
4014 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
4015 						priv->dma_conf.dma_tx_size);
4016 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
4017 
4018 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
4019 			desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4020 		else
4021 			desc = &tx_q->dma_tx[tx_q->cur_tx];
4022 
4023 		curr_addr = des + (total_len - tmp_len);
4024 		if (priv->dma_cap.addr64 <= 32)
4025 			desc->des0 = cpu_to_le32(curr_addr);
4026 		else
4027 			stmmac_set_desc_addr(priv, desc, curr_addr);
4028 
4029 		buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
4030 			    TSO_MAX_BUFF_SIZE : tmp_len;
4031 
4032 		stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
4033 				0, 1,
4034 				(last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
4035 				0, 0);
4036 
4037 		tmp_len -= TSO_MAX_BUFF_SIZE;
4038 	}
4039 }
4040 
4041 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue)
4042 {
4043 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
4044 	int desc_size;
4045 
4046 	if (likely(priv->extend_desc))
4047 		desc_size = sizeof(struct dma_extended_desc);
4048 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4049 		desc_size = sizeof(struct dma_edesc);
4050 	else
4051 		desc_size = sizeof(struct dma_desc);
4052 
4053 	/* The own bit must be the latest setting done when prepare the
4054 	 * descriptor and then barrier is needed to make sure that
4055 	 * all is coherent before granting the DMA engine.
4056 	 */
4057 	wmb();
4058 
4059 	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
4060 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
4061 }
4062 
4063 /**
4064  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
4065  *  @skb : the socket buffer
4066  *  @dev : device pointer
4067  *  Description: this is the transmit function that is called on TSO frames
4068  *  (support available on GMAC4 and newer chips).
4069  *  Diagram below show the ring programming in case of TSO frames:
4070  *
4071  *  First Descriptor
4072  *   --------
4073  *   | DES0 |---> buffer1 = L2/L3/L4 header
4074  *   | DES1 |---> TCP Payload (can continue on next descr...)
4075  *   | DES2 |---> buffer 1 and 2 len
4076  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
4077  *   --------
4078  *	|
4079  *     ...
4080  *	|
4081  *   --------
4082  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
4083  *   | DES1 | --|
4084  *   | DES2 | --> buffer 1 and 2 len
4085  *   | DES3 |
4086  *   --------
4087  *
4088  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
4089  */
4090 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
4091 {
4092 	struct dma_desc *desc, *first, *mss_desc = NULL;
4093 	struct stmmac_priv *priv = netdev_priv(dev);
4094 	int nfrags = skb_shinfo(skb)->nr_frags;
4095 	u32 queue = skb_get_queue_mapping(skb);
4096 	unsigned int first_entry, tx_packets;
4097 	int tmp_pay_len = 0, first_tx;
4098 	struct stmmac_tx_queue *tx_q;
4099 	bool has_vlan, set_ic;
4100 	u8 proto_hdr_len, hdr;
4101 	u32 pay_len, mss;
4102 	dma_addr_t des;
4103 	int i;
4104 
4105 	tx_q = &priv->dma_conf.tx_queue[queue];
4106 	first_tx = tx_q->cur_tx;
4107 
4108 	/* Compute header lengths */
4109 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
4110 		proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr);
4111 		hdr = sizeof(struct udphdr);
4112 	} else {
4113 		proto_hdr_len = skb_tcp_all_headers(skb);
4114 		hdr = tcp_hdrlen(skb);
4115 	}
4116 
4117 	/* Desc availability based on threshold should be enough safe */
4118 	if (unlikely(stmmac_tx_avail(priv, queue) <
4119 		(((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
4120 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
4121 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
4122 								queue));
4123 			/* This is a hard error, log it. */
4124 			netdev_err(priv->dev,
4125 				   "%s: Tx Ring full when queue awake\n",
4126 				   __func__);
4127 		}
4128 		return NETDEV_TX_BUSY;
4129 	}
4130 
4131 	pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
4132 
4133 	mss = skb_shinfo(skb)->gso_size;
4134 
4135 	/* set new MSS value if needed */
4136 	if (mss != tx_q->mss) {
4137 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
4138 			mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4139 		else
4140 			mss_desc = &tx_q->dma_tx[tx_q->cur_tx];
4141 
4142 		stmmac_set_mss(priv, mss_desc, mss);
4143 		tx_q->mss = mss;
4144 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
4145 						priv->dma_conf.dma_tx_size);
4146 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
4147 	}
4148 
4149 	if (netif_msg_tx_queued(priv)) {
4150 		pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
4151 			__func__, hdr, proto_hdr_len, pay_len, mss);
4152 		pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
4153 			skb->data_len);
4154 	}
4155 
4156 	/* Check if VLAN can be inserted by HW */
4157 	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
4158 
4159 	first_entry = tx_q->cur_tx;
4160 	WARN_ON(tx_q->tx_skbuff[first_entry]);
4161 
4162 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
4163 		desc = &tx_q->dma_entx[first_entry].basic;
4164 	else
4165 		desc = &tx_q->dma_tx[first_entry];
4166 	first = desc;
4167 
4168 	if (has_vlan)
4169 		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4170 
4171 	/* first descriptor: fill Headers on Buf1 */
4172 	des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
4173 			     DMA_TO_DEVICE);
4174 	if (dma_mapping_error(priv->device, des))
4175 		goto dma_map_err;
4176 
4177 	tx_q->tx_skbuff_dma[first_entry].buf = des;
4178 	tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
4179 	tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4180 	tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
4181 
4182 	if (priv->dma_cap.addr64 <= 32) {
4183 		first->des0 = cpu_to_le32(des);
4184 
4185 		/* Fill start of payload in buff2 of first descriptor */
4186 		if (pay_len)
4187 			first->des1 = cpu_to_le32(des + proto_hdr_len);
4188 
4189 		/* If needed take extra descriptors to fill the remaining payload */
4190 		tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
4191 	} else {
4192 		stmmac_set_desc_addr(priv, first, des);
4193 		tmp_pay_len = pay_len;
4194 		des += proto_hdr_len;
4195 		pay_len = 0;
4196 	}
4197 
4198 	stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
4199 
4200 	/* Prepare fragments */
4201 	for (i = 0; i < nfrags; i++) {
4202 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4203 
4204 		des = skb_frag_dma_map(priv->device, frag, 0,
4205 				       skb_frag_size(frag),
4206 				       DMA_TO_DEVICE);
4207 		if (dma_mapping_error(priv->device, des))
4208 			goto dma_map_err;
4209 
4210 		stmmac_tso_allocator(priv, des, skb_frag_size(frag),
4211 				     (i == nfrags - 1), queue);
4212 
4213 		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
4214 		tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
4215 		tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
4216 		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4217 	}
4218 
4219 	tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
4220 
4221 	/* Only the last descriptor gets to point to the skb. */
4222 	tx_q->tx_skbuff[tx_q->cur_tx] = skb;
4223 	tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4224 
4225 	/* Manage tx mitigation */
4226 	tx_packets = (tx_q->cur_tx + 1) - first_tx;
4227 	tx_q->tx_count_frames += tx_packets;
4228 
4229 	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4230 		set_ic = true;
4231 	else if (!priv->tx_coal_frames[queue])
4232 		set_ic = false;
4233 	else if (tx_packets > priv->tx_coal_frames[queue])
4234 		set_ic = true;
4235 	else if ((tx_q->tx_count_frames %
4236 		  priv->tx_coal_frames[queue]) < tx_packets)
4237 		set_ic = true;
4238 	else
4239 		set_ic = false;
4240 
4241 	if (set_ic) {
4242 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
4243 			desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4244 		else
4245 			desc = &tx_q->dma_tx[tx_q->cur_tx];
4246 
4247 		tx_q->tx_count_frames = 0;
4248 		stmmac_set_tx_ic(priv, desc);
4249 		priv->xstats.tx_set_ic_bit++;
4250 	}
4251 
4252 	/* We've used all descriptors we need for this skb, however,
4253 	 * advance cur_tx so that it references a fresh descriptor.
4254 	 * ndo_start_xmit will fill this descriptor the next time it's
4255 	 * called and stmmac_tx_clean may clean up to this descriptor.
4256 	 */
4257 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size);
4258 
4259 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4260 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4261 			  __func__);
4262 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4263 	}
4264 
4265 	dev->stats.tx_bytes += skb->len;
4266 	priv->xstats.tx_tso_frames++;
4267 	priv->xstats.tx_tso_nfrags += nfrags;
4268 
4269 	if (priv->sarc_type)
4270 		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4271 
4272 	skb_tx_timestamp(skb);
4273 
4274 	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4275 		     priv->hwts_tx_en)) {
4276 		/* declare that device is doing timestamping */
4277 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4278 		stmmac_enable_tx_timestamp(priv, first);
4279 	}
4280 
4281 	/* Complete the first descriptor before granting the DMA */
4282 	stmmac_prepare_tso_tx_desc(priv, first, 1,
4283 			proto_hdr_len,
4284 			pay_len,
4285 			1, tx_q->tx_skbuff_dma[first_entry].last_segment,
4286 			hdr / 4, (skb->len - proto_hdr_len));
4287 
4288 	/* If context desc is used to change MSS */
4289 	if (mss_desc) {
4290 		/* Make sure that first descriptor has been completely
4291 		 * written, including its own bit. This is because MSS is
4292 		 * actually before first descriptor, so we need to make
4293 		 * sure that MSS's own bit is the last thing written.
4294 		 */
4295 		dma_wmb();
4296 		stmmac_set_tx_owner(priv, mss_desc);
4297 	}
4298 
4299 	if (netif_msg_pktdata(priv)) {
4300 		pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
4301 			__func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4302 			tx_q->cur_tx, first, nfrags);
4303 		pr_info(">>> frame to be transmitted: ");
4304 		print_pkt(skb->data, skb_headlen(skb));
4305 	}
4306 
4307 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4308 
4309 	stmmac_flush_tx_descriptors(priv, queue);
4310 	stmmac_tx_timer_arm(priv, queue);
4311 
4312 	return NETDEV_TX_OK;
4313 
4314 dma_map_err:
4315 	dev_err(priv->device, "Tx dma map failed\n");
4316 	dev_kfree_skb(skb);
4317 	priv->dev->stats.tx_dropped++;
4318 	return NETDEV_TX_OK;
4319 }
4320 
4321 /**
4322  *  stmmac_xmit - Tx entry point of the driver
4323  *  @skb : the socket buffer
4324  *  @dev : device pointer
4325  *  Description : this is the tx entry point of the driver.
4326  *  It programs the chain or the ring and supports oversized frames
4327  *  and SG feature.
4328  */
4329 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
4330 {
4331 	unsigned int first_entry, tx_packets, enh_desc;
4332 	struct stmmac_priv *priv = netdev_priv(dev);
4333 	unsigned int nopaged_len = skb_headlen(skb);
4334 	int i, csum_insertion = 0, is_jumbo = 0;
4335 	u32 queue = skb_get_queue_mapping(skb);
4336 	int nfrags = skb_shinfo(skb)->nr_frags;
4337 	int gso = skb_shinfo(skb)->gso_type;
4338 	struct dma_edesc *tbs_desc = NULL;
4339 	struct dma_desc *desc, *first;
4340 	struct stmmac_tx_queue *tx_q;
4341 	bool has_vlan, set_ic;
4342 	int entry, first_tx;
4343 	dma_addr_t des;
4344 
4345 	tx_q = &priv->dma_conf.tx_queue[queue];
4346 	first_tx = tx_q->cur_tx;
4347 
4348 	if (priv->tx_path_in_lpi_mode && priv->eee_sw_timer_en)
4349 		stmmac_disable_eee_mode(priv);
4350 
4351 	/* Manage oversized TCP frames for GMAC4 device */
4352 	if (skb_is_gso(skb) && priv->tso) {
4353 		if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
4354 			return stmmac_tso_xmit(skb, dev);
4355 		if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4))
4356 			return stmmac_tso_xmit(skb, dev);
4357 	}
4358 
4359 	if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
4360 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
4361 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
4362 								queue));
4363 			/* This is a hard error, log it. */
4364 			netdev_err(priv->dev,
4365 				   "%s: Tx Ring full when queue awake\n",
4366 				   __func__);
4367 		}
4368 		return NETDEV_TX_BUSY;
4369 	}
4370 
4371 	/* Check if VLAN can be inserted by HW */
4372 	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
4373 
4374 	entry = tx_q->cur_tx;
4375 	first_entry = entry;
4376 	WARN_ON(tx_q->tx_skbuff[first_entry]);
4377 
4378 	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
4379 
4380 	if (likely(priv->extend_desc))
4381 		desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4382 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4383 		desc = &tx_q->dma_entx[entry].basic;
4384 	else
4385 		desc = tx_q->dma_tx + entry;
4386 
4387 	first = desc;
4388 
4389 	if (has_vlan)
4390 		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4391 
4392 	enh_desc = priv->plat->enh_desc;
4393 	/* To program the descriptors according to the size of the frame */
4394 	if (enh_desc)
4395 		is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
4396 
4397 	if (unlikely(is_jumbo)) {
4398 		entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
4399 		if (unlikely(entry < 0) && (entry != -EINVAL))
4400 			goto dma_map_err;
4401 	}
4402 
4403 	for (i = 0; i < nfrags; i++) {
4404 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4405 		int len = skb_frag_size(frag);
4406 		bool last_segment = (i == (nfrags - 1));
4407 
4408 		entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
4409 		WARN_ON(tx_q->tx_skbuff[entry]);
4410 
4411 		if (likely(priv->extend_desc))
4412 			desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4413 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4414 			desc = &tx_q->dma_entx[entry].basic;
4415 		else
4416 			desc = tx_q->dma_tx + entry;
4417 
4418 		des = skb_frag_dma_map(priv->device, frag, 0, len,
4419 				       DMA_TO_DEVICE);
4420 		if (dma_mapping_error(priv->device, des))
4421 			goto dma_map_err; /* should reuse desc w/o issues */
4422 
4423 		tx_q->tx_skbuff_dma[entry].buf = des;
4424 
4425 		stmmac_set_desc_addr(priv, desc, des);
4426 
4427 		tx_q->tx_skbuff_dma[entry].map_as_page = true;
4428 		tx_q->tx_skbuff_dma[entry].len = len;
4429 		tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
4430 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4431 
4432 		/* Prepare the descriptor and set the own bit too */
4433 		stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
4434 				priv->mode, 1, last_segment, skb->len);
4435 	}
4436 
4437 	/* Only the last descriptor gets to point to the skb. */
4438 	tx_q->tx_skbuff[entry] = skb;
4439 	tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4440 
4441 	/* According to the coalesce parameter the IC bit for the latest
4442 	 * segment is reset and the timer re-started to clean the tx status.
4443 	 * This approach takes care about the fragments: desc is the first
4444 	 * element in case of no SG.
4445 	 */
4446 	tx_packets = (entry + 1) - first_tx;
4447 	tx_q->tx_count_frames += tx_packets;
4448 
4449 	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4450 		set_ic = true;
4451 	else if (!priv->tx_coal_frames[queue])
4452 		set_ic = false;
4453 	else if (tx_packets > priv->tx_coal_frames[queue])
4454 		set_ic = true;
4455 	else if ((tx_q->tx_count_frames %
4456 		  priv->tx_coal_frames[queue]) < tx_packets)
4457 		set_ic = true;
4458 	else
4459 		set_ic = false;
4460 
4461 	if (set_ic) {
4462 		if (likely(priv->extend_desc))
4463 			desc = &tx_q->dma_etx[entry].basic;
4464 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4465 			desc = &tx_q->dma_entx[entry].basic;
4466 		else
4467 			desc = &tx_q->dma_tx[entry];
4468 
4469 		tx_q->tx_count_frames = 0;
4470 		stmmac_set_tx_ic(priv, desc);
4471 		priv->xstats.tx_set_ic_bit++;
4472 	}
4473 
4474 	/* We've used all descriptors we need for this skb, however,
4475 	 * advance cur_tx so that it references a fresh descriptor.
4476 	 * ndo_start_xmit will fill this descriptor the next time it's
4477 	 * called and stmmac_tx_clean may clean up to this descriptor.
4478 	 */
4479 	entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
4480 	tx_q->cur_tx = entry;
4481 
4482 	if (netif_msg_pktdata(priv)) {
4483 		netdev_dbg(priv->dev,
4484 			   "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
4485 			   __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4486 			   entry, first, nfrags);
4487 
4488 		netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
4489 		print_pkt(skb->data, skb->len);
4490 	}
4491 
4492 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4493 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4494 			  __func__);
4495 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4496 	}
4497 
4498 	dev->stats.tx_bytes += skb->len;
4499 
4500 	if (priv->sarc_type)
4501 		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4502 
4503 	skb_tx_timestamp(skb);
4504 
4505 	/* Ready to fill the first descriptor and set the OWN bit w/o any
4506 	 * problems because all the descriptors are actually ready to be
4507 	 * passed to the DMA engine.
4508 	 */
4509 	if (likely(!is_jumbo)) {
4510 		bool last_segment = (nfrags == 0);
4511 
4512 		des = dma_map_single(priv->device, skb->data,
4513 				     nopaged_len, DMA_TO_DEVICE);
4514 		if (dma_mapping_error(priv->device, des))
4515 			goto dma_map_err;
4516 
4517 		tx_q->tx_skbuff_dma[first_entry].buf = des;
4518 		tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
4519 		tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4520 
4521 		stmmac_set_desc_addr(priv, first, des);
4522 
4523 		tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
4524 		tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
4525 
4526 		if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4527 			     priv->hwts_tx_en)) {
4528 			/* declare that device is doing timestamping */
4529 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4530 			stmmac_enable_tx_timestamp(priv, first);
4531 		}
4532 
4533 		/* Prepare the first descriptor setting the OWN bit too */
4534 		stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
4535 				csum_insertion, priv->mode, 0, last_segment,
4536 				skb->len);
4537 	}
4538 
4539 	if (tx_q->tbs & STMMAC_TBS_EN) {
4540 		struct timespec64 ts = ns_to_timespec64(skb->tstamp);
4541 
4542 		tbs_desc = &tx_q->dma_entx[first_entry];
4543 		stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec);
4544 	}
4545 
4546 	stmmac_set_tx_owner(priv, first);
4547 
4548 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4549 
4550 	stmmac_enable_dma_transmission(priv, priv->ioaddr);
4551 
4552 	stmmac_flush_tx_descriptors(priv, queue);
4553 	stmmac_tx_timer_arm(priv, queue);
4554 
4555 	return NETDEV_TX_OK;
4556 
4557 dma_map_err:
4558 	netdev_err(priv->dev, "Tx DMA map failed\n");
4559 	dev_kfree_skb(skb);
4560 	priv->dev->stats.tx_dropped++;
4561 	return NETDEV_TX_OK;
4562 }
4563 
4564 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
4565 {
4566 	struct vlan_ethhdr *veth;
4567 	__be16 vlan_proto;
4568 	u16 vlanid;
4569 
4570 	veth = (struct vlan_ethhdr *)skb->data;
4571 	vlan_proto = veth->h_vlan_proto;
4572 
4573 	if ((vlan_proto == htons(ETH_P_8021Q) &&
4574 	     dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
4575 	    (vlan_proto == htons(ETH_P_8021AD) &&
4576 	     dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
4577 		/* pop the vlan tag */
4578 		vlanid = ntohs(veth->h_vlan_TCI);
4579 		memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
4580 		skb_pull(skb, VLAN_HLEN);
4581 		__vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
4582 	}
4583 }
4584 
4585 /**
4586  * stmmac_rx_refill - refill used skb preallocated buffers
4587  * @priv: driver private structure
4588  * @queue: RX queue index
4589  * Description : this is to reallocate the skb for the reception process
4590  * that is based on zero-copy.
4591  */
4592 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
4593 {
4594 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
4595 	int dirty = stmmac_rx_dirty(priv, queue);
4596 	unsigned int entry = rx_q->dirty_rx;
4597 	gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
4598 
4599 	if (priv->dma_cap.host_dma_width <= 32)
4600 		gfp |= GFP_DMA32;
4601 
4602 	while (dirty-- > 0) {
4603 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
4604 		struct dma_desc *p;
4605 		bool use_rx_wd;
4606 
4607 		if (priv->extend_desc)
4608 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
4609 		else
4610 			p = rx_q->dma_rx + entry;
4611 
4612 		if (!buf->page) {
4613 			buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp);
4614 			if (!buf->page)
4615 				break;
4616 		}
4617 
4618 		if (priv->sph && !buf->sec_page) {
4619 			buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp);
4620 			if (!buf->sec_page)
4621 				break;
4622 
4623 			buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
4624 		}
4625 
4626 		buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
4627 
4628 		stmmac_set_desc_addr(priv, p, buf->addr);
4629 		if (priv->sph)
4630 			stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
4631 		else
4632 			stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
4633 		stmmac_refill_desc3(priv, rx_q, p);
4634 
4635 		rx_q->rx_count_frames++;
4636 		rx_q->rx_count_frames += priv->rx_coal_frames[queue];
4637 		if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
4638 			rx_q->rx_count_frames = 0;
4639 
4640 		use_rx_wd = !priv->rx_coal_frames[queue];
4641 		use_rx_wd |= rx_q->rx_count_frames > 0;
4642 		if (!priv->use_riwt)
4643 			use_rx_wd = false;
4644 
4645 		dma_wmb();
4646 		stmmac_set_rx_owner(priv, p, use_rx_wd);
4647 
4648 		entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_rx_size);
4649 	}
4650 	rx_q->dirty_rx = entry;
4651 	rx_q->rx_tail_addr = rx_q->dma_rx_phy +
4652 			    (rx_q->dirty_rx * sizeof(struct dma_desc));
4653 	stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
4654 }
4655 
4656 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv,
4657 				       struct dma_desc *p,
4658 				       int status, unsigned int len)
4659 {
4660 	unsigned int plen = 0, hlen = 0;
4661 	int coe = priv->hw->rx_csum;
4662 
4663 	/* Not first descriptor, buffer is always zero */
4664 	if (priv->sph && len)
4665 		return 0;
4666 
4667 	/* First descriptor, get split header length */
4668 	stmmac_get_rx_header_len(priv, p, &hlen);
4669 	if (priv->sph && hlen) {
4670 		priv->xstats.rx_split_hdr_pkt_n++;
4671 		return hlen;
4672 	}
4673 
4674 	/* First descriptor, not last descriptor and not split header */
4675 	if (status & rx_not_ls)
4676 		return priv->dma_conf.dma_buf_sz;
4677 
4678 	plen = stmmac_get_rx_frame_len(priv, p, coe);
4679 
4680 	/* First descriptor and last descriptor and not split header */
4681 	return min_t(unsigned int, priv->dma_conf.dma_buf_sz, plen);
4682 }
4683 
4684 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv,
4685 				       struct dma_desc *p,
4686 				       int status, unsigned int len)
4687 {
4688 	int coe = priv->hw->rx_csum;
4689 	unsigned int plen = 0;
4690 
4691 	/* Not split header, buffer is not available */
4692 	if (!priv->sph)
4693 		return 0;
4694 
4695 	/* Not last descriptor */
4696 	if (status & rx_not_ls)
4697 		return priv->dma_conf.dma_buf_sz;
4698 
4699 	plen = stmmac_get_rx_frame_len(priv, p, coe);
4700 
4701 	/* Last descriptor */
4702 	return plen - len;
4703 }
4704 
4705 static int stmmac_xdp_xmit_xdpf(struct stmmac_priv *priv, int queue,
4706 				struct xdp_frame *xdpf, bool dma_map)
4707 {
4708 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
4709 	unsigned int entry = tx_q->cur_tx;
4710 	struct dma_desc *tx_desc;
4711 	dma_addr_t dma_addr;
4712 	bool set_ic;
4713 
4714 	if (stmmac_tx_avail(priv, queue) < STMMAC_TX_THRESH(priv))
4715 		return STMMAC_XDP_CONSUMED;
4716 
4717 	if (likely(priv->extend_desc))
4718 		tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4719 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4720 		tx_desc = &tx_q->dma_entx[entry].basic;
4721 	else
4722 		tx_desc = tx_q->dma_tx + entry;
4723 
4724 	if (dma_map) {
4725 		dma_addr = dma_map_single(priv->device, xdpf->data,
4726 					  xdpf->len, DMA_TO_DEVICE);
4727 		if (dma_mapping_error(priv->device, dma_addr))
4728 			return STMMAC_XDP_CONSUMED;
4729 
4730 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_NDO;
4731 	} else {
4732 		struct page *page = virt_to_page(xdpf->data);
4733 
4734 		dma_addr = page_pool_get_dma_addr(page) + sizeof(*xdpf) +
4735 			   xdpf->headroom;
4736 		dma_sync_single_for_device(priv->device, dma_addr,
4737 					   xdpf->len, DMA_BIDIRECTIONAL);
4738 
4739 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_TX;
4740 	}
4741 
4742 	tx_q->tx_skbuff_dma[entry].buf = dma_addr;
4743 	tx_q->tx_skbuff_dma[entry].map_as_page = false;
4744 	tx_q->tx_skbuff_dma[entry].len = xdpf->len;
4745 	tx_q->tx_skbuff_dma[entry].last_segment = true;
4746 	tx_q->tx_skbuff_dma[entry].is_jumbo = false;
4747 
4748 	tx_q->xdpf[entry] = xdpf;
4749 
4750 	stmmac_set_desc_addr(priv, tx_desc, dma_addr);
4751 
4752 	stmmac_prepare_tx_desc(priv, tx_desc, 1, xdpf->len,
4753 			       true, priv->mode, true, true,
4754 			       xdpf->len);
4755 
4756 	tx_q->tx_count_frames++;
4757 
4758 	if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
4759 		set_ic = true;
4760 	else
4761 		set_ic = false;
4762 
4763 	if (set_ic) {
4764 		tx_q->tx_count_frames = 0;
4765 		stmmac_set_tx_ic(priv, tx_desc);
4766 		priv->xstats.tx_set_ic_bit++;
4767 	}
4768 
4769 	stmmac_enable_dma_transmission(priv, priv->ioaddr);
4770 
4771 	entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
4772 	tx_q->cur_tx = entry;
4773 
4774 	return STMMAC_XDP_TX;
4775 }
4776 
4777 static int stmmac_xdp_get_tx_queue(struct stmmac_priv *priv,
4778 				   int cpu)
4779 {
4780 	int index = cpu;
4781 
4782 	if (unlikely(index < 0))
4783 		index = 0;
4784 
4785 	while (index >= priv->plat->tx_queues_to_use)
4786 		index -= priv->plat->tx_queues_to_use;
4787 
4788 	return index;
4789 }
4790 
4791 static int stmmac_xdp_xmit_back(struct stmmac_priv *priv,
4792 				struct xdp_buff *xdp)
4793 {
4794 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
4795 	int cpu = smp_processor_id();
4796 	struct netdev_queue *nq;
4797 	int queue;
4798 	int res;
4799 
4800 	if (unlikely(!xdpf))
4801 		return STMMAC_XDP_CONSUMED;
4802 
4803 	queue = stmmac_xdp_get_tx_queue(priv, cpu);
4804 	nq = netdev_get_tx_queue(priv->dev, queue);
4805 
4806 	__netif_tx_lock(nq, cpu);
4807 	/* Avoids TX time-out as we are sharing with slow path */
4808 	txq_trans_cond_update(nq);
4809 
4810 	res = stmmac_xdp_xmit_xdpf(priv, queue, xdpf, false);
4811 	if (res == STMMAC_XDP_TX)
4812 		stmmac_flush_tx_descriptors(priv, queue);
4813 
4814 	__netif_tx_unlock(nq);
4815 
4816 	return res;
4817 }
4818 
4819 static int __stmmac_xdp_run_prog(struct stmmac_priv *priv,
4820 				 struct bpf_prog *prog,
4821 				 struct xdp_buff *xdp)
4822 {
4823 	u32 act;
4824 	int res;
4825 
4826 	act = bpf_prog_run_xdp(prog, xdp);
4827 	switch (act) {
4828 	case XDP_PASS:
4829 		res = STMMAC_XDP_PASS;
4830 		break;
4831 	case XDP_TX:
4832 		res = stmmac_xdp_xmit_back(priv, xdp);
4833 		break;
4834 	case XDP_REDIRECT:
4835 		if (xdp_do_redirect(priv->dev, xdp, prog) < 0)
4836 			res = STMMAC_XDP_CONSUMED;
4837 		else
4838 			res = STMMAC_XDP_REDIRECT;
4839 		break;
4840 	default:
4841 		bpf_warn_invalid_xdp_action(priv->dev, prog, act);
4842 		fallthrough;
4843 	case XDP_ABORTED:
4844 		trace_xdp_exception(priv->dev, prog, act);
4845 		fallthrough;
4846 	case XDP_DROP:
4847 		res = STMMAC_XDP_CONSUMED;
4848 		break;
4849 	}
4850 
4851 	return res;
4852 }
4853 
4854 static struct sk_buff *stmmac_xdp_run_prog(struct stmmac_priv *priv,
4855 					   struct xdp_buff *xdp)
4856 {
4857 	struct bpf_prog *prog;
4858 	int res;
4859 
4860 	prog = READ_ONCE(priv->xdp_prog);
4861 	if (!prog) {
4862 		res = STMMAC_XDP_PASS;
4863 		goto out;
4864 	}
4865 
4866 	res = __stmmac_xdp_run_prog(priv, prog, xdp);
4867 out:
4868 	return ERR_PTR(-res);
4869 }
4870 
4871 static void stmmac_finalize_xdp_rx(struct stmmac_priv *priv,
4872 				   int xdp_status)
4873 {
4874 	int cpu = smp_processor_id();
4875 	int queue;
4876 
4877 	queue = stmmac_xdp_get_tx_queue(priv, cpu);
4878 
4879 	if (xdp_status & STMMAC_XDP_TX)
4880 		stmmac_tx_timer_arm(priv, queue);
4881 
4882 	if (xdp_status & STMMAC_XDP_REDIRECT)
4883 		xdp_do_flush();
4884 }
4885 
4886 static struct sk_buff *stmmac_construct_skb_zc(struct stmmac_channel *ch,
4887 					       struct xdp_buff *xdp)
4888 {
4889 	unsigned int metasize = xdp->data - xdp->data_meta;
4890 	unsigned int datasize = xdp->data_end - xdp->data;
4891 	struct sk_buff *skb;
4892 
4893 	skb = __napi_alloc_skb(&ch->rxtx_napi,
4894 			       xdp->data_end - xdp->data_hard_start,
4895 			       GFP_ATOMIC | __GFP_NOWARN);
4896 	if (unlikely(!skb))
4897 		return NULL;
4898 
4899 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
4900 	memcpy(__skb_put(skb, datasize), xdp->data, datasize);
4901 	if (metasize)
4902 		skb_metadata_set(skb, metasize);
4903 
4904 	return skb;
4905 }
4906 
4907 static void stmmac_dispatch_skb_zc(struct stmmac_priv *priv, u32 queue,
4908 				   struct dma_desc *p, struct dma_desc *np,
4909 				   struct xdp_buff *xdp)
4910 {
4911 	struct stmmac_channel *ch = &priv->channel[queue];
4912 	unsigned int len = xdp->data_end - xdp->data;
4913 	enum pkt_hash_types hash_type;
4914 	int coe = priv->hw->rx_csum;
4915 	struct sk_buff *skb;
4916 	u32 hash;
4917 
4918 	skb = stmmac_construct_skb_zc(ch, xdp);
4919 	if (!skb) {
4920 		priv->dev->stats.rx_dropped++;
4921 		return;
4922 	}
4923 
4924 	stmmac_get_rx_hwtstamp(priv, p, np, skb);
4925 	stmmac_rx_vlan(priv->dev, skb);
4926 	skb->protocol = eth_type_trans(skb, priv->dev);
4927 
4928 	if (unlikely(!coe))
4929 		skb_checksum_none_assert(skb);
4930 	else
4931 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4932 
4933 	if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
4934 		skb_set_hash(skb, hash, hash_type);
4935 
4936 	skb_record_rx_queue(skb, queue);
4937 	napi_gro_receive(&ch->rxtx_napi, skb);
4938 
4939 	priv->dev->stats.rx_packets++;
4940 	priv->dev->stats.rx_bytes += len;
4941 }
4942 
4943 static bool stmmac_rx_refill_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
4944 {
4945 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
4946 	unsigned int entry = rx_q->dirty_rx;
4947 	struct dma_desc *rx_desc = NULL;
4948 	bool ret = true;
4949 
4950 	budget = min(budget, stmmac_rx_dirty(priv, queue));
4951 
4952 	while (budget-- > 0 && entry != rx_q->cur_rx) {
4953 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
4954 		dma_addr_t dma_addr;
4955 		bool use_rx_wd;
4956 
4957 		if (!buf->xdp) {
4958 			buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
4959 			if (!buf->xdp) {
4960 				ret = false;
4961 				break;
4962 			}
4963 		}
4964 
4965 		if (priv->extend_desc)
4966 			rx_desc = (struct dma_desc *)(rx_q->dma_erx + entry);
4967 		else
4968 			rx_desc = rx_q->dma_rx + entry;
4969 
4970 		dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
4971 		stmmac_set_desc_addr(priv, rx_desc, dma_addr);
4972 		stmmac_set_desc_sec_addr(priv, rx_desc, 0, false);
4973 		stmmac_refill_desc3(priv, rx_q, rx_desc);
4974 
4975 		rx_q->rx_count_frames++;
4976 		rx_q->rx_count_frames += priv->rx_coal_frames[queue];
4977 		if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
4978 			rx_q->rx_count_frames = 0;
4979 
4980 		use_rx_wd = !priv->rx_coal_frames[queue];
4981 		use_rx_wd |= rx_q->rx_count_frames > 0;
4982 		if (!priv->use_riwt)
4983 			use_rx_wd = false;
4984 
4985 		dma_wmb();
4986 		stmmac_set_rx_owner(priv, rx_desc, use_rx_wd);
4987 
4988 		entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_rx_size);
4989 	}
4990 
4991 	if (rx_desc) {
4992 		rx_q->dirty_rx = entry;
4993 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
4994 				     (rx_q->dirty_rx * sizeof(struct dma_desc));
4995 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
4996 	}
4997 
4998 	return ret;
4999 }
5000 
5001 static int stmmac_rx_zc(struct stmmac_priv *priv, int limit, u32 queue)
5002 {
5003 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
5004 	unsigned int count = 0, error = 0, len = 0;
5005 	int dirty = stmmac_rx_dirty(priv, queue);
5006 	unsigned int next_entry = rx_q->cur_rx;
5007 	unsigned int desc_size;
5008 	struct bpf_prog *prog;
5009 	bool failure = false;
5010 	int xdp_status = 0;
5011 	int status = 0;
5012 
5013 	if (netif_msg_rx_status(priv)) {
5014 		void *rx_head;
5015 
5016 		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
5017 		if (priv->extend_desc) {
5018 			rx_head = (void *)rx_q->dma_erx;
5019 			desc_size = sizeof(struct dma_extended_desc);
5020 		} else {
5021 			rx_head = (void *)rx_q->dma_rx;
5022 			desc_size = sizeof(struct dma_desc);
5023 		}
5024 
5025 		stmmac_display_ring(priv, rx_head, priv->dma_conf.dma_rx_size, true,
5026 				    rx_q->dma_rx_phy, desc_size);
5027 	}
5028 	while (count < limit) {
5029 		struct stmmac_rx_buffer *buf;
5030 		unsigned int buf1_len = 0;
5031 		struct dma_desc *np, *p;
5032 		int entry;
5033 		int res;
5034 
5035 		if (!count && rx_q->state_saved) {
5036 			error = rx_q->state.error;
5037 			len = rx_q->state.len;
5038 		} else {
5039 			rx_q->state_saved = false;
5040 			error = 0;
5041 			len = 0;
5042 		}
5043 
5044 		if (count >= limit)
5045 			break;
5046 
5047 read_again:
5048 		buf1_len = 0;
5049 		entry = next_entry;
5050 		buf = &rx_q->buf_pool[entry];
5051 
5052 		if (dirty >= STMMAC_RX_FILL_BATCH) {
5053 			failure = failure ||
5054 				  !stmmac_rx_refill_zc(priv, queue, dirty);
5055 			dirty = 0;
5056 		}
5057 
5058 		if (priv->extend_desc)
5059 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
5060 		else
5061 			p = rx_q->dma_rx + entry;
5062 
5063 		/* read the status of the incoming frame */
5064 		status = stmmac_rx_status(priv, &priv->dev->stats,
5065 					  &priv->xstats, p);
5066 		/* check if managed by the DMA otherwise go ahead */
5067 		if (unlikely(status & dma_own))
5068 			break;
5069 
5070 		/* Prefetch the next RX descriptor */
5071 		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
5072 						priv->dma_conf.dma_rx_size);
5073 		next_entry = rx_q->cur_rx;
5074 
5075 		if (priv->extend_desc)
5076 			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
5077 		else
5078 			np = rx_q->dma_rx + next_entry;
5079 
5080 		prefetch(np);
5081 
5082 		/* Ensure a valid XSK buffer before proceed */
5083 		if (!buf->xdp)
5084 			break;
5085 
5086 		if (priv->extend_desc)
5087 			stmmac_rx_extended_status(priv, &priv->dev->stats,
5088 						  &priv->xstats,
5089 						  rx_q->dma_erx + entry);
5090 		if (unlikely(status == discard_frame)) {
5091 			xsk_buff_free(buf->xdp);
5092 			buf->xdp = NULL;
5093 			dirty++;
5094 			error = 1;
5095 			if (!priv->hwts_rx_en)
5096 				priv->dev->stats.rx_errors++;
5097 		}
5098 
5099 		if (unlikely(error && (status & rx_not_ls)))
5100 			goto read_again;
5101 		if (unlikely(error)) {
5102 			count++;
5103 			continue;
5104 		}
5105 
5106 		/* XSK pool expects RX frame 1:1 mapped to XSK buffer */
5107 		if (likely(status & rx_not_ls)) {
5108 			xsk_buff_free(buf->xdp);
5109 			buf->xdp = NULL;
5110 			dirty++;
5111 			count++;
5112 			goto read_again;
5113 		}
5114 
5115 		/* XDP ZC Frame only support primary buffers for now */
5116 		buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
5117 		len += buf1_len;
5118 
5119 		/* ACS is disabled; strip manually. */
5120 		if (likely(!(status & rx_not_ls))) {
5121 			buf1_len -= ETH_FCS_LEN;
5122 			len -= ETH_FCS_LEN;
5123 		}
5124 
5125 		/* RX buffer is good and fit into a XSK pool buffer */
5126 		buf->xdp->data_end = buf->xdp->data + buf1_len;
5127 		xsk_buff_dma_sync_for_cpu(buf->xdp, rx_q->xsk_pool);
5128 
5129 		prog = READ_ONCE(priv->xdp_prog);
5130 		res = __stmmac_xdp_run_prog(priv, prog, buf->xdp);
5131 
5132 		switch (res) {
5133 		case STMMAC_XDP_PASS:
5134 			stmmac_dispatch_skb_zc(priv, queue, p, np, buf->xdp);
5135 			xsk_buff_free(buf->xdp);
5136 			break;
5137 		case STMMAC_XDP_CONSUMED:
5138 			xsk_buff_free(buf->xdp);
5139 			priv->dev->stats.rx_dropped++;
5140 			break;
5141 		case STMMAC_XDP_TX:
5142 		case STMMAC_XDP_REDIRECT:
5143 			xdp_status |= res;
5144 			break;
5145 		}
5146 
5147 		buf->xdp = NULL;
5148 		dirty++;
5149 		count++;
5150 	}
5151 
5152 	if (status & rx_not_ls) {
5153 		rx_q->state_saved = true;
5154 		rx_q->state.error = error;
5155 		rx_q->state.len = len;
5156 	}
5157 
5158 	stmmac_finalize_xdp_rx(priv, xdp_status);
5159 
5160 	priv->xstats.rx_pkt_n += count;
5161 	priv->xstats.rxq_stats[queue].rx_pkt_n += count;
5162 
5163 	if (xsk_uses_need_wakeup(rx_q->xsk_pool)) {
5164 		if (failure || stmmac_rx_dirty(priv, queue) > 0)
5165 			xsk_set_rx_need_wakeup(rx_q->xsk_pool);
5166 		else
5167 			xsk_clear_rx_need_wakeup(rx_q->xsk_pool);
5168 
5169 		return (int)count;
5170 	}
5171 
5172 	return failure ? limit : (int)count;
5173 }
5174 
5175 /**
5176  * stmmac_rx - manage the receive process
5177  * @priv: driver private structure
5178  * @limit: napi bugget
5179  * @queue: RX queue index.
5180  * Description :  this the function called by the napi poll method.
5181  * It gets all the frames inside the ring.
5182  */
5183 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
5184 {
5185 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
5186 	struct stmmac_channel *ch = &priv->channel[queue];
5187 	unsigned int count = 0, error = 0, len = 0;
5188 	int status = 0, coe = priv->hw->rx_csum;
5189 	unsigned int next_entry = rx_q->cur_rx;
5190 	enum dma_data_direction dma_dir;
5191 	unsigned int desc_size;
5192 	struct sk_buff *skb = NULL;
5193 	struct xdp_buff xdp;
5194 	int xdp_status = 0;
5195 	int buf_sz;
5196 
5197 	dma_dir = page_pool_get_dma_dir(rx_q->page_pool);
5198 	buf_sz = DIV_ROUND_UP(priv->dma_conf.dma_buf_sz, PAGE_SIZE) * PAGE_SIZE;
5199 
5200 	if (netif_msg_rx_status(priv)) {
5201 		void *rx_head;
5202 
5203 		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
5204 		if (priv->extend_desc) {
5205 			rx_head = (void *)rx_q->dma_erx;
5206 			desc_size = sizeof(struct dma_extended_desc);
5207 		} else {
5208 			rx_head = (void *)rx_q->dma_rx;
5209 			desc_size = sizeof(struct dma_desc);
5210 		}
5211 
5212 		stmmac_display_ring(priv, rx_head, priv->dma_conf.dma_rx_size, true,
5213 				    rx_q->dma_rx_phy, desc_size);
5214 	}
5215 	while (count < limit) {
5216 		unsigned int buf1_len = 0, buf2_len = 0;
5217 		enum pkt_hash_types hash_type;
5218 		struct stmmac_rx_buffer *buf;
5219 		struct dma_desc *np, *p;
5220 		int entry;
5221 		u32 hash;
5222 
5223 		if (!count && rx_q->state_saved) {
5224 			skb = rx_q->state.skb;
5225 			error = rx_q->state.error;
5226 			len = rx_q->state.len;
5227 		} else {
5228 			rx_q->state_saved = false;
5229 			skb = NULL;
5230 			error = 0;
5231 			len = 0;
5232 		}
5233 
5234 		if (count >= limit)
5235 			break;
5236 
5237 read_again:
5238 		buf1_len = 0;
5239 		buf2_len = 0;
5240 		entry = next_entry;
5241 		buf = &rx_q->buf_pool[entry];
5242 
5243 		if (priv->extend_desc)
5244 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
5245 		else
5246 			p = rx_q->dma_rx + entry;
5247 
5248 		/* read the status of the incoming frame */
5249 		status = stmmac_rx_status(priv, &priv->dev->stats,
5250 				&priv->xstats, p);
5251 		/* check if managed by the DMA otherwise go ahead */
5252 		if (unlikely(status & dma_own))
5253 			break;
5254 
5255 		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
5256 						priv->dma_conf.dma_rx_size);
5257 		next_entry = rx_q->cur_rx;
5258 
5259 		if (priv->extend_desc)
5260 			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
5261 		else
5262 			np = rx_q->dma_rx + next_entry;
5263 
5264 		prefetch(np);
5265 
5266 		if (priv->extend_desc)
5267 			stmmac_rx_extended_status(priv, &priv->dev->stats,
5268 					&priv->xstats, rx_q->dma_erx + entry);
5269 		if (unlikely(status == discard_frame)) {
5270 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
5271 			buf->page = NULL;
5272 			error = 1;
5273 			if (!priv->hwts_rx_en)
5274 				priv->dev->stats.rx_errors++;
5275 		}
5276 
5277 		if (unlikely(error && (status & rx_not_ls)))
5278 			goto read_again;
5279 		if (unlikely(error)) {
5280 			dev_kfree_skb(skb);
5281 			skb = NULL;
5282 			count++;
5283 			continue;
5284 		}
5285 
5286 		/* Buffer is good. Go on. */
5287 
5288 		prefetch(page_address(buf->page) + buf->page_offset);
5289 		if (buf->sec_page)
5290 			prefetch(page_address(buf->sec_page));
5291 
5292 		buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
5293 		len += buf1_len;
5294 		buf2_len = stmmac_rx_buf2_len(priv, p, status, len);
5295 		len += buf2_len;
5296 
5297 		/* ACS is disabled; strip manually. */
5298 		if (likely(!(status & rx_not_ls))) {
5299 			if (buf2_len) {
5300 				buf2_len -= ETH_FCS_LEN;
5301 				len -= ETH_FCS_LEN;
5302 			} else if (buf1_len) {
5303 				buf1_len -= ETH_FCS_LEN;
5304 				len -= ETH_FCS_LEN;
5305 			}
5306 		}
5307 
5308 		if (!skb) {
5309 			unsigned int pre_len, sync_len;
5310 
5311 			dma_sync_single_for_cpu(priv->device, buf->addr,
5312 						buf1_len, dma_dir);
5313 
5314 			xdp_init_buff(&xdp, buf_sz, &rx_q->xdp_rxq);
5315 			xdp_prepare_buff(&xdp, page_address(buf->page),
5316 					 buf->page_offset, buf1_len, false);
5317 
5318 			pre_len = xdp.data_end - xdp.data_hard_start -
5319 				  buf->page_offset;
5320 			skb = stmmac_xdp_run_prog(priv, &xdp);
5321 			/* Due xdp_adjust_tail: DMA sync for_device
5322 			 * cover max len CPU touch
5323 			 */
5324 			sync_len = xdp.data_end - xdp.data_hard_start -
5325 				   buf->page_offset;
5326 			sync_len = max(sync_len, pre_len);
5327 
5328 			/* For Not XDP_PASS verdict */
5329 			if (IS_ERR(skb)) {
5330 				unsigned int xdp_res = -PTR_ERR(skb);
5331 
5332 				if (xdp_res & STMMAC_XDP_CONSUMED) {
5333 					page_pool_put_page(rx_q->page_pool,
5334 							   virt_to_head_page(xdp.data),
5335 							   sync_len, true);
5336 					buf->page = NULL;
5337 					priv->dev->stats.rx_dropped++;
5338 
5339 					/* Clear skb as it was set as
5340 					 * status by XDP program.
5341 					 */
5342 					skb = NULL;
5343 
5344 					if (unlikely((status & rx_not_ls)))
5345 						goto read_again;
5346 
5347 					count++;
5348 					continue;
5349 				} else if (xdp_res & (STMMAC_XDP_TX |
5350 						      STMMAC_XDP_REDIRECT)) {
5351 					xdp_status |= xdp_res;
5352 					buf->page = NULL;
5353 					skb = NULL;
5354 					count++;
5355 					continue;
5356 				}
5357 			}
5358 		}
5359 
5360 		if (!skb) {
5361 			/* XDP program may expand or reduce tail */
5362 			buf1_len = xdp.data_end - xdp.data;
5363 
5364 			skb = napi_alloc_skb(&ch->rx_napi, buf1_len);
5365 			if (!skb) {
5366 				priv->dev->stats.rx_dropped++;
5367 				count++;
5368 				goto drain_data;
5369 			}
5370 
5371 			/* XDP program may adjust header */
5372 			skb_copy_to_linear_data(skb, xdp.data, buf1_len);
5373 			skb_put(skb, buf1_len);
5374 
5375 			/* Data payload copied into SKB, page ready for recycle */
5376 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
5377 			buf->page = NULL;
5378 		} else if (buf1_len) {
5379 			dma_sync_single_for_cpu(priv->device, buf->addr,
5380 						buf1_len, dma_dir);
5381 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5382 					buf->page, buf->page_offset, buf1_len,
5383 					priv->dma_conf.dma_buf_sz);
5384 
5385 			/* Data payload appended into SKB */
5386 			page_pool_release_page(rx_q->page_pool, buf->page);
5387 			buf->page = NULL;
5388 		}
5389 
5390 		if (buf2_len) {
5391 			dma_sync_single_for_cpu(priv->device, buf->sec_addr,
5392 						buf2_len, dma_dir);
5393 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5394 					buf->sec_page, 0, buf2_len,
5395 					priv->dma_conf.dma_buf_sz);
5396 
5397 			/* Data payload appended into SKB */
5398 			page_pool_release_page(rx_q->page_pool, buf->sec_page);
5399 			buf->sec_page = NULL;
5400 		}
5401 
5402 drain_data:
5403 		if (likely(status & rx_not_ls))
5404 			goto read_again;
5405 		if (!skb)
5406 			continue;
5407 
5408 		/* Got entire packet into SKB. Finish it. */
5409 
5410 		stmmac_get_rx_hwtstamp(priv, p, np, skb);
5411 		stmmac_rx_vlan(priv->dev, skb);
5412 		skb->protocol = eth_type_trans(skb, priv->dev);
5413 
5414 		if (unlikely(!coe))
5415 			skb_checksum_none_assert(skb);
5416 		else
5417 			skb->ip_summed = CHECKSUM_UNNECESSARY;
5418 
5419 		if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
5420 			skb_set_hash(skb, hash, hash_type);
5421 
5422 		skb_record_rx_queue(skb, queue);
5423 		napi_gro_receive(&ch->rx_napi, skb);
5424 		skb = NULL;
5425 
5426 		priv->dev->stats.rx_packets++;
5427 		priv->dev->stats.rx_bytes += len;
5428 		count++;
5429 	}
5430 
5431 	if (status & rx_not_ls || skb) {
5432 		rx_q->state_saved = true;
5433 		rx_q->state.skb = skb;
5434 		rx_q->state.error = error;
5435 		rx_q->state.len = len;
5436 	}
5437 
5438 	stmmac_finalize_xdp_rx(priv, xdp_status);
5439 
5440 	stmmac_rx_refill(priv, queue);
5441 
5442 	priv->xstats.rx_pkt_n += count;
5443 	priv->xstats.rxq_stats[queue].rx_pkt_n += count;
5444 
5445 	return count;
5446 }
5447 
5448 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
5449 {
5450 	struct stmmac_channel *ch =
5451 		container_of(napi, struct stmmac_channel, rx_napi);
5452 	struct stmmac_priv *priv = ch->priv_data;
5453 	u32 chan = ch->index;
5454 	int work_done;
5455 
5456 	priv->xstats.napi_poll++;
5457 
5458 	work_done = stmmac_rx(priv, budget, chan);
5459 	if (work_done < budget && napi_complete_done(napi, work_done)) {
5460 		unsigned long flags;
5461 
5462 		spin_lock_irqsave(&ch->lock, flags);
5463 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
5464 		spin_unlock_irqrestore(&ch->lock, flags);
5465 	}
5466 
5467 	return work_done;
5468 }
5469 
5470 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
5471 {
5472 	struct stmmac_channel *ch =
5473 		container_of(napi, struct stmmac_channel, tx_napi);
5474 	struct stmmac_priv *priv = ch->priv_data;
5475 	u32 chan = ch->index;
5476 	int work_done;
5477 
5478 	priv->xstats.napi_poll++;
5479 
5480 	work_done = stmmac_tx_clean(priv, budget, chan);
5481 	work_done = min(work_done, budget);
5482 
5483 	if (work_done < budget && napi_complete_done(napi, work_done)) {
5484 		unsigned long flags;
5485 
5486 		spin_lock_irqsave(&ch->lock, flags);
5487 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
5488 		spin_unlock_irqrestore(&ch->lock, flags);
5489 	}
5490 
5491 	return work_done;
5492 }
5493 
5494 static int stmmac_napi_poll_rxtx(struct napi_struct *napi, int budget)
5495 {
5496 	struct stmmac_channel *ch =
5497 		container_of(napi, struct stmmac_channel, rxtx_napi);
5498 	struct stmmac_priv *priv = ch->priv_data;
5499 	int rx_done, tx_done, rxtx_done;
5500 	u32 chan = ch->index;
5501 
5502 	priv->xstats.napi_poll++;
5503 
5504 	tx_done = stmmac_tx_clean(priv, budget, chan);
5505 	tx_done = min(tx_done, budget);
5506 
5507 	rx_done = stmmac_rx_zc(priv, budget, chan);
5508 
5509 	rxtx_done = max(tx_done, rx_done);
5510 
5511 	/* If either TX or RX work is not complete, return budget
5512 	 * and keep pooling
5513 	 */
5514 	if (rxtx_done >= budget)
5515 		return budget;
5516 
5517 	/* all work done, exit the polling mode */
5518 	if (napi_complete_done(napi, rxtx_done)) {
5519 		unsigned long flags;
5520 
5521 		spin_lock_irqsave(&ch->lock, flags);
5522 		/* Both RX and TX work done are compelte,
5523 		 * so enable both RX & TX IRQs.
5524 		 */
5525 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
5526 		spin_unlock_irqrestore(&ch->lock, flags);
5527 	}
5528 
5529 	return min(rxtx_done, budget - 1);
5530 }
5531 
5532 /**
5533  *  stmmac_tx_timeout
5534  *  @dev : Pointer to net device structure
5535  *  @txqueue: the index of the hanging transmit queue
5536  *  Description: this function is called when a packet transmission fails to
5537  *   complete within a reasonable time. The driver will mark the error in the
5538  *   netdev structure and arrange for the device to be reset to a sane state
5539  *   in order to transmit a new packet.
5540  */
5541 static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue)
5542 {
5543 	struct stmmac_priv *priv = netdev_priv(dev);
5544 
5545 	stmmac_global_err(priv);
5546 }
5547 
5548 /**
5549  *  stmmac_set_rx_mode - entry point for multicast addressing
5550  *  @dev : pointer to the device structure
5551  *  Description:
5552  *  This function is a driver entry point which gets called by the kernel
5553  *  whenever multicast addresses must be enabled/disabled.
5554  *  Return value:
5555  *  void.
5556  */
5557 static void stmmac_set_rx_mode(struct net_device *dev)
5558 {
5559 	struct stmmac_priv *priv = netdev_priv(dev);
5560 
5561 	stmmac_set_filter(priv, priv->hw, dev);
5562 }
5563 
5564 /**
5565  *  stmmac_change_mtu - entry point to change MTU size for the device.
5566  *  @dev : device pointer.
5567  *  @new_mtu : the new MTU size for the device.
5568  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
5569  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
5570  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
5571  *  Return value:
5572  *  0 on success and an appropriate (-)ve integer as defined in errno.h
5573  *  file on failure.
5574  */
5575 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
5576 {
5577 	struct stmmac_priv *priv = netdev_priv(dev);
5578 	int txfifosz = priv->plat->tx_fifo_size;
5579 	struct stmmac_dma_conf *dma_conf;
5580 	const int mtu = new_mtu;
5581 	int ret;
5582 
5583 	if (txfifosz == 0)
5584 		txfifosz = priv->dma_cap.tx_fifo_size;
5585 
5586 	txfifosz /= priv->plat->tx_queues_to_use;
5587 
5588 	if (stmmac_xdp_is_enabled(priv) && new_mtu > ETH_DATA_LEN) {
5589 		netdev_dbg(priv->dev, "Jumbo frames not supported for XDP\n");
5590 		return -EINVAL;
5591 	}
5592 
5593 	new_mtu = STMMAC_ALIGN(new_mtu);
5594 
5595 	/* If condition true, FIFO is too small or MTU too large */
5596 	if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB))
5597 		return -EINVAL;
5598 
5599 	if (netif_running(dev)) {
5600 		netdev_dbg(priv->dev, "restarting interface to change its MTU\n");
5601 		/* Try to allocate the new DMA conf with the new mtu */
5602 		dma_conf = stmmac_setup_dma_desc(priv, mtu);
5603 		if (IS_ERR(dma_conf)) {
5604 			netdev_err(priv->dev, "failed allocating new dma conf for new MTU %d\n",
5605 				   mtu);
5606 			return PTR_ERR(dma_conf);
5607 		}
5608 
5609 		stmmac_release(dev);
5610 
5611 		ret = __stmmac_open(dev, dma_conf);
5612 		kfree(dma_conf);
5613 		if (ret) {
5614 			netdev_err(priv->dev, "failed reopening the interface after MTU change\n");
5615 			return ret;
5616 		}
5617 
5618 		stmmac_set_rx_mode(dev);
5619 	}
5620 
5621 	dev->mtu = mtu;
5622 	netdev_update_features(dev);
5623 
5624 	return 0;
5625 }
5626 
5627 static netdev_features_t stmmac_fix_features(struct net_device *dev,
5628 					     netdev_features_t features)
5629 {
5630 	struct stmmac_priv *priv = netdev_priv(dev);
5631 
5632 	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
5633 		features &= ~NETIF_F_RXCSUM;
5634 
5635 	if (!priv->plat->tx_coe)
5636 		features &= ~NETIF_F_CSUM_MASK;
5637 
5638 	/* Some GMAC devices have a bugged Jumbo frame support that
5639 	 * needs to have the Tx COE disabled for oversized frames
5640 	 * (due to limited buffer sizes). In this case we disable
5641 	 * the TX csum insertion in the TDES and not use SF.
5642 	 */
5643 	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
5644 		features &= ~NETIF_F_CSUM_MASK;
5645 
5646 	/* Disable tso if asked by ethtool */
5647 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
5648 		if (features & NETIF_F_TSO)
5649 			priv->tso = true;
5650 		else
5651 			priv->tso = false;
5652 	}
5653 
5654 	return features;
5655 }
5656 
5657 static int stmmac_set_features(struct net_device *netdev,
5658 			       netdev_features_t features)
5659 {
5660 	struct stmmac_priv *priv = netdev_priv(netdev);
5661 
5662 	/* Keep the COE Type in case of csum is supporting */
5663 	if (features & NETIF_F_RXCSUM)
5664 		priv->hw->rx_csum = priv->plat->rx_coe;
5665 	else
5666 		priv->hw->rx_csum = 0;
5667 	/* No check needed because rx_coe has been set before and it will be
5668 	 * fixed in case of issue.
5669 	 */
5670 	stmmac_rx_ipc(priv, priv->hw);
5671 
5672 	if (priv->sph_cap) {
5673 		bool sph_en = (priv->hw->rx_csum > 0) && priv->sph;
5674 		u32 chan;
5675 
5676 		for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++)
5677 			stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
5678 	}
5679 
5680 	return 0;
5681 }
5682 
5683 static void stmmac_fpe_event_status(struct stmmac_priv *priv, int status)
5684 {
5685 	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
5686 	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
5687 	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
5688 	bool *hs_enable = &fpe_cfg->hs_enable;
5689 
5690 	if (status == FPE_EVENT_UNKNOWN || !*hs_enable)
5691 		return;
5692 
5693 	/* If LP has sent verify mPacket, LP is FPE capable */
5694 	if ((status & FPE_EVENT_RVER) == FPE_EVENT_RVER) {
5695 		if (*lp_state < FPE_STATE_CAPABLE)
5696 			*lp_state = FPE_STATE_CAPABLE;
5697 
5698 		/* If user has requested FPE enable, quickly response */
5699 		if (*hs_enable)
5700 			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
5701 						MPACKET_RESPONSE);
5702 	}
5703 
5704 	/* If Local has sent verify mPacket, Local is FPE capable */
5705 	if ((status & FPE_EVENT_TVER) == FPE_EVENT_TVER) {
5706 		if (*lo_state < FPE_STATE_CAPABLE)
5707 			*lo_state = FPE_STATE_CAPABLE;
5708 	}
5709 
5710 	/* If LP has sent response mPacket, LP is entering FPE ON */
5711 	if ((status & FPE_EVENT_RRSP) == FPE_EVENT_RRSP)
5712 		*lp_state = FPE_STATE_ENTERING_ON;
5713 
5714 	/* If Local has sent response mPacket, Local is entering FPE ON */
5715 	if ((status & FPE_EVENT_TRSP) == FPE_EVENT_TRSP)
5716 		*lo_state = FPE_STATE_ENTERING_ON;
5717 
5718 	if (!test_bit(__FPE_REMOVING, &priv->fpe_task_state) &&
5719 	    !test_and_set_bit(__FPE_TASK_SCHED, &priv->fpe_task_state) &&
5720 	    priv->fpe_wq) {
5721 		queue_work(priv->fpe_wq, &priv->fpe_task);
5722 	}
5723 }
5724 
5725 static void stmmac_common_interrupt(struct stmmac_priv *priv)
5726 {
5727 	u32 rx_cnt = priv->plat->rx_queues_to_use;
5728 	u32 tx_cnt = priv->plat->tx_queues_to_use;
5729 	u32 queues_count;
5730 	u32 queue;
5731 	bool xmac;
5732 
5733 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
5734 	queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
5735 
5736 	if (priv->irq_wake)
5737 		pm_wakeup_event(priv->device, 0);
5738 
5739 	if (priv->dma_cap.estsel)
5740 		stmmac_est_irq_status(priv, priv->ioaddr, priv->dev,
5741 				      &priv->xstats, tx_cnt);
5742 
5743 	if (priv->dma_cap.fpesel) {
5744 		int status = stmmac_fpe_irq_status(priv, priv->ioaddr,
5745 						   priv->dev);
5746 
5747 		stmmac_fpe_event_status(priv, status);
5748 	}
5749 
5750 	/* To handle GMAC own interrupts */
5751 	if ((priv->plat->has_gmac) || xmac) {
5752 		int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
5753 
5754 		if (unlikely(status)) {
5755 			/* For LPI we need to save the tx status */
5756 			if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
5757 				priv->tx_path_in_lpi_mode = true;
5758 			if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
5759 				priv->tx_path_in_lpi_mode = false;
5760 		}
5761 
5762 		for (queue = 0; queue < queues_count; queue++) {
5763 			status = stmmac_host_mtl_irq_status(priv, priv->hw,
5764 							    queue);
5765 		}
5766 
5767 		/* PCS link status */
5768 		if (priv->hw->pcs) {
5769 			if (priv->xstats.pcs_link)
5770 				netif_carrier_on(priv->dev);
5771 			else
5772 				netif_carrier_off(priv->dev);
5773 		}
5774 
5775 		stmmac_timestamp_interrupt(priv, priv);
5776 	}
5777 }
5778 
5779 /**
5780  *  stmmac_interrupt - main ISR
5781  *  @irq: interrupt number.
5782  *  @dev_id: to pass the net device pointer.
5783  *  Description: this is the main driver interrupt service routine.
5784  *  It can call:
5785  *  o DMA service routine (to manage incoming frame reception and transmission
5786  *    status)
5787  *  o Core interrupts to manage: remote wake-up, management counter, LPI
5788  *    interrupts.
5789  */
5790 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
5791 {
5792 	struct net_device *dev = (struct net_device *)dev_id;
5793 	struct stmmac_priv *priv = netdev_priv(dev);
5794 
5795 	/* Check if adapter is up */
5796 	if (test_bit(STMMAC_DOWN, &priv->state))
5797 		return IRQ_HANDLED;
5798 
5799 	/* Check if a fatal error happened */
5800 	if (stmmac_safety_feat_interrupt(priv))
5801 		return IRQ_HANDLED;
5802 
5803 	/* To handle Common interrupts */
5804 	stmmac_common_interrupt(priv);
5805 
5806 	/* To handle DMA interrupts */
5807 	stmmac_dma_interrupt(priv);
5808 
5809 	return IRQ_HANDLED;
5810 }
5811 
5812 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id)
5813 {
5814 	struct net_device *dev = (struct net_device *)dev_id;
5815 	struct stmmac_priv *priv = netdev_priv(dev);
5816 
5817 	if (unlikely(!dev)) {
5818 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5819 		return IRQ_NONE;
5820 	}
5821 
5822 	/* Check if adapter is up */
5823 	if (test_bit(STMMAC_DOWN, &priv->state))
5824 		return IRQ_HANDLED;
5825 
5826 	/* To handle Common interrupts */
5827 	stmmac_common_interrupt(priv);
5828 
5829 	return IRQ_HANDLED;
5830 }
5831 
5832 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id)
5833 {
5834 	struct net_device *dev = (struct net_device *)dev_id;
5835 	struct stmmac_priv *priv = netdev_priv(dev);
5836 
5837 	if (unlikely(!dev)) {
5838 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5839 		return IRQ_NONE;
5840 	}
5841 
5842 	/* Check if adapter is up */
5843 	if (test_bit(STMMAC_DOWN, &priv->state))
5844 		return IRQ_HANDLED;
5845 
5846 	/* Check if a fatal error happened */
5847 	stmmac_safety_feat_interrupt(priv);
5848 
5849 	return IRQ_HANDLED;
5850 }
5851 
5852 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data)
5853 {
5854 	struct stmmac_tx_queue *tx_q = (struct stmmac_tx_queue *)data;
5855 	struct stmmac_dma_conf *dma_conf;
5856 	int chan = tx_q->queue_index;
5857 	struct stmmac_priv *priv;
5858 	int status;
5859 
5860 	dma_conf = container_of(tx_q, struct stmmac_dma_conf, tx_queue[chan]);
5861 	priv = container_of(dma_conf, struct stmmac_priv, dma_conf);
5862 
5863 	if (unlikely(!data)) {
5864 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5865 		return IRQ_NONE;
5866 	}
5867 
5868 	/* Check if adapter is up */
5869 	if (test_bit(STMMAC_DOWN, &priv->state))
5870 		return IRQ_HANDLED;
5871 
5872 	status = stmmac_napi_check(priv, chan, DMA_DIR_TX);
5873 
5874 	if (unlikely(status & tx_hard_error_bump_tc)) {
5875 		/* Try to bump up the dma threshold on this failure */
5876 		stmmac_bump_dma_threshold(priv, chan);
5877 	} else if (unlikely(status == tx_hard_error)) {
5878 		stmmac_tx_err(priv, chan);
5879 	}
5880 
5881 	return IRQ_HANDLED;
5882 }
5883 
5884 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data)
5885 {
5886 	struct stmmac_rx_queue *rx_q = (struct stmmac_rx_queue *)data;
5887 	struct stmmac_dma_conf *dma_conf;
5888 	int chan = rx_q->queue_index;
5889 	struct stmmac_priv *priv;
5890 
5891 	dma_conf = container_of(rx_q, struct stmmac_dma_conf, rx_queue[chan]);
5892 	priv = container_of(dma_conf, struct stmmac_priv, dma_conf);
5893 
5894 	if (unlikely(!data)) {
5895 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5896 		return IRQ_NONE;
5897 	}
5898 
5899 	/* Check if adapter is up */
5900 	if (test_bit(STMMAC_DOWN, &priv->state))
5901 		return IRQ_HANDLED;
5902 
5903 	stmmac_napi_check(priv, chan, DMA_DIR_RX);
5904 
5905 	return IRQ_HANDLED;
5906 }
5907 
5908 #ifdef CONFIG_NET_POLL_CONTROLLER
5909 /* Polling receive - used by NETCONSOLE and other diagnostic tools
5910  * to allow network I/O with interrupts disabled.
5911  */
5912 static void stmmac_poll_controller(struct net_device *dev)
5913 {
5914 	struct stmmac_priv *priv = netdev_priv(dev);
5915 	int i;
5916 
5917 	/* If adapter is down, do nothing */
5918 	if (test_bit(STMMAC_DOWN, &priv->state))
5919 		return;
5920 
5921 	if (priv->plat->multi_msi_en) {
5922 		for (i = 0; i < priv->plat->rx_queues_to_use; i++)
5923 			stmmac_msi_intr_rx(0, &priv->dma_conf.rx_queue[i]);
5924 
5925 		for (i = 0; i < priv->plat->tx_queues_to_use; i++)
5926 			stmmac_msi_intr_tx(0, &priv->dma_conf.tx_queue[i]);
5927 	} else {
5928 		disable_irq(dev->irq);
5929 		stmmac_interrupt(dev->irq, dev);
5930 		enable_irq(dev->irq);
5931 	}
5932 }
5933 #endif
5934 
5935 /**
5936  *  stmmac_ioctl - Entry point for the Ioctl
5937  *  @dev: Device pointer.
5938  *  @rq: An IOCTL specefic structure, that can contain a pointer to
5939  *  a proprietary structure used to pass information to the driver.
5940  *  @cmd: IOCTL command
5941  *  Description:
5942  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
5943  */
5944 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5945 {
5946 	struct stmmac_priv *priv = netdev_priv (dev);
5947 	int ret = -EOPNOTSUPP;
5948 
5949 	if (!netif_running(dev))
5950 		return -EINVAL;
5951 
5952 	switch (cmd) {
5953 	case SIOCGMIIPHY:
5954 	case SIOCGMIIREG:
5955 	case SIOCSMIIREG:
5956 		ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
5957 		break;
5958 	case SIOCSHWTSTAMP:
5959 		ret = stmmac_hwtstamp_set(dev, rq);
5960 		break;
5961 	case SIOCGHWTSTAMP:
5962 		ret = stmmac_hwtstamp_get(dev, rq);
5963 		break;
5964 	default:
5965 		break;
5966 	}
5967 
5968 	return ret;
5969 }
5970 
5971 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
5972 				    void *cb_priv)
5973 {
5974 	struct stmmac_priv *priv = cb_priv;
5975 	int ret = -EOPNOTSUPP;
5976 
5977 	if (!tc_cls_can_offload_and_chain0(priv->dev, type_data))
5978 		return ret;
5979 
5980 	__stmmac_disable_all_queues(priv);
5981 
5982 	switch (type) {
5983 	case TC_SETUP_CLSU32:
5984 		ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
5985 		break;
5986 	case TC_SETUP_CLSFLOWER:
5987 		ret = stmmac_tc_setup_cls(priv, priv, type_data);
5988 		break;
5989 	default:
5990 		break;
5991 	}
5992 
5993 	stmmac_enable_all_queues(priv);
5994 	return ret;
5995 }
5996 
5997 static LIST_HEAD(stmmac_block_cb_list);
5998 
5999 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
6000 			   void *type_data)
6001 {
6002 	struct stmmac_priv *priv = netdev_priv(ndev);
6003 
6004 	switch (type) {
6005 	case TC_QUERY_CAPS:
6006 		return stmmac_tc_query_caps(priv, priv, type_data);
6007 	case TC_SETUP_BLOCK:
6008 		return flow_block_cb_setup_simple(type_data,
6009 						  &stmmac_block_cb_list,
6010 						  stmmac_setup_tc_block_cb,
6011 						  priv, priv, true);
6012 	case TC_SETUP_QDISC_CBS:
6013 		return stmmac_tc_setup_cbs(priv, priv, type_data);
6014 	case TC_SETUP_QDISC_TAPRIO:
6015 		return stmmac_tc_setup_taprio(priv, priv, type_data);
6016 	case TC_SETUP_QDISC_ETF:
6017 		return stmmac_tc_setup_etf(priv, priv, type_data);
6018 	default:
6019 		return -EOPNOTSUPP;
6020 	}
6021 }
6022 
6023 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
6024 			       struct net_device *sb_dev)
6025 {
6026 	int gso = skb_shinfo(skb)->gso_type;
6027 
6028 	if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) {
6029 		/*
6030 		 * There is no way to determine the number of TSO/USO
6031 		 * capable Queues. Let's use always the Queue 0
6032 		 * because if TSO/USO is supported then at least this
6033 		 * one will be capable.
6034 		 */
6035 		return 0;
6036 	}
6037 
6038 	return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
6039 }
6040 
6041 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
6042 {
6043 	struct stmmac_priv *priv = netdev_priv(ndev);
6044 	int ret = 0;
6045 
6046 	ret = pm_runtime_resume_and_get(priv->device);
6047 	if (ret < 0)
6048 		return ret;
6049 
6050 	ret = eth_mac_addr(ndev, addr);
6051 	if (ret)
6052 		goto set_mac_error;
6053 
6054 	stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
6055 
6056 set_mac_error:
6057 	pm_runtime_put(priv->device);
6058 
6059 	return ret;
6060 }
6061 
6062 #ifdef CONFIG_DEBUG_FS
6063 static struct dentry *stmmac_fs_dir;
6064 
6065 static void sysfs_display_ring(void *head, int size, int extend_desc,
6066 			       struct seq_file *seq, dma_addr_t dma_phy_addr)
6067 {
6068 	int i;
6069 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
6070 	struct dma_desc *p = (struct dma_desc *)head;
6071 	dma_addr_t dma_addr;
6072 
6073 	for (i = 0; i < size; i++) {
6074 		if (extend_desc) {
6075 			dma_addr = dma_phy_addr + i * sizeof(*ep);
6076 			seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
6077 				   i, &dma_addr,
6078 				   le32_to_cpu(ep->basic.des0),
6079 				   le32_to_cpu(ep->basic.des1),
6080 				   le32_to_cpu(ep->basic.des2),
6081 				   le32_to_cpu(ep->basic.des3));
6082 			ep++;
6083 		} else {
6084 			dma_addr = dma_phy_addr + i * sizeof(*p);
6085 			seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
6086 				   i, &dma_addr,
6087 				   le32_to_cpu(p->des0), le32_to_cpu(p->des1),
6088 				   le32_to_cpu(p->des2), le32_to_cpu(p->des3));
6089 			p++;
6090 		}
6091 		seq_printf(seq, "\n");
6092 	}
6093 }
6094 
6095 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
6096 {
6097 	struct net_device *dev = seq->private;
6098 	struct stmmac_priv *priv = netdev_priv(dev);
6099 	u32 rx_count = priv->plat->rx_queues_to_use;
6100 	u32 tx_count = priv->plat->tx_queues_to_use;
6101 	u32 queue;
6102 
6103 	if ((dev->flags & IFF_UP) == 0)
6104 		return 0;
6105 
6106 	for (queue = 0; queue < rx_count; queue++) {
6107 		struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
6108 
6109 		seq_printf(seq, "RX Queue %d:\n", queue);
6110 
6111 		if (priv->extend_desc) {
6112 			seq_printf(seq, "Extended descriptor ring:\n");
6113 			sysfs_display_ring((void *)rx_q->dma_erx,
6114 					   priv->dma_conf.dma_rx_size, 1, seq, rx_q->dma_rx_phy);
6115 		} else {
6116 			seq_printf(seq, "Descriptor ring:\n");
6117 			sysfs_display_ring((void *)rx_q->dma_rx,
6118 					   priv->dma_conf.dma_rx_size, 0, seq, rx_q->dma_rx_phy);
6119 		}
6120 	}
6121 
6122 	for (queue = 0; queue < tx_count; queue++) {
6123 		struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
6124 
6125 		seq_printf(seq, "TX Queue %d:\n", queue);
6126 
6127 		if (priv->extend_desc) {
6128 			seq_printf(seq, "Extended descriptor ring:\n");
6129 			sysfs_display_ring((void *)tx_q->dma_etx,
6130 					   priv->dma_conf.dma_tx_size, 1, seq, tx_q->dma_tx_phy);
6131 		} else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) {
6132 			seq_printf(seq, "Descriptor ring:\n");
6133 			sysfs_display_ring((void *)tx_q->dma_tx,
6134 					   priv->dma_conf.dma_tx_size, 0, seq, tx_q->dma_tx_phy);
6135 		}
6136 	}
6137 
6138 	return 0;
6139 }
6140 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
6141 
6142 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
6143 {
6144 	struct net_device *dev = seq->private;
6145 	struct stmmac_priv *priv = netdev_priv(dev);
6146 
6147 	if (!priv->hw_cap_support) {
6148 		seq_printf(seq, "DMA HW features not supported\n");
6149 		return 0;
6150 	}
6151 
6152 	seq_printf(seq, "==============================\n");
6153 	seq_printf(seq, "\tDMA HW features\n");
6154 	seq_printf(seq, "==============================\n");
6155 
6156 	seq_printf(seq, "\t10/100 Mbps: %s\n",
6157 		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
6158 	seq_printf(seq, "\t1000 Mbps: %s\n",
6159 		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
6160 	seq_printf(seq, "\tHalf duplex: %s\n",
6161 		   (priv->dma_cap.half_duplex) ? "Y" : "N");
6162 	seq_printf(seq, "\tHash Filter: %s\n",
6163 		   (priv->dma_cap.hash_filter) ? "Y" : "N");
6164 	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
6165 		   (priv->dma_cap.multi_addr) ? "Y" : "N");
6166 	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
6167 		   (priv->dma_cap.pcs) ? "Y" : "N");
6168 	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
6169 		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
6170 	seq_printf(seq, "\tPMT Remote wake up: %s\n",
6171 		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
6172 	seq_printf(seq, "\tPMT Magic Frame: %s\n",
6173 		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
6174 	seq_printf(seq, "\tRMON module: %s\n",
6175 		   (priv->dma_cap.rmon) ? "Y" : "N");
6176 	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
6177 		   (priv->dma_cap.time_stamp) ? "Y" : "N");
6178 	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
6179 		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
6180 	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
6181 		   (priv->dma_cap.eee) ? "Y" : "N");
6182 	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
6183 	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
6184 		   (priv->dma_cap.tx_coe) ? "Y" : "N");
6185 	if (priv->synopsys_id >= DWMAC_CORE_4_00) {
6186 		seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
6187 			   (priv->dma_cap.rx_coe) ? "Y" : "N");
6188 	} else {
6189 		seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
6190 			   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
6191 		seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
6192 			   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
6193 	}
6194 	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
6195 		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
6196 	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
6197 		   priv->dma_cap.number_rx_channel);
6198 	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
6199 		   priv->dma_cap.number_tx_channel);
6200 	seq_printf(seq, "\tNumber of Additional RX queues: %d\n",
6201 		   priv->dma_cap.number_rx_queues);
6202 	seq_printf(seq, "\tNumber of Additional TX queues: %d\n",
6203 		   priv->dma_cap.number_tx_queues);
6204 	seq_printf(seq, "\tEnhanced descriptors: %s\n",
6205 		   (priv->dma_cap.enh_desc) ? "Y" : "N");
6206 	seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size);
6207 	seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size);
6208 	seq_printf(seq, "\tHash Table Size: %d\n", priv->dma_cap.hash_tb_sz);
6209 	seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N");
6210 	seq_printf(seq, "\tNumber of PPS Outputs: %d\n",
6211 		   priv->dma_cap.pps_out_num);
6212 	seq_printf(seq, "\tSafety Features: %s\n",
6213 		   priv->dma_cap.asp ? "Y" : "N");
6214 	seq_printf(seq, "\tFlexible RX Parser: %s\n",
6215 		   priv->dma_cap.frpsel ? "Y" : "N");
6216 	seq_printf(seq, "\tEnhanced Addressing: %d\n",
6217 		   priv->dma_cap.host_dma_width);
6218 	seq_printf(seq, "\tReceive Side Scaling: %s\n",
6219 		   priv->dma_cap.rssen ? "Y" : "N");
6220 	seq_printf(seq, "\tVLAN Hash Filtering: %s\n",
6221 		   priv->dma_cap.vlhash ? "Y" : "N");
6222 	seq_printf(seq, "\tSplit Header: %s\n",
6223 		   priv->dma_cap.sphen ? "Y" : "N");
6224 	seq_printf(seq, "\tVLAN TX Insertion: %s\n",
6225 		   priv->dma_cap.vlins ? "Y" : "N");
6226 	seq_printf(seq, "\tDouble VLAN: %s\n",
6227 		   priv->dma_cap.dvlan ? "Y" : "N");
6228 	seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n",
6229 		   priv->dma_cap.l3l4fnum);
6230 	seq_printf(seq, "\tARP Offloading: %s\n",
6231 		   priv->dma_cap.arpoffsel ? "Y" : "N");
6232 	seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n",
6233 		   priv->dma_cap.estsel ? "Y" : "N");
6234 	seq_printf(seq, "\tFrame Preemption (FPE): %s\n",
6235 		   priv->dma_cap.fpesel ? "Y" : "N");
6236 	seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n",
6237 		   priv->dma_cap.tbssel ? "Y" : "N");
6238 	return 0;
6239 }
6240 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
6241 
6242 /* Use network device events to rename debugfs file entries.
6243  */
6244 static int stmmac_device_event(struct notifier_block *unused,
6245 			       unsigned long event, void *ptr)
6246 {
6247 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
6248 	struct stmmac_priv *priv = netdev_priv(dev);
6249 
6250 	if (dev->netdev_ops != &stmmac_netdev_ops)
6251 		goto done;
6252 
6253 	switch (event) {
6254 	case NETDEV_CHANGENAME:
6255 		if (priv->dbgfs_dir)
6256 			priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir,
6257 							 priv->dbgfs_dir,
6258 							 stmmac_fs_dir,
6259 							 dev->name);
6260 		break;
6261 	}
6262 done:
6263 	return NOTIFY_DONE;
6264 }
6265 
6266 static struct notifier_block stmmac_notifier = {
6267 	.notifier_call = stmmac_device_event,
6268 };
6269 
6270 static void stmmac_init_fs(struct net_device *dev)
6271 {
6272 	struct stmmac_priv *priv = netdev_priv(dev);
6273 
6274 	rtnl_lock();
6275 
6276 	/* Create per netdev entries */
6277 	priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
6278 
6279 	/* Entry to report DMA RX/TX rings */
6280 	debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev,
6281 			    &stmmac_rings_status_fops);
6282 
6283 	/* Entry to report the DMA HW features */
6284 	debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev,
6285 			    &stmmac_dma_cap_fops);
6286 
6287 	rtnl_unlock();
6288 }
6289 
6290 static void stmmac_exit_fs(struct net_device *dev)
6291 {
6292 	struct stmmac_priv *priv = netdev_priv(dev);
6293 
6294 	debugfs_remove_recursive(priv->dbgfs_dir);
6295 }
6296 #endif /* CONFIG_DEBUG_FS */
6297 
6298 static u32 stmmac_vid_crc32_le(__le16 vid_le)
6299 {
6300 	unsigned char *data = (unsigned char *)&vid_le;
6301 	unsigned char data_byte = 0;
6302 	u32 crc = ~0x0;
6303 	u32 temp = 0;
6304 	int i, bits;
6305 
6306 	bits = get_bitmask_order(VLAN_VID_MASK);
6307 	for (i = 0; i < bits; i++) {
6308 		if ((i % 8) == 0)
6309 			data_byte = data[i / 8];
6310 
6311 		temp = ((crc & 1) ^ data_byte) & 1;
6312 		crc >>= 1;
6313 		data_byte >>= 1;
6314 
6315 		if (temp)
6316 			crc ^= 0xedb88320;
6317 	}
6318 
6319 	return crc;
6320 }
6321 
6322 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double)
6323 {
6324 	u32 crc, hash = 0;
6325 	__le16 pmatch = 0;
6326 	int count = 0;
6327 	u16 vid = 0;
6328 
6329 	for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
6330 		__le16 vid_le = cpu_to_le16(vid);
6331 		crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28;
6332 		hash |= (1 << crc);
6333 		count++;
6334 	}
6335 
6336 	if (!priv->dma_cap.vlhash) {
6337 		if (count > 2) /* VID = 0 always passes filter */
6338 			return -EOPNOTSUPP;
6339 
6340 		pmatch = cpu_to_le16(vid);
6341 		hash = 0;
6342 	}
6343 
6344 	return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double);
6345 }
6346 
6347 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
6348 {
6349 	struct stmmac_priv *priv = netdev_priv(ndev);
6350 	bool is_double = false;
6351 	int ret;
6352 
6353 	if (be16_to_cpu(proto) == ETH_P_8021AD)
6354 		is_double = true;
6355 
6356 	set_bit(vid, priv->active_vlans);
6357 	ret = stmmac_vlan_update(priv, is_double);
6358 	if (ret) {
6359 		clear_bit(vid, priv->active_vlans);
6360 		return ret;
6361 	}
6362 
6363 	if (priv->hw->num_vlan) {
6364 		ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6365 		if (ret)
6366 			return ret;
6367 	}
6368 
6369 	return 0;
6370 }
6371 
6372 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
6373 {
6374 	struct stmmac_priv *priv = netdev_priv(ndev);
6375 	bool is_double = false;
6376 	int ret;
6377 
6378 	ret = pm_runtime_resume_and_get(priv->device);
6379 	if (ret < 0)
6380 		return ret;
6381 
6382 	if (be16_to_cpu(proto) == ETH_P_8021AD)
6383 		is_double = true;
6384 
6385 	clear_bit(vid, priv->active_vlans);
6386 
6387 	if (priv->hw->num_vlan) {
6388 		ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6389 		if (ret)
6390 			goto del_vlan_error;
6391 	}
6392 
6393 	ret = stmmac_vlan_update(priv, is_double);
6394 
6395 del_vlan_error:
6396 	pm_runtime_put(priv->device);
6397 
6398 	return ret;
6399 }
6400 
6401 static int stmmac_bpf(struct net_device *dev, struct netdev_bpf *bpf)
6402 {
6403 	struct stmmac_priv *priv = netdev_priv(dev);
6404 
6405 	switch (bpf->command) {
6406 	case XDP_SETUP_PROG:
6407 		return stmmac_xdp_set_prog(priv, bpf->prog, bpf->extack);
6408 	case XDP_SETUP_XSK_POOL:
6409 		return stmmac_xdp_setup_pool(priv, bpf->xsk.pool,
6410 					     bpf->xsk.queue_id);
6411 	default:
6412 		return -EOPNOTSUPP;
6413 	}
6414 }
6415 
6416 static int stmmac_xdp_xmit(struct net_device *dev, int num_frames,
6417 			   struct xdp_frame **frames, u32 flags)
6418 {
6419 	struct stmmac_priv *priv = netdev_priv(dev);
6420 	int cpu = smp_processor_id();
6421 	struct netdev_queue *nq;
6422 	int i, nxmit = 0;
6423 	int queue;
6424 
6425 	if (unlikely(test_bit(STMMAC_DOWN, &priv->state)))
6426 		return -ENETDOWN;
6427 
6428 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
6429 		return -EINVAL;
6430 
6431 	queue = stmmac_xdp_get_tx_queue(priv, cpu);
6432 	nq = netdev_get_tx_queue(priv->dev, queue);
6433 
6434 	__netif_tx_lock(nq, cpu);
6435 	/* Avoids TX time-out as we are sharing with slow path */
6436 	txq_trans_cond_update(nq);
6437 
6438 	for (i = 0; i < num_frames; i++) {
6439 		int res;
6440 
6441 		res = stmmac_xdp_xmit_xdpf(priv, queue, frames[i], true);
6442 		if (res == STMMAC_XDP_CONSUMED)
6443 			break;
6444 
6445 		nxmit++;
6446 	}
6447 
6448 	if (flags & XDP_XMIT_FLUSH) {
6449 		stmmac_flush_tx_descriptors(priv, queue);
6450 		stmmac_tx_timer_arm(priv, queue);
6451 	}
6452 
6453 	__netif_tx_unlock(nq);
6454 
6455 	return nxmit;
6456 }
6457 
6458 void stmmac_disable_rx_queue(struct stmmac_priv *priv, u32 queue)
6459 {
6460 	struct stmmac_channel *ch = &priv->channel[queue];
6461 	unsigned long flags;
6462 
6463 	spin_lock_irqsave(&ch->lock, flags);
6464 	stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6465 	spin_unlock_irqrestore(&ch->lock, flags);
6466 
6467 	stmmac_stop_rx_dma(priv, queue);
6468 	__free_dma_rx_desc_resources(priv, &priv->dma_conf, queue);
6469 }
6470 
6471 void stmmac_enable_rx_queue(struct stmmac_priv *priv, u32 queue)
6472 {
6473 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
6474 	struct stmmac_channel *ch = &priv->channel[queue];
6475 	unsigned long flags;
6476 	u32 buf_size;
6477 	int ret;
6478 
6479 	ret = __alloc_dma_rx_desc_resources(priv, &priv->dma_conf, queue);
6480 	if (ret) {
6481 		netdev_err(priv->dev, "Failed to alloc RX desc.\n");
6482 		return;
6483 	}
6484 
6485 	ret = __init_dma_rx_desc_rings(priv, &priv->dma_conf, queue, GFP_KERNEL);
6486 	if (ret) {
6487 		__free_dma_rx_desc_resources(priv, &priv->dma_conf, queue);
6488 		netdev_err(priv->dev, "Failed to init RX desc.\n");
6489 		return;
6490 	}
6491 
6492 	stmmac_reset_rx_queue(priv, queue);
6493 	stmmac_clear_rx_descriptors(priv, &priv->dma_conf, queue);
6494 
6495 	stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6496 			    rx_q->dma_rx_phy, rx_q->queue_index);
6497 
6498 	rx_q->rx_tail_addr = rx_q->dma_rx_phy + (rx_q->buf_alloc_num *
6499 			     sizeof(struct dma_desc));
6500 	stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
6501 			       rx_q->rx_tail_addr, rx_q->queue_index);
6502 
6503 	if (rx_q->xsk_pool && rx_q->buf_alloc_num) {
6504 		buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
6505 		stmmac_set_dma_bfsize(priv, priv->ioaddr,
6506 				      buf_size,
6507 				      rx_q->queue_index);
6508 	} else {
6509 		stmmac_set_dma_bfsize(priv, priv->ioaddr,
6510 				      priv->dma_conf.dma_buf_sz,
6511 				      rx_q->queue_index);
6512 	}
6513 
6514 	stmmac_start_rx_dma(priv, queue);
6515 
6516 	spin_lock_irqsave(&ch->lock, flags);
6517 	stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6518 	spin_unlock_irqrestore(&ch->lock, flags);
6519 }
6520 
6521 void stmmac_disable_tx_queue(struct stmmac_priv *priv, u32 queue)
6522 {
6523 	struct stmmac_channel *ch = &priv->channel[queue];
6524 	unsigned long flags;
6525 
6526 	spin_lock_irqsave(&ch->lock, flags);
6527 	stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6528 	spin_unlock_irqrestore(&ch->lock, flags);
6529 
6530 	stmmac_stop_tx_dma(priv, queue);
6531 	__free_dma_tx_desc_resources(priv, &priv->dma_conf, queue);
6532 }
6533 
6534 void stmmac_enable_tx_queue(struct stmmac_priv *priv, u32 queue)
6535 {
6536 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
6537 	struct stmmac_channel *ch = &priv->channel[queue];
6538 	unsigned long flags;
6539 	int ret;
6540 
6541 	ret = __alloc_dma_tx_desc_resources(priv, &priv->dma_conf, queue);
6542 	if (ret) {
6543 		netdev_err(priv->dev, "Failed to alloc TX desc.\n");
6544 		return;
6545 	}
6546 
6547 	ret = __init_dma_tx_desc_rings(priv,  &priv->dma_conf, queue);
6548 	if (ret) {
6549 		__free_dma_tx_desc_resources(priv, &priv->dma_conf, queue);
6550 		netdev_err(priv->dev, "Failed to init TX desc.\n");
6551 		return;
6552 	}
6553 
6554 	stmmac_reset_tx_queue(priv, queue);
6555 	stmmac_clear_tx_descriptors(priv, &priv->dma_conf, queue);
6556 
6557 	stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6558 			    tx_q->dma_tx_phy, tx_q->queue_index);
6559 
6560 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
6561 		stmmac_enable_tbs(priv, priv->ioaddr, 1, tx_q->queue_index);
6562 
6563 	tx_q->tx_tail_addr = tx_q->dma_tx_phy;
6564 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
6565 			       tx_q->tx_tail_addr, tx_q->queue_index);
6566 
6567 	stmmac_start_tx_dma(priv, queue);
6568 
6569 	spin_lock_irqsave(&ch->lock, flags);
6570 	stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6571 	spin_unlock_irqrestore(&ch->lock, flags);
6572 }
6573 
6574 void stmmac_xdp_release(struct net_device *dev)
6575 {
6576 	struct stmmac_priv *priv = netdev_priv(dev);
6577 	u32 chan;
6578 
6579 	/* Ensure tx function is not running */
6580 	netif_tx_disable(dev);
6581 
6582 	/* Disable NAPI process */
6583 	stmmac_disable_all_queues(priv);
6584 
6585 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
6586 		hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
6587 
6588 	/* Free the IRQ lines */
6589 	stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0);
6590 
6591 	/* Stop TX/RX DMA channels */
6592 	stmmac_stop_all_dma(priv);
6593 
6594 	/* Release and free the Rx/Tx resources */
6595 	free_dma_desc_resources(priv, &priv->dma_conf);
6596 
6597 	/* Disable the MAC Rx/Tx */
6598 	stmmac_mac_set(priv, priv->ioaddr, false);
6599 
6600 	/* set trans_start so we don't get spurious
6601 	 * watchdogs during reset
6602 	 */
6603 	netif_trans_update(dev);
6604 	netif_carrier_off(dev);
6605 }
6606 
6607 int stmmac_xdp_open(struct net_device *dev)
6608 {
6609 	struct stmmac_priv *priv = netdev_priv(dev);
6610 	u32 rx_cnt = priv->plat->rx_queues_to_use;
6611 	u32 tx_cnt = priv->plat->tx_queues_to_use;
6612 	u32 dma_csr_ch = max(rx_cnt, tx_cnt);
6613 	struct stmmac_rx_queue *rx_q;
6614 	struct stmmac_tx_queue *tx_q;
6615 	u32 buf_size;
6616 	bool sph_en;
6617 	u32 chan;
6618 	int ret;
6619 
6620 	ret = alloc_dma_desc_resources(priv, &priv->dma_conf);
6621 	if (ret < 0) {
6622 		netdev_err(dev, "%s: DMA descriptors allocation failed\n",
6623 			   __func__);
6624 		goto dma_desc_error;
6625 	}
6626 
6627 	ret = init_dma_desc_rings(dev, &priv->dma_conf, GFP_KERNEL);
6628 	if (ret < 0) {
6629 		netdev_err(dev, "%s: DMA descriptors initialization failed\n",
6630 			   __func__);
6631 		goto init_error;
6632 	}
6633 
6634 	stmmac_reset_queues_param(priv);
6635 
6636 	/* DMA CSR Channel configuration */
6637 	for (chan = 0; chan < dma_csr_ch; chan++) {
6638 		stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
6639 		stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
6640 	}
6641 
6642 	/* Adjust Split header */
6643 	sph_en = (priv->hw->rx_csum > 0) && priv->sph;
6644 
6645 	/* DMA RX Channel Configuration */
6646 	for (chan = 0; chan < rx_cnt; chan++) {
6647 		rx_q = &priv->dma_conf.rx_queue[chan];
6648 
6649 		stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6650 				    rx_q->dma_rx_phy, chan);
6651 
6652 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
6653 				     (rx_q->buf_alloc_num *
6654 				      sizeof(struct dma_desc));
6655 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
6656 				       rx_q->rx_tail_addr, chan);
6657 
6658 		if (rx_q->xsk_pool && rx_q->buf_alloc_num) {
6659 			buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
6660 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
6661 					      buf_size,
6662 					      rx_q->queue_index);
6663 		} else {
6664 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
6665 					      priv->dma_conf.dma_buf_sz,
6666 					      rx_q->queue_index);
6667 		}
6668 
6669 		stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
6670 	}
6671 
6672 	/* DMA TX Channel Configuration */
6673 	for (chan = 0; chan < tx_cnt; chan++) {
6674 		tx_q = &priv->dma_conf.tx_queue[chan];
6675 
6676 		stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6677 				    tx_q->dma_tx_phy, chan);
6678 
6679 		tx_q->tx_tail_addr = tx_q->dma_tx_phy;
6680 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
6681 				       tx_q->tx_tail_addr, chan);
6682 
6683 		hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6684 		tx_q->txtimer.function = stmmac_tx_timer;
6685 	}
6686 
6687 	/* Enable the MAC Rx/Tx */
6688 	stmmac_mac_set(priv, priv->ioaddr, true);
6689 
6690 	/* Start Rx & Tx DMA Channels */
6691 	stmmac_start_all_dma(priv);
6692 
6693 	ret = stmmac_request_irq(dev);
6694 	if (ret)
6695 		goto irq_error;
6696 
6697 	/* Enable NAPI process*/
6698 	stmmac_enable_all_queues(priv);
6699 	netif_carrier_on(dev);
6700 	netif_tx_start_all_queues(dev);
6701 	stmmac_enable_all_dma_irq(priv);
6702 
6703 	return 0;
6704 
6705 irq_error:
6706 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
6707 		hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
6708 
6709 	stmmac_hw_teardown(dev);
6710 init_error:
6711 	free_dma_desc_resources(priv, &priv->dma_conf);
6712 dma_desc_error:
6713 	return ret;
6714 }
6715 
6716 int stmmac_xsk_wakeup(struct net_device *dev, u32 queue, u32 flags)
6717 {
6718 	struct stmmac_priv *priv = netdev_priv(dev);
6719 	struct stmmac_rx_queue *rx_q;
6720 	struct stmmac_tx_queue *tx_q;
6721 	struct stmmac_channel *ch;
6722 
6723 	if (test_bit(STMMAC_DOWN, &priv->state) ||
6724 	    !netif_carrier_ok(priv->dev))
6725 		return -ENETDOWN;
6726 
6727 	if (!stmmac_xdp_is_enabled(priv))
6728 		return -EINVAL;
6729 
6730 	if (queue >= priv->plat->rx_queues_to_use ||
6731 	    queue >= priv->plat->tx_queues_to_use)
6732 		return -EINVAL;
6733 
6734 	rx_q = &priv->dma_conf.rx_queue[queue];
6735 	tx_q = &priv->dma_conf.tx_queue[queue];
6736 	ch = &priv->channel[queue];
6737 
6738 	if (!rx_q->xsk_pool && !tx_q->xsk_pool)
6739 		return -EINVAL;
6740 
6741 	if (!napi_if_scheduled_mark_missed(&ch->rxtx_napi)) {
6742 		/* EQoS does not have per-DMA channel SW interrupt,
6743 		 * so we schedule RX Napi straight-away.
6744 		 */
6745 		if (likely(napi_schedule_prep(&ch->rxtx_napi)))
6746 			__napi_schedule(&ch->rxtx_napi);
6747 	}
6748 
6749 	return 0;
6750 }
6751 
6752 static const struct net_device_ops stmmac_netdev_ops = {
6753 	.ndo_open = stmmac_open,
6754 	.ndo_start_xmit = stmmac_xmit,
6755 	.ndo_stop = stmmac_release,
6756 	.ndo_change_mtu = stmmac_change_mtu,
6757 	.ndo_fix_features = stmmac_fix_features,
6758 	.ndo_set_features = stmmac_set_features,
6759 	.ndo_set_rx_mode = stmmac_set_rx_mode,
6760 	.ndo_tx_timeout = stmmac_tx_timeout,
6761 	.ndo_eth_ioctl = stmmac_ioctl,
6762 	.ndo_setup_tc = stmmac_setup_tc,
6763 	.ndo_select_queue = stmmac_select_queue,
6764 #ifdef CONFIG_NET_POLL_CONTROLLER
6765 	.ndo_poll_controller = stmmac_poll_controller,
6766 #endif
6767 	.ndo_set_mac_address = stmmac_set_mac_address,
6768 	.ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid,
6769 	.ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid,
6770 	.ndo_bpf = stmmac_bpf,
6771 	.ndo_xdp_xmit = stmmac_xdp_xmit,
6772 	.ndo_xsk_wakeup = stmmac_xsk_wakeup,
6773 };
6774 
6775 static void stmmac_reset_subtask(struct stmmac_priv *priv)
6776 {
6777 	if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
6778 		return;
6779 	if (test_bit(STMMAC_DOWN, &priv->state))
6780 		return;
6781 
6782 	netdev_err(priv->dev, "Reset adapter.\n");
6783 
6784 	rtnl_lock();
6785 	netif_trans_update(priv->dev);
6786 	while (test_and_set_bit(STMMAC_RESETING, &priv->state))
6787 		usleep_range(1000, 2000);
6788 
6789 	set_bit(STMMAC_DOWN, &priv->state);
6790 	dev_close(priv->dev);
6791 	dev_open(priv->dev, NULL);
6792 	clear_bit(STMMAC_DOWN, &priv->state);
6793 	clear_bit(STMMAC_RESETING, &priv->state);
6794 	rtnl_unlock();
6795 }
6796 
6797 static void stmmac_service_task(struct work_struct *work)
6798 {
6799 	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
6800 			service_task);
6801 
6802 	stmmac_reset_subtask(priv);
6803 	clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
6804 }
6805 
6806 /**
6807  *  stmmac_hw_init - Init the MAC device
6808  *  @priv: driver private structure
6809  *  Description: this function is to configure the MAC device according to
6810  *  some platform parameters or the HW capability register. It prepares the
6811  *  driver to use either ring or chain modes and to setup either enhanced or
6812  *  normal descriptors.
6813  */
6814 static int stmmac_hw_init(struct stmmac_priv *priv)
6815 {
6816 	int ret;
6817 
6818 	/* dwmac-sun8i only work in chain mode */
6819 	if (priv->plat->has_sun8i)
6820 		chain_mode = 1;
6821 	priv->chain_mode = chain_mode;
6822 
6823 	/* Initialize HW Interface */
6824 	ret = stmmac_hwif_init(priv);
6825 	if (ret)
6826 		return ret;
6827 
6828 	/* Get the HW capability (new GMAC newer than 3.50a) */
6829 	priv->hw_cap_support = stmmac_get_hw_features(priv);
6830 	if (priv->hw_cap_support) {
6831 		dev_info(priv->device, "DMA HW capability register supported\n");
6832 
6833 		/* We can override some gmac/dma configuration fields: e.g.
6834 		 * enh_desc, tx_coe (e.g. that are passed through the
6835 		 * platform) with the values from the HW capability
6836 		 * register (if supported).
6837 		 */
6838 		priv->plat->enh_desc = priv->dma_cap.enh_desc;
6839 		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up &&
6840 				!priv->plat->use_phy_wol;
6841 		priv->hw->pmt = priv->plat->pmt;
6842 		if (priv->dma_cap.hash_tb_sz) {
6843 			priv->hw->multicast_filter_bins =
6844 					(BIT(priv->dma_cap.hash_tb_sz) << 5);
6845 			priv->hw->mcast_bits_log2 =
6846 					ilog2(priv->hw->multicast_filter_bins);
6847 		}
6848 
6849 		/* TXCOE doesn't work in thresh DMA mode */
6850 		if (priv->plat->force_thresh_dma_mode)
6851 			priv->plat->tx_coe = 0;
6852 		else
6853 			priv->plat->tx_coe = priv->dma_cap.tx_coe;
6854 
6855 		/* In case of GMAC4 rx_coe is from HW cap register. */
6856 		priv->plat->rx_coe = priv->dma_cap.rx_coe;
6857 
6858 		if (priv->dma_cap.rx_coe_type2)
6859 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
6860 		else if (priv->dma_cap.rx_coe_type1)
6861 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
6862 
6863 	} else {
6864 		dev_info(priv->device, "No HW DMA feature register supported\n");
6865 	}
6866 
6867 	if (priv->plat->rx_coe) {
6868 		priv->hw->rx_csum = priv->plat->rx_coe;
6869 		dev_info(priv->device, "RX Checksum Offload Engine supported\n");
6870 		if (priv->synopsys_id < DWMAC_CORE_4_00)
6871 			dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
6872 	}
6873 	if (priv->plat->tx_coe)
6874 		dev_info(priv->device, "TX Checksum insertion supported\n");
6875 
6876 	if (priv->plat->pmt) {
6877 		dev_info(priv->device, "Wake-Up On Lan supported\n");
6878 		device_set_wakeup_capable(priv->device, 1);
6879 	}
6880 
6881 	if (priv->dma_cap.tsoen)
6882 		dev_info(priv->device, "TSO supported\n");
6883 
6884 	priv->hw->vlan_fail_q_en = priv->plat->vlan_fail_q_en;
6885 	priv->hw->vlan_fail_q = priv->plat->vlan_fail_q;
6886 
6887 	/* Run HW quirks, if any */
6888 	if (priv->hwif_quirks) {
6889 		ret = priv->hwif_quirks(priv);
6890 		if (ret)
6891 			return ret;
6892 	}
6893 
6894 	/* Rx Watchdog is available in the COREs newer than the 3.40.
6895 	 * In some case, for example on bugged HW this feature
6896 	 * has to be disable and this can be done by passing the
6897 	 * riwt_off field from the platform.
6898 	 */
6899 	if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
6900 	    (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
6901 		priv->use_riwt = 1;
6902 		dev_info(priv->device,
6903 			 "Enable RX Mitigation via HW Watchdog Timer\n");
6904 	}
6905 
6906 	return 0;
6907 }
6908 
6909 static void stmmac_napi_add(struct net_device *dev)
6910 {
6911 	struct stmmac_priv *priv = netdev_priv(dev);
6912 	u32 queue, maxq;
6913 
6914 	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
6915 
6916 	for (queue = 0; queue < maxq; queue++) {
6917 		struct stmmac_channel *ch = &priv->channel[queue];
6918 
6919 		ch->priv_data = priv;
6920 		ch->index = queue;
6921 		spin_lock_init(&ch->lock);
6922 
6923 		if (queue < priv->plat->rx_queues_to_use) {
6924 			netif_napi_add(dev, &ch->rx_napi, stmmac_napi_poll_rx);
6925 		}
6926 		if (queue < priv->plat->tx_queues_to_use) {
6927 			netif_napi_add_tx(dev, &ch->tx_napi,
6928 					  stmmac_napi_poll_tx);
6929 		}
6930 		if (queue < priv->plat->rx_queues_to_use &&
6931 		    queue < priv->plat->tx_queues_to_use) {
6932 			netif_napi_add(dev, &ch->rxtx_napi,
6933 				       stmmac_napi_poll_rxtx);
6934 		}
6935 	}
6936 }
6937 
6938 static void stmmac_napi_del(struct net_device *dev)
6939 {
6940 	struct stmmac_priv *priv = netdev_priv(dev);
6941 	u32 queue, maxq;
6942 
6943 	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
6944 
6945 	for (queue = 0; queue < maxq; queue++) {
6946 		struct stmmac_channel *ch = &priv->channel[queue];
6947 
6948 		if (queue < priv->plat->rx_queues_to_use)
6949 			netif_napi_del(&ch->rx_napi);
6950 		if (queue < priv->plat->tx_queues_to_use)
6951 			netif_napi_del(&ch->tx_napi);
6952 		if (queue < priv->plat->rx_queues_to_use &&
6953 		    queue < priv->plat->tx_queues_to_use) {
6954 			netif_napi_del(&ch->rxtx_napi);
6955 		}
6956 	}
6957 }
6958 
6959 int stmmac_reinit_queues(struct net_device *dev, u32 rx_cnt, u32 tx_cnt)
6960 {
6961 	struct stmmac_priv *priv = netdev_priv(dev);
6962 	int ret = 0, i;
6963 
6964 	if (netif_running(dev))
6965 		stmmac_release(dev);
6966 
6967 	stmmac_napi_del(dev);
6968 
6969 	priv->plat->rx_queues_to_use = rx_cnt;
6970 	priv->plat->tx_queues_to_use = tx_cnt;
6971 	if (!netif_is_rxfh_configured(dev))
6972 		for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
6973 			priv->rss.table[i] = ethtool_rxfh_indir_default(i,
6974 									rx_cnt);
6975 
6976 	stmmac_napi_add(dev);
6977 
6978 	if (netif_running(dev))
6979 		ret = stmmac_open(dev);
6980 
6981 	return ret;
6982 }
6983 
6984 int stmmac_reinit_ringparam(struct net_device *dev, u32 rx_size, u32 tx_size)
6985 {
6986 	struct stmmac_priv *priv = netdev_priv(dev);
6987 	int ret = 0;
6988 
6989 	if (netif_running(dev))
6990 		stmmac_release(dev);
6991 
6992 	priv->dma_conf.dma_rx_size = rx_size;
6993 	priv->dma_conf.dma_tx_size = tx_size;
6994 
6995 	if (netif_running(dev))
6996 		ret = stmmac_open(dev);
6997 
6998 	return ret;
6999 }
7000 
7001 #define SEND_VERIFY_MPAKCET_FMT "Send Verify mPacket lo_state=%d lp_state=%d\n"
7002 static void stmmac_fpe_lp_task(struct work_struct *work)
7003 {
7004 	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
7005 						fpe_task);
7006 	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
7007 	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
7008 	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
7009 	bool *hs_enable = &fpe_cfg->hs_enable;
7010 	bool *enable = &fpe_cfg->enable;
7011 	int retries = 20;
7012 
7013 	while (retries-- > 0) {
7014 		/* Bail out immediately if FPE handshake is OFF */
7015 		if (*lo_state == FPE_STATE_OFF || !*hs_enable)
7016 			break;
7017 
7018 		if (*lo_state == FPE_STATE_ENTERING_ON &&
7019 		    *lp_state == FPE_STATE_ENTERING_ON) {
7020 			stmmac_fpe_configure(priv, priv->ioaddr,
7021 					     priv->plat->tx_queues_to_use,
7022 					     priv->plat->rx_queues_to_use,
7023 					     *enable);
7024 
7025 			netdev_info(priv->dev, "configured FPE\n");
7026 
7027 			*lo_state = FPE_STATE_ON;
7028 			*lp_state = FPE_STATE_ON;
7029 			netdev_info(priv->dev, "!!! BOTH FPE stations ON\n");
7030 			break;
7031 		}
7032 
7033 		if ((*lo_state == FPE_STATE_CAPABLE ||
7034 		     *lo_state == FPE_STATE_ENTERING_ON) &&
7035 		     *lp_state != FPE_STATE_ON) {
7036 			netdev_info(priv->dev, SEND_VERIFY_MPAKCET_FMT,
7037 				    *lo_state, *lp_state);
7038 			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
7039 						MPACKET_VERIFY);
7040 		}
7041 		/* Sleep then retry */
7042 		msleep(500);
7043 	}
7044 
7045 	clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
7046 }
7047 
7048 void stmmac_fpe_handshake(struct stmmac_priv *priv, bool enable)
7049 {
7050 	if (priv->plat->fpe_cfg->hs_enable != enable) {
7051 		if (enable) {
7052 			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
7053 						MPACKET_VERIFY);
7054 		} else {
7055 			priv->plat->fpe_cfg->lo_fpe_state = FPE_STATE_OFF;
7056 			priv->plat->fpe_cfg->lp_fpe_state = FPE_STATE_OFF;
7057 		}
7058 
7059 		priv->plat->fpe_cfg->hs_enable = enable;
7060 	}
7061 }
7062 
7063 /**
7064  * stmmac_dvr_probe
7065  * @device: device pointer
7066  * @plat_dat: platform data pointer
7067  * @res: stmmac resource pointer
7068  * Description: this is the main probe function used to
7069  * call the alloc_etherdev, allocate the priv structure.
7070  * Return:
7071  * returns 0 on success, otherwise errno.
7072  */
7073 int stmmac_dvr_probe(struct device *device,
7074 		     struct plat_stmmacenet_data *plat_dat,
7075 		     struct stmmac_resources *res)
7076 {
7077 	struct net_device *ndev = NULL;
7078 	struct stmmac_priv *priv;
7079 	u32 rxq;
7080 	int i, ret = 0;
7081 
7082 	ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
7083 				       MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
7084 	if (!ndev)
7085 		return -ENOMEM;
7086 
7087 	SET_NETDEV_DEV(ndev, device);
7088 
7089 	priv = netdev_priv(ndev);
7090 	priv->device = device;
7091 	priv->dev = ndev;
7092 
7093 	stmmac_set_ethtool_ops(ndev);
7094 	priv->pause = pause;
7095 	priv->plat = plat_dat;
7096 	priv->ioaddr = res->addr;
7097 	priv->dev->base_addr = (unsigned long)res->addr;
7098 	priv->plat->dma_cfg->multi_msi_en = priv->plat->multi_msi_en;
7099 
7100 	priv->dev->irq = res->irq;
7101 	priv->wol_irq = res->wol_irq;
7102 	priv->lpi_irq = res->lpi_irq;
7103 	priv->sfty_ce_irq = res->sfty_ce_irq;
7104 	priv->sfty_ue_irq = res->sfty_ue_irq;
7105 	for (i = 0; i < MTL_MAX_RX_QUEUES; i++)
7106 		priv->rx_irq[i] = res->rx_irq[i];
7107 	for (i = 0; i < MTL_MAX_TX_QUEUES; i++)
7108 		priv->tx_irq[i] = res->tx_irq[i];
7109 
7110 	if (!is_zero_ether_addr(res->mac))
7111 		eth_hw_addr_set(priv->dev, res->mac);
7112 
7113 	dev_set_drvdata(device, priv->dev);
7114 
7115 	/* Verify driver arguments */
7116 	stmmac_verify_args();
7117 
7118 	priv->af_xdp_zc_qps = bitmap_zalloc(MTL_MAX_TX_QUEUES, GFP_KERNEL);
7119 	if (!priv->af_xdp_zc_qps)
7120 		return -ENOMEM;
7121 
7122 	/* Allocate workqueue */
7123 	priv->wq = create_singlethread_workqueue("stmmac_wq");
7124 	if (!priv->wq) {
7125 		dev_err(priv->device, "failed to create workqueue\n");
7126 		ret = -ENOMEM;
7127 		goto error_wq_init;
7128 	}
7129 
7130 	INIT_WORK(&priv->service_task, stmmac_service_task);
7131 
7132 	/* Initialize Link Partner FPE workqueue */
7133 	INIT_WORK(&priv->fpe_task, stmmac_fpe_lp_task);
7134 
7135 	/* Override with kernel parameters if supplied XXX CRS XXX
7136 	 * this needs to have multiple instances
7137 	 */
7138 	if ((phyaddr >= 0) && (phyaddr <= 31))
7139 		priv->plat->phy_addr = phyaddr;
7140 
7141 	if (priv->plat->stmmac_rst) {
7142 		ret = reset_control_assert(priv->plat->stmmac_rst);
7143 		reset_control_deassert(priv->plat->stmmac_rst);
7144 		/* Some reset controllers have only reset callback instead of
7145 		 * assert + deassert callbacks pair.
7146 		 */
7147 		if (ret == -ENOTSUPP)
7148 			reset_control_reset(priv->plat->stmmac_rst);
7149 	}
7150 
7151 	ret = reset_control_deassert(priv->plat->stmmac_ahb_rst);
7152 	if (ret == -ENOTSUPP)
7153 		dev_err(priv->device, "unable to bring out of ahb reset: %pe\n",
7154 			ERR_PTR(ret));
7155 
7156 	/* Init MAC and get the capabilities */
7157 	ret = stmmac_hw_init(priv);
7158 	if (ret)
7159 		goto error_hw_init;
7160 
7161 	/* Only DWMAC core version 5.20 onwards supports HW descriptor prefetch.
7162 	 */
7163 	if (priv->synopsys_id < DWMAC_CORE_5_20)
7164 		priv->plat->dma_cfg->dche = false;
7165 
7166 	stmmac_check_ether_addr(priv);
7167 
7168 	ndev->netdev_ops = &stmmac_netdev_ops;
7169 
7170 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
7171 			    NETIF_F_RXCSUM;
7172 	ndev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
7173 			     NETDEV_XDP_ACT_XSK_ZEROCOPY |
7174 			     NETDEV_XDP_ACT_NDO_XMIT;
7175 
7176 	ret = stmmac_tc_init(priv, priv);
7177 	if (!ret) {
7178 		ndev->hw_features |= NETIF_F_HW_TC;
7179 	}
7180 
7181 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
7182 		ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
7183 		if (priv->plat->has_gmac4)
7184 			ndev->hw_features |= NETIF_F_GSO_UDP_L4;
7185 		priv->tso = true;
7186 		dev_info(priv->device, "TSO feature enabled\n");
7187 	}
7188 
7189 	if (priv->dma_cap.sphen && !priv->plat->sph_disable) {
7190 		ndev->hw_features |= NETIF_F_GRO;
7191 		priv->sph_cap = true;
7192 		priv->sph = priv->sph_cap;
7193 		dev_info(priv->device, "SPH feature enabled\n");
7194 	}
7195 
7196 	/* Ideally our host DMA address width is the same as for the
7197 	 * device. However, it may differ and then we have to use our
7198 	 * host DMA width for allocation and the device DMA width for
7199 	 * register handling.
7200 	 */
7201 	if (priv->plat->host_dma_width)
7202 		priv->dma_cap.host_dma_width = priv->plat->host_dma_width;
7203 	else
7204 		priv->dma_cap.host_dma_width = priv->dma_cap.addr64;
7205 
7206 	if (priv->dma_cap.host_dma_width) {
7207 		ret = dma_set_mask_and_coherent(device,
7208 				DMA_BIT_MASK(priv->dma_cap.host_dma_width));
7209 		if (!ret) {
7210 			dev_info(priv->device, "Using %d/%d bits DMA host/device width\n",
7211 				 priv->dma_cap.host_dma_width, priv->dma_cap.addr64);
7212 
7213 			/*
7214 			 * If more than 32 bits can be addressed, make sure to
7215 			 * enable enhanced addressing mode.
7216 			 */
7217 			if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
7218 				priv->plat->dma_cfg->eame = true;
7219 		} else {
7220 			ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
7221 			if (ret) {
7222 				dev_err(priv->device, "Failed to set DMA Mask\n");
7223 				goto error_hw_init;
7224 			}
7225 
7226 			priv->dma_cap.host_dma_width = 32;
7227 		}
7228 	}
7229 
7230 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
7231 	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
7232 #ifdef STMMAC_VLAN_TAG_USED
7233 	/* Both mac100 and gmac support receive VLAN tag detection */
7234 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
7235 	if (priv->dma_cap.vlhash) {
7236 		ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7237 		ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER;
7238 	}
7239 	if (priv->dma_cap.vlins) {
7240 		ndev->features |= NETIF_F_HW_VLAN_CTAG_TX;
7241 		if (priv->dma_cap.dvlan)
7242 			ndev->features |= NETIF_F_HW_VLAN_STAG_TX;
7243 	}
7244 #endif
7245 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
7246 
7247 	/* Initialize RSS */
7248 	rxq = priv->plat->rx_queues_to_use;
7249 	netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key));
7250 	for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
7251 		priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq);
7252 
7253 	if (priv->dma_cap.rssen && priv->plat->rss_en)
7254 		ndev->features |= NETIF_F_RXHASH;
7255 
7256 	/* MTU range: 46 - hw-specific max */
7257 	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
7258 	if (priv->plat->has_xgmac)
7259 		ndev->max_mtu = XGMAC_JUMBO_LEN;
7260 	else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
7261 		ndev->max_mtu = JUMBO_LEN;
7262 	else
7263 		ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
7264 	/* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
7265 	 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
7266 	 */
7267 	if ((priv->plat->maxmtu < ndev->max_mtu) &&
7268 	    (priv->plat->maxmtu >= ndev->min_mtu))
7269 		ndev->max_mtu = priv->plat->maxmtu;
7270 	else if (priv->plat->maxmtu < ndev->min_mtu)
7271 		dev_warn(priv->device,
7272 			 "%s: warning: maxmtu having invalid value (%d)\n",
7273 			 __func__, priv->plat->maxmtu);
7274 
7275 	if (flow_ctrl)
7276 		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
7277 
7278 	/* Setup channels NAPI */
7279 	stmmac_napi_add(ndev);
7280 
7281 	mutex_init(&priv->lock);
7282 
7283 	/* If a specific clk_csr value is passed from the platform
7284 	 * this means that the CSR Clock Range selection cannot be
7285 	 * changed at run-time and it is fixed. Viceversa the driver'll try to
7286 	 * set the MDC clock dynamically according to the csr actual
7287 	 * clock input.
7288 	 */
7289 	if (priv->plat->clk_csr >= 0)
7290 		priv->clk_csr = priv->plat->clk_csr;
7291 	else
7292 		stmmac_clk_csr_set(priv);
7293 
7294 	stmmac_check_pcs_mode(priv);
7295 
7296 	pm_runtime_get_noresume(device);
7297 	pm_runtime_set_active(device);
7298 	if (!pm_runtime_enabled(device))
7299 		pm_runtime_enable(device);
7300 
7301 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
7302 	    priv->hw->pcs != STMMAC_PCS_RTBI) {
7303 		/* MDIO bus Registration */
7304 		ret = stmmac_mdio_register(ndev);
7305 		if (ret < 0) {
7306 			dev_err_probe(priv->device, ret,
7307 				      "%s: MDIO bus (id: %d) registration failed\n",
7308 				      __func__, priv->plat->bus_id);
7309 			goto error_mdio_register;
7310 		}
7311 	}
7312 
7313 	if (priv->plat->speed_mode_2500)
7314 		priv->plat->speed_mode_2500(ndev, priv->plat->bsp_priv);
7315 
7316 	if (priv->plat->mdio_bus_data && priv->plat->mdio_bus_data->has_xpcs) {
7317 		ret = stmmac_xpcs_setup(priv->mii);
7318 		if (ret)
7319 			goto error_xpcs_setup;
7320 	}
7321 
7322 	ret = stmmac_phy_setup(priv);
7323 	if (ret) {
7324 		netdev_err(ndev, "failed to setup phy (%d)\n", ret);
7325 		goto error_phy_setup;
7326 	}
7327 
7328 	ret = register_netdev(ndev);
7329 	if (ret) {
7330 		dev_err(priv->device, "%s: ERROR %i registering the device\n",
7331 			__func__, ret);
7332 		goto error_netdev_register;
7333 	}
7334 
7335 #ifdef CONFIG_DEBUG_FS
7336 	stmmac_init_fs(ndev);
7337 #endif
7338 
7339 	if (priv->plat->dump_debug_regs)
7340 		priv->plat->dump_debug_regs(priv->plat->bsp_priv);
7341 
7342 	/* Let pm_runtime_put() disable the clocks.
7343 	 * If CONFIG_PM is not enabled, the clocks will stay powered.
7344 	 */
7345 	pm_runtime_put(device);
7346 
7347 	return ret;
7348 
7349 error_netdev_register:
7350 	phylink_destroy(priv->phylink);
7351 error_xpcs_setup:
7352 error_phy_setup:
7353 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
7354 	    priv->hw->pcs != STMMAC_PCS_RTBI)
7355 		stmmac_mdio_unregister(ndev);
7356 error_mdio_register:
7357 	stmmac_napi_del(ndev);
7358 error_hw_init:
7359 	destroy_workqueue(priv->wq);
7360 error_wq_init:
7361 	bitmap_free(priv->af_xdp_zc_qps);
7362 
7363 	return ret;
7364 }
7365 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
7366 
7367 /**
7368  * stmmac_dvr_remove
7369  * @dev: device pointer
7370  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
7371  * changes the link status, releases the DMA descriptor rings.
7372  */
7373 void stmmac_dvr_remove(struct device *dev)
7374 {
7375 	struct net_device *ndev = dev_get_drvdata(dev);
7376 	struct stmmac_priv *priv = netdev_priv(ndev);
7377 
7378 	netdev_info(priv->dev, "%s: removing driver", __func__);
7379 
7380 	pm_runtime_get_sync(dev);
7381 
7382 	stmmac_stop_all_dma(priv);
7383 	stmmac_mac_set(priv, priv->ioaddr, false);
7384 	netif_carrier_off(ndev);
7385 	unregister_netdev(ndev);
7386 
7387 	/* Serdes power down needs to happen after VLAN filter
7388 	 * is deleted that is triggered by unregister_netdev().
7389 	 */
7390 	if (priv->plat->serdes_powerdown)
7391 		priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
7392 
7393 #ifdef CONFIG_DEBUG_FS
7394 	stmmac_exit_fs(ndev);
7395 #endif
7396 	phylink_destroy(priv->phylink);
7397 	if (priv->plat->stmmac_rst)
7398 		reset_control_assert(priv->plat->stmmac_rst);
7399 	reset_control_assert(priv->plat->stmmac_ahb_rst);
7400 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
7401 	    priv->hw->pcs != STMMAC_PCS_RTBI)
7402 		stmmac_mdio_unregister(ndev);
7403 	destroy_workqueue(priv->wq);
7404 	mutex_destroy(&priv->lock);
7405 	bitmap_free(priv->af_xdp_zc_qps);
7406 
7407 	pm_runtime_disable(dev);
7408 	pm_runtime_put_noidle(dev);
7409 }
7410 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
7411 
7412 /**
7413  * stmmac_suspend - suspend callback
7414  * @dev: device pointer
7415  * Description: this is the function to suspend the device and it is called
7416  * by the platform driver to stop the network queue, release the resources,
7417  * program the PMT register (for WoL), clean and release driver resources.
7418  */
7419 int stmmac_suspend(struct device *dev)
7420 {
7421 	struct net_device *ndev = dev_get_drvdata(dev);
7422 	struct stmmac_priv *priv = netdev_priv(ndev);
7423 	u32 chan;
7424 
7425 	if (!ndev || !netif_running(ndev))
7426 		return 0;
7427 
7428 	mutex_lock(&priv->lock);
7429 
7430 	netif_device_detach(ndev);
7431 
7432 	stmmac_disable_all_queues(priv);
7433 
7434 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
7435 		hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
7436 
7437 	if (priv->eee_enabled) {
7438 		priv->tx_path_in_lpi_mode = false;
7439 		del_timer_sync(&priv->eee_ctrl_timer);
7440 	}
7441 
7442 	/* Stop TX/RX DMA */
7443 	stmmac_stop_all_dma(priv);
7444 
7445 	if (priv->plat->serdes_powerdown)
7446 		priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
7447 
7448 	/* Enable Power down mode by programming the PMT regs */
7449 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7450 		stmmac_pmt(priv, priv->hw, priv->wolopts);
7451 		priv->irq_wake = 1;
7452 	} else {
7453 		stmmac_mac_set(priv, priv->ioaddr, false);
7454 		pinctrl_pm_select_sleep_state(priv->device);
7455 	}
7456 
7457 	mutex_unlock(&priv->lock);
7458 
7459 	rtnl_lock();
7460 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7461 		phylink_suspend(priv->phylink, true);
7462 	} else {
7463 		if (device_may_wakeup(priv->device))
7464 			phylink_speed_down(priv->phylink, false);
7465 		phylink_suspend(priv->phylink, false);
7466 	}
7467 	rtnl_unlock();
7468 
7469 	if (priv->dma_cap.fpesel) {
7470 		/* Disable FPE */
7471 		stmmac_fpe_configure(priv, priv->ioaddr,
7472 				     priv->plat->tx_queues_to_use,
7473 				     priv->plat->rx_queues_to_use, false);
7474 
7475 		stmmac_fpe_handshake(priv, false);
7476 		stmmac_fpe_stop_wq(priv);
7477 	}
7478 
7479 	priv->speed = SPEED_UNKNOWN;
7480 	return 0;
7481 }
7482 EXPORT_SYMBOL_GPL(stmmac_suspend);
7483 
7484 static void stmmac_reset_rx_queue(struct stmmac_priv *priv, u32 queue)
7485 {
7486 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
7487 
7488 	rx_q->cur_rx = 0;
7489 	rx_q->dirty_rx = 0;
7490 }
7491 
7492 static void stmmac_reset_tx_queue(struct stmmac_priv *priv, u32 queue)
7493 {
7494 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
7495 
7496 	tx_q->cur_tx = 0;
7497 	tx_q->dirty_tx = 0;
7498 	tx_q->mss = 0;
7499 
7500 	netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
7501 }
7502 
7503 /**
7504  * stmmac_reset_queues_param - reset queue parameters
7505  * @priv: device pointer
7506  */
7507 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
7508 {
7509 	u32 rx_cnt = priv->plat->rx_queues_to_use;
7510 	u32 tx_cnt = priv->plat->tx_queues_to_use;
7511 	u32 queue;
7512 
7513 	for (queue = 0; queue < rx_cnt; queue++)
7514 		stmmac_reset_rx_queue(priv, queue);
7515 
7516 	for (queue = 0; queue < tx_cnt; queue++)
7517 		stmmac_reset_tx_queue(priv, queue);
7518 }
7519 
7520 /**
7521  * stmmac_resume - resume callback
7522  * @dev: device pointer
7523  * Description: when resume this function is invoked to setup the DMA and CORE
7524  * in a usable state.
7525  */
7526 int stmmac_resume(struct device *dev)
7527 {
7528 	struct net_device *ndev = dev_get_drvdata(dev);
7529 	struct stmmac_priv *priv = netdev_priv(ndev);
7530 	int ret;
7531 
7532 	if (!netif_running(ndev))
7533 		return 0;
7534 
7535 	/* Power Down bit, into the PM register, is cleared
7536 	 * automatically as soon as a magic packet or a Wake-up frame
7537 	 * is received. Anyway, it's better to manually clear
7538 	 * this bit because it can generate problems while resuming
7539 	 * from another devices (e.g. serial console).
7540 	 */
7541 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7542 		mutex_lock(&priv->lock);
7543 		stmmac_pmt(priv, priv->hw, 0);
7544 		mutex_unlock(&priv->lock);
7545 		priv->irq_wake = 0;
7546 	} else {
7547 		pinctrl_pm_select_default_state(priv->device);
7548 		/* reset the phy so that it's ready */
7549 		if (priv->mii)
7550 			stmmac_mdio_reset(priv->mii);
7551 	}
7552 
7553 	if (!priv->plat->serdes_up_after_phy_linkup && priv->plat->serdes_powerup) {
7554 		ret = priv->plat->serdes_powerup(ndev,
7555 						 priv->plat->bsp_priv);
7556 
7557 		if (ret < 0)
7558 			return ret;
7559 	}
7560 
7561 	rtnl_lock();
7562 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7563 		phylink_resume(priv->phylink);
7564 	} else {
7565 		phylink_resume(priv->phylink);
7566 		if (device_may_wakeup(priv->device))
7567 			phylink_speed_up(priv->phylink);
7568 	}
7569 	rtnl_unlock();
7570 
7571 	rtnl_lock();
7572 	mutex_lock(&priv->lock);
7573 
7574 	stmmac_reset_queues_param(priv);
7575 
7576 	stmmac_free_tx_skbufs(priv);
7577 	stmmac_clear_descriptors(priv, &priv->dma_conf);
7578 
7579 	stmmac_hw_setup(ndev, false);
7580 	stmmac_init_coalesce(priv);
7581 	stmmac_set_rx_mode(ndev);
7582 
7583 	stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw);
7584 
7585 	stmmac_enable_all_queues(priv);
7586 	stmmac_enable_all_dma_irq(priv);
7587 
7588 	mutex_unlock(&priv->lock);
7589 	rtnl_unlock();
7590 
7591 	netif_device_attach(ndev);
7592 
7593 	return 0;
7594 }
7595 EXPORT_SYMBOL_GPL(stmmac_resume);
7596 
7597 #ifndef MODULE
7598 static int __init stmmac_cmdline_opt(char *str)
7599 {
7600 	char *opt;
7601 
7602 	if (!str || !*str)
7603 		return 1;
7604 	while ((opt = strsep(&str, ",")) != NULL) {
7605 		if (!strncmp(opt, "debug:", 6)) {
7606 			if (kstrtoint(opt + 6, 0, &debug))
7607 				goto err;
7608 		} else if (!strncmp(opt, "phyaddr:", 8)) {
7609 			if (kstrtoint(opt + 8, 0, &phyaddr))
7610 				goto err;
7611 		} else if (!strncmp(opt, "buf_sz:", 7)) {
7612 			if (kstrtoint(opt + 7, 0, &buf_sz))
7613 				goto err;
7614 		} else if (!strncmp(opt, "tc:", 3)) {
7615 			if (kstrtoint(opt + 3, 0, &tc))
7616 				goto err;
7617 		} else if (!strncmp(opt, "watchdog:", 9)) {
7618 			if (kstrtoint(opt + 9, 0, &watchdog))
7619 				goto err;
7620 		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
7621 			if (kstrtoint(opt + 10, 0, &flow_ctrl))
7622 				goto err;
7623 		} else if (!strncmp(opt, "pause:", 6)) {
7624 			if (kstrtoint(opt + 6, 0, &pause))
7625 				goto err;
7626 		} else if (!strncmp(opt, "eee_timer:", 10)) {
7627 			if (kstrtoint(opt + 10, 0, &eee_timer))
7628 				goto err;
7629 		} else if (!strncmp(opt, "chain_mode:", 11)) {
7630 			if (kstrtoint(opt + 11, 0, &chain_mode))
7631 				goto err;
7632 		}
7633 	}
7634 	return 1;
7635 
7636 err:
7637 	pr_err("%s: ERROR broken module parameter conversion", __func__);
7638 	return 1;
7639 }
7640 
7641 __setup("stmmaceth=", stmmac_cmdline_opt);
7642 #endif /* MODULE */
7643 
7644 static int __init stmmac_init(void)
7645 {
7646 #ifdef CONFIG_DEBUG_FS
7647 	/* Create debugfs main directory if it doesn't exist yet */
7648 	if (!stmmac_fs_dir)
7649 		stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
7650 	register_netdevice_notifier(&stmmac_notifier);
7651 #endif
7652 
7653 	return 0;
7654 }
7655 
7656 static void __exit stmmac_exit(void)
7657 {
7658 #ifdef CONFIG_DEBUG_FS
7659 	unregister_netdevice_notifier(&stmmac_notifier);
7660 	debugfs_remove_recursive(stmmac_fs_dir);
7661 #endif
7662 }
7663 
7664 module_init(stmmac_init)
7665 module_exit(stmmac_exit)
7666 
7667 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
7668 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
7669 MODULE_LICENSE("GPL");
7670