xref: /linux/drivers/net/ethernet/stmicro/stmmac/stmmac_main.c (revision 397692eab35cbbd83681880c6a2dbcdb9fd84386)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*******************************************************************************
3   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
4   ST Ethernet IPs are built around a Synopsys IP Core.
5 
6 	Copyright(C) 2007-2011 STMicroelectronics Ltd
7 
8 
9   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
10 
11   Documentation available at:
12 	http://www.stlinux.com
13   Support available at:
14 	https://bugzilla.stlinux.com/
15 *******************************************************************************/
16 
17 #include <linux/clk.h>
18 #include <linux/kernel.h>
19 #include <linux/interrupt.h>
20 #include <linux/ip.h>
21 #include <linux/tcp.h>
22 #include <linux/skbuff.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_ether.h>
25 #include <linux/crc32.h>
26 #include <linux/mii.h>
27 #include <linux/if.h>
28 #include <linux/if_vlan.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/slab.h>
31 #include <linux/prefetch.h>
32 #include <linux/pinctrl/consumer.h>
33 #ifdef CONFIG_DEBUG_FS
34 #include <linux/debugfs.h>
35 #include <linux/seq_file.h>
36 #endif /* CONFIG_DEBUG_FS */
37 #include <linux/net_tstamp.h>
38 #include <linux/phylink.h>
39 #include <linux/udp.h>
40 #include <net/pkt_cls.h>
41 #include "stmmac_ptp.h"
42 #include "stmmac.h"
43 #include <linux/reset.h>
44 #include <linux/of_mdio.h>
45 #include "dwmac1000.h"
46 #include "dwxgmac2.h"
47 #include "hwif.h"
48 
49 #define	STMMAC_ALIGN(x)		ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16)
50 #define	TSO_MAX_BUFF_SIZE	(SZ_16K - 1)
51 
52 /* Module parameters */
53 #define TX_TIMEO	5000
54 static int watchdog = TX_TIMEO;
55 module_param(watchdog, int, 0644);
56 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
57 
58 static int debug = -1;
59 module_param(debug, int, 0644);
60 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
61 
62 static int phyaddr = -1;
63 module_param(phyaddr, int, 0444);
64 MODULE_PARM_DESC(phyaddr, "Physical device address");
65 
66 #define STMMAC_TX_THRESH	(DMA_TX_SIZE / 4)
67 #define STMMAC_RX_THRESH	(DMA_RX_SIZE / 4)
68 
69 static int flow_ctrl = FLOW_AUTO;
70 module_param(flow_ctrl, int, 0644);
71 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
72 
73 static int pause = PAUSE_TIME;
74 module_param(pause, int, 0644);
75 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
76 
77 #define TC_DEFAULT 64
78 static int tc = TC_DEFAULT;
79 module_param(tc, int, 0644);
80 MODULE_PARM_DESC(tc, "DMA threshold control value");
81 
82 #define	DEFAULT_BUFSIZE	1536
83 static int buf_sz = DEFAULT_BUFSIZE;
84 module_param(buf_sz, int, 0644);
85 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
86 
87 #define	STMMAC_RX_COPYBREAK	256
88 
89 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
90 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
91 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
92 
93 #define STMMAC_DEFAULT_LPI_TIMER	1000
94 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
95 module_param(eee_timer, int, 0644);
96 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
97 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
98 
99 /* By default the driver will use the ring mode to manage tx and rx descriptors,
100  * but allow user to force to use the chain instead of the ring
101  */
102 static unsigned int chain_mode;
103 module_param(chain_mode, int, 0444);
104 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
105 
106 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
107 
108 #ifdef CONFIG_DEBUG_FS
109 static const struct net_device_ops stmmac_netdev_ops;
110 static void stmmac_init_fs(struct net_device *dev);
111 static void stmmac_exit_fs(struct net_device *dev);
112 #endif
113 
114 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
115 
116 /**
117  * stmmac_verify_args - verify the driver parameters.
118  * Description: it checks the driver parameters and set a default in case of
119  * errors.
120  */
121 static void stmmac_verify_args(void)
122 {
123 	if (unlikely(watchdog < 0))
124 		watchdog = TX_TIMEO;
125 	if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
126 		buf_sz = DEFAULT_BUFSIZE;
127 	if (unlikely(flow_ctrl > 1))
128 		flow_ctrl = FLOW_AUTO;
129 	else if (likely(flow_ctrl < 0))
130 		flow_ctrl = FLOW_OFF;
131 	if (unlikely((pause < 0) || (pause > 0xffff)))
132 		pause = PAUSE_TIME;
133 	if (eee_timer < 0)
134 		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
135 }
136 
137 /**
138  * stmmac_disable_all_queues - Disable all queues
139  * @priv: driver private structure
140  */
141 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
142 {
143 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
144 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
145 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
146 	u32 queue;
147 
148 	for (queue = 0; queue < maxq; queue++) {
149 		struct stmmac_channel *ch = &priv->channel[queue];
150 
151 		if (queue < rx_queues_cnt)
152 			napi_disable(&ch->rx_napi);
153 		if (queue < tx_queues_cnt)
154 			napi_disable(&ch->tx_napi);
155 	}
156 }
157 
158 /**
159  * stmmac_enable_all_queues - Enable all queues
160  * @priv: driver private structure
161  */
162 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
163 {
164 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
165 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
166 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
167 	u32 queue;
168 
169 	for (queue = 0; queue < maxq; queue++) {
170 		struct stmmac_channel *ch = &priv->channel[queue];
171 
172 		if (queue < rx_queues_cnt)
173 			napi_enable(&ch->rx_napi);
174 		if (queue < tx_queues_cnt)
175 			napi_enable(&ch->tx_napi);
176 	}
177 }
178 
179 /**
180  * stmmac_stop_all_queues - Stop all queues
181  * @priv: driver private structure
182  */
183 static void stmmac_stop_all_queues(struct stmmac_priv *priv)
184 {
185 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
186 	u32 queue;
187 
188 	for (queue = 0; queue < tx_queues_cnt; queue++)
189 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
190 }
191 
192 /**
193  * stmmac_start_all_queues - Start all queues
194  * @priv: driver private structure
195  */
196 static void stmmac_start_all_queues(struct stmmac_priv *priv)
197 {
198 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
199 	u32 queue;
200 
201 	for (queue = 0; queue < tx_queues_cnt; queue++)
202 		netif_tx_start_queue(netdev_get_tx_queue(priv->dev, queue));
203 }
204 
205 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
206 {
207 	if (!test_bit(STMMAC_DOWN, &priv->state) &&
208 	    !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
209 		queue_work(priv->wq, &priv->service_task);
210 }
211 
212 static void stmmac_global_err(struct stmmac_priv *priv)
213 {
214 	netif_carrier_off(priv->dev);
215 	set_bit(STMMAC_RESET_REQUESTED, &priv->state);
216 	stmmac_service_event_schedule(priv);
217 }
218 
219 /**
220  * stmmac_clk_csr_set - dynamically set the MDC clock
221  * @priv: driver private structure
222  * Description: this is to dynamically set the MDC clock according to the csr
223  * clock input.
224  * Note:
225  *	If a specific clk_csr value is passed from the platform
226  *	this means that the CSR Clock Range selection cannot be
227  *	changed at run-time and it is fixed (as reported in the driver
228  *	documentation). Viceversa the driver will try to set the MDC
229  *	clock dynamically according to the actual clock input.
230  */
231 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
232 {
233 	u32 clk_rate;
234 
235 	clk_rate = clk_get_rate(priv->plat->stmmac_clk);
236 
237 	/* Platform provided default clk_csr would be assumed valid
238 	 * for all other cases except for the below mentioned ones.
239 	 * For values higher than the IEEE 802.3 specified frequency
240 	 * we can not estimate the proper divider as it is not known
241 	 * the frequency of clk_csr_i. So we do not change the default
242 	 * divider.
243 	 */
244 	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
245 		if (clk_rate < CSR_F_35M)
246 			priv->clk_csr = STMMAC_CSR_20_35M;
247 		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
248 			priv->clk_csr = STMMAC_CSR_35_60M;
249 		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
250 			priv->clk_csr = STMMAC_CSR_60_100M;
251 		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
252 			priv->clk_csr = STMMAC_CSR_100_150M;
253 		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
254 			priv->clk_csr = STMMAC_CSR_150_250M;
255 		else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
256 			priv->clk_csr = STMMAC_CSR_250_300M;
257 	}
258 
259 	if (priv->plat->has_sun8i) {
260 		if (clk_rate > 160000000)
261 			priv->clk_csr = 0x03;
262 		else if (clk_rate > 80000000)
263 			priv->clk_csr = 0x02;
264 		else if (clk_rate > 40000000)
265 			priv->clk_csr = 0x01;
266 		else
267 			priv->clk_csr = 0;
268 	}
269 
270 	if (priv->plat->has_xgmac) {
271 		if (clk_rate > 400000000)
272 			priv->clk_csr = 0x5;
273 		else if (clk_rate > 350000000)
274 			priv->clk_csr = 0x4;
275 		else if (clk_rate > 300000000)
276 			priv->clk_csr = 0x3;
277 		else if (clk_rate > 250000000)
278 			priv->clk_csr = 0x2;
279 		else if (clk_rate > 150000000)
280 			priv->clk_csr = 0x1;
281 		else
282 			priv->clk_csr = 0x0;
283 	}
284 }
285 
286 static void print_pkt(unsigned char *buf, int len)
287 {
288 	pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
289 	print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
290 }
291 
292 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
293 {
294 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
295 	u32 avail;
296 
297 	if (tx_q->dirty_tx > tx_q->cur_tx)
298 		avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
299 	else
300 		avail = DMA_TX_SIZE - tx_q->cur_tx + tx_q->dirty_tx - 1;
301 
302 	return avail;
303 }
304 
305 /**
306  * stmmac_rx_dirty - Get RX queue dirty
307  * @priv: driver private structure
308  * @queue: RX queue index
309  */
310 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
311 {
312 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
313 	u32 dirty;
314 
315 	if (rx_q->dirty_rx <= rx_q->cur_rx)
316 		dirty = rx_q->cur_rx - rx_q->dirty_rx;
317 	else
318 		dirty = DMA_RX_SIZE - rx_q->dirty_rx + rx_q->cur_rx;
319 
320 	return dirty;
321 }
322 
323 /**
324  * stmmac_enable_eee_mode - check and enter in LPI mode
325  * @priv: driver private structure
326  * Description: this function is to verify and enter in LPI mode in case of
327  * EEE.
328  */
329 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
330 {
331 	u32 tx_cnt = priv->plat->tx_queues_to_use;
332 	u32 queue;
333 
334 	/* check if all TX queues have the work finished */
335 	for (queue = 0; queue < tx_cnt; queue++) {
336 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
337 
338 		if (tx_q->dirty_tx != tx_q->cur_tx)
339 			return; /* still unfinished work */
340 	}
341 
342 	/* Check and enter in LPI mode */
343 	if (!priv->tx_path_in_lpi_mode)
344 		stmmac_set_eee_mode(priv, priv->hw,
345 				priv->plat->en_tx_lpi_clockgating);
346 }
347 
348 /**
349  * stmmac_disable_eee_mode - disable and exit from LPI mode
350  * @priv: driver private structure
351  * Description: this function is to exit and disable EEE in case of
352  * LPI state is true. This is called by the xmit.
353  */
354 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
355 {
356 	stmmac_reset_eee_mode(priv, priv->hw);
357 	del_timer_sync(&priv->eee_ctrl_timer);
358 	priv->tx_path_in_lpi_mode = false;
359 }
360 
361 /**
362  * stmmac_eee_ctrl_timer - EEE TX SW timer.
363  * @arg : data hook
364  * Description:
365  *  if there is no data transfer and if we are not in LPI state,
366  *  then MAC Transmitter can be moved to LPI state.
367  */
368 static void stmmac_eee_ctrl_timer(struct timer_list *t)
369 {
370 	struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
371 
372 	stmmac_enable_eee_mode(priv);
373 	mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
374 }
375 
376 /**
377  * stmmac_eee_init - init EEE
378  * @priv: driver private structure
379  * Description:
380  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
381  *  can also manage EEE, this function enable the LPI state and start related
382  *  timer.
383  */
384 bool stmmac_eee_init(struct stmmac_priv *priv)
385 {
386 	int tx_lpi_timer = priv->tx_lpi_timer;
387 
388 	/* Using PCS we cannot dial with the phy registers at this stage
389 	 * so we do not support extra feature like EEE.
390 	 */
391 	if (priv->hw->pcs == STMMAC_PCS_TBI ||
392 	    priv->hw->pcs == STMMAC_PCS_RTBI)
393 		return false;
394 
395 	/* Check if MAC core supports the EEE feature. */
396 	if (!priv->dma_cap.eee)
397 		return false;
398 
399 	mutex_lock(&priv->lock);
400 
401 	/* Check if it needs to be deactivated */
402 	if (!priv->eee_active) {
403 		if (priv->eee_enabled) {
404 			netdev_dbg(priv->dev, "disable EEE\n");
405 			del_timer_sync(&priv->eee_ctrl_timer);
406 			stmmac_set_eee_timer(priv, priv->hw, 0, tx_lpi_timer);
407 		}
408 		mutex_unlock(&priv->lock);
409 		return false;
410 	}
411 
412 	if (priv->eee_active && !priv->eee_enabled) {
413 		timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
414 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
415 		stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
416 				     tx_lpi_timer);
417 	}
418 
419 	mutex_unlock(&priv->lock);
420 	netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
421 	return true;
422 }
423 
424 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
425  * @priv: driver private structure
426  * @p : descriptor pointer
427  * @skb : the socket buffer
428  * Description :
429  * This function will read timestamp from the descriptor & pass it to stack.
430  * and also perform some sanity checks.
431  */
432 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
433 				   struct dma_desc *p, struct sk_buff *skb)
434 {
435 	struct skb_shared_hwtstamps shhwtstamp;
436 	bool found = false;
437 	u64 ns = 0;
438 
439 	if (!priv->hwts_tx_en)
440 		return;
441 
442 	/* exit if skb doesn't support hw tstamp */
443 	if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
444 		return;
445 
446 	/* check tx tstamp status */
447 	if (stmmac_get_tx_timestamp_status(priv, p)) {
448 		stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
449 		found = true;
450 	} else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) {
451 		found = true;
452 	}
453 
454 	if (found) {
455 		memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
456 		shhwtstamp.hwtstamp = ns_to_ktime(ns);
457 
458 		netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
459 		/* pass tstamp to stack */
460 		skb_tstamp_tx(skb, &shhwtstamp);
461 	}
462 }
463 
464 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
465  * @priv: driver private structure
466  * @p : descriptor pointer
467  * @np : next descriptor pointer
468  * @skb : the socket buffer
469  * Description :
470  * This function will read received packet's timestamp from the descriptor
471  * and pass it to stack. It also perform some sanity checks.
472  */
473 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
474 				   struct dma_desc *np, struct sk_buff *skb)
475 {
476 	struct skb_shared_hwtstamps *shhwtstamp = NULL;
477 	struct dma_desc *desc = p;
478 	u64 ns = 0;
479 
480 	if (!priv->hwts_rx_en)
481 		return;
482 	/* For GMAC4, the valid timestamp is from CTX next desc. */
483 	if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
484 		desc = np;
485 
486 	/* Check if timestamp is available */
487 	if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
488 		stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
489 		netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
490 		shhwtstamp = skb_hwtstamps(skb);
491 		memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
492 		shhwtstamp->hwtstamp = ns_to_ktime(ns);
493 	} else  {
494 		netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
495 	}
496 }
497 
498 /**
499  *  stmmac_hwtstamp_set - control hardware timestamping.
500  *  @dev: device pointer.
501  *  @ifr: An IOCTL specific structure, that can contain a pointer to
502  *  a proprietary structure used to pass information to the driver.
503  *  Description:
504  *  This function configures the MAC to enable/disable both outgoing(TX)
505  *  and incoming(RX) packets time stamping based on user input.
506  *  Return Value:
507  *  0 on success and an appropriate -ve integer on failure.
508  */
509 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
510 {
511 	struct stmmac_priv *priv = netdev_priv(dev);
512 	struct hwtstamp_config config;
513 	struct timespec64 now;
514 	u64 temp = 0;
515 	u32 ptp_v2 = 0;
516 	u32 tstamp_all = 0;
517 	u32 ptp_over_ipv4_udp = 0;
518 	u32 ptp_over_ipv6_udp = 0;
519 	u32 ptp_over_ethernet = 0;
520 	u32 snap_type_sel = 0;
521 	u32 ts_master_en = 0;
522 	u32 ts_event_en = 0;
523 	u32 sec_inc = 0;
524 	u32 value = 0;
525 	bool xmac;
526 
527 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
528 
529 	if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
530 		netdev_alert(priv->dev, "No support for HW time stamping\n");
531 		priv->hwts_tx_en = 0;
532 		priv->hwts_rx_en = 0;
533 
534 		return -EOPNOTSUPP;
535 	}
536 
537 	if (copy_from_user(&config, ifr->ifr_data,
538 			   sizeof(config)))
539 		return -EFAULT;
540 
541 	netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
542 		   __func__, config.flags, config.tx_type, config.rx_filter);
543 
544 	/* reserved for future extensions */
545 	if (config.flags)
546 		return -EINVAL;
547 
548 	if (config.tx_type != HWTSTAMP_TX_OFF &&
549 	    config.tx_type != HWTSTAMP_TX_ON)
550 		return -ERANGE;
551 
552 	if (priv->adv_ts) {
553 		switch (config.rx_filter) {
554 		case HWTSTAMP_FILTER_NONE:
555 			/* time stamp no incoming packet at all */
556 			config.rx_filter = HWTSTAMP_FILTER_NONE;
557 			break;
558 
559 		case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
560 			/* PTP v1, UDP, any kind of event packet */
561 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
562 			/* 'xmac' hardware can support Sync, Pdelay_Req and
563 			 * Pdelay_resp by setting bit14 and bits17/16 to 01
564 			 * This leaves Delay_Req timestamps out.
565 			 * Enable all events *and* general purpose message
566 			 * timestamping
567 			 */
568 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
569 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
570 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
571 			break;
572 
573 		case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
574 			/* PTP v1, UDP, Sync packet */
575 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
576 			/* take time stamp for SYNC messages only */
577 			ts_event_en = PTP_TCR_TSEVNTENA;
578 
579 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
580 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
581 			break;
582 
583 		case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
584 			/* PTP v1, UDP, Delay_req packet */
585 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
586 			/* take time stamp for Delay_Req messages only */
587 			ts_master_en = PTP_TCR_TSMSTRENA;
588 			ts_event_en = PTP_TCR_TSEVNTENA;
589 
590 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
591 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
592 			break;
593 
594 		case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
595 			/* PTP v2, UDP, any kind of event packet */
596 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
597 			ptp_v2 = PTP_TCR_TSVER2ENA;
598 			/* take time stamp for all event messages */
599 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
600 
601 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
602 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
603 			break;
604 
605 		case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
606 			/* PTP v2, UDP, Sync packet */
607 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
608 			ptp_v2 = PTP_TCR_TSVER2ENA;
609 			/* take time stamp for SYNC messages only */
610 			ts_event_en = PTP_TCR_TSEVNTENA;
611 
612 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
613 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
614 			break;
615 
616 		case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
617 			/* PTP v2, UDP, Delay_req packet */
618 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
619 			ptp_v2 = PTP_TCR_TSVER2ENA;
620 			/* take time stamp for Delay_Req messages only */
621 			ts_master_en = PTP_TCR_TSMSTRENA;
622 			ts_event_en = PTP_TCR_TSEVNTENA;
623 
624 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
625 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
626 			break;
627 
628 		case HWTSTAMP_FILTER_PTP_V2_EVENT:
629 			/* PTP v2/802.AS1 any layer, any kind of event packet */
630 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
631 			ptp_v2 = PTP_TCR_TSVER2ENA;
632 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
633 			ts_event_en = PTP_TCR_TSEVNTENA;
634 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
635 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
636 			ptp_over_ethernet = PTP_TCR_TSIPENA;
637 			break;
638 
639 		case HWTSTAMP_FILTER_PTP_V2_SYNC:
640 			/* PTP v2/802.AS1, any layer, Sync packet */
641 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
642 			ptp_v2 = PTP_TCR_TSVER2ENA;
643 			/* take time stamp for SYNC messages only */
644 			ts_event_en = PTP_TCR_TSEVNTENA;
645 
646 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
647 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
648 			ptp_over_ethernet = PTP_TCR_TSIPENA;
649 			break;
650 
651 		case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
652 			/* PTP v2/802.AS1, any layer, Delay_req packet */
653 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
654 			ptp_v2 = PTP_TCR_TSVER2ENA;
655 			/* take time stamp for Delay_Req messages only */
656 			ts_master_en = PTP_TCR_TSMSTRENA;
657 			ts_event_en = PTP_TCR_TSEVNTENA;
658 
659 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
660 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
661 			ptp_over_ethernet = PTP_TCR_TSIPENA;
662 			break;
663 
664 		case HWTSTAMP_FILTER_NTP_ALL:
665 		case HWTSTAMP_FILTER_ALL:
666 			/* time stamp any incoming packet */
667 			config.rx_filter = HWTSTAMP_FILTER_ALL;
668 			tstamp_all = PTP_TCR_TSENALL;
669 			break;
670 
671 		default:
672 			return -ERANGE;
673 		}
674 	} else {
675 		switch (config.rx_filter) {
676 		case HWTSTAMP_FILTER_NONE:
677 			config.rx_filter = HWTSTAMP_FILTER_NONE;
678 			break;
679 		default:
680 			/* PTP v1, UDP, any kind of event packet */
681 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
682 			break;
683 		}
684 	}
685 	priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
686 	priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
687 
688 	if (!priv->hwts_tx_en && !priv->hwts_rx_en)
689 		stmmac_config_hw_tstamping(priv, priv->ptpaddr, 0);
690 	else {
691 		value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
692 			 tstamp_all | ptp_v2 | ptp_over_ethernet |
693 			 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
694 			 ts_master_en | snap_type_sel);
695 		stmmac_config_hw_tstamping(priv, priv->ptpaddr, value);
696 
697 		/* program Sub Second Increment reg */
698 		stmmac_config_sub_second_increment(priv,
699 				priv->ptpaddr, priv->plat->clk_ptp_rate,
700 				xmac, &sec_inc);
701 		temp = div_u64(1000000000ULL, sec_inc);
702 
703 		/* Store sub second increment and flags for later use */
704 		priv->sub_second_inc = sec_inc;
705 		priv->systime_flags = value;
706 
707 		/* calculate default added value:
708 		 * formula is :
709 		 * addend = (2^32)/freq_div_ratio;
710 		 * where, freq_div_ratio = 1e9ns/sec_inc
711 		 */
712 		temp = (u64)(temp << 32);
713 		priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
714 		stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
715 
716 		/* initialize system time */
717 		ktime_get_real_ts64(&now);
718 
719 		/* lower 32 bits of tv_sec are safe until y2106 */
720 		stmmac_init_systime(priv, priv->ptpaddr,
721 				(u32)now.tv_sec, now.tv_nsec);
722 	}
723 
724 	memcpy(&priv->tstamp_config, &config, sizeof(config));
725 
726 	return copy_to_user(ifr->ifr_data, &config,
727 			    sizeof(config)) ? -EFAULT : 0;
728 }
729 
730 /**
731  *  stmmac_hwtstamp_get - read hardware timestamping.
732  *  @dev: device pointer.
733  *  @ifr: An IOCTL specific structure, that can contain a pointer to
734  *  a proprietary structure used to pass information to the driver.
735  *  Description:
736  *  This function obtain the current hardware timestamping settings
737     as requested.
738  */
739 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
740 {
741 	struct stmmac_priv *priv = netdev_priv(dev);
742 	struct hwtstamp_config *config = &priv->tstamp_config;
743 
744 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
745 		return -EOPNOTSUPP;
746 
747 	return copy_to_user(ifr->ifr_data, config,
748 			    sizeof(*config)) ? -EFAULT : 0;
749 }
750 
751 /**
752  * stmmac_init_ptp - init PTP
753  * @priv: driver private structure
754  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
755  * This is done by looking at the HW cap. register.
756  * This function also registers the ptp driver.
757  */
758 static int stmmac_init_ptp(struct stmmac_priv *priv)
759 {
760 	bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
761 
762 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
763 		return -EOPNOTSUPP;
764 
765 	priv->adv_ts = 0;
766 	/* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
767 	if (xmac && priv->dma_cap.atime_stamp)
768 		priv->adv_ts = 1;
769 	/* Dwmac 3.x core with extend_desc can support adv_ts */
770 	else if (priv->extend_desc && priv->dma_cap.atime_stamp)
771 		priv->adv_ts = 1;
772 
773 	if (priv->dma_cap.time_stamp)
774 		netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
775 
776 	if (priv->adv_ts)
777 		netdev_info(priv->dev,
778 			    "IEEE 1588-2008 Advanced Timestamp supported\n");
779 
780 	priv->hwts_tx_en = 0;
781 	priv->hwts_rx_en = 0;
782 
783 	stmmac_ptp_register(priv);
784 
785 	return 0;
786 }
787 
788 static void stmmac_release_ptp(struct stmmac_priv *priv)
789 {
790 	if (priv->plat->clk_ptp_ref)
791 		clk_disable_unprepare(priv->plat->clk_ptp_ref);
792 	stmmac_ptp_unregister(priv);
793 }
794 
795 /**
796  *  stmmac_mac_flow_ctrl - Configure flow control in all queues
797  *  @priv: driver private structure
798  *  Description: It is used for configuring the flow control in all queues
799  */
800 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
801 {
802 	u32 tx_cnt = priv->plat->tx_queues_to_use;
803 
804 	stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
805 			priv->pause, tx_cnt);
806 }
807 
808 static void stmmac_validate(struct phylink_config *config,
809 			    unsigned long *supported,
810 			    struct phylink_link_state *state)
811 {
812 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
813 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mac_supported) = { 0, };
814 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
815 	int tx_cnt = priv->plat->tx_queues_to_use;
816 	int max_speed = priv->plat->max_speed;
817 
818 	phylink_set(mac_supported, 10baseT_Half);
819 	phylink_set(mac_supported, 10baseT_Full);
820 	phylink_set(mac_supported, 100baseT_Half);
821 	phylink_set(mac_supported, 100baseT_Full);
822 	phylink_set(mac_supported, 1000baseT_Half);
823 	phylink_set(mac_supported, 1000baseT_Full);
824 	phylink_set(mac_supported, 1000baseKX_Full);
825 
826 	phylink_set(mac_supported, Autoneg);
827 	phylink_set(mac_supported, Pause);
828 	phylink_set(mac_supported, Asym_Pause);
829 	phylink_set_port_modes(mac_supported);
830 
831 	/* Cut down 1G if asked to */
832 	if ((max_speed > 0) && (max_speed < 1000)) {
833 		phylink_set(mask, 1000baseT_Full);
834 		phylink_set(mask, 1000baseX_Full);
835 	} else if (priv->plat->has_xgmac) {
836 		if (!max_speed || (max_speed >= 2500)) {
837 			phylink_set(mac_supported, 2500baseT_Full);
838 			phylink_set(mac_supported, 2500baseX_Full);
839 		}
840 		if (!max_speed || (max_speed >= 5000)) {
841 			phylink_set(mac_supported, 5000baseT_Full);
842 		}
843 		if (!max_speed || (max_speed >= 10000)) {
844 			phylink_set(mac_supported, 10000baseSR_Full);
845 			phylink_set(mac_supported, 10000baseLR_Full);
846 			phylink_set(mac_supported, 10000baseER_Full);
847 			phylink_set(mac_supported, 10000baseLRM_Full);
848 			phylink_set(mac_supported, 10000baseT_Full);
849 			phylink_set(mac_supported, 10000baseKX4_Full);
850 			phylink_set(mac_supported, 10000baseKR_Full);
851 		}
852 	}
853 
854 	/* Half-Duplex can only work with single queue */
855 	if (tx_cnt > 1) {
856 		phylink_set(mask, 10baseT_Half);
857 		phylink_set(mask, 100baseT_Half);
858 		phylink_set(mask, 1000baseT_Half);
859 	}
860 
861 	bitmap_and(supported, supported, mac_supported,
862 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
863 	bitmap_andnot(supported, supported, mask,
864 		      __ETHTOOL_LINK_MODE_MASK_NBITS);
865 	bitmap_and(state->advertising, state->advertising, mac_supported,
866 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
867 	bitmap_andnot(state->advertising, state->advertising, mask,
868 		      __ETHTOOL_LINK_MODE_MASK_NBITS);
869 }
870 
871 static void stmmac_mac_pcs_get_state(struct phylink_config *config,
872 				     struct phylink_link_state *state)
873 {
874 	state->link = 0;
875 }
876 
877 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
878 			      const struct phylink_link_state *state)
879 {
880 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
881 	u32 ctrl;
882 
883 	ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
884 	ctrl &= ~priv->hw->link.speed_mask;
885 
886 	if (state->interface == PHY_INTERFACE_MODE_USXGMII) {
887 		switch (state->speed) {
888 		case SPEED_10000:
889 			ctrl |= priv->hw->link.xgmii.speed10000;
890 			break;
891 		case SPEED_5000:
892 			ctrl |= priv->hw->link.xgmii.speed5000;
893 			break;
894 		case SPEED_2500:
895 			ctrl |= priv->hw->link.xgmii.speed2500;
896 			break;
897 		default:
898 			return;
899 		}
900 	} else {
901 		switch (state->speed) {
902 		case SPEED_2500:
903 			ctrl |= priv->hw->link.speed2500;
904 			break;
905 		case SPEED_1000:
906 			ctrl |= priv->hw->link.speed1000;
907 			break;
908 		case SPEED_100:
909 			ctrl |= priv->hw->link.speed100;
910 			break;
911 		case SPEED_10:
912 			ctrl |= priv->hw->link.speed10;
913 			break;
914 		default:
915 			return;
916 		}
917 	}
918 
919 	priv->speed = state->speed;
920 
921 	if (priv->plat->fix_mac_speed)
922 		priv->plat->fix_mac_speed(priv->plat->bsp_priv, state->speed);
923 
924 	if (!state->duplex)
925 		ctrl &= ~priv->hw->link.duplex;
926 	else
927 		ctrl |= priv->hw->link.duplex;
928 
929 	/* Flow Control operation */
930 	if (state->pause)
931 		stmmac_mac_flow_ctrl(priv, state->duplex);
932 
933 	writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
934 }
935 
936 static void stmmac_mac_an_restart(struct phylink_config *config)
937 {
938 	/* Not Supported */
939 }
940 
941 static void stmmac_mac_link_down(struct phylink_config *config,
942 				 unsigned int mode, phy_interface_t interface)
943 {
944 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
945 
946 	stmmac_mac_set(priv, priv->ioaddr, false);
947 	priv->eee_active = false;
948 	stmmac_eee_init(priv);
949 	stmmac_set_eee_pls(priv, priv->hw, false);
950 }
951 
952 static void stmmac_mac_link_up(struct phylink_config *config,
953 			       struct phy_device *phy,
954 			       unsigned int mode, phy_interface_t interface,
955 			       int speed, int duplex,
956 			       bool tx_pause, bool rx_pause)
957 {
958 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
959 
960 	stmmac_mac_set(priv, priv->ioaddr, true);
961 	if (phy && priv->dma_cap.eee) {
962 		priv->eee_active = phy_init_eee(phy, 1) >= 0;
963 		priv->eee_enabled = stmmac_eee_init(priv);
964 		stmmac_set_eee_pls(priv, priv->hw, true);
965 	}
966 }
967 
968 static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
969 	.validate = stmmac_validate,
970 	.mac_pcs_get_state = stmmac_mac_pcs_get_state,
971 	.mac_config = stmmac_mac_config,
972 	.mac_an_restart = stmmac_mac_an_restart,
973 	.mac_link_down = stmmac_mac_link_down,
974 	.mac_link_up = stmmac_mac_link_up,
975 };
976 
977 /**
978  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
979  * @priv: driver private structure
980  * Description: this is to verify if the HW supports the PCS.
981  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
982  * configured for the TBI, RTBI, or SGMII PHY interface.
983  */
984 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
985 {
986 	int interface = priv->plat->interface;
987 
988 	if (priv->dma_cap.pcs) {
989 		if ((interface == PHY_INTERFACE_MODE_RGMII) ||
990 		    (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
991 		    (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
992 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
993 			netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
994 			priv->hw->pcs = STMMAC_PCS_RGMII;
995 		} else if (interface == PHY_INTERFACE_MODE_SGMII) {
996 			netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
997 			priv->hw->pcs = STMMAC_PCS_SGMII;
998 		}
999 	}
1000 }
1001 
1002 /**
1003  * stmmac_init_phy - PHY initialization
1004  * @dev: net device structure
1005  * Description: it initializes the driver's PHY state, and attaches the PHY
1006  * to the mac driver.
1007  *  Return value:
1008  *  0 on success
1009  */
1010 static int stmmac_init_phy(struct net_device *dev)
1011 {
1012 	struct stmmac_priv *priv = netdev_priv(dev);
1013 	struct device_node *node;
1014 	int ret;
1015 
1016 	node = priv->plat->phylink_node;
1017 
1018 	if (node)
1019 		ret = phylink_of_phy_connect(priv->phylink, node, 0);
1020 
1021 	/* Some DT bindings do not set-up the PHY handle. Let's try to
1022 	 * manually parse it
1023 	 */
1024 	if (!node || ret) {
1025 		int addr = priv->plat->phy_addr;
1026 		struct phy_device *phydev;
1027 
1028 		phydev = mdiobus_get_phy(priv->mii, addr);
1029 		if (!phydev) {
1030 			netdev_err(priv->dev, "no phy at addr %d\n", addr);
1031 			return -ENODEV;
1032 		}
1033 
1034 		ret = phylink_connect_phy(priv->phylink, phydev);
1035 	}
1036 
1037 	return ret;
1038 }
1039 
1040 static int stmmac_phy_setup(struct stmmac_priv *priv)
1041 {
1042 	struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node);
1043 	int mode = priv->plat->phy_interface;
1044 	struct phylink *phylink;
1045 
1046 	priv->phylink_config.dev = &priv->dev->dev;
1047 	priv->phylink_config.type = PHYLINK_NETDEV;
1048 
1049 	phylink = phylink_create(&priv->phylink_config, fwnode,
1050 				 mode, &stmmac_phylink_mac_ops);
1051 	if (IS_ERR(phylink))
1052 		return PTR_ERR(phylink);
1053 
1054 	priv->phylink = phylink;
1055 	return 0;
1056 }
1057 
1058 static void stmmac_display_rx_rings(struct stmmac_priv *priv)
1059 {
1060 	u32 rx_cnt = priv->plat->rx_queues_to_use;
1061 	void *head_rx;
1062 	u32 queue;
1063 
1064 	/* Display RX rings */
1065 	for (queue = 0; queue < rx_cnt; queue++) {
1066 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1067 
1068 		pr_info("\tRX Queue %u rings\n", queue);
1069 
1070 		if (priv->extend_desc)
1071 			head_rx = (void *)rx_q->dma_erx;
1072 		else
1073 			head_rx = (void *)rx_q->dma_rx;
1074 
1075 		/* Display RX ring */
1076 		stmmac_display_ring(priv, head_rx, DMA_RX_SIZE, true);
1077 	}
1078 }
1079 
1080 static void stmmac_display_tx_rings(struct stmmac_priv *priv)
1081 {
1082 	u32 tx_cnt = priv->plat->tx_queues_to_use;
1083 	void *head_tx;
1084 	u32 queue;
1085 
1086 	/* Display TX rings */
1087 	for (queue = 0; queue < tx_cnt; queue++) {
1088 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1089 
1090 		pr_info("\tTX Queue %d rings\n", queue);
1091 
1092 		if (priv->extend_desc)
1093 			head_tx = (void *)tx_q->dma_etx;
1094 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1095 			head_tx = (void *)tx_q->dma_entx;
1096 		else
1097 			head_tx = (void *)tx_q->dma_tx;
1098 
1099 		stmmac_display_ring(priv, head_tx, DMA_TX_SIZE, false);
1100 	}
1101 }
1102 
1103 static void stmmac_display_rings(struct stmmac_priv *priv)
1104 {
1105 	/* Display RX ring */
1106 	stmmac_display_rx_rings(priv);
1107 
1108 	/* Display TX ring */
1109 	stmmac_display_tx_rings(priv);
1110 }
1111 
1112 static int stmmac_set_bfsize(int mtu, int bufsize)
1113 {
1114 	int ret = bufsize;
1115 
1116 	if (mtu >= BUF_SIZE_8KiB)
1117 		ret = BUF_SIZE_16KiB;
1118 	else if (mtu >= BUF_SIZE_4KiB)
1119 		ret = BUF_SIZE_8KiB;
1120 	else if (mtu >= BUF_SIZE_2KiB)
1121 		ret = BUF_SIZE_4KiB;
1122 	else if (mtu > DEFAULT_BUFSIZE)
1123 		ret = BUF_SIZE_2KiB;
1124 	else
1125 		ret = DEFAULT_BUFSIZE;
1126 
1127 	return ret;
1128 }
1129 
1130 /**
1131  * stmmac_clear_rx_descriptors - clear RX descriptors
1132  * @priv: driver private structure
1133  * @queue: RX queue index
1134  * Description: this function is called to clear the RX descriptors
1135  * in case of both basic and extended descriptors are used.
1136  */
1137 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue)
1138 {
1139 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1140 	int i;
1141 
1142 	/* Clear the RX descriptors */
1143 	for (i = 0; i < DMA_RX_SIZE; i++)
1144 		if (priv->extend_desc)
1145 			stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1146 					priv->use_riwt, priv->mode,
1147 					(i == DMA_RX_SIZE - 1),
1148 					priv->dma_buf_sz);
1149 		else
1150 			stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1151 					priv->use_riwt, priv->mode,
1152 					(i == DMA_RX_SIZE - 1),
1153 					priv->dma_buf_sz);
1154 }
1155 
1156 /**
1157  * stmmac_clear_tx_descriptors - clear tx descriptors
1158  * @priv: driver private structure
1159  * @queue: TX queue index.
1160  * Description: this function is called to clear the TX descriptors
1161  * in case of both basic and extended descriptors are used.
1162  */
1163 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue)
1164 {
1165 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1166 	int i;
1167 
1168 	/* Clear the TX descriptors */
1169 	for (i = 0; i < DMA_TX_SIZE; i++) {
1170 		int last = (i == (DMA_TX_SIZE - 1));
1171 		struct dma_desc *p;
1172 
1173 		if (priv->extend_desc)
1174 			p = &tx_q->dma_etx[i].basic;
1175 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1176 			p = &tx_q->dma_entx[i].basic;
1177 		else
1178 			p = &tx_q->dma_tx[i];
1179 
1180 		stmmac_init_tx_desc(priv, p, priv->mode, last);
1181 	}
1182 }
1183 
1184 /**
1185  * stmmac_clear_descriptors - clear descriptors
1186  * @priv: driver private structure
1187  * Description: this function is called to clear the TX and RX descriptors
1188  * in case of both basic and extended descriptors are used.
1189  */
1190 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
1191 {
1192 	u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1193 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1194 	u32 queue;
1195 
1196 	/* Clear the RX descriptors */
1197 	for (queue = 0; queue < rx_queue_cnt; queue++)
1198 		stmmac_clear_rx_descriptors(priv, queue);
1199 
1200 	/* Clear the TX descriptors */
1201 	for (queue = 0; queue < tx_queue_cnt; queue++)
1202 		stmmac_clear_tx_descriptors(priv, queue);
1203 }
1204 
1205 /**
1206  * stmmac_init_rx_buffers - init the RX descriptor buffer.
1207  * @priv: driver private structure
1208  * @p: descriptor pointer
1209  * @i: descriptor index
1210  * @flags: gfp flag
1211  * @queue: RX queue index
1212  * Description: this function is called to allocate a receive buffer, perform
1213  * the DMA mapping and init the descriptor.
1214  */
1215 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
1216 				  int i, gfp_t flags, u32 queue)
1217 {
1218 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1219 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1220 
1221 	buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
1222 	if (!buf->page)
1223 		return -ENOMEM;
1224 
1225 	if (priv->sph) {
1226 		buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
1227 		if (!buf->sec_page)
1228 			return -ENOMEM;
1229 
1230 		buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
1231 		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr);
1232 	} else {
1233 		buf->sec_page = NULL;
1234 	}
1235 
1236 	buf->addr = page_pool_get_dma_addr(buf->page);
1237 	stmmac_set_desc_addr(priv, p, buf->addr);
1238 	if (priv->dma_buf_sz == BUF_SIZE_16KiB)
1239 		stmmac_init_desc3(priv, p);
1240 
1241 	return 0;
1242 }
1243 
1244 /**
1245  * stmmac_free_rx_buffer - free RX dma buffers
1246  * @priv: private structure
1247  * @queue: RX queue index
1248  * @i: buffer index.
1249  */
1250 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1251 {
1252 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1253 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1254 
1255 	if (buf->page)
1256 		page_pool_put_full_page(rx_q->page_pool, buf->page, false);
1257 	buf->page = NULL;
1258 
1259 	if (buf->sec_page)
1260 		page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false);
1261 	buf->sec_page = NULL;
1262 }
1263 
1264 /**
1265  * stmmac_free_tx_buffer - free RX dma buffers
1266  * @priv: private structure
1267  * @queue: RX queue index
1268  * @i: buffer index.
1269  */
1270 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1271 {
1272 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1273 
1274 	if (tx_q->tx_skbuff_dma[i].buf) {
1275 		if (tx_q->tx_skbuff_dma[i].map_as_page)
1276 			dma_unmap_page(priv->device,
1277 				       tx_q->tx_skbuff_dma[i].buf,
1278 				       tx_q->tx_skbuff_dma[i].len,
1279 				       DMA_TO_DEVICE);
1280 		else
1281 			dma_unmap_single(priv->device,
1282 					 tx_q->tx_skbuff_dma[i].buf,
1283 					 tx_q->tx_skbuff_dma[i].len,
1284 					 DMA_TO_DEVICE);
1285 	}
1286 
1287 	if (tx_q->tx_skbuff[i]) {
1288 		dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1289 		tx_q->tx_skbuff[i] = NULL;
1290 		tx_q->tx_skbuff_dma[i].buf = 0;
1291 		tx_q->tx_skbuff_dma[i].map_as_page = false;
1292 	}
1293 }
1294 
1295 /**
1296  * init_dma_rx_desc_rings - init the RX descriptor rings
1297  * @dev: net device structure
1298  * @flags: gfp flag.
1299  * Description: this function initializes the DMA RX descriptors
1300  * and allocates the socket buffers. It supports the chained and ring
1301  * modes.
1302  */
1303 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags)
1304 {
1305 	struct stmmac_priv *priv = netdev_priv(dev);
1306 	u32 rx_count = priv->plat->rx_queues_to_use;
1307 	int ret = -ENOMEM;
1308 	int queue;
1309 	int i;
1310 
1311 	/* RX INITIALIZATION */
1312 	netif_dbg(priv, probe, priv->dev,
1313 		  "SKB addresses:\nskb\t\tskb data\tdma data\n");
1314 
1315 	for (queue = 0; queue < rx_count; queue++) {
1316 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1317 
1318 		netif_dbg(priv, probe, priv->dev,
1319 			  "(%s) dma_rx_phy=0x%08x\n", __func__,
1320 			  (u32)rx_q->dma_rx_phy);
1321 
1322 		stmmac_clear_rx_descriptors(priv, queue);
1323 
1324 		for (i = 0; i < DMA_RX_SIZE; i++) {
1325 			struct dma_desc *p;
1326 
1327 			if (priv->extend_desc)
1328 				p = &((rx_q->dma_erx + i)->basic);
1329 			else
1330 				p = rx_q->dma_rx + i;
1331 
1332 			ret = stmmac_init_rx_buffers(priv, p, i, flags,
1333 						     queue);
1334 			if (ret)
1335 				goto err_init_rx_buffers;
1336 		}
1337 
1338 		rx_q->cur_rx = 0;
1339 		rx_q->dirty_rx = (unsigned int)(i - DMA_RX_SIZE);
1340 
1341 		/* Setup the chained descriptor addresses */
1342 		if (priv->mode == STMMAC_CHAIN_MODE) {
1343 			if (priv->extend_desc)
1344 				stmmac_mode_init(priv, rx_q->dma_erx,
1345 						rx_q->dma_rx_phy, DMA_RX_SIZE, 1);
1346 			else
1347 				stmmac_mode_init(priv, rx_q->dma_rx,
1348 						rx_q->dma_rx_phy, DMA_RX_SIZE, 0);
1349 		}
1350 	}
1351 
1352 	return 0;
1353 
1354 err_init_rx_buffers:
1355 	while (queue >= 0) {
1356 		while (--i >= 0)
1357 			stmmac_free_rx_buffer(priv, queue, i);
1358 
1359 		if (queue == 0)
1360 			break;
1361 
1362 		i = DMA_RX_SIZE;
1363 		queue--;
1364 	}
1365 
1366 	return ret;
1367 }
1368 
1369 /**
1370  * init_dma_tx_desc_rings - init the TX descriptor rings
1371  * @dev: net device structure.
1372  * Description: this function initializes the DMA TX descriptors
1373  * and allocates the socket buffers. It supports the chained and ring
1374  * modes.
1375  */
1376 static int init_dma_tx_desc_rings(struct net_device *dev)
1377 {
1378 	struct stmmac_priv *priv = netdev_priv(dev);
1379 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1380 	u32 queue;
1381 	int i;
1382 
1383 	for (queue = 0; queue < tx_queue_cnt; queue++) {
1384 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1385 
1386 		netif_dbg(priv, probe, priv->dev,
1387 			  "(%s) dma_tx_phy=0x%08x\n", __func__,
1388 			 (u32)tx_q->dma_tx_phy);
1389 
1390 		/* Setup the chained descriptor addresses */
1391 		if (priv->mode == STMMAC_CHAIN_MODE) {
1392 			if (priv->extend_desc)
1393 				stmmac_mode_init(priv, tx_q->dma_etx,
1394 						tx_q->dma_tx_phy, DMA_TX_SIZE, 1);
1395 			else if (!(tx_q->tbs & STMMAC_TBS_AVAIL))
1396 				stmmac_mode_init(priv, tx_q->dma_tx,
1397 						tx_q->dma_tx_phy, DMA_TX_SIZE, 0);
1398 		}
1399 
1400 		for (i = 0; i < DMA_TX_SIZE; i++) {
1401 			struct dma_desc *p;
1402 			if (priv->extend_desc)
1403 				p = &((tx_q->dma_etx + i)->basic);
1404 			else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1405 				p = &((tx_q->dma_entx + i)->basic);
1406 			else
1407 				p = tx_q->dma_tx + i;
1408 
1409 			stmmac_clear_desc(priv, p);
1410 
1411 			tx_q->tx_skbuff_dma[i].buf = 0;
1412 			tx_q->tx_skbuff_dma[i].map_as_page = false;
1413 			tx_q->tx_skbuff_dma[i].len = 0;
1414 			tx_q->tx_skbuff_dma[i].last_segment = false;
1415 			tx_q->tx_skbuff[i] = NULL;
1416 		}
1417 
1418 		tx_q->dirty_tx = 0;
1419 		tx_q->cur_tx = 0;
1420 		tx_q->mss = 0;
1421 
1422 		netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
1423 	}
1424 
1425 	return 0;
1426 }
1427 
1428 /**
1429  * init_dma_desc_rings - init the RX/TX descriptor rings
1430  * @dev: net device structure
1431  * @flags: gfp flag.
1432  * Description: this function initializes the DMA RX/TX descriptors
1433  * and allocates the socket buffers. It supports the chained and ring
1434  * modes.
1435  */
1436 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1437 {
1438 	struct stmmac_priv *priv = netdev_priv(dev);
1439 	int ret;
1440 
1441 	ret = init_dma_rx_desc_rings(dev, flags);
1442 	if (ret)
1443 		return ret;
1444 
1445 	ret = init_dma_tx_desc_rings(dev);
1446 
1447 	stmmac_clear_descriptors(priv);
1448 
1449 	if (netif_msg_hw(priv))
1450 		stmmac_display_rings(priv);
1451 
1452 	return ret;
1453 }
1454 
1455 /**
1456  * dma_free_rx_skbufs - free RX dma buffers
1457  * @priv: private structure
1458  * @queue: RX queue index
1459  */
1460 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue)
1461 {
1462 	int i;
1463 
1464 	for (i = 0; i < DMA_RX_SIZE; i++)
1465 		stmmac_free_rx_buffer(priv, queue, i);
1466 }
1467 
1468 /**
1469  * dma_free_tx_skbufs - free TX dma buffers
1470  * @priv: private structure
1471  * @queue: TX queue index
1472  */
1473 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue)
1474 {
1475 	int i;
1476 
1477 	for (i = 0; i < DMA_TX_SIZE; i++)
1478 		stmmac_free_tx_buffer(priv, queue, i);
1479 }
1480 
1481 /**
1482  * free_dma_rx_desc_resources - free RX dma desc resources
1483  * @priv: private structure
1484  */
1485 static void free_dma_rx_desc_resources(struct stmmac_priv *priv)
1486 {
1487 	u32 rx_count = priv->plat->rx_queues_to_use;
1488 	u32 queue;
1489 
1490 	/* Free RX queue resources */
1491 	for (queue = 0; queue < rx_count; queue++) {
1492 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1493 
1494 		/* Release the DMA RX socket buffers */
1495 		dma_free_rx_skbufs(priv, queue);
1496 
1497 		/* Free DMA regions of consistent memory previously allocated */
1498 		if (!priv->extend_desc)
1499 			dma_free_coherent(priv->device,
1500 					  DMA_RX_SIZE * sizeof(struct dma_desc),
1501 					  rx_q->dma_rx, rx_q->dma_rx_phy);
1502 		else
1503 			dma_free_coherent(priv->device, DMA_RX_SIZE *
1504 					  sizeof(struct dma_extended_desc),
1505 					  rx_q->dma_erx, rx_q->dma_rx_phy);
1506 
1507 		kfree(rx_q->buf_pool);
1508 		if (rx_q->page_pool)
1509 			page_pool_destroy(rx_q->page_pool);
1510 	}
1511 }
1512 
1513 /**
1514  * free_dma_tx_desc_resources - free TX dma desc resources
1515  * @priv: private structure
1516  */
1517 static void free_dma_tx_desc_resources(struct stmmac_priv *priv)
1518 {
1519 	u32 tx_count = priv->plat->tx_queues_to_use;
1520 	u32 queue;
1521 
1522 	/* Free TX queue resources */
1523 	for (queue = 0; queue < tx_count; queue++) {
1524 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1525 		size_t size;
1526 		void *addr;
1527 
1528 		/* Release the DMA TX socket buffers */
1529 		dma_free_tx_skbufs(priv, queue);
1530 
1531 		if (priv->extend_desc) {
1532 			size = sizeof(struct dma_extended_desc);
1533 			addr = tx_q->dma_etx;
1534 		} else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1535 			size = sizeof(struct dma_edesc);
1536 			addr = tx_q->dma_entx;
1537 		} else {
1538 			size = sizeof(struct dma_desc);
1539 			addr = tx_q->dma_tx;
1540 		}
1541 
1542 		size *= DMA_TX_SIZE;
1543 
1544 		dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy);
1545 
1546 		kfree(tx_q->tx_skbuff_dma);
1547 		kfree(tx_q->tx_skbuff);
1548 	}
1549 }
1550 
1551 /**
1552  * alloc_dma_rx_desc_resources - alloc RX resources.
1553  * @priv: private structure
1554  * Description: according to which descriptor can be used (extend or basic)
1555  * this function allocates the resources for TX and RX paths. In case of
1556  * reception, for example, it pre-allocated the RX socket buffer in order to
1557  * allow zero-copy mechanism.
1558  */
1559 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv)
1560 {
1561 	u32 rx_count = priv->plat->rx_queues_to_use;
1562 	int ret = -ENOMEM;
1563 	u32 queue;
1564 
1565 	/* RX queues buffers and DMA */
1566 	for (queue = 0; queue < rx_count; queue++) {
1567 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1568 		struct page_pool_params pp_params = { 0 };
1569 		unsigned int num_pages;
1570 
1571 		rx_q->queue_index = queue;
1572 		rx_q->priv_data = priv;
1573 
1574 		pp_params.flags = PP_FLAG_DMA_MAP;
1575 		pp_params.pool_size = DMA_RX_SIZE;
1576 		num_pages = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE);
1577 		pp_params.order = ilog2(num_pages);
1578 		pp_params.nid = dev_to_node(priv->device);
1579 		pp_params.dev = priv->device;
1580 		pp_params.dma_dir = DMA_FROM_DEVICE;
1581 
1582 		rx_q->page_pool = page_pool_create(&pp_params);
1583 		if (IS_ERR(rx_q->page_pool)) {
1584 			ret = PTR_ERR(rx_q->page_pool);
1585 			rx_q->page_pool = NULL;
1586 			goto err_dma;
1587 		}
1588 
1589 		rx_q->buf_pool = kcalloc(DMA_RX_SIZE, sizeof(*rx_q->buf_pool),
1590 					 GFP_KERNEL);
1591 		if (!rx_q->buf_pool)
1592 			goto err_dma;
1593 
1594 		if (priv->extend_desc) {
1595 			rx_q->dma_erx = dma_alloc_coherent(priv->device,
1596 							   DMA_RX_SIZE * sizeof(struct dma_extended_desc),
1597 							   &rx_q->dma_rx_phy,
1598 							   GFP_KERNEL);
1599 			if (!rx_q->dma_erx)
1600 				goto err_dma;
1601 
1602 		} else {
1603 			rx_q->dma_rx = dma_alloc_coherent(priv->device,
1604 							  DMA_RX_SIZE * sizeof(struct dma_desc),
1605 							  &rx_q->dma_rx_phy,
1606 							  GFP_KERNEL);
1607 			if (!rx_q->dma_rx)
1608 				goto err_dma;
1609 		}
1610 	}
1611 
1612 	return 0;
1613 
1614 err_dma:
1615 	free_dma_rx_desc_resources(priv);
1616 
1617 	return ret;
1618 }
1619 
1620 /**
1621  * alloc_dma_tx_desc_resources - alloc TX resources.
1622  * @priv: private structure
1623  * Description: according to which descriptor can be used (extend or basic)
1624  * this function allocates the resources for TX and RX paths. In case of
1625  * reception, for example, it pre-allocated the RX socket buffer in order to
1626  * allow zero-copy mechanism.
1627  */
1628 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv)
1629 {
1630 	u32 tx_count = priv->plat->tx_queues_to_use;
1631 	int ret = -ENOMEM;
1632 	u32 queue;
1633 
1634 	/* TX queues buffers and DMA */
1635 	for (queue = 0; queue < tx_count; queue++) {
1636 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1637 		size_t size;
1638 		void *addr;
1639 
1640 		tx_q->queue_index = queue;
1641 		tx_q->priv_data = priv;
1642 
1643 		tx_q->tx_skbuff_dma = kcalloc(DMA_TX_SIZE,
1644 					      sizeof(*tx_q->tx_skbuff_dma),
1645 					      GFP_KERNEL);
1646 		if (!tx_q->tx_skbuff_dma)
1647 			goto err_dma;
1648 
1649 		tx_q->tx_skbuff = kcalloc(DMA_TX_SIZE,
1650 					  sizeof(struct sk_buff *),
1651 					  GFP_KERNEL);
1652 		if (!tx_q->tx_skbuff)
1653 			goto err_dma;
1654 
1655 		if (priv->extend_desc)
1656 			size = sizeof(struct dma_extended_desc);
1657 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1658 			size = sizeof(struct dma_edesc);
1659 		else
1660 			size = sizeof(struct dma_desc);
1661 
1662 		size *= DMA_TX_SIZE;
1663 
1664 		addr = dma_alloc_coherent(priv->device, size,
1665 					  &tx_q->dma_tx_phy, GFP_KERNEL);
1666 		if (!addr)
1667 			goto err_dma;
1668 
1669 		if (priv->extend_desc)
1670 			tx_q->dma_etx = addr;
1671 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1672 			tx_q->dma_entx = addr;
1673 		else
1674 			tx_q->dma_tx = addr;
1675 	}
1676 
1677 	return 0;
1678 
1679 err_dma:
1680 	free_dma_tx_desc_resources(priv);
1681 	return ret;
1682 }
1683 
1684 /**
1685  * alloc_dma_desc_resources - alloc TX/RX resources.
1686  * @priv: private structure
1687  * Description: according to which descriptor can be used (extend or basic)
1688  * this function allocates the resources for TX and RX paths. In case of
1689  * reception, for example, it pre-allocated the RX socket buffer in order to
1690  * allow zero-copy mechanism.
1691  */
1692 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1693 {
1694 	/* RX Allocation */
1695 	int ret = alloc_dma_rx_desc_resources(priv);
1696 
1697 	if (ret)
1698 		return ret;
1699 
1700 	ret = alloc_dma_tx_desc_resources(priv);
1701 
1702 	return ret;
1703 }
1704 
1705 /**
1706  * free_dma_desc_resources - free dma desc resources
1707  * @priv: private structure
1708  */
1709 static void free_dma_desc_resources(struct stmmac_priv *priv)
1710 {
1711 	/* Release the DMA RX socket buffers */
1712 	free_dma_rx_desc_resources(priv);
1713 
1714 	/* Release the DMA TX socket buffers */
1715 	free_dma_tx_desc_resources(priv);
1716 }
1717 
1718 /**
1719  *  stmmac_mac_enable_rx_queues - Enable MAC rx queues
1720  *  @priv: driver private structure
1721  *  Description: It is used for enabling the rx queues in the MAC
1722  */
1723 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
1724 {
1725 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
1726 	int queue;
1727 	u8 mode;
1728 
1729 	for (queue = 0; queue < rx_queues_count; queue++) {
1730 		mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
1731 		stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
1732 	}
1733 }
1734 
1735 /**
1736  * stmmac_start_rx_dma - start RX DMA channel
1737  * @priv: driver private structure
1738  * @chan: RX channel index
1739  * Description:
1740  * This starts a RX DMA channel
1741  */
1742 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
1743 {
1744 	netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
1745 	stmmac_start_rx(priv, priv->ioaddr, chan);
1746 }
1747 
1748 /**
1749  * stmmac_start_tx_dma - start TX DMA channel
1750  * @priv: driver private structure
1751  * @chan: TX channel index
1752  * Description:
1753  * This starts a TX DMA channel
1754  */
1755 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
1756 {
1757 	netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
1758 	stmmac_start_tx(priv, priv->ioaddr, chan);
1759 }
1760 
1761 /**
1762  * stmmac_stop_rx_dma - stop RX DMA channel
1763  * @priv: driver private structure
1764  * @chan: RX channel index
1765  * Description:
1766  * This stops a RX DMA channel
1767  */
1768 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
1769 {
1770 	netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
1771 	stmmac_stop_rx(priv, priv->ioaddr, chan);
1772 }
1773 
1774 /**
1775  * stmmac_stop_tx_dma - stop TX DMA channel
1776  * @priv: driver private structure
1777  * @chan: TX channel index
1778  * Description:
1779  * This stops a TX DMA channel
1780  */
1781 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
1782 {
1783 	netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
1784 	stmmac_stop_tx(priv, priv->ioaddr, chan);
1785 }
1786 
1787 /**
1788  * stmmac_start_all_dma - start all RX and TX DMA channels
1789  * @priv: driver private structure
1790  * Description:
1791  * This starts all the RX and TX DMA channels
1792  */
1793 static void stmmac_start_all_dma(struct stmmac_priv *priv)
1794 {
1795 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1796 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1797 	u32 chan = 0;
1798 
1799 	for (chan = 0; chan < rx_channels_count; chan++)
1800 		stmmac_start_rx_dma(priv, chan);
1801 
1802 	for (chan = 0; chan < tx_channels_count; chan++)
1803 		stmmac_start_tx_dma(priv, chan);
1804 }
1805 
1806 /**
1807  * stmmac_stop_all_dma - stop all RX and TX DMA channels
1808  * @priv: driver private structure
1809  * Description:
1810  * This stops the RX and TX DMA channels
1811  */
1812 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
1813 {
1814 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1815 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1816 	u32 chan = 0;
1817 
1818 	for (chan = 0; chan < rx_channels_count; chan++)
1819 		stmmac_stop_rx_dma(priv, chan);
1820 
1821 	for (chan = 0; chan < tx_channels_count; chan++)
1822 		stmmac_stop_tx_dma(priv, chan);
1823 }
1824 
1825 /**
1826  *  stmmac_dma_operation_mode - HW DMA operation mode
1827  *  @priv: driver private structure
1828  *  Description: it is used for configuring the DMA operation mode register in
1829  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1830  */
1831 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1832 {
1833 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1834 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1835 	int rxfifosz = priv->plat->rx_fifo_size;
1836 	int txfifosz = priv->plat->tx_fifo_size;
1837 	u32 txmode = 0;
1838 	u32 rxmode = 0;
1839 	u32 chan = 0;
1840 	u8 qmode = 0;
1841 
1842 	if (rxfifosz == 0)
1843 		rxfifosz = priv->dma_cap.rx_fifo_size;
1844 	if (txfifosz == 0)
1845 		txfifosz = priv->dma_cap.tx_fifo_size;
1846 
1847 	/* Adjust for real per queue fifo size */
1848 	rxfifosz /= rx_channels_count;
1849 	txfifosz /= tx_channels_count;
1850 
1851 	if (priv->plat->force_thresh_dma_mode) {
1852 		txmode = tc;
1853 		rxmode = tc;
1854 	} else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1855 		/*
1856 		 * In case of GMAC, SF mode can be enabled
1857 		 * to perform the TX COE in HW. This depends on:
1858 		 * 1) TX COE if actually supported
1859 		 * 2) There is no bugged Jumbo frame support
1860 		 *    that needs to not insert csum in the TDES.
1861 		 */
1862 		txmode = SF_DMA_MODE;
1863 		rxmode = SF_DMA_MODE;
1864 		priv->xstats.threshold = SF_DMA_MODE;
1865 	} else {
1866 		txmode = tc;
1867 		rxmode = SF_DMA_MODE;
1868 	}
1869 
1870 	/* configure all channels */
1871 	for (chan = 0; chan < rx_channels_count; chan++) {
1872 		qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
1873 
1874 		stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
1875 				rxfifosz, qmode);
1876 		stmmac_set_dma_bfsize(priv, priv->ioaddr, priv->dma_buf_sz,
1877 				chan);
1878 	}
1879 
1880 	for (chan = 0; chan < tx_channels_count; chan++) {
1881 		qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
1882 
1883 		stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
1884 				txfifosz, qmode);
1885 	}
1886 }
1887 
1888 /**
1889  * stmmac_tx_clean - to manage the transmission completion
1890  * @priv: driver private structure
1891  * @queue: TX queue index
1892  * Description: it reclaims the transmit resources after transmission completes.
1893  */
1894 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
1895 {
1896 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1897 	unsigned int bytes_compl = 0, pkts_compl = 0;
1898 	unsigned int entry, count = 0;
1899 
1900 	__netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
1901 
1902 	priv->xstats.tx_clean++;
1903 
1904 	entry = tx_q->dirty_tx;
1905 	while ((entry != tx_q->cur_tx) && (count < budget)) {
1906 		struct sk_buff *skb = tx_q->tx_skbuff[entry];
1907 		struct dma_desc *p;
1908 		int status;
1909 
1910 		if (priv->extend_desc)
1911 			p = (struct dma_desc *)(tx_q->dma_etx + entry);
1912 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1913 			p = &tx_q->dma_entx[entry].basic;
1914 		else
1915 			p = tx_q->dma_tx + entry;
1916 
1917 		status = stmmac_tx_status(priv, &priv->dev->stats,
1918 				&priv->xstats, p, priv->ioaddr);
1919 		/* Check if the descriptor is owned by the DMA */
1920 		if (unlikely(status & tx_dma_own))
1921 			break;
1922 
1923 		count++;
1924 
1925 		/* Make sure descriptor fields are read after reading
1926 		 * the own bit.
1927 		 */
1928 		dma_rmb();
1929 
1930 		/* Just consider the last segment and ...*/
1931 		if (likely(!(status & tx_not_ls))) {
1932 			/* ... verify the status error condition */
1933 			if (unlikely(status & tx_err)) {
1934 				priv->dev->stats.tx_errors++;
1935 			} else {
1936 				priv->dev->stats.tx_packets++;
1937 				priv->xstats.tx_pkt_n++;
1938 			}
1939 			stmmac_get_tx_hwtstamp(priv, p, skb);
1940 		}
1941 
1942 		if (likely(tx_q->tx_skbuff_dma[entry].buf)) {
1943 			if (tx_q->tx_skbuff_dma[entry].map_as_page)
1944 				dma_unmap_page(priv->device,
1945 					       tx_q->tx_skbuff_dma[entry].buf,
1946 					       tx_q->tx_skbuff_dma[entry].len,
1947 					       DMA_TO_DEVICE);
1948 			else
1949 				dma_unmap_single(priv->device,
1950 						 tx_q->tx_skbuff_dma[entry].buf,
1951 						 tx_q->tx_skbuff_dma[entry].len,
1952 						 DMA_TO_DEVICE);
1953 			tx_q->tx_skbuff_dma[entry].buf = 0;
1954 			tx_q->tx_skbuff_dma[entry].len = 0;
1955 			tx_q->tx_skbuff_dma[entry].map_as_page = false;
1956 		}
1957 
1958 		stmmac_clean_desc3(priv, tx_q, p);
1959 
1960 		tx_q->tx_skbuff_dma[entry].last_segment = false;
1961 		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
1962 
1963 		if (likely(skb != NULL)) {
1964 			pkts_compl++;
1965 			bytes_compl += skb->len;
1966 			dev_consume_skb_any(skb);
1967 			tx_q->tx_skbuff[entry] = NULL;
1968 		}
1969 
1970 		stmmac_release_tx_desc(priv, p, priv->mode);
1971 
1972 		entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
1973 	}
1974 	tx_q->dirty_tx = entry;
1975 
1976 	netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
1977 				  pkts_compl, bytes_compl);
1978 
1979 	if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
1980 								queue))) &&
1981 	    stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH) {
1982 
1983 		netif_dbg(priv, tx_done, priv->dev,
1984 			  "%s: restart transmit\n", __func__);
1985 		netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
1986 	}
1987 
1988 	if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1989 		stmmac_enable_eee_mode(priv);
1990 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1991 	}
1992 
1993 	/* We still have pending packets, let's call for a new scheduling */
1994 	if (tx_q->dirty_tx != tx_q->cur_tx)
1995 		mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer));
1996 
1997 	__netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
1998 
1999 	return count;
2000 }
2001 
2002 /**
2003  * stmmac_tx_err - to manage the tx error
2004  * @priv: driver private structure
2005  * @chan: channel index
2006  * Description: it cleans the descriptors and restarts the transmission
2007  * in case of transmission errors.
2008  */
2009 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
2010 {
2011 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2012 
2013 	netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
2014 
2015 	stmmac_stop_tx_dma(priv, chan);
2016 	dma_free_tx_skbufs(priv, chan);
2017 	stmmac_clear_tx_descriptors(priv, chan);
2018 	tx_q->dirty_tx = 0;
2019 	tx_q->cur_tx = 0;
2020 	tx_q->mss = 0;
2021 	netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan));
2022 	stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2023 			    tx_q->dma_tx_phy, chan);
2024 	stmmac_start_tx_dma(priv, chan);
2025 
2026 	priv->dev->stats.tx_errors++;
2027 	netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
2028 }
2029 
2030 /**
2031  *  stmmac_set_dma_operation_mode - Set DMA operation mode by channel
2032  *  @priv: driver private structure
2033  *  @txmode: TX operating mode
2034  *  @rxmode: RX operating mode
2035  *  @chan: channel index
2036  *  Description: it is used for configuring of the DMA operation mode in
2037  *  runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
2038  *  mode.
2039  */
2040 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
2041 					  u32 rxmode, u32 chan)
2042 {
2043 	u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2044 	u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2045 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2046 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2047 	int rxfifosz = priv->plat->rx_fifo_size;
2048 	int txfifosz = priv->plat->tx_fifo_size;
2049 
2050 	if (rxfifosz == 0)
2051 		rxfifosz = priv->dma_cap.rx_fifo_size;
2052 	if (txfifosz == 0)
2053 		txfifosz = priv->dma_cap.tx_fifo_size;
2054 
2055 	/* Adjust for real per queue fifo size */
2056 	rxfifosz /= rx_channels_count;
2057 	txfifosz /= tx_channels_count;
2058 
2059 	stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2060 	stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2061 }
2062 
2063 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2064 {
2065 	int ret;
2066 
2067 	ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2068 			priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2069 	if (ret && (ret != -EINVAL)) {
2070 		stmmac_global_err(priv);
2071 		return true;
2072 	}
2073 
2074 	return false;
2075 }
2076 
2077 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan)
2078 {
2079 	int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2080 						 &priv->xstats, chan);
2081 	struct stmmac_channel *ch = &priv->channel[chan];
2082 	unsigned long flags;
2083 
2084 	if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2085 		if (napi_schedule_prep(&ch->rx_napi)) {
2086 			spin_lock_irqsave(&ch->lock, flags);
2087 			stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
2088 			spin_unlock_irqrestore(&ch->lock, flags);
2089 			__napi_schedule_irqoff(&ch->rx_napi);
2090 		}
2091 	}
2092 
2093 	if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) {
2094 		if (napi_schedule_prep(&ch->tx_napi)) {
2095 			spin_lock_irqsave(&ch->lock, flags);
2096 			stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
2097 			spin_unlock_irqrestore(&ch->lock, flags);
2098 			__napi_schedule_irqoff(&ch->tx_napi);
2099 		}
2100 	}
2101 
2102 	return status;
2103 }
2104 
2105 /**
2106  * stmmac_dma_interrupt - DMA ISR
2107  * @priv: driver private structure
2108  * Description: this is the DMA ISR. It is called by the main ISR.
2109  * It calls the dwmac dma routine and schedule poll method in case of some
2110  * work can be done.
2111  */
2112 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2113 {
2114 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2115 	u32 rx_channel_count = priv->plat->rx_queues_to_use;
2116 	u32 channels_to_check = tx_channel_count > rx_channel_count ?
2117 				tx_channel_count : rx_channel_count;
2118 	u32 chan;
2119 	int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2120 
2121 	/* Make sure we never check beyond our status buffer. */
2122 	if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2123 		channels_to_check = ARRAY_SIZE(status);
2124 
2125 	for (chan = 0; chan < channels_to_check; chan++)
2126 		status[chan] = stmmac_napi_check(priv, chan);
2127 
2128 	for (chan = 0; chan < tx_channel_count; chan++) {
2129 		if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2130 			/* Try to bump up the dma threshold on this failure */
2131 			if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
2132 			    (tc <= 256)) {
2133 				tc += 64;
2134 				if (priv->plat->force_thresh_dma_mode)
2135 					stmmac_set_dma_operation_mode(priv,
2136 								      tc,
2137 								      tc,
2138 								      chan);
2139 				else
2140 					stmmac_set_dma_operation_mode(priv,
2141 								    tc,
2142 								    SF_DMA_MODE,
2143 								    chan);
2144 				priv->xstats.threshold = tc;
2145 			}
2146 		} else if (unlikely(status[chan] == tx_hard_error)) {
2147 			stmmac_tx_err(priv, chan);
2148 		}
2149 	}
2150 }
2151 
2152 /**
2153  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2154  * @priv: driver private structure
2155  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2156  */
2157 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2158 {
2159 	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2160 			    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2161 
2162 	stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2163 
2164 	if (priv->dma_cap.rmon) {
2165 		stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2166 		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2167 	} else
2168 		netdev_info(priv->dev, "No MAC Management Counters available\n");
2169 }
2170 
2171 /**
2172  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2173  * @priv: driver private structure
2174  * Description:
2175  *  new GMAC chip generations have a new register to indicate the
2176  *  presence of the optional feature/functions.
2177  *  This can be also used to override the value passed through the
2178  *  platform and necessary for old MAC10/100 and GMAC chips.
2179  */
2180 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2181 {
2182 	return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2183 }
2184 
2185 /**
2186  * stmmac_check_ether_addr - check if the MAC addr is valid
2187  * @priv: driver private structure
2188  * Description:
2189  * it is to verify if the MAC address is valid, in case of failures it
2190  * generates a random MAC address
2191  */
2192 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2193 {
2194 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2195 		stmmac_get_umac_addr(priv, priv->hw, priv->dev->dev_addr, 0);
2196 		if (!is_valid_ether_addr(priv->dev->dev_addr))
2197 			eth_hw_addr_random(priv->dev);
2198 		dev_info(priv->device, "device MAC address %pM\n",
2199 			 priv->dev->dev_addr);
2200 	}
2201 }
2202 
2203 /**
2204  * stmmac_init_dma_engine - DMA init.
2205  * @priv: driver private structure
2206  * Description:
2207  * It inits the DMA invoking the specific MAC/GMAC callback.
2208  * Some DMA parameters can be passed from the platform;
2209  * in case of these are not passed a default is kept for the MAC or GMAC.
2210  */
2211 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2212 {
2213 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2214 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2215 	u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2216 	struct stmmac_rx_queue *rx_q;
2217 	struct stmmac_tx_queue *tx_q;
2218 	u32 chan = 0;
2219 	int atds = 0;
2220 	int ret = 0;
2221 
2222 	if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2223 		dev_err(priv->device, "Invalid DMA configuration\n");
2224 		return -EINVAL;
2225 	}
2226 
2227 	if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2228 		atds = 1;
2229 
2230 	ret = stmmac_reset(priv, priv->ioaddr);
2231 	if (ret) {
2232 		dev_err(priv->device, "Failed to reset the dma\n");
2233 		return ret;
2234 	}
2235 
2236 	/* DMA Configuration */
2237 	stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2238 
2239 	if (priv->plat->axi)
2240 		stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2241 
2242 	/* DMA CSR Channel configuration */
2243 	for (chan = 0; chan < dma_csr_ch; chan++)
2244 		stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2245 
2246 	/* DMA RX Channel Configuration */
2247 	for (chan = 0; chan < rx_channels_count; chan++) {
2248 		rx_q = &priv->rx_queue[chan];
2249 
2250 		stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2251 				    rx_q->dma_rx_phy, chan);
2252 
2253 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2254 			    (DMA_RX_SIZE * sizeof(struct dma_desc));
2255 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2256 				       rx_q->rx_tail_addr, chan);
2257 	}
2258 
2259 	/* DMA TX Channel Configuration */
2260 	for (chan = 0; chan < tx_channels_count; chan++) {
2261 		tx_q = &priv->tx_queue[chan];
2262 
2263 		stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2264 				    tx_q->dma_tx_phy, chan);
2265 
2266 		tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2267 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2268 				       tx_q->tx_tail_addr, chan);
2269 	}
2270 
2271 	return ret;
2272 }
2273 
2274 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2275 {
2276 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2277 
2278 	mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer));
2279 }
2280 
2281 /**
2282  * stmmac_tx_timer - mitigation sw timer for tx.
2283  * @data: data pointer
2284  * Description:
2285  * This is the timer handler to directly invoke the stmmac_tx_clean.
2286  */
2287 static void stmmac_tx_timer(struct timer_list *t)
2288 {
2289 	struct stmmac_tx_queue *tx_q = from_timer(tx_q, t, txtimer);
2290 	struct stmmac_priv *priv = tx_q->priv_data;
2291 	struct stmmac_channel *ch;
2292 
2293 	ch = &priv->channel[tx_q->queue_index];
2294 
2295 	if (likely(napi_schedule_prep(&ch->tx_napi))) {
2296 		unsigned long flags;
2297 
2298 		spin_lock_irqsave(&ch->lock, flags);
2299 		stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1);
2300 		spin_unlock_irqrestore(&ch->lock, flags);
2301 		__napi_schedule(&ch->tx_napi);
2302 	}
2303 }
2304 
2305 /**
2306  * stmmac_init_coalesce - init mitigation options.
2307  * @priv: driver private structure
2308  * Description:
2309  * This inits the coalesce parameters: i.e. timer rate,
2310  * timer handler and default threshold used for enabling the
2311  * interrupt on completion bit.
2312  */
2313 static void stmmac_init_coalesce(struct stmmac_priv *priv)
2314 {
2315 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2316 	u32 chan;
2317 
2318 	priv->tx_coal_frames = STMMAC_TX_FRAMES;
2319 	priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
2320 	priv->rx_coal_frames = STMMAC_RX_FRAMES;
2321 
2322 	for (chan = 0; chan < tx_channel_count; chan++) {
2323 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2324 
2325 		timer_setup(&tx_q->txtimer, stmmac_tx_timer, 0);
2326 	}
2327 }
2328 
2329 static void stmmac_set_rings_length(struct stmmac_priv *priv)
2330 {
2331 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2332 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2333 	u32 chan;
2334 
2335 	/* set TX ring length */
2336 	for (chan = 0; chan < tx_channels_count; chan++)
2337 		stmmac_set_tx_ring_len(priv, priv->ioaddr,
2338 				(DMA_TX_SIZE - 1), chan);
2339 
2340 	/* set RX ring length */
2341 	for (chan = 0; chan < rx_channels_count; chan++)
2342 		stmmac_set_rx_ring_len(priv, priv->ioaddr,
2343 				(DMA_RX_SIZE - 1), chan);
2344 }
2345 
2346 /**
2347  *  stmmac_set_tx_queue_weight - Set TX queue weight
2348  *  @priv: driver private structure
2349  *  Description: It is used for setting TX queues weight
2350  */
2351 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
2352 {
2353 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2354 	u32 weight;
2355 	u32 queue;
2356 
2357 	for (queue = 0; queue < tx_queues_count; queue++) {
2358 		weight = priv->plat->tx_queues_cfg[queue].weight;
2359 		stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
2360 	}
2361 }
2362 
2363 /**
2364  *  stmmac_configure_cbs - Configure CBS in TX queue
2365  *  @priv: driver private structure
2366  *  Description: It is used for configuring CBS in AVB TX queues
2367  */
2368 static void stmmac_configure_cbs(struct stmmac_priv *priv)
2369 {
2370 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2371 	u32 mode_to_use;
2372 	u32 queue;
2373 
2374 	/* queue 0 is reserved for legacy traffic */
2375 	for (queue = 1; queue < tx_queues_count; queue++) {
2376 		mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
2377 		if (mode_to_use == MTL_QUEUE_DCB)
2378 			continue;
2379 
2380 		stmmac_config_cbs(priv, priv->hw,
2381 				priv->plat->tx_queues_cfg[queue].send_slope,
2382 				priv->plat->tx_queues_cfg[queue].idle_slope,
2383 				priv->plat->tx_queues_cfg[queue].high_credit,
2384 				priv->plat->tx_queues_cfg[queue].low_credit,
2385 				queue);
2386 	}
2387 }
2388 
2389 /**
2390  *  stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
2391  *  @priv: driver private structure
2392  *  Description: It is used for mapping RX queues to RX dma channels
2393  */
2394 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
2395 {
2396 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2397 	u32 queue;
2398 	u32 chan;
2399 
2400 	for (queue = 0; queue < rx_queues_count; queue++) {
2401 		chan = priv->plat->rx_queues_cfg[queue].chan;
2402 		stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
2403 	}
2404 }
2405 
2406 /**
2407  *  stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
2408  *  @priv: driver private structure
2409  *  Description: It is used for configuring the RX Queue Priority
2410  */
2411 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
2412 {
2413 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2414 	u32 queue;
2415 	u32 prio;
2416 
2417 	for (queue = 0; queue < rx_queues_count; queue++) {
2418 		if (!priv->plat->rx_queues_cfg[queue].use_prio)
2419 			continue;
2420 
2421 		prio = priv->plat->rx_queues_cfg[queue].prio;
2422 		stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
2423 	}
2424 }
2425 
2426 /**
2427  *  stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
2428  *  @priv: driver private structure
2429  *  Description: It is used for configuring the TX Queue Priority
2430  */
2431 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
2432 {
2433 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2434 	u32 queue;
2435 	u32 prio;
2436 
2437 	for (queue = 0; queue < tx_queues_count; queue++) {
2438 		if (!priv->plat->tx_queues_cfg[queue].use_prio)
2439 			continue;
2440 
2441 		prio = priv->plat->tx_queues_cfg[queue].prio;
2442 		stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
2443 	}
2444 }
2445 
2446 /**
2447  *  stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
2448  *  @priv: driver private structure
2449  *  Description: It is used for configuring the RX queue routing
2450  */
2451 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
2452 {
2453 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2454 	u32 queue;
2455 	u8 packet;
2456 
2457 	for (queue = 0; queue < rx_queues_count; queue++) {
2458 		/* no specific packet type routing specified for the queue */
2459 		if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
2460 			continue;
2461 
2462 		packet = priv->plat->rx_queues_cfg[queue].pkt_route;
2463 		stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
2464 	}
2465 }
2466 
2467 static void stmmac_mac_config_rss(struct stmmac_priv *priv)
2468 {
2469 	if (!priv->dma_cap.rssen || !priv->plat->rss_en) {
2470 		priv->rss.enable = false;
2471 		return;
2472 	}
2473 
2474 	if (priv->dev->features & NETIF_F_RXHASH)
2475 		priv->rss.enable = true;
2476 	else
2477 		priv->rss.enable = false;
2478 
2479 	stmmac_rss_configure(priv, priv->hw, &priv->rss,
2480 			     priv->plat->rx_queues_to_use);
2481 }
2482 
2483 /**
2484  *  stmmac_mtl_configuration - Configure MTL
2485  *  @priv: driver private structure
2486  *  Description: It is used for configurring MTL
2487  */
2488 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
2489 {
2490 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2491 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2492 
2493 	if (tx_queues_count > 1)
2494 		stmmac_set_tx_queue_weight(priv);
2495 
2496 	/* Configure MTL RX algorithms */
2497 	if (rx_queues_count > 1)
2498 		stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
2499 				priv->plat->rx_sched_algorithm);
2500 
2501 	/* Configure MTL TX algorithms */
2502 	if (tx_queues_count > 1)
2503 		stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
2504 				priv->plat->tx_sched_algorithm);
2505 
2506 	/* Configure CBS in AVB TX queues */
2507 	if (tx_queues_count > 1)
2508 		stmmac_configure_cbs(priv);
2509 
2510 	/* Map RX MTL to DMA channels */
2511 	stmmac_rx_queue_dma_chan_map(priv);
2512 
2513 	/* Enable MAC RX Queues */
2514 	stmmac_mac_enable_rx_queues(priv);
2515 
2516 	/* Set RX priorities */
2517 	if (rx_queues_count > 1)
2518 		stmmac_mac_config_rx_queues_prio(priv);
2519 
2520 	/* Set TX priorities */
2521 	if (tx_queues_count > 1)
2522 		stmmac_mac_config_tx_queues_prio(priv);
2523 
2524 	/* Set RX routing */
2525 	if (rx_queues_count > 1)
2526 		stmmac_mac_config_rx_queues_routing(priv);
2527 
2528 	/* Receive Side Scaling */
2529 	if (rx_queues_count > 1)
2530 		stmmac_mac_config_rss(priv);
2531 }
2532 
2533 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
2534 {
2535 	if (priv->dma_cap.asp) {
2536 		netdev_info(priv->dev, "Enabling Safety Features\n");
2537 		stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp);
2538 	} else {
2539 		netdev_info(priv->dev, "No Safety Features support found\n");
2540 	}
2541 }
2542 
2543 /**
2544  * stmmac_hw_setup - setup mac in a usable state.
2545  *  @dev : pointer to the device structure.
2546  *  Description:
2547  *  this is the main function to setup the HW in a usable state because the
2548  *  dma engine is reset, the core registers are configured (e.g. AXI,
2549  *  Checksum features, timers). The DMA is ready to start receiving and
2550  *  transmitting.
2551  *  Return value:
2552  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2553  *  file on failure.
2554  */
2555 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
2556 {
2557 	struct stmmac_priv *priv = netdev_priv(dev);
2558 	u32 rx_cnt = priv->plat->rx_queues_to_use;
2559 	u32 tx_cnt = priv->plat->tx_queues_to_use;
2560 	u32 chan;
2561 	int ret;
2562 
2563 	/* DMA initialization and SW reset */
2564 	ret = stmmac_init_dma_engine(priv);
2565 	if (ret < 0) {
2566 		netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
2567 			   __func__);
2568 		return ret;
2569 	}
2570 
2571 	/* Copy the MAC addr into the HW  */
2572 	stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
2573 
2574 	/* PS and related bits will be programmed according to the speed */
2575 	if (priv->hw->pcs) {
2576 		int speed = priv->plat->mac_port_sel_speed;
2577 
2578 		if ((speed == SPEED_10) || (speed == SPEED_100) ||
2579 		    (speed == SPEED_1000)) {
2580 			priv->hw->ps = speed;
2581 		} else {
2582 			dev_warn(priv->device, "invalid port speed\n");
2583 			priv->hw->ps = 0;
2584 		}
2585 	}
2586 
2587 	/* Initialize the MAC Core */
2588 	stmmac_core_init(priv, priv->hw, dev);
2589 
2590 	/* Initialize MTL*/
2591 	stmmac_mtl_configuration(priv);
2592 
2593 	/* Initialize Safety Features */
2594 	stmmac_safety_feat_configuration(priv);
2595 
2596 	ret = stmmac_rx_ipc(priv, priv->hw);
2597 	if (!ret) {
2598 		netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
2599 		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
2600 		priv->hw->rx_csum = 0;
2601 	}
2602 
2603 	/* Enable the MAC Rx/Tx */
2604 	stmmac_mac_set(priv, priv->ioaddr, true);
2605 
2606 	/* Set the HW DMA mode and the COE */
2607 	stmmac_dma_operation_mode(priv);
2608 
2609 	stmmac_mmc_setup(priv);
2610 
2611 	if (init_ptp) {
2612 		ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
2613 		if (ret < 0)
2614 			netdev_warn(priv->dev, "failed to enable PTP reference clock: %d\n", ret);
2615 
2616 		ret = stmmac_init_ptp(priv);
2617 		if (ret == -EOPNOTSUPP)
2618 			netdev_warn(priv->dev, "PTP not supported by HW\n");
2619 		else if (ret)
2620 			netdev_warn(priv->dev, "PTP init failed\n");
2621 	}
2622 
2623 	priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
2624 
2625 	if (priv->use_riwt) {
2626 		if (!priv->rx_riwt)
2627 			priv->rx_riwt = DEF_DMA_RIWT;
2628 
2629 		ret = stmmac_rx_watchdog(priv, priv->ioaddr, priv->rx_riwt, rx_cnt);
2630 	}
2631 
2632 	if (priv->hw->pcs)
2633 		stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0);
2634 
2635 	/* set TX and RX rings length */
2636 	stmmac_set_rings_length(priv);
2637 
2638 	/* Enable TSO */
2639 	if (priv->tso) {
2640 		for (chan = 0; chan < tx_cnt; chan++)
2641 			stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
2642 	}
2643 
2644 	/* Enable Split Header */
2645 	if (priv->sph && priv->hw->rx_csum) {
2646 		for (chan = 0; chan < rx_cnt; chan++)
2647 			stmmac_enable_sph(priv, priv->ioaddr, 1, chan);
2648 	}
2649 
2650 	/* VLAN Tag Insertion */
2651 	if (priv->dma_cap.vlins)
2652 		stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT);
2653 
2654 	/* TBS */
2655 	for (chan = 0; chan < tx_cnt; chan++) {
2656 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2657 		int enable = tx_q->tbs & STMMAC_TBS_AVAIL;
2658 
2659 		stmmac_enable_tbs(priv, priv->ioaddr, enable, chan);
2660 	}
2661 
2662 	/* Start the ball rolling... */
2663 	stmmac_start_all_dma(priv);
2664 
2665 	return 0;
2666 }
2667 
2668 static void stmmac_hw_teardown(struct net_device *dev)
2669 {
2670 	struct stmmac_priv *priv = netdev_priv(dev);
2671 
2672 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
2673 }
2674 
2675 /**
2676  *  stmmac_open - open entry point of the driver
2677  *  @dev : pointer to the device structure.
2678  *  Description:
2679  *  This function is the open entry point of the driver.
2680  *  Return value:
2681  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2682  *  file on failure.
2683  */
2684 static int stmmac_open(struct net_device *dev)
2685 {
2686 	struct stmmac_priv *priv = netdev_priv(dev);
2687 	int bfsize = 0;
2688 	u32 chan;
2689 	int ret;
2690 
2691 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
2692 	    priv->hw->pcs != STMMAC_PCS_RTBI) {
2693 		ret = stmmac_init_phy(dev);
2694 		if (ret) {
2695 			netdev_err(priv->dev,
2696 				   "%s: Cannot attach to PHY (error: %d)\n",
2697 				   __func__, ret);
2698 			return ret;
2699 		}
2700 	}
2701 
2702 	/* Extra statistics */
2703 	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
2704 	priv->xstats.threshold = tc;
2705 
2706 	bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu);
2707 	if (bfsize < 0)
2708 		bfsize = 0;
2709 
2710 	if (bfsize < BUF_SIZE_16KiB)
2711 		bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
2712 
2713 	priv->dma_buf_sz = bfsize;
2714 	buf_sz = bfsize;
2715 
2716 	priv->rx_copybreak = STMMAC_RX_COPYBREAK;
2717 
2718 	/* Earlier check for TBS */
2719 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) {
2720 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2721 		int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en;
2722 
2723 		tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0;
2724 		if (stmmac_enable_tbs(priv, priv->ioaddr, tbs_en, chan))
2725 			tx_q->tbs &= ~STMMAC_TBS_AVAIL;
2726 	}
2727 
2728 	ret = alloc_dma_desc_resources(priv);
2729 	if (ret < 0) {
2730 		netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
2731 			   __func__);
2732 		goto dma_desc_error;
2733 	}
2734 
2735 	ret = init_dma_desc_rings(dev, GFP_KERNEL);
2736 	if (ret < 0) {
2737 		netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
2738 			   __func__);
2739 		goto init_error;
2740 	}
2741 
2742 	ret = stmmac_hw_setup(dev, true);
2743 	if (ret < 0) {
2744 		netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
2745 		goto init_error;
2746 	}
2747 
2748 	stmmac_init_coalesce(priv);
2749 
2750 	phylink_start(priv->phylink);
2751 
2752 	/* Request the IRQ lines */
2753 	ret = request_irq(dev->irq, stmmac_interrupt,
2754 			  IRQF_SHARED, dev->name, dev);
2755 	if (unlikely(ret < 0)) {
2756 		netdev_err(priv->dev,
2757 			   "%s: ERROR: allocating the IRQ %d (error: %d)\n",
2758 			   __func__, dev->irq, ret);
2759 		goto irq_error;
2760 	}
2761 
2762 	/* Request the Wake IRQ in case of another line is used for WoL */
2763 	if (priv->wol_irq != dev->irq) {
2764 		ret = request_irq(priv->wol_irq, stmmac_interrupt,
2765 				  IRQF_SHARED, dev->name, dev);
2766 		if (unlikely(ret < 0)) {
2767 			netdev_err(priv->dev,
2768 				   "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
2769 				   __func__, priv->wol_irq, ret);
2770 			goto wolirq_error;
2771 		}
2772 	}
2773 
2774 	/* Request the IRQ lines */
2775 	if (priv->lpi_irq > 0) {
2776 		ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
2777 				  dev->name, dev);
2778 		if (unlikely(ret < 0)) {
2779 			netdev_err(priv->dev,
2780 				   "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
2781 				   __func__, priv->lpi_irq, ret);
2782 			goto lpiirq_error;
2783 		}
2784 	}
2785 
2786 	stmmac_enable_all_queues(priv);
2787 	stmmac_start_all_queues(priv);
2788 
2789 	return 0;
2790 
2791 lpiirq_error:
2792 	if (priv->wol_irq != dev->irq)
2793 		free_irq(priv->wol_irq, dev);
2794 wolirq_error:
2795 	free_irq(dev->irq, dev);
2796 irq_error:
2797 	phylink_stop(priv->phylink);
2798 
2799 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2800 		del_timer_sync(&priv->tx_queue[chan].txtimer);
2801 
2802 	stmmac_hw_teardown(dev);
2803 init_error:
2804 	free_dma_desc_resources(priv);
2805 dma_desc_error:
2806 	phylink_disconnect_phy(priv->phylink);
2807 	return ret;
2808 }
2809 
2810 /**
2811  *  stmmac_release - close entry point of the driver
2812  *  @dev : device pointer.
2813  *  Description:
2814  *  This is the stop entry point of the driver.
2815  */
2816 static int stmmac_release(struct net_device *dev)
2817 {
2818 	struct stmmac_priv *priv = netdev_priv(dev);
2819 	u32 chan;
2820 
2821 	if (priv->eee_enabled)
2822 		del_timer_sync(&priv->eee_ctrl_timer);
2823 
2824 	/* Stop and disconnect the PHY */
2825 	phylink_stop(priv->phylink);
2826 	phylink_disconnect_phy(priv->phylink);
2827 
2828 	stmmac_stop_all_queues(priv);
2829 
2830 	stmmac_disable_all_queues(priv);
2831 
2832 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2833 		del_timer_sync(&priv->tx_queue[chan].txtimer);
2834 
2835 	/* Free the IRQ lines */
2836 	free_irq(dev->irq, dev);
2837 	if (priv->wol_irq != dev->irq)
2838 		free_irq(priv->wol_irq, dev);
2839 	if (priv->lpi_irq > 0)
2840 		free_irq(priv->lpi_irq, dev);
2841 
2842 	/* Stop TX/RX DMA and clear the descriptors */
2843 	stmmac_stop_all_dma(priv);
2844 
2845 	/* Release and free the Rx/Tx resources */
2846 	free_dma_desc_resources(priv);
2847 
2848 	/* Disable the MAC Rx/Tx */
2849 	stmmac_mac_set(priv, priv->ioaddr, false);
2850 
2851 	netif_carrier_off(dev);
2852 
2853 	stmmac_release_ptp(priv);
2854 
2855 	return 0;
2856 }
2857 
2858 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb,
2859 			       struct stmmac_tx_queue *tx_q)
2860 {
2861 	u16 tag = 0x0, inner_tag = 0x0;
2862 	u32 inner_type = 0x0;
2863 	struct dma_desc *p;
2864 
2865 	if (!priv->dma_cap.vlins)
2866 		return false;
2867 	if (!skb_vlan_tag_present(skb))
2868 		return false;
2869 	if (skb->vlan_proto == htons(ETH_P_8021AD)) {
2870 		inner_tag = skb_vlan_tag_get(skb);
2871 		inner_type = STMMAC_VLAN_INSERT;
2872 	}
2873 
2874 	tag = skb_vlan_tag_get(skb);
2875 
2876 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
2877 		p = &tx_q->dma_entx[tx_q->cur_tx].basic;
2878 	else
2879 		p = &tx_q->dma_tx[tx_q->cur_tx];
2880 
2881 	if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type))
2882 		return false;
2883 
2884 	stmmac_set_tx_owner(priv, p);
2885 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2886 	return true;
2887 }
2888 
2889 /**
2890  *  stmmac_tso_allocator - close entry point of the driver
2891  *  @priv: driver private structure
2892  *  @des: buffer start address
2893  *  @total_len: total length to fill in descriptors
2894  *  @last_segmant: condition for the last descriptor
2895  *  @queue: TX queue index
2896  *  Description:
2897  *  This function fills descriptor and request new descriptors according to
2898  *  buffer length to fill
2899  */
2900 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
2901 				 int total_len, bool last_segment, u32 queue)
2902 {
2903 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2904 	struct dma_desc *desc;
2905 	u32 buff_size;
2906 	int tmp_len;
2907 
2908 	tmp_len = total_len;
2909 
2910 	while (tmp_len > 0) {
2911 		dma_addr_t curr_addr;
2912 
2913 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2914 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
2915 
2916 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
2917 			desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
2918 		else
2919 			desc = &tx_q->dma_tx[tx_q->cur_tx];
2920 
2921 		curr_addr = des + (total_len - tmp_len);
2922 		if (priv->dma_cap.addr64 <= 32)
2923 			desc->des0 = cpu_to_le32(curr_addr);
2924 		else
2925 			stmmac_set_desc_addr(priv, desc, curr_addr);
2926 
2927 		buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
2928 			    TSO_MAX_BUFF_SIZE : tmp_len;
2929 
2930 		stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
2931 				0, 1,
2932 				(last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
2933 				0, 0);
2934 
2935 		tmp_len -= TSO_MAX_BUFF_SIZE;
2936 	}
2937 }
2938 
2939 /**
2940  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
2941  *  @skb : the socket buffer
2942  *  @dev : device pointer
2943  *  Description: this is the transmit function that is called on TSO frames
2944  *  (support available on GMAC4 and newer chips).
2945  *  Diagram below show the ring programming in case of TSO frames:
2946  *
2947  *  First Descriptor
2948  *   --------
2949  *   | DES0 |---> buffer1 = L2/L3/L4 header
2950  *   | DES1 |---> TCP Payload (can continue on next descr...)
2951  *   | DES2 |---> buffer 1 and 2 len
2952  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
2953  *   --------
2954  *	|
2955  *     ...
2956  *	|
2957  *   --------
2958  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
2959  *   | DES1 | --|
2960  *   | DES2 | --> buffer 1 and 2 len
2961  *   | DES3 |
2962  *   --------
2963  *
2964  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
2965  */
2966 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
2967 {
2968 	struct dma_desc *desc, *first, *mss_desc = NULL;
2969 	struct stmmac_priv *priv = netdev_priv(dev);
2970 	int desc_size, tmp_pay_len = 0, first_tx;
2971 	int nfrags = skb_shinfo(skb)->nr_frags;
2972 	u32 queue = skb_get_queue_mapping(skb);
2973 	unsigned int first_entry, tx_packets;
2974 	struct stmmac_tx_queue *tx_q;
2975 	bool has_vlan, set_ic;
2976 	u8 proto_hdr_len, hdr;
2977 	u32 pay_len, mss;
2978 	dma_addr_t des;
2979 	int i;
2980 
2981 	tx_q = &priv->tx_queue[queue];
2982 	first_tx = tx_q->cur_tx;
2983 
2984 	/* Compute header lengths */
2985 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
2986 		proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr);
2987 		hdr = sizeof(struct udphdr);
2988 	} else {
2989 		proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2990 		hdr = tcp_hdrlen(skb);
2991 	}
2992 
2993 	/* Desc availability based on threshold should be enough safe */
2994 	if (unlikely(stmmac_tx_avail(priv, queue) <
2995 		(((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
2996 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
2997 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
2998 								queue));
2999 			/* This is a hard error, log it. */
3000 			netdev_err(priv->dev,
3001 				   "%s: Tx Ring full when queue awake\n",
3002 				   __func__);
3003 		}
3004 		return NETDEV_TX_BUSY;
3005 	}
3006 
3007 	pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
3008 
3009 	mss = skb_shinfo(skb)->gso_size;
3010 
3011 	/* set new MSS value if needed */
3012 	if (mss != tx_q->mss) {
3013 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
3014 			mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3015 		else
3016 			mss_desc = &tx_q->dma_tx[tx_q->cur_tx];
3017 
3018 		stmmac_set_mss(priv, mss_desc, mss);
3019 		tx_q->mss = mss;
3020 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
3021 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
3022 	}
3023 
3024 	if (netif_msg_tx_queued(priv)) {
3025 		pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
3026 			__func__, hdr, proto_hdr_len, pay_len, mss);
3027 		pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
3028 			skb->data_len);
3029 	}
3030 
3031 	/* Check if VLAN can be inserted by HW */
3032 	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
3033 
3034 	first_entry = tx_q->cur_tx;
3035 	WARN_ON(tx_q->tx_skbuff[first_entry]);
3036 
3037 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
3038 		desc = &tx_q->dma_entx[first_entry].basic;
3039 	else
3040 		desc = &tx_q->dma_tx[first_entry];
3041 	first = desc;
3042 
3043 	if (has_vlan)
3044 		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
3045 
3046 	/* first descriptor: fill Headers on Buf1 */
3047 	des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
3048 			     DMA_TO_DEVICE);
3049 	if (dma_mapping_error(priv->device, des))
3050 		goto dma_map_err;
3051 
3052 	tx_q->tx_skbuff_dma[first_entry].buf = des;
3053 	tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
3054 
3055 	if (priv->dma_cap.addr64 <= 32) {
3056 		first->des0 = cpu_to_le32(des);
3057 
3058 		/* Fill start of payload in buff2 of first descriptor */
3059 		if (pay_len)
3060 			first->des1 = cpu_to_le32(des + proto_hdr_len);
3061 
3062 		/* If needed take extra descriptors to fill the remaining payload */
3063 		tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
3064 	} else {
3065 		stmmac_set_desc_addr(priv, first, des);
3066 		tmp_pay_len = pay_len;
3067 		des += proto_hdr_len;
3068 		pay_len = 0;
3069 	}
3070 
3071 	stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
3072 
3073 	/* Prepare fragments */
3074 	for (i = 0; i < nfrags; i++) {
3075 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3076 
3077 		des = skb_frag_dma_map(priv->device, frag, 0,
3078 				       skb_frag_size(frag),
3079 				       DMA_TO_DEVICE);
3080 		if (dma_mapping_error(priv->device, des))
3081 			goto dma_map_err;
3082 
3083 		stmmac_tso_allocator(priv, des, skb_frag_size(frag),
3084 				     (i == nfrags - 1), queue);
3085 
3086 		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
3087 		tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
3088 		tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
3089 	}
3090 
3091 	tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
3092 
3093 	/* Only the last descriptor gets to point to the skb. */
3094 	tx_q->tx_skbuff[tx_q->cur_tx] = skb;
3095 
3096 	/* Manage tx mitigation */
3097 	tx_packets = (tx_q->cur_tx + 1) - first_tx;
3098 	tx_q->tx_count_frames += tx_packets;
3099 
3100 	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
3101 		set_ic = true;
3102 	else if (!priv->tx_coal_frames)
3103 		set_ic = false;
3104 	else if (tx_packets > priv->tx_coal_frames)
3105 		set_ic = true;
3106 	else if ((tx_q->tx_count_frames % priv->tx_coal_frames) < tx_packets)
3107 		set_ic = true;
3108 	else
3109 		set_ic = false;
3110 
3111 	if (set_ic) {
3112 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
3113 			desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3114 		else
3115 			desc = &tx_q->dma_tx[tx_q->cur_tx];
3116 
3117 		tx_q->tx_count_frames = 0;
3118 		stmmac_set_tx_ic(priv, desc);
3119 		priv->xstats.tx_set_ic_bit++;
3120 	}
3121 
3122 	/* We've used all descriptors we need for this skb, however,
3123 	 * advance cur_tx so that it references a fresh descriptor.
3124 	 * ndo_start_xmit will fill this descriptor the next time it's
3125 	 * called and stmmac_tx_clean may clean up to this descriptor.
3126 	 */
3127 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
3128 
3129 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3130 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3131 			  __func__);
3132 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3133 	}
3134 
3135 	dev->stats.tx_bytes += skb->len;
3136 	priv->xstats.tx_tso_frames++;
3137 	priv->xstats.tx_tso_nfrags += nfrags;
3138 
3139 	if (priv->sarc_type)
3140 		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
3141 
3142 	skb_tx_timestamp(skb);
3143 
3144 	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3145 		     priv->hwts_tx_en)) {
3146 		/* declare that device is doing timestamping */
3147 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3148 		stmmac_enable_tx_timestamp(priv, first);
3149 	}
3150 
3151 	/* Complete the first descriptor before granting the DMA */
3152 	stmmac_prepare_tso_tx_desc(priv, first, 1,
3153 			proto_hdr_len,
3154 			pay_len,
3155 			1, tx_q->tx_skbuff_dma[first_entry].last_segment,
3156 			hdr / 4, (skb->len - proto_hdr_len));
3157 
3158 	/* If context desc is used to change MSS */
3159 	if (mss_desc) {
3160 		/* Make sure that first descriptor has been completely
3161 		 * written, including its own bit. This is because MSS is
3162 		 * actually before first descriptor, so we need to make
3163 		 * sure that MSS's own bit is the last thing written.
3164 		 */
3165 		dma_wmb();
3166 		stmmac_set_tx_owner(priv, mss_desc);
3167 	}
3168 
3169 	/* The own bit must be the latest setting done when prepare the
3170 	 * descriptor and then barrier is needed to make sure that
3171 	 * all is coherent before granting the DMA engine.
3172 	 */
3173 	wmb();
3174 
3175 	if (netif_msg_pktdata(priv)) {
3176 		pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
3177 			__func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3178 			tx_q->cur_tx, first, nfrags);
3179 		pr_info(">>> frame to be transmitted: ");
3180 		print_pkt(skb->data, skb_headlen(skb));
3181 	}
3182 
3183 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3184 
3185 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
3186 		desc_size = sizeof(struct dma_edesc);
3187 	else
3188 		desc_size = sizeof(struct dma_desc);
3189 
3190 	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
3191 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3192 	stmmac_tx_timer_arm(priv, queue);
3193 
3194 	return NETDEV_TX_OK;
3195 
3196 dma_map_err:
3197 	dev_err(priv->device, "Tx dma map failed\n");
3198 	dev_kfree_skb(skb);
3199 	priv->dev->stats.tx_dropped++;
3200 	return NETDEV_TX_OK;
3201 }
3202 
3203 /**
3204  *  stmmac_xmit - Tx entry point of the driver
3205  *  @skb : the socket buffer
3206  *  @dev : device pointer
3207  *  Description : this is the tx entry point of the driver.
3208  *  It programs the chain or the ring and supports oversized frames
3209  *  and SG feature.
3210  */
3211 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
3212 {
3213 	unsigned int first_entry, tx_packets, enh_desc;
3214 	struct stmmac_priv *priv = netdev_priv(dev);
3215 	unsigned int nopaged_len = skb_headlen(skb);
3216 	int i, csum_insertion = 0, is_jumbo = 0;
3217 	u32 queue = skb_get_queue_mapping(skb);
3218 	int nfrags = skb_shinfo(skb)->nr_frags;
3219 	int gso = skb_shinfo(skb)->gso_type;
3220 	struct dma_edesc *tbs_desc = NULL;
3221 	int entry, desc_size, first_tx;
3222 	struct dma_desc *desc, *first;
3223 	struct stmmac_tx_queue *tx_q;
3224 	bool has_vlan, set_ic;
3225 	dma_addr_t des;
3226 
3227 	tx_q = &priv->tx_queue[queue];
3228 	first_tx = tx_q->cur_tx;
3229 
3230 	if (priv->tx_path_in_lpi_mode)
3231 		stmmac_disable_eee_mode(priv);
3232 
3233 	/* Manage oversized TCP frames for GMAC4 device */
3234 	if (skb_is_gso(skb) && priv->tso) {
3235 		if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
3236 			return stmmac_tso_xmit(skb, dev);
3237 		if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4))
3238 			return stmmac_tso_xmit(skb, dev);
3239 	}
3240 
3241 	if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
3242 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3243 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3244 								queue));
3245 			/* This is a hard error, log it. */
3246 			netdev_err(priv->dev,
3247 				   "%s: Tx Ring full when queue awake\n",
3248 				   __func__);
3249 		}
3250 		return NETDEV_TX_BUSY;
3251 	}
3252 
3253 	/* Check if VLAN can be inserted by HW */
3254 	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
3255 
3256 	entry = tx_q->cur_tx;
3257 	first_entry = entry;
3258 	WARN_ON(tx_q->tx_skbuff[first_entry]);
3259 
3260 	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
3261 
3262 	if (likely(priv->extend_desc))
3263 		desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3264 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3265 		desc = &tx_q->dma_entx[entry].basic;
3266 	else
3267 		desc = tx_q->dma_tx + entry;
3268 
3269 	first = desc;
3270 
3271 	if (has_vlan)
3272 		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
3273 
3274 	enh_desc = priv->plat->enh_desc;
3275 	/* To program the descriptors according to the size of the frame */
3276 	if (enh_desc)
3277 		is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
3278 
3279 	if (unlikely(is_jumbo)) {
3280 		entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
3281 		if (unlikely(entry < 0) && (entry != -EINVAL))
3282 			goto dma_map_err;
3283 	}
3284 
3285 	for (i = 0; i < nfrags; i++) {
3286 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3287 		int len = skb_frag_size(frag);
3288 		bool last_segment = (i == (nfrags - 1));
3289 
3290 		entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
3291 		WARN_ON(tx_q->tx_skbuff[entry]);
3292 
3293 		if (likely(priv->extend_desc))
3294 			desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3295 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3296 			desc = &tx_q->dma_entx[entry].basic;
3297 		else
3298 			desc = tx_q->dma_tx + entry;
3299 
3300 		des = skb_frag_dma_map(priv->device, frag, 0, len,
3301 				       DMA_TO_DEVICE);
3302 		if (dma_mapping_error(priv->device, des))
3303 			goto dma_map_err; /* should reuse desc w/o issues */
3304 
3305 		tx_q->tx_skbuff_dma[entry].buf = des;
3306 
3307 		stmmac_set_desc_addr(priv, desc, des);
3308 
3309 		tx_q->tx_skbuff_dma[entry].map_as_page = true;
3310 		tx_q->tx_skbuff_dma[entry].len = len;
3311 		tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
3312 
3313 		/* Prepare the descriptor and set the own bit too */
3314 		stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
3315 				priv->mode, 1, last_segment, skb->len);
3316 	}
3317 
3318 	/* Only the last descriptor gets to point to the skb. */
3319 	tx_q->tx_skbuff[entry] = skb;
3320 
3321 	/* According to the coalesce parameter the IC bit for the latest
3322 	 * segment is reset and the timer re-started to clean the tx status.
3323 	 * This approach takes care about the fragments: desc is the first
3324 	 * element in case of no SG.
3325 	 */
3326 	tx_packets = (entry + 1) - first_tx;
3327 	tx_q->tx_count_frames += tx_packets;
3328 
3329 	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
3330 		set_ic = true;
3331 	else if (!priv->tx_coal_frames)
3332 		set_ic = false;
3333 	else if (tx_packets > priv->tx_coal_frames)
3334 		set_ic = true;
3335 	else if ((tx_q->tx_count_frames % priv->tx_coal_frames) < tx_packets)
3336 		set_ic = true;
3337 	else
3338 		set_ic = false;
3339 
3340 	if (set_ic) {
3341 		if (likely(priv->extend_desc))
3342 			desc = &tx_q->dma_etx[entry].basic;
3343 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3344 			desc = &tx_q->dma_entx[entry].basic;
3345 		else
3346 			desc = &tx_q->dma_tx[entry];
3347 
3348 		tx_q->tx_count_frames = 0;
3349 		stmmac_set_tx_ic(priv, desc);
3350 		priv->xstats.tx_set_ic_bit++;
3351 	}
3352 
3353 	/* We've used all descriptors we need for this skb, however,
3354 	 * advance cur_tx so that it references a fresh descriptor.
3355 	 * ndo_start_xmit will fill this descriptor the next time it's
3356 	 * called and stmmac_tx_clean may clean up to this descriptor.
3357 	 */
3358 	entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
3359 	tx_q->cur_tx = entry;
3360 
3361 	if (netif_msg_pktdata(priv)) {
3362 		netdev_dbg(priv->dev,
3363 			   "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
3364 			   __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3365 			   entry, first, nfrags);
3366 
3367 		netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
3368 		print_pkt(skb->data, skb->len);
3369 	}
3370 
3371 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3372 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3373 			  __func__);
3374 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3375 	}
3376 
3377 	dev->stats.tx_bytes += skb->len;
3378 
3379 	if (priv->sarc_type)
3380 		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
3381 
3382 	skb_tx_timestamp(skb);
3383 
3384 	/* Ready to fill the first descriptor and set the OWN bit w/o any
3385 	 * problems because all the descriptors are actually ready to be
3386 	 * passed to the DMA engine.
3387 	 */
3388 	if (likely(!is_jumbo)) {
3389 		bool last_segment = (nfrags == 0);
3390 
3391 		des = dma_map_single(priv->device, skb->data,
3392 				     nopaged_len, DMA_TO_DEVICE);
3393 		if (dma_mapping_error(priv->device, des))
3394 			goto dma_map_err;
3395 
3396 		tx_q->tx_skbuff_dma[first_entry].buf = des;
3397 
3398 		stmmac_set_desc_addr(priv, first, des);
3399 
3400 		tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
3401 		tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
3402 
3403 		if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3404 			     priv->hwts_tx_en)) {
3405 			/* declare that device is doing timestamping */
3406 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3407 			stmmac_enable_tx_timestamp(priv, first);
3408 		}
3409 
3410 		/* Prepare the first descriptor setting the OWN bit too */
3411 		stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
3412 				csum_insertion, priv->mode, 0, last_segment,
3413 				skb->len);
3414 	}
3415 
3416 	if (tx_q->tbs & STMMAC_TBS_EN) {
3417 		struct timespec64 ts = ns_to_timespec64(skb->tstamp);
3418 
3419 		tbs_desc = &tx_q->dma_entx[first_entry];
3420 		stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec);
3421 	}
3422 
3423 	stmmac_set_tx_owner(priv, first);
3424 
3425 	/* The own bit must be the latest setting done when prepare the
3426 	 * descriptor and then barrier is needed to make sure that
3427 	 * all is coherent before granting the DMA engine.
3428 	 */
3429 	wmb();
3430 
3431 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3432 
3433 	stmmac_enable_dma_transmission(priv, priv->ioaddr);
3434 
3435 	if (likely(priv->extend_desc))
3436 		desc_size = sizeof(struct dma_extended_desc);
3437 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3438 		desc_size = sizeof(struct dma_edesc);
3439 	else
3440 		desc_size = sizeof(struct dma_desc);
3441 
3442 	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
3443 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3444 	stmmac_tx_timer_arm(priv, queue);
3445 
3446 	return NETDEV_TX_OK;
3447 
3448 dma_map_err:
3449 	netdev_err(priv->dev, "Tx DMA map failed\n");
3450 	dev_kfree_skb(skb);
3451 	priv->dev->stats.tx_dropped++;
3452 	return NETDEV_TX_OK;
3453 }
3454 
3455 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
3456 {
3457 	struct vlan_ethhdr *veth;
3458 	__be16 vlan_proto;
3459 	u16 vlanid;
3460 
3461 	veth = (struct vlan_ethhdr *)skb->data;
3462 	vlan_proto = veth->h_vlan_proto;
3463 
3464 	if ((vlan_proto == htons(ETH_P_8021Q) &&
3465 	     dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
3466 	    (vlan_proto == htons(ETH_P_8021AD) &&
3467 	     dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
3468 		/* pop the vlan tag */
3469 		vlanid = ntohs(veth->h_vlan_TCI);
3470 		memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
3471 		skb_pull(skb, VLAN_HLEN);
3472 		__vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
3473 	}
3474 }
3475 
3476 
3477 static inline int stmmac_rx_threshold_count(struct stmmac_rx_queue *rx_q)
3478 {
3479 	if (rx_q->rx_zeroc_thresh < STMMAC_RX_THRESH)
3480 		return 0;
3481 
3482 	return 1;
3483 }
3484 
3485 /**
3486  * stmmac_rx_refill - refill used skb preallocated buffers
3487  * @priv: driver private structure
3488  * @queue: RX queue index
3489  * Description : this is to reallocate the skb for the reception process
3490  * that is based on zero-copy.
3491  */
3492 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
3493 {
3494 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3495 	int len, dirty = stmmac_rx_dirty(priv, queue);
3496 	unsigned int entry = rx_q->dirty_rx;
3497 
3498 	len = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE) * PAGE_SIZE;
3499 
3500 	while (dirty-- > 0) {
3501 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
3502 		struct dma_desc *p;
3503 		bool use_rx_wd;
3504 
3505 		if (priv->extend_desc)
3506 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
3507 		else
3508 			p = rx_q->dma_rx + entry;
3509 
3510 		if (!buf->page) {
3511 			buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
3512 			if (!buf->page)
3513 				break;
3514 		}
3515 
3516 		if (priv->sph && !buf->sec_page) {
3517 			buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
3518 			if (!buf->sec_page)
3519 				break;
3520 
3521 			buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
3522 
3523 			dma_sync_single_for_device(priv->device, buf->sec_addr,
3524 						   len, DMA_FROM_DEVICE);
3525 		}
3526 
3527 		buf->addr = page_pool_get_dma_addr(buf->page);
3528 
3529 		/* Sync whole allocation to device. This will invalidate old
3530 		 * data.
3531 		 */
3532 		dma_sync_single_for_device(priv->device, buf->addr, len,
3533 					   DMA_FROM_DEVICE);
3534 
3535 		stmmac_set_desc_addr(priv, p, buf->addr);
3536 		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr);
3537 		stmmac_refill_desc3(priv, rx_q, p);
3538 
3539 		rx_q->rx_count_frames++;
3540 		rx_q->rx_count_frames += priv->rx_coal_frames;
3541 		if (rx_q->rx_count_frames > priv->rx_coal_frames)
3542 			rx_q->rx_count_frames = 0;
3543 
3544 		use_rx_wd = !priv->rx_coal_frames;
3545 		use_rx_wd |= rx_q->rx_count_frames > 0;
3546 		if (!priv->use_riwt)
3547 			use_rx_wd = false;
3548 
3549 		dma_wmb();
3550 		stmmac_set_rx_owner(priv, p, use_rx_wd);
3551 
3552 		entry = STMMAC_GET_ENTRY(entry, DMA_RX_SIZE);
3553 	}
3554 	rx_q->dirty_rx = entry;
3555 	rx_q->rx_tail_addr = rx_q->dma_rx_phy +
3556 			    (rx_q->dirty_rx * sizeof(struct dma_desc));
3557 	stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
3558 }
3559 
3560 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv,
3561 				       struct dma_desc *p,
3562 				       int status, unsigned int len)
3563 {
3564 	int ret, coe = priv->hw->rx_csum;
3565 	unsigned int plen = 0, hlen = 0;
3566 
3567 	/* Not first descriptor, buffer is always zero */
3568 	if (priv->sph && len)
3569 		return 0;
3570 
3571 	/* First descriptor, get split header length */
3572 	ret = stmmac_get_rx_header_len(priv, p, &hlen);
3573 	if (priv->sph && hlen) {
3574 		priv->xstats.rx_split_hdr_pkt_n++;
3575 		return hlen;
3576 	}
3577 
3578 	/* First descriptor, not last descriptor and not split header */
3579 	if (status & rx_not_ls)
3580 		return priv->dma_buf_sz;
3581 
3582 	plen = stmmac_get_rx_frame_len(priv, p, coe);
3583 
3584 	/* First descriptor and last descriptor and not split header */
3585 	return min_t(unsigned int, priv->dma_buf_sz, plen);
3586 }
3587 
3588 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv,
3589 				       struct dma_desc *p,
3590 				       int status, unsigned int len)
3591 {
3592 	int coe = priv->hw->rx_csum;
3593 	unsigned int plen = 0;
3594 
3595 	/* Not split header, buffer is not available */
3596 	if (!priv->sph)
3597 		return 0;
3598 
3599 	/* Not last descriptor */
3600 	if (status & rx_not_ls)
3601 		return priv->dma_buf_sz;
3602 
3603 	plen = stmmac_get_rx_frame_len(priv, p, coe);
3604 
3605 	/* Last descriptor */
3606 	return plen - len;
3607 }
3608 
3609 /**
3610  * stmmac_rx - manage the receive process
3611  * @priv: driver private structure
3612  * @limit: napi bugget
3613  * @queue: RX queue index.
3614  * Description :  this the function called by the napi poll method.
3615  * It gets all the frames inside the ring.
3616  */
3617 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
3618 {
3619 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3620 	struct stmmac_channel *ch = &priv->channel[queue];
3621 	unsigned int count = 0, error = 0, len = 0;
3622 	int status = 0, coe = priv->hw->rx_csum;
3623 	unsigned int next_entry = rx_q->cur_rx;
3624 	struct sk_buff *skb = NULL;
3625 
3626 	if (netif_msg_rx_status(priv)) {
3627 		void *rx_head;
3628 
3629 		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
3630 		if (priv->extend_desc)
3631 			rx_head = (void *)rx_q->dma_erx;
3632 		else
3633 			rx_head = (void *)rx_q->dma_rx;
3634 
3635 		stmmac_display_ring(priv, rx_head, DMA_RX_SIZE, true);
3636 	}
3637 	while (count < limit) {
3638 		unsigned int buf1_len = 0, buf2_len = 0;
3639 		enum pkt_hash_types hash_type;
3640 		struct stmmac_rx_buffer *buf;
3641 		struct dma_desc *np, *p;
3642 		int entry;
3643 		u32 hash;
3644 
3645 		if (!count && rx_q->state_saved) {
3646 			skb = rx_q->state.skb;
3647 			error = rx_q->state.error;
3648 			len = rx_q->state.len;
3649 		} else {
3650 			rx_q->state_saved = false;
3651 			skb = NULL;
3652 			error = 0;
3653 			len = 0;
3654 		}
3655 
3656 		if (count >= limit)
3657 			break;
3658 
3659 read_again:
3660 		buf1_len = 0;
3661 		buf2_len = 0;
3662 		entry = next_entry;
3663 		buf = &rx_q->buf_pool[entry];
3664 
3665 		if (priv->extend_desc)
3666 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
3667 		else
3668 			p = rx_q->dma_rx + entry;
3669 
3670 		/* read the status of the incoming frame */
3671 		status = stmmac_rx_status(priv, &priv->dev->stats,
3672 				&priv->xstats, p);
3673 		/* check if managed by the DMA otherwise go ahead */
3674 		if (unlikely(status & dma_own))
3675 			break;
3676 
3677 		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, DMA_RX_SIZE);
3678 		next_entry = rx_q->cur_rx;
3679 
3680 		if (priv->extend_desc)
3681 			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
3682 		else
3683 			np = rx_q->dma_rx + next_entry;
3684 
3685 		prefetch(np);
3686 
3687 		if (priv->extend_desc)
3688 			stmmac_rx_extended_status(priv, &priv->dev->stats,
3689 					&priv->xstats, rx_q->dma_erx + entry);
3690 		if (unlikely(status == discard_frame)) {
3691 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
3692 			buf->page = NULL;
3693 			error = 1;
3694 			if (!priv->hwts_rx_en)
3695 				priv->dev->stats.rx_errors++;
3696 		}
3697 
3698 		if (unlikely(error && (status & rx_not_ls)))
3699 			goto read_again;
3700 		if (unlikely(error)) {
3701 			dev_kfree_skb(skb);
3702 			skb = NULL;
3703 			count++;
3704 			continue;
3705 		}
3706 
3707 		/* Buffer is good. Go on. */
3708 
3709 		prefetch(page_address(buf->page));
3710 		if (buf->sec_page)
3711 			prefetch(page_address(buf->sec_page));
3712 
3713 		buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
3714 		len += buf1_len;
3715 		buf2_len = stmmac_rx_buf2_len(priv, p, status, len);
3716 		len += buf2_len;
3717 
3718 		/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
3719 		 * Type frames (LLC/LLC-SNAP)
3720 		 *
3721 		 * llc_snap is never checked in GMAC >= 4, so this ACS
3722 		 * feature is always disabled and packets need to be
3723 		 * stripped manually.
3724 		 */
3725 		if (likely(!(status & rx_not_ls)) &&
3726 		    (likely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
3727 		     unlikely(status != llc_snap))) {
3728 			if (buf2_len)
3729 				buf2_len -= ETH_FCS_LEN;
3730 			else
3731 				buf1_len -= ETH_FCS_LEN;
3732 
3733 			len -= ETH_FCS_LEN;
3734 		}
3735 
3736 		if (!skb) {
3737 			skb = napi_alloc_skb(&ch->rx_napi, buf1_len);
3738 			if (!skb) {
3739 				priv->dev->stats.rx_dropped++;
3740 				count++;
3741 				goto drain_data;
3742 			}
3743 
3744 			dma_sync_single_for_cpu(priv->device, buf->addr,
3745 						buf1_len, DMA_FROM_DEVICE);
3746 			skb_copy_to_linear_data(skb, page_address(buf->page),
3747 						buf1_len);
3748 			skb_put(skb, buf1_len);
3749 
3750 			/* Data payload copied into SKB, page ready for recycle */
3751 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
3752 			buf->page = NULL;
3753 		} else if (buf1_len) {
3754 			dma_sync_single_for_cpu(priv->device, buf->addr,
3755 						buf1_len, DMA_FROM_DEVICE);
3756 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
3757 					buf->page, 0, buf1_len,
3758 					priv->dma_buf_sz);
3759 
3760 			/* Data payload appended into SKB */
3761 			page_pool_release_page(rx_q->page_pool, buf->page);
3762 			buf->page = NULL;
3763 		}
3764 
3765 		if (buf2_len) {
3766 			dma_sync_single_for_cpu(priv->device, buf->sec_addr,
3767 						buf2_len, DMA_FROM_DEVICE);
3768 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
3769 					buf->sec_page, 0, buf2_len,
3770 					priv->dma_buf_sz);
3771 
3772 			/* Data payload appended into SKB */
3773 			page_pool_release_page(rx_q->page_pool, buf->sec_page);
3774 			buf->sec_page = NULL;
3775 		}
3776 
3777 drain_data:
3778 		if (likely(status & rx_not_ls))
3779 			goto read_again;
3780 		if (!skb)
3781 			continue;
3782 
3783 		/* Got entire packet into SKB. Finish it. */
3784 
3785 		stmmac_get_rx_hwtstamp(priv, p, np, skb);
3786 		stmmac_rx_vlan(priv->dev, skb);
3787 		skb->protocol = eth_type_trans(skb, priv->dev);
3788 
3789 		if (unlikely(!coe))
3790 			skb_checksum_none_assert(skb);
3791 		else
3792 			skb->ip_summed = CHECKSUM_UNNECESSARY;
3793 
3794 		if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
3795 			skb_set_hash(skb, hash, hash_type);
3796 
3797 		skb_record_rx_queue(skb, queue);
3798 		napi_gro_receive(&ch->rx_napi, skb);
3799 		skb = NULL;
3800 
3801 		priv->dev->stats.rx_packets++;
3802 		priv->dev->stats.rx_bytes += len;
3803 		count++;
3804 	}
3805 
3806 	if (status & rx_not_ls || skb) {
3807 		rx_q->state_saved = true;
3808 		rx_q->state.skb = skb;
3809 		rx_q->state.error = error;
3810 		rx_q->state.len = len;
3811 	}
3812 
3813 	stmmac_rx_refill(priv, queue);
3814 
3815 	priv->xstats.rx_pkt_n += count;
3816 
3817 	return count;
3818 }
3819 
3820 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
3821 {
3822 	struct stmmac_channel *ch =
3823 		container_of(napi, struct stmmac_channel, rx_napi);
3824 	struct stmmac_priv *priv = ch->priv_data;
3825 	u32 chan = ch->index;
3826 	int work_done;
3827 
3828 	priv->xstats.napi_poll++;
3829 
3830 	work_done = stmmac_rx(priv, budget, chan);
3831 	if (work_done < budget && napi_complete_done(napi, work_done)) {
3832 		unsigned long flags;
3833 
3834 		spin_lock_irqsave(&ch->lock, flags);
3835 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
3836 		spin_unlock_irqrestore(&ch->lock, flags);
3837 	}
3838 
3839 	return work_done;
3840 }
3841 
3842 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
3843 {
3844 	struct stmmac_channel *ch =
3845 		container_of(napi, struct stmmac_channel, tx_napi);
3846 	struct stmmac_priv *priv = ch->priv_data;
3847 	u32 chan = ch->index;
3848 	int work_done;
3849 
3850 	priv->xstats.napi_poll++;
3851 
3852 	work_done = stmmac_tx_clean(priv, DMA_TX_SIZE, chan);
3853 	work_done = min(work_done, budget);
3854 
3855 	if (work_done < budget && napi_complete_done(napi, work_done)) {
3856 		unsigned long flags;
3857 
3858 		spin_lock_irqsave(&ch->lock, flags);
3859 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
3860 		spin_unlock_irqrestore(&ch->lock, flags);
3861 	}
3862 
3863 	return work_done;
3864 }
3865 
3866 /**
3867  *  stmmac_tx_timeout
3868  *  @dev : Pointer to net device structure
3869  *  Description: this function is called when a packet transmission fails to
3870  *   complete within a reasonable time. The driver will mark the error in the
3871  *   netdev structure and arrange for the device to be reset to a sane state
3872  *   in order to transmit a new packet.
3873  */
3874 static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue)
3875 {
3876 	struct stmmac_priv *priv = netdev_priv(dev);
3877 
3878 	stmmac_global_err(priv);
3879 }
3880 
3881 /**
3882  *  stmmac_set_rx_mode - entry point for multicast addressing
3883  *  @dev : pointer to the device structure
3884  *  Description:
3885  *  This function is a driver entry point which gets called by the kernel
3886  *  whenever multicast addresses must be enabled/disabled.
3887  *  Return value:
3888  *  void.
3889  */
3890 static void stmmac_set_rx_mode(struct net_device *dev)
3891 {
3892 	struct stmmac_priv *priv = netdev_priv(dev);
3893 
3894 	stmmac_set_filter(priv, priv->hw, dev);
3895 }
3896 
3897 /**
3898  *  stmmac_change_mtu - entry point to change MTU size for the device.
3899  *  @dev : device pointer.
3900  *  @new_mtu : the new MTU size for the device.
3901  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
3902  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
3903  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
3904  *  Return value:
3905  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3906  *  file on failure.
3907  */
3908 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
3909 {
3910 	struct stmmac_priv *priv = netdev_priv(dev);
3911 	int txfifosz = priv->plat->tx_fifo_size;
3912 
3913 	if (txfifosz == 0)
3914 		txfifosz = priv->dma_cap.tx_fifo_size;
3915 
3916 	txfifosz /= priv->plat->tx_queues_to_use;
3917 
3918 	if (netif_running(dev)) {
3919 		netdev_err(priv->dev, "must be stopped to change its MTU\n");
3920 		return -EBUSY;
3921 	}
3922 
3923 	new_mtu = STMMAC_ALIGN(new_mtu);
3924 
3925 	/* If condition true, FIFO is too small or MTU too large */
3926 	if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB))
3927 		return -EINVAL;
3928 
3929 	dev->mtu = new_mtu;
3930 
3931 	netdev_update_features(dev);
3932 
3933 	return 0;
3934 }
3935 
3936 static netdev_features_t stmmac_fix_features(struct net_device *dev,
3937 					     netdev_features_t features)
3938 {
3939 	struct stmmac_priv *priv = netdev_priv(dev);
3940 
3941 	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
3942 		features &= ~NETIF_F_RXCSUM;
3943 
3944 	if (!priv->plat->tx_coe)
3945 		features &= ~NETIF_F_CSUM_MASK;
3946 
3947 	/* Some GMAC devices have a bugged Jumbo frame support that
3948 	 * needs to have the Tx COE disabled for oversized frames
3949 	 * (due to limited buffer sizes). In this case we disable
3950 	 * the TX csum insertion in the TDES and not use SF.
3951 	 */
3952 	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
3953 		features &= ~NETIF_F_CSUM_MASK;
3954 
3955 	/* Disable tso if asked by ethtool */
3956 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
3957 		if (features & NETIF_F_TSO)
3958 			priv->tso = true;
3959 		else
3960 			priv->tso = false;
3961 	}
3962 
3963 	return features;
3964 }
3965 
3966 static int stmmac_set_features(struct net_device *netdev,
3967 			       netdev_features_t features)
3968 {
3969 	struct stmmac_priv *priv = netdev_priv(netdev);
3970 	bool sph_en;
3971 	u32 chan;
3972 
3973 	/* Keep the COE Type in case of csum is supporting */
3974 	if (features & NETIF_F_RXCSUM)
3975 		priv->hw->rx_csum = priv->plat->rx_coe;
3976 	else
3977 		priv->hw->rx_csum = 0;
3978 	/* No check needed because rx_coe has been set before and it will be
3979 	 * fixed in case of issue.
3980 	 */
3981 	stmmac_rx_ipc(priv, priv->hw);
3982 
3983 	sph_en = (priv->hw->rx_csum > 0) && priv->sph;
3984 	for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++)
3985 		stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
3986 
3987 	return 0;
3988 }
3989 
3990 /**
3991  *  stmmac_interrupt - main ISR
3992  *  @irq: interrupt number.
3993  *  @dev_id: to pass the net device pointer.
3994  *  Description: this is the main driver interrupt service routine.
3995  *  It can call:
3996  *  o DMA service routine (to manage incoming frame reception and transmission
3997  *    status)
3998  *  o Core interrupts to manage: remote wake-up, management counter, LPI
3999  *    interrupts.
4000  */
4001 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
4002 {
4003 	struct net_device *dev = (struct net_device *)dev_id;
4004 	struct stmmac_priv *priv = netdev_priv(dev);
4005 	u32 rx_cnt = priv->plat->rx_queues_to_use;
4006 	u32 tx_cnt = priv->plat->tx_queues_to_use;
4007 	u32 queues_count;
4008 	u32 queue;
4009 	bool xmac;
4010 
4011 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
4012 	queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
4013 
4014 	if (priv->irq_wake)
4015 		pm_wakeup_event(priv->device, 0);
4016 
4017 	if (unlikely(!dev)) {
4018 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
4019 		return IRQ_NONE;
4020 	}
4021 
4022 	/* Check if adapter is up */
4023 	if (test_bit(STMMAC_DOWN, &priv->state))
4024 		return IRQ_HANDLED;
4025 	/* Check if a fatal error happened */
4026 	if (stmmac_safety_feat_interrupt(priv))
4027 		return IRQ_HANDLED;
4028 
4029 	/* To handle GMAC own interrupts */
4030 	if ((priv->plat->has_gmac) || xmac) {
4031 		int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
4032 		int mtl_status;
4033 
4034 		if (unlikely(status)) {
4035 			/* For LPI we need to save the tx status */
4036 			if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
4037 				priv->tx_path_in_lpi_mode = true;
4038 			if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
4039 				priv->tx_path_in_lpi_mode = false;
4040 		}
4041 
4042 		for (queue = 0; queue < queues_count; queue++) {
4043 			struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4044 
4045 			mtl_status = stmmac_host_mtl_irq_status(priv, priv->hw,
4046 								queue);
4047 			if (mtl_status != -EINVAL)
4048 				status |= mtl_status;
4049 
4050 			if (status & CORE_IRQ_MTL_RX_OVERFLOW)
4051 				stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
4052 						       rx_q->rx_tail_addr,
4053 						       queue);
4054 		}
4055 
4056 		/* PCS link status */
4057 		if (priv->hw->pcs) {
4058 			if (priv->xstats.pcs_link)
4059 				netif_carrier_on(dev);
4060 			else
4061 				netif_carrier_off(dev);
4062 		}
4063 	}
4064 
4065 	/* To handle DMA interrupts */
4066 	stmmac_dma_interrupt(priv);
4067 
4068 	return IRQ_HANDLED;
4069 }
4070 
4071 #ifdef CONFIG_NET_POLL_CONTROLLER
4072 /* Polling receive - used by NETCONSOLE and other diagnostic tools
4073  * to allow network I/O with interrupts disabled.
4074  */
4075 static void stmmac_poll_controller(struct net_device *dev)
4076 {
4077 	disable_irq(dev->irq);
4078 	stmmac_interrupt(dev->irq, dev);
4079 	enable_irq(dev->irq);
4080 }
4081 #endif
4082 
4083 /**
4084  *  stmmac_ioctl - Entry point for the Ioctl
4085  *  @dev: Device pointer.
4086  *  @rq: An IOCTL specefic structure, that can contain a pointer to
4087  *  a proprietary structure used to pass information to the driver.
4088  *  @cmd: IOCTL command
4089  *  Description:
4090  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
4091  */
4092 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
4093 {
4094 	struct stmmac_priv *priv = netdev_priv (dev);
4095 	int ret = -EOPNOTSUPP;
4096 
4097 	if (!netif_running(dev))
4098 		return -EINVAL;
4099 
4100 	switch (cmd) {
4101 	case SIOCGMIIPHY:
4102 	case SIOCGMIIREG:
4103 	case SIOCSMIIREG:
4104 		ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
4105 		break;
4106 	case SIOCSHWTSTAMP:
4107 		ret = stmmac_hwtstamp_set(dev, rq);
4108 		break;
4109 	case SIOCGHWTSTAMP:
4110 		ret = stmmac_hwtstamp_get(dev, rq);
4111 		break;
4112 	default:
4113 		break;
4114 	}
4115 
4116 	return ret;
4117 }
4118 
4119 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
4120 				    void *cb_priv)
4121 {
4122 	struct stmmac_priv *priv = cb_priv;
4123 	int ret = -EOPNOTSUPP;
4124 
4125 	if (!tc_cls_can_offload_and_chain0(priv->dev, type_data))
4126 		return ret;
4127 
4128 	stmmac_disable_all_queues(priv);
4129 
4130 	switch (type) {
4131 	case TC_SETUP_CLSU32:
4132 		ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
4133 		break;
4134 	case TC_SETUP_CLSFLOWER:
4135 		ret = stmmac_tc_setup_cls(priv, priv, type_data);
4136 		break;
4137 	default:
4138 		break;
4139 	}
4140 
4141 	stmmac_enable_all_queues(priv);
4142 	return ret;
4143 }
4144 
4145 static LIST_HEAD(stmmac_block_cb_list);
4146 
4147 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
4148 			   void *type_data)
4149 {
4150 	struct stmmac_priv *priv = netdev_priv(ndev);
4151 
4152 	switch (type) {
4153 	case TC_SETUP_BLOCK:
4154 		return flow_block_cb_setup_simple(type_data,
4155 						  &stmmac_block_cb_list,
4156 						  stmmac_setup_tc_block_cb,
4157 						  priv, priv, true);
4158 	case TC_SETUP_QDISC_CBS:
4159 		return stmmac_tc_setup_cbs(priv, priv, type_data);
4160 	case TC_SETUP_QDISC_TAPRIO:
4161 		return stmmac_tc_setup_taprio(priv, priv, type_data);
4162 	case TC_SETUP_QDISC_ETF:
4163 		return stmmac_tc_setup_etf(priv, priv, type_data);
4164 	default:
4165 		return -EOPNOTSUPP;
4166 	}
4167 }
4168 
4169 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
4170 			       struct net_device *sb_dev)
4171 {
4172 	int gso = skb_shinfo(skb)->gso_type;
4173 
4174 	if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) {
4175 		/*
4176 		 * There is no way to determine the number of TSO/USO
4177 		 * capable Queues. Let's use always the Queue 0
4178 		 * because if TSO/USO is supported then at least this
4179 		 * one will be capable.
4180 		 */
4181 		return 0;
4182 	}
4183 
4184 	return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
4185 }
4186 
4187 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
4188 {
4189 	struct stmmac_priv *priv = netdev_priv(ndev);
4190 	int ret = 0;
4191 
4192 	ret = eth_mac_addr(ndev, addr);
4193 	if (ret)
4194 		return ret;
4195 
4196 	stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
4197 
4198 	return ret;
4199 }
4200 
4201 #ifdef CONFIG_DEBUG_FS
4202 static struct dentry *stmmac_fs_dir;
4203 
4204 static void sysfs_display_ring(void *head, int size, int extend_desc,
4205 			       struct seq_file *seq)
4206 {
4207 	int i;
4208 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
4209 	struct dma_desc *p = (struct dma_desc *)head;
4210 
4211 	for (i = 0; i < size; i++) {
4212 		if (extend_desc) {
4213 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
4214 				   i, (unsigned int)virt_to_phys(ep),
4215 				   le32_to_cpu(ep->basic.des0),
4216 				   le32_to_cpu(ep->basic.des1),
4217 				   le32_to_cpu(ep->basic.des2),
4218 				   le32_to_cpu(ep->basic.des3));
4219 			ep++;
4220 		} else {
4221 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
4222 				   i, (unsigned int)virt_to_phys(p),
4223 				   le32_to_cpu(p->des0), le32_to_cpu(p->des1),
4224 				   le32_to_cpu(p->des2), le32_to_cpu(p->des3));
4225 			p++;
4226 		}
4227 		seq_printf(seq, "\n");
4228 	}
4229 }
4230 
4231 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
4232 {
4233 	struct net_device *dev = seq->private;
4234 	struct stmmac_priv *priv = netdev_priv(dev);
4235 	u32 rx_count = priv->plat->rx_queues_to_use;
4236 	u32 tx_count = priv->plat->tx_queues_to_use;
4237 	u32 queue;
4238 
4239 	if ((dev->flags & IFF_UP) == 0)
4240 		return 0;
4241 
4242 	for (queue = 0; queue < rx_count; queue++) {
4243 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4244 
4245 		seq_printf(seq, "RX Queue %d:\n", queue);
4246 
4247 		if (priv->extend_desc) {
4248 			seq_printf(seq, "Extended descriptor ring:\n");
4249 			sysfs_display_ring((void *)rx_q->dma_erx,
4250 					   DMA_RX_SIZE, 1, seq);
4251 		} else {
4252 			seq_printf(seq, "Descriptor ring:\n");
4253 			sysfs_display_ring((void *)rx_q->dma_rx,
4254 					   DMA_RX_SIZE, 0, seq);
4255 		}
4256 	}
4257 
4258 	for (queue = 0; queue < tx_count; queue++) {
4259 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4260 
4261 		seq_printf(seq, "TX Queue %d:\n", queue);
4262 
4263 		if (priv->extend_desc) {
4264 			seq_printf(seq, "Extended descriptor ring:\n");
4265 			sysfs_display_ring((void *)tx_q->dma_etx,
4266 					   DMA_TX_SIZE, 1, seq);
4267 		} else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) {
4268 			seq_printf(seq, "Descriptor ring:\n");
4269 			sysfs_display_ring((void *)tx_q->dma_tx,
4270 					   DMA_TX_SIZE, 0, seq);
4271 		}
4272 	}
4273 
4274 	return 0;
4275 }
4276 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
4277 
4278 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
4279 {
4280 	struct net_device *dev = seq->private;
4281 	struct stmmac_priv *priv = netdev_priv(dev);
4282 
4283 	if (!priv->hw_cap_support) {
4284 		seq_printf(seq, "DMA HW features not supported\n");
4285 		return 0;
4286 	}
4287 
4288 	seq_printf(seq, "==============================\n");
4289 	seq_printf(seq, "\tDMA HW features\n");
4290 	seq_printf(seq, "==============================\n");
4291 
4292 	seq_printf(seq, "\t10/100 Mbps: %s\n",
4293 		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
4294 	seq_printf(seq, "\t1000 Mbps: %s\n",
4295 		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
4296 	seq_printf(seq, "\tHalf duplex: %s\n",
4297 		   (priv->dma_cap.half_duplex) ? "Y" : "N");
4298 	seq_printf(seq, "\tHash Filter: %s\n",
4299 		   (priv->dma_cap.hash_filter) ? "Y" : "N");
4300 	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
4301 		   (priv->dma_cap.multi_addr) ? "Y" : "N");
4302 	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
4303 		   (priv->dma_cap.pcs) ? "Y" : "N");
4304 	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
4305 		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
4306 	seq_printf(seq, "\tPMT Remote wake up: %s\n",
4307 		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
4308 	seq_printf(seq, "\tPMT Magic Frame: %s\n",
4309 		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
4310 	seq_printf(seq, "\tRMON module: %s\n",
4311 		   (priv->dma_cap.rmon) ? "Y" : "N");
4312 	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
4313 		   (priv->dma_cap.time_stamp) ? "Y" : "N");
4314 	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
4315 		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
4316 	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
4317 		   (priv->dma_cap.eee) ? "Y" : "N");
4318 	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
4319 	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
4320 		   (priv->dma_cap.tx_coe) ? "Y" : "N");
4321 	if (priv->synopsys_id >= DWMAC_CORE_4_00) {
4322 		seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
4323 			   (priv->dma_cap.rx_coe) ? "Y" : "N");
4324 	} else {
4325 		seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
4326 			   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
4327 		seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
4328 			   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
4329 	}
4330 	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
4331 		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
4332 	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
4333 		   priv->dma_cap.number_rx_channel);
4334 	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
4335 		   priv->dma_cap.number_tx_channel);
4336 	seq_printf(seq, "\tNumber of Additional RX queues: %d\n",
4337 		   priv->dma_cap.number_rx_queues);
4338 	seq_printf(seq, "\tNumber of Additional TX queues: %d\n",
4339 		   priv->dma_cap.number_tx_queues);
4340 	seq_printf(seq, "\tEnhanced descriptors: %s\n",
4341 		   (priv->dma_cap.enh_desc) ? "Y" : "N");
4342 	seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size);
4343 	seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size);
4344 	seq_printf(seq, "\tHash Table Size: %d\n", priv->dma_cap.hash_tb_sz);
4345 	seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N");
4346 	seq_printf(seq, "\tNumber of PPS Outputs: %d\n",
4347 		   priv->dma_cap.pps_out_num);
4348 	seq_printf(seq, "\tSafety Features: %s\n",
4349 		   priv->dma_cap.asp ? "Y" : "N");
4350 	seq_printf(seq, "\tFlexible RX Parser: %s\n",
4351 		   priv->dma_cap.frpsel ? "Y" : "N");
4352 	seq_printf(seq, "\tEnhanced Addressing: %d\n",
4353 		   priv->dma_cap.addr64);
4354 	seq_printf(seq, "\tReceive Side Scaling: %s\n",
4355 		   priv->dma_cap.rssen ? "Y" : "N");
4356 	seq_printf(seq, "\tVLAN Hash Filtering: %s\n",
4357 		   priv->dma_cap.vlhash ? "Y" : "N");
4358 	seq_printf(seq, "\tSplit Header: %s\n",
4359 		   priv->dma_cap.sphen ? "Y" : "N");
4360 	seq_printf(seq, "\tVLAN TX Insertion: %s\n",
4361 		   priv->dma_cap.vlins ? "Y" : "N");
4362 	seq_printf(seq, "\tDouble VLAN: %s\n",
4363 		   priv->dma_cap.dvlan ? "Y" : "N");
4364 	seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n",
4365 		   priv->dma_cap.l3l4fnum);
4366 	seq_printf(seq, "\tARP Offloading: %s\n",
4367 		   priv->dma_cap.arpoffsel ? "Y" : "N");
4368 	seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n",
4369 		   priv->dma_cap.estsel ? "Y" : "N");
4370 	seq_printf(seq, "\tFrame Preemption (FPE): %s\n",
4371 		   priv->dma_cap.fpesel ? "Y" : "N");
4372 	seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n",
4373 		   priv->dma_cap.tbssel ? "Y" : "N");
4374 	return 0;
4375 }
4376 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
4377 
4378 /* Use network device events to rename debugfs file entries.
4379  */
4380 static int stmmac_device_event(struct notifier_block *unused,
4381 			       unsigned long event, void *ptr)
4382 {
4383 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
4384 	struct stmmac_priv *priv = netdev_priv(dev);
4385 
4386 	if (dev->netdev_ops != &stmmac_netdev_ops)
4387 		goto done;
4388 
4389 	switch (event) {
4390 	case NETDEV_CHANGENAME:
4391 		if (priv->dbgfs_dir)
4392 			priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir,
4393 							 priv->dbgfs_dir,
4394 							 stmmac_fs_dir,
4395 							 dev->name);
4396 		break;
4397 	}
4398 done:
4399 	return NOTIFY_DONE;
4400 }
4401 
4402 static struct notifier_block stmmac_notifier = {
4403 	.notifier_call = stmmac_device_event,
4404 };
4405 
4406 static void stmmac_init_fs(struct net_device *dev)
4407 {
4408 	struct stmmac_priv *priv = netdev_priv(dev);
4409 
4410 	rtnl_lock();
4411 
4412 	/* Create per netdev entries */
4413 	priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
4414 
4415 	/* Entry to report DMA RX/TX rings */
4416 	debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev,
4417 			    &stmmac_rings_status_fops);
4418 
4419 	/* Entry to report the DMA HW features */
4420 	debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev,
4421 			    &stmmac_dma_cap_fops);
4422 
4423 	rtnl_unlock();
4424 }
4425 
4426 static void stmmac_exit_fs(struct net_device *dev)
4427 {
4428 	struct stmmac_priv *priv = netdev_priv(dev);
4429 
4430 	debugfs_remove_recursive(priv->dbgfs_dir);
4431 }
4432 #endif /* CONFIG_DEBUG_FS */
4433 
4434 static u32 stmmac_vid_crc32_le(__le16 vid_le)
4435 {
4436 	unsigned char *data = (unsigned char *)&vid_le;
4437 	unsigned char data_byte = 0;
4438 	u32 crc = ~0x0;
4439 	u32 temp = 0;
4440 	int i, bits;
4441 
4442 	bits = get_bitmask_order(VLAN_VID_MASK);
4443 	for (i = 0; i < bits; i++) {
4444 		if ((i % 8) == 0)
4445 			data_byte = data[i / 8];
4446 
4447 		temp = ((crc & 1) ^ data_byte) & 1;
4448 		crc >>= 1;
4449 		data_byte >>= 1;
4450 
4451 		if (temp)
4452 			crc ^= 0xedb88320;
4453 	}
4454 
4455 	return crc;
4456 }
4457 
4458 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double)
4459 {
4460 	u32 crc, hash = 0;
4461 	__le16 pmatch = 0;
4462 	int count = 0;
4463 	u16 vid = 0;
4464 
4465 	for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
4466 		__le16 vid_le = cpu_to_le16(vid);
4467 		crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28;
4468 		hash |= (1 << crc);
4469 		count++;
4470 	}
4471 
4472 	if (!priv->dma_cap.vlhash) {
4473 		if (count > 2) /* VID = 0 always passes filter */
4474 			return -EOPNOTSUPP;
4475 
4476 		pmatch = cpu_to_le16(vid);
4477 		hash = 0;
4478 	}
4479 
4480 	return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double);
4481 }
4482 
4483 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
4484 {
4485 	struct stmmac_priv *priv = netdev_priv(ndev);
4486 	bool is_double = false;
4487 	int ret;
4488 
4489 	if (be16_to_cpu(proto) == ETH_P_8021AD)
4490 		is_double = true;
4491 
4492 	set_bit(vid, priv->active_vlans);
4493 	ret = stmmac_vlan_update(priv, is_double);
4494 	if (ret) {
4495 		clear_bit(vid, priv->active_vlans);
4496 		return ret;
4497 	}
4498 
4499 	return ret;
4500 }
4501 
4502 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
4503 {
4504 	struct stmmac_priv *priv = netdev_priv(ndev);
4505 	bool is_double = false;
4506 
4507 	if (be16_to_cpu(proto) == ETH_P_8021AD)
4508 		is_double = true;
4509 
4510 	clear_bit(vid, priv->active_vlans);
4511 	return stmmac_vlan_update(priv, is_double);
4512 }
4513 
4514 static const struct net_device_ops stmmac_netdev_ops = {
4515 	.ndo_open = stmmac_open,
4516 	.ndo_start_xmit = stmmac_xmit,
4517 	.ndo_stop = stmmac_release,
4518 	.ndo_change_mtu = stmmac_change_mtu,
4519 	.ndo_fix_features = stmmac_fix_features,
4520 	.ndo_set_features = stmmac_set_features,
4521 	.ndo_set_rx_mode = stmmac_set_rx_mode,
4522 	.ndo_tx_timeout = stmmac_tx_timeout,
4523 	.ndo_do_ioctl = stmmac_ioctl,
4524 	.ndo_setup_tc = stmmac_setup_tc,
4525 	.ndo_select_queue = stmmac_select_queue,
4526 #ifdef CONFIG_NET_POLL_CONTROLLER
4527 	.ndo_poll_controller = stmmac_poll_controller,
4528 #endif
4529 	.ndo_set_mac_address = stmmac_set_mac_address,
4530 	.ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid,
4531 	.ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid,
4532 };
4533 
4534 static void stmmac_reset_subtask(struct stmmac_priv *priv)
4535 {
4536 	if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
4537 		return;
4538 	if (test_bit(STMMAC_DOWN, &priv->state))
4539 		return;
4540 
4541 	netdev_err(priv->dev, "Reset adapter.\n");
4542 
4543 	rtnl_lock();
4544 	netif_trans_update(priv->dev);
4545 	while (test_and_set_bit(STMMAC_RESETING, &priv->state))
4546 		usleep_range(1000, 2000);
4547 
4548 	set_bit(STMMAC_DOWN, &priv->state);
4549 	dev_close(priv->dev);
4550 	dev_open(priv->dev, NULL);
4551 	clear_bit(STMMAC_DOWN, &priv->state);
4552 	clear_bit(STMMAC_RESETING, &priv->state);
4553 	rtnl_unlock();
4554 }
4555 
4556 static void stmmac_service_task(struct work_struct *work)
4557 {
4558 	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
4559 			service_task);
4560 
4561 	stmmac_reset_subtask(priv);
4562 	clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
4563 }
4564 
4565 /**
4566  *  stmmac_hw_init - Init the MAC device
4567  *  @priv: driver private structure
4568  *  Description: this function is to configure the MAC device according to
4569  *  some platform parameters or the HW capability register. It prepares the
4570  *  driver to use either ring or chain modes and to setup either enhanced or
4571  *  normal descriptors.
4572  */
4573 static int stmmac_hw_init(struct stmmac_priv *priv)
4574 {
4575 	int ret;
4576 
4577 	/* dwmac-sun8i only work in chain mode */
4578 	if (priv->plat->has_sun8i)
4579 		chain_mode = 1;
4580 	priv->chain_mode = chain_mode;
4581 
4582 	/* Initialize HW Interface */
4583 	ret = stmmac_hwif_init(priv);
4584 	if (ret)
4585 		return ret;
4586 
4587 	/* Get the HW capability (new GMAC newer than 3.50a) */
4588 	priv->hw_cap_support = stmmac_get_hw_features(priv);
4589 	if (priv->hw_cap_support) {
4590 		dev_info(priv->device, "DMA HW capability register supported\n");
4591 
4592 		/* We can override some gmac/dma configuration fields: e.g.
4593 		 * enh_desc, tx_coe (e.g. that are passed through the
4594 		 * platform) with the values from the HW capability
4595 		 * register (if supported).
4596 		 */
4597 		priv->plat->enh_desc = priv->dma_cap.enh_desc;
4598 		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
4599 		priv->hw->pmt = priv->plat->pmt;
4600 		if (priv->dma_cap.hash_tb_sz) {
4601 			priv->hw->multicast_filter_bins =
4602 					(BIT(priv->dma_cap.hash_tb_sz) << 5);
4603 			priv->hw->mcast_bits_log2 =
4604 					ilog2(priv->hw->multicast_filter_bins);
4605 		}
4606 
4607 		/* TXCOE doesn't work in thresh DMA mode */
4608 		if (priv->plat->force_thresh_dma_mode)
4609 			priv->plat->tx_coe = 0;
4610 		else
4611 			priv->plat->tx_coe = priv->dma_cap.tx_coe;
4612 
4613 		/* In case of GMAC4 rx_coe is from HW cap register. */
4614 		priv->plat->rx_coe = priv->dma_cap.rx_coe;
4615 
4616 		if (priv->dma_cap.rx_coe_type2)
4617 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
4618 		else if (priv->dma_cap.rx_coe_type1)
4619 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
4620 
4621 	} else {
4622 		dev_info(priv->device, "No HW DMA feature register supported\n");
4623 	}
4624 
4625 	if (priv->plat->rx_coe) {
4626 		priv->hw->rx_csum = priv->plat->rx_coe;
4627 		dev_info(priv->device, "RX Checksum Offload Engine supported\n");
4628 		if (priv->synopsys_id < DWMAC_CORE_4_00)
4629 			dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
4630 	}
4631 	if (priv->plat->tx_coe)
4632 		dev_info(priv->device, "TX Checksum insertion supported\n");
4633 
4634 	if (priv->plat->pmt) {
4635 		dev_info(priv->device, "Wake-Up On Lan supported\n");
4636 		device_set_wakeup_capable(priv->device, 1);
4637 	}
4638 
4639 	if (priv->dma_cap.tsoen)
4640 		dev_info(priv->device, "TSO supported\n");
4641 
4642 	/* Run HW quirks, if any */
4643 	if (priv->hwif_quirks) {
4644 		ret = priv->hwif_quirks(priv);
4645 		if (ret)
4646 			return ret;
4647 	}
4648 
4649 	/* Rx Watchdog is available in the COREs newer than the 3.40.
4650 	 * In some case, for example on bugged HW this feature
4651 	 * has to be disable and this can be done by passing the
4652 	 * riwt_off field from the platform.
4653 	 */
4654 	if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
4655 	    (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
4656 		priv->use_riwt = 1;
4657 		dev_info(priv->device,
4658 			 "Enable RX Mitigation via HW Watchdog Timer\n");
4659 	}
4660 
4661 	return 0;
4662 }
4663 
4664 /**
4665  * stmmac_dvr_probe
4666  * @device: device pointer
4667  * @plat_dat: platform data pointer
4668  * @res: stmmac resource pointer
4669  * Description: this is the main probe function used to
4670  * call the alloc_etherdev, allocate the priv structure.
4671  * Return:
4672  * returns 0 on success, otherwise errno.
4673  */
4674 int stmmac_dvr_probe(struct device *device,
4675 		     struct plat_stmmacenet_data *plat_dat,
4676 		     struct stmmac_resources *res)
4677 {
4678 	struct net_device *ndev = NULL;
4679 	struct stmmac_priv *priv;
4680 	u32 queue, rxq, maxq;
4681 	int i, ret = 0;
4682 
4683 	ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
4684 				       MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
4685 	if (!ndev)
4686 		return -ENOMEM;
4687 
4688 	SET_NETDEV_DEV(ndev, device);
4689 
4690 	priv = netdev_priv(ndev);
4691 	priv->device = device;
4692 	priv->dev = ndev;
4693 
4694 	stmmac_set_ethtool_ops(ndev);
4695 	priv->pause = pause;
4696 	priv->plat = plat_dat;
4697 	priv->ioaddr = res->addr;
4698 	priv->dev->base_addr = (unsigned long)res->addr;
4699 
4700 	priv->dev->irq = res->irq;
4701 	priv->wol_irq = res->wol_irq;
4702 	priv->lpi_irq = res->lpi_irq;
4703 
4704 	if (!IS_ERR_OR_NULL(res->mac))
4705 		memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
4706 
4707 	dev_set_drvdata(device, priv->dev);
4708 
4709 	/* Verify driver arguments */
4710 	stmmac_verify_args();
4711 
4712 	/* Allocate workqueue */
4713 	priv->wq = create_singlethread_workqueue("stmmac_wq");
4714 	if (!priv->wq) {
4715 		dev_err(priv->device, "failed to create workqueue\n");
4716 		return -ENOMEM;
4717 	}
4718 
4719 	INIT_WORK(&priv->service_task, stmmac_service_task);
4720 
4721 	/* Override with kernel parameters if supplied XXX CRS XXX
4722 	 * this needs to have multiple instances
4723 	 */
4724 	if ((phyaddr >= 0) && (phyaddr <= 31))
4725 		priv->plat->phy_addr = phyaddr;
4726 
4727 	if (priv->plat->stmmac_rst) {
4728 		ret = reset_control_assert(priv->plat->stmmac_rst);
4729 		reset_control_deassert(priv->plat->stmmac_rst);
4730 		/* Some reset controllers have only reset callback instead of
4731 		 * assert + deassert callbacks pair.
4732 		 */
4733 		if (ret == -ENOTSUPP)
4734 			reset_control_reset(priv->plat->stmmac_rst);
4735 	}
4736 
4737 	/* Init MAC and get the capabilities */
4738 	ret = stmmac_hw_init(priv);
4739 	if (ret)
4740 		goto error_hw_init;
4741 
4742 	stmmac_check_ether_addr(priv);
4743 
4744 	/* Configure real RX and TX queues */
4745 	netif_set_real_num_rx_queues(ndev, priv->plat->rx_queues_to_use);
4746 	netif_set_real_num_tx_queues(ndev, priv->plat->tx_queues_to_use);
4747 
4748 	ndev->netdev_ops = &stmmac_netdev_ops;
4749 
4750 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4751 			    NETIF_F_RXCSUM;
4752 
4753 	ret = stmmac_tc_init(priv, priv);
4754 	if (!ret) {
4755 		ndev->hw_features |= NETIF_F_HW_TC;
4756 	}
4757 
4758 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
4759 		ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
4760 		if (priv->plat->has_gmac4)
4761 			ndev->hw_features |= NETIF_F_GSO_UDP_L4;
4762 		priv->tso = true;
4763 		dev_info(priv->device, "TSO feature enabled\n");
4764 	}
4765 
4766 	if (priv->dma_cap.sphen) {
4767 		ndev->hw_features |= NETIF_F_GRO;
4768 		priv->sph = true;
4769 		dev_info(priv->device, "SPH feature enabled\n");
4770 	}
4771 
4772 	if (priv->dma_cap.addr64) {
4773 		ret = dma_set_mask_and_coherent(device,
4774 				DMA_BIT_MASK(priv->dma_cap.addr64));
4775 		if (!ret) {
4776 			dev_info(priv->device, "Using %d bits DMA width\n",
4777 				 priv->dma_cap.addr64);
4778 
4779 			/*
4780 			 * If more than 32 bits can be addressed, make sure to
4781 			 * enable enhanced addressing mode.
4782 			 */
4783 			if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
4784 				priv->plat->dma_cfg->eame = true;
4785 		} else {
4786 			ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
4787 			if (ret) {
4788 				dev_err(priv->device, "Failed to set DMA Mask\n");
4789 				goto error_hw_init;
4790 			}
4791 
4792 			priv->dma_cap.addr64 = 32;
4793 		}
4794 	}
4795 
4796 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
4797 	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
4798 #ifdef STMMAC_VLAN_TAG_USED
4799 	/* Both mac100 and gmac support receive VLAN tag detection */
4800 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
4801 	if (priv->dma_cap.vlhash) {
4802 		ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4803 		ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER;
4804 	}
4805 	if (priv->dma_cap.vlins) {
4806 		ndev->features |= NETIF_F_HW_VLAN_CTAG_TX;
4807 		if (priv->dma_cap.dvlan)
4808 			ndev->features |= NETIF_F_HW_VLAN_STAG_TX;
4809 	}
4810 #endif
4811 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
4812 
4813 	/* Initialize RSS */
4814 	rxq = priv->plat->rx_queues_to_use;
4815 	netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key));
4816 	for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
4817 		priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq);
4818 
4819 	if (priv->dma_cap.rssen && priv->plat->rss_en)
4820 		ndev->features |= NETIF_F_RXHASH;
4821 
4822 	/* MTU range: 46 - hw-specific max */
4823 	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
4824 	if (priv->plat->has_xgmac)
4825 		ndev->max_mtu = XGMAC_JUMBO_LEN;
4826 	else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
4827 		ndev->max_mtu = JUMBO_LEN;
4828 	else
4829 		ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
4830 	/* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
4831 	 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
4832 	 */
4833 	if ((priv->plat->maxmtu < ndev->max_mtu) &&
4834 	    (priv->plat->maxmtu >= ndev->min_mtu))
4835 		ndev->max_mtu = priv->plat->maxmtu;
4836 	else if (priv->plat->maxmtu < ndev->min_mtu)
4837 		dev_warn(priv->device,
4838 			 "%s: warning: maxmtu having invalid value (%d)\n",
4839 			 __func__, priv->plat->maxmtu);
4840 
4841 	if (flow_ctrl)
4842 		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
4843 
4844 	/* Setup channels NAPI */
4845 	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
4846 
4847 	for (queue = 0; queue < maxq; queue++) {
4848 		struct stmmac_channel *ch = &priv->channel[queue];
4849 
4850 		spin_lock_init(&ch->lock);
4851 		ch->priv_data = priv;
4852 		ch->index = queue;
4853 
4854 		if (queue < priv->plat->rx_queues_to_use) {
4855 			netif_napi_add(ndev, &ch->rx_napi, stmmac_napi_poll_rx,
4856 				       NAPI_POLL_WEIGHT);
4857 		}
4858 		if (queue < priv->plat->tx_queues_to_use) {
4859 			netif_tx_napi_add(ndev, &ch->tx_napi,
4860 					  stmmac_napi_poll_tx,
4861 					  NAPI_POLL_WEIGHT);
4862 		}
4863 	}
4864 
4865 	mutex_init(&priv->lock);
4866 
4867 	/* If a specific clk_csr value is passed from the platform
4868 	 * this means that the CSR Clock Range selection cannot be
4869 	 * changed at run-time and it is fixed. Viceversa the driver'll try to
4870 	 * set the MDC clock dynamically according to the csr actual
4871 	 * clock input.
4872 	 */
4873 	if (priv->plat->clk_csr >= 0)
4874 		priv->clk_csr = priv->plat->clk_csr;
4875 	else
4876 		stmmac_clk_csr_set(priv);
4877 
4878 	stmmac_check_pcs_mode(priv);
4879 
4880 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
4881 	    priv->hw->pcs != STMMAC_PCS_RTBI) {
4882 		/* MDIO bus Registration */
4883 		ret = stmmac_mdio_register(ndev);
4884 		if (ret < 0) {
4885 			dev_err(priv->device,
4886 				"%s: MDIO bus (id: %d) registration failed",
4887 				__func__, priv->plat->bus_id);
4888 			goto error_mdio_register;
4889 		}
4890 	}
4891 
4892 	ret = stmmac_phy_setup(priv);
4893 	if (ret) {
4894 		netdev_err(ndev, "failed to setup phy (%d)\n", ret);
4895 		goto error_phy_setup;
4896 	}
4897 
4898 	ret = register_netdev(ndev);
4899 	if (ret) {
4900 		dev_err(priv->device, "%s: ERROR %i registering the device\n",
4901 			__func__, ret);
4902 		goto error_netdev_register;
4903 	}
4904 
4905 #ifdef CONFIG_DEBUG_FS
4906 	stmmac_init_fs(ndev);
4907 #endif
4908 
4909 	return ret;
4910 
4911 error_netdev_register:
4912 	phylink_destroy(priv->phylink);
4913 error_phy_setup:
4914 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
4915 	    priv->hw->pcs != STMMAC_PCS_RTBI)
4916 		stmmac_mdio_unregister(ndev);
4917 error_mdio_register:
4918 	for (queue = 0; queue < maxq; queue++) {
4919 		struct stmmac_channel *ch = &priv->channel[queue];
4920 
4921 		if (queue < priv->plat->rx_queues_to_use)
4922 			netif_napi_del(&ch->rx_napi);
4923 		if (queue < priv->plat->tx_queues_to_use)
4924 			netif_napi_del(&ch->tx_napi);
4925 	}
4926 error_hw_init:
4927 	destroy_workqueue(priv->wq);
4928 
4929 	return ret;
4930 }
4931 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
4932 
4933 /**
4934  * stmmac_dvr_remove
4935  * @dev: device pointer
4936  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
4937  * changes the link status, releases the DMA descriptor rings.
4938  */
4939 int stmmac_dvr_remove(struct device *dev)
4940 {
4941 	struct net_device *ndev = dev_get_drvdata(dev);
4942 	struct stmmac_priv *priv = netdev_priv(ndev);
4943 
4944 	netdev_info(priv->dev, "%s: removing driver", __func__);
4945 
4946 	stmmac_stop_all_dma(priv);
4947 
4948 	stmmac_mac_set(priv, priv->ioaddr, false);
4949 	netif_carrier_off(ndev);
4950 	unregister_netdev(ndev);
4951 #ifdef CONFIG_DEBUG_FS
4952 	stmmac_exit_fs(ndev);
4953 #endif
4954 	phylink_destroy(priv->phylink);
4955 	if (priv->plat->stmmac_rst)
4956 		reset_control_assert(priv->plat->stmmac_rst);
4957 	clk_disable_unprepare(priv->plat->pclk);
4958 	clk_disable_unprepare(priv->plat->stmmac_clk);
4959 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
4960 	    priv->hw->pcs != STMMAC_PCS_RTBI)
4961 		stmmac_mdio_unregister(ndev);
4962 	destroy_workqueue(priv->wq);
4963 	mutex_destroy(&priv->lock);
4964 
4965 	return 0;
4966 }
4967 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
4968 
4969 /**
4970  * stmmac_suspend - suspend callback
4971  * @dev: device pointer
4972  * Description: this is the function to suspend the device and it is called
4973  * by the platform driver to stop the network queue, release the resources,
4974  * program the PMT register (for WoL), clean and release driver resources.
4975  */
4976 int stmmac_suspend(struct device *dev)
4977 {
4978 	struct net_device *ndev = dev_get_drvdata(dev);
4979 	struct stmmac_priv *priv = netdev_priv(ndev);
4980 	u32 chan;
4981 
4982 	if (!ndev || !netif_running(ndev))
4983 		return 0;
4984 
4985 	phylink_mac_change(priv->phylink, false);
4986 
4987 	mutex_lock(&priv->lock);
4988 
4989 	netif_device_detach(ndev);
4990 	stmmac_stop_all_queues(priv);
4991 
4992 	stmmac_disable_all_queues(priv);
4993 
4994 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
4995 		del_timer_sync(&priv->tx_queue[chan].txtimer);
4996 
4997 	/* Stop TX/RX DMA */
4998 	stmmac_stop_all_dma(priv);
4999 
5000 	/* Enable Power down mode by programming the PMT regs */
5001 	if (device_may_wakeup(priv->device)) {
5002 		stmmac_pmt(priv, priv->hw, priv->wolopts);
5003 		priv->irq_wake = 1;
5004 	} else {
5005 		mutex_unlock(&priv->lock);
5006 		rtnl_lock();
5007 		phylink_stop(priv->phylink);
5008 		rtnl_unlock();
5009 		mutex_lock(&priv->lock);
5010 
5011 		stmmac_mac_set(priv, priv->ioaddr, false);
5012 		pinctrl_pm_select_sleep_state(priv->device);
5013 		/* Disable clock in case of PWM is off */
5014 		if (priv->plat->clk_ptp_ref)
5015 			clk_disable_unprepare(priv->plat->clk_ptp_ref);
5016 		clk_disable_unprepare(priv->plat->pclk);
5017 		clk_disable_unprepare(priv->plat->stmmac_clk);
5018 	}
5019 	mutex_unlock(&priv->lock);
5020 
5021 	priv->speed = SPEED_UNKNOWN;
5022 	return 0;
5023 }
5024 EXPORT_SYMBOL_GPL(stmmac_suspend);
5025 
5026 /**
5027  * stmmac_reset_queues_param - reset queue parameters
5028  * @dev: device pointer
5029  */
5030 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
5031 {
5032 	u32 rx_cnt = priv->plat->rx_queues_to_use;
5033 	u32 tx_cnt = priv->plat->tx_queues_to_use;
5034 	u32 queue;
5035 
5036 	for (queue = 0; queue < rx_cnt; queue++) {
5037 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
5038 
5039 		rx_q->cur_rx = 0;
5040 		rx_q->dirty_rx = 0;
5041 	}
5042 
5043 	for (queue = 0; queue < tx_cnt; queue++) {
5044 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
5045 
5046 		tx_q->cur_tx = 0;
5047 		tx_q->dirty_tx = 0;
5048 		tx_q->mss = 0;
5049 	}
5050 }
5051 
5052 /**
5053  * stmmac_resume - resume callback
5054  * @dev: device pointer
5055  * Description: when resume this function is invoked to setup the DMA and CORE
5056  * in a usable state.
5057  */
5058 int stmmac_resume(struct device *dev)
5059 {
5060 	struct net_device *ndev = dev_get_drvdata(dev);
5061 	struct stmmac_priv *priv = netdev_priv(ndev);
5062 
5063 	if (!netif_running(ndev))
5064 		return 0;
5065 
5066 	/* Power Down bit, into the PM register, is cleared
5067 	 * automatically as soon as a magic packet or a Wake-up frame
5068 	 * is received. Anyway, it's better to manually clear
5069 	 * this bit because it can generate problems while resuming
5070 	 * from another devices (e.g. serial console).
5071 	 */
5072 	if (device_may_wakeup(priv->device)) {
5073 		mutex_lock(&priv->lock);
5074 		stmmac_pmt(priv, priv->hw, 0);
5075 		mutex_unlock(&priv->lock);
5076 		priv->irq_wake = 0;
5077 	} else {
5078 		pinctrl_pm_select_default_state(priv->device);
5079 		/* enable the clk previously disabled */
5080 		clk_prepare_enable(priv->plat->stmmac_clk);
5081 		clk_prepare_enable(priv->plat->pclk);
5082 		if (priv->plat->clk_ptp_ref)
5083 			clk_prepare_enable(priv->plat->clk_ptp_ref);
5084 		/* reset the phy so that it's ready */
5085 		if (priv->mii)
5086 			stmmac_mdio_reset(priv->mii);
5087 	}
5088 
5089 	netif_device_attach(ndev);
5090 
5091 	mutex_lock(&priv->lock);
5092 
5093 	stmmac_reset_queues_param(priv);
5094 
5095 	stmmac_clear_descriptors(priv);
5096 
5097 	stmmac_hw_setup(ndev, false);
5098 	stmmac_init_coalesce(priv);
5099 	stmmac_set_rx_mode(ndev);
5100 
5101 	stmmac_enable_all_queues(priv);
5102 
5103 	stmmac_start_all_queues(priv);
5104 
5105 	mutex_unlock(&priv->lock);
5106 
5107 	if (!device_may_wakeup(priv->device)) {
5108 		rtnl_lock();
5109 		phylink_start(priv->phylink);
5110 		rtnl_unlock();
5111 	}
5112 
5113 	phylink_mac_change(priv->phylink, true);
5114 
5115 	return 0;
5116 }
5117 EXPORT_SYMBOL_GPL(stmmac_resume);
5118 
5119 #ifndef MODULE
5120 static int __init stmmac_cmdline_opt(char *str)
5121 {
5122 	char *opt;
5123 
5124 	if (!str || !*str)
5125 		return -EINVAL;
5126 	while ((opt = strsep(&str, ",")) != NULL) {
5127 		if (!strncmp(opt, "debug:", 6)) {
5128 			if (kstrtoint(opt + 6, 0, &debug))
5129 				goto err;
5130 		} else if (!strncmp(opt, "phyaddr:", 8)) {
5131 			if (kstrtoint(opt + 8, 0, &phyaddr))
5132 				goto err;
5133 		} else if (!strncmp(opt, "buf_sz:", 7)) {
5134 			if (kstrtoint(opt + 7, 0, &buf_sz))
5135 				goto err;
5136 		} else if (!strncmp(opt, "tc:", 3)) {
5137 			if (kstrtoint(opt + 3, 0, &tc))
5138 				goto err;
5139 		} else if (!strncmp(opt, "watchdog:", 9)) {
5140 			if (kstrtoint(opt + 9, 0, &watchdog))
5141 				goto err;
5142 		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
5143 			if (kstrtoint(opt + 10, 0, &flow_ctrl))
5144 				goto err;
5145 		} else if (!strncmp(opt, "pause:", 6)) {
5146 			if (kstrtoint(opt + 6, 0, &pause))
5147 				goto err;
5148 		} else if (!strncmp(opt, "eee_timer:", 10)) {
5149 			if (kstrtoint(opt + 10, 0, &eee_timer))
5150 				goto err;
5151 		} else if (!strncmp(opt, "chain_mode:", 11)) {
5152 			if (kstrtoint(opt + 11, 0, &chain_mode))
5153 				goto err;
5154 		}
5155 	}
5156 	return 0;
5157 
5158 err:
5159 	pr_err("%s: ERROR broken module parameter conversion", __func__);
5160 	return -EINVAL;
5161 }
5162 
5163 __setup("stmmaceth=", stmmac_cmdline_opt);
5164 #endif /* MODULE */
5165 
5166 static int __init stmmac_init(void)
5167 {
5168 #ifdef CONFIG_DEBUG_FS
5169 	/* Create debugfs main directory if it doesn't exist yet */
5170 	if (!stmmac_fs_dir)
5171 		stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
5172 	register_netdevice_notifier(&stmmac_notifier);
5173 #endif
5174 
5175 	return 0;
5176 }
5177 
5178 static void __exit stmmac_exit(void)
5179 {
5180 #ifdef CONFIG_DEBUG_FS
5181 	unregister_netdevice_notifier(&stmmac_notifier);
5182 	debugfs_remove_recursive(stmmac_fs_dir);
5183 #endif
5184 }
5185 
5186 module_init(stmmac_init)
5187 module_exit(stmmac_exit)
5188 
5189 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
5190 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
5191 MODULE_LICENSE("GPL");
5192