xref: /linux/drivers/net/ethernet/stmicro/stmmac/stmmac_main.c (revision 3932b9ca55b0be314a36d3e84faff3e823c081f5)
1 /*******************************************************************************
2   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3   ST Ethernet IPs are built around a Synopsys IP Core.
4 
5 	Copyright(C) 2007-2011 STMicroelectronics Ltd
6 
7   This program is free software; you can redistribute it and/or modify it
8   under the terms and conditions of the GNU General Public License,
9   version 2, as published by the Free Software Foundation.
10 
11   This program is distributed in the hope it will be useful, but WITHOUT
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14   more details.
15 
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc.,
18   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 
20   The full GNU General Public License is included in this distribution in
21   the file called "COPYING".
22 
23   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
24 
25   Documentation available at:
26 	http://www.stlinux.com
27   Support available at:
28 	https://bugzilla.stlinux.com/
29 *******************************************************************************/
30 
31 #include <linux/clk.h>
32 #include <linux/kernel.h>
33 #include <linux/interrupt.h>
34 #include <linux/ip.h>
35 #include <linux/tcp.h>
36 #include <linux/skbuff.h>
37 #include <linux/ethtool.h>
38 #include <linux/if_ether.h>
39 #include <linux/crc32.h>
40 #include <linux/mii.h>
41 #include <linux/if.h>
42 #include <linux/if_vlan.h>
43 #include <linux/dma-mapping.h>
44 #include <linux/slab.h>
45 #include <linux/prefetch.h>
46 #include <linux/pinctrl/consumer.h>
47 #ifdef CONFIG_STMMAC_DEBUG_FS
48 #include <linux/debugfs.h>
49 #include <linux/seq_file.h>
50 #endif /* CONFIG_STMMAC_DEBUG_FS */
51 #include <linux/net_tstamp.h>
52 #include "stmmac_ptp.h"
53 #include "stmmac.h"
54 #include <linux/reset.h>
55 
56 #define STMMAC_ALIGN(x)	L1_CACHE_ALIGN(x)
57 
58 /* Module parameters */
59 #define TX_TIMEO	5000
60 static int watchdog = TX_TIMEO;
61 module_param(watchdog, int, S_IRUGO | S_IWUSR);
62 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
63 
64 static int debug = -1;
65 module_param(debug, int, S_IRUGO | S_IWUSR);
66 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
67 
68 static int phyaddr = -1;
69 module_param(phyaddr, int, S_IRUGO);
70 MODULE_PARM_DESC(phyaddr, "Physical device address");
71 
72 #define DMA_TX_SIZE 256
73 static int dma_txsize = DMA_TX_SIZE;
74 module_param(dma_txsize, int, S_IRUGO | S_IWUSR);
75 MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list");
76 
77 #define DMA_RX_SIZE 256
78 static int dma_rxsize = DMA_RX_SIZE;
79 module_param(dma_rxsize, int, S_IRUGO | S_IWUSR);
80 MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list");
81 
82 static int flow_ctrl = FLOW_OFF;
83 module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
84 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
85 
86 static int pause = PAUSE_TIME;
87 module_param(pause, int, S_IRUGO | S_IWUSR);
88 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
89 
90 #define TC_DEFAULT 64
91 static int tc = TC_DEFAULT;
92 module_param(tc, int, S_IRUGO | S_IWUSR);
93 MODULE_PARM_DESC(tc, "DMA threshold control value");
94 
95 #define	DEFAULT_BUFSIZE	1536
96 static int buf_sz = DEFAULT_BUFSIZE;
97 module_param(buf_sz, int, S_IRUGO | S_IWUSR);
98 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
99 
100 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
101 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
102 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
103 
104 #define STMMAC_DEFAULT_LPI_TIMER	1000
105 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
106 module_param(eee_timer, int, S_IRUGO | S_IWUSR);
107 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
108 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
109 
110 /* By default the driver will use the ring mode to manage tx and rx descriptors
111  * but passing this value so user can force to use the chain instead of the ring
112  */
113 static unsigned int chain_mode;
114 module_param(chain_mode, int, S_IRUGO);
115 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
116 
117 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
118 
119 #ifdef CONFIG_STMMAC_DEBUG_FS
120 static int stmmac_init_fs(struct net_device *dev);
121 static void stmmac_exit_fs(void);
122 #endif
123 
124 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
125 
126 /**
127  * stmmac_verify_args - verify the driver parameters.
128  * Description: it verifies if some wrong parameter is passed to the driver.
129  * Note that wrong parameters are replaced with the default values.
130  */
131 static void stmmac_verify_args(void)
132 {
133 	if (unlikely(watchdog < 0))
134 		watchdog = TX_TIMEO;
135 	if (unlikely(dma_rxsize < 0))
136 		dma_rxsize = DMA_RX_SIZE;
137 	if (unlikely(dma_txsize < 0))
138 		dma_txsize = DMA_TX_SIZE;
139 	if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
140 		buf_sz = DEFAULT_BUFSIZE;
141 	if (unlikely(flow_ctrl > 1))
142 		flow_ctrl = FLOW_AUTO;
143 	else if (likely(flow_ctrl < 0))
144 		flow_ctrl = FLOW_OFF;
145 	if (unlikely((pause < 0) || (pause > 0xffff)))
146 		pause = PAUSE_TIME;
147 	if (eee_timer < 0)
148 		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
149 }
150 
151 /**
152  * stmmac_clk_csr_set - dynamically set the MDC clock
153  * @priv: driver private structure
154  * Description: this is to dynamically set the MDC clock according to the csr
155  * clock input.
156  * Note:
157  *	If a specific clk_csr value is passed from the platform
158  *	this means that the CSR Clock Range selection cannot be
159  *	changed at run-time and it is fixed (as reported in the driver
160  *	documentation). Viceversa the driver will try to set the MDC
161  *	clock dynamically according to the actual clock input.
162  */
163 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
164 {
165 	u32 clk_rate;
166 
167 	clk_rate = clk_get_rate(priv->stmmac_clk);
168 
169 	/* Platform provided default clk_csr would be assumed valid
170 	 * for all other cases except for the below mentioned ones.
171 	 * For values higher than the IEEE 802.3 specified frequency
172 	 * we can not estimate the proper divider as it is not known
173 	 * the frequency of clk_csr_i. So we do not change the default
174 	 * divider.
175 	 */
176 	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
177 		if (clk_rate < CSR_F_35M)
178 			priv->clk_csr = STMMAC_CSR_20_35M;
179 		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
180 			priv->clk_csr = STMMAC_CSR_35_60M;
181 		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
182 			priv->clk_csr = STMMAC_CSR_60_100M;
183 		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
184 			priv->clk_csr = STMMAC_CSR_100_150M;
185 		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
186 			priv->clk_csr = STMMAC_CSR_150_250M;
187 		else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
188 			priv->clk_csr = STMMAC_CSR_250_300M;
189 	}
190 }
191 
192 static void print_pkt(unsigned char *buf, int len)
193 {
194 	int j;
195 	pr_debug("len = %d byte, buf addr: 0x%p", len, buf);
196 	for (j = 0; j < len; j++) {
197 		if ((j % 16) == 0)
198 			pr_debug("\n %03x:", j);
199 		pr_debug(" %02x", buf[j]);
200 	}
201 	pr_debug("\n");
202 }
203 
204 /* minimum number of free TX descriptors required to wake up TX process */
205 #define STMMAC_TX_THRESH(x)	(x->dma_tx_size/4)
206 
207 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
208 {
209 	return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1;
210 }
211 
212 /**
213  * stmmac_hw_fix_mac_speed: callback for speed selection
214  * @priv: driver private structure
215  * Description: on some platforms (e.g. ST), some HW system configuraton
216  * registers have to be set according to the link speed negotiated.
217  */
218 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
219 {
220 	struct phy_device *phydev = priv->phydev;
221 
222 	if (likely(priv->plat->fix_mac_speed))
223 		priv->plat->fix_mac_speed(priv->plat->bsp_priv, phydev->speed);
224 }
225 
226 /**
227  * stmmac_enable_eee_mode: Check and enter in LPI mode
228  * @priv: driver private structure
229  * Description: this function is to verify and enter in LPI mode for EEE.
230  */
231 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
232 {
233 	/* Check and enter in LPI mode */
234 	if ((priv->dirty_tx == priv->cur_tx) &&
235 	    (priv->tx_path_in_lpi_mode == false))
236 		priv->hw->mac->set_eee_mode(priv->hw);
237 }
238 
239 /**
240  * stmmac_disable_eee_mode: disable/exit from EEE
241  * @priv: driver private structure
242  * Description: this function is to exit and disable EEE in case of
243  * LPI state is true. This is called by the xmit.
244  */
245 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
246 {
247 	priv->hw->mac->reset_eee_mode(priv->hw);
248 	del_timer_sync(&priv->eee_ctrl_timer);
249 	priv->tx_path_in_lpi_mode = false;
250 }
251 
252 /**
253  * stmmac_eee_ctrl_timer: EEE TX SW timer.
254  * @arg : data hook
255  * Description:
256  *  if there is no data transfer and if we are not in LPI state,
257  *  then MAC Transmitter can be moved to LPI state.
258  */
259 static void stmmac_eee_ctrl_timer(unsigned long arg)
260 {
261 	struct stmmac_priv *priv = (struct stmmac_priv *)arg;
262 
263 	stmmac_enable_eee_mode(priv);
264 	mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
265 }
266 
267 /**
268  * stmmac_eee_init: init EEE
269  * @priv: driver private structure
270  * Description:
271  *  If the EEE support has been enabled while configuring the driver,
272  *  if the GMAC actually supports the EEE (from the HW cap reg) and the
273  *  phy can also manage EEE, so enable the LPI state and start the timer
274  *  to verify if the tx path can enter in LPI state.
275  */
276 bool stmmac_eee_init(struct stmmac_priv *priv)
277 {
278 	char *phy_bus_name = priv->plat->phy_bus_name;
279 	bool ret = false;
280 
281 	/* Using PCS we cannot dial with the phy registers at this stage
282 	 * so we do not support extra feature like EEE.
283 	 */
284 	if ((priv->pcs == STMMAC_PCS_RGMII) || (priv->pcs == STMMAC_PCS_TBI) ||
285 	    (priv->pcs == STMMAC_PCS_RTBI))
286 		goto out;
287 
288 	/* Never init EEE in case of a switch is attached */
289 	if (phy_bus_name && (!strcmp(phy_bus_name, "fixed")))
290 		goto out;
291 
292 	/* MAC core supports the EEE feature. */
293 	if (priv->dma_cap.eee) {
294 		int tx_lpi_timer = priv->tx_lpi_timer;
295 
296 		/* Check if the PHY supports EEE */
297 		if (phy_init_eee(priv->phydev, 1)) {
298 			/* To manage at run-time if the EEE cannot be supported
299 			 * anymore (for example because the lp caps have been
300 			 * changed).
301 			 * In that case the driver disable own timers.
302 			 */
303 			if (priv->eee_active) {
304 				pr_debug("stmmac: disable EEE\n");
305 				del_timer_sync(&priv->eee_ctrl_timer);
306 				priv->hw->mac->set_eee_timer(priv->hw, 0,
307 							     tx_lpi_timer);
308 			}
309 			priv->eee_active = 0;
310 			goto out;
311 		}
312 		/* Activate the EEE and start timers */
313 		if (!priv->eee_active) {
314 			priv->eee_active = 1;
315 			init_timer(&priv->eee_ctrl_timer);
316 			priv->eee_ctrl_timer.function = stmmac_eee_ctrl_timer;
317 			priv->eee_ctrl_timer.data = (unsigned long)priv;
318 			priv->eee_ctrl_timer.expires = STMMAC_LPI_T(eee_timer);
319 			add_timer(&priv->eee_ctrl_timer);
320 
321 			priv->hw->mac->set_eee_timer(priv->hw,
322 						     STMMAC_DEFAULT_LIT_LS,
323 						     tx_lpi_timer);
324 		}
325 		/* Set HW EEE according to the speed */
326 		priv->hw->mac->set_eee_pls(priv->hw, priv->phydev->link);
327 
328 		pr_debug("stmmac: Energy-Efficient Ethernet initialized\n");
329 
330 		ret = true;
331 	}
332 out:
333 	return ret;
334 }
335 
336 /* stmmac_get_tx_hwtstamp: get HW TX timestamps
337  * @priv: driver private structure
338  * @entry : descriptor index to be used.
339  * @skb : the socket buffer
340  * Description :
341  * This function will read timestamp from the descriptor & pass it to stack.
342  * and also perform some sanity checks.
343  */
344 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
345 				   unsigned int entry, struct sk_buff *skb)
346 {
347 	struct skb_shared_hwtstamps shhwtstamp;
348 	u64 ns;
349 	void *desc = NULL;
350 
351 	if (!priv->hwts_tx_en)
352 		return;
353 
354 	/* exit if skb doesn't support hw tstamp */
355 	if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
356 		return;
357 
358 	if (priv->adv_ts)
359 		desc = (priv->dma_etx + entry);
360 	else
361 		desc = (priv->dma_tx + entry);
362 
363 	/* check tx tstamp status */
364 	if (!priv->hw->desc->get_tx_timestamp_status((struct dma_desc *)desc))
365 		return;
366 
367 	/* get the valid tstamp */
368 	ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
369 
370 	memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
371 	shhwtstamp.hwtstamp = ns_to_ktime(ns);
372 	/* pass tstamp to stack */
373 	skb_tstamp_tx(skb, &shhwtstamp);
374 
375 	return;
376 }
377 
378 /* stmmac_get_rx_hwtstamp: get HW RX timestamps
379  * @priv: driver private structure
380  * @entry : descriptor index to be used.
381  * @skb : the socket buffer
382  * Description :
383  * This function will read received packet's timestamp from the descriptor
384  * and pass it to stack. It also perform some sanity checks.
385  */
386 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv,
387 				   unsigned int entry, struct sk_buff *skb)
388 {
389 	struct skb_shared_hwtstamps *shhwtstamp = NULL;
390 	u64 ns;
391 	void *desc = NULL;
392 
393 	if (!priv->hwts_rx_en)
394 		return;
395 
396 	if (priv->adv_ts)
397 		desc = (priv->dma_erx + entry);
398 	else
399 		desc = (priv->dma_rx + entry);
400 
401 	/* exit if rx tstamp is not valid */
402 	if (!priv->hw->desc->get_rx_timestamp_status(desc, priv->adv_ts))
403 		return;
404 
405 	/* get valid tstamp */
406 	ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
407 	shhwtstamp = skb_hwtstamps(skb);
408 	memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
409 	shhwtstamp->hwtstamp = ns_to_ktime(ns);
410 }
411 
412 /**
413  *  stmmac_hwtstamp_ioctl - control hardware timestamping.
414  *  @dev: device pointer.
415  *  @ifr: An IOCTL specefic structure, that can contain a pointer to
416  *  a proprietary structure used to pass information to the driver.
417  *  Description:
418  *  This function configures the MAC to enable/disable both outgoing(TX)
419  *  and incoming(RX) packets time stamping based on user input.
420  *  Return Value:
421  *  0 on success and an appropriate -ve integer on failure.
422  */
423 static int stmmac_hwtstamp_ioctl(struct net_device *dev, struct ifreq *ifr)
424 {
425 	struct stmmac_priv *priv = netdev_priv(dev);
426 	struct hwtstamp_config config;
427 	struct timespec now;
428 	u64 temp = 0;
429 	u32 ptp_v2 = 0;
430 	u32 tstamp_all = 0;
431 	u32 ptp_over_ipv4_udp = 0;
432 	u32 ptp_over_ipv6_udp = 0;
433 	u32 ptp_over_ethernet = 0;
434 	u32 snap_type_sel = 0;
435 	u32 ts_master_en = 0;
436 	u32 ts_event_en = 0;
437 	u32 value = 0;
438 
439 	if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
440 		netdev_alert(priv->dev, "No support for HW time stamping\n");
441 		priv->hwts_tx_en = 0;
442 		priv->hwts_rx_en = 0;
443 
444 		return -EOPNOTSUPP;
445 	}
446 
447 	if (copy_from_user(&config, ifr->ifr_data,
448 			   sizeof(struct hwtstamp_config)))
449 		return -EFAULT;
450 
451 	pr_debug("%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
452 		 __func__, config.flags, config.tx_type, config.rx_filter);
453 
454 	/* reserved for future extensions */
455 	if (config.flags)
456 		return -EINVAL;
457 
458 	if (config.tx_type != HWTSTAMP_TX_OFF &&
459 	    config.tx_type != HWTSTAMP_TX_ON)
460 		return -ERANGE;
461 
462 	if (priv->adv_ts) {
463 		switch (config.rx_filter) {
464 		case HWTSTAMP_FILTER_NONE:
465 			/* time stamp no incoming packet at all */
466 			config.rx_filter = HWTSTAMP_FILTER_NONE;
467 			break;
468 
469 		case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
470 			/* PTP v1, UDP, any kind of event packet */
471 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
472 			/* take time stamp for all event messages */
473 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
474 
475 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
476 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
477 			break;
478 
479 		case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
480 			/* PTP v1, UDP, Sync packet */
481 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
482 			/* take time stamp for SYNC messages only */
483 			ts_event_en = PTP_TCR_TSEVNTENA;
484 
485 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
486 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
487 			break;
488 
489 		case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
490 			/* PTP v1, UDP, Delay_req packet */
491 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
492 			/* take time stamp for Delay_Req messages only */
493 			ts_master_en = PTP_TCR_TSMSTRENA;
494 			ts_event_en = PTP_TCR_TSEVNTENA;
495 
496 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
497 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
498 			break;
499 
500 		case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
501 			/* PTP v2, UDP, any kind of event packet */
502 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
503 			ptp_v2 = PTP_TCR_TSVER2ENA;
504 			/* take time stamp for all event messages */
505 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
506 
507 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
508 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
509 			break;
510 
511 		case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
512 			/* PTP v2, UDP, Sync packet */
513 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
514 			ptp_v2 = PTP_TCR_TSVER2ENA;
515 			/* take time stamp for SYNC messages only */
516 			ts_event_en = PTP_TCR_TSEVNTENA;
517 
518 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
519 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
520 			break;
521 
522 		case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
523 			/* PTP v2, UDP, Delay_req packet */
524 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
525 			ptp_v2 = PTP_TCR_TSVER2ENA;
526 			/* take time stamp for Delay_Req messages only */
527 			ts_master_en = PTP_TCR_TSMSTRENA;
528 			ts_event_en = PTP_TCR_TSEVNTENA;
529 
530 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
531 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
532 			break;
533 
534 		case HWTSTAMP_FILTER_PTP_V2_EVENT:
535 			/* PTP v2/802.AS1 any layer, any kind of event packet */
536 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
537 			ptp_v2 = PTP_TCR_TSVER2ENA;
538 			/* take time stamp for all event messages */
539 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
540 
541 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
542 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
543 			ptp_over_ethernet = PTP_TCR_TSIPENA;
544 			break;
545 
546 		case HWTSTAMP_FILTER_PTP_V2_SYNC:
547 			/* PTP v2/802.AS1, any layer, Sync packet */
548 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
549 			ptp_v2 = PTP_TCR_TSVER2ENA;
550 			/* take time stamp for SYNC messages only */
551 			ts_event_en = PTP_TCR_TSEVNTENA;
552 
553 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
554 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
555 			ptp_over_ethernet = PTP_TCR_TSIPENA;
556 			break;
557 
558 		case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
559 			/* PTP v2/802.AS1, any layer, Delay_req packet */
560 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
561 			ptp_v2 = PTP_TCR_TSVER2ENA;
562 			/* take time stamp for Delay_Req messages only */
563 			ts_master_en = PTP_TCR_TSMSTRENA;
564 			ts_event_en = PTP_TCR_TSEVNTENA;
565 
566 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
567 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
568 			ptp_over_ethernet = PTP_TCR_TSIPENA;
569 			break;
570 
571 		case HWTSTAMP_FILTER_ALL:
572 			/* time stamp any incoming packet */
573 			config.rx_filter = HWTSTAMP_FILTER_ALL;
574 			tstamp_all = PTP_TCR_TSENALL;
575 			break;
576 
577 		default:
578 			return -ERANGE;
579 		}
580 	} else {
581 		switch (config.rx_filter) {
582 		case HWTSTAMP_FILTER_NONE:
583 			config.rx_filter = HWTSTAMP_FILTER_NONE;
584 			break;
585 		default:
586 			/* PTP v1, UDP, any kind of event packet */
587 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
588 			break;
589 		}
590 	}
591 	priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
592 	priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
593 
594 	if (!priv->hwts_tx_en && !priv->hwts_rx_en)
595 		priv->hw->ptp->config_hw_tstamping(priv->ioaddr, 0);
596 	else {
597 		value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
598 			 tstamp_all | ptp_v2 | ptp_over_ethernet |
599 			 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
600 			 ts_master_en | snap_type_sel);
601 
602 		priv->hw->ptp->config_hw_tstamping(priv->ioaddr, value);
603 
604 		/* program Sub Second Increment reg */
605 		priv->hw->ptp->config_sub_second_increment(priv->ioaddr);
606 
607 		/* calculate default added value:
608 		 * formula is :
609 		 * addend = (2^32)/freq_div_ratio;
610 		 * where, freq_div_ratio = clk_ptp_ref_i/50MHz
611 		 * hence, addend = ((2^32) * 50MHz)/clk_ptp_ref_i;
612 		 * NOTE: clk_ptp_ref_i should be >= 50MHz to
613 		 *       achive 20ns accuracy.
614 		 *
615 		 * 2^x * y == (y << x), hence
616 		 * 2^32 * 50000000 ==> (50000000 << 32)
617 		 */
618 		temp = (u64) (50000000ULL << 32);
619 		priv->default_addend = div_u64(temp, priv->clk_ptp_rate);
620 		priv->hw->ptp->config_addend(priv->ioaddr,
621 					     priv->default_addend);
622 
623 		/* initialize system time */
624 		getnstimeofday(&now);
625 		priv->hw->ptp->init_systime(priv->ioaddr, now.tv_sec,
626 					    now.tv_nsec);
627 	}
628 
629 	return copy_to_user(ifr->ifr_data, &config,
630 			    sizeof(struct hwtstamp_config)) ? -EFAULT : 0;
631 }
632 
633 /**
634  * stmmac_init_ptp: init PTP
635  * @priv: driver private structure
636  * Description: this is to verify if the HW supports the PTPv1 or v2.
637  * This is done by looking at the HW cap. register.
638  * Also it registers the ptp driver.
639  */
640 static int stmmac_init_ptp(struct stmmac_priv *priv)
641 {
642 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
643 		return -EOPNOTSUPP;
644 
645 	/* Fall-back to main clock in case of no PTP ref is passed */
646 	priv->clk_ptp_ref = devm_clk_get(priv->device, "clk_ptp_ref");
647 	if (IS_ERR(priv->clk_ptp_ref)) {
648 		priv->clk_ptp_rate = clk_get_rate(priv->stmmac_clk);
649 		priv->clk_ptp_ref = NULL;
650 	} else {
651 		clk_prepare_enable(priv->clk_ptp_ref);
652 		priv->clk_ptp_rate = clk_get_rate(priv->clk_ptp_ref);
653 	}
654 
655 	priv->adv_ts = 0;
656 	if (priv->dma_cap.atime_stamp && priv->extend_desc)
657 		priv->adv_ts = 1;
658 
659 	if (netif_msg_hw(priv) && priv->dma_cap.time_stamp)
660 		pr_debug("IEEE 1588-2002 Time Stamp supported\n");
661 
662 	if (netif_msg_hw(priv) && priv->adv_ts)
663 		pr_debug("IEEE 1588-2008 Advanced Time Stamp supported\n");
664 
665 	priv->hw->ptp = &stmmac_ptp;
666 	priv->hwts_tx_en = 0;
667 	priv->hwts_rx_en = 0;
668 
669 	return stmmac_ptp_register(priv);
670 }
671 
672 static void stmmac_release_ptp(struct stmmac_priv *priv)
673 {
674 	if (priv->clk_ptp_ref)
675 		clk_disable_unprepare(priv->clk_ptp_ref);
676 	stmmac_ptp_unregister(priv);
677 }
678 
679 /**
680  * stmmac_adjust_link
681  * @dev: net device structure
682  * Description: it adjusts the link parameters.
683  */
684 static void stmmac_adjust_link(struct net_device *dev)
685 {
686 	struct stmmac_priv *priv = netdev_priv(dev);
687 	struct phy_device *phydev = priv->phydev;
688 	unsigned long flags;
689 	int new_state = 0;
690 	unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;
691 
692 	if (phydev == NULL)
693 		return;
694 
695 	spin_lock_irqsave(&priv->lock, flags);
696 
697 	if (phydev->link) {
698 		u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
699 
700 		/* Now we make sure that we can be in full duplex mode.
701 		 * If not, we operate in half-duplex mode. */
702 		if (phydev->duplex != priv->oldduplex) {
703 			new_state = 1;
704 			if (!(phydev->duplex))
705 				ctrl &= ~priv->hw->link.duplex;
706 			else
707 				ctrl |= priv->hw->link.duplex;
708 			priv->oldduplex = phydev->duplex;
709 		}
710 		/* Flow Control operation */
711 		if (phydev->pause)
712 			priv->hw->mac->flow_ctrl(priv->hw, phydev->duplex,
713 						 fc, pause_time);
714 
715 		if (phydev->speed != priv->speed) {
716 			new_state = 1;
717 			switch (phydev->speed) {
718 			case 1000:
719 				if (likely(priv->plat->has_gmac))
720 					ctrl &= ~priv->hw->link.port;
721 				stmmac_hw_fix_mac_speed(priv);
722 				break;
723 			case 100:
724 			case 10:
725 				if (priv->plat->has_gmac) {
726 					ctrl |= priv->hw->link.port;
727 					if (phydev->speed == SPEED_100) {
728 						ctrl |= priv->hw->link.speed;
729 					} else {
730 						ctrl &= ~(priv->hw->link.speed);
731 					}
732 				} else {
733 					ctrl &= ~priv->hw->link.port;
734 				}
735 				stmmac_hw_fix_mac_speed(priv);
736 				break;
737 			default:
738 				if (netif_msg_link(priv))
739 					pr_warn("%s: Speed (%d) not 10/100\n",
740 						dev->name, phydev->speed);
741 				break;
742 			}
743 
744 			priv->speed = phydev->speed;
745 		}
746 
747 		writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
748 
749 		if (!priv->oldlink) {
750 			new_state = 1;
751 			priv->oldlink = 1;
752 		}
753 	} else if (priv->oldlink) {
754 		new_state = 1;
755 		priv->oldlink = 0;
756 		priv->speed = 0;
757 		priv->oldduplex = -1;
758 	}
759 
760 	if (new_state && netif_msg_link(priv))
761 		phy_print_status(phydev);
762 
763 	/* At this stage, it could be needed to setup the EEE or adjust some
764 	 * MAC related HW registers.
765 	 */
766 	priv->eee_enabled = stmmac_eee_init(priv);
767 
768 	spin_unlock_irqrestore(&priv->lock, flags);
769 }
770 
771 /**
772  * stmmac_check_pcs_mode: verify if RGMII/SGMII is supported
773  * @priv: driver private structure
774  * Description: this is to verify if the HW supports the PCS.
775  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
776  * configured for the TBI, RTBI, or SGMII PHY interface.
777  */
778 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
779 {
780 	int interface = priv->plat->interface;
781 
782 	if (priv->dma_cap.pcs) {
783 		if ((interface == PHY_INTERFACE_MODE_RGMII) ||
784 		    (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
785 		    (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
786 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
787 			pr_debug("STMMAC: PCS RGMII support enable\n");
788 			priv->pcs = STMMAC_PCS_RGMII;
789 		} else if (interface == PHY_INTERFACE_MODE_SGMII) {
790 			pr_debug("STMMAC: PCS SGMII support enable\n");
791 			priv->pcs = STMMAC_PCS_SGMII;
792 		}
793 	}
794 }
795 
796 /**
797  * stmmac_init_phy - PHY initialization
798  * @dev: net device structure
799  * Description: it initializes the driver's PHY state, and attaches the PHY
800  * to the mac driver.
801  *  Return value:
802  *  0 on success
803  */
804 static int stmmac_init_phy(struct net_device *dev)
805 {
806 	struct stmmac_priv *priv = netdev_priv(dev);
807 	struct phy_device *phydev;
808 	char phy_id_fmt[MII_BUS_ID_SIZE + 3];
809 	char bus_id[MII_BUS_ID_SIZE];
810 	int interface = priv->plat->interface;
811 	int max_speed = priv->plat->max_speed;
812 	priv->oldlink = 0;
813 	priv->speed = 0;
814 	priv->oldduplex = -1;
815 
816 	if (priv->plat->phy_bus_name)
817 		snprintf(bus_id, MII_BUS_ID_SIZE, "%s-%x",
818 			 priv->plat->phy_bus_name, priv->plat->bus_id);
819 	else
820 		snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
821 			 priv->plat->bus_id);
822 
823 	snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
824 		 priv->plat->phy_addr);
825 	pr_debug("stmmac_init_phy:  trying to attach to %s\n", phy_id_fmt);
826 
827 	phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link, interface);
828 
829 	if (IS_ERR(phydev)) {
830 		pr_err("%s: Could not attach to PHY\n", dev->name);
831 		return PTR_ERR(phydev);
832 	}
833 
834 	/* Stop Advertising 1000BASE Capability if interface is not GMII */
835 	if ((interface == PHY_INTERFACE_MODE_MII) ||
836 	    (interface == PHY_INTERFACE_MODE_RMII) ||
837 		(max_speed < 1000 &&  max_speed > 0))
838 		phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
839 					 SUPPORTED_1000baseT_Full);
840 
841 	/*
842 	 * Broken HW is sometimes missing the pull-up resistor on the
843 	 * MDIO line, which results in reads to non-existent devices returning
844 	 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
845 	 * device as well.
846 	 * Note: phydev->phy_id is the result of reading the UID PHY registers.
847 	 */
848 	if (phydev->phy_id == 0) {
849 		phy_disconnect(phydev);
850 		return -ENODEV;
851 	}
852 	pr_debug("stmmac_init_phy:  %s: attached to PHY (UID 0x%x)"
853 		 " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
854 
855 	priv->phydev = phydev;
856 
857 	return 0;
858 }
859 
860 /**
861  * stmmac_display_ring: display ring
862  * @head: pointer to the head of the ring passed.
863  * @size: size of the ring.
864  * @extend_desc: to verify if extended descriptors are used.
865  * Description: display the control/status and buffer descriptors.
866  */
867 static void stmmac_display_ring(void *head, int size, int extend_desc)
868 {
869 	int i;
870 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
871 	struct dma_desc *p = (struct dma_desc *)head;
872 
873 	for (i = 0; i < size; i++) {
874 		u64 x;
875 		if (extend_desc) {
876 			x = *(u64 *) ep;
877 			pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
878 				i, (unsigned int)virt_to_phys(ep),
879 				(unsigned int)x, (unsigned int)(x >> 32),
880 				ep->basic.des2, ep->basic.des3);
881 			ep++;
882 		} else {
883 			x = *(u64 *) p;
884 			pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x",
885 				i, (unsigned int)virt_to_phys(p),
886 				(unsigned int)x, (unsigned int)(x >> 32),
887 				p->des2, p->des3);
888 			p++;
889 		}
890 		pr_info("\n");
891 	}
892 }
893 
894 static void stmmac_display_rings(struct stmmac_priv *priv)
895 {
896 	unsigned int txsize = priv->dma_tx_size;
897 	unsigned int rxsize = priv->dma_rx_size;
898 
899 	if (priv->extend_desc) {
900 		pr_info("Extended RX descriptor ring:\n");
901 		stmmac_display_ring((void *)priv->dma_erx, rxsize, 1);
902 		pr_info("Extended TX descriptor ring:\n");
903 		stmmac_display_ring((void *)priv->dma_etx, txsize, 1);
904 	} else {
905 		pr_info("RX descriptor ring:\n");
906 		stmmac_display_ring((void *)priv->dma_rx, rxsize, 0);
907 		pr_info("TX descriptor ring:\n");
908 		stmmac_display_ring((void *)priv->dma_tx, txsize, 0);
909 	}
910 }
911 
912 static int stmmac_set_bfsize(int mtu, int bufsize)
913 {
914 	int ret = bufsize;
915 
916 	if (mtu >= BUF_SIZE_4KiB)
917 		ret = BUF_SIZE_8KiB;
918 	else if (mtu >= BUF_SIZE_2KiB)
919 		ret = BUF_SIZE_4KiB;
920 	else if (mtu > DEFAULT_BUFSIZE)
921 		ret = BUF_SIZE_2KiB;
922 	else
923 		ret = DEFAULT_BUFSIZE;
924 
925 	return ret;
926 }
927 
928 /**
929  * stmmac_clear_descriptors: clear descriptors
930  * @priv: driver private structure
931  * Description: this function is called to clear the tx and rx descriptors
932  * in case of both basic and extended descriptors are used.
933  */
934 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
935 {
936 	int i;
937 	unsigned int txsize = priv->dma_tx_size;
938 	unsigned int rxsize = priv->dma_rx_size;
939 
940 	/* Clear the Rx/Tx descriptors */
941 	for (i = 0; i < rxsize; i++)
942 		if (priv->extend_desc)
943 			priv->hw->desc->init_rx_desc(&priv->dma_erx[i].basic,
944 						     priv->use_riwt, priv->mode,
945 						     (i == rxsize - 1));
946 		else
947 			priv->hw->desc->init_rx_desc(&priv->dma_rx[i],
948 						     priv->use_riwt, priv->mode,
949 						     (i == rxsize - 1));
950 	for (i = 0; i < txsize; i++)
951 		if (priv->extend_desc)
952 			priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
953 						     priv->mode,
954 						     (i == txsize - 1));
955 		else
956 			priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
957 						     priv->mode,
958 						     (i == txsize - 1));
959 }
960 
961 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
962 				  int i)
963 {
964 	struct sk_buff *skb;
965 
966 	skb = __netdev_alloc_skb(priv->dev, priv->dma_buf_sz + NET_IP_ALIGN,
967 				 GFP_KERNEL);
968 	if (!skb) {
969 		pr_err("%s: Rx init fails; skb is NULL\n", __func__);
970 		return -ENOMEM;
971 	}
972 	skb_reserve(skb, NET_IP_ALIGN);
973 	priv->rx_skbuff[i] = skb;
974 	priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
975 						priv->dma_buf_sz,
976 						DMA_FROM_DEVICE);
977 	if (dma_mapping_error(priv->device, priv->rx_skbuff_dma[i])) {
978 		pr_err("%s: DMA mapping error\n", __func__);
979 		dev_kfree_skb_any(skb);
980 		return -EINVAL;
981 	}
982 
983 	p->des2 = priv->rx_skbuff_dma[i];
984 
985 	if ((priv->hw->mode->init_desc3) &&
986 	    (priv->dma_buf_sz == BUF_SIZE_16KiB))
987 		priv->hw->mode->init_desc3(p);
988 
989 	return 0;
990 }
991 
992 static void stmmac_free_rx_buffers(struct stmmac_priv *priv, int i)
993 {
994 	if (priv->rx_skbuff[i]) {
995 		dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
996 				 priv->dma_buf_sz, DMA_FROM_DEVICE);
997 		dev_kfree_skb_any(priv->rx_skbuff[i]);
998 	}
999 	priv->rx_skbuff[i] = NULL;
1000 }
1001 
1002 /**
1003  * init_dma_desc_rings - init the RX/TX descriptor rings
1004  * @dev: net device structure
1005  * Description:  this function initializes the DMA RX/TX descriptors
1006  * and allocates the socket buffers. It suppors the chained and ring
1007  * modes.
1008  */
1009 static int init_dma_desc_rings(struct net_device *dev)
1010 {
1011 	int i;
1012 	struct stmmac_priv *priv = netdev_priv(dev);
1013 	unsigned int txsize = priv->dma_tx_size;
1014 	unsigned int rxsize = priv->dma_rx_size;
1015 	unsigned int bfsize = 0;
1016 	int ret = -ENOMEM;
1017 
1018 	if (priv->hw->mode->set_16kib_bfsize)
1019 		bfsize = priv->hw->mode->set_16kib_bfsize(dev->mtu);
1020 
1021 	if (bfsize < BUF_SIZE_16KiB)
1022 		bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
1023 
1024 	priv->dma_buf_sz = bfsize;
1025 
1026 	if (netif_msg_probe(priv))
1027 		pr_debug("%s: txsize %d, rxsize %d, bfsize %d\n", __func__,
1028 			 txsize, rxsize, bfsize);
1029 
1030 	if (netif_msg_probe(priv)) {
1031 		pr_debug("(%s) dma_rx_phy=0x%08x dma_tx_phy=0x%08x\n", __func__,
1032 			 (u32) priv->dma_rx_phy, (u32) priv->dma_tx_phy);
1033 
1034 		/* RX INITIALIZATION */
1035 		pr_debug("\tSKB addresses:\nskb\t\tskb data\tdma data\n");
1036 	}
1037 	for (i = 0; i < rxsize; i++) {
1038 		struct dma_desc *p;
1039 		if (priv->extend_desc)
1040 			p = &((priv->dma_erx + i)->basic);
1041 		else
1042 			p = priv->dma_rx + i;
1043 
1044 		ret = stmmac_init_rx_buffers(priv, p, i);
1045 		if (ret)
1046 			goto err_init_rx_buffers;
1047 
1048 		if (netif_msg_probe(priv))
1049 			pr_debug("[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
1050 				 priv->rx_skbuff[i]->data,
1051 				 (unsigned int)priv->rx_skbuff_dma[i]);
1052 	}
1053 	priv->cur_rx = 0;
1054 	priv->dirty_rx = (unsigned int)(i - rxsize);
1055 	buf_sz = bfsize;
1056 
1057 	/* Setup the chained descriptor addresses */
1058 	if (priv->mode == STMMAC_CHAIN_MODE) {
1059 		if (priv->extend_desc) {
1060 			priv->hw->mode->init(priv->dma_erx, priv->dma_rx_phy,
1061 					     rxsize, 1);
1062 			priv->hw->mode->init(priv->dma_etx, priv->dma_tx_phy,
1063 					     txsize, 1);
1064 		} else {
1065 			priv->hw->mode->init(priv->dma_rx, priv->dma_rx_phy,
1066 					     rxsize, 0);
1067 			priv->hw->mode->init(priv->dma_tx, priv->dma_tx_phy,
1068 					     txsize, 0);
1069 		}
1070 	}
1071 
1072 	/* TX INITIALIZATION */
1073 	for (i = 0; i < txsize; i++) {
1074 		struct dma_desc *p;
1075 		if (priv->extend_desc)
1076 			p = &((priv->dma_etx + i)->basic);
1077 		else
1078 			p = priv->dma_tx + i;
1079 		p->des2 = 0;
1080 		priv->tx_skbuff_dma[i].buf = 0;
1081 		priv->tx_skbuff_dma[i].map_as_page = false;
1082 		priv->tx_skbuff[i] = NULL;
1083 	}
1084 
1085 	priv->dirty_tx = 0;
1086 	priv->cur_tx = 0;
1087 
1088 	stmmac_clear_descriptors(priv);
1089 
1090 	if (netif_msg_hw(priv))
1091 		stmmac_display_rings(priv);
1092 
1093 	return 0;
1094 err_init_rx_buffers:
1095 	while (--i >= 0)
1096 		stmmac_free_rx_buffers(priv, i);
1097 	return ret;
1098 }
1099 
1100 static void dma_free_rx_skbufs(struct stmmac_priv *priv)
1101 {
1102 	int i;
1103 
1104 	for (i = 0; i < priv->dma_rx_size; i++)
1105 		stmmac_free_rx_buffers(priv, i);
1106 }
1107 
1108 static void dma_free_tx_skbufs(struct stmmac_priv *priv)
1109 {
1110 	int i;
1111 
1112 	for (i = 0; i < priv->dma_tx_size; i++) {
1113 		struct dma_desc *p;
1114 
1115 		if (priv->extend_desc)
1116 			p = &((priv->dma_etx + i)->basic);
1117 		else
1118 			p = priv->dma_tx + i;
1119 
1120 		if (priv->tx_skbuff_dma[i].buf) {
1121 			if (priv->tx_skbuff_dma[i].map_as_page)
1122 				dma_unmap_page(priv->device,
1123 					       priv->tx_skbuff_dma[i].buf,
1124 					       priv->hw->desc->get_tx_len(p),
1125 					       DMA_TO_DEVICE);
1126 			else
1127 				dma_unmap_single(priv->device,
1128 						 priv->tx_skbuff_dma[i].buf,
1129 						 priv->hw->desc->get_tx_len(p),
1130 						 DMA_TO_DEVICE);
1131 		}
1132 
1133 		if (priv->tx_skbuff[i] != NULL) {
1134 			dev_kfree_skb_any(priv->tx_skbuff[i]);
1135 			priv->tx_skbuff[i] = NULL;
1136 			priv->tx_skbuff_dma[i].buf = 0;
1137 			priv->tx_skbuff_dma[i].map_as_page = false;
1138 		}
1139 	}
1140 }
1141 
1142 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1143 {
1144 	unsigned int txsize = priv->dma_tx_size;
1145 	unsigned int rxsize = priv->dma_rx_size;
1146 	int ret = -ENOMEM;
1147 
1148 	priv->rx_skbuff_dma = kmalloc_array(rxsize, sizeof(dma_addr_t),
1149 					    GFP_KERNEL);
1150 	if (!priv->rx_skbuff_dma)
1151 		return -ENOMEM;
1152 
1153 	priv->rx_skbuff = kmalloc_array(rxsize, sizeof(struct sk_buff *),
1154 					GFP_KERNEL);
1155 	if (!priv->rx_skbuff)
1156 		goto err_rx_skbuff;
1157 
1158 	priv->tx_skbuff_dma = kmalloc_array(txsize,
1159 					    sizeof(*priv->tx_skbuff_dma),
1160 					    GFP_KERNEL);
1161 	if (!priv->tx_skbuff_dma)
1162 		goto err_tx_skbuff_dma;
1163 
1164 	priv->tx_skbuff = kmalloc_array(txsize, sizeof(struct sk_buff *),
1165 					GFP_KERNEL);
1166 	if (!priv->tx_skbuff)
1167 		goto err_tx_skbuff;
1168 
1169 	if (priv->extend_desc) {
1170 		priv->dma_erx = dma_alloc_coherent(priv->device, rxsize *
1171 						   sizeof(struct
1172 							  dma_extended_desc),
1173 						   &priv->dma_rx_phy,
1174 						   GFP_KERNEL);
1175 		if (!priv->dma_erx)
1176 			goto err_dma;
1177 
1178 		priv->dma_etx = dma_alloc_coherent(priv->device, txsize *
1179 						   sizeof(struct
1180 							  dma_extended_desc),
1181 						   &priv->dma_tx_phy,
1182 						   GFP_KERNEL);
1183 		if (!priv->dma_etx) {
1184 			dma_free_coherent(priv->device, priv->dma_rx_size *
1185 					sizeof(struct dma_extended_desc),
1186 					priv->dma_erx, priv->dma_rx_phy);
1187 			goto err_dma;
1188 		}
1189 	} else {
1190 		priv->dma_rx = dma_alloc_coherent(priv->device, rxsize *
1191 						  sizeof(struct dma_desc),
1192 						  &priv->dma_rx_phy,
1193 						  GFP_KERNEL);
1194 		if (!priv->dma_rx)
1195 			goto err_dma;
1196 
1197 		priv->dma_tx = dma_alloc_coherent(priv->device, txsize *
1198 						  sizeof(struct dma_desc),
1199 						  &priv->dma_tx_phy,
1200 						  GFP_KERNEL);
1201 		if (!priv->dma_tx) {
1202 			dma_free_coherent(priv->device, priv->dma_rx_size *
1203 					sizeof(struct dma_desc),
1204 					priv->dma_rx, priv->dma_rx_phy);
1205 			goto err_dma;
1206 		}
1207 	}
1208 
1209 	return 0;
1210 
1211 err_dma:
1212 	kfree(priv->tx_skbuff);
1213 err_tx_skbuff:
1214 	kfree(priv->tx_skbuff_dma);
1215 err_tx_skbuff_dma:
1216 	kfree(priv->rx_skbuff);
1217 err_rx_skbuff:
1218 	kfree(priv->rx_skbuff_dma);
1219 	return ret;
1220 }
1221 
1222 static void free_dma_desc_resources(struct stmmac_priv *priv)
1223 {
1224 	/* Release the DMA TX/RX socket buffers */
1225 	dma_free_rx_skbufs(priv);
1226 	dma_free_tx_skbufs(priv);
1227 
1228 	/* Free DMA regions of consistent memory previously allocated */
1229 	if (!priv->extend_desc) {
1230 		dma_free_coherent(priv->device,
1231 				  priv->dma_tx_size * sizeof(struct dma_desc),
1232 				  priv->dma_tx, priv->dma_tx_phy);
1233 		dma_free_coherent(priv->device,
1234 				  priv->dma_rx_size * sizeof(struct dma_desc),
1235 				  priv->dma_rx, priv->dma_rx_phy);
1236 	} else {
1237 		dma_free_coherent(priv->device, priv->dma_tx_size *
1238 				  sizeof(struct dma_extended_desc),
1239 				  priv->dma_etx, priv->dma_tx_phy);
1240 		dma_free_coherent(priv->device, priv->dma_rx_size *
1241 				  sizeof(struct dma_extended_desc),
1242 				  priv->dma_erx, priv->dma_rx_phy);
1243 	}
1244 	kfree(priv->rx_skbuff_dma);
1245 	kfree(priv->rx_skbuff);
1246 	kfree(priv->tx_skbuff_dma);
1247 	kfree(priv->tx_skbuff);
1248 }
1249 
1250 /**
1251  *  stmmac_dma_operation_mode - HW DMA operation mode
1252  *  @priv: driver private structure
1253  *  Description: it sets the DMA operation mode: tx/rx DMA thresholds
1254  *  or Store-And-Forward capability.
1255  */
1256 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1257 {
1258 	if (priv->plat->force_thresh_dma_mode)
1259 		priv->hw->dma->dma_mode(priv->ioaddr, tc, tc);
1260 	else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1261 		/*
1262 		 * In case of GMAC, SF mode can be enabled
1263 		 * to perform the TX COE in HW. This depends on:
1264 		 * 1) TX COE if actually supported
1265 		 * 2) There is no bugged Jumbo frame support
1266 		 *    that needs to not insert csum in the TDES.
1267 		 */
1268 		priv->hw->dma->dma_mode(priv->ioaddr, SF_DMA_MODE, SF_DMA_MODE);
1269 		tc = SF_DMA_MODE;
1270 	} else
1271 		priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
1272 }
1273 
1274 /**
1275  * stmmac_tx_clean:
1276  * @priv: driver private structure
1277  * Description: it reclaims resources after transmission completes.
1278  */
1279 static void stmmac_tx_clean(struct stmmac_priv *priv)
1280 {
1281 	unsigned int txsize = priv->dma_tx_size;
1282 
1283 	spin_lock(&priv->tx_lock);
1284 
1285 	priv->xstats.tx_clean++;
1286 
1287 	while (priv->dirty_tx != priv->cur_tx) {
1288 		int last;
1289 		unsigned int entry = priv->dirty_tx % txsize;
1290 		struct sk_buff *skb = priv->tx_skbuff[entry];
1291 		struct dma_desc *p;
1292 
1293 		if (priv->extend_desc)
1294 			p = (struct dma_desc *)(priv->dma_etx + entry);
1295 		else
1296 			p = priv->dma_tx + entry;
1297 
1298 		/* Check if the descriptor is owned by the DMA. */
1299 		if (priv->hw->desc->get_tx_owner(p))
1300 			break;
1301 
1302 		/* Verify tx error by looking at the last segment. */
1303 		last = priv->hw->desc->get_tx_ls(p);
1304 		if (likely(last)) {
1305 			int tx_error =
1306 			    priv->hw->desc->tx_status(&priv->dev->stats,
1307 						      &priv->xstats, p,
1308 						      priv->ioaddr);
1309 			if (likely(tx_error == 0)) {
1310 				priv->dev->stats.tx_packets++;
1311 				priv->xstats.tx_pkt_n++;
1312 			} else
1313 				priv->dev->stats.tx_errors++;
1314 
1315 			stmmac_get_tx_hwtstamp(priv, entry, skb);
1316 		}
1317 		if (netif_msg_tx_done(priv))
1318 			pr_debug("%s: curr %d, dirty %d\n", __func__,
1319 				 priv->cur_tx, priv->dirty_tx);
1320 
1321 		if (likely(priv->tx_skbuff_dma[entry].buf)) {
1322 			if (priv->tx_skbuff_dma[entry].map_as_page)
1323 				dma_unmap_page(priv->device,
1324 					       priv->tx_skbuff_dma[entry].buf,
1325 					       priv->hw->desc->get_tx_len(p),
1326 					       DMA_TO_DEVICE);
1327 			else
1328 				dma_unmap_single(priv->device,
1329 						 priv->tx_skbuff_dma[entry].buf,
1330 						 priv->hw->desc->get_tx_len(p),
1331 						 DMA_TO_DEVICE);
1332 			priv->tx_skbuff_dma[entry].buf = 0;
1333 			priv->tx_skbuff_dma[entry].map_as_page = false;
1334 		}
1335 		priv->hw->mode->clean_desc3(priv, p);
1336 
1337 		if (likely(skb != NULL)) {
1338 			dev_consume_skb_any(skb);
1339 			priv->tx_skbuff[entry] = NULL;
1340 		}
1341 
1342 		priv->hw->desc->release_tx_desc(p, priv->mode);
1343 
1344 		priv->dirty_tx++;
1345 	}
1346 	if (unlikely(netif_queue_stopped(priv->dev) &&
1347 		     stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) {
1348 		netif_tx_lock(priv->dev);
1349 		if (netif_queue_stopped(priv->dev) &&
1350 		    stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) {
1351 			if (netif_msg_tx_done(priv))
1352 				pr_debug("%s: restart transmit\n", __func__);
1353 			netif_wake_queue(priv->dev);
1354 		}
1355 		netif_tx_unlock(priv->dev);
1356 	}
1357 
1358 	if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1359 		stmmac_enable_eee_mode(priv);
1360 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1361 	}
1362 	spin_unlock(&priv->tx_lock);
1363 }
1364 
1365 static inline void stmmac_enable_dma_irq(struct stmmac_priv *priv)
1366 {
1367 	priv->hw->dma->enable_dma_irq(priv->ioaddr);
1368 }
1369 
1370 static inline void stmmac_disable_dma_irq(struct stmmac_priv *priv)
1371 {
1372 	priv->hw->dma->disable_dma_irq(priv->ioaddr);
1373 }
1374 
1375 /**
1376  * stmmac_tx_err: irq tx error mng function
1377  * @priv: driver private structure
1378  * Description: it cleans the descriptors and restarts the transmission
1379  * in case of errors.
1380  */
1381 static void stmmac_tx_err(struct stmmac_priv *priv)
1382 {
1383 	int i;
1384 	int txsize = priv->dma_tx_size;
1385 	netif_stop_queue(priv->dev);
1386 
1387 	priv->hw->dma->stop_tx(priv->ioaddr);
1388 	dma_free_tx_skbufs(priv);
1389 	for (i = 0; i < txsize; i++)
1390 		if (priv->extend_desc)
1391 			priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
1392 						     priv->mode,
1393 						     (i == txsize - 1));
1394 		else
1395 			priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
1396 						     priv->mode,
1397 						     (i == txsize - 1));
1398 	priv->dirty_tx = 0;
1399 	priv->cur_tx = 0;
1400 	priv->hw->dma->start_tx(priv->ioaddr);
1401 
1402 	priv->dev->stats.tx_errors++;
1403 	netif_wake_queue(priv->dev);
1404 }
1405 
1406 /**
1407  * stmmac_dma_interrupt: DMA ISR
1408  * @priv: driver private structure
1409  * Description: this is the DMA ISR. It is called by the main ISR.
1410  * It calls the dwmac dma routine to understand which type of interrupt
1411  * happened. In case of there is a Normal interrupt and either TX or RX
1412  * interrupt happened so the NAPI is scheduled.
1413  */
1414 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
1415 {
1416 	int status;
1417 
1418 	status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
1419 	if (likely((status & handle_rx)) || (status & handle_tx)) {
1420 		if (likely(napi_schedule_prep(&priv->napi))) {
1421 			stmmac_disable_dma_irq(priv);
1422 			__napi_schedule(&priv->napi);
1423 		}
1424 	}
1425 	if (unlikely(status & tx_hard_error_bump_tc)) {
1426 		/* Try to bump up the dma threshold on this failure */
1427 		if (unlikely(tc != SF_DMA_MODE) && (tc <= 256)) {
1428 			tc += 64;
1429 			priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
1430 			priv->xstats.threshold = tc;
1431 		}
1432 	} else if (unlikely(status == tx_hard_error))
1433 		stmmac_tx_err(priv);
1434 }
1435 
1436 /**
1437  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
1438  * @priv: driver private structure
1439  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
1440  */
1441 static void stmmac_mmc_setup(struct stmmac_priv *priv)
1442 {
1443 	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
1444 	    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
1445 
1446 	dwmac_mmc_intr_all_mask(priv->ioaddr);
1447 
1448 	if (priv->dma_cap.rmon) {
1449 		dwmac_mmc_ctrl(priv->ioaddr, mode);
1450 		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
1451 	} else
1452 		pr_info(" No MAC Management Counters available\n");
1453 }
1454 
1455 static u32 stmmac_get_synopsys_id(struct stmmac_priv *priv)
1456 {
1457 	u32 hwid = priv->hw->synopsys_uid;
1458 
1459 	/* Check Synopsys Id (not available on old chips) */
1460 	if (likely(hwid)) {
1461 		u32 uid = ((hwid & 0x0000ff00) >> 8);
1462 		u32 synid = (hwid & 0x000000ff);
1463 
1464 		pr_info("stmmac - user ID: 0x%x, Synopsys ID: 0x%x\n",
1465 			uid, synid);
1466 
1467 		return synid;
1468 	}
1469 	return 0;
1470 }
1471 
1472 /**
1473  * stmmac_selec_desc_mode: to select among: normal/alternate/extend descriptors
1474  * @priv: driver private structure
1475  * Description: select the Enhanced/Alternate or Normal descriptors.
1476  * In case of Enhanced/Alternate, it looks at the extended descriptors are
1477  * supported by the HW cap. register.
1478  */
1479 static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
1480 {
1481 	if (priv->plat->enh_desc) {
1482 		pr_info(" Enhanced/Alternate descriptors\n");
1483 
1484 		/* GMAC older than 3.50 has no extended descriptors */
1485 		if (priv->synopsys_id >= DWMAC_CORE_3_50) {
1486 			pr_info("\tEnabled extended descriptors\n");
1487 			priv->extend_desc = 1;
1488 		} else
1489 			pr_warn("Extended descriptors not supported\n");
1490 
1491 		priv->hw->desc = &enh_desc_ops;
1492 	} else {
1493 		pr_info(" Normal descriptors\n");
1494 		priv->hw->desc = &ndesc_ops;
1495 	}
1496 }
1497 
1498 /**
1499  * stmmac_get_hw_features: get MAC capabilities from the HW cap. register.
1500  * @priv: driver private structure
1501  * Description:
1502  *  new GMAC chip generations have a new register to indicate the
1503  *  presence of the optional feature/functions.
1504  *  This can be also used to override the value passed through the
1505  *  platform and necessary for old MAC10/100 and GMAC chips.
1506  */
1507 static int stmmac_get_hw_features(struct stmmac_priv *priv)
1508 {
1509 	u32 hw_cap = 0;
1510 
1511 	if (priv->hw->dma->get_hw_feature) {
1512 		hw_cap = priv->hw->dma->get_hw_feature(priv->ioaddr);
1513 
1514 		priv->dma_cap.mbps_10_100 = (hw_cap & DMA_HW_FEAT_MIISEL);
1515 		priv->dma_cap.mbps_1000 = (hw_cap & DMA_HW_FEAT_GMIISEL) >> 1;
1516 		priv->dma_cap.half_duplex = (hw_cap & DMA_HW_FEAT_HDSEL) >> 2;
1517 		priv->dma_cap.hash_filter = (hw_cap & DMA_HW_FEAT_HASHSEL) >> 4;
1518 		priv->dma_cap.multi_addr = (hw_cap & DMA_HW_FEAT_ADDMAC) >> 5;
1519 		priv->dma_cap.pcs = (hw_cap & DMA_HW_FEAT_PCSSEL) >> 6;
1520 		priv->dma_cap.sma_mdio = (hw_cap & DMA_HW_FEAT_SMASEL) >> 8;
1521 		priv->dma_cap.pmt_remote_wake_up =
1522 		    (hw_cap & DMA_HW_FEAT_RWKSEL) >> 9;
1523 		priv->dma_cap.pmt_magic_frame =
1524 		    (hw_cap & DMA_HW_FEAT_MGKSEL) >> 10;
1525 		/* MMC */
1526 		priv->dma_cap.rmon = (hw_cap & DMA_HW_FEAT_MMCSEL) >> 11;
1527 		/* IEEE 1588-2002 */
1528 		priv->dma_cap.time_stamp =
1529 		    (hw_cap & DMA_HW_FEAT_TSVER1SEL) >> 12;
1530 		/* IEEE 1588-2008 */
1531 		priv->dma_cap.atime_stamp =
1532 		    (hw_cap & DMA_HW_FEAT_TSVER2SEL) >> 13;
1533 		/* 802.3az - Energy-Efficient Ethernet (EEE) */
1534 		priv->dma_cap.eee = (hw_cap & DMA_HW_FEAT_EEESEL) >> 14;
1535 		priv->dma_cap.av = (hw_cap & DMA_HW_FEAT_AVSEL) >> 15;
1536 		/* TX and RX csum */
1537 		priv->dma_cap.tx_coe = (hw_cap & DMA_HW_FEAT_TXCOESEL) >> 16;
1538 		priv->dma_cap.rx_coe_type1 =
1539 		    (hw_cap & DMA_HW_FEAT_RXTYP1COE) >> 17;
1540 		priv->dma_cap.rx_coe_type2 =
1541 		    (hw_cap & DMA_HW_FEAT_RXTYP2COE) >> 18;
1542 		priv->dma_cap.rxfifo_over_2048 =
1543 		    (hw_cap & DMA_HW_FEAT_RXFIFOSIZE) >> 19;
1544 		/* TX and RX number of channels */
1545 		priv->dma_cap.number_rx_channel =
1546 		    (hw_cap & DMA_HW_FEAT_RXCHCNT) >> 20;
1547 		priv->dma_cap.number_tx_channel =
1548 		    (hw_cap & DMA_HW_FEAT_TXCHCNT) >> 22;
1549 		/* Alternate (enhanced) DESC mode */
1550 		priv->dma_cap.enh_desc = (hw_cap & DMA_HW_FEAT_ENHDESSEL) >> 24;
1551 	}
1552 
1553 	return hw_cap;
1554 }
1555 
1556 /**
1557  * stmmac_check_ether_addr: check if the MAC addr is valid
1558  * @priv: driver private structure
1559  * Description:
1560  * it is to verify if the MAC address is valid, in case of failures it
1561  * generates a random MAC address
1562  */
1563 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
1564 {
1565 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
1566 		priv->hw->mac->get_umac_addr(priv->hw,
1567 					     priv->dev->dev_addr, 0);
1568 		if (!is_valid_ether_addr(priv->dev->dev_addr))
1569 			eth_hw_addr_random(priv->dev);
1570 		pr_info("%s: device MAC address %pM\n", priv->dev->name,
1571 			priv->dev->dev_addr);
1572 	}
1573 }
1574 
1575 /**
1576  * stmmac_init_dma_engine: DMA init.
1577  * @priv: driver private structure
1578  * Description:
1579  * It inits the DMA invoking the specific MAC/GMAC callback.
1580  * Some DMA parameters can be passed from the platform;
1581  * in case of these are not passed a default is kept for the MAC or GMAC.
1582  */
1583 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
1584 {
1585 	int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, burst_len = 0;
1586 	int mixed_burst = 0;
1587 	int atds = 0;
1588 
1589 	if (priv->plat->dma_cfg) {
1590 		pbl = priv->plat->dma_cfg->pbl;
1591 		fixed_burst = priv->plat->dma_cfg->fixed_burst;
1592 		mixed_burst = priv->plat->dma_cfg->mixed_burst;
1593 		burst_len = priv->plat->dma_cfg->burst_len;
1594 	}
1595 
1596 	if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
1597 		atds = 1;
1598 
1599 	return priv->hw->dma->init(priv->ioaddr, pbl, fixed_burst, mixed_burst,
1600 				   burst_len, priv->dma_tx_phy,
1601 				   priv->dma_rx_phy, atds);
1602 }
1603 
1604 /**
1605  * stmmac_tx_timer: mitigation sw timer for tx.
1606  * @data: data pointer
1607  * Description:
1608  * This is the timer handler to directly invoke the stmmac_tx_clean.
1609  */
1610 static void stmmac_tx_timer(unsigned long data)
1611 {
1612 	struct stmmac_priv *priv = (struct stmmac_priv *)data;
1613 
1614 	stmmac_tx_clean(priv);
1615 }
1616 
1617 /**
1618  * stmmac_init_tx_coalesce: init tx mitigation options.
1619  * @priv: driver private structure
1620  * Description:
1621  * This inits the transmit coalesce parameters: i.e. timer rate,
1622  * timer handler and default threshold used for enabling the
1623  * interrupt on completion bit.
1624  */
1625 static void stmmac_init_tx_coalesce(struct stmmac_priv *priv)
1626 {
1627 	priv->tx_coal_frames = STMMAC_TX_FRAMES;
1628 	priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
1629 	init_timer(&priv->txtimer);
1630 	priv->txtimer.expires = STMMAC_COAL_TIMER(priv->tx_coal_timer);
1631 	priv->txtimer.data = (unsigned long)priv;
1632 	priv->txtimer.function = stmmac_tx_timer;
1633 	add_timer(&priv->txtimer);
1634 }
1635 
1636 /**
1637  * stmmac_hw_setup: setup mac in a usable state.
1638  *  @dev : pointer to the device structure.
1639  *  Description:
1640  *  This function sets up the ip in a usable state.
1641  *  Return value:
1642  *  0 on success and an appropriate (-)ve integer as defined in errno.h
1643  *  file on failure.
1644  */
1645 static int stmmac_hw_setup(struct net_device *dev)
1646 {
1647 	struct stmmac_priv *priv = netdev_priv(dev);
1648 	int ret;
1649 
1650 	ret = init_dma_desc_rings(dev);
1651 	if (ret < 0) {
1652 		pr_err("%s: DMA descriptors initialization failed\n", __func__);
1653 		return ret;
1654 	}
1655 	/* DMA initialization and SW reset */
1656 	ret = stmmac_init_dma_engine(priv);
1657 	if (ret < 0) {
1658 		pr_err("%s: DMA engine initialization failed\n", __func__);
1659 		return ret;
1660 	}
1661 
1662 	/* Copy the MAC addr into the HW  */
1663 	priv->hw->mac->set_umac_addr(priv->hw, dev->dev_addr, 0);
1664 
1665 	/* If required, perform hw setup of the bus. */
1666 	if (priv->plat->bus_setup)
1667 		priv->plat->bus_setup(priv->ioaddr);
1668 
1669 	/* Initialize the MAC Core */
1670 	priv->hw->mac->core_init(priv->hw, dev->mtu);
1671 
1672 	ret = priv->hw->mac->rx_ipc(priv->hw);
1673 	if (!ret) {
1674 		pr_warn(" RX IPC Checksum Offload disabled\n");
1675 		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
1676 		priv->hw->rx_csum = 0;
1677 	}
1678 
1679 	/* Enable the MAC Rx/Tx */
1680 	stmmac_set_mac(priv->ioaddr, true);
1681 
1682 	/* Set the HW DMA mode and the COE */
1683 	stmmac_dma_operation_mode(priv);
1684 
1685 	stmmac_mmc_setup(priv);
1686 
1687 	ret = stmmac_init_ptp(priv);
1688 	if (ret && ret != -EOPNOTSUPP)
1689 		pr_warn("%s: failed PTP initialisation\n", __func__);
1690 
1691 #ifdef CONFIG_STMMAC_DEBUG_FS
1692 	ret = stmmac_init_fs(dev);
1693 	if (ret < 0)
1694 		pr_warn("%s: failed debugFS registration\n", __func__);
1695 #endif
1696 	/* Start the ball rolling... */
1697 	pr_debug("%s: DMA RX/TX processes started...\n", dev->name);
1698 	priv->hw->dma->start_tx(priv->ioaddr);
1699 	priv->hw->dma->start_rx(priv->ioaddr);
1700 
1701 	/* Dump DMA/MAC registers */
1702 	if (netif_msg_hw(priv)) {
1703 		priv->hw->mac->dump_regs(priv->hw);
1704 		priv->hw->dma->dump_regs(priv->ioaddr);
1705 	}
1706 	priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
1707 
1708 	priv->eee_enabled = stmmac_eee_init(priv);
1709 
1710 	stmmac_init_tx_coalesce(priv);
1711 
1712 	if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) {
1713 		priv->rx_riwt = MAX_DMA_RIWT;
1714 		priv->hw->dma->rx_watchdog(priv->ioaddr, MAX_DMA_RIWT);
1715 	}
1716 
1717 	if (priv->pcs && priv->hw->mac->ctrl_ane)
1718 		priv->hw->mac->ctrl_ane(priv->hw, 0);
1719 
1720 	return 0;
1721 }
1722 
1723 /**
1724  *  stmmac_open - open entry point of the driver
1725  *  @dev : pointer to the device structure.
1726  *  Description:
1727  *  This function is the open entry point of the driver.
1728  *  Return value:
1729  *  0 on success and an appropriate (-)ve integer as defined in errno.h
1730  *  file on failure.
1731  */
1732 static int stmmac_open(struct net_device *dev)
1733 {
1734 	struct stmmac_priv *priv = netdev_priv(dev);
1735 	int ret;
1736 
1737 	stmmac_check_ether_addr(priv);
1738 
1739 	if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
1740 	    priv->pcs != STMMAC_PCS_RTBI) {
1741 		ret = stmmac_init_phy(dev);
1742 		if (ret) {
1743 			pr_err("%s: Cannot attach to PHY (error: %d)\n",
1744 			       __func__, ret);
1745 			return ret;
1746 		}
1747 	}
1748 
1749 	/* Extra statistics */
1750 	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
1751 	priv->xstats.threshold = tc;
1752 
1753 	/* Create and initialize the TX/RX descriptors chains. */
1754 	priv->dma_tx_size = STMMAC_ALIGN(dma_txsize);
1755 	priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize);
1756 	priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
1757 
1758 	ret = alloc_dma_desc_resources(priv);
1759 	if (ret < 0) {
1760 		pr_err("%s: DMA descriptors allocation failed\n", __func__);
1761 		goto dma_desc_error;
1762 	}
1763 
1764 	ret = stmmac_hw_setup(dev);
1765 	if (ret < 0) {
1766 		pr_err("%s: Hw setup failed\n", __func__);
1767 		goto init_error;
1768 	}
1769 
1770 	if (priv->phydev)
1771 		phy_start(priv->phydev);
1772 
1773 	/* Request the IRQ lines */
1774 	ret = request_irq(dev->irq, stmmac_interrupt,
1775 			  IRQF_SHARED, dev->name, dev);
1776 	if (unlikely(ret < 0)) {
1777 		pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
1778 		       __func__, dev->irq, ret);
1779 		goto init_error;
1780 	}
1781 
1782 	/* Request the Wake IRQ in case of another line is used for WoL */
1783 	if (priv->wol_irq != dev->irq) {
1784 		ret = request_irq(priv->wol_irq, stmmac_interrupt,
1785 				  IRQF_SHARED, dev->name, dev);
1786 		if (unlikely(ret < 0)) {
1787 			pr_err("%s: ERROR: allocating the WoL IRQ %d (%d)\n",
1788 			       __func__, priv->wol_irq, ret);
1789 			goto wolirq_error;
1790 		}
1791 	}
1792 
1793 	/* Request the IRQ lines */
1794 	if (priv->lpi_irq > 0) {
1795 		ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
1796 				  dev->name, dev);
1797 		if (unlikely(ret < 0)) {
1798 			pr_err("%s: ERROR: allocating the LPI IRQ %d (%d)\n",
1799 			       __func__, priv->lpi_irq, ret);
1800 			goto lpiirq_error;
1801 		}
1802 	}
1803 
1804 	napi_enable(&priv->napi);
1805 	netif_start_queue(dev);
1806 
1807 	return 0;
1808 
1809 lpiirq_error:
1810 	if (priv->wol_irq != dev->irq)
1811 		free_irq(priv->wol_irq, dev);
1812 wolirq_error:
1813 	free_irq(dev->irq, dev);
1814 
1815 init_error:
1816 	free_dma_desc_resources(priv);
1817 dma_desc_error:
1818 	if (priv->phydev)
1819 		phy_disconnect(priv->phydev);
1820 
1821 	return ret;
1822 }
1823 
1824 /**
1825  *  stmmac_release - close entry point of the driver
1826  *  @dev : device pointer.
1827  *  Description:
1828  *  This is the stop entry point of the driver.
1829  */
1830 static int stmmac_release(struct net_device *dev)
1831 {
1832 	struct stmmac_priv *priv = netdev_priv(dev);
1833 
1834 	if (priv->eee_enabled)
1835 		del_timer_sync(&priv->eee_ctrl_timer);
1836 
1837 	/* Stop and disconnect the PHY */
1838 	if (priv->phydev) {
1839 		phy_stop(priv->phydev);
1840 		phy_disconnect(priv->phydev);
1841 		priv->phydev = NULL;
1842 	}
1843 
1844 	netif_stop_queue(dev);
1845 
1846 	napi_disable(&priv->napi);
1847 
1848 	del_timer_sync(&priv->txtimer);
1849 
1850 	/* Free the IRQ lines */
1851 	free_irq(dev->irq, dev);
1852 	if (priv->wol_irq != dev->irq)
1853 		free_irq(priv->wol_irq, dev);
1854 	if (priv->lpi_irq > 0)
1855 		free_irq(priv->lpi_irq, dev);
1856 
1857 	/* Stop TX/RX DMA and clear the descriptors */
1858 	priv->hw->dma->stop_tx(priv->ioaddr);
1859 	priv->hw->dma->stop_rx(priv->ioaddr);
1860 
1861 	/* Release and free the Rx/Tx resources */
1862 	free_dma_desc_resources(priv);
1863 
1864 	/* Disable the MAC Rx/Tx */
1865 	stmmac_set_mac(priv->ioaddr, false);
1866 
1867 	netif_carrier_off(dev);
1868 
1869 #ifdef CONFIG_STMMAC_DEBUG_FS
1870 	stmmac_exit_fs();
1871 #endif
1872 
1873 	stmmac_release_ptp(priv);
1874 
1875 	return 0;
1876 }
1877 
1878 /**
1879  *  stmmac_xmit: Tx entry point of the driver
1880  *  @skb : the socket buffer
1881  *  @dev : device pointer
1882  *  Description : this is the tx entry point of the driver.
1883  *  It programs the chain or the ring and supports oversized frames
1884  *  and SG feature.
1885  */
1886 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
1887 {
1888 	struct stmmac_priv *priv = netdev_priv(dev);
1889 	unsigned int txsize = priv->dma_tx_size;
1890 	unsigned int entry;
1891 	int i, csum_insertion = 0, is_jumbo = 0;
1892 	int nfrags = skb_shinfo(skb)->nr_frags;
1893 	struct dma_desc *desc, *first;
1894 	unsigned int nopaged_len = skb_headlen(skb);
1895 	unsigned int enh_desc = priv->plat->enh_desc;
1896 
1897 	if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
1898 		if (!netif_queue_stopped(dev)) {
1899 			netif_stop_queue(dev);
1900 			/* This is a hard error, log it. */
1901 			pr_err("%s: Tx Ring full when queue awake\n", __func__);
1902 		}
1903 		return NETDEV_TX_BUSY;
1904 	}
1905 
1906 	spin_lock(&priv->tx_lock);
1907 
1908 	if (priv->tx_path_in_lpi_mode)
1909 		stmmac_disable_eee_mode(priv);
1910 
1911 	entry = priv->cur_tx % txsize;
1912 
1913 	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
1914 
1915 	if (priv->extend_desc)
1916 		desc = (struct dma_desc *)(priv->dma_etx + entry);
1917 	else
1918 		desc = priv->dma_tx + entry;
1919 
1920 	first = desc;
1921 
1922 	/* To program the descriptors according to the size of the frame */
1923 	if (enh_desc)
1924 		is_jumbo = priv->hw->mode->is_jumbo_frm(skb->len, enh_desc);
1925 
1926 	if (likely(!is_jumbo)) {
1927 		desc->des2 = dma_map_single(priv->device, skb->data,
1928 					    nopaged_len, DMA_TO_DEVICE);
1929 		if (dma_mapping_error(priv->device, desc->des2))
1930 			goto dma_map_err;
1931 		priv->tx_skbuff_dma[entry].buf = desc->des2;
1932 		priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
1933 						csum_insertion, priv->mode);
1934 	} else {
1935 		desc = first;
1936 		entry = priv->hw->mode->jumbo_frm(priv, skb, csum_insertion);
1937 		if (unlikely(entry < 0))
1938 			goto dma_map_err;
1939 	}
1940 
1941 	for (i = 0; i < nfrags; i++) {
1942 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1943 		int len = skb_frag_size(frag);
1944 
1945 		priv->tx_skbuff[entry] = NULL;
1946 		entry = (++priv->cur_tx) % txsize;
1947 		if (priv->extend_desc)
1948 			desc = (struct dma_desc *)(priv->dma_etx + entry);
1949 		else
1950 			desc = priv->dma_tx + entry;
1951 
1952 		desc->des2 = skb_frag_dma_map(priv->device, frag, 0, len,
1953 					      DMA_TO_DEVICE);
1954 		if (dma_mapping_error(priv->device, desc->des2))
1955 			goto dma_map_err; /* should reuse desc w/o issues */
1956 
1957 		priv->tx_skbuff_dma[entry].buf = desc->des2;
1958 		priv->tx_skbuff_dma[entry].map_as_page = true;
1959 		priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion,
1960 						priv->mode);
1961 		wmb();
1962 		priv->hw->desc->set_tx_owner(desc);
1963 		wmb();
1964 	}
1965 
1966 	priv->tx_skbuff[entry] = skb;
1967 
1968 	/* Finalize the latest segment. */
1969 	priv->hw->desc->close_tx_desc(desc);
1970 
1971 	wmb();
1972 	/* According to the coalesce parameter the IC bit for the latest
1973 	 * segment could be reset and the timer re-started to invoke the
1974 	 * stmmac_tx function. This approach takes care about the fragments.
1975 	 */
1976 	priv->tx_count_frames += nfrags + 1;
1977 	if (priv->tx_coal_frames > priv->tx_count_frames) {
1978 		priv->hw->desc->clear_tx_ic(desc);
1979 		priv->xstats.tx_reset_ic_bit++;
1980 		mod_timer(&priv->txtimer,
1981 			  STMMAC_COAL_TIMER(priv->tx_coal_timer));
1982 	} else
1983 		priv->tx_count_frames = 0;
1984 
1985 	/* To avoid raise condition */
1986 	priv->hw->desc->set_tx_owner(first);
1987 	wmb();
1988 
1989 	priv->cur_tx++;
1990 
1991 	if (netif_msg_pktdata(priv)) {
1992 		pr_debug("%s: curr %d dirty=%d entry=%d, first=%p, nfrags=%d",
1993 			__func__, (priv->cur_tx % txsize),
1994 			(priv->dirty_tx % txsize), entry, first, nfrags);
1995 
1996 		if (priv->extend_desc)
1997 			stmmac_display_ring((void *)priv->dma_etx, txsize, 1);
1998 		else
1999 			stmmac_display_ring((void *)priv->dma_tx, txsize, 0);
2000 
2001 		pr_debug(">>> frame to be transmitted: ");
2002 		print_pkt(skb->data, skb->len);
2003 	}
2004 	if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
2005 		if (netif_msg_hw(priv))
2006 			pr_debug("%s: stop transmitted packets\n", __func__);
2007 		netif_stop_queue(dev);
2008 	}
2009 
2010 	dev->stats.tx_bytes += skb->len;
2011 
2012 	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2013 		     priv->hwts_tx_en)) {
2014 		/* declare that device is doing timestamping */
2015 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2016 		priv->hw->desc->enable_tx_timestamp(first);
2017 	}
2018 
2019 	if (!priv->hwts_tx_en)
2020 		skb_tx_timestamp(skb);
2021 
2022 	priv->hw->dma->enable_dma_transmission(priv->ioaddr);
2023 
2024 	spin_unlock(&priv->tx_lock);
2025 	return NETDEV_TX_OK;
2026 
2027 dma_map_err:
2028 	dev_err(priv->device, "Tx dma map failed\n");
2029 	dev_kfree_skb(skb);
2030 	priv->dev->stats.tx_dropped++;
2031 	return NETDEV_TX_OK;
2032 }
2033 
2034 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
2035 {
2036 	struct ethhdr *ehdr;
2037 	u16 vlanid;
2038 
2039 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) ==
2040 	    NETIF_F_HW_VLAN_CTAG_RX &&
2041 	    !__vlan_get_tag(skb, &vlanid)) {
2042 		/* pop the vlan tag */
2043 		ehdr = (struct ethhdr *)skb->data;
2044 		memmove(skb->data + VLAN_HLEN, ehdr, ETH_ALEN * 2);
2045 		skb_pull(skb, VLAN_HLEN);
2046 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlanid);
2047 	}
2048 }
2049 
2050 
2051 /**
2052  * stmmac_rx_refill: refill used skb preallocated buffers
2053  * @priv: driver private structure
2054  * Description : this is to reallocate the skb for the reception process
2055  * that is based on zero-copy.
2056  */
2057 static inline void stmmac_rx_refill(struct stmmac_priv *priv)
2058 {
2059 	unsigned int rxsize = priv->dma_rx_size;
2060 	int bfsize = priv->dma_buf_sz;
2061 
2062 	for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) {
2063 		unsigned int entry = priv->dirty_rx % rxsize;
2064 		struct dma_desc *p;
2065 
2066 		if (priv->extend_desc)
2067 			p = (struct dma_desc *)(priv->dma_erx + entry);
2068 		else
2069 			p = priv->dma_rx + entry;
2070 
2071 		if (likely(priv->rx_skbuff[entry] == NULL)) {
2072 			struct sk_buff *skb;
2073 
2074 			skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
2075 
2076 			if (unlikely(skb == NULL))
2077 				break;
2078 
2079 			priv->rx_skbuff[entry] = skb;
2080 			priv->rx_skbuff_dma[entry] =
2081 			    dma_map_single(priv->device, skb->data, bfsize,
2082 					   DMA_FROM_DEVICE);
2083 			if (dma_mapping_error(priv->device,
2084 					      priv->rx_skbuff_dma[entry])) {
2085 				dev_err(priv->device, "Rx dma map failed\n");
2086 				dev_kfree_skb(skb);
2087 				break;
2088 			}
2089 			p->des2 = priv->rx_skbuff_dma[entry];
2090 
2091 			priv->hw->mode->refill_desc3(priv, p);
2092 
2093 			if (netif_msg_rx_status(priv))
2094 				pr_debug("\trefill entry #%d\n", entry);
2095 		}
2096 		wmb();
2097 		priv->hw->desc->set_rx_owner(p);
2098 		wmb();
2099 	}
2100 }
2101 
2102 /**
2103  * stmmac_rx_refill: refill used skb preallocated buffers
2104  * @priv: driver private structure
2105  * @limit: napi bugget.
2106  * Description :  this the function called by the napi poll method.
2107  * It gets all the frames inside the ring.
2108  */
2109 static int stmmac_rx(struct stmmac_priv *priv, int limit)
2110 {
2111 	unsigned int rxsize = priv->dma_rx_size;
2112 	unsigned int entry = priv->cur_rx % rxsize;
2113 	unsigned int next_entry;
2114 	unsigned int count = 0;
2115 	int coe = priv->hw->rx_csum;
2116 
2117 	if (netif_msg_rx_status(priv)) {
2118 		pr_debug("%s: descriptor ring:\n", __func__);
2119 		if (priv->extend_desc)
2120 			stmmac_display_ring((void *)priv->dma_erx, rxsize, 1);
2121 		else
2122 			stmmac_display_ring((void *)priv->dma_rx, rxsize, 0);
2123 	}
2124 	while (count < limit) {
2125 		int status;
2126 		struct dma_desc *p;
2127 
2128 		if (priv->extend_desc)
2129 			p = (struct dma_desc *)(priv->dma_erx + entry);
2130 		else
2131 			p = priv->dma_rx + entry;
2132 
2133 		if (priv->hw->desc->get_rx_owner(p))
2134 			break;
2135 
2136 		count++;
2137 
2138 		next_entry = (++priv->cur_rx) % rxsize;
2139 		if (priv->extend_desc)
2140 			prefetch(priv->dma_erx + next_entry);
2141 		else
2142 			prefetch(priv->dma_rx + next_entry);
2143 
2144 		/* read the status of the incoming frame */
2145 		status = priv->hw->desc->rx_status(&priv->dev->stats,
2146 						   &priv->xstats, p);
2147 		if ((priv->extend_desc) && (priv->hw->desc->rx_extended_status))
2148 			priv->hw->desc->rx_extended_status(&priv->dev->stats,
2149 							   &priv->xstats,
2150 							   priv->dma_erx +
2151 							   entry);
2152 		if (unlikely(status == discard_frame)) {
2153 			priv->dev->stats.rx_errors++;
2154 			if (priv->hwts_rx_en && !priv->extend_desc) {
2155 				/* DESC2 & DESC3 will be overwitten by device
2156 				 * with timestamp value, hence reinitialize
2157 				 * them in stmmac_rx_refill() function so that
2158 				 * device can reuse it.
2159 				 */
2160 				priv->rx_skbuff[entry] = NULL;
2161 				dma_unmap_single(priv->device,
2162 						 priv->rx_skbuff_dma[entry],
2163 						 priv->dma_buf_sz,
2164 						 DMA_FROM_DEVICE);
2165 			}
2166 		} else {
2167 			struct sk_buff *skb;
2168 			int frame_len;
2169 
2170 			frame_len = priv->hw->desc->get_rx_frame_len(p, coe);
2171 
2172 			/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
2173 			 * Type frames (LLC/LLC-SNAP)
2174 			 */
2175 			if (unlikely(status != llc_snap))
2176 				frame_len -= ETH_FCS_LEN;
2177 
2178 			if (netif_msg_rx_status(priv)) {
2179 				pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
2180 					 p, entry, p->des2);
2181 				if (frame_len > ETH_FRAME_LEN)
2182 					pr_debug("\tframe size %d, COE: %d\n",
2183 						 frame_len, status);
2184 			}
2185 			skb = priv->rx_skbuff[entry];
2186 			if (unlikely(!skb)) {
2187 				pr_err("%s: Inconsistent Rx descriptor chain\n",
2188 				       priv->dev->name);
2189 				priv->dev->stats.rx_dropped++;
2190 				break;
2191 			}
2192 			prefetch(skb->data - NET_IP_ALIGN);
2193 			priv->rx_skbuff[entry] = NULL;
2194 
2195 			stmmac_get_rx_hwtstamp(priv, entry, skb);
2196 
2197 			skb_put(skb, frame_len);
2198 			dma_unmap_single(priv->device,
2199 					 priv->rx_skbuff_dma[entry],
2200 					 priv->dma_buf_sz, DMA_FROM_DEVICE);
2201 
2202 			if (netif_msg_pktdata(priv)) {
2203 				pr_debug("frame received (%dbytes)", frame_len);
2204 				print_pkt(skb->data, frame_len);
2205 			}
2206 
2207 			stmmac_rx_vlan(priv->dev, skb);
2208 
2209 			skb->protocol = eth_type_trans(skb, priv->dev);
2210 
2211 			if (unlikely(!coe))
2212 				skb_checksum_none_assert(skb);
2213 			else
2214 				skb->ip_summed = CHECKSUM_UNNECESSARY;
2215 
2216 			napi_gro_receive(&priv->napi, skb);
2217 
2218 			priv->dev->stats.rx_packets++;
2219 			priv->dev->stats.rx_bytes += frame_len;
2220 		}
2221 		entry = next_entry;
2222 	}
2223 
2224 	stmmac_rx_refill(priv);
2225 
2226 	priv->xstats.rx_pkt_n += count;
2227 
2228 	return count;
2229 }
2230 
2231 /**
2232  *  stmmac_poll - stmmac poll method (NAPI)
2233  *  @napi : pointer to the napi structure.
2234  *  @budget : maximum number of packets that the current CPU can receive from
2235  *	      all interfaces.
2236  *  Description :
2237  *  To look at the incoming frames and clear the tx resources.
2238  */
2239 static int stmmac_poll(struct napi_struct *napi, int budget)
2240 {
2241 	struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
2242 	int work_done = 0;
2243 
2244 	priv->xstats.napi_poll++;
2245 	stmmac_tx_clean(priv);
2246 
2247 	work_done = stmmac_rx(priv, budget);
2248 	if (work_done < budget) {
2249 		napi_complete(napi);
2250 		stmmac_enable_dma_irq(priv);
2251 	}
2252 	return work_done;
2253 }
2254 
2255 /**
2256  *  stmmac_tx_timeout
2257  *  @dev : Pointer to net device structure
2258  *  Description: this function is called when a packet transmission fails to
2259  *   complete within a reasonable time. The driver will mark the error in the
2260  *   netdev structure and arrange for the device to be reset to a sane state
2261  *   in order to transmit a new packet.
2262  */
2263 static void stmmac_tx_timeout(struct net_device *dev)
2264 {
2265 	struct stmmac_priv *priv = netdev_priv(dev);
2266 
2267 	/* Clear Tx resources and restart transmitting again */
2268 	stmmac_tx_err(priv);
2269 }
2270 
2271 /**
2272  *  stmmac_set_rx_mode - entry point for multicast addressing
2273  *  @dev : pointer to the device structure
2274  *  Description:
2275  *  This function is a driver entry point which gets called by the kernel
2276  *  whenever multicast addresses must be enabled/disabled.
2277  *  Return value:
2278  *  void.
2279  */
2280 static void stmmac_set_rx_mode(struct net_device *dev)
2281 {
2282 	struct stmmac_priv *priv = netdev_priv(dev);
2283 
2284 	spin_lock(&priv->lock);
2285 	priv->hw->mac->set_filter(priv->hw, dev);
2286 	spin_unlock(&priv->lock);
2287 }
2288 
2289 /**
2290  *  stmmac_change_mtu - entry point to change MTU size for the device.
2291  *  @dev : device pointer.
2292  *  @new_mtu : the new MTU size for the device.
2293  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
2294  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
2295  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
2296  *  Return value:
2297  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2298  *  file on failure.
2299  */
2300 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
2301 {
2302 	struct stmmac_priv *priv = netdev_priv(dev);
2303 	int max_mtu;
2304 
2305 	if (netif_running(dev)) {
2306 		pr_err("%s: must be stopped to change its MTU\n", dev->name);
2307 		return -EBUSY;
2308 	}
2309 
2310 	if (priv->plat->enh_desc)
2311 		max_mtu = JUMBO_LEN;
2312 	else
2313 		max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
2314 
2315 	if (priv->plat->maxmtu < max_mtu)
2316 		max_mtu = priv->plat->maxmtu;
2317 
2318 	if ((new_mtu < 46) || (new_mtu > max_mtu)) {
2319 		pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
2320 		return -EINVAL;
2321 	}
2322 
2323 	dev->mtu = new_mtu;
2324 	netdev_update_features(dev);
2325 
2326 	return 0;
2327 }
2328 
2329 static netdev_features_t stmmac_fix_features(struct net_device *dev,
2330 					     netdev_features_t features)
2331 {
2332 	struct stmmac_priv *priv = netdev_priv(dev);
2333 
2334 	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
2335 		features &= ~NETIF_F_RXCSUM;
2336 
2337 	if (!priv->plat->tx_coe)
2338 		features &= ~NETIF_F_ALL_CSUM;
2339 
2340 	/* Some GMAC devices have a bugged Jumbo frame support that
2341 	 * needs to have the Tx COE disabled for oversized frames
2342 	 * (due to limited buffer sizes). In this case we disable
2343 	 * the TX csum insertionin the TDES and not use SF.
2344 	 */
2345 	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
2346 		features &= ~NETIF_F_ALL_CSUM;
2347 
2348 	return features;
2349 }
2350 
2351 static int stmmac_set_features(struct net_device *netdev,
2352 			       netdev_features_t features)
2353 {
2354 	struct stmmac_priv *priv = netdev_priv(netdev);
2355 
2356 	/* Keep the COE Type in case of csum is supporting */
2357 	if (features & NETIF_F_RXCSUM)
2358 		priv->hw->rx_csum = priv->plat->rx_coe;
2359 	else
2360 		priv->hw->rx_csum = 0;
2361 	/* No check needed because rx_coe has been set before and it will be
2362 	 * fixed in case of issue.
2363 	 */
2364 	priv->hw->mac->rx_ipc(priv->hw);
2365 
2366 	return 0;
2367 }
2368 
2369 /**
2370  *  stmmac_interrupt - main ISR
2371  *  @irq: interrupt number.
2372  *  @dev_id: to pass the net device pointer.
2373  *  Description: this is the main driver interrupt service routine.
2374  *  It calls the DMA ISR and also the core ISR to manage PMT, MMC, LPI
2375  *  interrupts.
2376  */
2377 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
2378 {
2379 	struct net_device *dev = (struct net_device *)dev_id;
2380 	struct stmmac_priv *priv = netdev_priv(dev);
2381 
2382 	if (priv->irq_wake)
2383 		pm_wakeup_event(priv->device, 0);
2384 
2385 	if (unlikely(!dev)) {
2386 		pr_err("%s: invalid dev pointer\n", __func__);
2387 		return IRQ_NONE;
2388 	}
2389 
2390 	/* To handle GMAC own interrupts */
2391 	if (priv->plat->has_gmac) {
2392 		int status = priv->hw->mac->host_irq_status(priv->hw,
2393 							    &priv->xstats);
2394 		if (unlikely(status)) {
2395 			/* For LPI we need to save the tx status */
2396 			if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
2397 				priv->tx_path_in_lpi_mode = true;
2398 			if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
2399 				priv->tx_path_in_lpi_mode = false;
2400 		}
2401 	}
2402 
2403 	/* To handle DMA interrupts */
2404 	stmmac_dma_interrupt(priv);
2405 
2406 	return IRQ_HANDLED;
2407 }
2408 
2409 #ifdef CONFIG_NET_POLL_CONTROLLER
2410 /* Polling receive - used by NETCONSOLE and other diagnostic tools
2411  * to allow network I/O with interrupts disabled.
2412  */
2413 static void stmmac_poll_controller(struct net_device *dev)
2414 {
2415 	disable_irq(dev->irq);
2416 	stmmac_interrupt(dev->irq, dev);
2417 	enable_irq(dev->irq);
2418 }
2419 #endif
2420 
2421 /**
2422  *  stmmac_ioctl - Entry point for the Ioctl
2423  *  @dev: Device pointer.
2424  *  @rq: An IOCTL specefic structure, that can contain a pointer to
2425  *  a proprietary structure used to pass information to the driver.
2426  *  @cmd: IOCTL command
2427  *  Description:
2428  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
2429  */
2430 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2431 {
2432 	struct stmmac_priv *priv = netdev_priv(dev);
2433 	int ret = -EOPNOTSUPP;
2434 
2435 	if (!netif_running(dev))
2436 		return -EINVAL;
2437 
2438 	switch (cmd) {
2439 	case SIOCGMIIPHY:
2440 	case SIOCGMIIREG:
2441 	case SIOCSMIIREG:
2442 		if (!priv->phydev)
2443 			return -EINVAL;
2444 		ret = phy_mii_ioctl(priv->phydev, rq, cmd);
2445 		break;
2446 	case SIOCSHWTSTAMP:
2447 		ret = stmmac_hwtstamp_ioctl(dev, rq);
2448 		break;
2449 	default:
2450 		break;
2451 	}
2452 
2453 	return ret;
2454 }
2455 
2456 #ifdef CONFIG_STMMAC_DEBUG_FS
2457 static struct dentry *stmmac_fs_dir;
2458 static struct dentry *stmmac_rings_status;
2459 static struct dentry *stmmac_dma_cap;
2460 
2461 static void sysfs_display_ring(void *head, int size, int extend_desc,
2462 			       struct seq_file *seq)
2463 {
2464 	int i;
2465 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
2466 	struct dma_desc *p = (struct dma_desc *)head;
2467 
2468 	for (i = 0; i < size; i++) {
2469 		u64 x;
2470 		if (extend_desc) {
2471 			x = *(u64 *) ep;
2472 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2473 				   i, (unsigned int)virt_to_phys(ep),
2474 				   (unsigned int)x, (unsigned int)(x >> 32),
2475 				   ep->basic.des2, ep->basic.des3);
2476 			ep++;
2477 		} else {
2478 			x = *(u64 *) p;
2479 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2480 				   i, (unsigned int)virt_to_phys(ep),
2481 				   (unsigned int)x, (unsigned int)(x >> 32),
2482 				   p->des2, p->des3);
2483 			p++;
2484 		}
2485 		seq_printf(seq, "\n");
2486 	}
2487 }
2488 
2489 static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
2490 {
2491 	struct net_device *dev = seq->private;
2492 	struct stmmac_priv *priv = netdev_priv(dev);
2493 	unsigned int txsize = priv->dma_tx_size;
2494 	unsigned int rxsize = priv->dma_rx_size;
2495 
2496 	if (priv->extend_desc) {
2497 		seq_printf(seq, "Extended RX descriptor ring:\n");
2498 		sysfs_display_ring((void *)priv->dma_erx, rxsize, 1, seq);
2499 		seq_printf(seq, "Extended TX descriptor ring:\n");
2500 		sysfs_display_ring((void *)priv->dma_etx, txsize, 1, seq);
2501 	} else {
2502 		seq_printf(seq, "RX descriptor ring:\n");
2503 		sysfs_display_ring((void *)priv->dma_rx, rxsize, 0, seq);
2504 		seq_printf(seq, "TX descriptor ring:\n");
2505 		sysfs_display_ring((void *)priv->dma_tx, txsize, 0, seq);
2506 	}
2507 
2508 	return 0;
2509 }
2510 
2511 static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
2512 {
2513 	return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
2514 }
2515 
2516 static const struct file_operations stmmac_rings_status_fops = {
2517 	.owner = THIS_MODULE,
2518 	.open = stmmac_sysfs_ring_open,
2519 	.read = seq_read,
2520 	.llseek = seq_lseek,
2521 	.release = single_release,
2522 };
2523 
2524 static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
2525 {
2526 	struct net_device *dev = seq->private;
2527 	struct stmmac_priv *priv = netdev_priv(dev);
2528 
2529 	if (!priv->hw_cap_support) {
2530 		seq_printf(seq, "DMA HW features not supported\n");
2531 		return 0;
2532 	}
2533 
2534 	seq_printf(seq, "==============================\n");
2535 	seq_printf(seq, "\tDMA HW features\n");
2536 	seq_printf(seq, "==============================\n");
2537 
2538 	seq_printf(seq, "\t10/100 Mbps %s\n",
2539 		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
2540 	seq_printf(seq, "\t1000 Mbps %s\n",
2541 		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
2542 	seq_printf(seq, "\tHalf duple %s\n",
2543 		   (priv->dma_cap.half_duplex) ? "Y" : "N");
2544 	seq_printf(seq, "\tHash Filter: %s\n",
2545 		   (priv->dma_cap.hash_filter) ? "Y" : "N");
2546 	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
2547 		   (priv->dma_cap.multi_addr) ? "Y" : "N");
2548 	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
2549 		   (priv->dma_cap.pcs) ? "Y" : "N");
2550 	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
2551 		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
2552 	seq_printf(seq, "\tPMT Remote wake up: %s\n",
2553 		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
2554 	seq_printf(seq, "\tPMT Magic Frame: %s\n",
2555 		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
2556 	seq_printf(seq, "\tRMON module: %s\n",
2557 		   (priv->dma_cap.rmon) ? "Y" : "N");
2558 	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
2559 		   (priv->dma_cap.time_stamp) ? "Y" : "N");
2560 	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n",
2561 		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
2562 	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n",
2563 		   (priv->dma_cap.eee) ? "Y" : "N");
2564 	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
2565 	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
2566 		   (priv->dma_cap.tx_coe) ? "Y" : "N");
2567 	seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
2568 		   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
2569 	seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
2570 		   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
2571 	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
2572 		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
2573 	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
2574 		   priv->dma_cap.number_rx_channel);
2575 	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
2576 		   priv->dma_cap.number_tx_channel);
2577 	seq_printf(seq, "\tEnhanced descriptors: %s\n",
2578 		   (priv->dma_cap.enh_desc) ? "Y" : "N");
2579 
2580 	return 0;
2581 }
2582 
2583 static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
2584 {
2585 	return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
2586 }
2587 
2588 static const struct file_operations stmmac_dma_cap_fops = {
2589 	.owner = THIS_MODULE,
2590 	.open = stmmac_sysfs_dma_cap_open,
2591 	.read = seq_read,
2592 	.llseek = seq_lseek,
2593 	.release = single_release,
2594 };
2595 
2596 static int stmmac_init_fs(struct net_device *dev)
2597 {
2598 	/* Create debugfs entries */
2599 	stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
2600 
2601 	if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
2602 		pr_err("ERROR %s, debugfs create directory failed\n",
2603 		       STMMAC_RESOURCE_NAME);
2604 
2605 		return -ENOMEM;
2606 	}
2607 
2608 	/* Entry to report DMA RX/TX rings */
2609 	stmmac_rings_status = debugfs_create_file("descriptors_status",
2610 						  S_IRUGO, stmmac_fs_dir, dev,
2611 						  &stmmac_rings_status_fops);
2612 
2613 	if (!stmmac_rings_status || IS_ERR(stmmac_rings_status)) {
2614 		pr_info("ERROR creating stmmac ring debugfs file\n");
2615 		debugfs_remove(stmmac_fs_dir);
2616 
2617 		return -ENOMEM;
2618 	}
2619 
2620 	/* Entry to report the DMA HW features */
2621 	stmmac_dma_cap = debugfs_create_file("dma_cap", S_IRUGO, stmmac_fs_dir,
2622 					     dev, &stmmac_dma_cap_fops);
2623 
2624 	if (!stmmac_dma_cap || IS_ERR(stmmac_dma_cap)) {
2625 		pr_info("ERROR creating stmmac MMC debugfs file\n");
2626 		debugfs_remove(stmmac_rings_status);
2627 		debugfs_remove(stmmac_fs_dir);
2628 
2629 		return -ENOMEM;
2630 	}
2631 
2632 	return 0;
2633 }
2634 
2635 static void stmmac_exit_fs(void)
2636 {
2637 	debugfs_remove(stmmac_rings_status);
2638 	debugfs_remove(stmmac_dma_cap);
2639 	debugfs_remove(stmmac_fs_dir);
2640 }
2641 #endif /* CONFIG_STMMAC_DEBUG_FS */
2642 
2643 static const struct net_device_ops stmmac_netdev_ops = {
2644 	.ndo_open = stmmac_open,
2645 	.ndo_start_xmit = stmmac_xmit,
2646 	.ndo_stop = stmmac_release,
2647 	.ndo_change_mtu = stmmac_change_mtu,
2648 	.ndo_fix_features = stmmac_fix_features,
2649 	.ndo_set_features = stmmac_set_features,
2650 	.ndo_set_rx_mode = stmmac_set_rx_mode,
2651 	.ndo_tx_timeout = stmmac_tx_timeout,
2652 	.ndo_do_ioctl = stmmac_ioctl,
2653 #ifdef CONFIG_NET_POLL_CONTROLLER
2654 	.ndo_poll_controller = stmmac_poll_controller,
2655 #endif
2656 	.ndo_set_mac_address = eth_mac_addr,
2657 };
2658 
2659 /**
2660  *  stmmac_hw_init - Init the MAC device
2661  *  @priv: driver private structure
2662  *  Description: this function detects which MAC device
2663  *  (GMAC/MAC10-100) has to attached, checks the HW capability
2664  *  (if supported) and sets the driver's features (for example
2665  *  to use the ring or chaine mode or support the normal/enh
2666  *  descriptor structure).
2667  */
2668 static int stmmac_hw_init(struct stmmac_priv *priv)
2669 {
2670 	struct mac_device_info *mac;
2671 
2672 	/* Identify the MAC HW device */
2673 	if (priv->plat->has_gmac) {
2674 		priv->dev->priv_flags |= IFF_UNICAST_FLT;
2675 		mac = dwmac1000_setup(priv->ioaddr,
2676 				      priv->plat->multicast_filter_bins,
2677 				      priv->plat->unicast_filter_entries);
2678 	} else {
2679 		mac = dwmac100_setup(priv->ioaddr);
2680 	}
2681 	if (!mac)
2682 		return -ENOMEM;
2683 
2684 	priv->hw = mac;
2685 
2686 	/* Get and dump the chip ID */
2687 	priv->synopsys_id = stmmac_get_synopsys_id(priv);
2688 
2689 	/* To use the chained or ring mode */
2690 	if (chain_mode) {
2691 		priv->hw->mode = &chain_mode_ops;
2692 		pr_info(" Chain mode enabled\n");
2693 		priv->mode = STMMAC_CHAIN_MODE;
2694 	} else {
2695 		priv->hw->mode = &ring_mode_ops;
2696 		pr_info(" Ring mode enabled\n");
2697 		priv->mode = STMMAC_RING_MODE;
2698 	}
2699 
2700 	/* Get the HW capability (new GMAC newer than 3.50a) */
2701 	priv->hw_cap_support = stmmac_get_hw_features(priv);
2702 	if (priv->hw_cap_support) {
2703 		pr_info(" DMA HW capability register supported");
2704 
2705 		/* We can override some gmac/dma configuration fields: e.g.
2706 		 * enh_desc, tx_coe (e.g. that are passed through the
2707 		 * platform) with the values from the HW capability
2708 		 * register (if supported).
2709 		 */
2710 		priv->plat->enh_desc = priv->dma_cap.enh_desc;
2711 		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
2712 
2713 		priv->plat->tx_coe = priv->dma_cap.tx_coe;
2714 
2715 		if (priv->dma_cap.rx_coe_type2)
2716 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
2717 		else if (priv->dma_cap.rx_coe_type1)
2718 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
2719 
2720 	} else
2721 		pr_info(" No HW DMA feature register supported");
2722 
2723 	/* To use alternate (extended) or normal descriptor structures */
2724 	stmmac_selec_desc_mode(priv);
2725 
2726 	if (priv->plat->rx_coe) {
2727 		priv->hw->rx_csum = priv->plat->rx_coe;
2728 		pr_info(" RX Checksum Offload Engine supported (type %d)\n",
2729 			priv->plat->rx_coe);
2730 	}
2731 	if (priv->plat->tx_coe)
2732 		pr_info(" TX Checksum insertion supported\n");
2733 
2734 	if (priv->plat->pmt) {
2735 		pr_info(" Wake-Up On Lan supported\n");
2736 		device_set_wakeup_capable(priv->device, 1);
2737 	}
2738 
2739 	return 0;
2740 }
2741 
2742 /**
2743  * stmmac_dvr_probe
2744  * @device: device pointer
2745  * @plat_dat: platform data pointer
2746  * @addr: iobase memory address
2747  * Description: this is the main probe function used to
2748  * call the alloc_etherdev, allocate the priv structure.
2749  */
2750 struct stmmac_priv *stmmac_dvr_probe(struct device *device,
2751 				     struct plat_stmmacenet_data *plat_dat,
2752 				     void __iomem *addr)
2753 {
2754 	int ret = 0;
2755 	struct net_device *ndev = NULL;
2756 	struct stmmac_priv *priv;
2757 
2758 	ndev = alloc_etherdev(sizeof(struct stmmac_priv));
2759 	if (!ndev)
2760 		return NULL;
2761 
2762 	SET_NETDEV_DEV(ndev, device);
2763 
2764 	priv = netdev_priv(ndev);
2765 	priv->device = device;
2766 	priv->dev = ndev;
2767 
2768 	ether_setup(ndev);
2769 
2770 	stmmac_set_ethtool_ops(ndev);
2771 	priv->pause = pause;
2772 	priv->plat = plat_dat;
2773 	priv->ioaddr = addr;
2774 	priv->dev->base_addr = (unsigned long)addr;
2775 
2776 	/* Verify driver arguments */
2777 	stmmac_verify_args();
2778 
2779 	/* Override with kernel parameters if supplied XXX CRS XXX
2780 	 * this needs to have multiple instances
2781 	 */
2782 	if ((phyaddr >= 0) && (phyaddr <= 31))
2783 		priv->plat->phy_addr = phyaddr;
2784 
2785 	priv->stmmac_clk = devm_clk_get(priv->device, STMMAC_RESOURCE_NAME);
2786 	if (IS_ERR(priv->stmmac_clk)) {
2787 		dev_warn(priv->device, "%s: warning: cannot get CSR clock\n",
2788 			 __func__);
2789 		/* If failed to obtain stmmac_clk and specific clk_csr value
2790 		 * is NOT passed from the platform, probe fail.
2791 		 */
2792 		if (!priv->plat->clk_csr) {
2793 			ret = PTR_ERR(priv->stmmac_clk);
2794 			goto error_clk_get;
2795 		} else {
2796 			priv->stmmac_clk = NULL;
2797 		}
2798 	}
2799 	clk_prepare_enable(priv->stmmac_clk);
2800 
2801 	priv->stmmac_rst = devm_reset_control_get(priv->device,
2802 						  STMMAC_RESOURCE_NAME);
2803 	if (IS_ERR(priv->stmmac_rst)) {
2804 		if (PTR_ERR(priv->stmmac_rst) == -EPROBE_DEFER) {
2805 			ret = -EPROBE_DEFER;
2806 			goto error_hw_init;
2807 		}
2808 		dev_info(priv->device, "no reset control found\n");
2809 		priv->stmmac_rst = NULL;
2810 	}
2811 	if (priv->stmmac_rst)
2812 		reset_control_deassert(priv->stmmac_rst);
2813 
2814 	/* Init MAC and get the capabilities */
2815 	ret = stmmac_hw_init(priv);
2816 	if (ret)
2817 		goto error_hw_init;
2818 
2819 	ndev->netdev_ops = &stmmac_netdev_ops;
2820 
2821 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2822 			    NETIF_F_RXCSUM;
2823 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
2824 	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
2825 #ifdef STMMAC_VLAN_TAG_USED
2826 	/* Both mac100 and gmac support receive VLAN tag detection */
2827 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
2828 #endif
2829 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
2830 
2831 	if (flow_ctrl)
2832 		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
2833 
2834 	/* Rx Watchdog is available in the COREs newer than the 3.40.
2835 	 * In some case, for example on bugged HW this feature
2836 	 * has to be disable and this can be done by passing the
2837 	 * riwt_off field from the platform.
2838 	 */
2839 	if ((priv->synopsys_id >= DWMAC_CORE_3_50) && (!priv->plat->riwt_off)) {
2840 		priv->use_riwt = 1;
2841 		pr_info(" Enable RX Mitigation via HW Watchdog Timer\n");
2842 	}
2843 
2844 	netif_napi_add(ndev, &priv->napi, stmmac_poll, 64);
2845 
2846 	spin_lock_init(&priv->lock);
2847 	spin_lock_init(&priv->tx_lock);
2848 
2849 	ret = register_netdev(ndev);
2850 	if (ret) {
2851 		pr_err("%s: ERROR %i registering the device\n", __func__, ret);
2852 		goto error_netdev_register;
2853 	}
2854 
2855 	/* If a specific clk_csr value is passed from the platform
2856 	 * this means that the CSR Clock Range selection cannot be
2857 	 * changed at run-time and it is fixed. Viceversa the driver'll try to
2858 	 * set the MDC clock dynamically according to the csr actual
2859 	 * clock input.
2860 	 */
2861 	if (!priv->plat->clk_csr)
2862 		stmmac_clk_csr_set(priv);
2863 	else
2864 		priv->clk_csr = priv->plat->clk_csr;
2865 
2866 	stmmac_check_pcs_mode(priv);
2867 
2868 	if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
2869 	    priv->pcs != STMMAC_PCS_RTBI) {
2870 		/* MDIO bus Registration */
2871 		ret = stmmac_mdio_register(ndev);
2872 		if (ret < 0) {
2873 			pr_debug("%s: MDIO bus (id: %d) registration failed",
2874 				 __func__, priv->plat->bus_id);
2875 			goto error_mdio_register;
2876 		}
2877 	}
2878 
2879 	return priv;
2880 
2881 error_mdio_register:
2882 	unregister_netdev(ndev);
2883 error_netdev_register:
2884 	netif_napi_del(&priv->napi);
2885 error_hw_init:
2886 	clk_disable_unprepare(priv->stmmac_clk);
2887 error_clk_get:
2888 	free_netdev(ndev);
2889 
2890 	return ERR_PTR(ret);
2891 }
2892 
2893 /**
2894  * stmmac_dvr_remove
2895  * @ndev: net device pointer
2896  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
2897  * changes the link status, releases the DMA descriptor rings.
2898  */
2899 int stmmac_dvr_remove(struct net_device *ndev)
2900 {
2901 	struct stmmac_priv *priv = netdev_priv(ndev);
2902 
2903 	pr_info("%s:\n\tremoving driver", __func__);
2904 
2905 	priv->hw->dma->stop_rx(priv->ioaddr);
2906 	priv->hw->dma->stop_tx(priv->ioaddr);
2907 
2908 	stmmac_set_mac(priv->ioaddr, false);
2909 	if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
2910 	    priv->pcs != STMMAC_PCS_RTBI)
2911 		stmmac_mdio_unregister(ndev);
2912 	netif_carrier_off(ndev);
2913 	unregister_netdev(ndev);
2914 	if (priv->stmmac_rst)
2915 		reset_control_assert(priv->stmmac_rst);
2916 	clk_disable_unprepare(priv->stmmac_clk);
2917 	free_netdev(ndev);
2918 
2919 	return 0;
2920 }
2921 
2922 #ifdef CONFIG_PM
2923 int stmmac_suspend(struct net_device *ndev)
2924 {
2925 	struct stmmac_priv *priv = netdev_priv(ndev);
2926 	unsigned long flags;
2927 
2928 	if (!ndev || !netif_running(ndev))
2929 		return 0;
2930 
2931 	if (priv->phydev)
2932 		phy_stop(priv->phydev);
2933 
2934 	spin_lock_irqsave(&priv->lock, flags);
2935 
2936 	netif_device_detach(ndev);
2937 	netif_stop_queue(ndev);
2938 
2939 	napi_disable(&priv->napi);
2940 
2941 	/* Stop TX/RX DMA */
2942 	priv->hw->dma->stop_tx(priv->ioaddr);
2943 	priv->hw->dma->stop_rx(priv->ioaddr);
2944 
2945 	stmmac_clear_descriptors(priv);
2946 
2947 	/* Enable Power down mode by programming the PMT regs */
2948 	if (device_may_wakeup(priv->device)) {
2949 		priv->hw->mac->pmt(priv->hw, priv->wolopts);
2950 		priv->irq_wake = 1;
2951 	} else {
2952 		stmmac_set_mac(priv->ioaddr, false);
2953 		pinctrl_pm_select_sleep_state(priv->device);
2954 		/* Disable clock in case of PWM is off */
2955 		clk_disable_unprepare(priv->stmmac_clk);
2956 	}
2957 	spin_unlock_irqrestore(&priv->lock, flags);
2958 
2959 	priv->oldlink = 0;
2960 	priv->speed = 0;
2961 	priv->oldduplex = -1;
2962 	return 0;
2963 }
2964 
2965 int stmmac_resume(struct net_device *ndev)
2966 {
2967 	struct stmmac_priv *priv = netdev_priv(ndev);
2968 	unsigned long flags;
2969 
2970 	if (!netif_running(ndev))
2971 		return 0;
2972 
2973 	spin_lock_irqsave(&priv->lock, flags);
2974 
2975 	/* Power Down bit, into the PM register, is cleared
2976 	 * automatically as soon as a magic packet or a Wake-up frame
2977 	 * is received. Anyway, it's better to manually clear
2978 	 * this bit because it can generate problems while resuming
2979 	 * from another devices (e.g. serial console).
2980 	 */
2981 	if (device_may_wakeup(priv->device)) {
2982 		priv->hw->mac->pmt(priv->hw, 0);
2983 		priv->irq_wake = 0;
2984 	} else {
2985 		pinctrl_pm_select_default_state(priv->device);
2986 		/* enable the clk prevously disabled */
2987 		clk_prepare_enable(priv->stmmac_clk);
2988 		/* reset the phy so that it's ready */
2989 		if (priv->mii)
2990 			stmmac_mdio_reset(priv->mii);
2991 	}
2992 
2993 	netif_device_attach(ndev);
2994 
2995 	stmmac_hw_setup(ndev);
2996 
2997 	napi_enable(&priv->napi);
2998 
2999 	netif_start_queue(ndev);
3000 
3001 	spin_unlock_irqrestore(&priv->lock, flags);
3002 
3003 	if (priv->phydev)
3004 		phy_start(priv->phydev);
3005 
3006 	return 0;
3007 }
3008 #endif /* CONFIG_PM */
3009 
3010 /* Driver can be configured w/ and w/ both PCI and Platf drivers
3011  * depending on the configuration selected.
3012  */
3013 static int __init stmmac_init(void)
3014 {
3015 	int ret;
3016 
3017 	ret = stmmac_register_platform();
3018 	if (ret)
3019 		goto err;
3020 	ret = stmmac_register_pci();
3021 	if (ret)
3022 		goto err_pci;
3023 	return 0;
3024 err_pci:
3025 	stmmac_unregister_platform();
3026 err:
3027 	pr_err("stmmac: driver registration failed\n");
3028 	return ret;
3029 }
3030 
3031 static void __exit stmmac_exit(void)
3032 {
3033 	stmmac_unregister_platform();
3034 	stmmac_unregister_pci();
3035 }
3036 
3037 module_init(stmmac_init);
3038 module_exit(stmmac_exit);
3039 
3040 #ifndef MODULE
3041 static int __init stmmac_cmdline_opt(char *str)
3042 {
3043 	char *opt;
3044 
3045 	if (!str || !*str)
3046 		return -EINVAL;
3047 	while ((opt = strsep(&str, ",")) != NULL) {
3048 		if (!strncmp(opt, "debug:", 6)) {
3049 			if (kstrtoint(opt + 6, 0, &debug))
3050 				goto err;
3051 		} else if (!strncmp(opt, "phyaddr:", 8)) {
3052 			if (kstrtoint(opt + 8, 0, &phyaddr))
3053 				goto err;
3054 		} else if (!strncmp(opt, "dma_txsize:", 11)) {
3055 			if (kstrtoint(opt + 11, 0, &dma_txsize))
3056 				goto err;
3057 		} else if (!strncmp(opt, "dma_rxsize:", 11)) {
3058 			if (kstrtoint(opt + 11, 0, &dma_rxsize))
3059 				goto err;
3060 		} else if (!strncmp(opt, "buf_sz:", 7)) {
3061 			if (kstrtoint(opt + 7, 0, &buf_sz))
3062 				goto err;
3063 		} else if (!strncmp(opt, "tc:", 3)) {
3064 			if (kstrtoint(opt + 3, 0, &tc))
3065 				goto err;
3066 		} else if (!strncmp(opt, "watchdog:", 9)) {
3067 			if (kstrtoint(opt + 9, 0, &watchdog))
3068 				goto err;
3069 		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
3070 			if (kstrtoint(opt + 10, 0, &flow_ctrl))
3071 				goto err;
3072 		} else if (!strncmp(opt, "pause:", 6)) {
3073 			if (kstrtoint(opt + 6, 0, &pause))
3074 				goto err;
3075 		} else if (!strncmp(opt, "eee_timer:", 10)) {
3076 			if (kstrtoint(opt + 10, 0, &eee_timer))
3077 				goto err;
3078 		} else if (!strncmp(opt, "chain_mode:", 11)) {
3079 			if (kstrtoint(opt + 11, 0, &chain_mode))
3080 				goto err;
3081 		}
3082 	}
3083 	return 0;
3084 
3085 err:
3086 	pr_err("%s: ERROR broken module parameter conversion", __func__);
3087 	return -EINVAL;
3088 }
3089 
3090 __setup("stmmaceth=", stmmac_cmdline_opt);
3091 #endif /* MODULE */
3092 
3093 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
3094 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
3095 MODULE_LICENSE("GPL");
3096