xref: /linux/drivers/net/ethernet/stmicro/stmmac/stmmac_main.c (revision 24bfa6a9e0d4fe414dfc4ad06c93e10c4c37194e)
1 /*******************************************************************************
2   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3   ST Ethernet IPs are built around a Synopsys IP Core.
4 
5 	Copyright(C) 2007-2011 STMicroelectronics Ltd
6 
7   This program is free software; you can redistribute it and/or modify it
8   under the terms and conditions of the GNU General Public License,
9   version 2, as published by the Free Software Foundation.
10 
11   This program is distributed in the hope it will be useful, but WITHOUT
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14   more details.
15 
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc.,
18   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 
20   The full GNU General Public License is included in this distribution in
21   the file called "COPYING".
22 
23   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
24 
25   Documentation available at:
26 	http://www.stlinux.com
27   Support available at:
28 	https://bugzilla.stlinux.com/
29 *******************************************************************************/
30 
31 #include <linux/clk.h>
32 #include <linux/kernel.h>
33 #include <linux/interrupt.h>
34 #include <linux/ip.h>
35 #include <linux/tcp.h>
36 #include <linux/skbuff.h>
37 #include <linux/ethtool.h>
38 #include <linux/if_ether.h>
39 #include <linux/crc32.h>
40 #include <linux/mii.h>
41 #include <linux/if.h>
42 #include <linux/if_vlan.h>
43 #include <linux/dma-mapping.h>
44 #include <linux/slab.h>
45 #include <linux/prefetch.h>
46 #include <linux/pinctrl/consumer.h>
47 #ifdef CONFIG_DEBUG_FS
48 #include <linux/debugfs.h>
49 #include <linux/seq_file.h>
50 #endif /* CONFIG_DEBUG_FS */
51 #include <linux/net_tstamp.h>
52 #include "stmmac_ptp.h"
53 #include "stmmac.h"
54 #include <linux/reset.h>
55 #include <linux/of_mdio.h>
56 #include "dwmac1000.h"
57 
58 #define STMMAC_ALIGN(x)	L1_CACHE_ALIGN(x)
59 #define	TSO_MAX_BUFF_SIZE	(SZ_16K - 1)
60 
61 /* Module parameters */
62 #define TX_TIMEO	5000
63 static int watchdog = TX_TIMEO;
64 module_param(watchdog, int, S_IRUGO | S_IWUSR);
65 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
66 
67 static int debug = -1;
68 module_param(debug, int, S_IRUGO | S_IWUSR);
69 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
70 
71 static int phyaddr = -1;
72 module_param(phyaddr, int, S_IRUGO);
73 MODULE_PARM_DESC(phyaddr, "Physical device address");
74 
75 #define STMMAC_TX_THRESH	(DMA_TX_SIZE / 4)
76 #define STMMAC_RX_THRESH	(DMA_RX_SIZE / 4)
77 
78 static int flow_ctrl = FLOW_OFF;
79 module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
80 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
81 
82 static int pause = PAUSE_TIME;
83 module_param(pause, int, S_IRUGO | S_IWUSR);
84 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
85 
86 #define TC_DEFAULT 64
87 static int tc = TC_DEFAULT;
88 module_param(tc, int, S_IRUGO | S_IWUSR);
89 MODULE_PARM_DESC(tc, "DMA threshold control value");
90 
91 #define	DEFAULT_BUFSIZE	1536
92 static int buf_sz = DEFAULT_BUFSIZE;
93 module_param(buf_sz, int, S_IRUGO | S_IWUSR);
94 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
95 
96 #define	STMMAC_RX_COPYBREAK	256
97 
98 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
99 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
100 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
101 
102 #define STMMAC_DEFAULT_LPI_TIMER	1000
103 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
104 module_param(eee_timer, int, S_IRUGO | S_IWUSR);
105 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
106 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
107 
108 /* By default the driver will use the ring mode to manage tx and rx descriptors
109  * but passing this value so user can force to use the chain instead of the ring
110  */
111 static unsigned int chain_mode;
112 module_param(chain_mode, int, S_IRUGO);
113 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
114 
115 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
116 
117 #ifdef CONFIG_DEBUG_FS
118 static int stmmac_init_fs(struct net_device *dev);
119 static void stmmac_exit_fs(struct net_device *dev);
120 #endif
121 
122 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
123 
124 /**
125  * stmmac_verify_args - verify the driver parameters.
126  * Description: it checks the driver parameters and set a default in case of
127  * errors.
128  */
129 static void stmmac_verify_args(void)
130 {
131 	if (unlikely(watchdog < 0))
132 		watchdog = TX_TIMEO;
133 	if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
134 		buf_sz = DEFAULT_BUFSIZE;
135 	if (unlikely(flow_ctrl > 1))
136 		flow_ctrl = FLOW_AUTO;
137 	else if (likely(flow_ctrl < 0))
138 		flow_ctrl = FLOW_OFF;
139 	if (unlikely((pause < 0) || (pause > 0xffff)))
140 		pause = PAUSE_TIME;
141 	if (eee_timer < 0)
142 		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
143 }
144 
145 /**
146  * stmmac_clk_csr_set - dynamically set the MDC clock
147  * @priv: driver private structure
148  * Description: this is to dynamically set the MDC clock according to the csr
149  * clock input.
150  * Note:
151  *	If a specific clk_csr value is passed from the platform
152  *	this means that the CSR Clock Range selection cannot be
153  *	changed at run-time and it is fixed (as reported in the driver
154  *	documentation). Viceversa the driver will try to set the MDC
155  *	clock dynamically according to the actual clock input.
156  */
157 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
158 {
159 	u32 clk_rate;
160 
161 	clk_rate = clk_get_rate(priv->stmmac_clk);
162 
163 	/* Platform provided default clk_csr would be assumed valid
164 	 * for all other cases except for the below mentioned ones.
165 	 * For values higher than the IEEE 802.3 specified frequency
166 	 * we can not estimate the proper divider as it is not known
167 	 * the frequency of clk_csr_i. So we do not change the default
168 	 * divider.
169 	 */
170 	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
171 		if (clk_rate < CSR_F_35M)
172 			priv->clk_csr = STMMAC_CSR_20_35M;
173 		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
174 			priv->clk_csr = STMMAC_CSR_35_60M;
175 		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
176 			priv->clk_csr = STMMAC_CSR_60_100M;
177 		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
178 			priv->clk_csr = STMMAC_CSR_100_150M;
179 		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
180 			priv->clk_csr = STMMAC_CSR_150_250M;
181 		else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
182 			priv->clk_csr = STMMAC_CSR_250_300M;
183 	}
184 }
185 
186 static void print_pkt(unsigned char *buf, int len)
187 {
188 	pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
189 	print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
190 }
191 
192 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
193 {
194 	unsigned avail;
195 
196 	if (priv->dirty_tx > priv->cur_tx)
197 		avail = priv->dirty_tx - priv->cur_tx - 1;
198 	else
199 		avail = DMA_TX_SIZE - priv->cur_tx + priv->dirty_tx - 1;
200 
201 	return avail;
202 }
203 
204 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv)
205 {
206 	unsigned dirty;
207 
208 	if (priv->dirty_rx <= priv->cur_rx)
209 		dirty = priv->cur_rx - priv->dirty_rx;
210 	else
211 		dirty = DMA_RX_SIZE - priv->dirty_rx + priv->cur_rx;
212 
213 	return dirty;
214 }
215 
216 /**
217  * stmmac_hw_fix_mac_speed - callback for speed selection
218  * @priv: driver private structure
219  * Description: on some platforms (e.g. ST), some HW system configuraton
220  * registers have to be set according to the link speed negotiated.
221  */
222 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
223 {
224 	struct phy_device *phydev = priv->phydev;
225 
226 	if (likely(priv->plat->fix_mac_speed))
227 		priv->plat->fix_mac_speed(priv->plat->bsp_priv, phydev->speed);
228 }
229 
230 /**
231  * stmmac_enable_eee_mode - check and enter in LPI mode
232  * @priv: driver private structure
233  * Description: this function is to verify and enter in LPI mode in case of
234  * EEE.
235  */
236 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
237 {
238 	/* Check and enter in LPI mode */
239 	if ((priv->dirty_tx == priv->cur_tx) &&
240 	    (priv->tx_path_in_lpi_mode == false))
241 		priv->hw->mac->set_eee_mode(priv->hw);
242 }
243 
244 /**
245  * stmmac_disable_eee_mode - disable and exit from LPI mode
246  * @priv: driver private structure
247  * Description: this function is to exit and disable EEE in case of
248  * LPI state is true. This is called by the xmit.
249  */
250 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
251 {
252 	priv->hw->mac->reset_eee_mode(priv->hw);
253 	del_timer_sync(&priv->eee_ctrl_timer);
254 	priv->tx_path_in_lpi_mode = false;
255 }
256 
257 /**
258  * stmmac_eee_ctrl_timer - EEE TX SW timer.
259  * @arg : data hook
260  * Description:
261  *  if there is no data transfer and if we are not in LPI state,
262  *  then MAC Transmitter can be moved to LPI state.
263  */
264 static void stmmac_eee_ctrl_timer(unsigned long arg)
265 {
266 	struct stmmac_priv *priv = (struct stmmac_priv *)arg;
267 
268 	stmmac_enable_eee_mode(priv);
269 	mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
270 }
271 
272 /**
273  * stmmac_eee_init - init EEE
274  * @priv: driver private structure
275  * Description:
276  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
277  *  can also manage EEE, this function enable the LPI state and start related
278  *  timer.
279  */
280 bool stmmac_eee_init(struct stmmac_priv *priv)
281 {
282 	unsigned long flags;
283 	bool ret = false;
284 
285 	/* Using PCS we cannot dial with the phy registers at this stage
286 	 * so we do not support extra feature like EEE.
287 	 */
288 	if ((priv->hw->pcs == STMMAC_PCS_RGMII) ||
289 	    (priv->hw->pcs == STMMAC_PCS_TBI) ||
290 	    (priv->hw->pcs == STMMAC_PCS_RTBI))
291 		goto out;
292 
293 	/* MAC core supports the EEE feature. */
294 	if (priv->dma_cap.eee) {
295 		int tx_lpi_timer = priv->tx_lpi_timer;
296 
297 		/* Check if the PHY supports EEE */
298 		if (phy_init_eee(priv->phydev, 1)) {
299 			/* To manage at run-time if the EEE cannot be supported
300 			 * anymore (for example because the lp caps have been
301 			 * changed).
302 			 * In that case the driver disable own timers.
303 			 */
304 			spin_lock_irqsave(&priv->lock, flags);
305 			if (priv->eee_active) {
306 				pr_debug("stmmac: disable EEE\n");
307 				del_timer_sync(&priv->eee_ctrl_timer);
308 				priv->hw->mac->set_eee_timer(priv->hw, 0,
309 							     tx_lpi_timer);
310 			}
311 			priv->eee_active = 0;
312 			spin_unlock_irqrestore(&priv->lock, flags);
313 			goto out;
314 		}
315 		/* Activate the EEE and start timers */
316 		spin_lock_irqsave(&priv->lock, flags);
317 		if (!priv->eee_active) {
318 			priv->eee_active = 1;
319 			setup_timer(&priv->eee_ctrl_timer,
320 				    stmmac_eee_ctrl_timer,
321 				    (unsigned long)priv);
322 			mod_timer(&priv->eee_ctrl_timer,
323 				  STMMAC_LPI_T(eee_timer));
324 
325 			priv->hw->mac->set_eee_timer(priv->hw,
326 						     STMMAC_DEFAULT_LIT_LS,
327 						     tx_lpi_timer);
328 		}
329 		/* Set HW EEE according to the speed */
330 		priv->hw->mac->set_eee_pls(priv->hw, priv->phydev->link);
331 
332 		ret = true;
333 		spin_unlock_irqrestore(&priv->lock, flags);
334 
335 		pr_debug("stmmac: Energy-Efficient Ethernet initialized\n");
336 	}
337 out:
338 	return ret;
339 }
340 
341 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
342  * @priv: driver private structure
343  * @entry : descriptor index to be used.
344  * @skb : the socket buffer
345  * Description :
346  * This function will read timestamp from the descriptor & pass it to stack.
347  * and also perform some sanity checks.
348  */
349 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
350 				   unsigned int entry, struct sk_buff *skb)
351 {
352 	struct skb_shared_hwtstamps shhwtstamp;
353 	u64 ns;
354 	void *desc = NULL;
355 
356 	if (!priv->hwts_tx_en)
357 		return;
358 
359 	/* exit if skb doesn't support hw tstamp */
360 	if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
361 		return;
362 
363 	if (priv->adv_ts)
364 		desc = (priv->dma_etx + entry);
365 	else
366 		desc = (priv->dma_tx + entry);
367 
368 	/* check tx tstamp status */
369 	if (!priv->hw->desc->get_tx_timestamp_status((struct dma_desc *)desc))
370 		return;
371 
372 	/* get the valid tstamp */
373 	ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
374 
375 	memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
376 	shhwtstamp.hwtstamp = ns_to_ktime(ns);
377 	/* pass tstamp to stack */
378 	skb_tstamp_tx(skb, &shhwtstamp);
379 
380 	return;
381 }
382 
383 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
384  * @priv: driver private structure
385  * @entry : descriptor index to be used.
386  * @skb : the socket buffer
387  * Description :
388  * This function will read received packet's timestamp from the descriptor
389  * and pass it to stack. It also perform some sanity checks.
390  */
391 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv,
392 				   unsigned int entry, struct sk_buff *skb)
393 {
394 	struct skb_shared_hwtstamps *shhwtstamp = NULL;
395 	u64 ns;
396 	void *desc = NULL;
397 
398 	if (!priv->hwts_rx_en)
399 		return;
400 
401 	if (priv->adv_ts)
402 		desc = (priv->dma_erx + entry);
403 	else
404 		desc = (priv->dma_rx + entry);
405 
406 	/* exit if rx tstamp is not valid */
407 	if (!priv->hw->desc->get_rx_timestamp_status(desc, priv->adv_ts))
408 		return;
409 
410 	/* get valid tstamp */
411 	ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
412 	shhwtstamp = skb_hwtstamps(skb);
413 	memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
414 	shhwtstamp->hwtstamp = ns_to_ktime(ns);
415 }
416 
417 /**
418  *  stmmac_hwtstamp_ioctl - control hardware timestamping.
419  *  @dev: device pointer.
420  *  @ifr: An IOCTL specefic structure, that can contain a pointer to
421  *  a proprietary structure used to pass information to the driver.
422  *  Description:
423  *  This function configures the MAC to enable/disable both outgoing(TX)
424  *  and incoming(RX) packets time stamping based on user input.
425  *  Return Value:
426  *  0 on success and an appropriate -ve integer on failure.
427  */
428 static int stmmac_hwtstamp_ioctl(struct net_device *dev, struct ifreq *ifr)
429 {
430 	struct stmmac_priv *priv = netdev_priv(dev);
431 	struct hwtstamp_config config;
432 	struct timespec64 now;
433 	u64 temp = 0;
434 	u32 ptp_v2 = 0;
435 	u32 tstamp_all = 0;
436 	u32 ptp_over_ipv4_udp = 0;
437 	u32 ptp_over_ipv6_udp = 0;
438 	u32 ptp_over_ethernet = 0;
439 	u32 snap_type_sel = 0;
440 	u32 ts_master_en = 0;
441 	u32 ts_event_en = 0;
442 	u32 value = 0;
443 	u32 sec_inc;
444 
445 	if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
446 		netdev_alert(priv->dev, "No support for HW time stamping\n");
447 		priv->hwts_tx_en = 0;
448 		priv->hwts_rx_en = 0;
449 
450 		return -EOPNOTSUPP;
451 	}
452 
453 	if (copy_from_user(&config, ifr->ifr_data,
454 			   sizeof(struct hwtstamp_config)))
455 		return -EFAULT;
456 
457 	pr_debug("%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
458 		 __func__, config.flags, config.tx_type, config.rx_filter);
459 
460 	/* reserved for future extensions */
461 	if (config.flags)
462 		return -EINVAL;
463 
464 	if (config.tx_type != HWTSTAMP_TX_OFF &&
465 	    config.tx_type != HWTSTAMP_TX_ON)
466 		return -ERANGE;
467 
468 	if (priv->adv_ts) {
469 		switch (config.rx_filter) {
470 		case HWTSTAMP_FILTER_NONE:
471 			/* time stamp no incoming packet at all */
472 			config.rx_filter = HWTSTAMP_FILTER_NONE;
473 			break;
474 
475 		case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
476 			/* PTP v1, UDP, any kind of event packet */
477 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
478 			/* take time stamp for all event messages */
479 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
480 
481 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
482 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
483 			break;
484 
485 		case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
486 			/* PTP v1, UDP, Sync packet */
487 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
488 			/* take time stamp for SYNC messages only */
489 			ts_event_en = PTP_TCR_TSEVNTENA;
490 
491 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
492 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
493 			break;
494 
495 		case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
496 			/* PTP v1, UDP, Delay_req packet */
497 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
498 			/* take time stamp for Delay_Req messages only */
499 			ts_master_en = PTP_TCR_TSMSTRENA;
500 			ts_event_en = PTP_TCR_TSEVNTENA;
501 
502 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
503 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
504 			break;
505 
506 		case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
507 			/* PTP v2, UDP, any kind of event packet */
508 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
509 			ptp_v2 = PTP_TCR_TSVER2ENA;
510 			/* take time stamp for all event messages */
511 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
512 
513 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
514 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
515 			break;
516 
517 		case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
518 			/* PTP v2, UDP, Sync packet */
519 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
520 			ptp_v2 = PTP_TCR_TSVER2ENA;
521 			/* take time stamp for SYNC messages only */
522 			ts_event_en = PTP_TCR_TSEVNTENA;
523 
524 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
525 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
526 			break;
527 
528 		case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
529 			/* PTP v2, UDP, Delay_req packet */
530 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
531 			ptp_v2 = PTP_TCR_TSVER2ENA;
532 			/* take time stamp for Delay_Req messages only */
533 			ts_master_en = PTP_TCR_TSMSTRENA;
534 			ts_event_en = PTP_TCR_TSEVNTENA;
535 
536 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
537 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
538 			break;
539 
540 		case HWTSTAMP_FILTER_PTP_V2_EVENT:
541 			/* PTP v2/802.AS1 any layer, any kind of event packet */
542 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
543 			ptp_v2 = PTP_TCR_TSVER2ENA;
544 			/* take time stamp for all event messages */
545 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
546 
547 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
548 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
549 			ptp_over_ethernet = PTP_TCR_TSIPENA;
550 			break;
551 
552 		case HWTSTAMP_FILTER_PTP_V2_SYNC:
553 			/* PTP v2/802.AS1, any layer, Sync packet */
554 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
555 			ptp_v2 = PTP_TCR_TSVER2ENA;
556 			/* take time stamp for SYNC messages only */
557 			ts_event_en = PTP_TCR_TSEVNTENA;
558 
559 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
560 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
561 			ptp_over_ethernet = PTP_TCR_TSIPENA;
562 			break;
563 
564 		case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
565 			/* PTP v2/802.AS1, any layer, Delay_req packet */
566 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
567 			ptp_v2 = PTP_TCR_TSVER2ENA;
568 			/* take time stamp for Delay_Req messages only */
569 			ts_master_en = PTP_TCR_TSMSTRENA;
570 			ts_event_en = PTP_TCR_TSEVNTENA;
571 
572 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
573 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
574 			ptp_over_ethernet = PTP_TCR_TSIPENA;
575 			break;
576 
577 		case HWTSTAMP_FILTER_ALL:
578 			/* time stamp any incoming packet */
579 			config.rx_filter = HWTSTAMP_FILTER_ALL;
580 			tstamp_all = PTP_TCR_TSENALL;
581 			break;
582 
583 		default:
584 			return -ERANGE;
585 		}
586 	} else {
587 		switch (config.rx_filter) {
588 		case HWTSTAMP_FILTER_NONE:
589 			config.rx_filter = HWTSTAMP_FILTER_NONE;
590 			break;
591 		default:
592 			/* PTP v1, UDP, any kind of event packet */
593 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
594 			break;
595 		}
596 	}
597 	priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
598 	priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
599 
600 	if (!priv->hwts_tx_en && !priv->hwts_rx_en)
601 		priv->hw->ptp->config_hw_tstamping(priv->ioaddr, 0);
602 	else {
603 		value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
604 			 tstamp_all | ptp_v2 | ptp_over_ethernet |
605 			 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
606 			 ts_master_en | snap_type_sel);
607 		priv->hw->ptp->config_hw_tstamping(priv->ioaddr, value);
608 
609 		/* program Sub Second Increment reg */
610 		sec_inc = priv->hw->ptp->config_sub_second_increment(
611 			priv->ioaddr, priv->clk_ptp_rate);
612 		temp = div_u64(1000000000ULL, sec_inc);
613 
614 		/* calculate default added value:
615 		 * formula is :
616 		 * addend = (2^32)/freq_div_ratio;
617 		 * where, freq_div_ratio = 1e9ns/sec_inc
618 		 */
619 		temp = (u64)(temp << 32);
620 		priv->default_addend = div_u64(temp, priv->clk_ptp_rate);
621 		priv->hw->ptp->config_addend(priv->ioaddr,
622 					     priv->default_addend);
623 
624 		/* initialize system time */
625 		ktime_get_real_ts64(&now);
626 
627 		/* lower 32 bits of tv_sec are safe until y2106 */
628 		priv->hw->ptp->init_systime(priv->ioaddr, (u32)now.tv_sec,
629 					    now.tv_nsec);
630 	}
631 
632 	return copy_to_user(ifr->ifr_data, &config,
633 			    sizeof(struct hwtstamp_config)) ? -EFAULT : 0;
634 }
635 
636 /**
637  * stmmac_init_ptp - init PTP
638  * @priv: driver private structure
639  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
640  * This is done by looking at the HW cap. register.
641  * This function also registers the ptp driver.
642  */
643 static int stmmac_init_ptp(struct stmmac_priv *priv)
644 {
645 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
646 		return -EOPNOTSUPP;
647 
648 	/* Fall-back to main clock in case of no PTP ref is passed */
649 	priv->clk_ptp_ref = devm_clk_get(priv->device, "clk_ptp_ref");
650 	if (IS_ERR(priv->clk_ptp_ref)) {
651 		priv->clk_ptp_rate = clk_get_rate(priv->stmmac_clk);
652 		priv->clk_ptp_ref = NULL;
653 		netdev_dbg(priv->dev, "PTP uses main clock\n");
654 	} else {
655 		clk_prepare_enable(priv->clk_ptp_ref);
656 		priv->clk_ptp_rate = clk_get_rate(priv->clk_ptp_ref);
657 		netdev_dbg(priv->dev, "PTP rate %d\n", priv->clk_ptp_rate);
658 	}
659 
660 	priv->adv_ts = 0;
661 	/* Check if adv_ts can be enabled for dwmac 4.x core */
662 	if (priv->plat->has_gmac4 && priv->dma_cap.atime_stamp)
663 		priv->adv_ts = 1;
664 	/* Dwmac 3.x core with extend_desc can support adv_ts */
665 	else if (priv->extend_desc && priv->dma_cap.atime_stamp)
666 		priv->adv_ts = 1;
667 
668 	if (priv->dma_cap.time_stamp)
669 		netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
670 
671 	if (priv->adv_ts)
672 		netdev_info(priv->dev,
673 			    "IEEE 1588-2008 Advanced Timestamp supported\n");
674 
675 	priv->hw->ptp = &stmmac_ptp;
676 	priv->hwts_tx_en = 0;
677 	priv->hwts_rx_en = 0;
678 
679 	stmmac_ptp_register(priv);
680 
681 	return 0;
682 }
683 
684 static void stmmac_release_ptp(struct stmmac_priv *priv)
685 {
686 	if (priv->clk_ptp_ref)
687 		clk_disable_unprepare(priv->clk_ptp_ref);
688 	stmmac_ptp_unregister(priv);
689 }
690 
691 /**
692  * stmmac_adjust_link - adjusts the link parameters
693  * @dev: net device structure
694  * Description: this is the helper called by the physical abstraction layer
695  * drivers to communicate the phy link status. According the speed and duplex
696  * this driver can invoke registered glue-logic as well.
697  * It also invoke the eee initialization because it could happen when switch
698  * on different networks (that are eee capable).
699  */
700 static void stmmac_adjust_link(struct net_device *dev)
701 {
702 	struct stmmac_priv *priv = netdev_priv(dev);
703 	struct phy_device *phydev = priv->phydev;
704 	unsigned long flags;
705 	int new_state = 0;
706 	unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;
707 
708 	if (phydev == NULL)
709 		return;
710 
711 	spin_lock_irqsave(&priv->lock, flags);
712 
713 	if (phydev->link) {
714 		u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
715 
716 		/* Now we make sure that we can be in full duplex mode.
717 		 * If not, we operate in half-duplex mode. */
718 		if (phydev->duplex != priv->oldduplex) {
719 			new_state = 1;
720 			if (!(phydev->duplex))
721 				ctrl &= ~priv->hw->link.duplex;
722 			else
723 				ctrl |= priv->hw->link.duplex;
724 			priv->oldduplex = phydev->duplex;
725 		}
726 		/* Flow Control operation */
727 		if (phydev->pause)
728 			priv->hw->mac->flow_ctrl(priv->hw, phydev->duplex,
729 						 fc, pause_time);
730 
731 		if (phydev->speed != priv->speed) {
732 			new_state = 1;
733 			switch (phydev->speed) {
734 			case 1000:
735 				if (likely((priv->plat->has_gmac) ||
736 					   (priv->plat->has_gmac4)))
737 					ctrl &= ~priv->hw->link.port;
738 				stmmac_hw_fix_mac_speed(priv);
739 				break;
740 			case 100:
741 			case 10:
742 				if (likely((priv->plat->has_gmac) ||
743 					   (priv->plat->has_gmac4))) {
744 					ctrl |= priv->hw->link.port;
745 					if (phydev->speed == SPEED_100) {
746 						ctrl |= priv->hw->link.speed;
747 					} else {
748 						ctrl &= ~(priv->hw->link.speed);
749 					}
750 				} else {
751 					ctrl &= ~priv->hw->link.port;
752 				}
753 				stmmac_hw_fix_mac_speed(priv);
754 				break;
755 			default:
756 				if (netif_msg_link(priv))
757 					pr_warn("%s: Speed (%d) not 10/100\n",
758 						dev->name, phydev->speed);
759 				break;
760 			}
761 
762 			priv->speed = phydev->speed;
763 		}
764 
765 		writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
766 
767 		if (!priv->oldlink) {
768 			new_state = 1;
769 			priv->oldlink = 1;
770 		}
771 	} else if (priv->oldlink) {
772 		new_state = 1;
773 		priv->oldlink = 0;
774 		priv->speed = 0;
775 		priv->oldduplex = -1;
776 	}
777 
778 	if (new_state && netif_msg_link(priv))
779 		phy_print_status(phydev);
780 
781 	spin_unlock_irqrestore(&priv->lock, flags);
782 
783 	if (phydev->is_pseudo_fixed_link)
784 		/* Stop PHY layer to call the hook to adjust the link in case
785 		 * of a switch is attached to the stmmac driver.
786 		 */
787 		phydev->irq = PHY_IGNORE_INTERRUPT;
788 	else
789 		/* At this stage, init the EEE if supported.
790 		 * Never called in case of fixed_link.
791 		 */
792 		priv->eee_enabled = stmmac_eee_init(priv);
793 }
794 
795 /**
796  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
797  * @priv: driver private structure
798  * Description: this is to verify if the HW supports the PCS.
799  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
800  * configured for the TBI, RTBI, or SGMII PHY interface.
801  */
802 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
803 {
804 	int interface = priv->plat->interface;
805 
806 	if (priv->dma_cap.pcs) {
807 		if ((interface == PHY_INTERFACE_MODE_RGMII) ||
808 		    (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
809 		    (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
810 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
811 			pr_debug("STMMAC: PCS RGMII support enable\n");
812 			priv->hw->pcs = STMMAC_PCS_RGMII;
813 		} else if (interface == PHY_INTERFACE_MODE_SGMII) {
814 			pr_debug("STMMAC: PCS SGMII support enable\n");
815 			priv->hw->pcs = STMMAC_PCS_SGMII;
816 		}
817 	}
818 }
819 
820 /**
821  * stmmac_init_phy - PHY initialization
822  * @dev: net device structure
823  * Description: it initializes the driver's PHY state, and attaches the PHY
824  * to the mac driver.
825  *  Return value:
826  *  0 on success
827  */
828 static int stmmac_init_phy(struct net_device *dev)
829 {
830 	struct stmmac_priv *priv = netdev_priv(dev);
831 	struct phy_device *phydev;
832 	char phy_id_fmt[MII_BUS_ID_SIZE + 3];
833 	char bus_id[MII_BUS_ID_SIZE];
834 	int interface = priv->plat->interface;
835 	int max_speed = priv->plat->max_speed;
836 	priv->oldlink = 0;
837 	priv->speed = 0;
838 	priv->oldduplex = -1;
839 
840 	if (priv->plat->phy_node) {
841 		phydev = of_phy_connect(dev, priv->plat->phy_node,
842 					&stmmac_adjust_link, 0, interface);
843 	} else {
844 		snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
845 			 priv->plat->bus_id);
846 
847 		snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
848 			 priv->plat->phy_addr);
849 		pr_debug("stmmac_init_phy:  trying to attach to %s\n",
850 			 phy_id_fmt);
851 
852 		phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link,
853 				     interface);
854 	}
855 
856 	if (IS_ERR_OR_NULL(phydev)) {
857 		pr_err("%s: Could not attach to PHY\n", dev->name);
858 		if (!phydev)
859 			return -ENODEV;
860 
861 		return PTR_ERR(phydev);
862 	}
863 
864 	/* Stop Advertising 1000BASE Capability if interface is not GMII */
865 	if ((interface == PHY_INTERFACE_MODE_MII) ||
866 	    (interface == PHY_INTERFACE_MODE_RMII) ||
867 		(max_speed < 1000 && max_speed > 0))
868 		phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
869 					 SUPPORTED_1000baseT_Full);
870 
871 	/*
872 	 * Broken HW is sometimes missing the pull-up resistor on the
873 	 * MDIO line, which results in reads to non-existent devices returning
874 	 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
875 	 * device as well.
876 	 * Note: phydev->phy_id is the result of reading the UID PHY registers.
877 	 */
878 	if (!priv->plat->phy_node && phydev->phy_id == 0) {
879 		phy_disconnect(phydev);
880 		return -ENODEV;
881 	}
882 
883 	pr_debug("stmmac_init_phy:  %s: attached to PHY (UID 0x%x)"
884 		 " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
885 
886 	priv->phydev = phydev;
887 
888 	return 0;
889 }
890 
891 static void stmmac_display_rings(struct stmmac_priv *priv)
892 {
893 	void *head_rx, *head_tx;
894 
895 	if (priv->extend_desc) {
896 		head_rx = (void *)priv->dma_erx;
897 		head_tx = (void *)priv->dma_etx;
898 	} else {
899 		head_rx = (void *)priv->dma_rx;
900 		head_tx = (void *)priv->dma_tx;
901 	}
902 
903 	/* Display Rx ring */
904 	priv->hw->desc->display_ring(head_rx, DMA_RX_SIZE, true);
905 	/* Display Tx ring */
906 	priv->hw->desc->display_ring(head_tx, DMA_TX_SIZE, false);
907 }
908 
909 static int stmmac_set_bfsize(int mtu, int bufsize)
910 {
911 	int ret = bufsize;
912 
913 	if (mtu >= BUF_SIZE_4KiB)
914 		ret = BUF_SIZE_8KiB;
915 	else if (mtu >= BUF_SIZE_2KiB)
916 		ret = BUF_SIZE_4KiB;
917 	else if (mtu > DEFAULT_BUFSIZE)
918 		ret = BUF_SIZE_2KiB;
919 	else
920 		ret = DEFAULT_BUFSIZE;
921 
922 	return ret;
923 }
924 
925 /**
926  * stmmac_clear_descriptors - clear descriptors
927  * @priv: driver private structure
928  * Description: this function is called to clear the tx and rx descriptors
929  * in case of both basic and extended descriptors are used.
930  */
931 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
932 {
933 	int i;
934 
935 	/* Clear the Rx/Tx descriptors */
936 	for (i = 0; i < DMA_RX_SIZE; i++)
937 		if (priv->extend_desc)
938 			priv->hw->desc->init_rx_desc(&priv->dma_erx[i].basic,
939 						     priv->use_riwt, priv->mode,
940 						     (i == DMA_RX_SIZE - 1));
941 		else
942 			priv->hw->desc->init_rx_desc(&priv->dma_rx[i],
943 						     priv->use_riwt, priv->mode,
944 						     (i == DMA_RX_SIZE - 1));
945 	for (i = 0; i < DMA_TX_SIZE; i++)
946 		if (priv->extend_desc)
947 			priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
948 						     priv->mode,
949 						     (i == DMA_TX_SIZE - 1));
950 		else
951 			priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
952 						     priv->mode,
953 						     (i == DMA_TX_SIZE - 1));
954 }
955 
956 /**
957  * stmmac_init_rx_buffers - init the RX descriptor buffer.
958  * @priv: driver private structure
959  * @p: descriptor pointer
960  * @i: descriptor index
961  * @flags: gfp flag.
962  * Description: this function is called to allocate a receive buffer, perform
963  * the DMA mapping and init the descriptor.
964  */
965 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
966 				  int i, gfp_t flags)
967 {
968 	struct sk_buff *skb;
969 
970 	skb = __netdev_alloc_skb_ip_align(priv->dev, priv->dma_buf_sz, flags);
971 	if (!skb) {
972 		pr_err("%s: Rx init fails; skb is NULL\n", __func__);
973 		return -ENOMEM;
974 	}
975 	priv->rx_skbuff[i] = skb;
976 	priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
977 						priv->dma_buf_sz,
978 						DMA_FROM_DEVICE);
979 	if (dma_mapping_error(priv->device, priv->rx_skbuff_dma[i])) {
980 		pr_err("%s: DMA mapping error\n", __func__);
981 		dev_kfree_skb_any(skb);
982 		return -EINVAL;
983 	}
984 
985 	if (priv->synopsys_id >= DWMAC_CORE_4_00)
986 		p->des0 = priv->rx_skbuff_dma[i];
987 	else
988 		p->des2 = priv->rx_skbuff_dma[i];
989 
990 	if ((priv->hw->mode->init_desc3) &&
991 	    (priv->dma_buf_sz == BUF_SIZE_16KiB))
992 		priv->hw->mode->init_desc3(p);
993 
994 	return 0;
995 }
996 
997 static void stmmac_free_rx_buffers(struct stmmac_priv *priv, int i)
998 {
999 	if (priv->rx_skbuff[i]) {
1000 		dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
1001 				 priv->dma_buf_sz, DMA_FROM_DEVICE);
1002 		dev_kfree_skb_any(priv->rx_skbuff[i]);
1003 	}
1004 	priv->rx_skbuff[i] = NULL;
1005 }
1006 
1007 /**
1008  * init_dma_desc_rings - init the RX/TX descriptor rings
1009  * @dev: net device structure
1010  * @flags: gfp flag.
1011  * Description: this function initializes the DMA RX/TX descriptors
1012  * and allocates the socket buffers. It suppors the chained and ring
1013  * modes.
1014  */
1015 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1016 {
1017 	int i;
1018 	struct stmmac_priv *priv = netdev_priv(dev);
1019 	unsigned int bfsize = 0;
1020 	int ret = -ENOMEM;
1021 
1022 	if (priv->hw->mode->set_16kib_bfsize)
1023 		bfsize = priv->hw->mode->set_16kib_bfsize(dev->mtu);
1024 
1025 	if (bfsize < BUF_SIZE_16KiB)
1026 		bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
1027 
1028 	priv->dma_buf_sz = bfsize;
1029 
1030 	if (netif_msg_probe(priv)) {
1031 		pr_debug("(%s) dma_rx_phy=0x%08x dma_tx_phy=0x%08x\n", __func__,
1032 			 (u32) priv->dma_rx_phy, (u32) priv->dma_tx_phy);
1033 
1034 		/* RX INITIALIZATION */
1035 		pr_debug("\tSKB addresses:\nskb\t\tskb data\tdma data\n");
1036 	}
1037 	for (i = 0; i < DMA_RX_SIZE; i++) {
1038 		struct dma_desc *p;
1039 		if (priv->extend_desc)
1040 			p = &((priv->dma_erx + i)->basic);
1041 		else
1042 			p = priv->dma_rx + i;
1043 
1044 		ret = stmmac_init_rx_buffers(priv, p, i, flags);
1045 		if (ret)
1046 			goto err_init_rx_buffers;
1047 
1048 		if (netif_msg_probe(priv))
1049 			pr_debug("[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
1050 				 priv->rx_skbuff[i]->data,
1051 				 (unsigned int)priv->rx_skbuff_dma[i]);
1052 	}
1053 	priv->cur_rx = 0;
1054 	priv->dirty_rx = (unsigned int)(i - DMA_RX_SIZE);
1055 	buf_sz = bfsize;
1056 
1057 	/* Setup the chained descriptor addresses */
1058 	if (priv->mode == STMMAC_CHAIN_MODE) {
1059 		if (priv->extend_desc) {
1060 			priv->hw->mode->init(priv->dma_erx, priv->dma_rx_phy,
1061 					     DMA_RX_SIZE, 1);
1062 			priv->hw->mode->init(priv->dma_etx, priv->dma_tx_phy,
1063 					     DMA_TX_SIZE, 1);
1064 		} else {
1065 			priv->hw->mode->init(priv->dma_rx, priv->dma_rx_phy,
1066 					     DMA_RX_SIZE, 0);
1067 			priv->hw->mode->init(priv->dma_tx, priv->dma_tx_phy,
1068 					     DMA_TX_SIZE, 0);
1069 		}
1070 	}
1071 
1072 	/* TX INITIALIZATION */
1073 	for (i = 0; i < DMA_TX_SIZE; i++) {
1074 		struct dma_desc *p;
1075 		if (priv->extend_desc)
1076 			p = &((priv->dma_etx + i)->basic);
1077 		else
1078 			p = priv->dma_tx + i;
1079 
1080 		if (priv->synopsys_id >= DWMAC_CORE_4_00) {
1081 			p->des0 = 0;
1082 			p->des1 = 0;
1083 			p->des2 = 0;
1084 			p->des3 = 0;
1085 		} else {
1086 			p->des2 = 0;
1087 		}
1088 
1089 		priv->tx_skbuff_dma[i].buf = 0;
1090 		priv->tx_skbuff_dma[i].map_as_page = false;
1091 		priv->tx_skbuff_dma[i].len = 0;
1092 		priv->tx_skbuff_dma[i].last_segment = false;
1093 		priv->tx_skbuff[i] = NULL;
1094 	}
1095 
1096 	priv->dirty_tx = 0;
1097 	priv->cur_tx = 0;
1098 	netdev_reset_queue(priv->dev);
1099 
1100 	stmmac_clear_descriptors(priv);
1101 
1102 	if (netif_msg_hw(priv))
1103 		stmmac_display_rings(priv);
1104 
1105 	return 0;
1106 err_init_rx_buffers:
1107 	while (--i >= 0)
1108 		stmmac_free_rx_buffers(priv, i);
1109 	return ret;
1110 }
1111 
1112 static void dma_free_rx_skbufs(struct stmmac_priv *priv)
1113 {
1114 	int i;
1115 
1116 	for (i = 0; i < DMA_RX_SIZE; i++)
1117 		stmmac_free_rx_buffers(priv, i);
1118 }
1119 
1120 static void dma_free_tx_skbufs(struct stmmac_priv *priv)
1121 {
1122 	int i;
1123 
1124 	for (i = 0; i < DMA_TX_SIZE; i++) {
1125 		struct dma_desc *p;
1126 
1127 		if (priv->extend_desc)
1128 			p = &((priv->dma_etx + i)->basic);
1129 		else
1130 			p = priv->dma_tx + i;
1131 
1132 		if (priv->tx_skbuff_dma[i].buf) {
1133 			if (priv->tx_skbuff_dma[i].map_as_page)
1134 				dma_unmap_page(priv->device,
1135 					       priv->tx_skbuff_dma[i].buf,
1136 					       priv->tx_skbuff_dma[i].len,
1137 					       DMA_TO_DEVICE);
1138 			else
1139 				dma_unmap_single(priv->device,
1140 						 priv->tx_skbuff_dma[i].buf,
1141 						 priv->tx_skbuff_dma[i].len,
1142 						 DMA_TO_DEVICE);
1143 		}
1144 
1145 		if (priv->tx_skbuff[i] != NULL) {
1146 			dev_kfree_skb_any(priv->tx_skbuff[i]);
1147 			priv->tx_skbuff[i] = NULL;
1148 			priv->tx_skbuff_dma[i].buf = 0;
1149 			priv->tx_skbuff_dma[i].map_as_page = false;
1150 		}
1151 	}
1152 }
1153 
1154 /**
1155  * alloc_dma_desc_resources - alloc TX/RX resources.
1156  * @priv: private structure
1157  * Description: according to which descriptor can be used (extend or basic)
1158  * this function allocates the resources for TX and RX paths. In case of
1159  * reception, for example, it pre-allocated the RX socket buffer in order to
1160  * allow zero-copy mechanism.
1161  */
1162 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1163 {
1164 	int ret = -ENOMEM;
1165 
1166 	priv->rx_skbuff_dma = kmalloc_array(DMA_RX_SIZE, sizeof(dma_addr_t),
1167 					    GFP_KERNEL);
1168 	if (!priv->rx_skbuff_dma)
1169 		return -ENOMEM;
1170 
1171 	priv->rx_skbuff = kmalloc_array(DMA_RX_SIZE, sizeof(struct sk_buff *),
1172 					GFP_KERNEL);
1173 	if (!priv->rx_skbuff)
1174 		goto err_rx_skbuff;
1175 
1176 	priv->tx_skbuff_dma = kmalloc_array(DMA_TX_SIZE,
1177 					    sizeof(*priv->tx_skbuff_dma),
1178 					    GFP_KERNEL);
1179 	if (!priv->tx_skbuff_dma)
1180 		goto err_tx_skbuff_dma;
1181 
1182 	priv->tx_skbuff = kmalloc_array(DMA_TX_SIZE, sizeof(struct sk_buff *),
1183 					GFP_KERNEL);
1184 	if (!priv->tx_skbuff)
1185 		goto err_tx_skbuff;
1186 
1187 	if (priv->extend_desc) {
1188 		priv->dma_erx = dma_zalloc_coherent(priv->device, DMA_RX_SIZE *
1189 						    sizeof(struct
1190 							   dma_extended_desc),
1191 						    &priv->dma_rx_phy,
1192 						    GFP_KERNEL);
1193 		if (!priv->dma_erx)
1194 			goto err_dma;
1195 
1196 		priv->dma_etx = dma_zalloc_coherent(priv->device, DMA_TX_SIZE *
1197 						    sizeof(struct
1198 							   dma_extended_desc),
1199 						    &priv->dma_tx_phy,
1200 						    GFP_KERNEL);
1201 		if (!priv->dma_etx) {
1202 			dma_free_coherent(priv->device, DMA_RX_SIZE *
1203 					  sizeof(struct dma_extended_desc),
1204 					  priv->dma_erx, priv->dma_rx_phy);
1205 			goto err_dma;
1206 		}
1207 	} else {
1208 		priv->dma_rx = dma_zalloc_coherent(priv->device, DMA_RX_SIZE *
1209 						   sizeof(struct dma_desc),
1210 						   &priv->dma_rx_phy,
1211 						   GFP_KERNEL);
1212 		if (!priv->dma_rx)
1213 			goto err_dma;
1214 
1215 		priv->dma_tx = dma_zalloc_coherent(priv->device, DMA_TX_SIZE *
1216 						   sizeof(struct dma_desc),
1217 						   &priv->dma_tx_phy,
1218 						   GFP_KERNEL);
1219 		if (!priv->dma_tx) {
1220 			dma_free_coherent(priv->device, DMA_RX_SIZE *
1221 					  sizeof(struct dma_desc),
1222 					  priv->dma_rx, priv->dma_rx_phy);
1223 			goto err_dma;
1224 		}
1225 	}
1226 
1227 	return 0;
1228 
1229 err_dma:
1230 	kfree(priv->tx_skbuff);
1231 err_tx_skbuff:
1232 	kfree(priv->tx_skbuff_dma);
1233 err_tx_skbuff_dma:
1234 	kfree(priv->rx_skbuff);
1235 err_rx_skbuff:
1236 	kfree(priv->rx_skbuff_dma);
1237 	return ret;
1238 }
1239 
1240 static void free_dma_desc_resources(struct stmmac_priv *priv)
1241 {
1242 	/* Release the DMA TX/RX socket buffers */
1243 	dma_free_rx_skbufs(priv);
1244 	dma_free_tx_skbufs(priv);
1245 
1246 	/* Free DMA regions of consistent memory previously allocated */
1247 	if (!priv->extend_desc) {
1248 		dma_free_coherent(priv->device,
1249 				  DMA_TX_SIZE * sizeof(struct dma_desc),
1250 				  priv->dma_tx, priv->dma_tx_phy);
1251 		dma_free_coherent(priv->device,
1252 				  DMA_RX_SIZE * sizeof(struct dma_desc),
1253 				  priv->dma_rx, priv->dma_rx_phy);
1254 	} else {
1255 		dma_free_coherent(priv->device, DMA_TX_SIZE *
1256 				  sizeof(struct dma_extended_desc),
1257 				  priv->dma_etx, priv->dma_tx_phy);
1258 		dma_free_coherent(priv->device, DMA_RX_SIZE *
1259 				  sizeof(struct dma_extended_desc),
1260 				  priv->dma_erx, priv->dma_rx_phy);
1261 	}
1262 	kfree(priv->rx_skbuff_dma);
1263 	kfree(priv->rx_skbuff);
1264 	kfree(priv->tx_skbuff_dma);
1265 	kfree(priv->tx_skbuff);
1266 }
1267 
1268 /**
1269  *  stmmac_dma_operation_mode - HW DMA operation mode
1270  *  @priv: driver private structure
1271  *  Description: it is used for configuring the DMA operation mode register in
1272  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1273  */
1274 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1275 {
1276 	int rxfifosz = priv->plat->rx_fifo_size;
1277 
1278 	if (priv->plat->force_thresh_dma_mode)
1279 		priv->hw->dma->dma_mode(priv->ioaddr, tc, tc, rxfifosz);
1280 	else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1281 		/*
1282 		 * In case of GMAC, SF mode can be enabled
1283 		 * to perform the TX COE in HW. This depends on:
1284 		 * 1) TX COE if actually supported
1285 		 * 2) There is no bugged Jumbo frame support
1286 		 *    that needs to not insert csum in the TDES.
1287 		 */
1288 		priv->hw->dma->dma_mode(priv->ioaddr, SF_DMA_MODE, SF_DMA_MODE,
1289 					rxfifosz);
1290 		priv->xstats.threshold = SF_DMA_MODE;
1291 	} else
1292 		priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE,
1293 					rxfifosz);
1294 }
1295 
1296 /**
1297  * stmmac_tx_clean - to manage the transmission completion
1298  * @priv: driver private structure
1299  * Description: it reclaims the transmit resources after transmission completes.
1300  */
1301 static void stmmac_tx_clean(struct stmmac_priv *priv)
1302 {
1303 	unsigned int bytes_compl = 0, pkts_compl = 0;
1304 	unsigned int entry = priv->dirty_tx;
1305 
1306 	spin_lock(&priv->tx_lock);
1307 
1308 	priv->xstats.tx_clean++;
1309 
1310 	while (entry != priv->cur_tx) {
1311 		struct sk_buff *skb = priv->tx_skbuff[entry];
1312 		struct dma_desc *p;
1313 		int status;
1314 
1315 		if (priv->extend_desc)
1316 			p = (struct dma_desc *)(priv->dma_etx + entry);
1317 		else
1318 			p = priv->dma_tx + entry;
1319 
1320 		status = priv->hw->desc->tx_status(&priv->dev->stats,
1321 						      &priv->xstats, p,
1322 						      priv->ioaddr);
1323 		/* Check if the descriptor is owned by the DMA */
1324 		if (unlikely(status & tx_dma_own))
1325 			break;
1326 
1327 		/* Just consider the last segment and ...*/
1328 		if (likely(!(status & tx_not_ls))) {
1329 			/* ... verify the status error condition */
1330 			if (unlikely(status & tx_err)) {
1331 				priv->dev->stats.tx_errors++;
1332 			} else {
1333 				priv->dev->stats.tx_packets++;
1334 				priv->xstats.tx_pkt_n++;
1335 			}
1336 			stmmac_get_tx_hwtstamp(priv, entry, skb);
1337 		}
1338 
1339 		if (likely(priv->tx_skbuff_dma[entry].buf)) {
1340 			if (priv->tx_skbuff_dma[entry].map_as_page)
1341 				dma_unmap_page(priv->device,
1342 					       priv->tx_skbuff_dma[entry].buf,
1343 					       priv->tx_skbuff_dma[entry].len,
1344 					       DMA_TO_DEVICE);
1345 			else
1346 				dma_unmap_single(priv->device,
1347 						 priv->tx_skbuff_dma[entry].buf,
1348 						 priv->tx_skbuff_dma[entry].len,
1349 						 DMA_TO_DEVICE);
1350 			priv->tx_skbuff_dma[entry].buf = 0;
1351 			priv->tx_skbuff_dma[entry].len = 0;
1352 			priv->tx_skbuff_dma[entry].map_as_page = false;
1353 		}
1354 
1355 		if (priv->hw->mode->clean_desc3)
1356 			priv->hw->mode->clean_desc3(priv, p);
1357 
1358 		priv->tx_skbuff_dma[entry].last_segment = false;
1359 		priv->tx_skbuff_dma[entry].is_jumbo = false;
1360 
1361 		if (likely(skb != NULL)) {
1362 			pkts_compl++;
1363 			bytes_compl += skb->len;
1364 			dev_consume_skb_any(skb);
1365 			priv->tx_skbuff[entry] = NULL;
1366 		}
1367 
1368 		priv->hw->desc->release_tx_desc(p, priv->mode);
1369 
1370 		entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
1371 	}
1372 	priv->dirty_tx = entry;
1373 
1374 	netdev_completed_queue(priv->dev, pkts_compl, bytes_compl);
1375 
1376 	if (unlikely(netif_queue_stopped(priv->dev) &&
1377 		     stmmac_tx_avail(priv) > STMMAC_TX_THRESH)) {
1378 		netif_tx_lock(priv->dev);
1379 		if (netif_queue_stopped(priv->dev) &&
1380 		    stmmac_tx_avail(priv) > STMMAC_TX_THRESH) {
1381 			if (netif_msg_tx_done(priv))
1382 				pr_debug("%s: restart transmit\n", __func__);
1383 			netif_wake_queue(priv->dev);
1384 		}
1385 		netif_tx_unlock(priv->dev);
1386 	}
1387 
1388 	if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1389 		stmmac_enable_eee_mode(priv);
1390 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1391 	}
1392 	spin_unlock(&priv->tx_lock);
1393 }
1394 
1395 static inline void stmmac_enable_dma_irq(struct stmmac_priv *priv)
1396 {
1397 	priv->hw->dma->enable_dma_irq(priv->ioaddr);
1398 }
1399 
1400 static inline void stmmac_disable_dma_irq(struct stmmac_priv *priv)
1401 {
1402 	priv->hw->dma->disable_dma_irq(priv->ioaddr);
1403 }
1404 
1405 /**
1406  * stmmac_tx_err - to manage the tx error
1407  * @priv: driver private structure
1408  * Description: it cleans the descriptors and restarts the transmission
1409  * in case of transmission errors.
1410  */
1411 static void stmmac_tx_err(struct stmmac_priv *priv)
1412 {
1413 	int i;
1414 	netif_stop_queue(priv->dev);
1415 
1416 	priv->hw->dma->stop_tx(priv->ioaddr);
1417 	dma_free_tx_skbufs(priv);
1418 	for (i = 0; i < DMA_TX_SIZE; i++)
1419 		if (priv->extend_desc)
1420 			priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
1421 						     priv->mode,
1422 						     (i == DMA_TX_SIZE - 1));
1423 		else
1424 			priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
1425 						     priv->mode,
1426 						     (i == DMA_TX_SIZE - 1));
1427 	priv->dirty_tx = 0;
1428 	priv->cur_tx = 0;
1429 	netdev_reset_queue(priv->dev);
1430 	priv->hw->dma->start_tx(priv->ioaddr);
1431 
1432 	priv->dev->stats.tx_errors++;
1433 	netif_wake_queue(priv->dev);
1434 }
1435 
1436 /**
1437  * stmmac_dma_interrupt - DMA ISR
1438  * @priv: driver private structure
1439  * Description: this is the DMA ISR. It is called by the main ISR.
1440  * It calls the dwmac dma routine and schedule poll method in case of some
1441  * work can be done.
1442  */
1443 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
1444 {
1445 	int status;
1446 	int rxfifosz = priv->plat->rx_fifo_size;
1447 
1448 	status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
1449 	if (likely((status & handle_rx)) || (status & handle_tx)) {
1450 		if (likely(napi_schedule_prep(&priv->napi))) {
1451 			stmmac_disable_dma_irq(priv);
1452 			__napi_schedule(&priv->napi);
1453 		}
1454 	}
1455 	if (unlikely(status & tx_hard_error_bump_tc)) {
1456 		/* Try to bump up the dma threshold on this failure */
1457 		if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
1458 		    (tc <= 256)) {
1459 			tc += 64;
1460 			if (priv->plat->force_thresh_dma_mode)
1461 				priv->hw->dma->dma_mode(priv->ioaddr, tc, tc,
1462 							rxfifosz);
1463 			else
1464 				priv->hw->dma->dma_mode(priv->ioaddr, tc,
1465 							SF_DMA_MODE, rxfifosz);
1466 			priv->xstats.threshold = tc;
1467 		}
1468 	} else if (unlikely(status == tx_hard_error))
1469 		stmmac_tx_err(priv);
1470 }
1471 
1472 /**
1473  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
1474  * @priv: driver private structure
1475  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
1476  */
1477 static void stmmac_mmc_setup(struct stmmac_priv *priv)
1478 {
1479 	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
1480 			    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
1481 
1482 	if (priv->synopsys_id >= DWMAC_CORE_4_00)
1483 		priv->mmcaddr = priv->ioaddr + MMC_GMAC4_OFFSET;
1484 	else
1485 		priv->mmcaddr = priv->ioaddr + MMC_GMAC3_X_OFFSET;
1486 
1487 	dwmac_mmc_intr_all_mask(priv->mmcaddr);
1488 
1489 	if (priv->dma_cap.rmon) {
1490 		dwmac_mmc_ctrl(priv->mmcaddr, mode);
1491 		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
1492 	} else
1493 		pr_info(" No MAC Management Counters available\n");
1494 }
1495 
1496 /**
1497  * stmmac_selec_desc_mode - to select among: normal/alternate/extend descriptors
1498  * @priv: driver private structure
1499  * Description: select the Enhanced/Alternate or Normal descriptors.
1500  * In case of Enhanced/Alternate, it checks if the extended descriptors are
1501  * supported by the HW capability register.
1502  */
1503 static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
1504 {
1505 	if (priv->plat->enh_desc) {
1506 		pr_info(" Enhanced/Alternate descriptors\n");
1507 
1508 		/* GMAC older than 3.50 has no extended descriptors */
1509 		if (priv->synopsys_id >= DWMAC_CORE_3_50) {
1510 			pr_info("\tEnabled extended descriptors\n");
1511 			priv->extend_desc = 1;
1512 		} else
1513 			pr_warn("Extended descriptors not supported\n");
1514 
1515 		priv->hw->desc = &enh_desc_ops;
1516 	} else {
1517 		pr_info(" Normal descriptors\n");
1518 		priv->hw->desc = &ndesc_ops;
1519 	}
1520 }
1521 
1522 /**
1523  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
1524  * @priv: driver private structure
1525  * Description:
1526  *  new GMAC chip generations have a new register to indicate the
1527  *  presence of the optional feature/functions.
1528  *  This can be also used to override the value passed through the
1529  *  platform and necessary for old MAC10/100 and GMAC chips.
1530  */
1531 static int stmmac_get_hw_features(struct stmmac_priv *priv)
1532 {
1533 	u32 ret = 0;
1534 
1535 	if (priv->hw->dma->get_hw_feature) {
1536 		priv->hw->dma->get_hw_feature(priv->ioaddr,
1537 					      &priv->dma_cap);
1538 		ret = 1;
1539 	}
1540 
1541 	return ret;
1542 }
1543 
1544 /**
1545  * stmmac_check_ether_addr - check if the MAC addr is valid
1546  * @priv: driver private structure
1547  * Description:
1548  * it is to verify if the MAC address is valid, in case of failures it
1549  * generates a random MAC address
1550  */
1551 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
1552 {
1553 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
1554 		priv->hw->mac->get_umac_addr(priv->hw,
1555 					     priv->dev->dev_addr, 0);
1556 		if (!is_valid_ether_addr(priv->dev->dev_addr))
1557 			eth_hw_addr_random(priv->dev);
1558 		pr_info("%s: device MAC address %pM\n", priv->dev->name,
1559 			priv->dev->dev_addr);
1560 	}
1561 }
1562 
1563 /**
1564  * stmmac_init_dma_engine - DMA init.
1565  * @priv: driver private structure
1566  * Description:
1567  * It inits the DMA invoking the specific MAC/GMAC callback.
1568  * Some DMA parameters can be passed from the platform;
1569  * in case of these are not passed a default is kept for the MAC or GMAC.
1570  */
1571 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
1572 {
1573 	int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, aal = 0;
1574 	int mixed_burst = 0;
1575 	int atds = 0;
1576 	int ret = 0;
1577 
1578 	if (priv->plat->dma_cfg) {
1579 		pbl = priv->plat->dma_cfg->pbl;
1580 		fixed_burst = priv->plat->dma_cfg->fixed_burst;
1581 		mixed_burst = priv->plat->dma_cfg->mixed_burst;
1582 		aal = priv->plat->dma_cfg->aal;
1583 	}
1584 
1585 	if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
1586 		atds = 1;
1587 
1588 	ret = priv->hw->dma->reset(priv->ioaddr);
1589 	if (ret) {
1590 		dev_err(priv->device, "Failed to reset the dma\n");
1591 		return ret;
1592 	}
1593 
1594 	priv->hw->dma->init(priv->ioaddr, pbl, fixed_burst, mixed_burst,
1595 			    aal, priv->dma_tx_phy, priv->dma_rx_phy, atds);
1596 
1597 	if (priv->synopsys_id >= DWMAC_CORE_4_00) {
1598 		priv->rx_tail_addr = priv->dma_rx_phy +
1599 			    (DMA_RX_SIZE * sizeof(struct dma_desc));
1600 		priv->hw->dma->set_rx_tail_ptr(priv->ioaddr, priv->rx_tail_addr,
1601 					       STMMAC_CHAN0);
1602 
1603 		priv->tx_tail_addr = priv->dma_tx_phy +
1604 			    (DMA_TX_SIZE * sizeof(struct dma_desc));
1605 		priv->hw->dma->set_tx_tail_ptr(priv->ioaddr, priv->tx_tail_addr,
1606 					       STMMAC_CHAN0);
1607 	}
1608 
1609 	if (priv->plat->axi && priv->hw->dma->axi)
1610 		priv->hw->dma->axi(priv->ioaddr, priv->plat->axi);
1611 
1612 	return ret;
1613 }
1614 
1615 /**
1616  * stmmac_tx_timer - mitigation sw timer for tx.
1617  * @data: data pointer
1618  * Description:
1619  * This is the timer handler to directly invoke the stmmac_tx_clean.
1620  */
1621 static void stmmac_tx_timer(unsigned long data)
1622 {
1623 	struct stmmac_priv *priv = (struct stmmac_priv *)data;
1624 
1625 	stmmac_tx_clean(priv);
1626 }
1627 
1628 /**
1629  * stmmac_init_tx_coalesce - init tx mitigation options.
1630  * @priv: driver private structure
1631  * Description:
1632  * This inits the transmit coalesce parameters: i.e. timer rate,
1633  * timer handler and default threshold used for enabling the
1634  * interrupt on completion bit.
1635  */
1636 static void stmmac_init_tx_coalesce(struct stmmac_priv *priv)
1637 {
1638 	priv->tx_coal_frames = STMMAC_TX_FRAMES;
1639 	priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
1640 	init_timer(&priv->txtimer);
1641 	priv->txtimer.expires = STMMAC_COAL_TIMER(priv->tx_coal_timer);
1642 	priv->txtimer.data = (unsigned long)priv;
1643 	priv->txtimer.function = stmmac_tx_timer;
1644 	add_timer(&priv->txtimer);
1645 }
1646 
1647 /**
1648  * stmmac_hw_setup - setup mac in a usable state.
1649  *  @dev : pointer to the device structure.
1650  *  Description:
1651  *  this is the main function to setup the HW in a usable state because the
1652  *  dma engine is reset, the core registers are configured (e.g. AXI,
1653  *  Checksum features, timers). The DMA is ready to start receiving and
1654  *  transmitting.
1655  *  Return value:
1656  *  0 on success and an appropriate (-)ve integer as defined in errno.h
1657  *  file on failure.
1658  */
1659 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
1660 {
1661 	struct stmmac_priv *priv = netdev_priv(dev);
1662 	int ret;
1663 
1664 	/* DMA initialization and SW reset */
1665 	ret = stmmac_init_dma_engine(priv);
1666 	if (ret < 0) {
1667 		pr_err("%s: DMA engine initialization failed\n", __func__);
1668 		return ret;
1669 	}
1670 
1671 	/* Copy the MAC addr into the HW  */
1672 	priv->hw->mac->set_umac_addr(priv->hw, dev->dev_addr, 0);
1673 
1674 	/* If required, perform hw setup of the bus. */
1675 	if (priv->plat->bus_setup)
1676 		priv->plat->bus_setup(priv->ioaddr);
1677 
1678 	/* PS and related bits will be programmed according to the speed */
1679 	if (priv->hw->pcs) {
1680 		int speed = priv->plat->mac_port_sel_speed;
1681 
1682 		if ((speed == SPEED_10) || (speed == SPEED_100) ||
1683 		    (speed == SPEED_1000)) {
1684 			priv->hw->ps = speed;
1685 		} else {
1686 			dev_warn(priv->device, "invalid port speed\n");
1687 			priv->hw->ps = 0;
1688 		}
1689 	}
1690 
1691 	/* Initialize the MAC Core */
1692 	priv->hw->mac->core_init(priv->hw, dev->mtu);
1693 
1694 	ret = priv->hw->mac->rx_ipc(priv->hw);
1695 	if (!ret) {
1696 		pr_warn(" RX IPC Checksum Offload disabled\n");
1697 		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
1698 		priv->hw->rx_csum = 0;
1699 	}
1700 
1701 	/* Enable the MAC Rx/Tx */
1702 	if (priv->synopsys_id >= DWMAC_CORE_4_00)
1703 		stmmac_dwmac4_set_mac(priv->ioaddr, true);
1704 	else
1705 		stmmac_set_mac(priv->ioaddr, true);
1706 
1707 	/* Set the HW DMA mode and the COE */
1708 	stmmac_dma_operation_mode(priv);
1709 
1710 	stmmac_mmc_setup(priv);
1711 
1712 	if (init_ptp) {
1713 		ret = stmmac_init_ptp(priv);
1714 		if (ret)
1715 			netdev_warn(priv->dev, "fail to init PTP.\n");
1716 	}
1717 
1718 #ifdef CONFIG_DEBUG_FS
1719 	ret = stmmac_init_fs(dev);
1720 	if (ret < 0)
1721 		pr_warn("%s: failed debugFS registration\n", __func__);
1722 #endif
1723 	/* Start the ball rolling... */
1724 	pr_debug("%s: DMA RX/TX processes started...\n", dev->name);
1725 	priv->hw->dma->start_tx(priv->ioaddr);
1726 	priv->hw->dma->start_rx(priv->ioaddr);
1727 
1728 	/* Dump DMA/MAC registers */
1729 	if (netif_msg_hw(priv)) {
1730 		priv->hw->mac->dump_regs(priv->hw);
1731 		priv->hw->dma->dump_regs(priv->ioaddr);
1732 	}
1733 	priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
1734 
1735 	if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) {
1736 		priv->rx_riwt = MAX_DMA_RIWT;
1737 		priv->hw->dma->rx_watchdog(priv->ioaddr, MAX_DMA_RIWT);
1738 	}
1739 
1740 	if (priv->hw->pcs && priv->hw->mac->pcs_ctrl_ane)
1741 		priv->hw->mac->pcs_ctrl_ane(priv->hw, 1, priv->hw->ps, 0);
1742 
1743 	/*  set TX ring length */
1744 	if (priv->hw->dma->set_tx_ring_len)
1745 		priv->hw->dma->set_tx_ring_len(priv->ioaddr,
1746 					       (DMA_TX_SIZE - 1));
1747 	/*  set RX ring length */
1748 	if (priv->hw->dma->set_rx_ring_len)
1749 		priv->hw->dma->set_rx_ring_len(priv->ioaddr,
1750 					       (DMA_RX_SIZE - 1));
1751 	/* Enable TSO */
1752 	if (priv->tso)
1753 		priv->hw->dma->enable_tso(priv->ioaddr, 1, STMMAC_CHAN0);
1754 
1755 	return 0;
1756 }
1757 
1758 /**
1759  *  stmmac_open - open entry point of the driver
1760  *  @dev : pointer to the device structure.
1761  *  Description:
1762  *  This function is the open entry point of the driver.
1763  *  Return value:
1764  *  0 on success and an appropriate (-)ve integer as defined in errno.h
1765  *  file on failure.
1766  */
1767 static int stmmac_open(struct net_device *dev)
1768 {
1769 	struct stmmac_priv *priv = netdev_priv(dev);
1770 	int ret;
1771 
1772 	stmmac_check_ether_addr(priv);
1773 
1774 	if (priv->hw->pcs != STMMAC_PCS_RGMII &&
1775 	    priv->hw->pcs != STMMAC_PCS_TBI &&
1776 	    priv->hw->pcs != STMMAC_PCS_RTBI) {
1777 		ret = stmmac_init_phy(dev);
1778 		if (ret) {
1779 			pr_err("%s: Cannot attach to PHY (error: %d)\n",
1780 			       __func__, ret);
1781 			return ret;
1782 		}
1783 	}
1784 
1785 	/* Extra statistics */
1786 	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
1787 	priv->xstats.threshold = tc;
1788 
1789 	priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
1790 	priv->rx_copybreak = STMMAC_RX_COPYBREAK;
1791 
1792 	ret = alloc_dma_desc_resources(priv);
1793 	if (ret < 0) {
1794 		pr_err("%s: DMA descriptors allocation failed\n", __func__);
1795 		goto dma_desc_error;
1796 	}
1797 
1798 	ret = init_dma_desc_rings(dev, GFP_KERNEL);
1799 	if (ret < 0) {
1800 		pr_err("%s: DMA descriptors initialization failed\n", __func__);
1801 		goto init_error;
1802 	}
1803 
1804 	ret = stmmac_hw_setup(dev, true);
1805 	if (ret < 0) {
1806 		pr_err("%s: Hw setup failed\n", __func__);
1807 		goto init_error;
1808 	}
1809 
1810 	stmmac_init_tx_coalesce(priv);
1811 
1812 	if (priv->phydev)
1813 		phy_start(priv->phydev);
1814 
1815 	/* Request the IRQ lines */
1816 	ret = request_irq(dev->irq, stmmac_interrupt,
1817 			  IRQF_SHARED, dev->name, dev);
1818 	if (unlikely(ret < 0)) {
1819 		pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
1820 		       __func__, dev->irq, ret);
1821 		goto init_error;
1822 	}
1823 
1824 	/* Request the Wake IRQ in case of another line is used for WoL */
1825 	if (priv->wol_irq != dev->irq) {
1826 		ret = request_irq(priv->wol_irq, stmmac_interrupt,
1827 				  IRQF_SHARED, dev->name, dev);
1828 		if (unlikely(ret < 0)) {
1829 			pr_err("%s: ERROR: allocating the WoL IRQ %d (%d)\n",
1830 			       __func__, priv->wol_irq, ret);
1831 			goto wolirq_error;
1832 		}
1833 	}
1834 
1835 	/* Request the IRQ lines */
1836 	if (priv->lpi_irq > 0) {
1837 		ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
1838 				  dev->name, dev);
1839 		if (unlikely(ret < 0)) {
1840 			pr_err("%s: ERROR: allocating the LPI IRQ %d (%d)\n",
1841 			       __func__, priv->lpi_irq, ret);
1842 			goto lpiirq_error;
1843 		}
1844 	}
1845 
1846 	napi_enable(&priv->napi);
1847 	netif_start_queue(dev);
1848 
1849 	return 0;
1850 
1851 lpiirq_error:
1852 	if (priv->wol_irq != dev->irq)
1853 		free_irq(priv->wol_irq, dev);
1854 wolirq_error:
1855 	free_irq(dev->irq, dev);
1856 
1857 init_error:
1858 	free_dma_desc_resources(priv);
1859 dma_desc_error:
1860 	if (priv->phydev)
1861 		phy_disconnect(priv->phydev);
1862 
1863 	return ret;
1864 }
1865 
1866 /**
1867  *  stmmac_release - close entry point of the driver
1868  *  @dev : device pointer.
1869  *  Description:
1870  *  This is the stop entry point of the driver.
1871  */
1872 static int stmmac_release(struct net_device *dev)
1873 {
1874 	struct stmmac_priv *priv = netdev_priv(dev);
1875 
1876 	if (priv->eee_enabled)
1877 		del_timer_sync(&priv->eee_ctrl_timer);
1878 
1879 	/* Stop and disconnect the PHY */
1880 	if (priv->phydev) {
1881 		phy_stop(priv->phydev);
1882 		phy_disconnect(priv->phydev);
1883 		priv->phydev = NULL;
1884 	}
1885 
1886 	netif_stop_queue(dev);
1887 
1888 	napi_disable(&priv->napi);
1889 
1890 	del_timer_sync(&priv->txtimer);
1891 
1892 	/* Free the IRQ lines */
1893 	free_irq(dev->irq, dev);
1894 	if (priv->wol_irq != dev->irq)
1895 		free_irq(priv->wol_irq, dev);
1896 	if (priv->lpi_irq > 0)
1897 		free_irq(priv->lpi_irq, dev);
1898 
1899 	/* Stop TX/RX DMA and clear the descriptors */
1900 	priv->hw->dma->stop_tx(priv->ioaddr);
1901 	priv->hw->dma->stop_rx(priv->ioaddr);
1902 
1903 	/* Release and free the Rx/Tx resources */
1904 	free_dma_desc_resources(priv);
1905 
1906 	/* Disable the MAC Rx/Tx */
1907 	stmmac_set_mac(priv->ioaddr, false);
1908 
1909 	netif_carrier_off(dev);
1910 
1911 #ifdef CONFIG_DEBUG_FS
1912 	stmmac_exit_fs(dev);
1913 #endif
1914 
1915 	stmmac_release_ptp(priv);
1916 
1917 	return 0;
1918 }
1919 
1920 /**
1921  *  stmmac_tso_allocator - close entry point of the driver
1922  *  @priv: driver private structure
1923  *  @des: buffer start address
1924  *  @total_len: total length to fill in descriptors
1925  *  @last_segmant: condition for the last descriptor
1926  *  Description:
1927  *  This function fills descriptor and request new descriptors according to
1928  *  buffer length to fill
1929  */
1930 static void stmmac_tso_allocator(struct stmmac_priv *priv, unsigned int des,
1931 				 int total_len, bool last_segment)
1932 {
1933 	struct dma_desc *desc;
1934 	int tmp_len;
1935 	u32 buff_size;
1936 
1937 	tmp_len = total_len;
1938 
1939 	while (tmp_len > 0) {
1940 		priv->cur_tx = STMMAC_GET_ENTRY(priv->cur_tx, DMA_TX_SIZE);
1941 		desc = priv->dma_tx + priv->cur_tx;
1942 
1943 		desc->des0 = des + (total_len - tmp_len);
1944 		buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
1945 			    TSO_MAX_BUFF_SIZE : tmp_len;
1946 
1947 		priv->hw->desc->prepare_tso_tx_desc(desc, 0, buff_size,
1948 			0, 1,
1949 			(last_segment) && (buff_size < TSO_MAX_BUFF_SIZE),
1950 			0, 0);
1951 
1952 		tmp_len -= TSO_MAX_BUFF_SIZE;
1953 	}
1954 }
1955 
1956 /**
1957  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
1958  *  @skb : the socket buffer
1959  *  @dev : device pointer
1960  *  Description: this is the transmit function that is called on TSO frames
1961  *  (support available on GMAC4 and newer chips).
1962  *  Diagram below show the ring programming in case of TSO frames:
1963  *
1964  *  First Descriptor
1965  *   --------
1966  *   | DES0 |---> buffer1 = L2/L3/L4 header
1967  *   | DES1 |---> TCP Payload (can continue on next descr...)
1968  *   | DES2 |---> buffer 1 and 2 len
1969  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
1970  *   --------
1971  *	|
1972  *     ...
1973  *	|
1974  *   --------
1975  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
1976  *   | DES1 | --|
1977  *   | DES2 | --> buffer 1 and 2 len
1978  *   | DES3 |
1979  *   --------
1980  *
1981  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
1982  */
1983 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
1984 {
1985 	u32 pay_len, mss;
1986 	int tmp_pay_len = 0;
1987 	struct stmmac_priv *priv = netdev_priv(dev);
1988 	int nfrags = skb_shinfo(skb)->nr_frags;
1989 	unsigned int first_entry, des;
1990 	struct dma_desc *desc, *first, *mss_desc = NULL;
1991 	u8 proto_hdr_len;
1992 	int i;
1993 
1994 	spin_lock(&priv->tx_lock);
1995 
1996 	/* Compute header lengths */
1997 	proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1998 
1999 	/* Desc availability based on threshold should be enough safe */
2000 	if (unlikely(stmmac_tx_avail(priv) <
2001 		(((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
2002 		if (!netif_queue_stopped(dev)) {
2003 			netif_stop_queue(dev);
2004 			/* This is a hard error, log it. */
2005 			pr_err("%s: Tx Ring full when queue awake\n", __func__);
2006 		}
2007 		spin_unlock(&priv->tx_lock);
2008 		return NETDEV_TX_BUSY;
2009 	}
2010 
2011 	pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
2012 
2013 	mss = skb_shinfo(skb)->gso_size;
2014 
2015 	/* set new MSS value if needed */
2016 	if (mss != priv->mss) {
2017 		mss_desc = priv->dma_tx + priv->cur_tx;
2018 		priv->hw->desc->set_mss(mss_desc, mss);
2019 		priv->mss = mss;
2020 		priv->cur_tx = STMMAC_GET_ENTRY(priv->cur_tx, DMA_TX_SIZE);
2021 	}
2022 
2023 	if (netif_msg_tx_queued(priv)) {
2024 		pr_info("%s: tcphdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
2025 			__func__, tcp_hdrlen(skb), proto_hdr_len, pay_len, mss);
2026 		pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
2027 			skb->data_len);
2028 	}
2029 
2030 	first_entry = priv->cur_tx;
2031 
2032 	desc = priv->dma_tx + first_entry;
2033 	first = desc;
2034 
2035 	/* first descriptor: fill Headers on Buf1 */
2036 	des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
2037 			     DMA_TO_DEVICE);
2038 	if (dma_mapping_error(priv->device, des))
2039 		goto dma_map_err;
2040 
2041 	priv->tx_skbuff_dma[first_entry].buf = des;
2042 	priv->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
2043 	priv->tx_skbuff[first_entry] = skb;
2044 
2045 	first->des0 = des;
2046 
2047 	/* Fill start of payload in buff2 of first descriptor */
2048 	if (pay_len)
2049 		first->des1 =  des + proto_hdr_len;
2050 
2051 	/* If needed take extra descriptors to fill the remaining payload */
2052 	tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
2053 
2054 	stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0));
2055 
2056 	/* Prepare fragments */
2057 	for (i = 0; i < nfrags; i++) {
2058 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2059 
2060 		des = skb_frag_dma_map(priv->device, frag, 0,
2061 				       skb_frag_size(frag),
2062 				       DMA_TO_DEVICE);
2063 
2064 		stmmac_tso_allocator(priv, des, skb_frag_size(frag),
2065 				     (i == nfrags - 1));
2066 
2067 		priv->tx_skbuff_dma[priv->cur_tx].buf = des;
2068 		priv->tx_skbuff_dma[priv->cur_tx].len = skb_frag_size(frag);
2069 		priv->tx_skbuff[priv->cur_tx] = NULL;
2070 		priv->tx_skbuff_dma[priv->cur_tx].map_as_page = true;
2071 	}
2072 
2073 	priv->tx_skbuff_dma[priv->cur_tx].last_segment = true;
2074 
2075 	priv->cur_tx = STMMAC_GET_ENTRY(priv->cur_tx, DMA_TX_SIZE);
2076 
2077 	if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
2078 		if (netif_msg_hw(priv))
2079 			pr_debug("%s: stop transmitted packets\n", __func__);
2080 		netif_stop_queue(dev);
2081 	}
2082 
2083 	dev->stats.tx_bytes += skb->len;
2084 	priv->xstats.tx_tso_frames++;
2085 	priv->xstats.tx_tso_nfrags += nfrags;
2086 
2087 	/* Manage tx mitigation */
2088 	priv->tx_count_frames += nfrags + 1;
2089 	if (likely(priv->tx_coal_frames > priv->tx_count_frames)) {
2090 		mod_timer(&priv->txtimer,
2091 			  STMMAC_COAL_TIMER(priv->tx_coal_timer));
2092 	} else {
2093 		priv->tx_count_frames = 0;
2094 		priv->hw->desc->set_tx_ic(desc);
2095 		priv->xstats.tx_set_ic_bit++;
2096 	}
2097 
2098 	if (!priv->hwts_tx_en)
2099 		skb_tx_timestamp(skb);
2100 
2101 	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2102 		     priv->hwts_tx_en)) {
2103 		/* declare that device is doing timestamping */
2104 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2105 		priv->hw->desc->enable_tx_timestamp(first);
2106 	}
2107 
2108 	/* Complete the first descriptor before granting the DMA */
2109 	priv->hw->desc->prepare_tso_tx_desc(first, 1,
2110 			proto_hdr_len,
2111 			pay_len,
2112 			1, priv->tx_skbuff_dma[first_entry].last_segment,
2113 			tcp_hdrlen(skb) / 4, (skb->len - proto_hdr_len));
2114 
2115 	/* If context desc is used to change MSS */
2116 	if (mss_desc)
2117 		priv->hw->desc->set_tx_owner(mss_desc);
2118 
2119 	/* The own bit must be the latest setting done when prepare the
2120 	 * descriptor and then barrier is needed to make sure that
2121 	 * all is coherent before granting the DMA engine.
2122 	 */
2123 	smp_wmb();
2124 
2125 	if (netif_msg_pktdata(priv)) {
2126 		pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
2127 			__func__, priv->cur_tx, priv->dirty_tx, first_entry,
2128 			priv->cur_tx, first, nfrags);
2129 
2130 		priv->hw->desc->display_ring((void *)priv->dma_tx, DMA_TX_SIZE,
2131 					     0);
2132 
2133 		pr_info(">>> frame to be transmitted: ");
2134 		print_pkt(skb->data, skb_headlen(skb));
2135 	}
2136 
2137 	netdev_sent_queue(dev, skb->len);
2138 
2139 	priv->hw->dma->set_tx_tail_ptr(priv->ioaddr, priv->tx_tail_addr,
2140 				       STMMAC_CHAN0);
2141 
2142 	spin_unlock(&priv->tx_lock);
2143 	return NETDEV_TX_OK;
2144 
2145 dma_map_err:
2146 	spin_unlock(&priv->tx_lock);
2147 	dev_err(priv->device, "Tx dma map failed\n");
2148 	dev_kfree_skb(skb);
2149 	priv->dev->stats.tx_dropped++;
2150 	return NETDEV_TX_OK;
2151 }
2152 
2153 /**
2154  *  stmmac_xmit - Tx entry point of the driver
2155  *  @skb : the socket buffer
2156  *  @dev : device pointer
2157  *  Description : this is the tx entry point of the driver.
2158  *  It programs the chain or the ring and supports oversized frames
2159  *  and SG feature.
2160  */
2161 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
2162 {
2163 	struct stmmac_priv *priv = netdev_priv(dev);
2164 	unsigned int nopaged_len = skb_headlen(skb);
2165 	int i, csum_insertion = 0, is_jumbo = 0;
2166 	int nfrags = skb_shinfo(skb)->nr_frags;
2167 	unsigned int entry, first_entry;
2168 	struct dma_desc *desc, *first;
2169 	unsigned int enh_desc;
2170 	unsigned int des;
2171 
2172 	/* Manage oversized TCP frames for GMAC4 device */
2173 	if (skb_is_gso(skb) && priv->tso) {
2174 		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2175 			return stmmac_tso_xmit(skb, dev);
2176 	}
2177 
2178 	spin_lock(&priv->tx_lock);
2179 
2180 	if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
2181 		spin_unlock(&priv->tx_lock);
2182 		if (!netif_queue_stopped(dev)) {
2183 			netif_stop_queue(dev);
2184 			/* This is a hard error, log it. */
2185 			pr_err("%s: Tx Ring full when queue awake\n", __func__);
2186 		}
2187 		return NETDEV_TX_BUSY;
2188 	}
2189 
2190 	if (priv->tx_path_in_lpi_mode)
2191 		stmmac_disable_eee_mode(priv);
2192 
2193 	entry = priv->cur_tx;
2194 	first_entry = entry;
2195 
2196 	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
2197 
2198 	if (likely(priv->extend_desc))
2199 		desc = (struct dma_desc *)(priv->dma_etx + entry);
2200 	else
2201 		desc = priv->dma_tx + entry;
2202 
2203 	first = desc;
2204 
2205 	priv->tx_skbuff[first_entry] = skb;
2206 
2207 	enh_desc = priv->plat->enh_desc;
2208 	/* To program the descriptors according to the size of the frame */
2209 	if (enh_desc)
2210 		is_jumbo = priv->hw->mode->is_jumbo_frm(skb->len, enh_desc);
2211 
2212 	if (unlikely(is_jumbo) && likely(priv->synopsys_id <
2213 					 DWMAC_CORE_4_00)) {
2214 		entry = priv->hw->mode->jumbo_frm(priv, skb, csum_insertion);
2215 		if (unlikely(entry < 0))
2216 			goto dma_map_err;
2217 	}
2218 
2219 	for (i = 0; i < nfrags; i++) {
2220 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2221 		int len = skb_frag_size(frag);
2222 		bool last_segment = (i == (nfrags - 1));
2223 
2224 		entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
2225 
2226 		if (likely(priv->extend_desc))
2227 			desc = (struct dma_desc *)(priv->dma_etx + entry);
2228 		else
2229 			desc = priv->dma_tx + entry;
2230 
2231 		des = skb_frag_dma_map(priv->device, frag, 0, len,
2232 				       DMA_TO_DEVICE);
2233 		if (dma_mapping_error(priv->device, des))
2234 			goto dma_map_err; /* should reuse desc w/o issues */
2235 
2236 		priv->tx_skbuff[entry] = NULL;
2237 
2238 		if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00)) {
2239 			desc->des0 = des;
2240 			priv->tx_skbuff_dma[entry].buf = desc->des0;
2241 		} else {
2242 			desc->des2 = des;
2243 			priv->tx_skbuff_dma[entry].buf = desc->des2;
2244 		}
2245 
2246 		priv->tx_skbuff_dma[entry].map_as_page = true;
2247 		priv->tx_skbuff_dma[entry].len = len;
2248 		priv->tx_skbuff_dma[entry].last_segment = last_segment;
2249 
2250 		/* Prepare the descriptor and set the own bit too */
2251 		priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion,
2252 						priv->mode, 1, last_segment);
2253 	}
2254 
2255 	entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
2256 
2257 	priv->cur_tx = entry;
2258 
2259 	if (netif_msg_pktdata(priv)) {
2260 		void *tx_head;
2261 
2262 		pr_debug("%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
2263 			 __func__, priv->cur_tx, priv->dirty_tx, first_entry,
2264 			 entry, first, nfrags);
2265 
2266 		if (priv->extend_desc)
2267 			tx_head = (void *)priv->dma_etx;
2268 		else
2269 			tx_head = (void *)priv->dma_tx;
2270 
2271 		priv->hw->desc->display_ring(tx_head, DMA_TX_SIZE, false);
2272 
2273 		pr_debug(">>> frame to be transmitted: ");
2274 		print_pkt(skb->data, skb->len);
2275 	}
2276 
2277 	if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
2278 		if (netif_msg_hw(priv))
2279 			pr_debug("%s: stop transmitted packets\n", __func__);
2280 		netif_stop_queue(dev);
2281 	}
2282 
2283 	dev->stats.tx_bytes += skb->len;
2284 
2285 	/* According to the coalesce parameter the IC bit for the latest
2286 	 * segment is reset and the timer re-started to clean the tx status.
2287 	 * This approach takes care about the fragments: desc is the first
2288 	 * element in case of no SG.
2289 	 */
2290 	priv->tx_count_frames += nfrags + 1;
2291 	if (likely(priv->tx_coal_frames > priv->tx_count_frames)) {
2292 		mod_timer(&priv->txtimer,
2293 			  STMMAC_COAL_TIMER(priv->tx_coal_timer));
2294 	} else {
2295 		priv->tx_count_frames = 0;
2296 		priv->hw->desc->set_tx_ic(desc);
2297 		priv->xstats.tx_set_ic_bit++;
2298 	}
2299 
2300 	if (!priv->hwts_tx_en)
2301 		skb_tx_timestamp(skb);
2302 
2303 	/* Ready to fill the first descriptor and set the OWN bit w/o any
2304 	 * problems because all the descriptors are actually ready to be
2305 	 * passed to the DMA engine.
2306 	 */
2307 	if (likely(!is_jumbo)) {
2308 		bool last_segment = (nfrags == 0);
2309 
2310 		des = dma_map_single(priv->device, skb->data,
2311 				     nopaged_len, DMA_TO_DEVICE);
2312 		if (dma_mapping_error(priv->device, des))
2313 			goto dma_map_err;
2314 
2315 		if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00)) {
2316 			first->des0 = des;
2317 			priv->tx_skbuff_dma[first_entry].buf = first->des0;
2318 		} else {
2319 			first->des2 = des;
2320 			priv->tx_skbuff_dma[first_entry].buf = first->des2;
2321 		}
2322 
2323 		priv->tx_skbuff_dma[first_entry].len = nopaged_len;
2324 		priv->tx_skbuff_dma[first_entry].last_segment = last_segment;
2325 
2326 		if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2327 			     priv->hwts_tx_en)) {
2328 			/* declare that device is doing timestamping */
2329 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2330 			priv->hw->desc->enable_tx_timestamp(first);
2331 		}
2332 
2333 		/* Prepare the first descriptor setting the OWN bit too */
2334 		priv->hw->desc->prepare_tx_desc(first, 1, nopaged_len,
2335 						csum_insertion, priv->mode, 1,
2336 						last_segment);
2337 
2338 		/* The own bit must be the latest setting done when prepare the
2339 		 * descriptor and then barrier is needed to make sure that
2340 		 * all is coherent before granting the DMA engine.
2341 		 */
2342 		smp_wmb();
2343 	}
2344 
2345 	netdev_sent_queue(dev, skb->len);
2346 
2347 	if (priv->synopsys_id < DWMAC_CORE_4_00)
2348 		priv->hw->dma->enable_dma_transmission(priv->ioaddr);
2349 	else
2350 		priv->hw->dma->set_tx_tail_ptr(priv->ioaddr, priv->tx_tail_addr,
2351 					       STMMAC_CHAN0);
2352 
2353 	spin_unlock(&priv->tx_lock);
2354 	return NETDEV_TX_OK;
2355 
2356 dma_map_err:
2357 	spin_unlock(&priv->tx_lock);
2358 	dev_err(priv->device, "Tx dma map failed\n");
2359 	dev_kfree_skb(skb);
2360 	priv->dev->stats.tx_dropped++;
2361 	return NETDEV_TX_OK;
2362 }
2363 
2364 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
2365 {
2366 	struct ethhdr *ehdr;
2367 	u16 vlanid;
2368 
2369 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) ==
2370 	    NETIF_F_HW_VLAN_CTAG_RX &&
2371 	    !__vlan_get_tag(skb, &vlanid)) {
2372 		/* pop the vlan tag */
2373 		ehdr = (struct ethhdr *)skb->data;
2374 		memmove(skb->data + VLAN_HLEN, ehdr, ETH_ALEN * 2);
2375 		skb_pull(skb, VLAN_HLEN);
2376 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlanid);
2377 	}
2378 }
2379 
2380 
2381 static inline int stmmac_rx_threshold_count(struct stmmac_priv *priv)
2382 {
2383 	if (priv->rx_zeroc_thresh < STMMAC_RX_THRESH)
2384 		return 0;
2385 
2386 	return 1;
2387 }
2388 
2389 /**
2390  * stmmac_rx_refill - refill used skb preallocated buffers
2391  * @priv: driver private structure
2392  * Description : this is to reallocate the skb for the reception process
2393  * that is based on zero-copy.
2394  */
2395 static inline void stmmac_rx_refill(struct stmmac_priv *priv)
2396 {
2397 	int bfsize = priv->dma_buf_sz;
2398 	unsigned int entry = priv->dirty_rx;
2399 	int dirty = stmmac_rx_dirty(priv);
2400 
2401 	while (dirty-- > 0) {
2402 		struct dma_desc *p;
2403 
2404 		if (priv->extend_desc)
2405 			p = (struct dma_desc *)(priv->dma_erx + entry);
2406 		else
2407 			p = priv->dma_rx + entry;
2408 
2409 		if (likely(priv->rx_skbuff[entry] == NULL)) {
2410 			struct sk_buff *skb;
2411 
2412 			skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
2413 			if (unlikely(!skb)) {
2414 				/* so for a while no zero-copy! */
2415 				priv->rx_zeroc_thresh = STMMAC_RX_THRESH;
2416 				if (unlikely(net_ratelimit()))
2417 					dev_err(priv->device,
2418 						"fail to alloc skb entry %d\n",
2419 						entry);
2420 				break;
2421 			}
2422 
2423 			priv->rx_skbuff[entry] = skb;
2424 			priv->rx_skbuff_dma[entry] =
2425 			    dma_map_single(priv->device, skb->data, bfsize,
2426 					   DMA_FROM_DEVICE);
2427 			if (dma_mapping_error(priv->device,
2428 					      priv->rx_skbuff_dma[entry])) {
2429 				dev_err(priv->device, "Rx dma map failed\n");
2430 				dev_kfree_skb(skb);
2431 				break;
2432 			}
2433 
2434 			if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00)) {
2435 				p->des0 = priv->rx_skbuff_dma[entry];
2436 				p->des1 = 0;
2437 			} else {
2438 				p->des2 = priv->rx_skbuff_dma[entry];
2439 			}
2440 			if (priv->hw->mode->refill_desc3)
2441 				priv->hw->mode->refill_desc3(priv, p);
2442 
2443 			if (priv->rx_zeroc_thresh > 0)
2444 				priv->rx_zeroc_thresh--;
2445 
2446 			if (netif_msg_rx_status(priv))
2447 				pr_debug("\trefill entry #%d\n", entry);
2448 		}
2449 		wmb();
2450 
2451 		if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00))
2452 			priv->hw->desc->init_rx_desc(p, priv->use_riwt, 0, 0);
2453 		else
2454 			priv->hw->desc->set_rx_owner(p);
2455 
2456 		wmb();
2457 
2458 		entry = STMMAC_GET_ENTRY(entry, DMA_RX_SIZE);
2459 	}
2460 	priv->dirty_rx = entry;
2461 }
2462 
2463 /**
2464  * stmmac_rx - manage the receive process
2465  * @priv: driver private structure
2466  * @limit: napi bugget.
2467  * Description :  this the function called by the napi poll method.
2468  * It gets all the frames inside the ring.
2469  */
2470 static int stmmac_rx(struct stmmac_priv *priv, int limit)
2471 {
2472 	unsigned int entry = priv->cur_rx;
2473 	unsigned int next_entry;
2474 	unsigned int count = 0;
2475 	int coe = priv->hw->rx_csum;
2476 
2477 	if (netif_msg_rx_status(priv)) {
2478 		void *rx_head;
2479 
2480 		pr_debug("%s: descriptor ring:\n", __func__);
2481 		if (priv->extend_desc)
2482 			rx_head = (void *)priv->dma_erx;
2483 		else
2484 			rx_head = (void *)priv->dma_rx;
2485 
2486 		priv->hw->desc->display_ring(rx_head, DMA_RX_SIZE, true);
2487 	}
2488 	while (count < limit) {
2489 		int status;
2490 		struct dma_desc *p;
2491 
2492 		if (priv->extend_desc)
2493 			p = (struct dma_desc *)(priv->dma_erx + entry);
2494 		else
2495 			p = priv->dma_rx + entry;
2496 
2497 		/* read the status of the incoming frame */
2498 		status = priv->hw->desc->rx_status(&priv->dev->stats,
2499 						   &priv->xstats, p);
2500 		/* check if managed by the DMA otherwise go ahead */
2501 		if (unlikely(status & dma_own))
2502 			break;
2503 
2504 		count++;
2505 
2506 		priv->cur_rx = STMMAC_GET_ENTRY(priv->cur_rx, DMA_RX_SIZE);
2507 		next_entry = priv->cur_rx;
2508 
2509 		if (priv->extend_desc)
2510 			prefetch(priv->dma_erx + next_entry);
2511 		else
2512 			prefetch(priv->dma_rx + next_entry);
2513 
2514 		if ((priv->extend_desc) && (priv->hw->desc->rx_extended_status))
2515 			priv->hw->desc->rx_extended_status(&priv->dev->stats,
2516 							   &priv->xstats,
2517 							   priv->dma_erx +
2518 							   entry);
2519 		if (unlikely(status == discard_frame)) {
2520 			priv->dev->stats.rx_errors++;
2521 			if (priv->hwts_rx_en && !priv->extend_desc) {
2522 				/* DESC2 & DESC3 will be overwitten by device
2523 				 * with timestamp value, hence reinitialize
2524 				 * them in stmmac_rx_refill() function so that
2525 				 * device can reuse it.
2526 				 */
2527 				priv->rx_skbuff[entry] = NULL;
2528 				dma_unmap_single(priv->device,
2529 						 priv->rx_skbuff_dma[entry],
2530 						 priv->dma_buf_sz,
2531 						 DMA_FROM_DEVICE);
2532 			}
2533 		} else {
2534 			struct sk_buff *skb;
2535 			int frame_len;
2536 			unsigned int des;
2537 
2538 			if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00))
2539 				des = p->des0;
2540 			else
2541 				des = p->des2;
2542 
2543 			frame_len = priv->hw->desc->get_rx_frame_len(p, coe);
2544 
2545 			/*  If frame length is greather than skb buffer size
2546 			 *  (preallocated during init) then the packet is
2547 			 *  ignored
2548 			 */
2549 			if (frame_len > priv->dma_buf_sz) {
2550 				pr_err("%s: len %d larger than size (%d)\n",
2551 				       priv->dev->name, frame_len,
2552 				       priv->dma_buf_sz);
2553 				priv->dev->stats.rx_length_errors++;
2554 				break;
2555 			}
2556 
2557 			/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
2558 			 * Type frames (LLC/LLC-SNAP)
2559 			 */
2560 			if (unlikely(status != llc_snap))
2561 				frame_len -= ETH_FCS_LEN;
2562 
2563 			if (netif_msg_rx_status(priv)) {
2564 				pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
2565 					p, entry, des);
2566 				if (frame_len > ETH_FRAME_LEN)
2567 					pr_debug("\tframe size %d, COE: %d\n",
2568 						 frame_len, status);
2569 			}
2570 
2571 			/* The zero-copy is always used for all the sizes
2572 			 * in case of GMAC4 because it needs
2573 			 * to refill the used descriptors, always.
2574 			 */
2575 			if (unlikely(!priv->plat->has_gmac4 &&
2576 				     ((frame_len < priv->rx_copybreak) ||
2577 				     stmmac_rx_threshold_count(priv)))) {
2578 				skb = netdev_alloc_skb_ip_align(priv->dev,
2579 								frame_len);
2580 				if (unlikely(!skb)) {
2581 					if (net_ratelimit())
2582 						dev_warn(priv->device,
2583 							 "packet dropped\n");
2584 					priv->dev->stats.rx_dropped++;
2585 					break;
2586 				}
2587 
2588 				dma_sync_single_for_cpu(priv->device,
2589 							priv->rx_skbuff_dma
2590 							[entry], frame_len,
2591 							DMA_FROM_DEVICE);
2592 				skb_copy_to_linear_data(skb,
2593 							priv->
2594 							rx_skbuff[entry]->data,
2595 							frame_len);
2596 
2597 				skb_put(skb, frame_len);
2598 				dma_sync_single_for_device(priv->device,
2599 							   priv->rx_skbuff_dma
2600 							   [entry], frame_len,
2601 							   DMA_FROM_DEVICE);
2602 			} else {
2603 				skb = priv->rx_skbuff[entry];
2604 				if (unlikely(!skb)) {
2605 					pr_err("%s: Inconsistent Rx chain\n",
2606 					       priv->dev->name);
2607 					priv->dev->stats.rx_dropped++;
2608 					break;
2609 				}
2610 				prefetch(skb->data - NET_IP_ALIGN);
2611 				priv->rx_skbuff[entry] = NULL;
2612 				priv->rx_zeroc_thresh++;
2613 
2614 				skb_put(skb, frame_len);
2615 				dma_unmap_single(priv->device,
2616 						 priv->rx_skbuff_dma[entry],
2617 						 priv->dma_buf_sz,
2618 						 DMA_FROM_DEVICE);
2619 			}
2620 
2621 			stmmac_get_rx_hwtstamp(priv, entry, skb);
2622 
2623 			if (netif_msg_pktdata(priv)) {
2624 				pr_debug("frame received (%dbytes)", frame_len);
2625 				print_pkt(skb->data, frame_len);
2626 			}
2627 
2628 			stmmac_rx_vlan(priv->dev, skb);
2629 
2630 			skb->protocol = eth_type_trans(skb, priv->dev);
2631 
2632 			if (unlikely(!coe))
2633 				skb_checksum_none_assert(skb);
2634 			else
2635 				skb->ip_summed = CHECKSUM_UNNECESSARY;
2636 
2637 			napi_gro_receive(&priv->napi, skb);
2638 
2639 			priv->dev->stats.rx_packets++;
2640 			priv->dev->stats.rx_bytes += frame_len;
2641 		}
2642 		entry = next_entry;
2643 	}
2644 
2645 	stmmac_rx_refill(priv);
2646 
2647 	priv->xstats.rx_pkt_n += count;
2648 
2649 	return count;
2650 }
2651 
2652 /**
2653  *  stmmac_poll - stmmac poll method (NAPI)
2654  *  @napi : pointer to the napi structure.
2655  *  @budget : maximum number of packets that the current CPU can receive from
2656  *	      all interfaces.
2657  *  Description :
2658  *  To look at the incoming frames and clear the tx resources.
2659  */
2660 static int stmmac_poll(struct napi_struct *napi, int budget)
2661 {
2662 	struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
2663 	int work_done = 0;
2664 
2665 	priv->xstats.napi_poll++;
2666 	stmmac_tx_clean(priv);
2667 
2668 	work_done = stmmac_rx(priv, budget);
2669 	if (work_done < budget) {
2670 		napi_complete(napi);
2671 		stmmac_enable_dma_irq(priv);
2672 	}
2673 	return work_done;
2674 }
2675 
2676 /**
2677  *  stmmac_tx_timeout
2678  *  @dev : Pointer to net device structure
2679  *  Description: this function is called when a packet transmission fails to
2680  *   complete within a reasonable time. The driver will mark the error in the
2681  *   netdev structure and arrange for the device to be reset to a sane state
2682  *   in order to transmit a new packet.
2683  */
2684 static void stmmac_tx_timeout(struct net_device *dev)
2685 {
2686 	struct stmmac_priv *priv = netdev_priv(dev);
2687 
2688 	/* Clear Tx resources and restart transmitting again */
2689 	stmmac_tx_err(priv);
2690 }
2691 
2692 /**
2693  *  stmmac_set_rx_mode - entry point for multicast addressing
2694  *  @dev : pointer to the device structure
2695  *  Description:
2696  *  This function is a driver entry point which gets called by the kernel
2697  *  whenever multicast addresses must be enabled/disabled.
2698  *  Return value:
2699  *  void.
2700  */
2701 static void stmmac_set_rx_mode(struct net_device *dev)
2702 {
2703 	struct stmmac_priv *priv = netdev_priv(dev);
2704 
2705 	priv->hw->mac->set_filter(priv->hw, dev);
2706 }
2707 
2708 /**
2709  *  stmmac_change_mtu - entry point to change MTU size for the device.
2710  *  @dev : device pointer.
2711  *  @new_mtu : the new MTU size for the device.
2712  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
2713  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
2714  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
2715  *  Return value:
2716  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2717  *  file on failure.
2718  */
2719 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
2720 {
2721 	struct stmmac_priv *priv = netdev_priv(dev);
2722 	int max_mtu;
2723 
2724 	if (netif_running(dev)) {
2725 		pr_err("%s: must be stopped to change its MTU\n", dev->name);
2726 		return -EBUSY;
2727 	}
2728 
2729 	if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
2730 		max_mtu = JUMBO_LEN;
2731 	else
2732 		max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
2733 
2734 	if (priv->plat->maxmtu < max_mtu)
2735 		max_mtu = priv->plat->maxmtu;
2736 
2737 	if ((new_mtu < 46) || (new_mtu > max_mtu)) {
2738 		pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
2739 		return -EINVAL;
2740 	}
2741 
2742 	dev->mtu = new_mtu;
2743 
2744 	netdev_update_features(dev);
2745 
2746 	return 0;
2747 }
2748 
2749 static netdev_features_t stmmac_fix_features(struct net_device *dev,
2750 					     netdev_features_t features)
2751 {
2752 	struct stmmac_priv *priv = netdev_priv(dev);
2753 
2754 	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
2755 		features &= ~NETIF_F_RXCSUM;
2756 
2757 	if (!priv->plat->tx_coe)
2758 		features &= ~NETIF_F_CSUM_MASK;
2759 
2760 	/* Some GMAC devices have a bugged Jumbo frame support that
2761 	 * needs to have the Tx COE disabled for oversized frames
2762 	 * (due to limited buffer sizes). In this case we disable
2763 	 * the TX csum insertionin the TDES and not use SF.
2764 	 */
2765 	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
2766 		features &= ~NETIF_F_CSUM_MASK;
2767 
2768 	/* Disable tso if asked by ethtool */
2769 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
2770 		if (features & NETIF_F_TSO)
2771 			priv->tso = true;
2772 		else
2773 			priv->tso = false;
2774 	}
2775 
2776 	return features;
2777 }
2778 
2779 static int stmmac_set_features(struct net_device *netdev,
2780 			       netdev_features_t features)
2781 {
2782 	struct stmmac_priv *priv = netdev_priv(netdev);
2783 
2784 	/* Keep the COE Type in case of csum is supporting */
2785 	if (features & NETIF_F_RXCSUM)
2786 		priv->hw->rx_csum = priv->plat->rx_coe;
2787 	else
2788 		priv->hw->rx_csum = 0;
2789 	/* No check needed because rx_coe has been set before and it will be
2790 	 * fixed in case of issue.
2791 	 */
2792 	priv->hw->mac->rx_ipc(priv->hw);
2793 
2794 	return 0;
2795 }
2796 
2797 /**
2798  *  stmmac_interrupt - main ISR
2799  *  @irq: interrupt number.
2800  *  @dev_id: to pass the net device pointer.
2801  *  Description: this is the main driver interrupt service routine.
2802  *  It can call:
2803  *  o DMA service routine (to manage incoming frame reception and transmission
2804  *    status)
2805  *  o Core interrupts to manage: remote wake-up, management counter, LPI
2806  *    interrupts.
2807  */
2808 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
2809 {
2810 	struct net_device *dev = (struct net_device *)dev_id;
2811 	struct stmmac_priv *priv = netdev_priv(dev);
2812 
2813 	if (priv->irq_wake)
2814 		pm_wakeup_event(priv->device, 0);
2815 
2816 	if (unlikely(!dev)) {
2817 		pr_err("%s: invalid dev pointer\n", __func__);
2818 		return IRQ_NONE;
2819 	}
2820 
2821 	/* To handle GMAC own interrupts */
2822 	if ((priv->plat->has_gmac) || (priv->plat->has_gmac4)) {
2823 		int status = priv->hw->mac->host_irq_status(priv->hw,
2824 							    &priv->xstats);
2825 		if (unlikely(status)) {
2826 			/* For LPI we need to save the tx status */
2827 			if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
2828 				priv->tx_path_in_lpi_mode = true;
2829 			if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
2830 				priv->tx_path_in_lpi_mode = false;
2831 			if (status & CORE_IRQ_MTL_RX_OVERFLOW && priv->hw->dma->set_rx_tail_ptr)
2832 				priv->hw->dma->set_rx_tail_ptr(priv->ioaddr,
2833 							priv->rx_tail_addr,
2834 							STMMAC_CHAN0);
2835 		}
2836 
2837 		/* PCS link status */
2838 		if (priv->hw->pcs) {
2839 			if (priv->xstats.pcs_link)
2840 				netif_carrier_on(dev);
2841 			else
2842 				netif_carrier_off(dev);
2843 		}
2844 	}
2845 
2846 	/* To handle DMA interrupts */
2847 	stmmac_dma_interrupt(priv);
2848 
2849 	return IRQ_HANDLED;
2850 }
2851 
2852 #ifdef CONFIG_NET_POLL_CONTROLLER
2853 /* Polling receive - used by NETCONSOLE and other diagnostic tools
2854  * to allow network I/O with interrupts disabled.
2855  */
2856 static void stmmac_poll_controller(struct net_device *dev)
2857 {
2858 	disable_irq(dev->irq);
2859 	stmmac_interrupt(dev->irq, dev);
2860 	enable_irq(dev->irq);
2861 }
2862 #endif
2863 
2864 /**
2865  *  stmmac_ioctl - Entry point for the Ioctl
2866  *  @dev: Device pointer.
2867  *  @rq: An IOCTL specefic structure, that can contain a pointer to
2868  *  a proprietary structure used to pass information to the driver.
2869  *  @cmd: IOCTL command
2870  *  Description:
2871  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
2872  */
2873 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2874 {
2875 	struct stmmac_priv *priv = netdev_priv(dev);
2876 	int ret = -EOPNOTSUPP;
2877 
2878 	if (!netif_running(dev))
2879 		return -EINVAL;
2880 
2881 	switch (cmd) {
2882 	case SIOCGMIIPHY:
2883 	case SIOCGMIIREG:
2884 	case SIOCSMIIREG:
2885 		if (!priv->phydev)
2886 			return -EINVAL;
2887 		ret = phy_mii_ioctl(priv->phydev, rq, cmd);
2888 		break;
2889 	case SIOCSHWTSTAMP:
2890 		ret = stmmac_hwtstamp_ioctl(dev, rq);
2891 		break;
2892 	default:
2893 		break;
2894 	}
2895 
2896 	return ret;
2897 }
2898 
2899 #ifdef CONFIG_DEBUG_FS
2900 static struct dentry *stmmac_fs_dir;
2901 
2902 static void sysfs_display_ring(void *head, int size, int extend_desc,
2903 			       struct seq_file *seq)
2904 {
2905 	int i;
2906 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
2907 	struct dma_desc *p = (struct dma_desc *)head;
2908 
2909 	for (i = 0; i < size; i++) {
2910 		u64 x;
2911 		if (extend_desc) {
2912 			x = *(u64 *) ep;
2913 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2914 				   i, (unsigned int)virt_to_phys(ep),
2915 				   ep->basic.des0, ep->basic.des1,
2916 				   ep->basic.des2, ep->basic.des3);
2917 			ep++;
2918 		} else {
2919 			x = *(u64 *) p;
2920 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2921 				   i, (unsigned int)virt_to_phys(ep),
2922 				   p->des0, p->des1, p->des2, p->des3);
2923 			p++;
2924 		}
2925 		seq_printf(seq, "\n");
2926 	}
2927 }
2928 
2929 static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
2930 {
2931 	struct net_device *dev = seq->private;
2932 	struct stmmac_priv *priv = netdev_priv(dev);
2933 
2934 	if (priv->extend_desc) {
2935 		seq_printf(seq, "Extended RX descriptor ring:\n");
2936 		sysfs_display_ring((void *)priv->dma_erx, DMA_RX_SIZE, 1, seq);
2937 		seq_printf(seq, "Extended TX descriptor ring:\n");
2938 		sysfs_display_ring((void *)priv->dma_etx, DMA_TX_SIZE, 1, seq);
2939 	} else {
2940 		seq_printf(seq, "RX descriptor ring:\n");
2941 		sysfs_display_ring((void *)priv->dma_rx, DMA_RX_SIZE, 0, seq);
2942 		seq_printf(seq, "TX descriptor ring:\n");
2943 		sysfs_display_ring((void *)priv->dma_tx, DMA_TX_SIZE, 0, seq);
2944 	}
2945 
2946 	return 0;
2947 }
2948 
2949 static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
2950 {
2951 	return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
2952 }
2953 
2954 static const struct file_operations stmmac_rings_status_fops = {
2955 	.owner = THIS_MODULE,
2956 	.open = stmmac_sysfs_ring_open,
2957 	.read = seq_read,
2958 	.llseek = seq_lseek,
2959 	.release = single_release,
2960 };
2961 
2962 static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
2963 {
2964 	struct net_device *dev = seq->private;
2965 	struct stmmac_priv *priv = netdev_priv(dev);
2966 
2967 	if (!priv->hw_cap_support) {
2968 		seq_printf(seq, "DMA HW features not supported\n");
2969 		return 0;
2970 	}
2971 
2972 	seq_printf(seq, "==============================\n");
2973 	seq_printf(seq, "\tDMA HW features\n");
2974 	seq_printf(seq, "==============================\n");
2975 
2976 	seq_printf(seq, "\t10/100 Mbps %s\n",
2977 		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
2978 	seq_printf(seq, "\t1000 Mbps %s\n",
2979 		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
2980 	seq_printf(seq, "\tHalf duple %s\n",
2981 		   (priv->dma_cap.half_duplex) ? "Y" : "N");
2982 	seq_printf(seq, "\tHash Filter: %s\n",
2983 		   (priv->dma_cap.hash_filter) ? "Y" : "N");
2984 	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
2985 		   (priv->dma_cap.multi_addr) ? "Y" : "N");
2986 	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
2987 		   (priv->dma_cap.pcs) ? "Y" : "N");
2988 	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
2989 		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
2990 	seq_printf(seq, "\tPMT Remote wake up: %s\n",
2991 		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
2992 	seq_printf(seq, "\tPMT Magic Frame: %s\n",
2993 		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
2994 	seq_printf(seq, "\tRMON module: %s\n",
2995 		   (priv->dma_cap.rmon) ? "Y" : "N");
2996 	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
2997 		   (priv->dma_cap.time_stamp) ? "Y" : "N");
2998 	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n",
2999 		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
3000 	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n",
3001 		   (priv->dma_cap.eee) ? "Y" : "N");
3002 	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
3003 	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
3004 		   (priv->dma_cap.tx_coe) ? "Y" : "N");
3005 	if (priv->synopsys_id >= DWMAC_CORE_4_00) {
3006 		seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
3007 			   (priv->dma_cap.rx_coe) ? "Y" : "N");
3008 	} else {
3009 		seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
3010 			   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
3011 		seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
3012 			   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
3013 	}
3014 	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
3015 		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
3016 	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
3017 		   priv->dma_cap.number_rx_channel);
3018 	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
3019 		   priv->dma_cap.number_tx_channel);
3020 	seq_printf(seq, "\tEnhanced descriptors: %s\n",
3021 		   (priv->dma_cap.enh_desc) ? "Y" : "N");
3022 
3023 	return 0;
3024 }
3025 
3026 static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
3027 {
3028 	return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
3029 }
3030 
3031 static const struct file_operations stmmac_dma_cap_fops = {
3032 	.owner = THIS_MODULE,
3033 	.open = stmmac_sysfs_dma_cap_open,
3034 	.read = seq_read,
3035 	.llseek = seq_lseek,
3036 	.release = single_release,
3037 };
3038 
3039 static int stmmac_init_fs(struct net_device *dev)
3040 {
3041 	struct stmmac_priv *priv = netdev_priv(dev);
3042 
3043 	/* Create per netdev entries */
3044 	priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
3045 
3046 	if (!priv->dbgfs_dir || IS_ERR(priv->dbgfs_dir)) {
3047 		pr_err("ERROR %s/%s, debugfs create directory failed\n",
3048 		       STMMAC_RESOURCE_NAME, dev->name);
3049 
3050 		return -ENOMEM;
3051 	}
3052 
3053 	/* Entry to report DMA RX/TX rings */
3054 	priv->dbgfs_rings_status =
3055 		debugfs_create_file("descriptors_status", S_IRUGO,
3056 				    priv->dbgfs_dir, dev,
3057 				    &stmmac_rings_status_fops);
3058 
3059 	if (!priv->dbgfs_rings_status || IS_ERR(priv->dbgfs_rings_status)) {
3060 		pr_info("ERROR creating stmmac ring debugfs file\n");
3061 		debugfs_remove_recursive(priv->dbgfs_dir);
3062 
3063 		return -ENOMEM;
3064 	}
3065 
3066 	/* Entry to report the DMA HW features */
3067 	priv->dbgfs_dma_cap = debugfs_create_file("dma_cap", S_IRUGO,
3068 					    priv->dbgfs_dir,
3069 					    dev, &stmmac_dma_cap_fops);
3070 
3071 	if (!priv->dbgfs_dma_cap || IS_ERR(priv->dbgfs_dma_cap)) {
3072 		pr_info("ERROR creating stmmac MMC debugfs file\n");
3073 		debugfs_remove_recursive(priv->dbgfs_dir);
3074 
3075 		return -ENOMEM;
3076 	}
3077 
3078 	return 0;
3079 }
3080 
3081 static void stmmac_exit_fs(struct net_device *dev)
3082 {
3083 	struct stmmac_priv *priv = netdev_priv(dev);
3084 
3085 	debugfs_remove_recursive(priv->dbgfs_dir);
3086 }
3087 #endif /* CONFIG_DEBUG_FS */
3088 
3089 static const struct net_device_ops stmmac_netdev_ops = {
3090 	.ndo_open = stmmac_open,
3091 	.ndo_start_xmit = stmmac_xmit,
3092 	.ndo_stop = stmmac_release,
3093 	.ndo_change_mtu = stmmac_change_mtu,
3094 	.ndo_fix_features = stmmac_fix_features,
3095 	.ndo_set_features = stmmac_set_features,
3096 	.ndo_set_rx_mode = stmmac_set_rx_mode,
3097 	.ndo_tx_timeout = stmmac_tx_timeout,
3098 	.ndo_do_ioctl = stmmac_ioctl,
3099 #ifdef CONFIG_NET_POLL_CONTROLLER
3100 	.ndo_poll_controller = stmmac_poll_controller,
3101 #endif
3102 	.ndo_set_mac_address = eth_mac_addr,
3103 };
3104 
3105 /**
3106  *  stmmac_hw_init - Init the MAC device
3107  *  @priv: driver private structure
3108  *  Description: this function is to configure the MAC device according to
3109  *  some platform parameters or the HW capability register. It prepares the
3110  *  driver to use either ring or chain modes and to setup either enhanced or
3111  *  normal descriptors.
3112  */
3113 static int stmmac_hw_init(struct stmmac_priv *priv)
3114 {
3115 	struct mac_device_info *mac;
3116 
3117 	/* Identify the MAC HW device */
3118 	if (priv->plat->has_gmac) {
3119 		priv->dev->priv_flags |= IFF_UNICAST_FLT;
3120 		mac = dwmac1000_setup(priv->ioaddr,
3121 				      priv->plat->multicast_filter_bins,
3122 				      priv->plat->unicast_filter_entries,
3123 				      &priv->synopsys_id);
3124 	} else if (priv->plat->has_gmac4) {
3125 		priv->dev->priv_flags |= IFF_UNICAST_FLT;
3126 		mac = dwmac4_setup(priv->ioaddr,
3127 				   priv->plat->multicast_filter_bins,
3128 				   priv->plat->unicast_filter_entries,
3129 				   &priv->synopsys_id);
3130 	} else {
3131 		mac = dwmac100_setup(priv->ioaddr, &priv->synopsys_id);
3132 	}
3133 	if (!mac)
3134 		return -ENOMEM;
3135 
3136 	priv->hw = mac;
3137 
3138 	/* To use the chained or ring mode */
3139 	if (priv->synopsys_id >= DWMAC_CORE_4_00) {
3140 		priv->hw->mode = &dwmac4_ring_mode_ops;
3141 	} else {
3142 		if (chain_mode) {
3143 			priv->hw->mode = &chain_mode_ops;
3144 			pr_info(" Chain mode enabled\n");
3145 			priv->mode = STMMAC_CHAIN_MODE;
3146 		} else {
3147 			priv->hw->mode = &ring_mode_ops;
3148 			pr_info(" Ring mode enabled\n");
3149 			priv->mode = STMMAC_RING_MODE;
3150 		}
3151 	}
3152 
3153 	/* Get the HW capability (new GMAC newer than 3.50a) */
3154 	priv->hw_cap_support = stmmac_get_hw_features(priv);
3155 	if (priv->hw_cap_support) {
3156 		pr_info(" DMA HW capability register supported");
3157 
3158 		/* We can override some gmac/dma configuration fields: e.g.
3159 		 * enh_desc, tx_coe (e.g. that are passed through the
3160 		 * platform) with the values from the HW capability
3161 		 * register (if supported).
3162 		 */
3163 		priv->plat->enh_desc = priv->dma_cap.enh_desc;
3164 		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
3165 		priv->hw->pmt = priv->plat->pmt;
3166 
3167 		/* TXCOE doesn't work in thresh DMA mode */
3168 		if (priv->plat->force_thresh_dma_mode)
3169 			priv->plat->tx_coe = 0;
3170 		else
3171 			priv->plat->tx_coe = priv->dma_cap.tx_coe;
3172 
3173 		/* In case of GMAC4 rx_coe is from HW cap register. */
3174 		priv->plat->rx_coe = priv->dma_cap.rx_coe;
3175 
3176 		if (priv->dma_cap.rx_coe_type2)
3177 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
3178 		else if (priv->dma_cap.rx_coe_type1)
3179 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
3180 
3181 	} else
3182 		pr_info(" No HW DMA feature register supported");
3183 
3184 	/* To use alternate (extended), normal or GMAC4 descriptor structures */
3185 	if (priv->synopsys_id >= DWMAC_CORE_4_00)
3186 		priv->hw->desc = &dwmac4_desc_ops;
3187 	else
3188 		stmmac_selec_desc_mode(priv);
3189 
3190 	if (priv->plat->rx_coe) {
3191 		priv->hw->rx_csum = priv->plat->rx_coe;
3192 		pr_info(" RX Checksum Offload Engine supported\n");
3193 		if (priv->synopsys_id < DWMAC_CORE_4_00)
3194 			pr_info("\tCOE Type %d\n", priv->hw->rx_csum);
3195 	}
3196 	if (priv->plat->tx_coe)
3197 		pr_info(" TX Checksum insertion supported\n");
3198 
3199 	if (priv->plat->pmt) {
3200 		pr_info(" Wake-Up On Lan supported\n");
3201 		device_set_wakeup_capable(priv->device, 1);
3202 	}
3203 
3204 	if (priv->dma_cap.tsoen)
3205 		pr_info(" TSO supported\n");
3206 
3207 	return 0;
3208 }
3209 
3210 /**
3211  * stmmac_dvr_probe
3212  * @device: device pointer
3213  * @plat_dat: platform data pointer
3214  * @res: stmmac resource pointer
3215  * Description: this is the main probe function used to
3216  * call the alloc_etherdev, allocate the priv structure.
3217  * Return:
3218  * returns 0 on success, otherwise errno.
3219  */
3220 int stmmac_dvr_probe(struct device *device,
3221 		     struct plat_stmmacenet_data *plat_dat,
3222 		     struct stmmac_resources *res)
3223 {
3224 	int ret = 0;
3225 	struct net_device *ndev = NULL;
3226 	struct stmmac_priv *priv;
3227 
3228 	ndev = alloc_etherdev(sizeof(struct stmmac_priv));
3229 	if (!ndev)
3230 		return -ENOMEM;
3231 
3232 	SET_NETDEV_DEV(ndev, device);
3233 
3234 	priv = netdev_priv(ndev);
3235 	priv->device = device;
3236 	priv->dev = ndev;
3237 
3238 	stmmac_set_ethtool_ops(ndev);
3239 	priv->pause = pause;
3240 	priv->plat = plat_dat;
3241 	priv->ioaddr = res->addr;
3242 	priv->dev->base_addr = (unsigned long)res->addr;
3243 
3244 	priv->dev->irq = res->irq;
3245 	priv->wol_irq = res->wol_irq;
3246 	priv->lpi_irq = res->lpi_irq;
3247 
3248 	if (res->mac)
3249 		memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
3250 
3251 	dev_set_drvdata(device, priv->dev);
3252 
3253 	/* Verify driver arguments */
3254 	stmmac_verify_args();
3255 
3256 	/* Override with kernel parameters if supplied XXX CRS XXX
3257 	 * this needs to have multiple instances
3258 	 */
3259 	if ((phyaddr >= 0) && (phyaddr <= 31))
3260 		priv->plat->phy_addr = phyaddr;
3261 
3262 	priv->stmmac_clk = devm_clk_get(priv->device, STMMAC_RESOURCE_NAME);
3263 	if (IS_ERR(priv->stmmac_clk)) {
3264 		dev_warn(priv->device, "%s: warning: cannot get CSR clock\n",
3265 			 __func__);
3266 		/* If failed to obtain stmmac_clk and specific clk_csr value
3267 		 * is NOT passed from the platform, probe fail.
3268 		 */
3269 		if (!priv->plat->clk_csr) {
3270 			ret = PTR_ERR(priv->stmmac_clk);
3271 			goto error_clk_get;
3272 		} else {
3273 			priv->stmmac_clk = NULL;
3274 		}
3275 	}
3276 	clk_prepare_enable(priv->stmmac_clk);
3277 
3278 	priv->pclk = devm_clk_get(priv->device, "pclk");
3279 	if (IS_ERR(priv->pclk)) {
3280 		if (PTR_ERR(priv->pclk) == -EPROBE_DEFER) {
3281 			ret = -EPROBE_DEFER;
3282 			goto error_pclk_get;
3283 		}
3284 		priv->pclk = NULL;
3285 	}
3286 	clk_prepare_enable(priv->pclk);
3287 
3288 	priv->stmmac_rst = devm_reset_control_get(priv->device,
3289 						  STMMAC_RESOURCE_NAME);
3290 	if (IS_ERR(priv->stmmac_rst)) {
3291 		if (PTR_ERR(priv->stmmac_rst) == -EPROBE_DEFER) {
3292 			ret = -EPROBE_DEFER;
3293 			goto error_hw_init;
3294 		}
3295 		dev_info(priv->device, "no reset control found\n");
3296 		priv->stmmac_rst = NULL;
3297 	}
3298 	if (priv->stmmac_rst)
3299 		reset_control_deassert(priv->stmmac_rst);
3300 
3301 	/* Init MAC and get the capabilities */
3302 	ret = stmmac_hw_init(priv);
3303 	if (ret)
3304 		goto error_hw_init;
3305 
3306 	ndev->netdev_ops = &stmmac_netdev_ops;
3307 
3308 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3309 			    NETIF_F_RXCSUM;
3310 
3311 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
3312 		ndev->hw_features |= NETIF_F_TSO;
3313 		priv->tso = true;
3314 		pr_info(" TSO feature enabled\n");
3315 	}
3316 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
3317 	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
3318 #ifdef STMMAC_VLAN_TAG_USED
3319 	/* Both mac100 and gmac support receive VLAN tag detection */
3320 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3321 #endif
3322 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
3323 
3324 	if (flow_ctrl)
3325 		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
3326 
3327 	/* Rx Watchdog is available in the COREs newer than the 3.40.
3328 	 * In some case, for example on bugged HW this feature
3329 	 * has to be disable and this can be done by passing the
3330 	 * riwt_off field from the platform.
3331 	 */
3332 	if ((priv->synopsys_id >= DWMAC_CORE_3_50) && (!priv->plat->riwt_off)) {
3333 		priv->use_riwt = 1;
3334 		pr_info(" Enable RX Mitigation via HW Watchdog Timer\n");
3335 	}
3336 
3337 	netif_napi_add(ndev, &priv->napi, stmmac_poll, 64);
3338 
3339 	spin_lock_init(&priv->lock);
3340 	spin_lock_init(&priv->tx_lock);
3341 
3342 	ret = register_netdev(ndev);
3343 	if (ret) {
3344 		pr_err("%s: ERROR %i registering the device\n", __func__, ret);
3345 		goto error_netdev_register;
3346 	}
3347 
3348 	/* If a specific clk_csr value is passed from the platform
3349 	 * this means that the CSR Clock Range selection cannot be
3350 	 * changed at run-time and it is fixed. Viceversa the driver'll try to
3351 	 * set the MDC clock dynamically according to the csr actual
3352 	 * clock input.
3353 	 */
3354 	if (!priv->plat->clk_csr)
3355 		stmmac_clk_csr_set(priv);
3356 	else
3357 		priv->clk_csr = priv->plat->clk_csr;
3358 
3359 	stmmac_check_pcs_mode(priv);
3360 
3361 	if (priv->hw->pcs != STMMAC_PCS_RGMII  &&
3362 	    priv->hw->pcs != STMMAC_PCS_TBI &&
3363 	    priv->hw->pcs != STMMAC_PCS_RTBI) {
3364 		/* MDIO bus Registration */
3365 		ret = stmmac_mdio_register(ndev);
3366 		if (ret < 0) {
3367 			pr_debug("%s: MDIO bus (id: %d) registration failed",
3368 				 __func__, priv->plat->bus_id);
3369 			goto error_mdio_register;
3370 		}
3371 	}
3372 
3373 	return 0;
3374 
3375 error_mdio_register:
3376 	unregister_netdev(ndev);
3377 error_netdev_register:
3378 	netif_napi_del(&priv->napi);
3379 error_hw_init:
3380 	clk_disable_unprepare(priv->pclk);
3381 error_pclk_get:
3382 	clk_disable_unprepare(priv->stmmac_clk);
3383 error_clk_get:
3384 	free_netdev(ndev);
3385 
3386 	return ret;
3387 }
3388 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
3389 
3390 /**
3391  * stmmac_dvr_remove
3392  * @dev: device pointer
3393  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
3394  * changes the link status, releases the DMA descriptor rings.
3395  */
3396 int stmmac_dvr_remove(struct device *dev)
3397 {
3398 	struct net_device *ndev = dev_get_drvdata(dev);
3399 	struct stmmac_priv *priv = netdev_priv(ndev);
3400 
3401 	pr_info("%s:\n\tremoving driver", __func__);
3402 
3403 	priv->hw->dma->stop_rx(priv->ioaddr);
3404 	priv->hw->dma->stop_tx(priv->ioaddr);
3405 
3406 	stmmac_set_mac(priv->ioaddr, false);
3407 	netif_carrier_off(ndev);
3408 	unregister_netdev(ndev);
3409 	of_node_put(priv->plat->phy_node);
3410 	if (priv->stmmac_rst)
3411 		reset_control_assert(priv->stmmac_rst);
3412 	clk_disable_unprepare(priv->pclk);
3413 	clk_disable_unprepare(priv->stmmac_clk);
3414 	if (priv->hw->pcs != STMMAC_PCS_RGMII &&
3415 	    priv->hw->pcs != STMMAC_PCS_TBI &&
3416 	    priv->hw->pcs != STMMAC_PCS_RTBI)
3417 		stmmac_mdio_unregister(ndev);
3418 	free_netdev(ndev);
3419 
3420 	return 0;
3421 }
3422 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
3423 
3424 /**
3425  * stmmac_suspend - suspend callback
3426  * @dev: device pointer
3427  * Description: this is the function to suspend the device and it is called
3428  * by the platform driver to stop the network queue, release the resources,
3429  * program the PMT register (for WoL), clean and release driver resources.
3430  */
3431 int stmmac_suspend(struct device *dev)
3432 {
3433 	struct net_device *ndev = dev_get_drvdata(dev);
3434 	struct stmmac_priv *priv = netdev_priv(ndev);
3435 	unsigned long flags;
3436 
3437 	if (!ndev || !netif_running(ndev))
3438 		return 0;
3439 
3440 	if (priv->phydev)
3441 		phy_stop(priv->phydev);
3442 
3443 	spin_lock_irqsave(&priv->lock, flags);
3444 
3445 	netif_device_detach(ndev);
3446 	netif_stop_queue(ndev);
3447 
3448 	napi_disable(&priv->napi);
3449 
3450 	/* Stop TX/RX DMA */
3451 	priv->hw->dma->stop_tx(priv->ioaddr);
3452 	priv->hw->dma->stop_rx(priv->ioaddr);
3453 
3454 	/* Enable Power down mode by programming the PMT regs */
3455 	if (device_may_wakeup(priv->device)) {
3456 		priv->hw->mac->pmt(priv->hw, priv->wolopts);
3457 		priv->irq_wake = 1;
3458 	} else {
3459 		stmmac_set_mac(priv->ioaddr, false);
3460 		pinctrl_pm_select_sleep_state(priv->device);
3461 		/* Disable clock in case of PWM is off */
3462 		clk_disable(priv->pclk);
3463 		clk_disable(priv->stmmac_clk);
3464 	}
3465 	spin_unlock_irqrestore(&priv->lock, flags);
3466 
3467 	priv->oldlink = 0;
3468 	priv->speed = 0;
3469 	priv->oldduplex = -1;
3470 	return 0;
3471 }
3472 EXPORT_SYMBOL_GPL(stmmac_suspend);
3473 
3474 /**
3475  * stmmac_resume - resume callback
3476  * @dev: device pointer
3477  * Description: when resume this function is invoked to setup the DMA and CORE
3478  * in a usable state.
3479  */
3480 int stmmac_resume(struct device *dev)
3481 {
3482 	struct net_device *ndev = dev_get_drvdata(dev);
3483 	struct stmmac_priv *priv = netdev_priv(ndev);
3484 	unsigned long flags;
3485 
3486 	if (!netif_running(ndev))
3487 		return 0;
3488 
3489 	/* Power Down bit, into the PM register, is cleared
3490 	 * automatically as soon as a magic packet or a Wake-up frame
3491 	 * is received. Anyway, it's better to manually clear
3492 	 * this bit because it can generate problems while resuming
3493 	 * from another devices (e.g. serial console).
3494 	 */
3495 	if (device_may_wakeup(priv->device)) {
3496 		spin_lock_irqsave(&priv->lock, flags);
3497 		priv->hw->mac->pmt(priv->hw, 0);
3498 		spin_unlock_irqrestore(&priv->lock, flags);
3499 		priv->irq_wake = 0;
3500 	} else {
3501 		pinctrl_pm_select_default_state(priv->device);
3502 		/* enable the clk prevously disabled */
3503 		clk_enable(priv->stmmac_clk);
3504 		clk_enable(priv->pclk);
3505 		/* reset the phy so that it's ready */
3506 		if (priv->mii)
3507 			stmmac_mdio_reset(priv->mii);
3508 	}
3509 
3510 	netif_device_attach(ndev);
3511 
3512 	spin_lock_irqsave(&priv->lock, flags);
3513 
3514 	priv->cur_rx = 0;
3515 	priv->dirty_rx = 0;
3516 	priv->dirty_tx = 0;
3517 	priv->cur_tx = 0;
3518 	/* reset private mss value to force mss context settings at
3519 	 * next tso xmit (only used for gmac4).
3520 	 */
3521 	priv->mss = 0;
3522 
3523 	stmmac_clear_descriptors(priv);
3524 
3525 	stmmac_hw_setup(ndev, false);
3526 	stmmac_init_tx_coalesce(priv);
3527 	stmmac_set_rx_mode(ndev);
3528 
3529 	napi_enable(&priv->napi);
3530 
3531 	netif_start_queue(ndev);
3532 
3533 	spin_unlock_irqrestore(&priv->lock, flags);
3534 
3535 	if (priv->phydev)
3536 		phy_start(priv->phydev);
3537 
3538 	return 0;
3539 }
3540 EXPORT_SYMBOL_GPL(stmmac_resume);
3541 
3542 #ifndef MODULE
3543 static int __init stmmac_cmdline_opt(char *str)
3544 {
3545 	char *opt;
3546 
3547 	if (!str || !*str)
3548 		return -EINVAL;
3549 	while ((opt = strsep(&str, ",")) != NULL) {
3550 		if (!strncmp(opt, "debug:", 6)) {
3551 			if (kstrtoint(opt + 6, 0, &debug))
3552 				goto err;
3553 		} else if (!strncmp(opt, "phyaddr:", 8)) {
3554 			if (kstrtoint(opt + 8, 0, &phyaddr))
3555 				goto err;
3556 		} else if (!strncmp(opt, "buf_sz:", 7)) {
3557 			if (kstrtoint(opt + 7, 0, &buf_sz))
3558 				goto err;
3559 		} else if (!strncmp(opt, "tc:", 3)) {
3560 			if (kstrtoint(opt + 3, 0, &tc))
3561 				goto err;
3562 		} else if (!strncmp(opt, "watchdog:", 9)) {
3563 			if (kstrtoint(opt + 9, 0, &watchdog))
3564 				goto err;
3565 		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
3566 			if (kstrtoint(opt + 10, 0, &flow_ctrl))
3567 				goto err;
3568 		} else if (!strncmp(opt, "pause:", 6)) {
3569 			if (kstrtoint(opt + 6, 0, &pause))
3570 				goto err;
3571 		} else if (!strncmp(opt, "eee_timer:", 10)) {
3572 			if (kstrtoint(opt + 10, 0, &eee_timer))
3573 				goto err;
3574 		} else if (!strncmp(opt, "chain_mode:", 11)) {
3575 			if (kstrtoint(opt + 11, 0, &chain_mode))
3576 				goto err;
3577 		}
3578 	}
3579 	return 0;
3580 
3581 err:
3582 	pr_err("%s: ERROR broken module parameter conversion", __func__);
3583 	return -EINVAL;
3584 }
3585 
3586 __setup("stmmaceth=", stmmac_cmdline_opt);
3587 #endif /* MODULE */
3588 
3589 static int __init stmmac_init(void)
3590 {
3591 #ifdef CONFIG_DEBUG_FS
3592 	/* Create debugfs main directory if it doesn't exist yet */
3593 	if (!stmmac_fs_dir) {
3594 		stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
3595 
3596 		if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
3597 			pr_err("ERROR %s, debugfs create directory failed\n",
3598 			       STMMAC_RESOURCE_NAME);
3599 
3600 			return -ENOMEM;
3601 		}
3602 	}
3603 #endif
3604 
3605 	return 0;
3606 }
3607 
3608 static void __exit stmmac_exit(void)
3609 {
3610 #ifdef CONFIG_DEBUG_FS
3611 	debugfs_remove_recursive(stmmac_fs_dir);
3612 #endif
3613 }
3614 
3615 module_init(stmmac_init)
3616 module_exit(stmmac_exit)
3617 
3618 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
3619 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
3620 MODULE_LICENSE("GPL");
3621