xref: /linux/drivers/net/ethernet/stmicro/stmmac/stmmac_main.c (revision 1f8d99de1d1b4b3764203ae02db57041475dab84)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*******************************************************************************
3   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
4   ST Ethernet IPs are built around a Synopsys IP Core.
5 
6 	Copyright(C) 2007-2011 STMicroelectronics Ltd
7 
8 
9   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
10 
11   Documentation available at:
12 	http://www.stlinux.com
13   Support available at:
14 	https://bugzilla.stlinux.com/
15 *******************************************************************************/
16 
17 #include <linux/clk.h>
18 #include <linux/kernel.h>
19 #include <linux/interrupt.h>
20 #include <linux/ip.h>
21 #include <linux/tcp.h>
22 #include <linux/skbuff.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_ether.h>
25 #include <linux/crc32.h>
26 #include <linux/mii.h>
27 #include <linux/if.h>
28 #include <linux/if_vlan.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/slab.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/prefetch.h>
33 #include <linux/pinctrl/consumer.h>
34 #ifdef CONFIG_DEBUG_FS
35 #include <linux/debugfs.h>
36 #include <linux/seq_file.h>
37 #endif /* CONFIG_DEBUG_FS */
38 #include <linux/net_tstamp.h>
39 #include <linux/phylink.h>
40 #include <linux/udp.h>
41 #include <linux/bpf_trace.h>
42 #include <net/pkt_cls.h>
43 #include <net/xdp_sock_drv.h>
44 #include "stmmac_ptp.h"
45 #include "stmmac.h"
46 #include "stmmac_xdp.h"
47 #include <linux/reset.h>
48 #include <linux/of_mdio.h>
49 #include "dwmac1000.h"
50 #include "dwxgmac2.h"
51 #include "hwif.h"
52 
53 /* As long as the interface is active, we keep the timestamping counter enabled
54  * with fine resolution and binary rollover. This avoid non-monotonic behavior
55  * (clock jumps) when changing timestamping settings at runtime.
56  */
57 #define STMMAC_HWTS_ACTIVE	(PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | \
58 				 PTP_TCR_TSCTRLSSR)
59 
60 #define	STMMAC_ALIGN(x)		ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16)
61 #define	TSO_MAX_BUFF_SIZE	(SZ_16K - 1)
62 
63 /* Module parameters */
64 #define TX_TIMEO	5000
65 static int watchdog = TX_TIMEO;
66 module_param(watchdog, int, 0644);
67 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
68 
69 static int debug = -1;
70 module_param(debug, int, 0644);
71 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
72 
73 static int phyaddr = -1;
74 module_param(phyaddr, int, 0444);
75 MODULE_PARM_DESC(phyaddr, "Physical device address");
76 
77 #define STMMAC_TX_THRESH(x)	((x)->dma_tx_size / 4)
78 #define STMMAC_RX_THRESH(x)	((x)->dma_rx_size / 4)
79 
80 /* Limit to make sure XDP TX and slow path can coexist */
81 #define STMMAC_XSK_TX_BUDGET_MAX	256
82 #define STMMAC_TX_XSK_AVAIL		16
83 #define STMMAC_RX_FILL_BATCH		16
84 
85 #define STMMAC_XDP_PASS		0
86 #define STMMAC_XDP_CONSUMED	BIT(0)
87 #define STMMAC_XDP_TX		BIT(1)
88 #define STMMAC_XDP_REDIRECT	BIT(2)
89 
90 static int flow_ctrl = FLOW_AUTO;
91 module_param(flow_ctrl, int, 0644);
92 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
93 
94 static int pause = PAUSE_TIME;
95 module_param(pause, int, 0644);
96 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
97 
98 #define TC_DEFAULT 64
99 static int tc = TC_DEFAULT;
100 module_param(tc, int, 0644);
101 MODULE_PARM_DESC(tc, "DMA threshold control value");
102 
103 #define	DEFAULT_BUFSIZE	1536
104 static int buf_sz = DEFAULT_BUFSIZE;
105 module_param(buf_sz, int, 0644);
106 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
107 
108 #define	STMMAC_RX_COPYBREAK	256
109 
110 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
111 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
112 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
113 
114 #define STMMAC_DEFAULT_LPI_TIMER	1000
115 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
116 module_param(eee_timer, int, 0644);
117 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
118 #define STMMAC_LPI_T(x) (jiffies + usecs_to_jiffies(x))
119 
120 /* By default the driver will use the ring mode to manage tx and rx descriptors,
121  * but allow user to force to use the chain instead of the ring
122  */
123 static unsigned int chain_mode;
124 module_param(chain_mode, int, 0444);
125 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
126 
127 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
128 /* For MSI interrupts handling */
129 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id);
130 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id);
131 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data);
132 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data);
133 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue);
134 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue);
135 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
136 					  u32 rxmode, u32 chan);
137 
138 #ifdef CONFIG_DEBUG_FS
139 static const struct net_device_ops stmmac_netdev_ops;
140 static void stmmac_init_fs(struct net_device *dev);
141 static void stmmac_exit_fs(struct net_device *dev);
142 #endif
143 
144 #define STMMAC_COAL_TIMER(x) (ns_to_ktime((x) * NSEC_PER_USEC))
145 
146 int stmmac_bus_clks_config(struct stmmac_priv *priv, bool enabled)
147 {
148 	int ret = 0;
149 
150 	if (enabled) {
151 		ret = clk_prepare_enable(priv->plat->stmmac_clk);
152 		if (ret)
153 			return ret;
154 		ret = clk_prepare_enable(priv->plat->pclk);
155 		if (ret) {
156 			clk_disable_unprepare(priv->plat->stmmac_clk);
157 			return ret;
158 		}
159 		if (priv->plat->clks_config) {
160 			ret = priv->plat->clks_config(priv->plat->bsp_priv, enabled);
161 			if (ret) {
162 				clk_disable_unprepare(priv->plat->stmmac_clk);
163 				clk_disable_unprepare(priv->plat->pclk);
164 				return ret;
165 			}
166 		}
167 	} else {
168 		clk_disable_unprepare(priv->plat->stmmac_clk);
169 		clk_disable_unprepare(priv->plat->pclk);
170 		if (priv->plat->clks_config)
171 			priv->plat->clks_config(priv->plat->bsp_priv, enabled);
172 	}
173 
174 	return ret;
175 }
176 EXPORT_SYMBOL_GPL(stmmac_bus_clks_config);
177 
178 /**
179  * stmmac_verify_args - verify the driver parameters.
180  * Description: it checks the driver parameters and set a default in case of
181  * errors.
182  */
183 static void stmmac_verify_args(void)
184 {
185 	if (unlikely(watchdog < 0))
186 		watchdog = TX_TIMEO;
187 	if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
188 		buf_sz = DEFAULT_BUFSIZE;
189 	if (unlikely(flow_ctrl > 1))
190 		flow_ctrl = FLOW_AUTO;
191 	else if (likely(flow_ctrl < 0))
192 		flow_ctrl = FLOW_OFF;
193 	if (unlikely((pause < 0) || (pause > 0xffff)))
194 		pause = PAUSE_TIME;
195 	if (eee_timer < 0)
196 		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
197 }
198 
199 static void __stmmac_disable_all_queues(struct stmmac_priv *priv)
200 {
201 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
202 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
203 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
204 	u32 queue;
205 
206 	for (queue = 0; queue < maxq; queue++) {
207 		struct stmmac_channel *ch = &priv->channel[queue];
208 
209 		if (stmmac_xdp_is_enabled(priv) &&
210 		    test_bit(queue, priv->af_xdp_zc_qps)) {
211 			napi_disable(&ch->rxtx_napi);
212 			continue;
213 		}
214 
215 		if (queue < rx_queues_cnt)
216 			napi_disable(&ch->rx_napi);
217 		if (queue < tx_queues_cnt)
218 			napi_disable(&ch->tx_napi);
219 	}
220 }
221 
222 /**
223  * stmmac_disable_all_queues - Disable all queues
224  * @priv: driver private structure
225  */
226 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
227 {
228 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
229 	struct stmmac_rx_queue *rx_q;
230 	u32 queue;
231 
232 	/* synchronize_rcu() needed for pending XDP buffers to drain */
233 	for (queue = 0; queue < rx_queues_cnt; queue++) {
234 		rx_q = &priv->rx_queue[queue];
235 		if (rx_q->xsk_pool) {
236 			synchronize_rcu();
237 			break;
238 		}
239 	}
240 
241 	__stmmac_disable_all_queues(priv);
242 }
243 
244 /**
245  * stmmac_enable_all_queues - Enable all queues
246  * @priv: driver private structure
247  */
248 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
249 {
250 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
251 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
252 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
253 	u32 queue;
254 
255 	for (queue = 0; queue < maxq; queue++) {
256 		struct stmmac_channel *ch = &priv->channel[queue];
257 
258 		if (stmmac_xdp_is_enabled(priv) &&
259 		    test_bit(queue, priv->af_xdp_zc_qps)) {
260 			napi_enable(&ch->rxtx_napi);
261 			continue;
262 		}
263 
264 		if (queue < rx_queues_cnt)
265 			napi_enable(&ch->rx_napi);
266 		if (queue < tx_queues_cnt)
267 			napi_enable(&ch->tx_napi);
268 	}
269 }
270 
271 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
272 {
273 	if (!test_bit(STMMAC_DOWN, &priv->state) &&
274 	    !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
275 		queue_work(priv->wq, &priv->service_task);
276 }
277 
278 static void stmmac_global_err(struct stmmac_priv *priv)
279 {
280 	netif_carrier_off(priv->dev);
281 	set_bit(STMMAC_RESET_REQUESTED, &priv->state);
282 	stmmac_service_event_schedule(priv);
283 }
284 
285 /**
286  * stmmac_clk_csr_set - dynamically set the MDC clock
287  * @priv: driver private structure
288  * Description: this is to dynamically set the MDC clock according to the csr
289  * clock input.
290  * Note:
291  *	If a specific clk_csr value is passed from the platform
292  *	this means that the CSR Clock Range selection cannot be
293  *	changed at run-time and it is fixed (as reported in the driver
294  *	documentation). Viceversa the driver will try to set the MDC
295  *	clock dynamically according to the actual clock input.
296  */
297 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
298 {
299 	u32 clk_rate;
300 
301 	clk_rate = clk_get_rate(priv->plat->stmmac_clk);
302 
303 	/* Platform provided default clk_csr would be assumed valid
304 	 * for all other cases except for the below mentioned ones.
305 	 * For values higher than the IEEE 802.3 specified frequency
306 	 * we can not estimate the proper divider as it is not known
307 	 * the frequency of clk_csr_i. So we do not change the default
308 	 * divider.
309 	 */
310 	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
311 		if (clk_rate < CSR_F_35M)
312 			priv->clk_csr = STMMAC_CSR_20_35M;
313 		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
314 			priv->clk_csr = STMMAC_CSR_35_60M;
315 		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
316 			priv->clk_csr = STMMAC_CSR_60_100M;
317 		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
318 			priv->clk_csr = STMMAC_CSR_100_150M;
319 		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
320 			priv->clk_csr = STMMAC_CSR_150_250M;
321 		else if ((clk_rate >= CSR_F_250M) && (clk_rate <= CSR_F_300M))
322 			priv->clk_csr = STMMAC_CSR_250_300M;
323 	}
324 
325 	if (priv->plat->has_sun8i) {
326 		if (clk_rate > 160000000)
327 			priv->clk_csr = 0x03;
328 		else if (clk_rate > 80000000)
329 			priv->clk_csr = 0x02;
330 		else if (clk_rate > 40000000)
331 			priv->clk_csr = 0x01;
332 		else
333 			priv->clk_csr = 0;
334 	}
335 
336 	if (priv->plat->has_xgmac) {
337 		if (clk_rate > 400000000)
338 			priv->clk_csr = 0x5;
339 		else if (clk_rate > 350000000)
340 			priv->clk_csr = 0x4;
341 		else if (clk_rate > 300000000)
342 			priv->clk_csr = 0x3;
343 		else if (clk_rate > 250000000)
344 			priv->clk_csr = 0x2;
345 		else if (clk_rate > 150000000)
346 			priv->clk_csr = 0x1;
347 		else
348 			priv->clk_csr = 0x0;
349 	}
350 }
351 
352 static void print_pkt(unsigned char *buf, int len)
353 {
354 	pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
355 	print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
356 }
357 
358 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
359 {
360 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
361 	u32 avail;
362 
363 	if (tx_q->dirty_tx > tx_q->cur_tx)
364 		avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
365 	else
366 		avail = priv->dma_tx_size - tx_q->cur_tx + tx_q->dirty_tx - 1;
367 
368 	return avail;
369 }
370 
371 /**
372  * stmmac_rx_dirty - Get RX queue dirty
373  * @priv: driver private structure
374  * @queue: RX queue index
375  */
376 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
377 {
378 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
379 	u32 dirty;
380 
381 	if (rx_q->dirty_rx <= rx_q->cur_rx)
382 		dirty = rx_q->cur_rx - rx_q->dirty_rx;
383 	else
384 		dirty = priv->dma_rx_size - rx_q->dirty_rx + rx_q->cur_rx;
385 
386 	return dirty;
387 }
388 
389 static void stmmac_lpi_entry_timer_config(struct stmmac_priv *priv, bool en)
390 {
391 	int tx_lpi_timer;
392 
393 	/* Clear/set the SW EEE timer flag based on LPI ET enablement */
394 	priv->eee_sw_timer_en = en ? 0 : 1;
395 	tx_lpi_timer  = en ? priv->tx_lpi_timer : 0;
396 	stmmac_set_eee_lpi_timer(priv, priv->hw, tx_lpi_timer);
397 }
398 
399 /**
400  * stmmac_enable_eee_mode - check and enter in LPI mode
401  * @priv: driver private structure
402  * Description: this function is to verify and enter in LPI mode in case of
403  * EEE.
404  */
405 static int stmmac_enable_eee_mode(struct stmmac_priv *priv)
406 {
407 	u32 tx_cnt = priv->plat->tx_queues_to_use;
408 	u32 queue;
409 
410 	/* check if all TX queues have the work finished */
411 	for (queue = 0; queue < tx_cnt; queue++) {
412 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
413 
414 		if (tx_q->dirty_tx != tx_q->cur_tx)
415 			return -EBUSY; /* still unfinished work */
416 	}
417 
418 	/* Check and enter in LPI mode */
419 	if (!priv->tx_path_in_lpi_mode)
420 		stmmac_set_eee_mode(priv, priv->hw,
421 				priv->plat->en_tx_lpi_clockgating);
422 	return 0;
423 }
424 
425 /**
426  * stmmac_disable_eee_mode - disable and exit from LPI mode
427  * @priv: driver private structure
428  * Description: this function is to exit and disable EEE in case of
429  * LPI state is true. This is called by the xmit.
430  */
431 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
432 {
433 	if (!priv->eee_sw_timer_en) {
434 		stmmac_lpi_entry_timer_config(priv, 0);
435 		return;
436 	}
437 
438 	stmmac_reset_eee_mode(priv, priv->hw);
439 	del_timer_sync(&priv->eee_ctrl_timer);
440 	priv->tx_path_in_lpi_mode = false;
441 }
442 
443 /**
444  * stmmac_eee_ctrl_timer - EEE TX SW timer.
445  * @t:  timer_list struct containing private info
446  * Description:
447  *  if there is no data transfer and if we are not in LPI state,
448  *  then MAC Transmitter can be moved to LPI state.
449  */
450 static void stmmac_eee_ctrl_timer(struct timer_list *t)
451 {
452 	struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
453 
454 	if (stmmac_enable_eee_mode(priv))
455 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
456 }
457 
458 /**
459  * stmmac_eee_init - init EEE
460  * @priv: driver private structure
461  * Description:
462  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
463  *  can also manage EEE, this function enable the LPI state and start related
464  *  timer.
465  */
466 bool stmmac_eee_init(struct stmmac_priv *priv)
467 {
468 	int eee_tw_timer = priv->eee_tw_timer;
469 
470 	/* Using PCS we cannot dial with the phy registers at this stage
471 	 * so we do not support extra feature like EEE.
472 	 */
473 	if (priv->hw->pcs == STMMAC_PCS_TBI ||
474 	    priv->hw->pcs == STMMAC_PCS_RTBI)
475 		return false;
476 
477 	/* Check if MAC core supports the EEE feature. */
478 	if (!priv->dma_cap.eee)
479 		return false;
480 
481 	mutex_lock(&priv->lock);
482 
483 	/* Check if it needs to be deactivated */
484 	if (!priv->eee_active) {
485 		if (priv->eee_enabled) {
486 			netdev_dbg(priv->dev, "disable EEE\n");
487 			stmmac_lpi_entry_timer_config(priv, 0);
488 			del_timer_sync(&priv->eee_ctrl_timer);
489 			stmmac_set_eee_timer(priv, priv->hw, 0, eee_tw_timer);
490 			if (priv->hw->xpcs)
491 				xpcs_config_eee(priv->hw->xpcs,
492 						priv->plat->mult_fact_100ns,
493 						false);
494 		}
495 		mutex_unlock(&priv->lock);
496 		return false;
497 	}
498 
499 	if (priv->eee_active && !priv->eee_enabled) {
500 		timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
501 		stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
502 				     eee_tw_timer);
503 		if (priv->hw->xpcs)
504 			xpcs_config_eee(priv->hw->xpcs,
505 					priv->plat->mult_fact_100ns,
506 					true);
507 	}
508 
509 	if (priv->plat->has_gmac4 && priv->tx_lpi_timer <= STMMAC_ET_MAX) {
510 		del_timer_sync(&priv->eee_ctrl_timer);
511 		priv->tx_path_in_lpi_mode = false;
512 		stmmac_lpi_entry_timer_config(priv, 1);
513 	} else {
514 		stmmac_lpi_entry_timer_config(priv, 0);
515 		mod_timer(&priv->eee_ctrl_timer,
516 			  STMMAC_LPI_T(priv->tx_lpi_timer));
517 	}
518 
519 	mutex_unlock(&priv->lock);
520 	netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
521 	return true;
522 }
523 
524 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
525  * @priv: driver private structure
526  * @p : descriptor pointer
527  * @skb : the socket buffer
528  * Description :
529  * This function will read timestamp from the descriptor & pass it to stack.
530  * and also perform some sanity checks.
531  */
532 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
533 				   struct dma_desc *p, struct sk_buff *skb)
534 {
535 	struct skb_shared_hwtstamps shhwtstamp;
536 	bool found = false;
537 	u64 ns = 0;
538 
539 	if (!priv->hwts_tx_en)
540 		return;
541 
542 	/* exit if skb doesn't support hw tstamp */
543 	if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
544 		return;
545 
546 	/* check tx tstamp status */
547 	if (stmmac_get_tx_timestamp_status(priv, p)) {
548 		stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
549 		found = true;
550 	} else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) {
551 		found = true;
552 	}
553 
554 	if (found) {
555 		ns -= priv->plat->cdc_error_adj;
556 
557 		memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
558 		shhwtstamp.hwtstamp = ns_to_ktime(ns);
559 
560 		netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
561 		/* pass tstamp to stack */
562 		skb_tstamp_tx(skb, &shhwtstamp);
563 	}
564 }
565 
566 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
567  * @priv: driver private structure
568  * @p : descriptor pointer
569  * @np : next descriptor pointer
570  * @skb : the socket buffer
571  * Description :
572  * This function will read received packet's timestamp from the descriptor
573  * and pass it to stack. It also perform some sanity checks.
574  */
575 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
576 				   struct dma_desc *np, struct sk_buff *skb)
577 {
578 	struct skb_shared_hwtstamps *shhwtstamp = NULL;
579 	struct dma_desc *desc = p;
580 	u64 ns = 0;
581 
582 	if (!priv->hwts_rx_en)
583 		return;
584 	/* For GMAC4, the valid timestamp is from CTX next desc. */
585 	if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
586 		desc = np;
587 
588 	/* Check if timestamp is available */
589 	if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
590 		stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
591 
592 		ns -= priv->plat->cdc_error_adj;
593 
594 		netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
595 		shhwtstamp = skb_hwtstamps(skb);
596 		memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
597 		shhwtstamp->hwtstamp = ns_to_ktime(ns);
598 	} else  {
599 		netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
600 	}
601 }
602 
603 /**
604  *  stmmac_hwtstamp_set - control hardware timestamping.
605  *  @dev: device pointer.
606  *  @ifr: An IOCTL specific structure, that can contain a pointer to
607  *  a proprietary structure used to pass information to the driver.
608  *  Description:
609  *  This function configures the MAC to enable/disable both outgoing(TX)
610  *  and incoming(RX) packets time stamping based on user input.
611  *  Return Value:
612  *  0 on success and an appropriate -ve integer on failure.
613  */
614 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
615 {
616 	struct stmmac_priv *priv = netdev_priv(dev);
617 	struct hwtstamp_config config;
618 	u32 ptp_v2 = 0;
619 	u32 tstamp_all = 0;
620 	u32 ptp_over_ipv4_udp = 0;
621 	u32 ptp_over_ipv6_udp = 0;
622 	u32 ptp_over_ethernet = 0;
623 	u32 snap_type_sel = 0;
624 	u32 ts_master_en = 0;
625 	u32 ts_event_en = 0;
626 
627 	if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
628 		netdev_alert(priv->dev, "No support for HW time stamping\n");
629 		priv->hwts_tx_en = 0;
630 		priv->hwts_rx_en = 0;
631 
632 		return -EOPNOTSUPP;
633 	}
634 
635 	if (copy_from_user(&config, ifr->ifr_data,
636 			   sizeof(config)))
637 		return -EFAULT;
638 
639 	netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
640 		   __func__, config.flags, config.tx_type, config.rx_filter);
641 
642 	if (config.tx_type != HWTSTAMP_TX_OFF &&
643 	    config.tx_type != HWTSTAMP_TX_ON)
644 		return -ERANGE;
645 
646 	if (priv->adv_ts) {
647 		switch (config.rx_filter) {
648 		case HWTSTAMP_FILTER_NONE:
649 			/* time stamp no incoming packet at all */
650 			config.rx_filter = HWTSTAMP_FILTER_NONE;
651 			break;
652 
653 		case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
654 			/* PTP v1, UDP, any kind of event packet */
655 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
656 			/* 'xmac' hardware can support Sync, Pdelay_Req and
657 			 * Pdelay_resp by setting bit14 and bits17/16 to 01
658 			 * This leaves Delay_Req timestamps out.
659 			 * Enable all events *and* general purpose message
660 			 * timestamping
661 			 */
662 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
663 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
664 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
665 			break;
666 
667 		case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
668 			/* PTP v1, UDP, Sync packet */
669 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
670 			/* take time stamp for SYNC messages only */
671 			ts_event_en = PTP_TCR_TSEVNTENA;
672 
673 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
674 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
675 			break;
676 
677 		case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
678 			/* PTP v1, UDP, Delay_req packet */
679 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
680 			/* take time stamp for Delay_Req messages only */
681 			ts_master_en = PTP_TCR_TSMSTRENA;
682 			ts_event_en = PTP_TCR_TSEVNTENA;
683 
684 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
685 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
686 			break;
687 
688 		case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
689 			/* PTP v2, UDP, any kind of event packet */
690 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
691 			ptp_v2 = PTP_TCR_TSVER2ENA;
692 			/* take time stamp for all event messages */
693 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
694 
695 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
696 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
697 			break;
698 
699 		case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
700 			/* PTP v2, UDP, Sync packet */
701 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
702 			ptp_v2 = PTP_TCR_TSVER2ENA;
703 			/* take time stamp for SYNC messages only */
704 			ts_event_en = PTP_TCR_TSEVNTENA;
705 
706 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
707 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
708 			break;
709 
710 		case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
711 			/* PTP v2, UDP, Delay_req packet */
712 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
713 			ptp_v2 = PTP_TCR_TSVER2ENA;
714 			/* take time stamp for Delay_Req messages only */
715 			ts_master_en = PTP_TCR_TSMSTRENA;
716 			ts_event_en = PTP_TCR_TSEVNTENA;
717 
718 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
719 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
720 			break;
721 
722 		case HWTSTAMP_FILTER_PTP_V2_EVENT:
723 			/* PTP v2/802.AS1 any layer, any kind of event packet */
724 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
725 			ptp_v2 = PTP_TCR_TSVER2ENA;
726 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
727 			if (priv->synopsys_id < DWMAC_CORE_4_10)
728 				ts_event_en = PTP_TCR_TSEVNTENA;
729 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
730 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
731 			ptp_over_ethernet = PTP_TCR_TSIPENA;
732 			break;
733 
734 		case HWTSTAMP_FILTER_PTP_V2_SYNC:
735 			/* PTP v2/802.AS1, any layer, Sync packet */
736 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
737 			ptp_v2 = PTP_TCR_TSVER2ENA;
738 			/* take time stamp for SYNC messages only */
739 			ts_event_en = PTP_TCR_TSEVNTENA;
740 
741 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
742 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
743 			ptp_over_ethernet = PTP_TCR_TSIPENA;
744 			break;
745 
746 		case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
747 			/* PTP v2/802.AS1, any layer, Delay_req packet */
748 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
749 			ptp_v2 = PTP_TCR_TSVER2ENA;
750 			/* take time stamp for Delay_Req messages only */
751 			ts_master_en = PTP_TCR_TSMSTRENA;
752 			ts_event_en = PTP_TCR_TSEVNTENA;
753 
754 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
755 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
756 			ptp_over_ethernet = PTP_TCR_TSIPENA;
757 			break;
758 
759 		case HWTSTAMP_FILTER_NTP_ALL:
760 		case HWTSTAMP_FILTER_ALL:
761 			/* time stamp any incoming packet */
762 			config.rx_filter = HWTSTAMP_FILTER_ALL;
763 			tstamp_all = PTP_TCR_TSENALL;
764 			break;
765 
766 		default:
767 			return -ERANGE;
768 		}
769 	} else {
770 		switch (config.rx_filter) {
771 		case HWTSTAMP_FILTER_NONE:
772 			config.rx_filter = HWTSTAMP_FILTER_NONE;
773 			break;
774 		default:
775 			/* PTP v1, UDP, any kind of event packet */
776 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
777 			break;
778 		}
779 	}
780 	priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
781 	priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
782 
783 	priv->systime_flags = STMMAC_HWTS_ACTIVE;
784 
785 	if (priv->hwts_tx_en || priv->hwts_rx_en) {
786 		priv->systime_flags |= tstamp_all | ptp_v2 |
787 				       ptp_over_ethernet | ptp_over_ipv6_udp |
788 				       ptp_over_ipv4_udp | ts_event_en |
789 				       ts_master_en | snap_type_sel;
790 	}
791 
792 	stmmac_config_hw_tstamping(priv, priv->ptpaddr, priv->systime_flags);
793 
794 	memcpy(&priv->tstamp_config, &config, sizeof(config));
795 
796 	return copy_to_user(ifr->ifr_data, &config,
797 			    sizeof(config)) ? -EFAULT : 0;
798 }
799 
800 /**
801  *  stmmac_hwtstamp_get - read hardware timestamping.
802  *  @dev: device pointer.
803  *  @ifr: An IOCTL specific structure, that can contain a pointer to
804  *  a proprietary structure used to pass information to the driver.
805  *  Description:
806  *  This function obtain the current hardware timestamping settings
807  *  as requested.
808  */
809 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
810 {
811 	struct stmmac_priv *priv = netdev_priv(dev);
812 	struct hwtstamp_config *config = &priv->tstamp_config;
813 
814 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
815 		return -EOPNOTSUPP;
816 
817 	return copy_to_user(ifr->ifr_data, config,
818 			    sizeof(*config)) ? -EFAULT : 0;
819 }
820 
821 /**
822  * stmmac_init_tstamp_counter - init hardware timestamping counter
823  * @priv: driver private structure
824  * @systime_flags: timestamping flags
825  * Description:
826  * Initialize hardware counter for packet timestamping.
827  * This is valid as long as the interface is open and not suspended.
828  * Will be rerun after resuming from suspend, case in which the timestamping
829  * flags updated by stmmac_hwtstamp_set() also need to be restored.
830  */
831 int stmmac_init_tstamp_counter(struct stmmac_priv *priv, u32 systime_flags)
832 {
833 	bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
834 	struct timespec64 now;
835 	u32 sec_inc = 0;
836 	u64 temp = 0;
837 	int ret;
838 
839 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
840 		return -EOPNOTSUPP;
841 
842 	ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
843 	if (ret < 0) {
844 		netdev_warn(priv->dev,
845 			    "failed to enable PTP reference clock: %pe\n",
846 			    ERR_PTR(ret));
847 		return ret;
848 	}
849 
850 	stmmac_config_hw_tstamping(priv, priv->ptpaddr, systime_flags);
851 	priv->systime_flags = systime_flags;
852 
853 	/* program Sub Second Increment reg */
854 	stmmac_config_sub_second_increment(priv, priv->ptpaddr,
855 					   priv->plat->clk_ptp_rate,
856 					   xmac, &sec_inc);
857 	temp = div_u64(1000000000ULL, sec_inc);
858 
859 	/* Store sub second increment for later use */
860 	priv->sub_second_inc = sec_inc;
861 
862 	/* calculate default added value:
863 	 * formula is :
864 	 * addend = (2^32)/freq_div_ratio;
865 	 * where, freq_div_ratio = 1e9ns/sec_inc
866 	 */
867 	temp = (u64)(temp << 32);
868 	priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
869 	stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
870 
871 	/* initialize system time */
872 	ktime_get_real_ts64(&now);
873 
874 	/* lower 32 bits of tv_sec are safe until y2106 */
875 	stmmac_init_systime(priv, priv->ptpaddr, (u32)now.tv_sec, now.tv_nsec);
876 
877 	return 0;
878 }
879 EXPORT_SYMBOL_GPL(stmmac_init_tstamp_counter);
880 
881 /**
882  * stmmac_init_ptp - init PTP
883  * @priv: driver private structure
884  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
885  * This is done by looking at the HW cap. register.
886  * This function also registers the ptp driver.
887  */
888 static int stmmac_init_ptp(struct stmmac_priv *priv)
889 {
890 	bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
891 	int ret;
892 
893 	if (priv->plat->ptp_clk_freq_config)
894 		priv->plat->ptp_clk_freq_config(priv);
895 
896 	ret = stmmac_init_tstamp_counter(priv, STMMAC_HWTS_ACTIVE);
897 	if (ret)
898 		return ret;
899 
900 	priv->adv_ts = 0;
901 	/* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
902 	if (xmac && priv->dma_cap.atime_stamp)
903 		priv->adv_ts = 1;
904 	/* Dwmac 3.x core with extend_desc can support adv_ts */
905 	else if (priv->extend_desc && priv->dma_cap.atime_stamp)
906 		priv->adv_ts = 1;
907 
908 	if (priv->dma_cap.time_stamp)
909 		netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
910 
911 	if (priv->adv_ts)
912 		netdev_info(priv->dev,
913 			    "IEEE 1588-2008 Advanced Timestamp supported\n");
914 
915 	priv->hwts_tx_en = 0;
916 	priv->hwts_rx_en = 0;
917 
918 	return 0;
919 }
920 
921 static void stmmac_release_ptp(struct stmmac_priv *priv)
922 {
923 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
924 	stmmac_ptp_unregister(priv);
925 }
926 
927 /**
928  *  stmmac_mac_flow_ctrl - Configure flow control in all queues
929  *  @priv: driver private structure
930  *  @duplex: duplex passed to the next function
931  *  Description: It is used for configuring the flow control in all queues
932  */
933 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
934 {
935 	u32 tx_cnt = priv->plat->tx_queues_to_use;
936 
937 	stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
938 			priv->pause, tx_cnt);
939 }
940 
941 static struct phylink_pcs *stmmac_mac_select_pcs(struct phylink_config *config,
942 						 phy_interface_t interface)
943 {
944 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
945 
946 	if (!priv->hw->xpcs)
947 		return NULL;
948 
949 	return &priv->hw->xpcs->pcs;
950 }
951 
952 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
953 			      const struct phylink_link_state *state)
954 {
955 	/* Nothing to do, xpcs_config() handles everything */
956 }
957 
958 static void stmmac_fpe_link_state_handle(struct stmmac_priv *priv, bool is_up)
959 {
960 	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
961 	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
962 	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
963 	bool *hs_enable = &fpe_cfg->hs_enable;
964 
965 	if (is_up && *hs_enable) {
966 		stmmac_fpe_send_mpacket(priv, priv->ioaddr, MPACKET_VERIFY);
967 	} else {
968 		*lo_state = FPE_STATE_OFF;
969 		*lp_state = FPE_STATE_OFF;
970 	}
971 }
972 
973 static void stmmac_mac_link_down(struct phylink_config *config,
974 				 unsigned int mode, phy_interface_t interface)
975 {
976 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
977 
978 	stmmac_mac_set(priv, priv->ioaddr, false);
979 	priv->eee_active = false;
980 	priv->tx_lpi_enabled = false;
981 	priv->eee_enabled = stmmac_eee_init(priv);
982 	stmmac_set_eee_pls(priv, priv->hw, false);
983 
984 	if (priv->dma_cap.fpesel)
985 		stmmac_fpe_link_state_handle(priv, false);
986 }
987 
988 static void stmmac_mac_link_up(struct phylink_config *config,
989 			       struct phy_device *phy,
990 			       unsigned int mode, phy_interface_t interface,
991 			       int speed, int duplex,
992 			       bool tx_pause, bool rx_pause)
993 {
994 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
995 	u32 ctrl;
996 
997 	ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
998 	ctrl &= ~priv->hw->link.speed_mask;
999 
1000 	if (interface == PHY_INTERFACE_MODE_USXGMII) {
1001 		switch (speed) {
1002 		case SPEED_10000:
1003 			ctrl |= priv->hw->link.xgmii.speed10000;
1004 			break;
1005 		case SPEED_5000:
1006 			ctrl |= priv->hw->link.xgmii.speed5000;
1007 			break;
1008 		case SPEED_2500:
1009 			ctrl |= priv->hw->link.xgmii.speed2500;
1010 			break;
1011 		default:
1012 			return;
1013 		}
1014 	} else if (interface == PHY_INTERFACE_MODE_XLGMII) {
1015 		switch (speed) {
1016 		case SPEED_100000:
1017 			ctrl |= priv->hw->link.xlgmii.speed100000;
1018 			break;
1019 		case SPEED_50000:
1020 			ctrl |= priv->hw->link.xlgmii.speed50000;
1021 			break;
1022 		case SPEED_40000:
1023 			ctrl |= priv->hw->link.xlgmii.speed40000;
1024 			break;
1025 		case SPEED_25000:
1026 			ctrl |= priv->hw->link.xlgmii.speed25000;
1027 			break;
1028 		case SPEED_10000:
1029 			ctrl |= priv->hw->link.xgmii.speed10000;
1030 			break;
1031 		case SPEED_2500:
1032 			ctrl |= priv->hw->link.speed2500;
1033 			break;
1034 		case SPEED_1000:
1035 			ctrl |= priv->hw->link.speed1000;
1036 			break;
1037 		default:
1038 			return;
1039 		}
1040 	} else {
1041 		switch (speed) {
1042 		case SPEED_2500:
1043 			ctrl |= priv->hw->link.speed2500;
1044 			break;
1045 		case SPEED_1000:
1046 			ctrl |= priv->hw->link.speed1000;
1047 			break;
1048 		case SPEED_100:
1049 			ctrl |= priv->hw->link.speed100;
1050 			break;
1051 		case SPEED_10:
1052 			ctrl |= priv->hw->link.speed10;
1053 			break;
1054 		default:
1055 			return;
1056 		}
1057 	}
1058 
1059 	priv->speed = speed;
1060 
1061 	if (priv->plat->fix_mac_speed)
1062 		priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed);
1063 
1064 	if (!duplex)
1065 		ctrl &= ~priv->hw->link.duplex;
1066 	else
1067 		ctrl |= priv->hw->link.duplex;
1068 
1069 	/* Flow Control operation */
1070 	if (tx_pause && rx_pause)
1071 		stmmac_mac_flow_ctrl(priv, duplex);
1072 
1073 	writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
1074 
1075 	stmmac_mac_set(priv, priv->ioaddr, true);
1076 	if (phy && priv->dma_cap.eee) {
1077 		priv->eee_active = phy_init_eee(phy, 1) >= 0;
1078 		priv->eee_enabled = stmmac_eee_init(priv);
1079 		priv->tx_lpi_enabled = priv->eee_enabled;
1080 		stmmac_set_eee_pls(priv, priv->hw, true);
1081 	}
1082 
1083 	if (priv->dma_cap.fpesel)
1084 		stmmac_fpe_link_state_handle(priv, true);
1085 }
1086 
1087 static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
1088 	.validate = phylink_generic_validate,
1089 	.mac_select_pcs = stmmac_mac_select_pcs,
1090 	.mac_config = stmmac_mac_config,
1091 	.mac_link_down = stmmac_mac_link_down,
1092 	.mac_link_up = stmmac_mac_link_up,
1093 };
1094 
1095 /**
1096  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
1097  * @priv: driver private structure
1098  * Description: this is to verify if the HW supports the PCS.
1099  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
1100  * configured for the TBI, RTBI, or SGMII PHY interface.
1101  */
1102 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
1103 {
1104 	int interface = priv->plat->interface;
1105 
1106 	if (priv->dma_cap.pcs) {
1107 		if ((interface == PHY_INTERFACE_MODE_RGMII) ||
1108 		    (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
1109 		    (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
1110 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
1111 			netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
1112 			priv->hw->pcs = STMMAC_PCS_RGMII;
1113 		} else if (interface == PHY_INTERFACE_MODE_SGMII) {
1114 			netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
1115 			priv->hw->pcs = STMMAC_PCS_SGMII;
1116 		}
1117 	}
1118 }
1119 
1120 /**
1121  * stmmac_init_phy - PHY initialization
1122  * @dev: net device structure
1123  * Description: it initializes the driver's PHY state, and attaches the PHY
1124  * to the mac driver.
1125  *  Return value:
1126  *  0 on success
1127  */
1128 static int stmmac_init_phy(struct net_device *dev)
1129 {
1130 	struct stmmac_priv *priv = netdev_priv(dev);
1131 	struct device_node *node;
1132 	int ret;
1133 
1134 	node = priv->plat->phylink_node;
1135 
1136 	if (node)
1137 		ret = phylink_of_phy_connect(priv->phylink, node, 0);
1138 
1139 	/* Some DT bindings do not set-up the PHY handle. Let's try to
1140 	 * manually parse it
1141 	 */
1142 	if (!node || ret) {
1143 		int addr = priv->plat->phy_addr;
1144 		struct phy_device *phydev;
1145 
1146 		phydev = mdiobus_get_phy(priv->mii, addr);
1147 		if (!phydev) {
1148 			netdev_err(priv->dev, "no phy at addr %d\n", addr);
1149 			return -ENODEV;
1150 		}
1151 
1152 		ret = phylink_connect_phy(priv->phylink, phydev);
1153 	}
1154 
1155 	if (!priv->plat->pmt) {
1156 		struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
1157 
1158 		phylink_ethtool_get_wol(priv->phylink, &wol);
1159 		device_set_wakeup_capable(priv->device, !!wol.supported);
1160 	}
1161 
1162 	return ret;
1163 }
1164 
1165 static int stmmac_phy_setup(struct stmmac_priv *priv)
1166 {
1167 	struct stmmac_mdio_bus_data *mdio_bus_data = priv->plat->mdio_bus_data;
1168 	struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node);
1169 	int max_speed = priv->plat->max_speed;
1170 	int mode = priv->plat->phy_interface;
1171 	struct phylink *phylink;
1172 
1173 	priv->phylink_config.dev = &priv->dev->dev;
1174 	priv->phylink_config.type = PHYLINK_NETDEV;
1175 	if (priv->plat->mdio_bus_data)
1176 		priv->phylink_config.ovr_an_inband =
1177 			mdio_bus_data->xpcs_an_inband;
1178 
1179 	if (!fwnode)
1180 		fwnode = dev_fwnode(priv->device);
1181 
1182 	/* Set the platform/firmware specified interface mode */
1183 	__set_bit(mode, priv->phylink_config.supported_interfaces);
1184 
1185 	/* If we have an xpcs, it defines which PHY interfaces are supported. */
1186 	if (priv->hw->xpcs)
1187 		xpcs_get_interfaces(priv->hw->xpcs,
1188 				    priv->phylink_config.supported_interfaces);
1189 
1190 	priv->phylink_config.mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
1191 		MAC_10 | MAC_100;
1192 
1193 	if (!max_speed || max_speed >= 1000)
1194 		priv->phylink_config.mac_capabilities |= MAC_1000;
1195 
1196 	if (priv->plat->has_gmac4) {
1197 		if (!max_speed || max_speed >= 2500)
1198 			priv->phylink_config.mac_capabilities |= MAC_2500FD;
1199 	} else if (priv->plat->has_xgmac) {
1200 		if (!max_speed || max_speed >= 2500)
1201 			priv->phylink_config.mac_capabilities |= MAC_2500FD;
1202 		if (!max_speed || max_speed >= 5000)
1203 			priv->phylink_config.mac_capabilities |= MAC_5000FD;
1204 		if (!max_speed || max_speed >= 10000)
1205 			priv->phylink_config.mac_capabilities |= MAC_10000FD;
1206 		if (!max_speed || max_speed >= 25000)
1207 			priv->phylink_config.mac_capabilities |= MAC_25000FD;
1208 		if (!max_speed || max_speed >= 40000)
1209 			priv->phylink_config.mac_capabilities |= MAC_40000FD;
1210 		if (!max_speed || max_speed >= 50000)
1211 			priv->phylink_config.mac_capabilities |= MAC_50000FD;
1212 		if (!max_speed || max_speed >= 100000)
1213 			priv->phylink_config.mac_capabilities |= MAC_100000FD;
1214 	}
1215 
1216 	/* Half-Duplex can only work with single queue */
1217 	if (priv->plat->tx_queues_to_use > 1)
1218 		priv->phylink_config.mac_capabilities &=
1219 			~(MAC_10HD | MAC_100HD | MAC_1000HD);
1220 
1221 	phylink = phylink_create(&priv->phylink_config, fwnode,
1222 				 mode, &stmmac_phylink_mac_ops);
1223 	if (IS_ERR(phylink))
1224 		return PTR_ERR(phylink);
1225 
1226 	priv->phylink = phylink;
1227 	return 0;
1228 }
1229 
1230 static void stmmac_display_rx_rings(struct stmmac_priv *priv)
1231 {
1232 	u32 rx_cnt = priv->plat->rx_queues_to_use;
1233 	unsigned int desc_size;
1234 	void *head_rx;
1235 	u32 queue;
1236 
1237 	/* Display RX rings */
1238 	for (queue = 0; queue < rx_cnt; queue++) {
1239 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1240 
1241 		pr_info("\tRX Queue %u rings\n", queue);
1242 
1243 		if (priv->extend_desc) {
1244 			head_rx = (void *)rx_q->dma_erx;
1245 			desc_size = sizeof(struct dma_extended_desc);
1246 		} else {
1247 			head_rx = (void *)rx_q->dma_rx;
1248 			desc_size = sizeof(struct dma_desc);
1249 		}
1250 
1251 		/* Display RX ring */
1252 		stmmac_display_ring(priv, head_rx, priv->dma_rx_size, true,
1253 				    rx_q->dma_rx_phy, desc_size);
1254 	}
1255 }
1256 
1257 static void stmmac_display_tx_rings(struct stmmac_priv *priv)
1258 {
1259 	u32 tx_cnt = priv->plat->tx_queues_to_use;
1260 	unsigned int desc_size;
1261 	void *head_tx;
1262 	u32 queue;
1263 
1264 	/* Display TX rings */
1265 	for (queue = 0; queue < tx_cnt; queue++) {
1266 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1267 
1268 		pr_info("\tTX Queue %d rings\n", queue);
1269 
1270 		if (priv->extend_desc) {
1271 			head_tx = (void *)tx_q->dma_etx;
1272 			desc_size = sizeof(struct dma_extended_desc);
1273 		} else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1274 			head_tx = (void *)tx_q->dma_entx;
1275 			desc_size = sizeof(struct dma_edesc);
1276 		} else {
1277 			head_tx = (void *)tx_q->dma_tx;
1278 			desc_size = sizeof(struct dma_desc);
1279 		}
1280 
1281 		stmmac_display_ring(priv, head_tx, priv->dma_tx_size, false,
1282 				    tx_q->dma_tx_phy, desc_size);
1283 	}
1284 }
1285 
1286 static void stmmac_display_rings(struct stmmac_priv *priv)
1287 {
1288 	/* Display RX ring */
1289 	stmmac_display_rx_rings(priv);
1290 
1291 	/* Display TX ring */
1292 	stmmac_display_tx_rings(priv);
1293 }
1294 
1295 static int stmmac_set_bfsize(int mtu, int bufsize)
1296 {
1297 	int ret = bufsize;
1298 
1299 	if (mtu >= BUF_SIZE_8KiB)
1300 		ret = BUF_SIZE_16KiB;
1301 	else if (mtu >= BUF_SIZE_4KiB)
1302 		ret = BUF_SIZE_8KiB;
1303 	else if (mtu >= BUF_SIZE_2KiB)
1304 		ret = BUF_SIZE_4KiB;
1305 	else if (mtu > DEFAULT_BUFSIZE)
1306 		ret = BUF_SIZE_2KiB;
1307 	else
1308 		ret = DEFAULT_BUFSIZE;
1309 
1310 	return ret;
1311 }
1312 
1313 /**
1314  * stmmac_clear_rx_descriptors - clear RX descriptors
1315  * @priv: driver private structure
1316  * @queue: RX queue index
1317  * Description: this function is called to clear the RX descriptors
1318  * in case of both basic and extended descriptors are used.
1319  */
1320 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue)
1321 {
1322 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1323 	int i;
1324 
1325 	/* Clear the RX descriptors */
1326 	for (i = 0; i < priv->dma_rx_size; i++)
1327 		if (priv->extend_desc)
1328 			stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1329 					priv->use_riwt, priv->mode,
1330 					(i == priv->dma_rx_size - 1),
1331 					priv->dma_buf_sz);
1332 		else
1333 			stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1334 					priv->use_riwt, priv->mode,
1335 					(i == priv->dma_rx_size - 1),
1336 					priv->dma_buf_sz);
1337 }
1338 
1339 /**
1340  * stmmac_clear_tx_descriptors - clear tx descriptors
1341  * @priv: driver private structure
1342  * @queue: TX queue index.
1343  * Description: this function is called to clear the TX descriptors
1344  * in case of both basic and extended descriptors are used.
1345  */
1346 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue)
1347 {
1348 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1349 	int i;
1350 
1351 	/* Clear the TX descriptors */
1352 	for (i = 0; i < priv->dma_tx_size; i++) {
1353 		int last = (i == (priv->dma_tx_size - 1));
1354 		struct dma_desc *p;
1355 
1356 		if (priv->extend_desc)
1357 			p = &tx_q->dma_etx[i].basic;
1358 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1359 			p = &tx_q->dma_entx[i].basic;
1360 		else
1361 			p = &tx_q->dma_tx[i];
1362 
1363 		stmmac_init_tx_desc(priv, p, priv->mode, last);
1364 	}
1365 }
1366 
1367 /**
1368  * stmmac_clear_descriptors - clear descriptors
1369  * @priv: driver private structure
1370  * Description: this function is called to clear the TX and RX descriptors
1371  * in case of both basic and extended descriptors are used.
1372  */
1373 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
1374 {
1375 	u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1376 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1377 	u32 queue;
1378 
1379 	/* Clear the RX descriptors */
1380 	for (queue = 0; queue < rx_queue_cnt; queue++)
1381 		stmmac_clear_rx_descriptors(priv, queue);
1382 
1383 	/* Clear the TX descriptors */
1384 	for (queue = 0; queue < tx_queue_cnt; queue++)
1385 		stmmac_clear_tx_descriptors(priv, queue);
1386 }
1387 
1388 /**
1389  * stmmac_init_rx_buffers - init the RX descriptor buffer.
1390  * @priv: driver private structure
1391  * @p: descriptor pointer
1392  * @i: descriptor index
1393  * @flags: gfp flag
1394  * @queue: RX queue index
1395  * Description: this function is called to allocate a receive buffer, perform
1396  * the DMA mapping and init the descriptor.
1397  */
1398 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
1399 				  int i, gfp_t flags, u32 queue)
1400 {
1401 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1402 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1403 	gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
1404 
1405 	if (priv->dma_cap.addr64 <= 32)
1406 		gfp |= GFP_DMA32;
1407 
1408 	if (!buf->page) {
1409 		buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp);
1410 		if (!buf->page)
1411 			return -ENOMEM;
1412 		buf->page_offset = stmmac_rx_offset(priv);
1413 	}
1414 
1415 	if (priv->sph && !buf->sec_page) {
1416 		buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp);
1417 		if (!buf->sec_page)
1418 			return -ENOMEM;
1419 
1420 		buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
1421 		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
1422 	} else {
1423 		buf->sec_page = NULL;
1424 		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
1425 	}
1426 
1427 	buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
1428 
1429 	stmmac_set_desc_addr(priv, p, buf->addr);
1430 	if (priv->dma_buf_sz == BUF_SIZE_16KiB)
1431 		stmmac_init_desc3(priv, p);
1432 
1433 	return 0;
1434 }
1435 
1436 /**
1437  * stmmac_free_rx_buffer - free RX dma buffers
1438  * @priv: private structure
1439  * @queue: RX queue index
1440  * @i: buffer index.
1441  */
1442 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1443 {
1444 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1445 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1446 
1447 	if (buf->page)
1448 		page_pool_put_full_page(rx_q->page_pool, buf->page, false);
1449 	buf->page = NULL;
1450 
1451 	if (buf->sec_page)
1452 		page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false);
1453 	buf->sec_page = NULL;
1454 }
1455 
1456 /**
1457  * stmmac_free_tx_buffer - free RX dma buffers
1458  * @priv: private structure
1459  * @queue: RX queue index
1460  * @i: buffer index.
1461  */
1462 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1463 {
1464 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1465 
1466 	if (tx_q->tx_skbuff_dma[i].buf &&
1467 	    tx_q->tx_skbuff_dma[i].buf_type != STMMAC_TXBUF_T_XDP_TX) {
1468 		if (tx_q->tx_skbuff_dma[i].map_as_page)
1469 			dma_unmap_page(priv->device,
1470 				       tx_q->tx_skbuff_dma[i].buf,
1471 				       tx_q->tx_skbuff_dma[i].len,
1472 				       DMA_TO_DEVICE);
1473 		else
1474 			dma_unmap_single(priv->device,
1475 					 tx_q->tx_skbuff_dma[i].buf,
1476 					 tx_q->tx_skbuff_dma[i].len,
1477 					 DMA_TO_DEVICE);
1478 	}
1479 
1480 	if (tx_q->xdpf[i] &&
1481 	    (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_TX ||
1482 	     tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_NDO)) {
1483 		xdp_return_frame(tx_q->xdpf[i]);
1484 		tx_q->xdpf[i] = NULL;
1485 	}
1486 
1487 	if (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XSK_TX)
1488 		tx_q->xsk_frames_done++;
1489 
1490 	if (tx_q->tx_skbuff[i] &&
1491 	    tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_SKB) {
1492 		dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1493 		tx_q->tx_skbuff[i] = NULL;
1494 	}
1495 
1496 	tx_q->tx_skbuff_dma[i].buf = 0;
1497 	tx_q->tx_skbuff_dma[i].map_as_page = false;
1498 }
1499 
1500 /**
1501  * dma_free_rx_skbufs - free RX dma buffers
1502  * @priv: private structure
1503  * @queue: RX queue index
1504  */
1505 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue)
1506 {
1507 	int i;
1508 
1509 	for (i = 0; i < priv->dma_rx_size; i++)
1510 		stmmac_free_rx_buffer(priv, queue, i);
1511 }
1512 
1513 static int stmmac_alloc_rx_buffers(struct stmmac_priv *priv, u32 queue,
1514 				   gfp_t flags)
1515 {
1516 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1517 	int i;
1518 
1519 	for (i = 0; i < priv->dma_rx_size; i++) {
1520 		struct dma_desc *p;
1521 		int ret;
1522 
1523 		if (priv->extend_desc)
1524 			p = &((rx_q->dma_erx + i)->basic);
1525 		else
1526 			p = rx_q->dma_rx + i;
1527 
1528 		ret = stmmac_init_rx_buffers(priv, p, i, flags,
1529 					     queue);
1530 		if (ret)
1531 			return ret;
1532 
1533 		rx_q->buf_alloc_num++;
1534 	}
1535 
1536 	return 0;
1537 }
1538 
1539 /**
1540  * dma_free_rx_xskbufs - free RX dma buffers from XSK pool
1541  * @priv: private structure
1542  * @queue: RX queue index
1543  */
1544 static void dma_free_rx_xskbufs(struct stmmac_priv *priv, u32 queue)
1545 {
1546 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1547 	int i;
1548 
1549 	for (i = 0; i < priv->dma_rx_size; i++) {
1550 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1551 
1552 		if (!buf->xdp)
1553 			continue;
1554 
1555 		xsk_buff_free(buf->xdp);
1556 		buf->xdp = NULL;
1557 	}
1558 }
1559 
1560 static int stmmac_alloc_rx_buffers_zc(struct stmmac_priv *priv, u32 queue)
1561 {
1562 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1563 	int i;
1564 
1565 	for (i = 0; i < priv->dma_rx_size; i++) {
1566 		struct stmmac_rx_buffer *buf;
1567 		dma_addr_t dma_addr;
1568 		struct dma_desc *p;
1569 
1570 		if (priv->extend_desc)
1571 			p = (struct dma_desc *)(rx_q->dma_erx + i);
1572 		else
1573 			p = rx_q->dma_rx + i;
1574 
1575 		buf = &rx_q->buf_pool[i];
1576 
1577 		buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
1578 		if (!buf->xdp)
1579 			return -ENOMEM;
1580 
1581 		dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
1582 		stmmac_set_desc_addr(priv, p, dma_addr);
1583 		rx_q->buf_alloc_num++;
1584 	}
1585 
1586 	return 0;
1587 }
1588 
1589 static struct xsk_buff_pool *stmmac_get_xsk_pool(struct stmmac_priv *priv, u32 queue)
1590 {
1591 	if (!stmmac_xdp_is_enabled(priv) || !test_bit(queue, priv->af_xdp_zc_qps))
1592 		return NULL;
1593 
1594 	return xsk_get_pool_from_qid(priv->dev, queue);
1595 }
1596 
1597 /**
1598  * __init_dma_rx_desc_rings - init the RX descriptor ring (per queue)
1599  * @priv: driver private structure
1600  * @queue: RX queue index
1601  * @flags: gfp flag.
1602  * Description: this function initializes the DMA RX descriptors
1603  * and allocates the socket buffers. It supports the chained and ring
1604  * modes.
1605  */
1606 static int __init_dma_rx_desc_rings(struct stmmac_priv *priv, u32 queue, gfp_t flags)
1607 {
1608 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1609 	int ret;
1610 
1611 	netif_dbg(priv, probe, priv->dev,
1612 		  "(%s) dma_rx_phy=0x%08x\n", __func__,
1613 		  (u32)rx_q->dma_rx_phy);
1614 
1615 	stmmac_clear_rx_descriptors(priv, queue);
1616 
1617 	xdp_rxq_info_unreg_mem_model(&rx_q->xdp_rxq);
1618 
1619 	rx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1620 
1621 	if (rx_q->xsk_pool) {
1622 		WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1623 						   MEM_TYPE_XSK_BUFF_POOL,
1624 						   NULL));
1625 		netdev_info(priv->dev,
1626 			    "Register MEM_TYPE_XSK_BUFF_POOL RxQ-%d\n",
1627 			    rx_q->queue_index);
1628 		xsk_pool_set_rxq_info(rx_q->xsk_pool, &rx_q->xdp_rxq);
1629 	} else {
1630 		WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1631 						   MEM_TYPE_PAGE_POOL,
1632 						   rx_q->page_pool));
1633 		netdev_info(priv->dev,
1634 			    "Register MEM_TYPE_PAGE_POOL RxQ-%d\n",
1635 			    rx_q->queue_index);
1636 	}
1637 
1638 	if (rx_q->xsk_pool) {
1639 		/* RX XDP ZC buffer pool may not be populated, e.g.
1640 		 * xdpsock TX-only.
1641 		 */
1642 		stmmac_alloc_rx_buffers_zc(priv, queue);
1643 	} else {
1644 		ret = stmmac_alloc_rx_buffers(priv, queue, flags);
1645 		if (ret < 0)
1646 			return -ENOMEM;
1647 	}
1648 
1649 	rx_q->cur_rx = 0;
1650 	rx_q->dirty_rx = 0;
1651 
1652 	/* Setup the chained descriptor addresses */
1653 	if (priv->mode == STMMAC_CHAIN_MODE) {
1654 		if (priv->extend_desc)
1655 			stmmac_mode_init(priv, rx_q->dma_erx,
1656 					 rx_q->dma_rx_phy,
1657 					 priv->dma_rx_size, 1);
1658 		else
1659 			stmmac_mode_init(priv, rx_q->dma_rx,
1660 					 rx_q->dma_rx_phy,
1661 					 priv->dma_rx_size, 0);
1662 	}
1663 
1664 	return 0;
1665 }
1666 
1667 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags)
1668 {
1669 	struct stmmac_priv *priv = netdev_priv(dev);
1670 	u32 rx_count = priv->plat->rx_queues_to_use;
1671 	u32 queue;
1672 	int ret;
1673 
1674 	/* RX INITIALIZATION */
1675 	netif_dbg(priv, probe, priv->dev,
1676 		  "SKB addresses:\nskb\t\tskb data\tdma data\n");
1677 
1678 	for (queue = 0; queue < rx_count; queue++) {
1679 		ret = __init_dma_rx_desc_rings(priv, queue, flags);
1680 		if (ret)
1681 			goto err_init_rx_buffers;
1682 	}
1683 
1684 	return 0;
1685 
1686 err_init_rx_buffers:
1687 	while (queue >= 0) {
1688 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1689 
1690 		if (rx_q->xsk_pool)
1691 			dma_free_rx_xskbufs(priv, queue);
1692 		else
1693 			dma_free_rx_skbufs(priv, queue);
1694 
1695 		rx_q->buf_alloc_num = 0;
1696 		rx_q->xsk_pool = NULL;
1697 
1698 		if (queue == 0)
1699 			break;
1700 
1701 		queue--;
1702 	}
1703 
1704 	return ret;
1705 }
1706 
1707 /**
1708  * __init_dma_tx_desc_rings - init the TX descriptor ring (per queue)
1709  * @priv: driver private structure
1710  * @queue : TX queue index
1711  * Description: this function initializes the DMA TX descriptors
1712  * and allocates the socket buffers. It supports the chained and ring
1713  * modes.
1714  */
1715 static int __init_dma_tx_desc_rings(struct stmmac_priv *priv, u32 queue)
1716 {
1717 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1718 	int i;
1719 
1720 	netif_dbg(priv, probe, priv->dev,
1721 		  "(%s) dma_tx_phy=0x%08x\n", __func__,
1722 		  (u32)tx_q->dma_tx_phy);
1723 
1724 	/* Setup the chained descriptor addresses */
1725 	if (priv->mode == STMMAC_CHAIN_MODE) {
1726 		if (priv->extend_desc)
1727 			stmmac_mode_init(priv, tx_q->dma_etx,
1728 					 tx_q->dma_tx_phy,
1729 					 priv->dma_tx_size, 1);
1730 		else if (!(tx_q->tbs & STMMAC_TBS_AVAIL))
1731 			stmmac_mode_init(priv, tx_q->dma_tx,
1732 					 tx_q->dma_tx_phy,
1733 					 priv->dma_tx_size, 0);
1734 	}
1735 
1736 	tx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1737 
1738 	for (i = 0; i < priv->dma_tx_size; i++) {
1739 		struct dma_desc *p;
1740 
1741 		if (priv->extend_desc)
1742 			p = &((tx_q->dma_etx + i)->basic);
1743 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1744 			p = &((tx_q->dma_entx + i)->basic);
1745 		else
1746 			p = tx_q->dma_tx + i;
1747 
1748 		stmmac_clear_desc(priv, p);
1749 
1750 		tx_q->tx_skbuff_dma[i].buf = 0;
1751 		tx_q->tx_skbuff_dma[i].map_as_page = false;
1752 		tx_q->tx_skbuff_dma[i].len = 0;
1753 		tx_q->tx_skbuff_dma[i].last_segment = false;
1754 		tx_q->tx_skbuff[i] = NULL;
1755 	}
1756 
1757 	tx_q->dirty_tx = 0;
1758 	tx_q->cur_tx = 0;
1759 	tx_q->mss = 0;
1760 
1761 	netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
1762 
1763 	return 0;
1764 }
1765 
1766 static int init_dma_tx_desc_rings(struct net_device *dev)
1767 {
1768 	struct stmmac_priv *priv = netdev_priv(dev);
1769 	u32 tx_queue_cnt;
1770 	u32 queue;
1771 
1772 	tx_queue_cnt = priv->plat->tx_queues_to_use;
1773 
1774 	for (queue = 0; queue < tx_queue_cnt; queue++)
1775 		__init_dma_tx_desc_rings(priv, queue);
1776 
1777 	return 0;
1778 }
1779 
1780 /**
1781  * init_dma_desc_rings - init the RX/TX descriptor rings
1782  * @dev: net device structure
1783  * @flags: gfp flag.
1784  * Description: this function initializes the DMA RX/TX descriptors
1785  * and allocates the socket buffers. It supports the chained and ring
1786  * modes.
1787  */
1788 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1789 {
1790 	struct stmmac_priv *priv = netdev_priv(dev);
1791 	int ret;
1792 
1793 	ret = init_dma_rx_desc_rings(dev, flags);
1794 	if (ret)
1795 		return ret;
1796 
1797 	ret = init_dma_tx_desc_rings(dev);
1798 
1799 	stmmac_clear_descriptors(priv);
1800 
1801 	if (netif_msg_hw(priv))
1802 		stmmac_display_rings(priv);
1803 
1804 	return ret;
1805 }
1806 
1807 /**
1808  * dma_free_tx_skbufs - free TX dma buffers
1809  * @priv: private structure
1810  * @queue: TX queue index
1811  */
1812 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue)
1813 {
1814 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1815 	int i;
1816 
1817 	tx_q->xsk_frames_done = 0;
1818 
1819 	for (i = 0; i < priv->dma_tx_size; i++)
1820 		stmmac_free_tx_buffer(priv, queue, i);
1821 
1822 	if (tx_q->xsk_pool && tx_q->xsk_frames_done) {
1823 		xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
1824 		tx_q->xsk_frames_done = 0;
1825 		tx_q->xsk_pool = NULL;
1826 	}
1827 }
1828 
1829 /**
1830  * stmmac_free_tx_skbufs - free TX skb buffers
1831  * @priv: private structure
1832  */
1833 static void stmmac_free_tx_skbufs(struct stmmac_priv *priv)
1834 {
1835 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1836 	u32 queue;
1837 
1838 	for (queue = 0; queue < tx_queue_cnt; queue++)
1839 		dma_free_tx_skbufs(priv, queue);
1840 }
1841 
1842 /**
1843  * __free_dma_rx_desc_resources - free RX dma desc resources (per queue)
1844  * @priv: private structure
1845  * @queue: RX queue index
1846  */
1847 static void __free_dma_rx_desc_resources(struct stmmac_priv *priv, u32 queue)
1848 {
1849 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1850 
1851 	/* Release the DMA RX socket buffers */
1852 	if (rx_q->xsk_pool)
1853 		dma_free_rx_xskbufs(priv, queue);
1854 	else
1855 		dma_free_rx_skbufs(priv, queue);
1856 
1857 	rx_q->buf_alloc_num = 0;
1858 	rx_q->xsk_pool = NULL;
1859 
1860 	/* Free DMA regions of consistent memory previously allocated */
1861 	if (!priv->extend_desc)
1862 		dma_free_coherent(priv->device, priv->dma_rx_size *
1863 				  sizeof(struct dma_desc),
1864 				  rx_q->dma_rx, rx_q->dma_rx_phy);
1865 	else
1866 		dma_free_coherent(priv->device, priv->dma_rx_size *
1867 				  sizeof(struct dma_extended_desc),
1868 				  rx_q->dma_erx, rx_q->dma_rx_phy);
1869 
1870 	if (xdp_rxq_info_is_reg(&rx_q->xdp_rxq))
1871 		xdp_rxq_info_unreg(&rx_q->xdp_rxq);
1872 
1873 	kfree(rx_q->buf_pool);
1874 	if (rx_q->page_pool)
1875 		page_pool_destroy(rx_q->page_pool);
1876 }
1877 
1878 static void free_dma_rx_desc_resources(struct stmmac_priv *priv)
1879 {
1880 	u32 rx_count = priv->plat->rx_queues_to_use;
1881 	u32 queue;
1882 
1883 	/* Free RX queue resources */
1884 	for (queue = 0; queue < rx_count; queue++)
1885 		__free_dma_rx_desc_resources(priv, queue);
1886 }
1887 
1888 /**
1889  * __free_dma_tx_desc_resources - free TX dma desc resources (per queue)
1890  * @priv: private structure
1891  * @queue: TX queue index
1892  */
1893 static void __free_dma_tx_desc_resources(struct stmmac_priv *priv, u32 queue)
1894 {
1895 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1896 	size_t size;
1897 	void *addr;
1898 
1899 	/* Release the DMA TX socket buffers */
1900 	dma_free_tx_skbufs(priv, queue);
1901 
1902 	if (priv->extend_desc) {
1903 		size = sizeof(struct dma_extended_desc);
1904 		addr = tx_q->dma_etx;
1905 	} else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1906 		size = sizeof(struct dma_edesc);
1907 		addr = tx_q->dma_entx;
1908 	} else {
1909 		size = sizeof(struct dma_desc);
1910 		addr = tx_q->dma_tx;
1911 	}
1912 
1913 	size *= priv->dma_tx_size;
1914 
1915 	dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy);
1916 
1917 	kfree(tx_q->tx_skbuff_dma);
1918 	kfree(tx_q->tx_skbuff);
1919 }
1920 
1921 static void free_dma_tx_desc_resources(struct stmmac_priv *priv)
1922 {
1923 	u32 tx_count = priv->plat->tx_queues_to_use;
1924 	u32 queue;
1925 
1926 	/* Free TX queue resources */
1927 	for (queue = 0; queue < tx_count; queue++)
1928 		__free_dma_tx_desc_resources(priv, queue);
1929 }
1930 
1931 /**
1932  * __alloc_dma_rx_desc_resources - alloc RX resources (per queue).
1933  * @priv: private structure
1934  * @queue: RX queue index
1935  * Description: according to which descriptor can be used (extend or basic)
1936  * this function allocates the resources for TX and RX paths. In case of
1937  * reception, for example, it pre-allocated the RX socket buffer in order to
1938  * allow zero-copy mechanism.
1939  */
1940 static int __alloc_dma_rx_desc_resources(struct stmmac_priv *priv, u32 queue)
1941 {
1942 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1943 	struct stmmac_channel *ch = &priv->channel[queue];
1944 	bool xdp_prog = stmmac_xdp_is_enabled(priv);
1945 	struct page_pool_params pp_params = { 0 };
1946 	unsigned int num_pages;
1947 	unsigned int napi_id;
1948 	int ret;
1949 
1950 	rx_q->queue_index = queue;
1951 	rx_q->priv_data = priv;
1952 
1953 	pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV;
1954 	pp_params.pool_size = priv->dma_rx_size;
1955 	num_pages = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE);
1956 	pp_params.order = ilog2(num_pages);
1957 	pp_params.nid = dev_to_node(priv->device);
1958 	pp_params.dev = priv->device;
1959 	pp_params.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
1960 	pp_params.offset = stmmac_rx_offset(priv);
1961 	pp_params.max_len = STMMAC_MAX_RX_BUF_SIZE(num_pages);
1962 
1963 	rx_q->page_pool = page_pool_create(&pp_params);
1964 	if (IS_ERR(rx_q->page_pool)) {
1965 		ret = PTR_ERR(rx_q->page_pool);
1966 		rx_q->page_pool = NULL;
1967 		return ret;
1968 	}
1969 
1970 	rx_q->buf_pool = kcalloc(priv->dma_rx_size,
1971 				 sizeof(*rx_q->buf_pool),
1972 				 GFP_KERNEL);
1973 	if (!rx_q->buf_pool)
1974 		return -ENOMEM;
1975 
1976 	if (priv->extend_desc) {
1977 		rx_q->dma_erx = dma_alloc_coherent(priv->device,
1978 						   priv->dma_rx_size *
1979 						   sizeof(struct dma_extended_desc),
1980 						   &rx_q->dma_rx_phy,
1981 						   GFP_KERNEL);
1982 		if (!rx_q->dma_erx)
1983 			return -ENOMEM;
1984 
1985 	} else {
1986 		rx_q->dma_rx = dma_alloc_coherent(priv->device,
1987 						  priv->dma_rx_size *
1988 						  sizeof(struct dma_desc),
1989 						  &rx_q->dma_rx_phy,
1990 						  GFP_KERNEL);
1991 		if (!rx_q->dma_rx)
1992 			return -ENOMEM;
1993 	}
1994 
1995 	if (stmmac_xdp_is_enabled(priv) &&
1996 	    test_bit(queue, priv->af_xdp_zc_qps))
1997 		napi_id = ch->rxtx_napi.napi_id;
1998 	else
1999 		napi_id = ch->rx_napi.napi_id;
2000 
2001 	ret = xdp_rxq_info_reg(&rx_q->xdp_rxq, priv->dev,
2002 			       rx_q->queue_index,
2003 			       napi_id);
2004 	if (ret) {
2005 		netdev_err(priv->dev, "Failed to register xdp rxq info\n");
2006 		return -EINVAL;
2007 	}
2008 
2009 	return 0;
2010 }
2011 
2012 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv)
2013 {
2014 	u32 rx_count = priv->plat->rx_queues_to_use;
2015 	u32 queue;
2016 	int ret;
2017 
2018 	/* RX queues buffers and DMA */
2019 	for (queue = 0; queue < rx_count; queue++) {
2020 		ret = __alloc_dma_rx_desc_resources(priv, queue);
2021 		if (ret)
2022 			goto err_dma;
2023 	}
2024 
2025 	return 0;
2026 
2027 err_dma:
2028 	free_dma_rx_desc_resources(priv);
2029 
2030 	return ret;
2031 }
2032 
2033 /**
2034  * __alloc_dma_tx_desc_resources - alloc TX resources (per queue).
2035  * @priv: private structure
2036  * @queue: TX queue index
2037  * Description: according to which descriptor can be used (extend or basic)
2038  * this function allocates the resources for TX and RX paths. In case of
2039  * reception, for example, it pre-allocated the RX socket buffer in order to
2040  * allow zero-copy mechanism.
2041  */
2042 static int __alloc_dma_tx_desc_resources(struct stmmac_priv *priv, u32 queue)
2043 {
2044 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2045 	size_t size;
2046 	void *addr;
2047 
2048 	tx_q->queue_index = queue;
2049 	tx_q->priv_data = priv;
2050 
2051 	tx_q->tx_skbuff_dma = kcalloc(priv->dma_tx_size,
2052 				      sizeof(*tx_q->tx_skbuff_dma),
2053 				      GFP_KERNEL);
2054 	if (!tx_q->tx_skbuff_dma)
2055 		return -ENOMEM;
2056 
2057 	tx_q->tx_skbuff = kcalloc(priv->dma_tx_size,
2058 				  sizeof(struct sk_buff *),
2059 				  GFP_KERNEL);
2060 	if (!tx_q->tx_skbuff)
2061 		return -ENOMEM;
2062 
2063 	if (priv->extend_desc)
2064 		size = sizeof(struct dma_extended_desc);
2065 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2066 		size = sizeof(struct dma_edesc);
2067 	else
2068 		size = sizeof(struct dma_desc);
2069 
2070 	size *= priv->dma_tx_size;
2071 
2072 	addr = dma_alloc_coherent(priv->device, size,
2073 				  &tx_q->dma_tx_phy, GFP_KERNEL);
2074 	if (!addr)
2075 		return -ENOMEM;
2076 
2077 	if (priv->extend_desc)
2078 		tx_q->dma_etx = addr;
2079 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2080 		tx_q->dma_entx = addr;
2081 	else
2082 		tx_q->dma_tx = addr;
2083 
2084 	return 0;
2085 }
2086 
2087 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv)
2088 {
2089 	u32 tx_count = priv->plat->tx_queues_to_use;
2090 	u32 queue;
2091 	int ret;
2092 
2093 	/* TX queues buffers and DMA */
2094 	for (queue = 0; queue < tx_count; queue++) {
2095 		ret = __alloc_dma_tx_desc_resources(priv, queue);
2096 		if (ret)
2097 			goto err_dma;
2098 	}
2099 
2100 	return 0;
2101 
2102 err_dma:
2103 	free_dma_tx_desc_resources(priv);
2104 	return ret;
2105 }
2106 
2107 /**
2108  * alloc_dma_desc_resources - alloc TX/RX resources.
2109  * @priv: private structure
2110  * Description: according to which descriptor can be used (extend or basic)
2111  * this function allocates the resources for TX and RX paths. In case of
2112  * reception, for example, it pre-allocated the RX socket buffer in order to
2113  * allow zero-copy mechanism.
2114  */
2115 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
2116 {
2117 	/* RX Allocation */
2118 	int ret = alloc_dma_rx_desc_resources(priv);
2119 
2120 	if (ret)
2121 		return ret;
2122 
2123 	ret = alloc_dma_tx_desc_resources(priv);
2124 
2125 	return ret;
2126 }
2127 
2128 /**
2129  * free_dma_desc_resources - free dma desc resources
2130  * @priv: private structure
2131  */
2132 static void free_dma_desc_resources(struct stmmac_priv *priv)
2133 {
2134 	/* Release the DMA TX socket buffers */
2135 	free_dma_tx_desc_resources(priv);
2136 
2137 	/* Release the DMA RX socket buffers later
2138 	 * to ensure all pending XDP_TX buffers are returned.
2139 	 */
2140 	free_dma_rx_desc_resources(priv);
2141 }
2142 
2143 /**
2144  *  stmmac_mac_enable_rx_queues - Enable MAC rx queues
2145  *  @priv: driver private structure
2146  *  Description: It is used for enabling the rx queues in the MAC
2147  */
2148 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
2149 {
2150 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2151 	int queue;
2152 	u8 mode;
2153 
2154 	for (queue = 0; queue < rx_queues_count; queue++) {
2155 		mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
2156 		stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
2157 	}
2158 }
2159 
2160 /**
2161  * stmmac_start_rx_dma - start RX DMA channel
2162  * @priv: driver private structure
2163  * @chan: RX channel index
2164  * Description:
2165  * This starts a RX DMA channel
2166  */
2167 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
2168 {
2169 	netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
2170 	stmmac_start_rx(priv, priv->ioaddr, chan);
2171 }
2172 
2173 /**
2174  * stmmac_start_tx_dma - start TX DMA channel
2175  * @priv: driver private structure
2176  * @chan: TX channel index
2177  * Description:
2178  * This starts a TX DMA channel
2179  */
2180 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
2181 {
2182 	netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
2183 	stmmac_start_tx(priv, priv->ioaddr, chan);
2184 }
2185 
2186 /**
2187  * stmmac_stop_rx_dma - stop RX DMA channel
2188  * @priv: driver private structure
2189  * @chan: RX channel index
2190  * Description:
2191  * This stops a RX DMA channel
2192  */
2193 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
2194 {
2195 	netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
2196 	stmmac_stop_rx(priv, priv->ioaddr, chan);
2197 }
2198 
2199 /**
2200  * stmmac_stop_tx_dma - stop TX DMA channel
2201  * @priv: driver private structure
2202  * @chan: TX channel index
2203  * Description:
2204  * This stops a TX DMA channel
2205  */
2206 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
2207 {
2208 	netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
2209 	stmmac_stop_tx(priv, priv->ioaddr, chan);
2210 }
2211 
2212 /**
2213  * stmmac_start_all_dma - start all RX and TX DMA channels
2214  * @priv: driver private structure
2215  * Description:
2216  * This starts all the RX and TX DMA channels
2217  */
2218 static void stmmac_start_all_dma(struct stmmac_priv *priv)
2219 {
2220 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2221 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2222 	u32 chan = 0;
2223 
2224 	for (chan = 0; chan < rx_channels_count; chan++)
2225 		stmmac_start_rx_dma(priv, chan);
2226 
2227 	for (chan = 0; chan < tx_channels_count; chan++)
2228 		stmmac_start_tx_dma(priv, chan);
2229 }
2230 
2231 /**
2232  * stmmac_stop_all_dma - stop all RX and TX DMA channels
2233  * @priv: driver private structure
2234  * Description:
2235  * This stops the RX and TX DMA channels
2236  */
2237 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
2238 {
2239 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2240 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2241 	u32 chan = 0;
2242 
2243 	for (chan = 0; chan < rx_channels_count; chan++)
2244 		stmmac_stop_rx_dma(priv, chan);
2245 
2246 	for (chan = 0; chan < tx_channels_count; chan++)
2247 		stmmac_stop_tx_dma(priv, chan);
2248 }
2249 
2250 /**
2251  *  stmmac_dma_operation_mode - HW DMA operation mode
2252  *  @priv: driver private structure
2253  *  Description: it is used for configuring the DMA operation mode register in
2254  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
2255  */
2256 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
2257 {
2258 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2259 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2260 	int rxfifosz = priv->plat->rx_fifo_size;
2261 	int txfifosz = priv->plat->tx_fifo_size;
2262 	u32 txmode = 0;
2263 	u32 rxmode = 0;
2264 	u32 chan = 0;
2265 	u8 qmode = 0;
2266 
2267 	if (rxfifosz == 0)
2268 		rxfifosz = priv->dma_cap.rx_fifo_size;
2269 	if (txfifosz == 0)
2270 		txfifosz = priv->dma_cap.tx_fifo_size;
2271 
2272 	/* Adjust for real per queue fifo size */
2273 	rxfifosz /= rx_channels_count;
2274 	txfifosz /= tx_channels_count;
2275 
2276 	if (priv->plat->force_thresh_dma_mode) {
2277 		txmode = tc;
2278 		rxmode = tc;
2279 	} else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
2280 		/*
2281 		 * In case of GMAC, SF mode can be enabled
2282 		 * to perform the TX COE in HW. This depends on:
2283 		 * 1) TX COE if actually supported
2284 		 * 2) There is no bugged Jumbo frame support
2285 		 *    that needs to not insert csum in the TDES.
2286 		 */
2287 		txmode = SF_DMA_MODE;
2288 		rxmode = SF_DMA_MODE;
2289 		priv->xstats.threshold = SF_DMA_MODE;
2290 	} else {
2291 		txmode = tc;
2292 		rxmode = SF_DMA_MODE;
2293 	}
2294 
2295 	/* configure all channels */
2296 	for (chan = 0; chan < rx_channels_count; chan++) {
2297 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[chan];
2298 		u32 buf_size;
2299 
2300 		qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2301 
2302 		stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
2303 				rxfifosz, qmode);
2304 
2305 		if (rx_q->xsk_pool) {
2306 			buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
2307 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
2308 					      buf_size,
2309 					      chan);
2310 		} else {
2311 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
2312 					      priv->dma_buf_sz,
2313 					      chan);
2314 		}
2315 	}
2316 
2317 	for (chan = 0; chan < tx_channels_count; chan++) {
2318 		qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2319 
2320 		stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
2321 				txfifosz, qmode);
2322 	}
2323 }
2324 
2325 static bool stmmac_xdp_xmit_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
2326 {
2327 	struct netdev_queue *nq = netdev_get_tx_queue(priv->dev, queue);
2328 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2329 	struct xsk_buff_pool *pool = tx_q->xsk_pool;
2330 	unsigned int entry = tx_q->cur_tx;
2331 	struct dma_desc *tx_desc = NULL;
2332 	struct xdp_desc xdp_desc;
2333 	bool work_done = true;
2334 
2335 	/* Avoids TX time-out as we are sharing with slow path */
2336 	txq_trans_cond_update(nq);
2337 
2338 	budget = min(budget, stmmac_tx_avail(priv, queue));
2339 
2340 	while (budget-- > 0) {
2341 		dma_addr_t dma_addr;
2342 		bool set_ic;
2343 
2344 		/* We are sharing with slow path and stop XSK TX desc submission when
2345 		 * available TX ring is less than threshold.
2346 		 */
2347 		if (unlikely(stmmac_tx_avail(priv, queue) < STMMAC_TX_XSK_AVAIL) ||
2348 		    !netif_carrier_ok(priv->dev)) {
2349 			work_done = false;
2350 			break;
2351 		}
2352 
2353 		if (!xsk_tx_peek_desc(pool, &xdp_desc))
2354 			break;
2355 
2356 		if (likely(priv->extend_desc))
2357 			tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
2358 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2359 			tx_desc = &tx_q->dma_entx[entry].basic;
2360 		else
2361 			tx_desc = tx_q->dma_tx + entry;
2362 
2363 		dma_addr = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
2364 		xsk_buff_raw_dma_sync_for_device(pool, dma_addr, xdp_desc.len);
2365 
2366 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XSK_TX;
2367 
2368 		/* To return XDP buffer to XSK pool, we simple call
2369 		 * xsk_tx_completed(), so we don't need to fill up
2370 		 * 'buf' and 'xdpf'.
2371 		 */
2372 		tx_q->tx_skbuff_dma[entry].buf = 0;
2373 		tx_q->xdpf[entry] = NULL;
2374 
2375 		tx_q->tx_skbuff_dma[entry].map_as_page = false;
2376 		tx_q->tx_skbuff_dma[entry].len = xdp_desc.len;
2377 		tx_q->tx_skbuff_dma[entry].last_segment = true;
2378 		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2379 
2380 		stmmac_set_desc_addr(priv, tx_desc, dma_addr);
2381 
2382 		tx_q->tx_count_frames++;
2383 
2384 		if (!priv->tx_coal_frames[queue])
2385 			set_ic = false;
2386 		else if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
2387 			set_ic = true;
2388 		else
2389 			set_ic = false;
2390 
2391 		if (set_ic) {
2392 			tx_q->tx_count_frames = 0;
2393 			stmmac_set_tx_ic(priv, tx_desc);
2394 			priv->xstats.tx_set_ic_bit++;
2395 		}
2396 
2397 		stmmac_prepare_tx_desc(priv, tx_desc, 1, xdp_desc.len,
2398 				       true, priv->mode, true, true,
2399 				       xdp_desc.len);
2400 
2401 		stmmac_enable_dma_transmission(priv, priv->ioaddr);
2402 
2403 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
2404 		entry = tx_q->cur_tx;
2405 	}
2406 
2407 	if (tx_desc) {
2408 		stmmac_flush_tx_descriptors(priv, queue);
2409 		xsk_tx_release(pool);
2410 	}
2411 
2412 	/* Return true if all of the 3 conditions are met
2413 	 *  a) TX Budget is still available
2414 	 *  b) work_done = true when XSK TX desc peek is empty (no more
2415 	 *     pending XSK TX for transmission)
2416 	 */
2417 	return !!budget && work_done;
2418 }
2419 
2420 static void stmmac_bump_dma_threshold(struct stmmac_priv *priv, u32 chan)
2421 {
2422 	if (unlikely(priv->xstats.threshold != SF_DMA_MODE) && tc <= 256) {
2423 		tc += 64;
2424 
2425 		if (priv->plat->force_thresh_dma_mode)
2426 			stmmac_set_dma_operation_mode(priv, tc, tc, chan);
2427 		else
2428 			stmmac_set_dma_operation_mode(priv, tc, SF_DMA_MODE,
2429 						      chan);
2430 
2431 		priv->xstats.threshold = tc;
2432 	}
2433 }
2434 
2435 /**
2436  * stmmac_tx_clean - to manage the transmission completion
2437  * @priv: driver private structure
2438  * @budget: napi budget limiting this functions packet handling
2439  * @queue: TX queue index
2440  * Description: it reclaims the transmit resources after transmission completes.
2441  */
2442 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
2443 {
2444 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2445 	unsigned int bytes_compl = 0, pkts_compl = 0;
2446 	unsigned int entry, xmits = 0, count = 0;
2447 
2448 	__netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
2449 
2450 	priv->xstats.tx_clean++;
2451 
2452 	tx_q->xsk_frames_done = 0;
2453 
2454 	entry = tx_q->dirty_tx;
2455 
2456 	/* Try to clean all TX complete frame in 1 shot */
2457 	while ((entry != tx_q->cur_tx) && count < priv->dma_tx_size) {
2458 		struct xdp_frame *xdpf;
2459 		struct sk_buff *skb;
2460 		struct dma_desc *p;
2461 		int status;
2462 
2463 		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX ||
2464 		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2465 			xdpf = tx_q->xdpf[entry];
2466 			skb = NULL;
2467 		} else if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2468 			xdpf = NULL;
2469 			skb = tx_q->tx_skbuff[entry];
2470 		} else {
2471 			xdpf = NULL;
2472 			skb = NULL;
2473 		}
2474 
2475 		if (priv->extend_desc)
2476 			p = (struct dma_desc *)(tx_q->dma_etx + entry);
2477 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2478 			p = &tx_q->dma_entx[entry].basic;
2479 		else
2480 			p = tx_q->dma_tx + entry;
2481 
2482 		status = stmmac_tx_status(priv, &priv->dev->stats,
2483 				&priv->xstats, p, priv->ioaddr);
2484 		/* Check if the descriptor is owned by the DMA */
2485 		if (unlikely(status & tx_dma_own))
2486 			break;
2487 
2488 		count++;
2489 
2490 		/* Make sure descriptor fields are read after reading
2491 		 * the own bit.
2492 		 */
2493 		dma_rmb();
2494 
2495 		/* Just consider the last segment and ...*/
2496 		if (likely(!(status & tx_not_ls))) {
2497 			/* ... verify the status error condition */
2498 			if (unlikely(status & tx_err)) {
2499 				priv->dev->stats.tx_errors++;
2500 				if (unlikely(status & tx_err_bump_tc))
2501 					stmmac_bump_dma_threshold(priv, queue);
2502 			} else {
2503 				priv->dev->stats.tx_packets++;
2504 				priv->xstats.tx_pkt_n++;
2505 				priv->xstats.txq_stats[queue].tx_pkt_n++;
2506 			}
2507 			if (skb)
2508 				stmmac_get_tx_hwtstamp(priv, p, skb);
2509 		}
2510 
2511 		if (likely(tx_q->tx_skbuff_dma[entry].buf &&
2512 			   tx_q->tx_skbuff_dma[entry].buf_type != STMMAC_TXBUF_T_XDP_TX)) {
2513 			if (tx_q->tx_skbuff_dma[entry].map_as_page)
2514 				dma_unmap_page(priv->device,
2515 					       tx_q->tx_skbuff_dma[entry].buf,
2516 					       tx_q->tx_skbuff_dma[entry].len,
2517 					       DMA_TO_DEVICE);
2518 			else
2519 				dma_unmap_single(priv->device,
2520 						 tx_q->tx_skbuff_dma[entry].buf,
2521 						 tx_q->tx_skbuff_dma[entry].len,
2522 						 DMA_TO_DEVICE);
2523 			tx_q->tx_skbuff_dma[entry].buf = 0;
2524 			tx_q->tx_skbuff_dma[entry].len = 0;
2525 			tx_q->tx_skbuff_dma[entry].map_as_page = false;
2526 		}
2527 
2528 		stmmac_clean_desc3(priv, tx_q, p);
2529 
2530 		tx_q->tx_skbuff_dma[entry].last_segment = false;
2531 		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2532 
2533 		if (xdpf &&
2534 		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX) {
2535 			xdp_return_frame_rx_napi(xdpf);
2536 			tx_q->xdpf[entry] = NULL;
2537 		}
2538 
2539 		if (xdpf &&
2540 		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2541 			xdp_return_frame(xdpf);
2542 			tx_q->xdpf[entry] = NULL;
2543 		}
2544 
2545 		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XSK_TX)
2546 			tx_q->xsk_frames_done++;
2547 
2548 		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2549 			if (likely(skb)) {
2550 				pkts_compl++;
2551 				bytes_compl += skb->len;
2552 				dev_consume_skb_any(skb);
2553 				tx_q->tx_skbuff[entry] = NULL;
2554 			}
2555 		}
2556 
2557 		stmmac_release_tx_desc(priv, p, priv->mode);
2558 
2559 		entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
2560 	}
2561 	tx_q->dirty_tx = entry;
2562 
2563 	netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
2564 				  pkts_compl, bytes_compl);
2565 
2566 	if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
2567 								queue))) &&
2568 	    stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH(priv)) {
2569 
2570 		netif_dbg(priv, tx_done, priv->dev,
2571 			  "%s: restart transmit\n", __func__);
2572 		netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
2573 	}
2574 
2575 	if (tx_q->xsk_pool) {
2576 		bool work_done;
2577 
2578 		if (tx_q->xsk_frames_done)
2579 			xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
2580 
2581 		if (xsk_uses_need_wakeup(tx_q->xsk_pool))
2582 			xsk_set_tx_need_wakeup(tx_q->xsk_pool);
2583 
2584 		/* For XSK TX, we try to send as many as possible.
2585 		 * If XSK work done (XSK TX desc empty and budget still
2586 		 * available), return "budget - 1" to reenable TX IRQ.
2587 		 * Else, return "budget" to make NAPI continue polling.
2588 		 */
2589 		work_done = stmmac_xdp_xmit_zc(priv, queue,
2590 					       STMMAC_XSK_TX_BUDGET_MAX);
2591 		if (work_done)
2592 			xmits = budget - 1;
2593 		else
2594 			xmits = budget;
2595 	}
2596 
2597 	if (priv->eee_enabled && !priv->tx_path_in_lpi_mode &&
2598 	    priv->eee_sw_timer_en) {
2599 		if (stmmac_enable_eee_mode(priv))
2600 			mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
2601 	}
2602 
2603 	/* We still have pending packets, let's call for a new scheduling */
2604 	if (tx_q->dirty_tx != tx_q->cur_tx)
2605 		hrtimer_start(&tx_q->txtimer,
2606 			      STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]),
2607 			      HRTIMER_MODE_REL);
2608 
2609 	__netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
2610 
2611 	/* Combine decisions from TX clean and XSK TX */
2612 	return max(count, xmits);
2613 }
2614 
2615 /**
2616  * stmmac_tx_err - to manage the tx error
2617  * @priv: driver private structure
2618  * @chan: channel index
2619  * Description: it cleans the descriptors and restarts the transmission
2620  * in case of transmission errors.
2621  */
2622 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
2623 {
2624 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2625 
2626 	netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
2627 
2628 	stmmac_stop_tx_dma(priv, chan);
2629 	dma_free_tx_skbufs(priv, chan);
2630 	stmmac_clear_tx_descriptors(priv, chan);
2631 	tx_q->dirty_tx = 0;
2632 	tx_q->cur_tx = 0;
2633 	tx_q->mss = 0;
2634 	netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan));
2635 	stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2636 			    tx_q->dma_tx_phy, chan);
2637 	stmmac_start_tx_dma(priv, chan);
2638 
2639 	priv->dev->stats.tx_errors++;
2640 	netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
2641 }
2642 
2643 /**
2644  *  stmmac_set_dma_operation_mode - Set DMA operation mode by channel
2645  *  @priv: driver private structure
2646  *  @txmode: TX operating mode
2647  *  @rxmode: RX operating mode
2648  *  @chan: channel index
2649  *  Description: it is used for configuring of the DMA operation mode in
2650  *  runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
2651  *  mode.
2652  */
2653 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
2654 					  u32 rxmode, u32 chan)
2655 {
2656 	u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2657 	u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2658 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2659 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2660 	int rxfifosz = priv->plat->rx_fifo_size;
2661 	int txfifosz = priv->plat->tx_fifo_size;
2662 
2663 	if (rxfifosz == 0)
2664 		rxfifosz = priv->dma_cap.rx_fifo_size;
2665 	if (txfifosz == 0)
2666 		txfifosz = priv->dma_cap.tx_fifo_size;
2667 
2668 	/* Adjust for real per queue fifo size */
2669 	rxfifosz /= rx_channels_count;
2670 	txfifosz /= tx_channels_count;
2671 
2672 	stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2673 	stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2674 }
2675 
2676 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2677 {
2678 	int ret;
2679 
2680 	ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2681 			priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2682 	if (ret && (ret != -EINVAL)) {
2683 		stmmac_global_err(priv);
2684 		return true;
2685 	}
2686 
2687 	return false;
2688 }
2689 
2690 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan, u32 dir)
2691 {
2692 	int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2693 						 &priv->xstats, chan, dir);
2694 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[chan];
2695 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2696 	struct stmmac_channel *ch = &priv->channel[chan];
2697 	struct napi_struct *rx_napi;
2698 	struct napi_struct *tx_napi;
2699 	unsigned long flags;
2700 
2701 	rx_napi = rx_q->xsk_pool ? &ch->rxtx_napi : &ch->rx_napi;
2702 	tx_napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
2703 
2704 	if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2705 		if (napi_schedule_prep(rx_napi)) {
2706 			spin_lock_irqsave(&ch->lock, flags);
2707 			stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
2708 			spin_unlock_irqrestore(&ch->lock, flags);
2709 			__napi_schedule(rx_napi);
2710 		}
2711 	}
2712 
2713 	if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) {
2714 		if (napi_schedule_prep(tx_napi)) {
2715 			spin_lock_irqsave(&ch->lock, flags);
2716 			stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
2717 			spin_unlock_irqrestore(&ch->lock, flags);
2718 			__napi_schedule(tx_napi);
2719 		}
2720 	}
2721 
2722 	return status;
2723 }
2724 
2725 /**
2726  * stmmac_dma_interrupt - DMA ISR
2727  * @priv: driver private structure
2728  * Description: this is the DMA ISR. It is called by the main ISR.
2729  * It calls the dwmac dma routine and schedule poll method in case of some
2730  * work can be done.
2731  */
2732 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2733 {
2734 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2735 	u32 rx_channel_count = priv->plat->rx_queues_to_use;
2736 	u32 channels_to_check = tx_channel_count > rx_channel_count ?
2737 				tx_channel_count : rx_channel_count;
2738 	u32 chan;
2739 	int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2740 
2741 	/* Make sure we never check beyond our status buffer. */
2742 	if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2743 		channels_to_check = ARRAY_SIZE(status);
2744 
2745 	for (chan = 0; chan < channels_to_check; chan++)
2746 		status[chan] = stmmac_napi_check(priv, chan,
2747 						 DMA_DIR_RXTX);
2748 
2749 	for (chan = 0; chan < tx_channel_count; chan++) {
2750 		if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2751 			/* Try to bump up the dma threshold on this failure */
2752 			stmmac_bump_dma_threshold(priv, chan);
2753 		} else if (unlikely(status[chan] == tx_hard_error)) {
2754 			stmmac_tx_err(priv, chan);
2755 		}
2756 	}
2757 }
2758 
2759 /**
2760  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2761  * @priv: driver private structure
2762  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2763  */
2764 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2765 {
2766 	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2767 			    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2768 
2769 	stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2770 
2771 	if (priv->dma_cap.rmon) {
2772 		stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2773 		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2774 	} else
2775 		netdev_info(priv->dev, "No MAC Management Counters available\n");
2776 }
2777 
2778 /**
2779  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2780  * @priv: driver private structure
2781  * Description:
2782  *  new GMAC chip generations have a new register to indicate the
2783  *  presence of the optional feature/functions.
2784  *  This can be also used to override the value passed through the
2785  *  platform and necessary for old MAC10/100 and GMAC chips.
2786  */
2787 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2788 {
2789 	return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2790 }
2791 
2792 /**
2793  * stmmac_check_ether_addr - check if the MAC addr is valid
2794  * @priv: driver private structure
2795  * Description:
2796  * it is to verify if the MAC address is valid, in case of failures it
2797  * generates a random MAC address
2798  */
2799 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2800 {
2801 	u8 addr[ETH_ALEN];
2802 
2803 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2804 		stmmac_get_umac_addr(priv, priv->hw, addr, 0);
2805 		if (is_valid_ether_addr(addr))
2806 			eth_hw_addr_set(priv->dev, addr);
2807 		else
2808 			eth_hw_addr_random(priv->dev);
2809 		dev_info(priv->device, "device MAC address %pM\n",
2810 			 priv->dev->dev_addr);
2811 	}
2812 }
2813 
2814 /**
2815  * stmmac_init_dma_engine - DMA init.
2816  * @priv: driver private structure
2817  * Description:
2818  * It inits the DMA invoking the specific MAC/GMAC callback.
2819  * Some DMA parameters can be passed from the platform;
2820  * in case of these are not passed a default is kept for the MAC or GMAC.
2821  */
2822 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2823 {
2824 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2825 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2826 	u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2827 	struct stmmac_rx_queue *rx_q;
2828 	struct stmmac_tx_queue *tx_q;
2829 	u32 chan = 0;
2830 	int atds = 0;
2831 	int ret = 0;
2832 
2833 	if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2834 		dev_err(priv->device, "Invalid DMA configuration\n");
2835 		return -EINVAL;
2836 	}
2837 
2838 	if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2839 		atds = 1;
2840 
2841 	ret = stmmac_reset(priv, priv->ioaddr);
2842 	if (ret) {
2843 		dev_err(priv->device, "Failed to reset the dma\n");
2844 		return ret;
2845 	}
2846 
2847 	/* DMA Configuration */
2848 	stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2849 
2850 	if (priv->plat->axi)
2851 		stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2852 
2853 	/* DMA CSR Channel configuration */
2854 	for (chan = 0; chan < dma_csr_ch; chan++)
2855 		stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2856 
2857 	/* DMA RX Channel Configuration */
2858 	for (chan = 0; chan < rx_channels_count; chan++) {
2859 		rx_q = &priv->rx_queue[chan];
2860 
2861 		stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2862 				    rx_q->dma_rx_phy, chan);
2863 
2864 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2865 				     (rx_q->buf_alloc_num *
2866 				      sizeof(struct dma_desc));
2867 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2868 				       rx_q->rx_tail_addr, chan);
2869 	}
2870 
2871 	/* DMA TX Channel Configuration */
2872 	for (chan = 0; chan < tx_channels_count; chan++) {
2873 		tx_q = &priv->tx_queue[chan];
2874 
2875 		stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2876 				    tx_q->dma_tx_phy, chan);
2877 
2878 		tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2879 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2880 				       tx_q->tx_tail_addr, chan);
2881 	}
2882 
2883 	return ret;
2884 }
2885 
2886 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2887 {
2888 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2889 
2890 	hrtimer_start(&tx_q->txtimer,
2891 		      STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]),
2892 		      HRTIMER_MODE_REL);
2893 }
2894 
2895 /**
2896  * stmmac_tx_timer - mitigation sw timer for tx.
2897  * @t: data pointer
2898  * Description:
2899  * This is the timer handler to directly invoke the stmmac_tx_clean.
2900  */
2901 static enum hrtimer_restart stmmac_tx_timer(struct hrtimer *t)
2902 {
2903 	struct stmmac_tx_queue *tx_q = container_of(t, struct stmmac_tx_queue, txtimer);
2904 	struct stmmac_priv *priv = tx_q->priv_data;
2905 	struct stmmac_channel *ch;
2906 	struct napi_struct *napi;
2907 
2908 	ch = &priv->channel[tx_q->queue_index];
2909 	napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
2910 
2911 	if (likely(napi_schedule_prep(napi))) {
2912 		unsigned long flags;
2913 
2914 		spin_lock_irqsave(&ch->lock, flags);
2915 		stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1);
2916 		spin_unlock_irqrestore(&ch->lock, flags);
2917 		__napi_schedule(napi);
2918 	}
2919 
2920 	return HRTIMER_NORESTART;
2921 }
2922 
2923 /**
2924  * stmmac_init_coalesce - init mitigation options.
2925  * @priv: driver private structure
2926  * Description:
2927  * This inits the coalesce parameters: i.e. timer rate,
2928  * timer handler and default threshold used for enabling the
2929  * interrupt on completion bit.
2930  */
2931 static void stmmac_init_coalesce(struct stmmac_priv *priv)
2932 {
2933 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2934 	u32 rx_channel_count = priv->plat->rx_queues_to_use;
2935 	u32 chan;
2936 
2937 	for (chan = 0; chan < tx_channel_count; chan++) {
2938 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2939 
2940 		priv->tx_coal_frames[chan] = STMMAC_TX_FRAMES;
2941 		priv->tx_coal_timer[chan] = STMMAC_COAL_TX_TIMER;
2942 
2943 		hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2944 		tx_q->txtimer.function = stmmac_tx_timer;
2945 	}
2946 
2947 	for (chan = 0; chan < rx_channel_count; chan++)
2948 		priv->rx_coal_frames[chan] = STMMAC_RX_FRAMES;
2949 }
2950 
2951 static void stmmac_set_rings_length(struct stmmac_priv *priv)
2952 {
2953 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2954 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2955 	u32 chan;
2956 
2957 	/* set TX ring length */
2958 	for (chan = 0; chan < tx_channels_count; chan++)
2959 		stmmac_set_tx_ring_len(priv, priv->ioaddr,
2960 				       (priv->dma_tx_size - 1), chan);
2961 
2962 	/* set RX ring length */
2963 	for (chan = 0; chan < rx_channels_count; chan++)
2964 		stmmac_set_rx_ring_len(priv, priv->ioaddr,
2965 				       (priv->dma_rx_size - 1), chan);
2966 }
2967 
2968 /**
2969  *  stmmac_set_tx_queue_weight - Set TX queue weight
2970  *  @priv: driver private structure
2971  *  Description: It is used for setting TX queues weight
2972  */
2973 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
2974 {
2975 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2976 	u32 weight;
2977 	u32 queue;
2978 
2979 	for (queue = 0; queue < tx_queues_count; queue++) {
2980 		weight = priv->plat->tx_queues_cfg[queue].weight;
2981 		stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
2982 	}
2983 }
2984 
2985 /**
2986  *  stmmac_configure_cbs - Configure CBS in TX queue
2987  *  @priv: driver private structure
2988  *  Description: It is used for configuring CBS in AVB TX queues
2989  */
2990 static void stmmac_configure_cbs(struct stmmac_priv *priv)
2991 {
2992 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2993 	u32 mode_to_use;
2994 	u32 queue;
2995 
2996 	/* queue 0 is reserved for legacy traffic */
2997 	for (queue = 1; queue < tx_queues_count; queue++) {
2998 		mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
2999 		if (mode_to_use == MTL_QUEUE_DCB)
3000 			continue;
3001 
3002 		stmmac_config_cbs(priv, priv->hw,
3003 				priv->plat->tx_queues_cfg[queue].send_slope,
3004 				priv->plat->tx_queues_cfg[queue].idle_slope,
3005 				priv->plat->tx_queues_cfg[queue].high_credit,
3006 				priv->plat->tx_queues_cfg[queue].low_credit,
3007 				queue);
3008 	}
3009 }
3010 
3011 /**
3012  *  stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
3013  *  @priv: driver private structure
3014  *  Description: It is used for mapping RX queues to RX dma channels
3015  */
3016 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
3017 {
3018 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3019 	u32 queue;
3020 	u32 chan;
3021 
3022 	for (queue = 0; queue < rx_queues_count; queue++) {
3023 		chan = priv->plat->rx_queues_cfg[queue].chan;
3024 		stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
3025 	}
3026 }
3027 
3028 /**
3029  *  stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
3030  *  @priv: driver private structure
3031  *  Description: It is used for configuring the RX Queue Priority
3032  */
3033 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
3034 {
3035 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3036 	u32 queue;
3037 	u32 prio;
3038 
3039 	for (queue = 0; queue < rx_queues_count; queue++) {
3040 		if (!priv->plat->rx_queues_cfg[queue].use_prio)
3041 			continue;
3042 
3043 		prio = priv->plat->rx_queues_cfg[queue].prio;
3044 		stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
3045 	}
3046 }
3047 
3048 /**
3049  *  stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
3050  *  @priv: driver private structure
3051  *  Description: It is used for configuring the TX Queue Priority
3052  */
3053 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
3054 {
3055 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3056 	u32 queue;
3057 	u32 prio;
3058 
3059 	for (queue = 0; queue < tx_queues_count; queue++) {
3060 		if (!priv->plat->tx_queues_cfg[queue].use_prio)
3061 			continue;
3062 
3063 		prio = priv->plat->tx_queues_cfg[queue].prio;
3064 		stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
3065 	}
3066 }
3067 
3068 /**
3069  *  stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
3070  *  @priv: driver private structure
3071  *  Description: It is used for configuring the RX queue routing
3072  */
3073 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
3074 {
3075 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3076 	u32 queue;
3077 	u8 packet;
3078 
3079 	for (queue = 0; queue < rx_queues_count; queue++) {
3080 		/* no specific packet type routing specified for the queue */
3081 		if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
3082 			continue;
3083 
3084 		packet = priv->plat->rx_queues_cfg[queue].pkt_route;
3085 		stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
3086 	}
3087 }
3088 
3089 static void stmmac_mac_config_rss(struct stmmac_priv *priv)
3090 {
3091 	if (!priv->dma_cap.rssen || !priv->plat->rss_en) {
3092 		priv->rss.enable = false;
3093 		return;
3094 	}
3095 
3096 	if (priv->dev->features & NETIF_F_RXHASH)
3097 		priv->rss.enable = true;
3098 	else
3099 		priv->rss.enable = false;
3100 
3101 	stmmac_rss_configure(priv, priv->hw, &priv->rss,
3102 			     priv->plat->rx_queues_to_use);
3103 }
3104 
3105 /**
3106  *  stmmac_mtl_configuration - Configure MTL
3107  *  @priv: driver private structure
3108  *  Description: It is used for configurring MTL
3109  */
3110 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
3111 {
3112 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3113 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3114 
3115 	if (tx_queues_count > 1)
3116 		stmmac_set_tx_queue_weight(priv);
3117 
3118 	/* Configure MTL RX algorithms */
3119 	if (rx_queues_count > 1)
3120 		stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
3121 				priv->plat->rx_sched_algorithm);
3122 
3123 	/* Configure MTL TX algorithms */
3124 	if (tx_queues_count > 1)
3125 		stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
3126 				priv->plat->tx_sched_algorithm);
3127 
3128 	/* Configure CBS in AVB TX queues */
3129 	if (tx_queues_count > 1)
3130 		stmmac_configure_cbs(priv);
3131 
3132 	/* Map RX MTL to DMA channels */
3133 	stmmac_rx_queue_dma_chan_map(priv);
3134 
3135 	/* Enable MAC RX Queues */
3136 	stmmac_mac_enable_rx_queues(priv);
3137 
3138 	/* Set RX priorities */
3139 	if (rx_queues_count > 1)
3140 		stmmac_mac_config_rx_queues_prio(priv);
3141 
3142 	/* Set TX priorities */
3143 	if (tx_queues_count > 1)
3144 		stmmac_mac_config_tx_queues_prio(priv);
3145 
3146 	/* Set RX routing */
3147 	if (rx_queues_count > 1)
3148 		stmmac_mac_config_rx_queues_routing(priv);
3149 
3150 	/* Receive Side Scaling */
3151 	if (rx_queues_count > 1)
3152 		stmmac_mac_config_rss(priv);
3153 }
3154 
3155 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
3156 {
3157 	if (priv->dma_cap.asp) {
3158 		netdev_info(priv->dev, "Enabling Safety Features\n");
3159 		stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp,
3160 					  priv->plat->safety_feat_cfg);
3161 	} else {
3162 		netdev_info(priv->dev, "No Safety Features support found\n");
3163 	}
3164 }
3165 
3166 static int stmmac_fpe_start_wq(struct stmmac_priv *priv)
3167 {
3168 	char *name;
3169 
3170 	clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
3171 	clear_bit(__FPE_REMOVING,  &priv->fpe_task_state);
3172 
3173 	name = priv->wq_name;
3174 	sprintf(name, "%s-fpe", priv->dev->name);
3175 
3176 	priv->fpe_wq = create_singlethread_workqueue(name);
3177 	if (!priv->fpe_wq) {
3178 		netdev_err(priv->dev, "%s: Failed to create workqueue\n", name);
3179 
3180 		return -ENOMEM;
3181 	}
3182 	netdev_info(priv->dev, "FPE workqueue start");
3183 
3184 	return 0;
3185 }
3186 
3187 /**
3188  * stmmac_hw_setup - setup mac in a usable state.
3189  *  @dev : pointer to the device structure.
3190  *  @ptp_register: register PTP if set
3191  *  Description:
3192  *  this is the main function to setup the HW in a usable state because the
3193  *  dma engine is reset, the core registers are configured (e.g. AXI,
3194  *  Checksum features, timers). The DMA is ready to start receiving and
3195  *  transmitting.
3196  *  Return value:
3197  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3198  *  file on failure.
3199  */
3200 static int stmmac_hw_setup(struct net_device *dev, bool ptp_register)
3201 {
3202 	struct stmmac_priv *priv = netdev_priv(dev);
3203 	u32 rx_cnt = priv->plat->rx_queues_to_use;
3204 	u32 tx_cnt = priv->plat->tx_queues_to_use;
3205 	bool sph_en;
3206 	u32 chan;
3207 	int ret;
3208 
3209 	/* DMA initialization and SW reset */
3210 	ret = stmmac_init_dma_engine(priv);
3211 	if (ret < 0) {
3212 		netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
3213 			   __func__);
3214 		return ret;
3215 	}
3216 
3217 	/* Copy the MAC addr into the HW  */
3218 	stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
3219 
3220 	/* PS and related bits will be programmed according to the speed */
3221 	if (priv->hw->pcs) {
3222 		int speed = priv->plat->mac_port_sel_speed;
3223 
3224 		if ((speed == SPEED_10) || (speed == SPEED_100) ||
3225 		    (speed == SPEED_1000)) {
3226 			priv->hw->ps = speed;
3227 		} else {
3228 			dev_warn(priv->device, "invalid port speed\n");
3229 			priv->hw->ps = 0;
3230 		}
3231 	}
3232 
3233 	/* Initialize the MAC Core */
3234 	stmmac_core_init(priv, priv->hw, dev);
3235 
3236 	/* Initialize MTL*/
3237 	stmmac_mtl_configuration(priv);
3238 
3239 	/* Initialize Safety Features */
3240 	stmmac_safety_feat_configuration(priv);
3241 
3242 	ret = stmmac_rx_ipc(priv, priv->hw);
3243 	if (!ret) {
3244 		netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
3245 		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
3246 		priv->hw->rx_csum = 0;
3247 	}
3248 
3249 	/* Enable the MAC Rx/Tx */
3250 	stmmac_mac_set(priv, priv->ioaddr, true);
3251 
3252 	/* Set the HW DMA mode and the COE */
3253 	stmmac_dma_operation_mode(priv);
3254 
3255 	stmmac_mmc_setup(priv);
3256 
3257 	ret = stmmac_init_ptp(priv);
3258 	if (ret == -EOPNOTSUPP)
3259 		netdev_warn(priv->dev, "PTP not supported by HW\n");
3260 	else if (ret)
3261 		netdev_warn(priv->dev, "PTP init failed\n");
3262 	else if (ptp_register)
3263 		stmmac_ptp_register(priv);
3264 
3265 	priv->eee_tw_timer = STMMAC_DEFAULT_TWT_LS;
3266 
3267 	/* Convert the timer from msec to usec */
3268 	if (!priv->tx_lpi_timer)
3269 		priv->tx_lpi_timer = eee_timer * 1000;
3270 
3271 	if (priv->use_riwt) {
3272 		u32 queue;
3273 
3274 		for (queue = 0; queue < rx_cnt; queue++) {
3275 			if (!priv->rx_riwt[queue])
3276 				priv->rx_riwt[queue] = DEF_DMA_RIWT;
3277 
3278 			stmmac_rx_watchdog(priv, priv->ioaddr,
3279 					   priv->rx_riwt[queue], queue);
3280 		}
3281 	}
3282 
3283 	if (priv->hw->pcs)
3284 		stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0);
3285 
3286 	/* set TX and RX rings length */
3287 	stmmac_set_rings_length(priv);
3288 
3289 	/* Enable TSO */
3290 	if (priv->tso) {
3291 		for (chan = 0; chan < tx_cnt; chan++) {
3292 			struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
3293 
3294 			/* TSO and TBS cannot co-exist */
3295 			if (tx_q->tbs & STMMAC_TBS_AVAIL)
3296 				continue;
3297 
3298 			stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
3299 		}
3300 	}
3301 
3302 	/* Enable Split Header */
3303 	sph_en = (priv->hw->rx_csum > 0) && priv->sph;
3304 	for (chan = 0; chan < rx_cnt; chan++)
3305 		stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
3306 
3307 
3308 	/* VLAN Tag Insertion */
3309 	if (priv->dma_cap.vlins)
3310 		stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT);
3311 
3312 	/* TBS */
3313 	for (chan = 0; chan < tx_cnt; chan++) {
3314 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
3315 		int enable = tx_q->tbs & STMMAC_TBS_AVAIL;
3316 
3317 		stmmac_enable_tbs(priv, priv->ioaddr, enable, chan);
3318 	}
3319 
3320 	/* Configure real RX and TX queues */
3321 	netif_set_real_num_rx_queues(dev, priv->plat->rx_queues_to_use);
3322 	netif_set_real_num_tx_queues(dev, priv->plat->tx_queues_to_use);
3323 
3324 	/* Start the ball rolling... */
3325 	stmmac_start_all_dma(priv);
3326 
3327 	if (priv->dma_cap.fpesel) {
3328 		stmmac_fpe_start_wq(priv);
3329 
3330 		if (priv->plat->fpe_cfg->enable)
3331 			stmmac_fpe_handshake(priv, true);
3332 	}
3333 
3334 	return 0;
3335 }
3336 
3337 static void stmmac_hw_teardown(struct net_device *dev)
3338 {
3339 	struct stmmac_priv *priv = netdev_priv(dev);
3340 
3341 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
3342 }
3343 
3344 static void stmmac_free_irq(struct net_device *dev,
3345 			    enum request_irq_err irq_err, int irq_idx)
3346 {
3347 	struct stmmac_priv *priv = netdev_priv(dev);
3348 	int j;
3349 
3350 	switch (irq_err) {
3351 	case REQ_IRQ_ERR_ALL:
3352 		irq_idx = priv->plat->tx_queues_to_use;
3353 		fallthrough;
3354 	case REQ_IRQ_ERR_TX:
3355 		for (j = irq_idx - 1; j >= 0; j--) {
3356 			if (priv->tx_irq[j] > 0) {
3357 				irq_set_affinity_hint(priv->tx_irq[j], NULL);
3358 				free_irq(priv->tx_irq[j], &priv->tx_queue[j]);
3359 			}
3360 		}
3361 		irq_idx = priv->plat->rx_queues_to_use;
3362 		fallthrough;
3363 	case REQ_IRQ_ERR_RX:
3364 		for (j = irq_idx - 1; j >= 0; j--) {
3365 			if (priv->rx_irq[j] > 0) {
3366 				irq_set_affinity_hint(priv->rx_irq[j], NULL);
3367 				free_irq(priv->rx_irq[j], &priv->rx_queue[j]);
3368 			}
3369 		}
3370 
3371 		if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq)
3372 			free_irq(priv->sfty_ue_irq, dev);
3373 		fallthrough;
3374 	case REQ_IRQ_ERR_SFTY_UE:
3375 		if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq)
3376 			free_irq(priv->sfty_ce_irq, dev);
3377 		fallthrough;
3378 	case REQ_IRQ_ERR_SFTY_CE:
3379 		if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq)
3380 			free_irq(priv->lpi_irq, dev);
3381 		fallthrough;
3382 	case REQ_IRQ_ERR_LPI:
3383 		if (priv->wol_irq > 0 && priv->wol_irq != dev->irq)
3384 			free_irq(priv->wol_irq, dev);
3385 		fallthrough;
3386 	case REQ_IRQ_ERR_WOL:
3387 		free_irq(dev->irq, dev);
3388 		fallthrough;
3389 	case REQ_IRQ_ERR_MAC:
3390 	case REQ_IRQ_ERR_NO:
3391 		/* If MAC IRQ request error, no more IRQ to free */
3392 		break;
3393 	}
3394 }
3395 
3396 static int stmmac_request_irq_multi_msi(struct net_device *dev)
3397 {
3398 	struct stmmac_priv *priv = netdev_priv(dev);
3399 	enum request_irq_err irq_err;
3400 	cpumask_t cpu_mask;
3401 	int irq_idx = 0;
3402 	char *int_name;
3403 	int ret;
3404 	int i;
3405 
3406 	/* For common interrupt */
3407 	int_name = priv->int_name_mac;
3408 	sprintf(int_name, "%s:%s", dev->name, "mac");
3409 	ret = request_irq(dev->irq, stmmac_mac_interrupt,
3410 			  0, int_name, dev);
3411 	if (unlikely(ret < 0)) {
3412 		netdev_err(priv->dev,
3413 			   "%s: alloc mac MSI %d (error: %d)\n",
3414 			   __func__, dev->irq, ret);
3415 		irq_err = REQ_IRQ_ERR_MAC;
3416 		goto irq_error;
3417 	}
3418 
3419 	/* Request the Wake IRQ in case of another line
3420 	 * is used for WoL
3421 	 */
3422 	if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3423 		int_name = priv->int_name_wol;
3424 		sprintf(int_name, "%s:%s", dev->name, "wol");
3425 		ret = request_irq(priv->wol_irq,
3426 				  stmmac_mac_interrupt,
3427 				  0, int_name, dev);
3428 		if (unlikely(ret < 0)) {
3429 			netdev_err(priv->dev,
3430 				   "%s: alloc wol MSI %d (error: %d)\n",
3431 				   __func__, priv->wol_irq, ret);
3432 			irq_err = REQ_IRQ_ERR_WOL;
3433 			goto irq_error;
3434 		}
3435 	}
3436 
3437 	/* Request the LPI IRQ in case of another line
3438 	 * is used for LPI
3439 	 */
3440 	if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3441 		int_name = priv->int_name_lpi;
3442 		sprintf(int_name, "%s:%s", dev->name, "lpi");
3443 		ret = request_irq(priv->lpi_irq,
3444 				  stmmac_mac_interrupt,
3445 				  0, int_name, dev);
3446 		if (unlikely(ret < 0)) {
3447 			netdev_err(priv->dev,
3448 				   "%s: alloc lpi MSI %d (error: %d)\n",
3449 				   __func__, priv->lpi_irq, ret);
3450 			irq_err = REQ_IRQ_ERR_LPI;
3451 			goto irq_error;
3452 		}
3453 	}
3454 
3455 	/* Request the Safety Feature Correctible Error line in
3456 	 * case of another line is used
3457 	 */
3458 	if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq) {
3459 		int_name = priv->int_name_sfty_ce;
3460 		sprintf(int_name, "%s:%s", dev->name, "safety-ce");
3461 		ret = request_irq(priv->sfty_ce_irq,
3462 				  stmmac_safety_interrupt,
3463 				  0, int_name, dev);
3464 		if (unlikely(ret < 0)) {
3465 			netdev_err(priv->dev,
3466 				   "%s: alloc sfty ce MSI %d (error: %d)\n",
3467 				   __func__, priv->sfty_ce_irq, ret);
3468 			irq_err = REQ_IRQ_ERR_SFTY_CE;
3469 			goto irq_error;
3470 		}
3471 	}
3472 
3473 	/* Request the Safety Feature Uncorrectible Error line in
3474 	 * case of another line is used
3475 	 */
3476 	if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq) {
3477 		int_name = priv->int_name_sfty_ue;
3478 		sprintf(int_name, "%s:%s", dev->name, "safety-ue");
3479 		ret = request_irq(priv->sfty_ue_irq,
3480 				  stmmac_safety_interrupt,
3481 				  0, int_name, dev);
3482 		if (unlikely(ret < 0)) {
3483 			netdev_err(priv->dev,
3484 				   "%s: alloc sfty ue MSI %d (error: %d)\n",
3485 				   __func__, priv->sfty_ue_irq, ret);
3486 			irq_err = REQ_IRQ_ERR_SFTY_UE;
3487 			goto irq_error;
3488 		}
3489 	}
3490 
3491 	/* Request Rx MSI irq */
3492 	for (i = 0; i < priv->plat->rx_queues_to_use; i++) {
3493 		if (i >= MTL_MAX_RX_QUEUES)
3494 			break;
3495 		if (priv->rx_irq[i] == 0)
3496 			continue;
3497 
3498 		int_name = priv->int_name_rx_irq[i];
3499 		sprintf(int_name, "%s:%s-%d", dev->name, "rx", i);
3500 		ret = request_irq(priv->rx_irq[i],
3501 				  stmmac_msi_intr_rx,
3502 				  0, int_name, &priv->rx_queue[i]);
3503 		if (unlikely(ret < 0)) {
3504 			netdev_err(priv->dev,
3505 				   "%s: alloc rx-%d  MSI %d (error: %d)\n",
3506 				   __func__, i, priv->rx_irq[i], ret);
3507 			irq_err = REQ_IRQ_ERR_RX;
3508 			irq_idx = i;
3509 			goto irq_error;
3510 		}
3511 		cpumask_clear(&cpu_mask);
3512 		cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3513 		irq_set_affinity_hint(priv->rx_irq[i], &cpu_mask);
3514 	}
3515 
3516 	/* Request Tx MSI irq */
3517 	for (i = 0; i < priv->plat->tx_queues_to_use; i++) {
3518 		if (i >= MTL_MAX_TX_QUEUES)
3519 			break;
3520 		if (priv->tx_irq[i] == 0)
3521 			continue;
3522 
3523 		int_name = priv->int_name_tx_irq[i];
3524 		sprintf(int_name, "%s:%s-%d", dev->name, "tx", i);
3525 		ret = request_irq(priv->tx_irq[i],
3526 				  stmmac_msi_intr_tx,
3527 				  0, int_name, &priv->tx_queue[i]);
3528 		if (unlikely(ret < 0)) {
3529 			netdev_err(priv->dev,
3530 				   "%s: alloc tx-%d  MSI %d (error: %d)\n",
3531 				   __func__, i, priv->tx_irq[i], ret);
3532 			irq_err = REQ_IRQ_ERR_TX;
3533 			irq_idx = i;
3534 			goto irq_error;
3535 		}
3536 		cpumask_clear(&cpu_mask);
3537 		cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3538 		irq_set_affinity_hint(priv->tx_irq[i], &cpu_mask);
3539 	}
3540 
3541 	return 0;
3542 
3543 irq_error:
3544 	stmmac_free_irq(dev, irq_err, irq_idx);
3545 	return ret;
3546 }
3547 
3548 static int stmmac_request_irq_single(struct net_device *dev)
3549 {
3550 	struct stmmac_priv *priv = netdev_priv(dev);
3551 	enum request_irq_err irq_err;
3552 	int ret;
3553 
3554 	ret = request_irq(dev->irq, stmmac_interrupt,
3555 			  IRQF_SHARED, dev->name, dev);
3556 	if (unlikely(ret < 0)) {
3557 		netdev_err(priv->dev,
3558 			   "%s: ERROR: allocating the IRQ %d (error: %d)\n",
3559 			   __func__, dev->irq, ret);
3560 		irq_err = REQ_IRQ_ERR_MAC;
3561 		goto irq_error;
3562 	}
3563 
3564 	/* Request the Wake IRQ in case of another line
3565 	 * is used for WoL
3566 	 */
3567 	if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3568 		ret = request_irq(priv->wol_irq, stmmac_interrupt,
3569 				  IRQF_SHARED, dev->name, dev);
3570 		if (unlikely(ret < 0)) {
3571 			netdev_err(priv->dev,
3572 				   "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
3573 				   __func__, priv->wol_irq, ret);
3574 			irq_err = REQ_IRQ_ERR_WOL;
3575 			goto irq_error;
3576 		}
3577 	}
3578 
3579 	/* Request the IRQ lines */
3580 	if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3581 		ret = request_irq(priv->lpi_irq, stmmac_interrupt,
3582 				  IRQF_SHARED, dev->name, dev);
3583 		if (unlikely(ret < 0)) {
3584 			netdev_err(priv->dev,
3585 				   "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
3586 				   __func__, priv->lpi_irq, ret);
3587 			irq_err = REQ_IRQ_ERR_LPI;
3588 			goto irq_error;
3589 		}
3590 	}
3591 
3592 	return 0;
3593 
3594 irq_error:
3595 	stmmac_free_irq(dev, irq_err, 0);
3596 	return ret;
3597 }
3598 
3599 static int stmmac_request_irq(struct net_device *dev)
3600 {
3601 	struct stmmac_priv *priv = netdev_priv(dev);
3602 	int ret;
3603 
3604 	/* Request the IRQ lines */
3605 	if (priv->plat->multi_msi_en)
3606 		ret = stmmac_request_irq_multi_msi(dev);
3607 	else
3608 		ret = stmmac_request_irq_single(dev);
3609 
3610 	return ret;
3611 }
3612 
3613 /**
3614  *  stmmac_open - open entry point of the driver
3615  *  @dev : pointer to the device structure.
3616  *  Description:
3617  *  This function is the open entry point of the driver.
3618  *  Return value:
3619  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3620  *  file on failure.
3621  */
3622 static int stmmac_open(struct net_device *dev)
3623 {
3624 	struct stmmac_priv *priv = netdev_priv(dev);
3625 	int mode = priv->plat->phy_interface;
3626 	int bfsize = 0;
3627 	u32 chan;
3628 	int ret;
3629 
3630 	ret = pm_runtime_get_sync(priv->device);
3631 	if (ret < 0) {
3632 		pm_runtime_put_noidle(priv->device);
3633 		return ret;
3634 	}
3635 
3636 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
3637 	    priv->hw->pcs != STMMAC_PCS_RTBI &&
3638 	    (!priv->hw->xpcs ||
3639 	     xpcs_get_an_mode(priv->hw->xpcs, mode) != DW_AN_C73)) {
3640 		ret = stmmac_init_phy(dev);
3641 		if (ret) {
3642 			netdev_err(priv->dev,
3643 				   "%s: Cannot attach to PHY (error: %d)\n",
3644 				   __func__, ret);
3645 			goto init_phy_error;
3646 		}
3647 	}
3648 
3649 	/* Extra statistics */
3650 	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
3651 	priv->xstats.threshold = tc;
3652 
3653 	bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu);
3654 	if (bfsize < 0)
3655 		bfsize = 0;
3656 
3657 	if (bfsize < BUF_SIZE_16KiB)
3658 		bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
3659 
3660 	priv->dma_buf_sz = bfsize;
3661 	buf_sz = bfsize;
3662 
3663 	priv->rx_copybreak = STMMAC_RX_COPYBREAK;
3664 
3665 	if (!priv->dma_tx_size)
3666 		priv->dma_tx_size = DMA_DEFAULT_TX_SIZE;
3667 	if (!priv->dma_rx_size)
3668 		priv->dma_rx_size = DMA_DEFAULT_RX_SIZE;
3669 
3670 	/* Earlier check for TBS */
3671 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) {
3672 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
3673 		int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en;
3674 
3675 		/* Setup per-TXQ tbs flag before TX descriptor alloc */
3676 		tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0;
3677 	}
3678 
3679 	ret = alloc_dma_desc_resources(priv);
3680 	if (ret < 0) {
3681 		netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
3682 			   __func__);
3683 		goto dma_desc_error;
3684 	}
3685 
3686 	ret = init_dma_desc_rings(dev, GFP_KERNEL);
3687 	if (ret < 0) {
3688 		netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
3689 			   __func__);
3690 		goto init_error;
3691 	}
3692 
3693 	ret = stmmac_hw_setup(dev, true);
3694 	if (ret < 0) {
3695 		netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
3696 		goto init_error;
3697 	}
3698 
3699 	stmmac_init_coalesce(priv);
3700 
3701 	phylink_start(priv->phylink);
3702 	/* We may have called phylink_speed_down before */
3703 	phylink_speed_up(priv->phylink);
3704 
3705 	ret = stmmac_request_irq(dev);
3706 	if (ret)
3707 		goto irq_error;
3708 
3709 	stmmac_enable_all_queues(priv);
3710 	netif_tx_start_all_queues(priv->dev);
3711 
3712 	return 0;
3713 
3714 irq_error:
3715 	phylink_stop(priv->phylink);
3716 
3717 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3718 		hrtimer_cancel(&priv->tx_queue[chan].txtimer);
3719 
3720 	stmmac_hw_teardown(dev);
3721 init_error:
3722 	free_dma_desc_resources(priv);
3723 dma_desc_error:
3724 	phylink_disconnect_phy(priv->phylink);
3725 init_phy_error:
3726 	pm_runtime_put(priv->device);
3727 	return ret;
3728 }
3729 
3730 static void stmmac_fpe_stop_wq(struct stmmac_priv *priv)
3731 {
3732 	set_bit(__FPE_REMOVING, &priv->fpe_task_state);
3733 
3734 	if (priv->fpe_wq)
3735 		destroy_workqueue(priv->fpe_wq);
3736 
3737 	netdev_info(priv->dev, "FPE workqueue stop");
3738 }
3739 
3740 /**
3741  *  stmmac_release - close entry point of the driver
3742  *  @dev : device pointer.
3743  *  Description:
3744  *  This is the stop entry point of the driver.
3745  */
3746 static int stmmac_release(struct net_device *dev)
3747 {
3748 	struct stmmac_priv *priv = netdev_priv(dev);
3749 	u32 chan;
3750 
3751 	netif_tx_disable(dev);
3752 
3753 	if (device_may_wakeup(priv->device))
3754 		phylink_speed_down(priv->phylink, false);
3755 	/* Stop and disconnect the PHY */
3756 	phylink_stop(priv->phylink);
3757 	phylink_disconnect_phy(priv->phylink);
3758 
3759 	stmmac_disable_all_queues(priv);
3760 
3761 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3762 		hrtimer_cancel(&priv->tx_queue[chan].txtimer);
3763 
3764 	/* Free the IRQ lines */
3765 	stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0);
3766 
3767 	if (priv->eee_enabled) {
3768 		priv->tx_path_in_lpi_mode = false;
3769 		del_timer_sync(&priv->eee_ctrl_timer);
3770 	}
3771 
3772 	/* Stop TX/RX DMA and clear the descriptors */
3773 	stmmac_stop_all_dma(priv);
3774 
3775 	/* Release and free the Rx/Tx resources */
3776 	free_dma_desc_resources(priv);
3777 
3778 	/* Disable the MAC Rx/Tx */
3779 	stmmac_mac_set(priv, priv->ioaddr, false);
3780 
3781 	netif_carrier_off(dev);
3782 
3783 	stmmac_release_ptp(priv);
3784 
3785 	pm_runtime_put(priv->device);
3786 
3787 	if (priv->dma_cap.fpesel)
3788 		stmmac_fpe_stop_wq(priv);
3789 
3790 	return 0;
3791 }
3792 
3793 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb,
3794 			       struct stmmac_tx_queue *tx_q)
3795 {
3796 	u16 tag = 0x0, inner_tag = 0x0;
3797 	u32 inner_type = 0x0;
3798 	struct dma_desc *p;
3799 
3800 	if (!priv->dma_cap.vlins)
3801 		return false;
3802 	if (!skb_vlan_tag_present(skb))
3803 		return false;
3804 	if (skb->vlan_proto == htons(ETH_P_8021AD)) {
3805 		inner_tag = skb_vlan_tag_get(skb);
3806 		inner_type = STMMAC_VLAN_INSERT;
3807 	}
3808 
3809 	tag = skb_vlan_tag_get(skb);
3810 
3811 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
3812 		p = &tx_q->dma_entx[tx_q->cur_tx].basic;
3813 	else
3814 		p = &tx_q->dma_tx[tx_q->cur_tx];
3815 
3816 	if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type))
3817 		return false;
3818 
3819 	stmmac_set_tx_owner(priv, p);
3820 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
3821 	return true;
3822 }
3823 
3824 /**
3825  *  stmmac_tso_allocator - close entry point of the driver
3826  *  @priv: driver private structure
3827  *  @des: buffer start address
3828  *  @total_len: total length to fill in descriptors
3829  *  @last_segment: condition for the last descriptor
3830  *  @queue: TX queue index
3831  *  Description:
3832  *  This function fills descriptor and request new descriptors according to
3833  *  buffer length to fill
3834  */
3835 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
3836 				 int total_len, bool last_segment, u32 queue)
3837 {
3838 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
3839 	struct dma_desc *desc;
3840 	u32 buff_size;
3841 	int tmp_len;
3842 
3843 	tmp_len = total_len;
3844 
3845 	while (tmp_len > 0) {
3846 		dma_addr_t curr_addr;
3847 
3848 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
3849 						priv->dma_tx_size);
3850 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
3851 
3852 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
3853 			desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3854 		else
3855 			desc = &tx_q->dma_tx[tx_q->cur_tx];
3856 
3857 		curr_addr = des + (total_len - tmp_len);
3858 		if (priv->dma_cap.addr64 <= 32)
3859 			desc->des0 = cpu_to_le32(curr_addr);
3860 		else
3861 			stmmac_set_desc_addr(priv, desc, curr_addr);
3862 
3863 		buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
3864 			    TSO_MAX_BUFF_SIZE : tmp_len;
3865 
3866 		stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
3867 				0, 1,
3868 				(last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
3869 				0, 0);
3870 
3871 		tmp_len -= TSO_MAX_BUFF_SIZE;
3872 	}
3873 }
3874 
3875 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue)
3876 {
3877 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
3878 	int desc_size;
3879 
3880 	if (likely(priv->extend_desc))
3881 		desc_size = sizeof(struct dma_extended_desc);
3882 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3883 		desc_size = sizeof(struct dma_edesc);
3884 	else
3885 		desc_size = sizeof(struct dma_desc);
3886 
3887 	/* The own bit must be the latest setting done when prepare the
3888 	 * descriptor and then barrier is needed to make sure that
3889 	 * all is coherent before granting the DMA engine.
3890 	 */
3891 	wmb();
3892 
3893 	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
3894 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3895 }
3896 
3897 /**
3898  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
3899  *  @skb : the socket buffer
3900  *  @dev : device pointer
3901  *  Description: this is the transmit function that is called on TSO frames
3902  *  (support available on GMAC4 and newer chips).
3903  *  Diagram below show the ring programming in case of TSO frames:
3904  *
3905  *  First Descriptor
3906  *   --------
3907  *   | DES0 |---> buffer1 = L2/L3/L4 header
3908  *   | DES1 |---> TCP Payload (can continue on next descr...)
3909  *   | DES2 |---> buffer 1 and 2 len
3910  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
3911  *   --------
3912  *	|
3913  *     ...
3914  *	|
3915  *   --------
3916  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
3917  *   | DES1 | --|
3918  *   | DES2 | --> buffer 1 and 2 len
3919  *   | DES3 |
3920  *   --------
3921  *
3922  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
3923  */
3924 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
3925 {
3926 	struct dma_desc *desc, *first, *mss_desc = NULL;
3927 	struct stmmac_priv *priv = netdev_priv(dev);
3928 	int nfrags = skb_shinfo(skb)->nr_frags;
3929 	u32 queue = skb_get_queue_mapping(skb);
3930 	unsigned int first_entry, tx_packets;
3931 	int tmp_pay_len = 0, first_tx;
3932 	struct stmmac_tx_queue *tx_q;
3933 	bool has_vlan, set_ic;
3934 	u8 proto_hdr_len, hdr;
3935 	u32 pay_len, mss;
3936 	dma_addr_t des;
3937 	int i;
3938 
3939 	tx_q = &priv->tx_queue[queue];
3940 	first_tx = tx_q->cur_tx;
3941 
3942 	/* Compute header lengths */
3943 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
3944 		proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr);
3945 		hdr = sizeof(struct udphdr);
3946 	} else {
3947 		proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3948 		hdr = tcp_hdrlen(skb);
3949 	}
3950 
3951 	/* Desc availability based on threshold should be enough safe */
3952 	if (unlikely(stmmac_tx_avail(priv, queue) <
3953 		(((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
3954 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3955 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3956 								queue));
3957 			/* This is a hard error, log it. */
3958 			netdev_err(priv->dev,
3959 				   "%s: Tx Ring full when queue awake\n",
3960 				   __func__);
3961 		}
3962 		return NETDEV_TX_BUSY;
3963 	}
3964 
3965 	pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
3966 
3967 	mss = skb_shinfo(skb)->gso_size;
3968 
3969 	/* set new MSS value if needed */
3970 	if (mss != tx_q->mss) {
3971 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
3972 			mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3973 		else
3974 			mss_desc = &tx_q->dma_tx[tx_q->cur_tx];
3975 
3976 		stmmac_set_mss(priv, mss_desc, mss);
3977 		tx_q->mss = mss;
3978 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
3979 						priv->dma_tx_size);
3980 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
3981 	}
3982 
3983 	if (netif_msg_tx_queued(priv)) {
3984 		pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
3985 			__func__, hdr, proto_hdr_len, pay_len, mss);
3986 		pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
3987 			skb->data_len);
3988 	}
3989 
3990 	/* Check if VLAN can be inserted by HW */
3991 	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
3992 
3993 	first_entry = tx_q->cur_tx;
3994 	WARN_ON(tx_q->tx_skbuff[first_entry]);
3995 
3996 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
3997 		desc = &tx_q->dma_entx[first_entry].basic;
3998 	else
3999 		desc = &tx_q->dma_tx[first_entry];
4000 	first = desc;
4001 
4002 	if (has_vlan)
4003 		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4004 
4005 	/* first descriptor: fill Headers on Buf1 */
4006 	des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
4007 			     DMA_TO_DEVICE);
4008 	if (dma_mapping_error(priv->device, des))
4009 		goto dma_map_err;
4010 
4011 	tx_q->tx_skbuff_dma[first_entry].buf = des;
4012 	tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
4013 	tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4014 	tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
4015 
4016 	if (priv->dma_cap.addr64 <= 32) {
4017 		first->des0 = cpu_to_le32(des);
4018 
4019 		/* Fill start of payload in buff2 of first descriptor */
4020 		if (pay_len)
4021 			first->des1 = cpu_to_le32(des + proto_hdr_len);
4022 
4023 		/* If needed take extra descriptors to fill the remaining payload */
4024 		tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
4025 	} else {
4026 		stmmac_set_desc_addr(priv, first, des);
4027 		tmp_pay_len = pay_len;
4028 		des += proto_hdr_len;
4029 		pay_len = 0;
4030 	}
4031 
4032 	stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
4033 
4034 	/* Prepare fragments */
4035 	for (i = 0; i < nfrags; i++) {
4036 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4037 
4038 		des = skb_frag_dma_map(priv->device, frag, 0,
4039 				       skb_frag_size(frag),
4040 				       DMA_TO_DEVICE);
4041 		if (dma_mapping_error(priv->device, des))
4042 			goto dma_map_err;
4043 
4044 		stmmac_tso_allocator(priv, des, skb_frag_size(frag),
4045 				     (i == nfrags - 1), queue);
4046 
4047 		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
4048 		tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
4049 		tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
4050 		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4051 	}
4052 
4053 	tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
4054 
4055 	/* Only the last descriptor gets to point to the skb. */
4056 	tx_q->tx_skbuff[tx_q->cur_tx] = skb;
4057 	tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4058 
4059 	/* Manage tx mitigation */
4060 	tx_packets = (tx_q->cur_tx + 1) - first_tx;
4061 	tx_q->tx_count_frames += tx_packets;
4062 
4063 	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4064 		set_ic = true;
4065 	else if (!priv->tx_coal_frames[queue])
4066 		set_ic = false;
4067 	else if (tx_packets > priv->tx_coal_frames[queue])
4068 		set_ic = true;
4069 	else if ((tx_q->tx_count_frames %
4070 		  priv->tx_coal_frames[queue]) < tx_packets)
4071 		set_ic = true;
4072 	else
4073 		set_ic = false;
4074 
4075 	if (set_ic) {
4076 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
4077 			desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4078 		else
4079 			desc = &tx_q->dma_tx[tx_q->cur_tx];
4080 
4081 		tx_q->tx_count_frames = 0;
4082 		stmmac_set_tx_ic(priv, desc);
4083 		priv->xstats.tx_set_ic_bit++;
4084 	}
4085 
4086 	/* We've used all descriptors we need for this skb, however,
4087 	 * advance cur_tx so that it references a fresh descriptor.
4088 	 * ndo_start_xmit will fill this descriptor the next time it's
4089 	 * called and stmmac_tx_clean may clean up to this descriptor.
4090 	 */
4091 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
4092 
4093 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4094 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4095 			  __func__);
4096 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4097 	}
4098 
4099 	dev->stats.tx_bytes += skb->len;
4100 	priv->xstats.tx_tso_frames++;
4101 	priv->xstats.tx_tso_nfrags += nfrags;
4102 
4103 	if (priv->sarc_type)
4104 		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4105 
4106 	skb_tx_timestamp(skb);
4107 
4108 	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4109 		     priv->hwts_tx_en)) {
4110 		/* declare that device is doing timestamping */
4111 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4112 		stmmac_enable_tx_timestamp(priv, first);
4113 	}
4114 
4115 	/* Complete the first descriptor before granting the DMA */
4116 	stmmac_prepare_tso_tx_desc(priv, first, 1,
4117 			proto_hdr_len,
4118 			pay_len,
4119 			1, tx_q->tx_skbuff_dma[first_entry].last_segment,
4120 			hdr / 4, (skb->len - proto_hdr_len));
4121 
4122 	/* If context desc is used to change MSS */
4123 	if (mss_desc) {
4124 		/* Make sure that first descriptor has been completely
4125 		 * written, including its own bit. This is because MSS is
4126 		 * actually before first descriptor, so we need to make
4127 		 * sure that MSS's own bit is the last thing written.
4128 		 */
4129 		dma_wmb();
4130 		stmmac_set_tx_owner(priv, mss_desc);
4131 	}
4132 
4133 	if (netif_msg_pktdata(priv)) {
4134 		pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
4135 			__func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4136 			tx_q->cur_tx, first, nfrags);
4137 		pr_info(">>> frame to be transmitted: ");
4138 		print_pkt(skb->data, skb_headlen(skb));
4139 	}
4140 
4141 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4142 
4143 	stmmac_flush_tx_descriptors(priv, queue);
4144 	stmmac_tx_timer_arm(priv, queue);
4145 
4146 	return NETDEV_TX_OK;
4147 
4148 dma_map_err:
4149 	dev_err(priv->device, "Tx dma map failed\n");
4150 	dev_kfree_skb(skb);
4151 	priv->dev->stats.tx_dropped++;
4152 	return NETDEV_TX_OK;
4153 }
4154 
4155 /**
4156  *  stmmac_xmit - Tx entry point of the driver
4157  *  @skb : the socket buffer
4158  *  @dev : device pointer
4159  *  Description : this is the tx entry point of the driver.
4160  *  It programs the chain or the ring and supports oversized frames
4161  *  and SG feature.
4162  */
4163 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
4164 {
4165 	unsigned int first_entry, tx_packets, enh_desc;
4166 	struct stmmac_priv *priv = netdev_priv(dev);
4167 	unsigned int nopaged_len = skb_headlen(skb);
4168 	int i, csum_insertion = 0, is_jumbo = 0;
4169 	u32 queue = skb_get_queue_mapping(skb);
4170 	int nfrags = skb_shinfo(skb)->nr_frags;
4171 	int gso = skb_shinfo(skb)->gso_type;
4172 	struct dma_edesc *tbs_desc = NULL;
4173 	struct dma_desc *desc, *first;
4174 	struct stmmac_tx_queue *tx_q;
4175 	bool has_vlan, set_ic;
4176 	int entry, first_tx;
4177 	dma_addr_t des;
4178 
4179 	tx_q = &priv->tx_queue[queue];
4180 	first_tx = tx_q->cur_tx;
4181 
4182 	if (priv->tx_path_in_lpi_mode && priv->eee_sw_timer_en)
4183 		stmmac_disable_eee_mode(priv);
4184 
4185 	/* Manage oversized TCP frames for GMAC4 device */
4186 	if (skb_is_gso(skb) && priv->tso) {
4187 		if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
4188 			return stmmac_tso_xmit(skb, dev);
4189 		if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4))
4190 			return stmmac_tso_xmit(skb, dev);
4191 	}
4192 
4193 	if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
4194 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
4195 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
4196 								queue));
4197 			/* This is a hard error, log it. */
4198 			netdev_err(priv->dev,
4199 				   "%s: Tx Ring full when queue awake\n",
4200 				   __func__);
4201 		}
4202 		return NETDEV_TX_BUSY;
4203 	}
4204 
4205 	/* Check if VLAN can be inserted by HW */
4206 	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
4207 
4208 	entry = tx_q->cur_tx;
4209 	first_entry = entry;
4210 	WARN_ON(tx_q->tx_skbuff[first_entry]);
4211 
4212 	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
4213 
4214 	if (likely(priv->extend_desc))
4215 		desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4216 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4217 		desc = &tx_q->dma_entx[entry].basic;
4218 	else
4219 		desc = tx_q->dma_tx + entry;
4220 
4221 	first = desc;
4222 
4223 	if (has_vlan)
4224 		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4225 
4226 	enh_desc = priv->plat->enh_desc;
4227 	/* To program the descriptors according to the size of the frame */
4228 	if (enh_desc)
4229 		is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
4230 
4231 	if (unlikely(is_jumbo)) {
4232 		entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
4233 		if (unlikely(entry < 0) && (entry != -EINVAL))
4234 			goto dma_map_err;
4235 	}
4236 
4237 	for (i = 0; i < nfrags; i++) {
4238 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4239 		int len = skb_frag_size(frag);
4240 		bool last_segment = (i == (nfrags - 1));
4241 
4242 		entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
4243 		WARN_ON(tx_q->tx_skbuff[entry]);
4244 
4245 		if (likely(priv->extend_desc))
4246 			desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4247 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4248 			desc = &tx_q->dma_entx[entry].basic;
4249 		else
4250 			desc = tx_q->dma_tx + entry;
4251 
4252 		des = skb_frag_dma_map(priv->device, frag, 0, len,
4253 				       DMA_TO_DEVICE);
4254 		if (dma_mapping_error(priv->device, des))
4255 			goto dma_map_err; /* should reuse desc w/o issues */
4256 
4257 		tx_q->tx_skbuff_dma[entry].buf = des;
4258 
4259 		stmmac_set_desc_addr(priv, desc, des);
4260 
4261 		tx_q->tx_skbuff_dma[entry].map_as_page = true;
4262 		tx_q->tx_skbuff_dma[entry].len = len;
4263 		tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
4264 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4265 
4266 		/* Prepare the descriptor and set the own bit too */
4267 		stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
4268 				priv->mode, 1, last_segment, skb->len);
4269 	}
4270 
4271 	/* Only the last descriptor gets to point to the skb. */
4272 	tx_q->tx_skbuff[entry] = skb;
4273 	tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4274 
4275 	/* According to the coalesce parameter the IC bit for the latest
4276 	 * segment is reset and the timer re-started to clean the tx status.
4277 	 * This approach takes care about the fragments: desc is the first
4278 	 * element in case of no SG.
4279 	 */
4280 	tx_packets = (entry + 1) - first_tx;
4281 	tx_q->tx_count_frames += tx_packets;
4282 
4283 	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4284 		set_ic = true;
4285 	else if (!priv->tx_coal_frames[queue])
4286 		set_ic = false;
4287 	else if (tx_packets > priv->tx_coal_frames[queue])
4288 		set_ic = true;
4289 	else if ((tx_q->tx_count_frames %
4290 		  priv->tx_coal_frames[queue]) < tx_packets)
4291 		set_ic = true;
4292 	else
4293 		set_ic = false;
4294 
4295 	if (set_ic) {
4296 		if (likely(priv->extend_desc))
4297 			desc = &tx_q->dma_etx[entry].basic;
4298 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4299 			desc = &tx_q->dma_entx[entry].basic;
4300 		else
4301 			desc = &tx_q->dma_tx[entry];
4302 
4303 		tx_q->tx_count_frames = 0;
4304 		stmmac_set_tx_ic(priv, desc);
4305 		priv->xstats.tx_set_ic_bit++;
4306 	}
4307 
4308 	/* We've used all descriptors we need for this skb, however,
4309 	 * advance cur_tx so that it references a fresh descriptor.
4310 	 * ndo_start_xmit will fill this descriptor the next time it's
4311 	 * called and stmmac_tx_clean may clean up to this descriptor.
4312 	 */
4313 	entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
4314 	tx_q->cur_tx = entry;
4315 
4316 	if (netif_msg_pktdata(priv)) {
4317 		netdev_dbg(priv->dev,
4318 			   "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
4319 			   __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4320 			   entry, first, nfrags);
4321 
4322 		netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
4323 		print_pkt(skb->data, skb->len);
4324 	}
4325 
4326 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4327 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4328 			  __func__);
4329 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4330 	}
4331 
4332 	dev->stats.tx_bytes += skb->len;
4333 
4334 	if (priv->sarc_type)
4335 		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4336 
4337 	skb_tx_timestamp(skb);
4338 
4339 	/* Ready to fill the first descriptor and set the OWN bit w/o any
4340 	 * problems because all the descriptors are actually ready to be
4341 	 * passed to the DMA engine.
4342 	 */
4343 	if (likely(!is_jumbo)) {
4344 		bool last_segment = (nfrags == 0);
4345 
4346 		des = dma_map_single(priv->device, skb->data,
4347 				     nopaged_len, DMA_TO_DEVICE);
4348 		if (dma_mapping_error(priv->device, des))
4349 			goto dma_map_err;
4350 
4351 		tx_q->tx_skbuff_dma[first_entry].buf = des;
4352 		tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
4353 		tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4354 
4355 		stmmac_set_desc_addr(priv, first, des);
4356 
4357 		tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
4358 		tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
4359 
4360 		if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4361 			     priv->hwts_tx_en)) {
4362 			/* declare that device is doing timestamping */
4363 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4364 			stmmac_enable_tx_timestamp(priv, first);
4365 		}
4366 
4367 		/* Prepare the first descriptor setting the OWN bit too */
4368 		stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
4369 				csum_insertion, priv->mode, 0, last_segment,
4370 				skb->len);
4371 	}
4372 
4373 	if (tx_q->tbs & STMMAC_TBS_EN) {
4374 		struct timespec64 ts = ns_to_timespec64(skb->tstamp);
4375 
4376 		tbs_desc = &tx_q->dma_entx[first_entry];
4377 		stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec);
4378 	}
4379 
4380 	stmmac_set_tx_owner(priv, first);
4381 
4382 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4383 
4384 	stmmac_enable_dma_transmission(priv, priv->ioaddr);
4385 
4386 	stmmac_flush_tx_descriptors(priv, queue);
4387 	stmmac_tx_timer_arm(priv, queue);
4388 
4389 	return NETDEV_TX_OK;
4390 
4391 dma_map_err:
4392 	netdev_err(priv->dev, "Tx DMA map failed\n");
4393 	dev_kfree_skb(skb);
4394 	priv->dev->stats.tx_dropped++;
4395 	return NETDEV_TX_OK;
4396 }
4397 
4398 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
4399 {
4400 	struct vlan_ethhdr *veth;
4401 	__be16 vlan_proto;
4402 	u16 vlanid;
4403 
4404 	veth = (struct vlan_ethhdr *)skb->data;
4405 	vlan_proto = veth->h_vlan_proto;
4406 
4407 	if ((vlan_proto == htons(ETH_P_8021Q) &&
4408 	     dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
4409 	    (vlan_proto == htons(ETH_P_8021AD) &&
4410 	     dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
4411 		/* pop the vlan tag */
4412 		vlanid = ntohs(veth->h_vlan_TCI);
4413 		memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
4414 		skb_pull(skb, VLAN_HLEN);
4415 		__vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
4416 	}
4417 }
4418 
4419 /**
4420  * stmmac_rx_refill - refill used skb preallocated buffers
4421  * @priv: driver private structure
4422  * @queue: RX queue index
4423  * Description : this is to reallocate the skb for the reception process
4424  * that is based on zero-copy.
4425  */
4426 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
4427 {
4428 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4429 	int dirty = stmmac_rx_dirty(priv, queue);
4430 	unsigned int entry = rx_q->dirty_rx;
4431 	gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
4432 
4433 	if (priv->dma_cap.addr64 <= 32)
4434 		gfp |= GFP_DMA32;
4435 
4436 	while (dirty-- > 0) {
4437 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
4438 		struct dma_desc *p;
4439 		bool use_rx_wd;
4440 
4441 		if (priv->extend_desc)
4442 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
4443 		else
4444 			p = rx_q->dma_rx + entry;
4445 
4446 		if (!buf->page) {
4447 			buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp);
4448 			if (!buf->page)
4449 				break;
4450 		}
4451 
4452 		if (priv->sph && !buf->sec_page) {
4453 			buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp);
4454 			if (!buf->sec_page)
4455 				break;
4456 
4457 			buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
4458 		}
4459 
4460 		buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
4461 
4462 		stmmac_set_desc_addr(priv, p, buf->addr);
4463 		if (priv->sph)
4464 			stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
4465 		else
4466 			stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
4467 		stmmac_refill_desc3(priv, rx_q, p);
4468 
4469 		rx_q->rx_count_frames++;
4470 		rx_q->rx_count_frames += priv->rx_coal_frames[queue];
4471 		if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
4472 			rx_q->rx_count_frames = 0;
4473 
4474 		use_rx_wd = !priv->rx_coal_frames[queue];
4475 		use_rx_wd |= rx_q->rx_count_frames > 0;
4476 		if (!priv->use_riwt)
4477 			use_rx_wd = false;
4478 
4479 		dma_wmb();
4480 		stmmac_set_rx_owner(priv, p, use_rx_wd);
4481 
4482 		entry = STMMAC_GET_ENTRY(entry, priv->dma_rx_size);
4483 	}
4484 	rx_q->dirty_rx = entry;
4485 	rx_q->rx_tail_addr = rx_q->dma_rx_phy +
4486 			    (rx_q->dirty_rx * sizeof(struct dma_desc));
4487 	stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
4488 }
4489 
4490 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv,
4491 				       struct dma_desc *p,
4492 				       int status, unsigned int len)
4493 {
4494 	unsigned int plen = 0, hlen = 0;
4495 	int coe = priv->hw->rx_csum;
4496 
4497 	/* Not first descriptor, buffer is always zero */
4498 	if (priv->sph && len)
4499 		return 0;
4500 
4501 	/* First descriptor, get split header length */
4502 	stmmac_get_rx_header_len(priv, p, &hlen);
4503 	if (priv->sph && hlen) {
4504 		priv->xstats.rx_split_hdr_pkt_n++;
4505 		return hlen;
4506 	}
4507 
4508 	/* First descriptor, not last descriptor and not split header */
4509 	if (status & rx_not_ls)
4510 		return priv->dma_buf_sz;
4511 
4512 	plen = stmmac_get_rx_frame_len(priv, p, coe);
4513 
4514 	/* First descriptor and last descriptor and not split header */
4515 	return min_t(unsigned int, priv->dma_buf_sz, plen);
4516 }
4517 
4518 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv,
4519 				       struct dma_desc *p,
4520 				       int status, unsigned int len)
4521 {
4522 	int coe = priv->hw->rx_csum;
4523 	unsigned int plen = 0;
4524 
4525 	/* Not split header, buffer is not available */
4526 	if (!priv->sph)
4527 		return 0;
4528 
4529 	/* Not last descriptor */
4530 	if (status & rx_not_ls)
4531 		return priv->dma_buf_sz;
4532 
4533 	plen = stmmac_get_rx_frame_len(priv, p, coe);
4534 
4535 	/* Last descriptor */
4536 	return plen - len;
4537 }
4538 
4539 static int stmmac_xdp_xmit_xdpf(struct stmmac_priv *priv, int queue,
4540 				struct xdp_frame *xdpf, bool dma_map)
4541 {
4542 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4543 	unsigned int entry = tx_q->cur_tx;
4544 	struct dma_desc *tx_desc;
4545 	dma_addr_t dma_addr;
4546 	bool set_ic;
4547 
4548 	if (stmmac_tx_avail(priv, queue) < STMMAC_TX_THRESH(priv))
4549 		return STMMAC_XDP_CONSUMED;
4550 
4551 	if (likely(priv->extend_desc))
4552 		tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4553 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4554 		tx_desc = &tx_q->dma_entx[entry].basic;
4555 	else
4556 		tx_desc = tx_q->dma_tx + entry;
4557 
4558 	if (dma_map) {
4559 		dma_addr = dma_map_single(priv->device, xdpf->data,
4560 					  xdpf->len, DMA_TO_DEVICE);
4561 		if (dma_mapping_error(priv->device, dma_addr))
4562 			return STMMAC_XDP_CONSUMED;
4563 
4564 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_NDO;
4565 	} else {
4566 		struct page *page = virt_to_page(xdpf->data);
4567 
4568 		dma_addr = page_pool_get_dma_addr(page) + sizeof(*xdpf) +
4569 			   xdpf->headroom;
4570 		dma_sync_single_for_device(priv->device, dma_addr,
4571 					   xdpf->len, DMA_BIDIRECTIONAL);
4572 
4573 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_TX;
4574 	}
4575 
4576 	tx_q->tx_skbuff_dma[entry].buf = dma_addr;
4577 	tx_q->tx_skbuff_dma[entry].map_as_page = false;
4578 	tx_q->tx_skbuff_dma[entry].len = xdpf->len;
4579 	tx_q->tx_skbuff_dma[entry].last_segment = true;
4580 	tx_q->tx_skbuff_dma[entry].is_jumbo = false;
4581 
4582 	tx_q->xdpf[entry] = xdpf;
4583 
4584 	stmmac_set_desc_addr(priv, tx_desc, dma_addr);
4585 
4586 	stmmac_prepare_tx_desc(priv, tx_desc, 1, xdpf->len,
4587 			       true, priv->mode, true, true,
4588 			       xdpf->len);
4589 
4590 	tx_q->tx_count_frames++;
4591 
4592 	if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
4593 		set_ic = true;
4594 	else
4595 		set_ic = false;
4596 
4597 	if (set_ic) {
4598 		tx_q->tx_count_frames = 0;
4599 		stmmac_set_tx_ic(priv, tx_desc);
4600 		priv->xstats.tx_set_ic_bit++;
4601 	}
4602 
4603 	stmmac_enable_dma_transmission(priv, priv->ioaddr);
4604 
4605 	entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
4606 	tx_q->cur_tx = entry;
4607 
4608 	return STMMAC_XDP_TX;
4609 }
4610 
4611 static int stmmac_xdp_get_tx_queue(struct stmmac_priv *priv,
4612 				   int cpu)
4613 {
4614 	int index = cpu;
4615 
4616 	if (unlikely(index < 0))
4617 		index = 0;
4618 
4619 	while (index >= priv->plat->tx_queues_to_use)
4620 		index -= priv->plat->tx_queues_to_use;
4621 
4622 	return index;
4623 }
4624 
4625 static int stmmac_xdp_xmit_back(struct stmmac_priv *priv,
4626 				struct xdp_buff *xdp)
4627 {
4628 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
4629 	int cpu = smp_processor_id();
4630 	struct netdev_queue *nq;
4631 	int queue;
4632 	int res;
4633 
4634 	if (unlikely(!xdpf))
4635 		return STMMAC_XDP_CONSUMED;
4636 
4637 	queue = stmmac_xdp_get_tx_queue(priv, cpu);
4638 	nq = netdev_get_tx_queue(priv->dev, queue);
4639 
4640 	__netif_tx_lock(nq, cpu);
4641 	/* Avoids TX time-out as we are sharing with slow path */
4642 	txq_trans_cond_update(nq);
4643 
4644 	res = stmmac_xdp_xmit_xdpf(priv, queue, xdpf, false);
4645 	if (res == STMMAC_XDP_TX)
4646 		stmmac_flush_tx_descriptors(priv, queue);
4647 
4648 	__netif_tx_unlock(nq);
4649 
4650 	return res;
4651 }
4652 
4653 static int __stmmac_xdp_run_prog(struct stmmac_priv *priv,
4654 				 struct bpf_prog *prog,
4655 				 struct xdp_buff *xdp)
4656 {
4657 	u32 act;
4658 	int res;
4659 
4660 	act = bpf_prog_run_xdp(prog, xdp);
4661 	switch (act) {
4662 	case XDP_PASS:
4663 		res = STMMAC_XDP_PASS;
4664 		break;
4665 	case XDP_TX:
4666 		res = stmmac_xdp_xmit_back(priv, xdp);
4667 		break;
4668 	case XDP_REDIRECT:
4669 		if (xdp_do_redirect(priv->dev, xdp, prog) < 0)
4670 			res = STMMAC_XDP_CONSUMED;
4671 		else
4672 			res = STMMAC_XDP_REDIRECT;
4673 		break;
4674 	default:
4675 		bpf_warn_invalid_xdp_action(priv->dev, prog, act);
4676 		fallthrough;
4677 	case XDP_ABORTED:
4678 		trace_xdp_exception(priv->dev, prog, act);
4679 		fallthrough;
4680 	case XDP_DROP:
4681 		res = STMMAC_XDP_CONSUMED;
4682 		break;
4683 	}
4684 
4685 	return res;
4686 }
4687 
4688 static struct sk_buff *stmmac_xdp_run_prog(struct stmmac_priv *priv,
4689 					   struct xdp_buff *xdp)
4690 {
4691 	struct bpf_prog *prog;
4692 	int res;
4693 
4694 	prog = READ_ONCE(priv->xdp_prog);
4695 	if (!prog) {
4696 		res = STMMAC_XDP_PASS;
4697 		goto out;
4698 	}
4699 
4700 	res = __stmmac_xdp_run_prog(priv, prog, xdp);
4701 out:
4702 	return ERR_PTR(-res);
4703 }
4704 
4705 static void stmmac_finalize_xdp_rx(struct stmmac_priv *priv,
4706 				   int xdp_status)
4707 {
4708 	int cpu = smp_processor_id();
4709 	int queue;
4710 
4711 	queue = stmmac_xdp_get_tx_queue(priv, cpu);
4712 
4713 	if (xdp_status & STMMAC_XDP_TX)
4714 		stmmac_tx_timer_arm(priv, queue);
4715 
4716 	if (xdp_status & STMMAC_XDP_REDIRECT)
4717 		xdp_do_flush();
4718 }
4719 
4720 static struct sk_buff *stmmac_construct_skb_zc(struct stmmac_channel *ch,
4721 					       struct xdp_buff *xdp)
4722 {
4723 	unsigned int metasize = xdp->data - xdp->data_meta;
4724 	unsigned int datasize = xdp->data_end - xdp->data;
4725 	struct sk_buff *skb;
4726 
4727 	skb = __napi_alloc_skb(&ch->rxtx_napi,
4728 			       xdp->data_end - xdp->data_hard_start,
4729 			       GFP_ATOMIC | __GFP_NOWARN);
4730 	if (unlikely(!skb))
4731 		return NULL;
4732 
4733 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
4734 	memcpy(__skb_put(skb, datasize), xdp->data, datasize);
4735 	if (metasize)
4736 		skb_metadata_set(skb, metasize);
4737 
4738 	return skb;
4739 }
4740 
4741 static void stmmac_dispatch_skb_zc(struct stmmac_priv *priv, u32 queue,
4742 				   struct dma_desc *p, struct dma_desc *np,
4743 				   struct xdp_buff *xdp)
4744 {
4745 	struct stmmac_channel *ch = &priv->channel[queue];
4746 	unsigned int len = xdp->data_end - xdp->data;
4747 	enum pkt_hash_types hash_type;
4748 	int coe = priv->hw->rx_csum;
4749 	struct sk_buff *skb;
4750 	u32 hash;
4751 
4752 	skb = stmmac_construct_skb_zc(ch, xdp);
4753 	if (!skb) {
4754 		priv->dev->stats.rx_dropped++;
4755 		return;
4756 	}
4757 
4758 	stmmac_get_rx_hwtstamp(priv, p, np, skb);
4759 	stmmac_rx_vlan(priv->dev, skb);
4760 	skb->protocol = eth_type_trans(skb, priv->dev);
4761 
4762 	if (unlikely(!coe))
4763 		skb_checksum_none_assert(skb);
4764 	else
4765 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4766 
4767 	if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
4768 		skb_set_hash(skb, hash, hash_type);
4769 
4770 	skb_record_rx_queue(skb, queue);
4771 	napi_gro_receive(&ch->rxtx_napi, skb);
4772 
4773 	priv->dev->stats.rx_packets++;
4774 	priv->dev->stats.rx_bytes += len;
4775 }
4776 
4777 static bool stmmac_rx_refill_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
4778 {
4779 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4780 	unsigned int entry = rx_q->dirty_rx;
4781 	struct dma_desc *rx_desc = NULL;
4782 	bool ret = true;
4783 
4784 	budget = min(budget, stmmac_rx_dirty(priv, queue));
4785 
4786 	while (budget-- > 0 && entry != rx_q->cur_rx) {
4787 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
4788 		dma_addr_t dma_addr;
4789 		bool use_rx_wd;
4790 
4791 		if (!buf->xdp) {
4792 			buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
4793 			if (!buf->xdp) {
4794 				ret = false;
4795 				break;
4796 			}
4797 		}
4798 
4799 		if (priv->extend_desc)
4800 			rx_desc = (struct dma_desc *)(rx_q->dma_erx + entry);
4801 		else
4802 			rx_desc = rx_q->dma_rx + entry;
4803 
4804 		dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
4805 		stmmac_set_desc_addr(priv, rx_desc, dma_addr);
4806 		stmmac_set_desc_sec_addr(priv, rx_desc, 0, false);
4807 		stmmac_refill_desc3(priv, rx_q, rx_desc);
4808 
4809 		rx_q->rx_count_frames++;
4810 		rx_q->rx_count_frames += priv->rx_coal_frames[queue];
4811 		if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
4812 			rx_q->rx_count_frames = 0;
4813 
4814 		use_rx_wd = !priv->rx_coal_frames[queue];
4815 		use_rx_wd |= rx_q->rx_count_frames > 0;
4816 		if (!priv->use_riwt)
4817 			use_rx_wd = false;
4818 
4819 		dma_wmb();
4820 		stmmac_set_rx_owner(priv, rx_desc, use_rx_wd);
4821 
4822 		entry = STMMAC_GET_ENTRY(entry, priv->dma_rx_size);
4823 	}
4824 
4825 	if (rx_desc) {
4826 		rx_q->dirty_rx = entry;
4827 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
4828 				     (rx_q->dirty_rx * sizeof(struct dma_desc));
4829 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
4830 	}
4831 
4832 	return ret;
4833 }
4834 
4835 static int stmmac_rx_zc(struct stmmac_priv *priv, int limit, u32 queue)
4836 {
4837 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4838 	unsigned int count = 0, error = 0, len = 0;
4839 	int dirty = stmmac_rx_dirty(priv, queue);
4840 	unsigned int next_entry = rx_q->cur_rx;
4841 	unsigned int desc_size;
4842 	struct bpf_prog *prog;
4843 	bool failure = false;
4844 	int xdp_status = 0;
4845 	int status = 0;
4846 
4847 	if (netif_msg_rx_status(priv)) {
4848 		void *rx_head;
4849 
4850 		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
4851 		if (priv->extend_desc) {
4852 			rx_head = (void *)rx_q->dma_erx;
4853 			desc_size = sizeof(struct dma_extended_desc);
4854 		} else {
4855 			rx_head = (void *)rx_q->dma_rx;
4856 			desc_size = sizeof(struct dma_desc);
4857 		}
4858 
4859 		stmmac_display_ring(priv, rx_head, priv->dma_rx_size, true,
4860 				    rx_q->dma_rx_phy, desc_size);
4861 	}
4862 	while (count < limit) {
4863 		struct stmmac_rx_buffer *buf;
4864 		unsigned int buf1_len = 0;
4865 		struct dma_desc *np, *p;
4866 		int entry;
4867 		int res;
4868 
4869 		if (!count && rx_q->state_saved) {
4870 			error = rx_q->state.error;
4871 			len = rx_q->state.len;
4872 		} else {
4873 			rx_q->state_saved = false;
4874 			error = 0;
4875 			len = 0;
4876 		}
4877 
4878 		if (count >= limit)
4879 			break;
4880 
4881 read_again:
4882 		buf1_len = 0;
4883 		entry = next_entry;
4884 		buf = &rx_q->buf_pool[entry];
4885 
4886 		if (dirty >= STMMAC_RX_FILL_BATCH) {
4887 			failure = failure ||
4888 				  !stmmac_rx_refill_zc(priv, queue, dirty);
4889 			dirty = 0;
4890 		}
4891 
4892 		if (priv->extend_desc)
4893 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
4894 		else
4895 			p = rx_q->dma_rx + entry;
4896 
4897 		/* read the status of the incoming frame */
4898 		status = stmmac_rx_status(priv, &priv->dev->stats,
4899 					  &priv->xstats, p);
4900 		/* check if managed by the DMA otherwise go ahead */
4901 		if (unlikely(status & dma_own))
4902 			break;
4903 
4904 		/* Prefetch the next RX descriptor */
4905 		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
4906 						priv->dma_rx_size);
4907 		next_entry = rx_q->cur_rx;
4908 
4909 		if (priv->extend_desc)
4910 			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
4911 		else
4912 			np = rx_q->dma_rx + next_entry;
4913 
4914 		prefetch(np);
4915 
4916 		/* Ensure a valid XSK buffer before proceed */
4917 		if (!buf->xdp)
4918 			break;
4919 
4920 		if (priv->extend_desc)
4921 			stmmac_rx_extended_status(priv, &priv->dev->stats,
4922 						  &priv->xstats,
4923 						  rx_q->dma_erx + entry);
4924 		if (unlikely(status == discard_frame)) {
4925 			xsk_buff_free(buf->xdp);
4926 			buf->xdp = NULL;
4927 			dirty++;
4928 			error = 1;
4929 			if (!priv->hwts_rx_en)
4930 				priv->dev->stats.rx_errors++;
4931 		}
4932 
4933 		if (unlikely(error && (status & rx_not_ls)))
4934 			goto read_again;
4935 		if (unlikely(error)) {
4936 			count++;
4937 			continue;
4938 		}
4939 
4940 		/* XSK pool expects RX frame 1:1 mapped to XSK buffer */
4941 		if (likely(status & rx_not_ls)) {
4942 			xsk_buff_free(buf->xdp);
4943 			buf->xdp = NULL;
4944 			dirty++;
4945 			count++;
4946 			goto read_again;
4947 		}
4948 
4949 		/* XDP ZC Frame only support primary buffers for now */
4950 		buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
4951 		len += buf1_len;
4952 
4953 		/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
4954 		 * Type frames (LLC/LLC-SNAP)
4955 		 *
4956 		 * llc_snap is never checked in GMAC >= 4, so this ACS
4957 		 * feature is always disabled and packets need to be
4958 		 * stripped manually.
4959 		 */
4960 		if (likely(!(status & rx_not_ls)) &&
4961 		    (likely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
4962 		     unlikely(status != llc_snap))) {
4963 			buf1_len -= ETH_FCS_LEN;
4964 			len -= ETH_FCS_LEN;
4965 		}
4966 
4967 		/* RX buffer is good and fit into a XSK pool buffer */
4968 		buf->xdp->data_end = buf->xdp->data + buf1_len;
4969 		xsk_buff_dma_sync_for_cpu(buf->xdp, rx_q->xsk_pool);
4970 
4971 		prog = READ_ONCE(priv->xdp_prog);
4972 		res = __stmmac_xdp_run_prog(priv, prog, buf->xdp);
4973 
4974 		switch (res) {
4975 		case STMMAC_XDP_PASS:
4976 			stmmac_dispatch_skb_zc(priv, queue, p, np, buf->xdp);
4977 			xsk_buff_free(buf->xdp);
4978 			break;
4979 		case STMMAC_XDP_CONSUMED:
4980 			xsk_buff_free(buf->xdp);
4981 			priv->dev->stats.rx_dropped++;
4982 			break;
4983 		case STMMAC_XDP_TX:
4984 		case STMMAC_XDP_REDIRECT:
4985 			xdp_status |= res;
4986 			break;
4987 		}
4988 
4989 		buf->xdp = NULL;
4990 		dirty++;
4991 		count++;
4992 	}
4993 
4994 	if (status & rx_not_ls) {
4995 		rx_q->state_saved = true;
4996 		rx_q->state.error = error;
4997 		rx_q->state.len = len;
4998 	}
4999 
5000 	stmmac_finalize_xdp_rx(priv, xdp_status);
5001 
5002 	priv->xstats.rx_pkt_n += count;
5003 	priv->xstats.rxq_stats[queue].rx_pkt_n += count;
5004 
5005 	if (xsk_uses_need_wakeup(rx_q->xsk_pool)) {
5006 		if (failure || stmmac_rx_dirty(priv, queue) > 0)
5007 			xsk_set_rx_need_wakeup(rx_q->xsk_pool);
5008 		else
5009 			xsk_clear_rx_need_wakeup(rx_q->xsk_pool);
5010 
5011 		return (int)count;
5012 	}
5013 
5014 	return failure ? limit : (int)count;
5015 }
5016 
5017 /**
5018  * stmmac_rx - manage the receive process
5019  * @priv: driver private structure
5020  * @limit: napi bugget
5021  * @queue: RX queue index.
5022  * Description :  this the function called by the napi poll method.
5023  * It gets all the frames inside the ring.
5024  */
5025 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
5026 {
5027 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
5028 	struct stmmac_channel *ch = &priv->channel[queue];
5029 	unsigned int count = 0, error = 0, len = 0;
5030 	int status = 0, coe = priv->hw->rx_csum;
5031 	unsigned int next_entry = rx_q->cur_rx;
5032 	enum dma_data_direction dma_dir;
5033 	unsigned int desc_size;
5034 	struct sk_buff *skb = NULL;
5035 	struct xdp_buff xdp;
5036 	int xdp_status = 0;
5037 	int buf_sz;
5038 
5039 	dma_dir = page_pool_get_dma_dir(rx_q->page_pool);
5040 	buf_sz = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE) * PAGE_SIZE;
5041 
5042 	if (netif_msg_rx_status(priv)) {
5043 		void *rx_head;
5044 
5045 		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
5046 		if (priv->extend_desc) {
5047 			rx_head = (void *)rx_q->dma_erx;
5048 			desc_size = sizeof(struct dma_extended_desc);
5049 		} else {
5050 			rx_head = (void *)rx_q->dma_rx;
5051 			desc_size = sizeof(struct dma_desc);
5052 		}
5053 
5054 		stmmac_display_ring(priv, rx_head, priv->dma_rx_size, true,
5055 				    rx_q->dma_rx_phy, desc_size);
5056 	}
5057 	while (count < limit) {
5058 		unsigned int buf1_len = 0, buf2_len = 0;
5059 		enum pkt_hash_types hash_type;
5060 		struct stmmac_rx_buffer *buf;
5061 		struct dma_desc *np, *p;
5062 		int entry;
5063 		u32 hash;
5064 
5065 		if (!count && rx_q->state_saved) {
5066 			skb = rx_q->state.skb;
5067 			error = rx_q->state.error;
5068 			len = rx_q->state.len;
5069 		} else {
5070 			rx_q->state_saved = false;
5071 			skb = NULL;
5072 			error = 0;
5073 			len = 0;
5074 		}
5075 
5076 		if (count >= limit)
5077 			break;
5078 
5079 read_again:
5080 		buf1_len = 0;
5081 		buf2_len = 0;
5082 		entry = next_entry;
5083 		buf = &rx_q->buf_pool[entry];
5084 
5085 		if (priv->extend_desc)
5086 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
5087 		else
5088 			p = rx_q->dma_rx + entry;
5089 
5090 		/* read the status of the incoming frame */
5091 		status = stmmac_rx_status(priv, &priv->dev->stats,
5092 				&priv->xstats, p);
5093 		/* check if managed by the DMA otherwise go ahead */
5094 		if (unlikely(status & dma_own))
5095 			break;
5096 
5097 		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
5098 						priv->dma_rx_size);
5099 		next_entry = rx_q->cur_rx;
5100 
5101 		if (priv->extend_desc)
5102 			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
5103 		else
5104 			np = rx_q->dma_rx + next_entry;
5105 
5106 		prefetch(np);
5107 
5108 		if (priv->extend_desc)
5109 			stmmac_rx_extended_status(priv, &priv->dev->stats,
5110 					&priv->xstats, rx_q->dma_erx + entry);
5111 		if (unlikely(status == discard_frame)) {
5112 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
5113 			buf->page = NULL;
5114 			error = 1;
5115 			if (!priv->hwts_rx_en)
5116 				priv->dev->stats.rx_errors++;
5117 		}
5118 
5119 		if (unlikely(error && (status & rx_not_ls)))
5120 			goto read_again;
5121 		if (unlikely(error)) {
5122 			dev_kfree_skb(skb);
5123 			skb = NULL;
5124 			count++;
5125 			continue;
5126 		}
5127 
5128 		/* Buffer is good. Go on. */
5129 
5130 		prefetch(page_address(buf->page) + buf->page_offset);
5131 		if (buf->sec_page)
5132 			prefetch(page_address(buf->sec_page));
5133 
5134 		buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
5135 		len += buf1_len;
5136 		buf2_len = stmmac_rx_buf2_len(priv, p, status, len);
5137 		len += buf2_len;
5138 
5139 		/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
5140 		 * Type frames (LLC/LLC-SNAP)
5141 		 *
5142 		 * llc_snap is never checked in GMAC >= 4, so this ACS
5143 		 * feature is always disabled and packets need to be
5144 		 * stripped manually.
5145 		 */
5146 		if (likely(!(status & rx_not_ls)) &&
5147 		    (likely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
5148 		     unlikely(status != llc_snap))) {
5149 			if (buf2_len) {
5150 				buf2_len -= ETH_FCS_LEN;
5151 				len -= ETH_FCS_LEN;
5152 			} else if (buf1_len) {
5153 				buf1_len -= ETH_FCS_LEN;
5154 				len -= ETH_FCS_LEN;
5155 			}
5156 		}
5157 
5158 		if (!skb) {
5159 			unsigned int pre_len, sync_len;
5160 
5161 			dma_sync_single_for_cpu(priv->device, buf->addr,
5162 						buf1_len, dma_dir);
5163 
5164 			xdp_init_buff(&xdp, buf_sz, &rx_q->xdp_rxq);
5165 			xdp_prepare_buff(&xdp, page_address(buf->page),
5166 					 buf->page_offset, buf1_len, false);
5167 
5168 			pre_len = xdp.data_end - xdp.data_hard_start -
5169 				  buf->page_offset;
5170 			skb = stmmac_xdp_run_prog(priv, &xdp);
5171 			/* Due xdp_adjust_tail: DMA sync for_device
5172 			 * cover max len CPU touch
5173 			 */
5174 			sync_len = xdp.data_end - xdp.data_hard_start -
5175 				   buf->page_offset;
5176 			sync_len = max(sync_len, pre_len);
5177 
5178 			/* For Not XDP_PASS verdict */
5179 			if (IS_ERR(skb)) {
5180 				unsigned int xdp_res = -PTR_ERR(skb);
5181 
5182 				if (xdp_res & STMMAC_XDP_CONSUMED) {
5183 					page_pool_put_page(rx_q->page_pool,
5184 							   virt_to_head_page(xdp.data),
5185 							   sync_len, true);
5186 					buf->page = NULL;
5187 					priv->dev->stats.rx_dropped++;
5188 
5189 					/* Clear skb as it was set as
5190 					 * status by XDP program.
5191 					 */
5192 					skb = NULL;
5193 
5194 					if (unlikely((status & rx_not_ls)))
5195 						goto read_again;
5196 
5197 					count++;
5198 					continue;
5199 				} else if (xdp_res & (STMMAC_XDP_TX |
5200 						      STMMAC_XDP_REDIRECT)) {
5201 					xdp_status |= xdp_res;
5202 					buf->page = NULL;
5203 					skb = NULL;
5204 					count++;
5205 					continue;
5206 				}
5207 			}
5208 		}
5209 
5210 		if (!skb) {
5211 			/* XDP program may expand or reduce tail */
5212 			buf1_len = xdp.data_end - xdp.data;
5213 
5214 			skb = napi_alloc_skb(&ch->rx_napi, buf1_len);
5215 			if (!skb) {
5216 				priv->dev->stats.rx_dropped++;
5217 				count++;
5218 				goto drain_data;
5219 			}
5220 
5221 			/* XDP program may adjust header */
5222 			skb_copy_to_linear_data(skb, xdp.data, buf1_len);
5223 			skb_put(skb, buf1_len);
5224 
5225 			/* Data payload copied into SKB, page ready for recycle */
5226 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
5227 			buf->page = NULL;
5228 		} else if (buf1_len) {
5229 			dma_sync_single_for_cpu(priv->device, buf->addr,
5230 						buf1_len, dma_dir);
5231 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5232 					buf->page, buf->page_offset, buf1_len,
5233 					priv->dma_buf_sz);
5234 
5235 			/* Data payload appended into SKB */
5236 			page_pool_release_page(rx_q->page_pool, buf->page);
5237 			buf->page = NULL;
5238 		}
5239 
5240 		if (buf2_len) {
5241 			dma_sync_single_for_cpu(priv->device, buf->sec_addr,
5242 						buf2_len, dma_dir);
5243 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5244 					buf->sec_page, 0, buf2_len,
5245 					priv->dma_buf_sz);
5246 
5247 			/* Data payload appended into SKB */
5248 			page_pool_release_page(rx_q->page_pool, buf->sec_page);
5249 			buf->sec_page = NULL;
5250 		}
5251 
5252 drain_data:
5253 		if (likely(status & rx_not_ls))
5254 			goto read_again;
5255 		if (!skb)
5256 			continue;
5257 
5258 		/* Got entire packet into SKB. Finish it. */
5259 
5260 		stmmac_get_rx_hwtstamp(priv, p, np, skb);
5261 		stmmac_rx_vlan(priv->dev, skb);
5262 		skb->protocol = eth_type_trans(skb, priv->dev);
5263 
5264 		if (unlikely(!coe))
5265 			skb_checksum_none_assert(skb);
5266 		else
5267 			skb->ip_summed = CHECKSUM_UNNECESSARY;
5268 
5269 		if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
5270 			skb_set_hash(skb, hash, hash_type);
5271 
5272 		skb_record_rx_queue(skb, queue);
5273 		napi_gro_receive(&ch->rx_napi, skb);
5274 		skb = NULL;
5275 
5276 		priv->dev->stats.rx_packets++;
5277 		priv->dev->stats.rx_bytes += len;
5278 		count++;
5279 	}
5280 
5281 	if (status & rx_not_ls || skb) {
5282 		rx_q->state_saved = true;
5283 		rx_q->state.skb = skb;
5284 		rx_q->state.error = error;
5285 		rx_q->state.len = len;
5286 	}
5287 
5288 	stmmac_finalize_xdp_rx(priv, xdp_status);
5289 
5290 	stmmac_rx_refill(priv, queue);
5291 
5292 	priv->xstats.rx_pkt_n += count;
5293 	priv->xstats.rxq_stats[queue].rx_pkt_n += count;
5294 
5295 	return count;
5296 }
5297 
5298 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
5299 {
5300 	struct stmmac_channel *ch =
5301 		container_of(napi, struct stmmac_channel, rx_napi);
5302 	struct stmmac_priv *priv = ch->priv_data;
5303 	u32 chan = ch->index;
5304 	int work_done;
5305 
5306 	priv->xstats.napi_poll++;
5307 
5308 	work_done = stmmac_rx(priv, budget, chan);
5309 	if (work_done < budget && napi_complete_done(napi, work_done)) {
5310 		unsigned long flags;
5311 
5312 		spin_lock_irqsave(&ch->lock, flags);
5313 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
5314 		spin_unlock_irqrestore(&ch->lock, flags);
5315 	}
5316 
5317 	return work_done;
5318 }
5319 
5320 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
5321 {
5322 	struct stmmac_channel *ch =
5323 		container_of(napi, struct stmmac_channel, tx_napi);
5324 	struct stmmac_priv *priv = ch->priv_data;
5325 	u32 chan = ch->index;
5326 	int work_done;
5327 
5328 	priv->xstats.napi_poll++;
5329 
5330 	work_done = stmmac_tx_clean(priv, budget, chan);
5331 	work_done = min(work_done, budget);
5332 
5333 	if (work_done < budget && napi_complete_done(napi, work_done)) {
5334 		unsigned long flags;
5335 
5336 		spin_lock_irqsave(&ch->lock, flags);
5337 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
5338 		spin_unlock_irqrestore(&ch->lock, flags);
5339 	}
5340 
5341 	return work_done;
5342 }
5343 
5344 static int stmmac_napi_poll_rxtx(struct napi_struct *napi, int budget)
5345 {
5346 	struct stmmac_channel *ch =
5347 		container_of(napi, struct stmmac_channel, rxtx_napi);
5348 	struct stmmac_priv *priv = ch->priv_data;
5349 	int rx_done, tx_done, rxtx_done;
5350 	u32 chan = ch->index;
5351 
5352 	priv->xstats.napi_poll++;
5353 
5354 	tx_done = stmmac_tx_clean(priv, budget, chan);
5355 	tx_done = min(tx_done, budget);
5356 
5357 	rx_done = stmmac_rx_zc(priv, budget, chan);
5358 
5359 	rxtx_done = max(tx_done, rx_done);
5360 
5361 	/* If either TX or RX work is not complete, return budget
5362 	 * and keep pooling
5363 	 */
5364 	if (rxtx_done >= budget)
5365 		return budget;
5366 
5367 	/* all work done, exit the polling mode */
5368 	if (napi_complete_done(napi, rxtx_done)) {
5369 		unsigned long flags;
5370 
5371 		spin_lock_irqsave(&ch->lock, flags);
5372 		/* Both RX and TX work done are compelte,
5373 		 * so enable both RX & TX IRQs.
5374 		 */
5375 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
5376 		spin_unlock_irqrestore(&ch->lock, flags);
5377 	}
5378 
5379 	return min(rxtx_done, budget - 1);
5380 }
5381 
5382 /**
5383  *  stmmac_tx_timeout
5384  *  @dev : Pointer to net device structure
5385  *  @txqueue: the index of the hanging transmit queue
5386  *  Description: this function is called when a packet transmission fails to
5387  *   complete within a reasonable time. The driver will mark the error in the
5388  *   netdev structure and arrange for the device to be reset to a sane state
5389  *   in order to transmit a new packet.
5390  */
5391 static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue)
5392 {
5393 	struct stmmac_priv *priv = netdev_priv(dev);
5394 
5395 	stmmac_global_err(priv);
5396 }
5397 
5398 /**
5399  *  stmmac_set_rx_mode - entry point for multicast addressing
5400  *  @dev : pointer to the device structure
5401  *  Description:
5402  *  This function is a driver entry point which gets called by the kernel
5403  *  whenever multicast addresses must be enabled/disabled.
5404  *  Return value:
5405  *  void.
5406  */
5407 static void stmmac_set_rx_mode(struct net_device *dev)
5408 {
5409 	struct stmmac_priv *priv = netdev_priv(dev);
5410 
5411 	stmmac_set_filter(priv, priv->hw, dev);
5412 }
5413 
5414 /**
5415  *  stmmac_change_mtu - entry point to change MTU size for the device.
5416  *  @dev : device pointer.
5417  *  @new_mtu : the new MTU size for the device.
5418  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
5419  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
5420  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
5421  *  Return value:
5422  *  0 on success and an appropriate (-)ve integer as defined in errno.h
5423  *  file on failure.
5424  */
5425 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
5426 {
5427 	struct stmmac_priv *priv = netdev_priv(dev);
5428 	int txfifosz = priv->plat->tx_fifo_size;
5429 	const int mtu = new_mtu;
5430 
5431 	if (txfifosz == 0)
5432 		txfifosz = priv->dma_cap.tx_fifo_size;
5433 
5434 	txfifosz /= priv->plat->tx_queues_to_use;
5435 
5436 	if (netif_running(dev)) {
5437 		netdev_err(priv->dev, "must be stopped to change its MTU\n");
5438 		return -EBUSY;
5439 	}
5440 
5441 	if (stmmac_xdp_is_enabled(priv) && new_mtu > ETH_DATA_LEN) {
5442 		netdev_dbg(priv->dev, "Jumbo frames not supported for XDP\n");
5443 		return -EINVAL;
5444 	}
5445 
5446 	new_mtu = STMMAC_ALIGN(new_mtu);
5447 
5448 	/* If condition true, FIFO is too small or MTU too large */
5449 	if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB))
5450 		return -EINVAL;
5451 
5452 	dev->mtu = mtu;
5453 
5454 	netdev_update_features(dev);
5455 
5456 	return 0;
5457 }
5458 
5459 static netdev_features_t stmmac_fix_features(struct net_device *dev,
5460 					     netdev_features_t features)
5461 {
5462 	struct stmmac_priv *priv = netdev_priv(dev);
5463 
5464 	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
5465 		features &= ~NETIF_F_RXCSUM;
5466 
5467 	if (!priv->plat->tx_coe)
5468 		features &= ~NETIF_F_CSUM_MASK;
5469 
5470 	/* Some GMAC devices have a bugged Jumbo frame support that
5471 	 * needs to have the Tx COE disabled for oversized frames
5472 	 * (due to limited buffer sizes). In this case we disable
5473 	 * the TX csum insertion in the TDES and not use SF.
5474 	 */
5475 	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
5476 		features &= ~NETIF_F_CSUM_MASK;
5477 
5478 	/* Disable tso if asked by ethtool */
5479 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
5480 		if (features & NETIF_F_TSO)
5481 			priv->tso = true;
5482 		else
5483 			priv->tso = false;
5484 	}
5485 
5486 	return features;
5487 }
5488 
5489 static int stmmac_set_features(struct net_device *netdev,
5490 			       netdev_features_t features)
5491 {
5492 	struct stmmac_priv *priv = netdev_priv(netdev);
5493 
5494 	/* Keep the COE Type in case of csum is supporting */
5495 	if (features & NETIF_F_RXCSUM)
5496 		priv->hw->rx_csum = priv->plat->rx_coe;
5497 	else
5498 		priv->hw->rx_csum = 0;
5499 	/* No check needed because rx_coe has been set before and it will be
5500 	 * fixed in case of issue.
5501 	 */
5502 	stmmac_rx_ipc(priv, priv->hw);
5503 
5504 	if (priv->sph_cap) {
5505 		bool sph_en = (priv->hw->rx_csum > 0) && priv->sph;
5506 		u32 chan;
5507 
5508 		for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++)
5509 			stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
5510 	}
5511 
5512 	return 0;
5513 }
5514 
5515 static void stmmac_fpe_event_status(struct stmmac_priv *priv, int status)
5516 {
5517 	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
5518 	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
5519 	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
5520 	bool *hs_enable = &fpe_cfg->hs_enable;
5521 
5522 	if (status == FPE_EVENT_UNKNOWN || !*hs_enable)
5523 		return;
5524 
5525 	/* If LP has sent verify mPacket, LP is FPE capable */
5526 	if ((status & FPE_EVENT_RVER) == FPE_EVENT_RVER) {
5527 		if (*lp_state < FPE_STATE_CAPABLE)
5528 			*lp_state = FPE_STATE_CAPABLE;
5529 
5530 		/* If user has requested FPE enable, quickly response */
5531 		if (*hs_enable)
5532 			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
5533 						MPACKET_RESPONSE);
5534 	}
5535 
5536 	/* If Local has sent verify mPacket, Local is FPE capable */
5537 	if ((status & FPE_EVENT_TVER) == FPE_EVENT_TVER) {
5538 		if (*lo_state < FPE_STATE_CAPABLE)
5539 			*lo_state = FPE_STATE_CAPABLE;
5540 	}
5541 
5542 	/* If LP has sent response mPacket, LP is entering FPE ON */
5543 	if ((status & FPE_EVENT_RRSP) == FPE_EVENT_RRSP)
5544 		*lp_state = FPE_STATE_ENTERING_ON;
5545 
5546 	/* If Local has sent response mPacket, Local is entering FPE ON */
5547 	if ((status & FPE_EVENT_TRSP) == FPE_EVENT_TRSP)
5548 		*lo_state = FPE_STATE_ENTERING_ON;
5549 
5550 	if (!test_bit(__FPE_REMOVING, &priv->fpe_task_state) &&
5551 	    !test_and_set_bit(__FPE_TASK_SCHED, &priv->fpe_task_state) &&
5552 	    priv->fpe_wq) {
5553 		queue_work(priv->fpe_wq, &priv->fpe_task);
5554 	}
5555 }
5556 
5557 static void stmmac_common_interrupt(struct stmmac_priv *priv)
5558 {
5559 	u32 rx_cnt = priv->plat->rx_queues_to_use;
5560 	u32 tx_cnt = priv->plat->tx_queues_to_use;
5561 	u32 queues_count;
5562 	u32 queue;
5563 	bool xmac;
5564 
5565 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
5566 	queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
5567 
5568 	if (priv->irq_wake)
5569 		pm_wakeup_event(priv->device, 0);
5570 
5571 	if (priv->dma_cap.estsel)
5572 		stmmac_est_irq_status(priv, priv->ioaddr, priv->dev,
5573 				      &priv->xstats, tx_cnt);
5574 
5575 	if (priv->dma_cap.fpesel) {
5576 		int status = stmmac_fpe_irq_status(priv, priv->ioaddr,
5577 						   priv->dev);
5578 
5579 		stmmac_fpe_event_status(priv, status);
5580 	}
5581 
5582 	/* To handle GMAC own interrupts */
5583 	if ((priv->plat->has_gmac) || xmac) {
5584 		int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
5585 
5586 		if (unlikely(status)) {
5587 			/* For LPI we need to save the tx status */
5588 			if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
5589 				priv->tx_path_in_lpi_mode = true;
5590 			if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
5591 				priv->tx_path_in_lpi_mode = false;
5592 		}
5593 
5594 		for (queue = 0; queue < queues_count; queue++) {
5595 			status = stmmac_host_mtl_irq_status(priv, priv->hw,
5596 							    queue);
5597 		}
5598 
5599 		/* PCS link status */
5600 		if (priv->hw->pcs) {
5601 			if (priv->xstats.pcs_link)
5602 				netif_carrier_on(priv->dev);
5603 			else
5604 				netif_carrier_off(priv->dev);
5605 		}
5606 
5607 		stmmac_timestamp_interrupt(priv, priv);
5608 	}
5609 }
5610 
5611 /**
5612  *  stmmac_interrupt - main ISR
5613  *  @irq: interrupt number.
5614  *  @dev_id: to pass the net device pointer.
5615  *  Description: this is the main driver interrupt service routine.
5616  *  It can call:
5617  *  o DMA service routine (to manage incoming frame reception and transmission
5618  *    status)
5619  *  o Core interrupts to manage: remote wake-up, management counter, LPI
5620  *    interrupts.
5621  */
5622 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
5623 {
5624 	struct net_device *dev = (struct net_device *)dev_id;
5625 	struct stmmac_priv *priv = netdev_priv(dev);
5626 
5627 	/* Check if adapter is up */
5628 	if (test_bit(STMMAC_DOWN, &priv->state))
5629 		return IRQ_HANDLED;
5630 
5631 	/* Check if a fatal error happened */
5632 	if (stmmac_safety_feat_interrupt(priv))
5633 		return IRQ_HANDLED;
5634 
5635 	/* To handle Common interrupts */
5636 	stmmac_common_interrupt(priv);
5637 
5638 	/* To handle DMA interrupts */
5639 	stmmac_dma_interrupt(priv);
5640 
5641 	return IRQ_HANDLED;
5642 }
5643 
5644 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id)
5645 {
5646 	struct net_device *dev = (struct net_device *)dev_id;
5647 	struct stmmac_priv *priv = netdev_priv(dev);
5648 
5649 	if (unlikely(!dev)) {
5650 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5651 		return IRQ_NONE;
5652 	}
5653 
5654 	/* Check if adapter is up */
5655 	if (test_bit(STMMAC_DOWN, &priv->state))
5656 		return IRQ_HANDLED;
5657 
5658 	/* To handle Common interrupts */
5659 	stmmac_common_interrupt(priv);
5660 
5661 	return IRQ_HANDLED;
5662 }
5663 
5664 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id)
5665 {
5666 	struct net_device *dev = (struct net_device *)dev_id;
5667 	struct stmmac_priv *priv = netdev_priv(dev);
5668 
5669 	if (unlikely(!dev)) {
5670 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5671 		return IRQ_NONE;
5672 	}
5673 
5674 	/* Check if adapter is up */
5675 	if (test_bit(STMMAC_DOWN, &priv->state))
5676 		return IRQ_HANDLED;
5677 
5678 	/* Check if a fatal error happened */
5679 	stmmac_safety_feat_interrupt(priv);
5680 
5681 	return IRQ_HANDLED;
5682 }
5683 
5684 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data)
5685 {
5686 	struct stmmac_tx_queue *tx_q = (struct stmmac_tx_queue *)data;
5687 	int chan = tx_q->queue_index;
5688 	struct stmmac_priv *priv;
5689 	int status;
5690 
5691 	priv = container_of(tx_q, struct stmmac_priv, tx_queue[chan]);
5692 
5693 	if (unlikely(!data)) {
5694 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5695 		return IRQ_NONE;
5696 	}
5697 
5698 	/* Check if adapter is up */
5699 	if (test_bit(STMMAC_DOWN, &priv->state))
5700 		return IRQ_HANDLED;
5701 
5702 	status = stmmac_napi_check(priv, chan, DMA_DIR_TX);
5703 
5704 	if (unlikely(status & tx_hard_error_bump_tc)) {
5705 		/* Try to bump up the dma threshold on this failure */
5706 		stmmac_bump_dma_threshold(priv, chan);
5707 	} else if (unlikely(status == tx_hard_error)) {
5708 		stmmac_tx_err(priv, chan);
5709 	}
5710 
5711 	return IRQ_HANDLED;
5712 }
5713 
5714 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data)
5715 {
5716 	struct stmmac_rx_queue *rx_q = (struct stmmac_rx_queue *)data;
5717 	int chan = rx_q->queue_index;
5718 	struct stmmac_priv *priv;
5719 
5720 	priv = container_of(rx_q, struct stmmac_priv, rx_queue[chan]);
5721 
5722 	if (unlikely(!data)) {
5723 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5724 		return IRQ_NONE;
5725 	}
5726 
5727 	/* Check if adapter is up */
5728 	if (test_bit(STMMAC_DOWN, &priv->state))
5729 		return IRQ_HANDLED;
5730 
5731 	stmmac_napi_check(priv, chan, DMA_DIR_RX);
5732 
5733 	return IRQ_HANDLED;
5734 }
5735 
5736 #ifdef CONFIG_NET_POLL_CONTROLLER
5737 /* Polling receive - used by NETCONSOLE and other diagnostic tools
5738  * to allow network I/O with interrupts disabled.
5739  */
5740 static void stmmac_poll_controller(struct net_device *dev)
5741 {
5742 	struct stmmac_priv *priv = netdev_priv(dev);
5743 	int i;
5744 
5745 	/* If adapter is down, do nothing */
5746 	if (test_bit(STMMAC_DOWN, &priv->state))
5747 		return;
5748 
5749 	if (priv->plat->multi_msi_en) {
5750 		for (i = 0; i < priv->plat->rx_queues_to_use; i++)
5751 			stmmac_msi_intr_rx(0, &priv->rx_queue[i]);
5752 
5753 		for (i = 0; i < priv->plat->tx_queues_to_use; i++)
5754 			stmmac_msi_intr_tx(0, &priv->tx_queue[i]);
5755 	} else {
5756 		disable_irq(dev->irq);
5757 		stmmac_interrupt(dev->irq, dev);
5758 		enable_irq(dev->irq);
5759 	}
5760 }
5761 #endif
5762 
5763 /**
5764  *  stmmac_ioctl - Entry point for the Ioctl
5765  *  @dev: Device pointer.
5766  *  @rq: An IOCTL specefic structure, that can contain a pointer to
5767  *  a proprietary structure used to pass information to the driver.
5768  *  @cmd: IOCTL command
5769  *  Description:
5770  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
5771  */
5772 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5773 {
5774 	struct stmmac_priv *priv = netdev_priv (dev);
5775 	int ret = -EOPNOTSUPP;
5776 
5777 	if (!netif_running(dev))
5778 		return -EINVAL;
5779 
5780 	switch (cmd) {
5781 	case SIOCGMIIPHY:
5782 	case SIOCGMIIREG:
5783 	case SIOCSMIIREG:
5784 		ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
5785 		break;
5786 	case SIOCSHWTSTAMP:
5787 		ret = stmmac_hwtstamp_set(dev, rq);
5788 		break;
5789 	case SIOCGHWTSTAMP:
5790 		ret = stmmac_hwtstamp_get(dev, rq);
5791 		break;
5792 	default:
5793 		break;
5794 	}
5795 
5796 	return ret;
5797 }
5798 
5799 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
5800 				    void *cb_priv)
5801 {
5802 	struct stmmac_priv *priv = cb_priv;
5803 	int ret = -EOPNOTSUPP;
5804 
5805 	if (!tc_cls_can_offload_and_chain0(priv->dev, type_data))
5806 		return ret;
5807 
5808 	__stmmac_disable_all_queues(priv);
5809 
5810 	switch (type) {
5811 	case TC_SETUP_CLSU32:
5812 		ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
5813 		break;
5814 	case TC_SETUP_CLSFLOWER:
5815 		ret = stmmac_tc_setup_cls(priv, priv, type_data);
5816 		break;
5817 	default:
5818 		break;
5819 	}
5820 
5821 	stmmac_enable_all_queues(priv);
5822 	return ret;
5823 }
5824 
5825 static LIST_HEAD(stmmac_block_cb_list);
5826 
5827 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
5828 			   void *type_data)
5829 {
5830 	struct stmmac_priv *priv = netdev_priv(ndev);
5831 
5832 	switch (type) {
5833 	case TC_SETUP_BLOCK:
5834 		return flow_block_cb_setup_simple(type_data,
5835 						  &stmmac_block_cb_list,
5836 						  stmmac_setup_tc_block_cb,
5837 						  priv, priv, true);
5838 	case TC_SETUP_QDISC_CBS:
5839 		return stmmac_tc_setup_cbs(priv, priv, type_data);
5840 	case TC_SETUP_QDISC_TAPRIO:
5841 		return stmmac_tc_setup_taprio(priv, priv, type_data);
5842 	case TC_SETUP_QDISC_ETF:
5843 		return stmmac_tc_setup_etf(priv, priv, type_data);
5844 	default:
5845 		return -EOPNOTSUPP;
5846 	}
5847 }
5848 
5849 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
5850 			       struct net_device *sb_dev)
5851 {
5852 	int gso = skb_shinfo(skb)->gso_type;
5853 
5854 	if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) {
5855 		/*
5856 		 * There is no way to determine the number of TSO/USO
5857 		 * capable Queues. Let's use always the Queue 0
5858 		 * because if TSO/USO is supported then at least this
5859 		 * one will be capable.
5860 		 */
5861 		return 0;
5862 	}
5863 
5864 	return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
5865 }
5866 
5867 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
5868 {
5869 	struct stmmac_priv *priv = netdev_priv(ndev);
5870 	int ret = 0;
5871 
5872 	ret = pm_runtime_get_sync(priv->device);
5873 	if (ret < 0) {
5874 		pm_runtime_put_noidle(priv->device);
5875 		return ret;
5876 	}
5877 
5878 	ret = eth_mac_addr(ndev, addr);
5879 	if (ret)
5880 		goto set_mac_error;
5881 
5882 	stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
5883 
5884 set_mac_error:
5885 	pm_runtime_put(priv->device);
5886 
5887 	return ret;
5888 }
5889 
5890 #ifdef CONFIG_DEBUG_FS
5891 static struct dentry *stmmac_fs_dir;
5892 
5893 static void sysfs_display_ring(void *head, int size, int extend_desc,
5894 			       struct seq_file *seq, dma_addr_t dma_phy_addr)
5895 {
5896 	int i;
5897 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
5898 	struct dma_desc *p = (struct dma_desc *)head;
5899 	dma_addr_t dma_addr;
5900 
5901 	for (i = 0; i < size; i++) {
5902 		if (extend_desc) {
5903 			dma_addr = dma_phy_addr + i * sizeof(*ep);
5904 			seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
5905 				   i, &dma_addr,
5906 				   le32_to_cpu(ep->basic.des0),
5907 				   le32_to_cpu(ep->basic.des1),
5908 				   le32_to_cpu(ep->basic.des2),
5909 				   le32_to_cpu(ep->basic.des3));
5910 			ep++;
5911 		} else {
5912 			dma_addr = dma_phy_addr + i * sizeof(*p);
5913 			seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
5914 				   i, &dma_addr,
5915 				   le32_to_cpu(p->des0), le32_to_cpu(p->des1),
5916 				   le32_to_cpu(p->des2), le32_to_cpu(p->des3));
5917 			p++;
5918 		}
5919 		seq_printf(seq, "\n");
5920 	}
5921 }
5922 
5923 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
5924 {
5925 	struct net_device *dev = seq->private;
5926 	struct stmmac_priv *priv = netdev_priv(dev);
5927 	u32 rx_count = priv->plat->rx_queues_to_use;
5928 	u32 tx_count = priv->plat->tx_queues_to_use;
5929 	u32 queue;
5930 
5931 	if ((dev->flags & IFF_UP) == 0)
5932 		return 0;
5933 
5934 	for (queue = 0; queue < rx_count; queue++) {
5935 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
5936 
5937 		seq_printf(seq, "RX Queue %d:\n", queue);
5938 
5939 		if (priv->extend_desc) {
5940 			seq_printf(seq, "Extended descriptor ring:\n");
5941 			sysfs_display_ring((void *)rx_q->dma_erx,
5942 					   priv->dma_rx_size, 1, seq, rx_q->dma_rx_phy);
5943 		} else {
5944 			seq_printf(seq, "Descriptor ring:\n");
5945 			sysfs_display_ring((void *)rx_q->dma_rx,
5946 					   priv->dma_rx_size, 0, seq, rx_q->dma_rx_phy);
5947 		}
5948 	}
5949 
5950 	for (queue = 0; queue < tx_count; queue++) {
5951 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
5952 
5953 		seq_printf(seq, "TX Queue %d:\n", queue);
5954 
5955 		if (priv->extend_desc) {
5956 			seq_printf(seq, "Extended descriptor ring:\n");
5957 			sysfs_display_ring((void *)tx_q->dma_etx,
5958 					   priv->dma_tx_size, 1, seq, tx_q->dma_tx_phy);
5959 		} else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) {
5960 			seq_printf(seq, "Descriptor ring:\n");
5961 			sysfs_display_ring((void *)tx_q->dma_tx,
5962 					   priv->dma_tx_size, 0, seq, tx_q->dma_tx_phy);
5963 		}
5964 	}
5965 
5966 	return 0;
5967 }
5968 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
5969 
5970 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
5971 {
5972 	struct net_device *dev = seq->private;
5973 	struct stmmac_priv *priv = netdev_priv(dev);
5974 
5975 	if (!priv->hw_cap_support) {
5976 		seq_printf(seq, "DMA HW features not supported\n");
5977 		return 0;
5978 	}
5979 
5980 	seq_printf(seq, "==============================\n");
5981 	seq_printf(seq, "\tDMA HW features\n");
5982 	seq_printf(seq, "==============================\n");
5983 
5984 	seq_printf(seq, "\t10/100 Mbps: %s\n",
5985 		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
5986 	seq_printf(seq, "\t1000 Mbps: %s\n",
5987 		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
5988 	seq_printf(seq, "\tHalf duplex: %s\n",
5989 		   (priv->dma_cap.half_duplex) ? "Y" : "N");
5990 	seq_printf(seq, "\tHash Filter: %s\n",
5991 		   (priv->dma_cap.hash_filter) ? "Y" : "N");
5992 	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
5993 		   (priv->dma_cap.multi_addr) ? "Y" : "N");
5994 	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
5995 		   (priv->dma_cap.pcs) ? "Y" : "N");
5996 	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
5997 		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
5998 	seq_printf(seq, "\tPMT Remote wake up: %s\n",
5999 		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
6000 	seq_printf(seq, "\tPMT Magic Frame: %s\n",
6001 		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
6002 	seq_printf(seq, "\tRMON module: %s\n",
6003 		   (priv->dma_cap.rmon) ? "Y" : "N");
6004 	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
6005 		   (priv->dma_cap.time_stamp) ? "Y" : "N");
6006 	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
6007 		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
6008 	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
6009 		   (priv->dma_cap.eee) ? "Y" : "N");
6010 	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
6011 	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
6012 		   (priv->dma_cap.tx_coe) ? "Y" : "N");
6013 	if (priv->synopsys_id >= DWMAC_CORE_4_00) {
6014 		seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
6015 			   (priv->dma_cap.rx_coe) ? "Y" : "N");
6016 	} else {
6017 		seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
6018 			   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
6019 		seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
6020 			   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
6021 	}
6022 	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
6023 		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
6024 	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
6025 		   priv->dma_cap.number_rx_channel);
6026 	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
6027 		   priv->dma_cap.number_tx_channel);
6028 	seq_printf(seq, "\tNumber of Additional RX queues: %d\n",
6029 		   priv->dma_cap.number_rx_queues);
6030 	seq_printf(seq, "\tNumber of Additional TX queues: %d\n",
6031 		   priv->dma_cap.number_tx_queues);
6032 	seq_printf(seq, "\tEnhanced descriptors: %s\n",
6033 		   (priv->dma_cap.enh_desc) ? "Y" : "N");
6034 	seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size);
6035 	seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size);
6036 	seq_printf(seq, "\tHash Table Size: %d\n", priv->dma_cap.hash_tb_sz);
6037 	seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N");
6038 	seq_printf(seq, "\tNumber of PPS Outputs: %d\n",
6039 		   priv->dma_cap.pps_out_num);
6040 	seq_printf(seq, "\tSafety Features: %s\n",
6041 		   priv->dma_cap.asp ? "Y" : "N");
6042 	seq_printf(seq, "\tFlexible RX Parser: %s\n",
6043 		   priv->dma_cap.frpsel ? "Y" : "N");
6044 	seq_printf(seq, "\tEnhanced Addressing: %d\n",
6045 		   priv->dma_cap.addr64);
6046 	seq_printf(seq, "\tReceive Side Scaling: %s\n",
6047 		   priv->dma_cap.rssen ? "Y" : "N");
6048 	seq_printf(seq, "\tVLAN Hash Filtering: %s\n",
6049 		   priv->dma_cap.vlhash ? "Y" : "N");
6050 	seq_printf(seq, "\tSplit Header: %s\n",
6051 		   priv->dma_cap.sphen ? "Y" : "N");
6052 	seq_printf(seq, "\tVLAN TX Insertion: %s\n",
6053 		   priv->dma_cap.vlins ? "Y" : "N");
6054 	seq_printf(seq, "\tDouble VLAN: %s\n",
6055 		   priv->dma_cap.dvlan ? "Y" : "N");
6056 	seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n",
6057 		   priv->dma_cap.l3l4fnum);
6058 	seq_printf(seq, "\tARP Offloading: %s\n",
6059 		   priv->dma_cap.arpoffsel ? "Y" : "N");
6060 	seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n",
6061 		   priv->dma_cap.estsel ? "Y" : "N");
6062 	seq_printf(seq, "\tFrame Preemption (FPE): %s\n",
6063 		   priv->dma_cap.fpesel ? "Y" : "N");
6064 	seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n",
6065 		   priv->dma_cap.tbssel ? "Y" : "N");
6066 	return 0;
6067 }
6068 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
6069 
6070 /* Use network device events to rename debugfs file entries.
6071  */
6072 static int stmmac_device_event(struct notifier_block *unused,
6073 			       unsigned long event, void *ptr)
6074 {
6075 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
6076 	struct stmmac_priv *priv = netdev_priv(dev);
6077 
6078 	if (dev->netdev_ops != &stmmac_netdev_ops)
6079 		goto done;
6080 
6081 	switch (event) {
6082 	case NETDEV_CHANGENAME:
6083 		if (priv->dbgfs_dir)
6084 			priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir,
6085 							 priv->dbgfs_dir,
6086 							 stmmac_fs_dir,
6087 							 dev->name);
6088 		break;
6089 	}
6090 done:
6091 	return NOTIFY_DONE;
6092 }
6093 
6094 static struct notifier_block stmmac_notifier = {
6095 	.notifier_call = stmmac_device_event,
6096 };
6097 
6098 static void stmmac_init_fs(struct net_device *dev)
6099 {
6100 	struct stmmac_priv *priv = netdev_priv(dev);
6101 
6102 	rtnl_lock();
6103 
6104 	/* Create per netdev entries */
6105 	priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
6106 
6107 	/* Entry to report DMA RX/TX rings */
6108 	debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev,
6109 			    &stmmac_rings_status_fops);
6110 
6111 	/* Entry to report the DMA HW features */
6112 	debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev,
6113 			    &stmmac_dma_cap_fops);
6114 
6115 	rtnl_unlock();
6116 }
6117 
6118 static void stmmac_exit_fs(struct net_device *dev)
6119 {
6120 	struct stmmac_priv *priv = netdev_priv(dev);
6121 
6122 	debugfs_remove_recursive(priv->dbgfs_dir);
6123 }
6124 #endif /* CONFIG_DEBUG_FS */
6125 
6126 static u32 stmmac_vid_crc32_le(__le16 vid_le)
6127 {
6128 	unsigned char *data = (unsigned char *)&vid_le;
6129 	unsigned char data_byte = 0;
6130 	u32 crc = ~0x0;
6131 	u32 temp = 0;
6132 	int i, bits;
6133 
6134 	bits = get_bitmask_order(VLAN_VID_MASK);
6135 	for (i = 0; i < bits; i++) {
6136 		if ((i % 8) == 0)
6137 			data_byte = data[i / 8];
6138 
6139 		temp = ((crc & 1) ^ data_byte) & 1;
6140 		crc >>= 1;
6141 		data_byte >>= 1;
6142 
6143 		if (temp)
6144 			crc ^= 0xedb88320;
6145 	}
6146 
6147 	return crc;
6148 }
6149 
6150 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double)
6151 {
6152 	u32 crc, hash = 0;
6153 	__le16 pmatch = 0;
6154 	int count = 0;
6155 	u16 vid = 0;
6156 
6157 	for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
6158 		__le16 vid_le = cpu_to_le16(vid);
6159 		crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28;
6160 		hash |= (1 << crc);
6161 		count++;
6162 	}
6163 
6164 	if (!priv->dma_cap.vlhash) {
6165 		if (count > 2) /* VID = 0 always passes filter */
6166 			return -EOPNOTSUPP;
6167 
6168 		pmatch = cpu_to_le16(vid);
6169 		hash = 0;
6170 	}
6171 
6172 	return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double);
6173 }
6174 
6175 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
6176 {
6177 	struct stmmac_priv *priv = netdev_priv(ndev);
6178 	bool is_double = false;
6179 	int ret;
6180 
6181 	if (be16_to_cpu(proto) == ETH_P_8021AD)
6182 		is_double = true;
6183 
6184 	set_bit(vid, priv->active_vlans);
6185 	ret = stmmac_vlan_update(priv, is_double);
6186 	if (ret) {
6187 		clear_bit(vid, priv->active_vlans);
6188 		return ret;
6189 	}
6190 
6191 	if (priv->hw->num_vlan) {
6192 		ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6193 		if (ret)
6194 			return ret;
6195 	}
6196 
6197 	return 0;
6198 }
6199 
6200 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
6201 {
6202 	struct stmmac_priv *priv = netdev_priv(ndev);
6203 	bool is_double = false;
6204 	int ret;
6205 
6206 	ret = pm_runtime_get_sync(priv->device);
6207 	if (ret < 0) {
6208 		pm_runtime_put_noidle(priv->device);
6209 		return ret;
6210 	}
6211 
6212 	if (be16_to_cpu(proto) == ETH_P_8021AD)
6213 		is_double = true;
6214 
6215 	clear_bit(vid, priv->active_vlans);
6216 
6217 	if (priv->hw->num_vlan) {
6218 		ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6219 		if (ret)
6220 			goto del_vlan_error;
6221 	}
6222 
6223 	ret = stmmac_vlan_update(priv, is_double);
6224 
6225 del_vlan_error:
6226 	pm_runtime_put(priv->device);
6227 
6228 	return ret;
6229 }
6230 
6231 static int stmmac_bpf(struct net_device *dev, struct netdev_bpf *bpf)
6232 {
6233 	struct stmmac_priv *priv = netdev_priv(dev);
6234 
6235 	switch (bpf->command) {
6236 	case XDP_SETUP_PROG:
6237 		return stmmac_xdp_set_prog(priv, bpf->prog, bpf->extack);
6238 	case XDP_SETUP_XSK_POOL:
6239 		return stmmac_xdp_setup_pool(priv, bpf->xsk.pool,
6240 					     bpf->xsk.queue_id);
6241 	default:
6242 		return -EOPNOTSUPP;
6243 	}
6244 }
6245 
6246 static int stmmac_xdp_xmit(struct net_device *dev, int num_frames,
6247 			   struct xdp_frame **frames, u32 flags)
6248 {
6249 	struct stmmac_priv *priv = netdev_priv(dev);
6250 	int cpu = smp_processor_id();
6251 	struct netdev_queue *nq;
6252 	int i, nxmit = 0;
6253 	int queue;
6254 
6255 	if (unlikely(test_bit(STMMAC_DOWN, &priv->state)))
6256 		return -ENETDOWN;
6257 
6258 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
6259 		return -EINVAL;
6260 
6261 	queue = stmmac_xdp_get_tx_queue(priv, cpu);
6262 	nq = netdev_get_tx_queue(priv->dev, queue);
6263 
6264 	__netif_tx_lock(nq, cpu);
6265 	/* Avoids TX time-out as we are sharing with slow path */
6266 	txq_trans_cond_update(nq);
6267 
6268 	for (i = 0; i < num_frames; i++) {
6269 		int res;
6270 
6271 		res = stmmac_xdp_xmit_xdpf(priv, queue, frames[i], true);
6272 		if (res == STMMAC_XDP_CONSUMED)
6273 			break;
6274 
6275 		nxmit++;
6276 	}
6277 
6278 	if (flags & XDP_XMIT_FLUSH) {
6279 		stmmac_flush_tx_descriptors(priv, queue);
6280 		stmmac_tx_timer_arm(priv, queue);
6281 	}
6282 
6283 	__netif_tx_unlock(nq);
6284 
6285 	return nxmit;
6286 }
6287 
6288 void stmmac_disable_rx_queue(struct stmmac_priv *priv, u32 queue)
6289 {
6290 	struct stmmac_channel *ch = &priv->channel[queue];
6291 	unsigned long flags;
6292 
6293 	spin_lock_irqsave(&ch->lock, flags);
6294 	stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6295 	spin_unlock_irqrestore(&ch->lock, flags);
6296 
6297 	stmmac_stop_rx_dma(priv, queue);
6298 	__free_dma_rx_desc_resources(priv, queue);
6299 }
6300 
6301 void stmmac_enable_rx_queue(struct stmmac_priv *priv, u32 queue)
6302 {
6303 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
6304 	struct stmmac_channel *ch = &priv->channel[queue];
6305 	unsigned long flags;
6306 	u32 buf_size;
6307 	int ret;
6308 
6309 	ret = __alloc_dma_rx_desc_resources(priv, queue);
6310 	if (ret) {
6311 		netdev_err(priv->dev, "Failed to alloc RX desc.\n");
6312 		return;
6313 	}
6314 
6315 	ret = __init_dma_rx_desc_rings(priv, queue, GFP_KERNEL);
6316 	if (ret) {
6317 		__free_dma_rx_desc_resources(priv, queue);
6318 		netdev_err(priv->dev, "Failed to init RX desc.\n");
6319 		return;
6320 	}
6321 
6322 	stmmac_clear_rx_descriptors(priv, queue);
6323 
6324 	stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6325 			    rx_q->dma_rx_phy, rx_q->queue_index);
6326 
6327 	rx_q->rx_tail_addr = rx_q->dma_rx_phy + (rx_q->buf_alloc_num *
6328 			     sizeof(struct dma_desc));
6329 	stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
6330 			       rx_q->rx_tail_addr, rx_q->queue_index);
6331 
6332 	if (rx_q->xsk_pool && rx_q->buf_alloc_num) {
6333 		buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
6334 		stmmac_set_dma_bfsize(priv, priv->ioaddr,
6335 				      buf_size,
6336 				      rx_q->queue_index);
6337 	} else {
6338 		stmmac_set_dma_bfsize(priv, priv->ioaddr,
6339 				      priv->dma_buf_sz,
6340 				      rx_q->queue_index);
6341 	}
6342 
6343 	stmmac_start_rx_dma(priv, queue);
6344 
6345 	spin_lock_irqsave(&ch->lock, flags);
6346 	stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6347 	spin_unlock_irqrestore(&ch->lock, flags);
6348 }
6349 
6350 void stmmac_disable_tx_queue(struct stmmac_priv *priv, u32 queue)
6351 {
6352 	struct stmmac_channel *ch = &priv->channel[queue];
6353 	unsigned long flags;
6354 
6355 	spin_lock_irqsave(&ch->lock, flags);
6356 	stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6357 	spin_unlock_irqrestore(&ch->lock, flags);
6358 
6359 	stmmac_stop_tx_dma(priv, queue);
6360 	__free_dma_tx_desc_resources(priv, queue);
6361 }
6362 
6363 void stmmac_enable_tx_queue(struct stmmac_priv *priv, u32 queue)
6364 {
6365 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
6366 	struct stmmac_channel *ch = &priv->channel[queue];
6367 	unsigned long flags;
6368 	int ret;
6369 
6370 	ret = __alloc_dma_tx_desc_resources(priv, queue);
6371 	if (ret) {
6372 		netdev_err(priv->dev, "Failed to alloc TX desc.\n");
6373 		return;
6374 	}
6375 
6376 	ret = __init_dma_tx_desc_rings(priv, queue);
6377 	if (ret) {
6378 		__free_dma_tx_desc_resources(priv, queue);
6379 		netdev_err(priv->dev, "Failed to init TX desc.\n");
6380 		return;
6381 	}
6382 
6383 	stmmac_clear_tx_descriptors(priv, queue);
6384 
6385 	stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6386 			    tx_q->dma_tx_phy, tx_q->queue_index);
6387 
6388 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
6389 		stmmac_enable_tbs(priv, priv->ioaddr, 1, tx_q->queue_index);
6390 
6391 	tx_q->tx_tail_addr = tx_q->dma_tx_phy;
6392 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
6393 			       tx_q->tx_tail_addr, tx_q->queue_index);
6394 
6395 	stmmac_start_tx_dma(priv, queue);
6396 
6397 	spin_lock_irqsave(&ch->lock, flags);
6398 	stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6399 	spin_unlock_irqrestore(&ch->lock, flags);
6400 }
6401 
6402 void stmmac_xdp_release(struct net_device *dev)
6403 {
6404 	struct stmmac_priv *priv = netdev_priv(dev);
6405 	u32 chan;
6406 
6407 	/* Disable NAPI process */
6408 	stmmac_disable_all_queues(priv);
6409 
6410 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
6411 		hrtimer_cancel(&priv->tx_queue[chan].txtimer);
6412 
6413 	/* Free the IRQ lines */
6414 	stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0);
6415 
6416 	/* Stop TX/RX DMA channels */
6417 	stmmac_stop_all_dma(priv);
6418 
6419 	/* Release and free the Rx/Tx resources */
6420 	free_dma_desc_resources(priv);
6421 
6422 	/* Disable the MAC Rx/Tx */
6423 	stmmac_mac_set(priv, priv->ioaddr, false);
6424 
6425 	/* set trans_start so we don't get spurious
6426 	 * watchdogs during reset
6427 	 */
6428 	netif_trans_update(dev);
6429 	netif_carrier_off(dev);
6430 }
6431 
6432 int stmmac_xdp_open(struct net_device *dev)
6433 {
6434 	struct stmmac_priv *priv = netdev_priv(dev);
6435 	u32 rx_cnt = priv->plat->rx_queues_to_use;
6436 	u32 tx_cnt = priv->plat->tx_queues_to_use;
6437 	u32 dma_csr_ch = max(rx_cnt, tx_cnt);
6438 	struct stmmac_rx_queue *rx_q;
6439 	struct stmmac_tx_queue *tx_q;
6440 	u32 buf_size;
6441 	bool sph_en;
6442 	u32 chan;
6443 	int ret;
6444 
6445 	ret = alloc_dma_desc_resources(priv);
6446 	if (ret < 0) {
6447 		netdev_err(dev, "%s: DMA descriptors allocation failed\n",
6448 			   __func__);
6449 		goto dma_desc_error;
6450 	}
6451 
6452 	ret = init_dma_desc_rings(dev, GFP_KERNEL);
6453 	if (ret < 0) {
6454 		netdev_err(dev, "%s: DMA descriptors initialization failed\n",
6455 			   __func__);
6456 		goto init_error;
6457 	}
6458 
6459 	/* DMA CSR Channel configuration */
6460 	for (chan = 0; chan < dma_csr_ch; chan++)
6461 		stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
6462 
6463 	/* Adjust Split header */
6464 	sph_en = (priv->hw->rx_csum > 0) && priv->sph;
6465 
6466 	/* DMA RX Channel Configuration */
6467 	for (chan = 0; chan < rx_cnt; chan++) {
6468 		rx_q = &priv->rx_queue[chan];
6469 
6470 		stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6471 				    rx_q->dma_rx_phy, chan);
6472 
6473 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
6474 				     (rx_q->buf_alloc_num *
6475 				      sizeof(struct dma_desc));
6476 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
6477 				       rx_q->rx_tail_addr, chan);
6478 
6479 		if (rx_q->xsk_pool && rx_q->buf_alloc_num) {
6480 			buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
6481 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
6482 					      buf_size,
6483 					      rx_q->queue_index);
6484 		} else {
6485 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
6486 					      priv->dma_buf_sz,
6487 					      rx_q->queue_index);
6488 		}
6489 
6490 		stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
6491 	}
6492 
6493 	/* DMA TX Channel Configuration */
6494 	for (chan = 0; chan < tx_cnt; chan++) {
6495 		tx_q = &priv->tx_queue[chan];
6496 
6497 		stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6498 				    tx_q->dma_tx_phy, chan);
6499 
6500 		tx_q->tx_tail_addr = tx_q->dma_tx_phy;
6501 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
6502 				       tx_q->tx_tail_addr, chan);
6503 
6504 		hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6505 		tx_q->txtimer.function = stmmac_tx_timer;
6506 	}
6507 
6508 	/* Enable the MAC Rx/Tx */
6509 	stmmac_mac_set(priv, priv->ioaddr, true);
6510 
6511 	/* Start Rx & Tx DMA Channels */
6512 	stmmac_start_all_dma(priv);
6513 
6514 	ret = stmmac_request_irq(dev);
6515 	if (ret)
6516 		goto irq_error;
6517 
6518 	/* Enable NAPI process*/
6519 	stmmac_enable_all_queues(priv);
6520 	netif_carrier_on(dev);
6521 	netif_tx_start_all_queues(dev);
6522 
6523 	return 0;
6524 
6525 irq_error:
6526 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
6527 		hrtimer_cancel(&priv->tx_queue[chan].txtimer);
6528 
6529 	stmmac_hw_teardown(dev);
6530 init_error:
6531 	free_dma_desc_resources(priv);
6532 dma_desc_error:
6533 	return ret;
6534 }
6535 
6536 int stmmac_xsk_wakeup(struct net_device *dev, u32 queue, u32 flags)
6537 {
6538 	struct stmmac_priv *priv = netdev_priv(dev);
6539 	struct stmmac_rx_queue *rx_q;
6540 	struct stmmac_tx_queue *tx_q;
6541 	struct stmmac_channel *ch;
6542 
6543 	if (test_bit(STMMAC_DOWN, &priv->state) ||
6544 	    !netif_carrier_ok(priv->dev))
6545 		return -ENETDOWN;
6546 
6547 	if (!stmmac_xdp_is_enabled(priv))
6548 		return -ENXIO;
6549 
6550 	if (queue >= priv->plat->rx_queues_to_use ||
6551 	    queue >= priv->plat->tx_queues_to_use)
6552 		return -EINVAL;
6553 
6554 	rx_q = &priv->rx_queue[queue];
6555 	tx_q = &priv->tx_queue[queue];
6556 	ch = &priv->channel[queue];
6557 
6558 	if (!rx_q->xsk_pool && !tx_q->xsk_pool)
6559 		return -ENXIO;
6560 
6561 	if (!napi_if_scheduled_mark_missed(&ch->rxtx_napi)) {
6562 		/* EQoS does not have per-DMA channel SW interrupt,
6563 		 * so we schedule RX Napi straight-away.
6564 		 */
6565 		if (likely(napi_schedule_prep(&ch->rxtx_napi)))
6566 			__napi_schedule(&ch->rxtx_napi);
6567 	}
6568 
6569 	return 0;
6570 }
6571 
6572 static const struct net_device_ops stmmac_netdev_ops = {
6573 	.ndo_open = stmmac_open,
6574 	.ndo_start_xmit = stmmac_xmit,
6575 	.ndo_stop = stmmac_release,
6576 	.ndo_change_mtu = stmmac_change_mtu,
6577 	.ndo_fix_features = stmmac_fix_features,
6578 	.ndo_set_features = stmmac_set_features,
6579 	.ndo_set_rx_mode = stmmac_set_rx_mode,
6580 	.ndo_tx_timeout = stmmac_tx_timeout,
6581 	.ndo_eth_ioctl = stmmac_ioctl,
6582 	.ndo_setup_tc = stmmac_setup_tc,
6583 	.ndo_select_queue = stmmac_select_queue,
6584 #ifdef CONFIG_NET_POLL_CONTROLLER
6585 	.ndo_poll_controller = stmmac_poll_controller,
6586 #endif
6587 	.ndo_set_mac_address = stmmac_set_mac_address,
6588 	.ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid,
6589 	.ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid,
6590 	.ndo_bpf = stmmac_bpf,
6591 	.ndo_xdp_xmit = stmmac_xdp_xmit,
6592 	.ndo_xsk_wakeup = stmmac_xsk_wakeup,
6593 };
6594 
6595 static void stmmac_reset_subtask(struct stmmac_priv *priv)
6596 {
6597 	if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
6598 		return;
6599 	if (test_bit(STMMAC_DOWN, &priv->state))
6600 		return;
6601 
6602 	netdev_err(priv->dev, "Reset adapter.\n");
6603 
6604 	rtnl_lock();
6605 	netif_trans_update(priv->dev);
6606 	while (test_and_set_bit(STMMAC_RESETING, &priv->state))
6607 		usleep_range(1000, 2000);
6608 
6609 	set_bit(STMMAC_DOWN, &priv->state);
6610 	dev_close(priv->dev);
6611 	dev_open(priv->dev, NULL);
6612 	clear_bit(STMMAC_DOWN, &priv->state);
6613 	clear_bit(STMMAC_RESETING, &priv->state);
6614 	rtnl_unlock();
6615 }
6616 
6617 static void stmmac_service_task(struct work_struct *work)
6618 {
6619 	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
6620 			service_task);
6621 
6622 	stmmac_reset_subtask(priv);
6623 	clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
6624 }
6625 
6626 /**
6627  *  stmmac_hw_init - Init the MAC device
6628  *  @priv: driver private structure
6629  *  Description: this function is to configure the MAC device according to
6630  *  some platform parameters or the HW capability register. It prepares the
6631  *  driver to use either ring or chain modes and to setup either enhanced or
6632  *  normal descriptors.
6633  */
6634 static int stmmac_hw_init(struct stmmac_priv *priv)
6635 {
6636 	int ret;
6637 
6638 	/* dwmac-sun8i only work in chain mode */
6639 	if (priv->plat->has_sun8i)
6640 		chain_mode = 1;
6641 	priv->chain_mode = chain_mode;
6642 
6643 	/* Initialize HW Interface */
6644 	ret = stmmac_hwif_init(priv);
6645 	if (ret)
6646 		return ret;
6647 
6648 	/* Get the HW capability (new GMAC newer than 3.50a) */
6649 	priv->hw_cap_support = stmmac_get_hw_features(priv);
6650 	if (priv->hw_cap_support) {
6651 		dev_info(priv->device, "DMA HW capability register supported\n");
6652 
6653 		/* We can override some gmac/dma configuration fields: e.g.
6654 		 * enh_desc, tx_coe (e.g. that are passed through the
6655 		 * platform) with the values from the HW capability
6656 		 * register (if supported).
6657 		 */
6658 		priv->plat->enh_desc = priv->dma_cap.enh_desc;
6659 		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up &&
6660 				!priv->plat->use_phy_wol;
6661 		priv->hw->pmt = priv->plat->pmt;
6662 		if (priv->dma_cap.hash_tb_sz) {
6663 			priv->hw->multicast_filter_bins =
6664 					(BIT(priv->dma_cap.hash_tb_sz) << 5);
6665 			priv->hw->mcast_bits_log2 =
6666 					ilog2(priv->hw->multicast_filter_bins);
6667 		}
6668 
6669 		/* TXCOE doesn't work in thresh DMA mode */
6670 		if (priv->plat->force_thresh_dma_mode)
6671 			priv->plat->tx_coe = 0;
6672 		else
6673 			priv->plat->tx_coe = priv->dma_cap.tx_coe;
6674 
6675 		/* In case of GMAC4 rx_coe is from HW cap register. */
6676 		priv->plat->rx_coe = priv->dma_cap.rx_coe;
6677 
6678 		if (priv->dma_cap.rx_coe_type2)
6679 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
6680 		else if (priv->dma_cap.rx_coe_type1)
6681 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
6682 
6683 	} else {
6684 		dev_info(priv->device, "No HW DMA feature register supported\n");
6685 	}
6686 
6687 	if (priv->plat->rx_coe) {
6688 		priv->hw->rx_csum = priv->plat->rx_coe;
6689 		dev_info(priv->device, "RX Checksum Offload Engine supported\n");
6690 		if (priv->synopsys_id < DWMAC_CORE_4_00)
6691 			dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
6692 	}
6693 	if (priv->plat->tx_coe)
6694 		dev_info(priv->device, "TX Checksum insertion supported\n");
6695 
6696 	if (priv->plat->pmt) {
6697 		dev_info(priv->device, "Wake-Up On Lan supported\n");
6698 		device_set_wakeup_capable(priv->device, 1);
6699 	}
6700 
6701 	if (priv->dma_cap.tsoen)
6702 		dev_info(priv->device, "TSO supported\n");
6703 
6704 	priv->hw->vlan_fail_q_en = priv->plat->vlan_fail_q_en;
6705 	priv->hw->vlan_fail_q = priv->plat->vlan_fail_q;
6706 
6707 	/* Run HW quirks, if any */
6708 	if (priv->hwif_quirks) {
6709 		ret = priv->hwif_quirks(priv);
6710 		if (ret)
6711 			return ret;
6712 	}
6713 
6714 	/* Rx Watchdog is available in the COREs newer than the 3.40.
6715 	 * In some case, for example on bugged HW this feature
6716 	 * has to be disable and this can be done by passing the
6717 	 * riwt_off field from the platform.
6718 	 */
6719 	if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
6720 	    (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
6721 		priv->use_riwt = 1;
6722 		dev_info(priv->device,
6723 			 "Enable RX Mitigation via HW Watchdog Timer\n");
6724 	}
6725 
6726 	return 0;
6727 }
6728 
6729 static void stmmac_napi_add(struct net_device *dev)
6730 {
6731 	struct stmmac_priv *priv = netdev_priv(dev);
6732 	u32 queue, maxq;
6733 
6734 	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
6735 
6736 	for (queue = 0; queue < maxq; queue++) {
6737 		struct stmmac_channel *ch = &priv->channel[queue];
6738 
6739 		ch->priv_data = priv;
6740 		ch->index = queue;
6741 		spin_lock_init(&ch->lock);
6742 
6743 		if (queue < priv->plat->rx_queues_to_use) {
6744 			netif_napi_add(dev, &ch->rx_napi, stmmac_napi_poll_rx,
6745 				       NAPI_POLL_WEIGHT);
6746 		}
6747 		if (queue < priv->plat->tx_queues_to_use) {
6748 			netif_tx_napi_add(dev, &ch->tx_napi,
6749 					  stmmac_napi_poll_tx,
6750 					  NAPI_POLL_WEIGHT);
6751 		}
6752 		if (queue < priv->plat->rx_queues_to_use &&
6753 		    queue < priv->plat->tx_queues_to_use) {
6754 			netif_napi_add(dev, &ch->rxtx_napi,
6755 				       stmmac_napi_poll_rxtx,
6756 				       NAPI_POLL_WEIGHT);
6757 		}
6758 	}
6759 }
6760 
6761 static void stmmac_napi_del(struct net_device *dev)
6762 {
6763 	struct stmmac_priv *priv = netdev_priv(dev);
6764 	u32 queue, maxq;
6765 
6766 	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
6767 
6768 	for (queue = 0; queue < maxq; queue++) {
6769 		struct stmmac_channel *ch = &priv->channel[queue];
6770 
6771 		if (queue < priv->plat->rx_queues_to_use)
6772 			netif_napi_del(&ch->rx_napi);
6773 		if (queue < priv->plat->tx_queues_to_use)
6774 			netif_napi_del(&ch->tx_napi);
6775 		if (queue < priv->plat->rx_queues_to_use &&
6776 		    queue < priv->plat->tx_queues_to_use) {
6777 			netif_napi_del(&ch->rxtx_napi);
6778 		}
6779 	}
6780 }
6781 
6782 int stmmac_reinit_queues(struct net_device *dev, u32 rx_cnt, u32 tx_cnt)
6783 {
6784 	struct stmmac_priv *priv = netdev_priv(dev);
6785 	int ret = 0;
6786 
6787 	if (netif_running(dev))
6788 		stmmac_release(dev);
6789 
6790 	stmmac_napi_del(dev);
6791 
6792 	priv->plat->rx_queues_to_use = rx_cnt;
6793 	priv->plat->tx_queues_to_use = tx_cnt;
6794 
6795 	stmmac_napi_add(dev);
6796 
6797 	if (netif_running(dev))
6798 		ret = stmmac_open(dev);
6799 
6800 	return ret;
6801 }
6802 
6803 int stmmac_reinit_ringparam(struct net_device *dev, u32 rx_size, u32 tx_size)
6804 {
6805 	struct stmmac_priv *priv = netdev_priv(dev);
6806 	int ret = 0;
6807 
6808 	if (netif_running(dev))
6809 		stmmac_release(dev);
6810 
6811 	priv->dma_rx_size = rx_size;
6812 	priv->dma_tx_size = tx_size;
6813 
6814 	if (netif_running(dev))
6815 		ret = stmmac_open(dev);
6816 
6817 	return ret;
6818 }
6819 
6820 #define SEND_VERIFY_MPAKCET_FMT "Send Verify mPacket lo_state=%d lp_state=%d\n"
6821 static void stmmac_fpe_lp_task(struct work_struct *work)
6822 {
6823 	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
6824 						fpe_task);
6825 	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
6826 	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
6827 	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
6828 	bool *hs_enable = &fpe_cfg->hs_enable;
6829 	bool *enable = &fpe_cfg->enable;
6830 	int retries = 20;
6831 
6832 	while (retries-- > 0) {
6833 		/* Bail out immediately if FPE handshake is OFF */
6834 		if (*lo_state == FPE_STATE_OFF || !*hs_enable)
6835 			break;
6836 
6837 		if (*lo_state == FPE_STATE_ENTERING_ON &&
6838 		    *lp_state == FPE_STATE_ENTERING_ON) {
6839 			stmmac_fpe_configure(priv, priv->ioaddr,
6840 					     priv->plat->tx_queues_to_use,
6841 					     priv->plat->rx_queues_to_use,
6842 					     *enable);
6843 
6844 			netdev_info(priv->dev, "configured FPE\n");
6845 
6846 			*lo_state = FPE_STATE_ON;
6847 			*lp_state = FPE_STATE_ON;
6848 			netdev_info(priv->dev, "!!! BOTH FPE stations ON\n");
6849 			break;
6850 		}
6851 
6852 		if ((*lo_state == FPE_STATE_CAPABLE ||
6853 		     *lo_state == FPE_STATE_ENTERING_ON) &&
6854 		     *lp_state != FPE_STATE_ON) {
6855 			netdev_info(priv->dev, SEND_VERIFY_MPAKCET_FMT,
6856 				    *lo_state, *lp_state);
6857 			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
6858 						MPACKET_VERIFY);
6859 		}
6860 		/* Sleep then retry */
6861 		msleep(500);
6862 	}
6863 
6864 	clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
6865 }
6866 
6867 void stmmac_fpe_handshake(struct stmmac_priv *priv, bool enable)
6868 {
6869 	if (priv->plat->fpe_cfg->hs_enable != enable) {
6870 		if (enable) {
6871 			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
6872 						MPACKET_VERIFY);
6873 		} else {
6874 			priv->plat->fpe_cfg->lo_fpe_state = FPE_STATE_OFF;
6875 			priv->plat->fpe_cfg->lp_fpe_state = FPE_STATE_OFF;
6876 		}
6877 
6878 		priv->plat->fpe_cfg->hs_enable = enable;
6879 	}
6880 }
6881 
6882 /**
6883  * stmmac_dvr_probe
6884  * @device: device pointer
6885  * @plat_dat: platform data pointer
6886  * @res: stmmac resource pointer
6887  * Description: this is the main probe function used to
6888  * call the alloc_etherdev, allocate the priv structure.
6889  * Return:
6890  * returns 0 on success, otherwise errno.
6891  */
6892 int stmmac_dvr_probe(struct device *device,
6893 		     struct plat_stmmacenet_data *plat_dat,
6894 		     struct stmmac_resources *res)
6895 {
6896 	struct net_device *ndev = NULL;
6897 	struct stmmac_priv *priv;
6898 	u32 rxq;
6899 	int i, ret = 0;
6900 
6901 	ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
6902 				       MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
6903 	if (!ndev)
6904 		return -ENOMEM;
6905 
6906 	SET_NETDEV_DEV(ndev, device);
6907 
6908 	priv = netdev_priv(ndev);
6909 	priv->device = device;
6910 	priv->dev = ndev;
6911 
6912 	stmmac_set_ethtool_ops(ndev);
6913 	priv->pause = pause;
6914 	priv->plat = plat_dat;
6915 	priv->ioaddr = res->addr;
6916 	priv->dev->base_addr = (unsigned long)res->addr;
6917 	priv->plat->dma_cfg->multi_msi_en = priv->plat->multi_msi_en;
6918 
6919 	priv->dev->irq = res->irq;
6920 	priv->wol_irq = res->wol_irq;
6921 	priv->lpi_irq = res->lpi_irq;
6922 	priv->sfty_ce_irq = res->sfty_ce_irq;
6923 	priv->sfty_ue_irq = res->sfty_ue_irq;
6924 	for (i = 0; i < MTL_MAX_RX_QUEUES; i++)
6925 		priv->rx_irq[i] = res->rx_irq[i];
6926 	for (i = 0; i < MTL_MAX_TX_QUEUES; i++)
6927 		priv->tx_irq[i] = res->tx_irq[i];
6928 
6929 	if (!is_zero_ether_addr(res->mac))
6930 		eth_hw_addr_set(priv->dev, res->mac);
6931 
6932 	dev_set_drvdata(device, priv->dev);
6933 
6934 	/* Verify driver arguments */
6935 	stmmac_verify_args();
6936 
6937 	priv->af_xdp_zc_qps = bitmap_zalloc(MTL_MAX_TX_QUEUES, GFP_KERNEL);
6938 	if (!priv->af_xdp_zc_qps)
6939 		return -ENOMEM;
6940 
6941 	/* Allocate workqueue */
6942 	priv->wq = create_singlethread_workqueue("stmmac_wq");
6943 	if (!priv->wq) {
6944 		dev_err(priv->device, "failed to create workqueue\n");
6945 		return -ENOMEM;
6946 	}
6947 
6948 	INIT_WORK(&priv->service_task, stmmac_service_task);
6949 
6950 	/* Initialize Link Partner FPE workqueue */
6951 	INIT_WORK(&priv->fpe_task, stmmac_fpe_lp_task);
6952 
6953 	/* Override with kernel parameters if supplied XXX CRS XXX
6954 	 * this needs to have multiple instances
6955 	 */
6956 	if ((phyaddr >= 0) && (phyaddr <= 31))
6957 		priv->plat->phy_addr = phyaddr;
6958 
6959 	if (priv->plat->stmmac_rst) {
6960 		ret = reset_control_assert(priv->plat->stmmac_rst);
6961 		reset_control_deassert(priv->plat->stmmac_rst);
6962 		/* Some reset controllers have only reset callback instead of
6963 		 * assert + deassert callbacks pair.
6964 		 */
6965 		if (ret == -ENOTSUPP)
6966 			reset_control_reset(priv->plat->stmmac_rst);
6967 	}
6968 
6969 	ret = reset_control_deassert(priv->plat->stmmac_ahb_rst);
6970 	if (ret == -ENOTSUPP)
6971 		dev_err(priv->device, "unable to bring out of ahb reset: %pe\n",
6972 			ERR_PTR(ret));
6973 
6974 	/* Init MAC and get the capabilities */
6975 	ret = stmmac_hw_init(priv);
6976 	if (ret)
6977 		goto error_hw_init;
6978 
6979 	/* Only DWMAC core version 5.20 onwards supports HW descriptor prefetch.
6980 	 */
6981 	if (priv->synopsys_id < DWMAC_CORE_5_20)
6982 		priv->plat->dma_cfg->dche = false;
6983 
6984 	stmmac_check_ether_addr(priv);
6985 
6986 	ndev->netdev_ops = &stmmac_netdev_ops;
6987 
6988 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
6989 			    NETIF_F_RXCSUM;
6990 
6991 	ret = stmmac_tc_init(priv, priv);
6992 	if (!ret) {
6993 		ndev->hw_features |= NETIF_F_HW_TC;
6994 	}
6995 
6996 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
6997 		ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
6998 		if (priv->plat->has_gmac4)
6999 			ndev->hw_features |= NETIF_F_GSO_UDP_L4;
7000 		priv->tso = true;
7001 		dev_info(priv->device, "TSO feature enabled\n");
7002 	}
7003 
7004 	if (priv->dma_cap.sphen) {
7005 		ndev->hw_features |= NETIF_F_GRO;
7006 		priv->sph_cap = true;
7007 		priv->sph = priv->sph_cap;
7008 		dev_info(priv->device, "SPH feature enabled\n");
7009 	}
7010 
7011 	/* The current IP register MAC_HW_Feature1[ADDR64] only define
7012 	 * 32/40/64 bit width, but some SOC support others like i.MX8MP
7013 	 * support 34 bits but it map to 40 bits width in MAC_HW_Feature1[ADDR64].
7014 	 * So overwrite dma_cap.addr64 according to HW real design.
7015 	 */
7016 	if (priv->plat->addr64)
7017 		priv->dma_cap.addr64 = priv->plat->addr64;
7018 
7019 	if (priv->dma_cap.addr64) {
7020 		ret = dma_set_mask_and_coherent(device,
7021 				DMA_BIT_MASK(priv->dma_cap.addr64));
7022 		if (!ret) {
7023 			dev_info(priv->device, "Using %d bits DMA width\n",
7024 				 priv->dma_cap.addr64);
7025 
7026 			/*
7027 			 * If more than 32 bits can be addressed, make sure to
7028 			 * enable enhanced addressing mode.
7029 			 */
7030 			if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
7031 				priv->plat->dma_cfg->eame = true;
7032 		} else {
7033 			ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
7034 			if (ret) {
7035 				dev_err(priv->device, "Failed to set DMA Mask\n");
7036 				goto error_hw_init;
7037 			}
7038 
7039 			priv->dma_cap.addr64 = 32;
7040 		}
7041 	}
7042 
7043 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
7044 	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
7045 #ifdef STMMAC_VLAN_TAG_USED
7046 	/* Both mac100 and gmac support receive VLAN tag detection */
7047 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
7048 	if (priv->dma_cap.vlhash) {
7049 		ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7050 		ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER;
7051 	}
7052 	if (priv->dma_cap.vlins) {
7053 		ndev->features |= NETIF_F_HW_VLAN_CTAG_TX;
7054 		if (priv->dma_cap.dvlan)
7055 			ndev->features |= NETIF_F_HW_VLAN_STAG_TX;
7056 	}
7057 #endif
7058 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
7059 
7060 	/* Initialize RSS */
7061 	rxq = priv->plat->rx_queues_to_use;
7062 	netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key));
7063 	for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
7064 		priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq);
7065 
7066 	if (priv->dma_cap.rssen && priv->plat->rss_en)
7067 		ndev->features |= NETIF_F_RXHASH;
7068 
7069 	/* MTU range: 46 - hw-specific max */
7070 	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
7071 	if (priv->plat->has_xgmac)
7072 		ndev->max_mtu = XGMAC_JUMBO_LEN;
7073 	else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
7074 		ndev->max_mtu = JUMBO_LEN;
7075 	else
7076 		ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
7077 	/* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
7078 	 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
7079 	 */
7080 	if ((priv->plat->maxmtu < ndev->max_mtu) &&
7081 	    (priv->plat->maxmtu >= ndev->min_mtu))
7082 		ndev->max_mtu = priv->plat->maxmtu;
7083 	else if (priv->plat->maxmtu < ndev->min_mtu)
7084 		dev_warn(priv->device,
7085 			 "%s: warning: maxmtu having invalid value (%d)\n",
7086 			 __func__, priv->plat->maxmtu);
7087 
7088 	if (flow_ctrl)
7089 		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
7090 
7091 	/* Setup channels NAPI */
7092 	stmmac_napi_add(ndev);
7093 
7094 	mutex_init(&priv->lock);
7095 
7096 	/* If a specific clk_csr value is passed from the platform
7097 	 * this means that the CSR Clock Range selection cannot be
7098 	 * changed at run-time and it is fixed. Viceversa the driver'll try to
7099 	 * set the MDC clock dynamically according to the csr actual
7100 	 * clock input.
7101 	 */
7102 	if (priv->plat->clk_csr >= 0)
7103 		priv->clk_csr = priv->plat->clk_csr;
7104 	else
7105 		stmmac_clk_csr_set(priv);
7106 
7107 	stmmac_check_pcs_mode(priv);
7108 
7109 	pm_runtime_get_noresume(device);
7110 	pm_runtime_set_active(device);
7111 	if (!pm_runtime_enabled(device))
7112 		pm_runtime_enable(device);
7113 
7114 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
7115 	    priv->hw->pcs != STMMAC_PCS_RTBI) {
7116 		/* MDIO bus Registration */
7117 		ret = stmmac_mdio_register(ndev);
7118 		if (ret < 0) {
7119 			dev_err(priv->device,
7120 				"%s: MDIO bus (id: %d) registration failed",
7121 				__func__, priv->plat->bus_id);
7122 			goto error_mdio_register;
7123 		}
7124 	}
7125 
7126 	if (priv->plat->speed_mode_2500)
7127 		priv->plat->speed_mode_2500(ndev, priv->plat->bsp_priv);
7128 
7129 	if (priv->plat->mdio_bus_data && priv->plat->mdio_bus_data->has_xpcs) {
7130 		ret = stmmac_xpcs_setup(priv->mii);
7131 		if (ret)
7132 			goto error_xpcs_setup;
7133 	}
7134 
7135 	ret = stmmac_phy_setup(priv);
7136 	if (ret) {
7137 		netdev_err(ndev, "failed to setup phy (%d)\n", ret);
7138 		goto error_phy_setup;
7139 	}
7140 
7141 	ret = register_netdev(ndev);
7142 	if (ret) {
7143 		dev_err(priv->device, "%s: ERROR %i registering the device\n",
7144 			__func__, ret);
7145 		goto error_netdev_register;
7146 	}
7147 
7148 	if (priv->plat->serdes_powerup) {
7149 		ret = priv->plat->serdes_powerup(ndev,
7150 						 priv->plat->bsp_priv);
7151 
7152 		if (ret < 0)
7153 			goto error_serdes_powerup;
7154 	}
7155 
7156 #ifdef CONFIG_DEBUG_FS
7157 	stmmac_init_fs(ndev);
7158 #endif
7159 
7160 	if (priv->plat->dump_debug_regs)
7161 		priv->plat->dump_debug_regs(priv->plat->bsp_priv);
7162 
7163 	/* Let pm_runtime_put() disable the clocks.
7164 	 * If CONFIG_PM is not enabled, the clocks will stay powered.
7165 	 */
7166 	pm_runtime_put(device);
7167 
7168 	return ret;
7169 
7170 error_serdes_powerup:
7171 	unregister_netdev(ndev);
7172 error_netdev_register:
7173 	phylink_destroy(priv->phylink);
7174 error_xpcs_setup:
7175 error_phy_setup:
7176 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
7177 	    priv->hw->pcs != STMMAC_PCS_RTBI)
7178 		stmmac_mdio_unregister(ndev);
7179 error_mdio_register:
7180 	stmmac_napi_del(ndev);
7181 error_hw_init:
7182 	destroy_workqueue(priv->wq);
7183 	bitmap_free(priv->af_xdp_zc_qps);
7184 
7185 	return ret;
7186 }
7187 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
7188 
7189 /**
7190  * stmmac_dvr_remove
7191  * @dev: device pointer
7192  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
7193  * changes the link status, releases the DMA descriptor rings.
7194  */
7195 int stmmac_dvr_remove(struct device *dev)
7196 {
7197 	struct net_device *ndev = dev_get_drvdata(dev);
7198 	struct stmmac_priv *priv = netdev_priv(ndev);
7199 
7200 	netdev_info(priv->dev, "%s: removing driver", __func__);
7201 
7202 	stmmac_stop_all_dma(priv);
7203 	stmmac_mac_set(priv, priv->ioaddr, false);
7204 	netif_carrier_off(ndev);
7205 	unregister_netdev(ndev);
7206 
7207 	/* Serdes power down needs to happen after VLAN filter
7208 	 * is deleted that is triggered by unregister_netdev().
7209 	 */
7210 	if (priv->plat->serdes_powerdown)
7211 		priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
7212 
7213 #ifdef CONFIG_DEBUG_FS
7214 	stmmac_exit_fs(ndev);
7215 #endif
7216 	phylink_destroy(priv->phylink);
7217 	if (priv->plat->stmmac_rst)
7218 		reset_control_assert(priv->plat->stmmac_rst);
7219 	reset_control_assert(priv->plat->stmmac_ahb_rst);
7220 	pm_runtime_put(dev);
7221 	pm_runtime_disable(dev);
7222 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
7223 	    priv->hw->pcs != STMMAC_PCS_RTBI)
7224 		stmmac_mdio_unregister(ndev);
7225 	destroy_workqueue(priv->wq);
7226 	mutex_destroy(&priv->lock);
7227 	bitmap_free(priv->af_xdp_zc_qps);
7228 
7229 	return 0;
7230 }
7231 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
7232 
7233 /**
7234  * stmmac_suspend - suspend callback
7235  * @dev: device pointer
7236  * Description: this is the function to suspend the device and it is called
7237  * by the platform driver to stop the network queue, release the resources,
7238  * program the PMT register (for WoL), clean and release driver resources.
7239  */
7240 int stmmac_suspend(struct device *dev)
7241 {
7242 	struct net_device *ndev = dev_get_drvdata(dev);
7243 	struct stmmac_priv *priv = netdev_priv(ndev);
7244 	u32 chan;
7245 
7246 	if (!ndev || !netif_running(ndev))
7247 		return 0;
7248 
7249 	mutex_lock(&priv->lock);
7250 
7251 	netif_device_detach(ndev);
7252 
7253 	stmmac_disable_all_queues(priv);
7254 
7255 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
7256 		hrtimer_cancel(&priv->tx_queue[chan].txtimer);
7257 
7258 	if (priv->eee_enabled) {
7259 		priv->tx_path_in_lpi_mode = false;
7260 		del_timer_sync(&priv->eee_ctrl_timer);
7261 	}
7262 
7263 	/* Stop TX/RX DMA */
7264 	stmmac_stop_all_dma(priv);
7265 
7266 	if (priv->plat->serdes_powerdown)
7267 		priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
7268 
7269 	/* Enable Power down mode by programming the PMT regs */
7270 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7271 		stmmac_pmt(priv, priv->hw, priv->wolopts);
7272 		priv->irq_wake = 1;
7273 	} else {
7274 		stmmac_mac_set(priv, priv->ioaddr, false);
7275 		pinctrl_pm_select_sleep_state(priv->device);
7276 	}
7277 
7278 	mutex_unlock(&priv->lock);
7279 
7280 	rtnl_lock();
7281 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7282 		phylink_suspend(priv->phylink, true);
7283 	} else {
7284 		if (device_may_wakeup(priv->device))
7285 			phylink_speed_down(priv->phylink, false);
7286 		phylink_suspend(priv->phylink, false);
7287 	}
7288 	rtnl_unlock();
7289 
7290 	if (priv->dma_cap.fpesel) {
7291 		/* Disable FPE */
7292 		stmmac_fpe_configure(priv, priv->ioaddr,
7293 				     priv->plat->tx_queues_to_use,
7294 				     priv->plat->rx_queues_to_use, false);
7295 
7296 		stmmac_fpe_handshake(priv, false);
7297 		stmmac_fpe_stop_wq(priv);
7298 	}
7299 
7300 	priv->speed = SPEED_UNKNOWN;
7301 	return 0;
7302 }
7303 EXPORT_SYMBOL_GPL(stmmac_suspend);
7304 
7305 /**
7306  * stmmac_reset_queues_param - reset queue parameters
7307  * @priv: device pointer
7308  */
7309 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
7310 {
7311 	u32 rx_cnt = priv->plat->rx_queues_to_use;
7312 	u32 tx_cnt = priv->plat->tx_queues_to_use;
7313 	u32 queue;
7314 
7315 	for (queue = 0; queue < rx_cnt; queue++) {
7316 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
7317 
7318 		rx_q->cur_rx = 0;
7319 		rx_q->dirty_rx = 0;
7320 	}
7321 
7322 	for (queue = 0; queue < tx_cnt; queue++) {
7323 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
7324 
7325 		tx_q->cur_tx = 0;
7326 		tx_q->dirty_tx = 0;
7327 		tx_q->mss = 0;
7328 
7329 		netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
7330 	}
7331 }
7332 
7333 /**
7334  * stmmac_resume - resume callback
7335  * @dev: device pointer
7336  * Description: when resume this function is invoked to setup the DMA and CORE
7337  * in a usable state.
7338  */
7339 int stmmac_resume(struct device *dev)
7340 {
7341 	struct net_device *ndev = dev_get_drvdata(dev);
7342 	struct stmmac_priv *priv = netdev_priv(ndev);
7343 	int ret;
7344 
7345 	if (!netif_running(ndev))
7346 		return 0;
7347 
7348 	/* Power Down bit, into the PM register, is cleared
7349 	 * automatically as soon as a magic packet or a Wake-up frame
7350 	 * is received. Anyway, it's better to manually clear
7351 	 * this bit because it can generate problems while resuming
7352 	 * from another devices (e.g. serial console).
7353 	 */
7354 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7355 		mutex_lock(&priv->lock);
7356 		stmmac_pmt(priv, priv->hw, 0);
7357 		mutex_unlock(&priv->lock);
7358 		priv->irq_wake = 0;
7359 	} else {
7360 		pinctrl_pm_select_default_state(priv->device);
7361 		/* reset the phy so that it's ready */
7362 		if (priv->mii)
7363 			stmmac_mdio_reset(priv->mii);
7364 	}
7365 
7366 	if (priv->plat->serdes_powerup) {
7367 		ret = priv->plat->serdes_powerup(ndev,
7368 						 priv->plat->bsp_priv);
7369 
7370 		if (ret < 0)
7371 			return ret;
7372 	}
7373 
7374 	rtnl_lock();
7375 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7376 		phylink_resume(priv->phylink);
7377 	} else {
7378 		phylink_resume(priv->phylink);
7379 		if (device_may_wakeup(priv->device))
7380 			phylink_speed_up(priv->phylink);
7381 	}
7382 	rtnl_unlock();
7383 
7384 	rtnl_lock();
7385 	mutex_lock(&priv->lock);
7386 
7387 	stmmac_reset_queues_param(priv);
7388 
7389 	stmmac_free_tx_skbufs(priv);
7390 	stmmac_clear_descriptors(priv);
7391 
7392 	stmmac_hw_setup(ndev, false);
7393 	stmmac_init_coalesce(priv);
7394 	stmmac_set_rx_mode(ndev);
7395 
7396 	stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw);
7397 
7398 	stmmac_enable_all_queues(priv);
7399 
7400 	mutex_unlock(&priv->lock);
7401 	rtnl_unlock();
7402 
7403 	netif_device_attach(ndev);
7404 
7405 	return 0;
7406 }
7407 EXPORT_SYMBOL_GPL(stmmac_resume);
7408 
7409 #ifndef MODULE
7410 static int __init stmmac_cmdline_opt(char *str)
7411 {
7412 	char *opt;
7413 
7414 	if (!str || !*str)
7415 		return -EINVAL;
7416 	while ((opt = strsep(&str, ",")) != NULL) {
7417 		if (!strncmp(opt, "debug:", 6)) {
7418 			if (kstrtoint(opt + 6, 0, &debug))
7419 				goto err;
7420 		} else if (!strncmp(opt, "phyaddr:", 8)) {
7421 			if (kstrtoint(opt + 8, 0, &phyaddr))
7422 				goto err;
7423 		} else if (!strncmp(opt, "buf_sz:", 7)) {
7424 			if (kstrtoint(opt + 7, 0, &buf_sz))
7425 				goto err;
7426 		} else if (!strncmp(opt, "tc:", 3)) {
7427 			if (kstrtoint(opt + 3, 0, &tc))
7428 				goto err;
7429 		} else if (!strncmp(opt, "watchdog:", 9)) {
7430 			if (kstrtoint(opt + 9, 0, &watchdog))
7431 				goto err;
7432 		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
7433 			if (kstrtoint(opt + 10, 0, &flow_ctrl))
7434 				goto err;
7435 		} else if (!strncmp(opt, "pause:", 6)) {
7436 			if (kstrtoint(opt + 6, 0, &pause))
7437 				goto err;
7438 		} else if (!strncmp(opt, "eee_timer:", 10)) {
7439 			if (kstrtoint(opt + 10, 0, &eee_timer))
7440 				goto err;
7441 		} else if (!strncmp(opt, "chain_mode:", 11)) {
7442 			if (kstrtoint(opt + 11, 0, &chain_mode))
7443 				goto err;
7444 		}
7445 	}
7446 	return 0;
7447 
7448 err:
7449 	pr_err("%s: ERROR broken module parameter conversion", __func__);
7450 	return -EINVAL;
7451 }
7452 
7453 __setup("stmmaceth=", stmmac_cmdline_opt);
7454 #endif /* MODULE */
7455 
7456 static int __init stmmac_init(void)
7457 {
7458 #ifdef CONFIG_DEBUG_FS
7459 	/* Create debugfs main directory if it doesn't exist yet */
7460 	if (!stmmac_fs_dir)
7461 		stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
7462 	register_netdevice_notifier(&stmmac_notifier);
7463 #endif
7464 
7465 	return 0;
7466 }
7467 
7468 static void __exit stmmac_exit(void)
7469 {
7470 #ifdef CONFIG_DEBUG_FS
7471 	unregister_netdevice_notifier(&stmmac_notifier);
7472 	debugfs_remove_recursive(stmmac_fs_dir);
7473 #endif
7474 }
7475 
7476 module_init(stmmac_init)
7477 module_exit(stmmac_exit)
7478 
7479 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
7480 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
7481 MODULE_LICENSE("GPL");
7482