1 // SPDX-License-Identifier: GPL-2.0-only 2 /******************************************************************************* 3 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers. 4 ST Ethernet IPs are built around a Synopsys IP Core. 5 6 Copyright(C) 2007-2011 STMicroelectronics Ltd 7 8 9 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com> 10 11 Documentation available at: 12 http://www.stlinux.com 13 Support available at: 14 https://bugzilla.stlinux.com/ 15 *******************************************************************************/ 16 17 #include <linux/clk.h> 18 #include <linux/kernel.h> 19 #include <linux/interrupt.h> 20 #include <linux/ip.h> 21 #include <linux/tcp.h> 22 #include <linux/skbuff.h> 23 #include <linux/ethtool.h> 24 #include <linux/if_ether.h> 25 #include <linux/crc32.h> 26 #include <linux/mii.h> 27 #include <linux/if.h> 28 #include <linux/if_vlan.h> 29 #include <linux/dma-mapping.h> 30 #include <linux/slab.h> 31 #include <linux/pm_runtime.h> 32 #include <linux/prefetch.h> 33 #include <linux/pinctrl/consumer.h> 34 #ifdef CONFIG_DEBUG_FS 35 #include <linux/debugfs.h> 36 #include <linux/seq_file.h> 37 #endif /* CONFIG_DEBUG_FS */ 38 #include <linux/net_tstamp.h> 39 #include <linux/phylink.h> 40 #include <linux/udp.h> 41 #include <linux/bpf_trace.h> 42 #include <net/page_pool/helpers.h> 43 #include <net/pkt_cls.h> 44 #include <net/xdp_sock_drv.h> 45 #include "stmmac_ptp.h" 46 #include "stmmac.h" 47 #include "stmmac_xdp.h" 48 #include <linux/reset.h> 49 #include <linux/of_mdio.h> 50 #include "dwmac1000.h" 51 #include "dwxgmac2.h" 52 #include "hwif.h" 53 54 /* As long as the interface is active, we keep the timestamping counter enabled 55 * with fine resolution and binary rollover. This avoid non-monotonic behavior 56 * (clock jumps) when changing timestamping settings at runtime. 57 */ 58 #define STMMAC_HWTS_ACTIVE (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | \ 59 PTP_TCR_TSCTRLSSR) 60 61 #define STMMAC_ALIGN(x) ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16) 62 #define TSO_MAX_BUFF_SIZE (SZ_16K - 1) 63 64 /* Module parameters */ 65 #define TX_TIMEO 5000 66 static int watchdog = TX_TIMEO; 67 module_param(watchdog, int, 0644); 68 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)"); 69 70 static int debug = -1; 71 module_param(debug, int, 0644); 72 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)"); 73 74 static int phyaddr = -1; 75 module_param(phyaddr, int, 0444); 76 MODULE_PARM_DESC(phyaddr, "Physical device address"); 77 78 #define STMMAC_TX_THRESH(x) ((x)->dma_conf.dma_tx_size / 4) 79 #define STMMAC_RX_THRESH(x) ((x)->dma_conf.dma_rx_size / 4) 80 81 /* Limit to make sure XDP TX and slow path can coexist */ 82 #define STMMAC_XSK_TX_BUDGET_MAX 256 83 #define STMMAC_TX_XSK_AVAIL 16 84 #define STMMAC_RX_FILL_BATCH 16 85 86 #define STMMAC_XDP_PASS 0 87 #define STMMAC_XDP_CONSUMED BIT(0) 88 #define STMMAC_XDP_TX BIT(1) 89 #define STMMAC_XDP_REDIRECT BIT(2) 90 91 static int flow_ctrl = FLOW_AUTO; 92 module_param(flow_ctrl, int, 0644); 93 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]"); 94 95 static int pause = PAUSE_TIME; 96 module_param(pause, int, 0644); 97 MODULE_PARM_DESC(pause, "Flow Control Pause Time"); 98 99 #define TC_DEFAULT 64 100 static int tc = TC_DEFAULT; 101 module_param(tc, int, 0644); 102 MODULE_PARM_DESC(tc, "DMA threshold control value"); 103 104 #define DEFAULT_BUFSIZE 1536 105 static int buf_sz = DEFAULT_BUFSIZE; 106 module_param(buf_sz, int, 0644); 107 MODULE_PARM_DESC(buf_sz, "DMA buffer size"); 108 109 #define STMMAC_RX_COPYBREAK 256 110 111 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE | 112 NETIF_MSG_LINK | NETIF_MSG_IFUP | 113 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER); 114 115 #define STMMAC_DEFAULT_LPI_TIMER 1000 116 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER; 117 module_param(eee_timer, int, 0644); 118 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec"); 119 #define STMMAC_LPI_T(x) (jiffies + usecs_to_jiffies(x)) 120 121 /* By default the driver will use the ring mode to manage tx and rx descriptors, 122 * but allow user to force to use the chain instead of the ring 123 */ 124 static unsigned int chain_mode; 125 module_param(chain_mode, int, 0444); 126 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode"); 127 128 static irqreturn_t stmmac_interrupt(int irq, void *dev_id); 129 /* For MSI interrupts handling */ 130 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id); 131 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id); 132 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data); 133 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data); 134 static void stmmac_reset_rx_queue(struct stmmac_priv *priv, u32 queue); 135 static void stmmac_reset_tx_queue(struct stmmac_priv *priv, u32 queue); 136 static void stmmac_reset_queues_param(struct stmmac_priv *priv); 137 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue); 138 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue); 139 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode, 140 u32 rxmode, u32 chan); 141 142 #ifdef CONFIG_DEBUG_FS 143 static const struct net_device_ops stmmac_netdev_ops; 144 static void stmmac_init_fs(struct net_device *dev); 145 static void stmmac_exit_fs(struct net_device *dev); 146 #endif 147 148 #define STMMAC_COAL_TIMER(x) (ns_to_ktime((x) * NSEC_PER_USEC)) 149 150 int stmmac_bus_clks_config(struct stmmac_priv *priv, bool enabled) 151 { 152 int ret = 0; 153 154 if (enabled) { 155 ret = clk_prepare_enable(priv->plat->stmmac_clk); 156 if (ret) 157 return ret; 158 ret = clk_prepare_enable(priv->plat->pclk); 159 if (ret) { 160 clk_disable_unprepare(priv->plat->stmmac_clk); 161 return ret; 162 } 163 if (priv->plat->clks_config) { 164 ret = priv->plat->clks_config(priv->plat->bsp_priv, enabled); 165 if (ret) { 166 clk_disable_unprepare(priv->plat->stmmac_clk); 167 clk_disable_unprepare(priv->plat->pclk); 168 return ret; 169 } 170 } 171 } else { 172 clk_disable_unprepare(priv->plat->stmmac_clk); 173 clk_disable_unprepare(priv->plat->pclk); 174 if (priv->plat->clks_config) 175 priv->plat->clks_config(priv->plat->bsp_priv, enabled); 176 } 177 178 return ret; 179 } 180 EXPORT_SYMBOL_GPL(stmmac_bus_clks_config); 181 182 /** 183 * stmmac_verify_args - verify the driver parameters. 184 * Description: it checks the driver parameters and set a default in case of 185 * errors. 186 */ 187 static void stmmac_verify_args(void) 188 { 189 if (unlikely(watchdog < 0)) 190 watchdog = TX_TIMEO; 191 if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB))) 192 buf_sz = DEFAULT_BUFSIZE; 193 if (unlikely(flow_ctrl > 1)) 194 flow_ctrl = FLOW_AUTO; 195 else if (likely(flow_ctrl < 0)) 196 flow_ctrl = FLOW_OFF; 197 if (unlikely((pause < 0) || (pause > 0xffff))) 198 pause = PAUSE_TIME; 199 if (eee_timer < 0) 200 eee_timer = STMMAC_DEFAULT_LPI_TIMER; 201 } 202 203 static void __stmmac_disable_all_queues(struct stmmac_priv *priv) 204 { 205 u32 rx_queues_cnt = priv->plat->rx_queues_to_use; 206 u32 tx_queues_cnt = priv->plat->tx_queues_to_use; 207 u32 maxq = max(rx_queues_cnt, tx_queues_cnt); 208 u32 queue; 209 210 for (queue = 0; queue < maxq; queue++) { 211 struct stmmac_channel *ch = &priv->channel[queue]; 212 213 if (stmmac_xdp_is_enabled(priv) && 214 test_bit(queue, priv->af_xdp_zc_qps)) { 215 napi_disable(&ch->rxtx_napi); 216 continue; 217 } 218 219 if (queue < rx_queues_cnt) 220 napi_disable(&ch->rx_napi); 221 if (queue < tx_queues_cnt) 222 napi_disable(&ch->tx_napi); 223 } 224 } 225 226 /** 227 * stmmac_disable_all_queues - Disable all queues 228 * @priv: driver private structure 229 */ 230 static void stmmac_disable_all_queues(struct stmmac_priv *priv) 231 { 232 u32 rx_queues_cnt = priv->plat->rx_queues_to_use; 233 struct stmmac_rx_queue *rx_q; 234 u32 queue; 235 236 /* synchronize_rcu() needed for pending XDP buffers to drain */ 237 for (queue = 0; queue < rx_queues_cnt; queue++) { 238 rx_q = &priv->dma_conf.rx_queue[queue]; 239 if (rx_q->xsk_pool) { 240 synchronize_rcu(); 241 break; 242 } 243 } 244 245 __stmmac_disable_all_queues(priv); 246 } 247 248 /** 249 * stmmac_enable_all_queues - Enable all queues 250 * @priv: driver private structure 251 */ 252 static void stmmac_enable_all_queues(struct stmmac_priv *priv) 253 { 254 u32 rx_queues_cnt = priv->plat->rx_queues_to_use; 255 u32 tx_queues_cnt = priv->plat->tx_queues_to_use; 256 u32 maxq = max(rx_queues_cnt, tx_queues_cnt); 257 u32 queue; 258 259 for (queue = 0; queue < maxq; queue++) { 260 struct stmmac_channel *ch = &priv->channel[queue]; 261 262 if (stmmac_xdp_is_enabled(priv) && 263 test_bit(queue, priv->af_xdp_zc_qps)) { 264 napi_enable(&ch->rxtx_napi); 265 continue; 266 } 267 268 if (queue < rx_queues_cnt) 269 napi_enable(&ch->rx_napi); 270 if (queue < tx_queues_cnt) 271 napi_enable(&ch->tx_napi); 272 } 273 } 274 275 static void stmmac_service_event_schedule(struct stmmac_priv *priv) 276 { 277 if (!test_bit(STMMAC_DOWN, &priv->state) && 278 !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state)) 279 queue_work(priv->wq, &priv->service_task); 280 } 281 282 static void stmmac_global_err(struct stmmac_priv *priv) 283 { 284 netif_carrier_off(priv->dev); 285 set_bit(STMMAC_RESET_REQUESTED, &priv->state); 286 stmmac_service_event_schedule(priv); 287 } 288 289 /** 290 * stmmac_clk_csr_set - dynamically set the MDC clock 291 * @priv: driver private structure 292 * Description: this is to dynamically set the MDC clock according to the csr 293 * clock input. 294 * Note: 295 * If a specific clk_csr value is passed from the platform 296 * this means that the CSR Clock Range selection cannot be 297 * changed at run-time and it is fixed (as reported in the driver 298 * documentation). Viceversa the driver will try to set the MDC 299 * clock dynamically according to the actual clock input. 300 */ 301 static void stmmac_clk_csr_set(struct stmmac_priv *priv) 302 { 303 u32 clk_rate; 304 305 clk_rate = clk_get_rate(priv->plat->stmmac_clk); 306 307 /* Platform provided default clk_csr would be assumed valid 308 * for all other cases except for the below mentioned ones. 309 * For values higher than the IEEE 802.3 specified frequency 310 * we can not estimate the proper divider as it is not known 311 * the frequency of clk_csr_i. So we do not change the default 312 * divider. 313 */ 314 if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) { 315 if (clk_rate < CSR_F_35M) 316 priv->clk_csr = STMMAC_CSR_20_35M; 317 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M)) 318 priv->clk_csr = STMMAC_CSR_35_60M; 319 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M)) 320 priv->clk_csr = STMMAC_CSR_60_100M; 321 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M)) 322 priv->clk_csr = STMMAC_CSR_100_150M; 323 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M)) 324 priv->clk_csr = STMMAC_CSR_150_250M; 325 else if ((clk_rate >= CSR_F_250M) && (clk_rate <= CSR_F_300M)) 326 priv->clk_csr = STMMAC_CSR_250_300M; 327 } 328 329 if (priv->plat->flags & STMMAC_FLAG_HAS_SUN8I) { 330 if (clk_rate > 160000000) 331 priv->clk_csr = 0x03; 332 else if (clk_rate > 80000000) 333 priv->clk_csr = 0x02; 334 else if (clk_rate > 40000000) 335 priv->clk_csr = 0x01; 336 else 337 priv->clk_csr = 0; 338 } 339 340 if (priv->plat->has_xgmac) { 341 if (clk_rate > 400000000) 342 priv->clk_csr = 0x5; 343 else if (clk_rate > 350000000) 344 priv->clk_csr = 0x4; 345 else if (clk_rate > 300000000) 346 priv->clk_csr = 0x3; 347 else if (clk_rate > 250000000) 348 priv->clk_csr = 0x2; 349 else if (clk_rate > 150000000) 350 priv->clk_csr = 0x1; 351 else 352 priv->clk_csr = 0x0; 353 } 354 } 355 356 static void print_pkt(unsigned char *buf, int len) 357 { 358 pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf); 359 print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len); 360 } 361 362 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue) 363 { 364 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue]; 365 u32 avail; 366 367 if (tx_q->dirty_tx > tx_q->cur_tx) 368 avail = tx_q->dirty_tx - tx_q->cur_tx - 1; 369 else 370 avail = priv->dma_conf.dma_tx_size - tx_q->cur_tx + tx_q->dirty_tx - 1; 371 372 return avail; 373 } 374 375 /** 376 * stmmac_rx_dirty - Get RX queue dirty 377 * @priv: driver private structure 378 * @queue: RX queue index 379 */ 380 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue) 381 { 382 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue]; 383 u32 dirty; 384 385 if (rx_q->dirty_rx <= rx_q->cur_rx) 386 dirty = rx_q->cur_rx - rx_q->dirty_rx; 387 else 388 dirty = priv->dma_conf.dma_rx_size - rx_q->dirty_rx + rx_q->cur_rx; 389 390 return dirty; 391 } 392 393 static void stmmac_lpi_entry_timer_config(struct stmmac_priv *priv, bool en) 394 { 395 int tx_lpi_timer; 396 397 /* Clear/set the SW EEE timer flag based on LPI ET enablement */ 398 priv->eee_sw_timer_en = en ? 0 : 1; 399 tx_lpi_timer = en ? priv->tx_lpi_timer : 0; 400 stmmac_set_eee_lpi_timer(priv, priv->hw, tx_lpi_timer); 401 } 402 403 /** 404 * stmmac_enable_eee_mode - check and enter in LPI mode 405 * @priv: driver private structure 406 * Description: this function is to verify and enter in LPI mode in case of 407 * EEE. 408 */ 409 static int stmmac_enable_eee_mode(struct stmmac_priv *priv) 410 { 411 u32 tx_cnt = priv->plat->tx_queues_to_use; 412 u32 queue; 413 414 /* check if all TX queues have the work finished */ 415 for (queue = 0; queue < tx_cnt; queue++) { 416 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue]; 417 418 if (tx_q->dirty_tx != tx_q->cur_tx) 419 return -EBUSY; /* still unfinished work */ 420 } 421 422 /* Check and enter in LPI mode */ 423 if (!priv->tx_path_in_lpi_mode) 424 stmmac_set_eee_mode(priv, priv->hw, 425 priv->plat->flags & STMMAC_FLAG_EN_TX_LPI_CLOCKGATING); 426 return 0; 427 } 428 429 /** 430 * stmmac_disable_eee_mode - disable and exit from LPI mode 431 * @priv: driver private structure 432 * Description: this function is to exit and disable EEE in case of 433 * LPI state is true. This is called by the xmit. 434 */ 435 void stmmac_disable_eee_mode(struct stmmac_priv *priv) 436 { 437 if (!priv->eee_sw_timer_en) { 438 stmmac_lpi_entry_timer_config(priv, 0); 439 return; 440 } 441 442 stmmac_reset_eee_mode(priv, priv->hw); 443 del_timer_sync(&priv->eee_ctrl_timer); 444 priv->tx_path_in_lpi_mode = false; 445 } 446 447 /** 448 * stmmac_eee_ctrl_timer - EEE TX SW timer. 449 * @t: timer_list struct containing private info 450 * Description: 451 * if there is no data transfer and if we are not in LPI state, 452 * then MAC Transmitter can be moved to LPI state. 453 */ 454 static void stmmac_eee_ctrl_timer(struct timer_list *t) 455 { 456 struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer); 457 458 if (stmmac_enable_eee_mode(priv)) 459 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer)); 460 } 461 462 /** 463 * stmmac_eee_init - init EEE 464 * @priv: driver private structure 465 * Description: 466 * if the GMAC supports the EEE (from the HW cap reg) and the phy device 467 * can also manage EEE, this function enable the LPI state and start related 468 * timer. 469 */ 470 bool stmmac_eee_init(struct stmmac_priv *priv) 471 { 472 int eee_tw_timer = priv->eee_tw_timer; 473 474 /* Using PCS we cannot dial with the phy registers at this stage 475 * so we do not support extra feature like EEE. 476 */ 477 if (priv->hw->pcs == STMMAC_PCS_TBI || 478 priv->hw->pcs == STMMAC_PCS_RTBI) 479 return false; 480 481 /* Check if MAC core supports the EEE feature. */ 482 if (!priv->dma_cap.eee) 483 return false; 484 485 mutex_lock(&priv->lock); 486 487 /* Check if it needs to be deactivated */ 488 if (!priv->eee_active) { 489 if (priv->eee_enabled) { 490 netdev_dbg(priv->dev, "disable EEE\n"); 491 stmmac_lpi_entry_timer_config(priv, 0); 492 del_timer_sync(&priv->eee_ctrl_timer); 493 stmmac_set_eee_timer(priv, priv->hw, 0, eee_tw_timer); 494 if (priv->hw->xpcs) 495 xpcs_config_eee(priv->hw->xpcs, 496 priv->plat->mult_fact_100ns, 497 false); 498 } 499 mutex_unlock(&priv->lock); 500 return false; 501 } 502 503 if (priv->eee_active && !priv->eee_enabled) { 504 timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0); 505 stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS, 506 eee_tw_timer); 507 if (priv->hw->xpcs) 508 xpcs_config_eee(priv->hw->xpcs, 509 priv->plat->mult_fact_100ns, 510 true); 511 } 512 513 if (priv->plat->has_gmac4 && priv->tx_lpi_timer <= STMMAC_ET_MAX) { 514 del_timer_sync(&priv->eee_ctrl_timer); 515 priv->tx_path_in_lpi_mode = false; 516 stmmac_lpi_entry_timer_config(priv, 1); 517 } else { 518 stmmac_lpi_entry_timer_config(priv, 0); 519 mod_timer(&priv->eee_ctrl_timer, 520 STMMAC_LPI_T(priv->tx_lpi_timer)); 521 } 522 523 mutex_unlock(&priv->lock); 524 netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n"); 525 return true; 526 } 527 528 /* stmmac_get_tx_hwtstamp - get HW TX timestamps 529 * @priv: driver private structure 530 * @p : descriptor pointer 531 * @skb : the socket buffer 532 * Description : 533 * This function will read timestamp from the descriptor & pass it to stack. 534 * and also perform some sanity checks. 535 */ 536 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv, 537 struct dma_desc *p, struct sk_buff *skb) 538 { 539 struct skb_shared_hwtstamps shhwtstamp; 540 bool found = false; 541 u64 ns = 0; 542 543 if (!priv->hwts_tx_en) 544 return; 545 546 /* exit if skb doesn't support hw tstamp */ 547 if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))) 548 return; 549 550 /* check tx tstamp status */ 551 if (stmmac_get_tx_timestamp_status(priv, p)) { 552 stmmac_get_timestamp(priv, p, priv->adv_ts, &ns); 553 found = true; 554 } else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) { 555 found = true; 556 } 557 558 if (found) { 559 ns -= priv->plat->cdc_error_adj; 560 561 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps)); 562 shhwtstamp.hwtstamp = ns_to_ktime(ns); 563 564 netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns); 565 /* pass tstamp to stack */ 566 skb_tstamp_tx(skb, &shhwtstamp); 567 } 568 } 569 570 /* stmmac_get_rx_hwtstamp - get HW RX timestamps 571 * @priv: driver private structure 572 * @p : descriptor pointer 573 * @np : next descriptor pointer 574 * @skb : the socket buffer 575 * Description : 576 * This function will read received packet's timestamp from the descriptor 577 * and pass it to stack. It also perform some sanity checks. 578 */ 579 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p, 580 struct dma_desc *np, struct sk_buff *skb) 581 { 582 struct skb_shared_hwtstamps *shhwtstamp = NULL; 583 struct dma_desc *desc = p; 584 u64 ns = 0; 585 586 if (!priv->hwts_rx_en) 587 return; 588 /* For GMAC4, the valid timestamp is from CTX next desc. */ 589 if (priv->plat->has_gmac4 || priv->plat->has_xgmac) 590 desc = np; 591 592 /* Check if timestamp is available */ 593 if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) { 594 stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns); 595 596 ns -= priv->plat->cdc_error_adj; 597 598 netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns); 599 shhwtstamp = skb_hwtstamps(skb); 600 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps)); 601 shhwtstamp->hwtstamp = ns_to_ktime(ns); 602 } else { 603 netdev_dbg(priv->dev, "cannot get RX hw timestamp\n"); 604 } 605 } 606 607 /** 608 * stmmac_hwtstamp_set - control hardware timestamping. 609 * @dev: device pointer. 610 * @ifr: An IOCTL specific structure, that can contain a pointer to 611 * a proprietary structure used to pass information to the driver. 612 * Description: 613 * This function configures the MAC to enable/disable both outgoing(TX) 614 * and incoming(RX) packets time stamping based on user input. 615 * Return Value: 616 * 0 on success and an appropriate -ve integer on failure. 617 */ 618 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr) 619 { 620 struct stmmac_priv *priv = netdev_priv(dev); 621 struct hwtstamp_config config; 622 u32 ptp_v2 = 0; 623 u32 tstamp_all = 0; 624 u32 ptp_over_ipv4_udp = 0; 625 u32 ptp_over_ipv6_udp = 0; 626 u32 ptp_over_ethernet = 0; 627 u32 snap_type_sel = 0; 628 u32 ts_master_en = 0; 629 u32 ts_event_en = 0; 630 631 if (!(priv->dma_cap.time_stamp || priv->adv_ts)) { 632 netdev_alert(priv->dev, "No support for HW time stamping\n"); 633 priv->hwts_tx_en = 0; 634 priv->hwts_rx_en = 0; 635 636 return -EOPNOTSUPP; 637 } 638 639 if (copy_from_user(&config, ifr->ifr_data, 640 sizeof(config))) 641 return -EFAULT; 642 643 netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n", 644 __func__, config.flags, config.tx_type, config.rx_filter); 645 646 if (config.tx_type != HWTSTAMP_TX_OFF && 647 config.tx_type != HWTSTAMP_TX_ON) 648 return -ERANGE; 649 650 if (priv->adv_ts) { 651 switch (config.rx_filter) { 652 case HWTSTAMP_FILTER_NONE: 653 /* time stamp no incoming packet at all */ 654 config.rx_filter = HWTSTAMP_FILTER_NONE; 655 break; 656 657 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 658 /* PTP v1, UDP, any kind of event packet */ 659 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 660 /* 'xmac' hardware can support Sync, Pdelay_Req and 661 * Pdelay_resp by setting bit14 and bits17/16 to 01 662 * This leaves Delay_Req timestamps out. 663 * Enable all events *and* general purpose message 664 * timestamping 665 */ 666 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 667 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 668 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 669 break; 670 671 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 672 /* PTP v1, UDP, Sync packet */ 673 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC; 674 /* take time stamp for SYNC messages only */ 675 ts_event_en = PTP_TCR_TSEVNTENA; 676 677 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 678 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 679 break; 680 681 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 682 /* PTP v1, UDP, Delay_req packet */ 683 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ; 684 /* take time stamp for Delay_Req messages only */ 685 ts_master_en = PTP_TCR_TSMSTRENA; 686 ts_event_en = PTP_TCR_TSEVNTENA; 687 688 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 689 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 690 break; 691 692 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 693 /* PTP v2, UDP, any kind of event packet */ 694 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT; 695 ptp_v2 = PTP_TCR_TSVER2ENA; 696 /* take time stamp for all event messages */ 697 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 698 699 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 700 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 701 break; 702 703 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 704 /* PTP v2, UDP, Sync packet */ 705 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC; 706 ptp_v2 = PTP_TCR_TSVER2ENA; 707 /* take time stamp for SYNC messages only */ 708 ts_event_en = PTP_TCR_TSEVNTENA; 709 710 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 711 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 712 break; 713 714 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 715 /* PTP v2, UDP, Delay_req packet */ 716 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ; 717 ptp_v2 = PTP_TCR_TSVER2ENA; 718 /* take time stamp for Delay_Req messages only */ 719 ts_master_en = PTP_TCR_TSMSTRENA; 720 ts_event_en = PTP_TCR_TSEVNTENA; 721 722 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 723 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 724 break; 725 726 case HWTSTAMP_FILTER_PTP_V2_EVENT: 727 /* PTP v2/802.AS1 any layer, any kind of event packet */ 728 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 729 ptp_v2 = PTP_TCR_TSVER2ENA; 730 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 731 if (priv->synopsys_id < DWMAC_CORE_4_10) 732 ts_event_en = PTP_TCR_TSEVNTENA; 733 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 734 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 735 ptp_over_ethernet = PTP_TCR_TSIPENA; 736 break; 737 738 case HWTSTAMP_FILTER_PTP_V2_SYNC: 739 /* PTP v2/802.AS1, any layer, Sync packet */ 740 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC; 741 ptp_v2 = PTP_TCR_TSVER2ENA; 742 /* take time stamp for SYNC messages only */ 743 ts_event_en = PTP_TCR_TSEVNTENA; 744 745 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 746 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 747 ptp_over_ethernet = PTP_TCR_TSIPENA; 748 break; 749 750 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 751 /* PTP v2/802.AS1, any layer, Delay_req packet */ 752 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ; 753 ptp_v2 = PTP_TCR_TSVER2ENA; 754 /* take time stamp for Delay_Req messages only */ 755 ts_master_en = PTP_TCR_TSMSTRENA; 756 ts_event_en = PTP_TCR_TSEVNTENA; 757 758 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 759 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 760 ptp_over_ethernet = PTP_TCR_TSIPENA; 761 break; 762 763 case HWTSTAMP_FILTER_NTP_ALL: 764 case HWTSTAMP_FILTER_ALL: 765 /* time stamp any incoming packet */ 766 config.rx_filter = HWTSTAMP_FILTER_ALL; 767 tstamp_all = PTP_TCR_TSENALL; 768 break; 769 770 default: 771 return -ERANGE; 772 } 773 } else { 774 switch (config.rx_filter) { 775 case HWTSTAMP_FILTER_NONE: 776 config.rx_filter = HWTSTAMP_FILTER_NONE; 777 break; 778 default: 779 /* PTP v1, UDP, any kind of event packet */ 780 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 781 break; 782 } 783 } 784 priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1); 785 priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON; 786 787 priv->systime_flags = STMMAC_HWTS_ACTIVE; 788 789 if (priv->hwts_tx_en || priv->hwts_rx_en) { 790 priv->systime_flags |= tstamp_all | ptp_v2 | 791 ptp_over_ethernet | ptp_over_ipv6_udp | 792 ptp_over_ipv4_udp | ts_event_en | 793 ts_master_en | snap_type_sel; 794 } 795 796 stmmac_config_hw_tstamping(priv, priv->ptpaddr, priv->systime_flags); 797 798 memcpy(&priv->tstamp_config, &config, sizeof(config)); 799 800 return copy_to_user(ifr->ifr_data, &config, 801 sizeof(config)) ? -EFAULT : 0; 802 } 803 804 /** 805 * stmmac_hwtstamp_get - read hardware timestamping. 806 * @dev: device pointer. 807 * @ifr: An IOCTL specific structure, that can contain a pointer to 808 * a proprietary structure used to pass information to the driver. 809 * Description: 810 * This function obtain the current hardware timestamping settings 811 * as requested. 812 */ 813 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr) 814 { 815 struct stmmac_priv *priv = netdev_priv(dev); 816 struct hwtstamp_config *config = &priv->tstamp_config; 817 818 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp)) 819 return -EOPNOTSUPP; 820 821 return copy_to_user(ifr->ifr_data, config, 822 sizeof(*config)) ? -EFAULT : 0; 823 } 824 825 /** 826 * stmmac_init_tstamp_counter - init hardware timestamping counter 827 * @priv: driver private structure 828 * @systime_flags: timestamping flags 829 * Description: 830 * Initialize hardware counter for packet timestamping. 831 * This is valid as long as the interface is open and not suspended. 832 * Will be rerun after resuming from suspend, case in which the timestamping 833 * flags updated by stmmac_hwtstamp_set() also need to be restored. 834 */ 835 int stmmac_init_tstamp_counter(struct stmmac_priv *priv, u32 systime_flags) 836 { 837 bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; 838 struct timespec64 now; 839 u32 sec_inc = 0; 840 u64 temp = 0; 841 842 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp)) 843 return -EOPNOTSUPP; 844 845 stmmac_config_hw_tstamping(priv, priv->ptpaddr, systime_flags); 846 priv->systime_flags = systime_flags; 847 848 /* program Sub Second Increment reg */ 849 stmmac_config_sub_second_increment(priv, priv->ptpaddr, 850 priv->plat->clk_ptp_rate, 851 xmac, &sec_inc); 852 temp = div_u64(1000000000ULL, sec_inc); 853 854 /* Store sub second increment for later use */ 855 priv->sub_second_inc = sec_inc; 856 857 /* calculate default added value: 858 * formula is : 859 * addend = (2^32)/freq_div_ratio; 860 * where, freq_div_ratio = 1e9ns/sec_inc 861 */ 862 temp = (u64)(temp << 32); 863 priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate); 864 stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend); 865 866 /* initialize system time */ 867 ktime_get_real_ts64(&now); 868 869 /* lower 32 bits of tv_sec are safe until y2106 */ 870 stmmac_init_systime(priv, priv->ptpaddr, (u32)now.tv_sec, now.tv_nsec); 871 872 return 0; 873 } 874 EXPORT_SYMBOL_GPL(stmmac_init_tstamp_counter); 875 876 /** 877 * stmmac_init_ptp - init PTP 878 * @priv: driver private structure 879 * Description: this is to verify if the HW supports the PTPv1 or PTPv2. 880 * This is done by looking at the HW cap. register. 881 * This function also registers the ptp driver. 882 */ 883 static int stmmac_init_ptp(struct stmmac_priv *priv) 884 { 885 bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; 886 int ret; 887 888 if (priv->plat->ptp_clk_freq_config) 889 priv->plat->ptp_clk_freq_config(priv); 890 891 ret = stmmac_init_tstamp_counter(priv, STMMAC_HWTS_ACTIVE); 892 if (ret) 893 return ret; 894 895 priv->adv_ts = 0; 896 /* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */ 897 if (xmac && priv->dma_cap.atime_stamp) 898 priv->adv_ts = 1; 899 /* Dwmac 3.x core with extend_desc can support adv_ts */ 900 else if (priv->extend_desc && priv->dma_cap.atime_stamp) 901 priv->adv_ts = 1; 902 903 if (priv->dma_cap.time_stamp) 904 netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n"); 905 906 if (priv->adv_ts) 907 netdev_info(priv->dev, 908 "IEEE 1588-2008 Advanced Timestamp supported\n"); 909 910 priv->hwts_tx_en = 0; 911 priv->hwts_rx_en = 0; 912 913 if (priv->plat->flags & STMMAC_FLAG_HWTSTAMP_CORRECT_LATENCY) 914 stmmac_hwtstamp_correct_latency(priv, priv); 915 916 return 0; 917 } 918 919 static void stmmac_release_ptp(struct stmmac_priv *priv) 920 { 921 clk_disable_unprepare(priv->plat->clk_ptp_ref); 922 stmmac_ptp_unregister(priv); 923 } 924 925 /** 926 * stmmac_mac_flow_ctrl - Configure flow control in all queues 927 * @priv: driver private structure 928 * @duplex: duplex passed to the next function 929 * Description: It is used for configuring the flow control in all queues 930 */ 931 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex) 932 { 933 u32 tx_cnt = priv->plat->tx_queues_to_use; 934 935 stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl, 936 priv->pause, tx_cnt); 937 } 938 939 static struct phylink_pcs *stmmac_mac_select_pcs(struct phylink_config *config, 940 phy_interface_t interface) 941 { 942 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); 943 944 if (priv->hw->xpcs) 945 return &priv->hw->xpcs->pcs; 946 947 if (priv->hw->lynx_pcs) 948 return priv->hw->lynx_pcs; 949 950 return NULL; 951 } 952 953 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode, 954 const struct phylink_link_state *state) 955 { 956 /* Nothing to do, xpcs_config() handles everything */ 957 } 958 959 static void stmmac_fpe_link_state_handle(struct stmmac_priv *priv, bool is_up) 960 { 961 struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg; 962 enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state; 963 enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state; 964 bool *hs_enable = &fpe_cfg->hs_enable; 965 966 if (is_up && *hs_enable) { 967 stmmac_fpe_send_mpacket(priv, priv->ioaddr, fpe_cfg, 968 MPACKET_VERIFY); 969 } else { 970 *lo_state = FPE_STATE_OFF; 971 *lp_state = FPE_STATE_OFF; 972 } 973 } 974 975 static void stmmac_mac_link_down(struct phylink_config *config, 976 unsigned int mode, phy_interface_t interface) 977 { 978 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); 979 980 stmmac_mac_set(priv, priv->ioaddr, false); 981 priv->eee_active = false; 982 priv->tx_lpi_enabled = false; 983 priv->eee_enabled = stmmac_eee_init(priv); 984 stmmac_set_eee_pls(priv, priv->hw, false); 985 986 if (priv->dma_cap.fpesel) 987 stmmac_fpe_link_state_handle(priv, false); 988 } 989 990 static void stmmac_mac_link_up(struct phylink_config *config, 991 struct phy_device *phy, 992 unsigned int mode, phy_interface_t interface, 993 int speed, int duplex, 994 bool tx_pause, bool rx_pause) 995 { 996 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); 997 u32 old_ctrl, ctrl; 998 999 if ((priv->plat->flags & STMMAC_FLAG_SERDES_UP_AFTER_PHY_LINKUP) && 1000 priv->plat->serdes_powerup) 1001 priv->plat->serdes_powerup(priv->dev, priv->plat->bsp_priv); 1002 1003 old_ctrl = readl(priv->ioaddr + MAC_CTRL_REG); 1004 ctrl = old_ctrl & ~priv->hw->link.speed_mask; 1005 1006 if (interface == PHY_INTERFACE_MODE_USXGMII) { 1007 switch (speed) { 1008 case SPEED_10000: 1009 ctrl |= priv->hw->link.xgmii.speed10000; 1010 break; 1011 case SPEED_5000: 1012 ctrl |= priv->hw->link.xgmii.speed5000; 1013 break; 1014 case SPEED_2500: 1015 ctrl |= priv->hw->link.xgmii.speed2500; 1016 break; 1017 default: 1018 return; 1019 } 1020 } else if (interface == PHY_INTERFACE_MODE_XLGMII) { 1021 switch (speed) { 1022 case SPEED_100000: 1023 ctrl |= priv->hw->link.xlgmii.speed100000; 1024 break; 1025 case SPEED_50000: 1026 ctrl |= priv->hw->link.xlgmii.speed50000; 1027 break; 1028 case SPEED_40000: 1029 ctrl |= priv->hw->link.xlgmii.speed40000; 1030 break; 1031 case SPEED_25000: 1032 ctrl |= priv->hw->link.xlgmii.speed25000; 1033 break; 1034 case SPEED_10000: 1035 ctrl |= priv->hw->link.xgmii.speed10000; 1036 break; 1037 case SPEED_2500: 1038 ctrl |= priv->hw->link.speed2500; 1039 break; 1040 case SPEED_1000: 1041 ctrl |= priv->hw->link.speed1000; 1042 break; 1043 default: 1044 return; 1045 } 1046 } else { 1047 switch (speed) { 1048 case SPEED_2500: 1049 ctrl |= priv->hw->link.speed2500; 1050 break; 1051 case SPEED_1000: 1052 ctrl |= priv->hw->link.speed1000; 1053 break; 1054 case SPEED_100: 1055 ctrl |= priv->hw->link.speed100; 1056 break; 1057 case SPEED_10: 1058 ctrl |= priv->hw->link.speed10; 1059 break; 1060 default: 1061 return; 1062 } 1063 } 1064 1065 priv->speed = speed; 1066 1067 if (priv->plat->fix_mac_speed) 1068 priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed, mode); 1069 1070 if (!duplex) 1071 ctrl &= ~priv->hw->link.duplex; 1072 else 1073 ctrl |= priv->hw->link.duplex; 1074 1075 /* Flow Control operation */ 1076 if (rx_pause && tx_pause) 1077 priv->flow_ctrl = FLOW_AUTO; 1078 else if (rx_pause && !tx_pause) 1079 priv->flow_ctrl = FLOW_RX; 1080 else if (!rx_pause && tx_pause) 1081 priv->flow_ctrl = FLOW_TX; 1082 else 1083 priv->flow_ctrl = FLOW_OFF; 1084 1085 stmmac_mac_flow_ctrl(priv, duplex); 1086 1087 if (ctrl != old_ctrl) 1088 writel(ctrl, priv->ioaddr + MAC_CTRL_REG); 1089 1090 stmmac_mac_set(priv, priv->ioaddr, true); 1091 if (phy && priv->dma_cap.eee) { 1092 priv->eee_active = 1093 phy_init_eee(phy, !(priv->plat->flags & 1094 STMMAC_FLAG_RX_CLK_RUNS_IN_LPI)) >= 0; 1095 priv->eee_enabled = stmmac_eee_init(priv); 1096 priv->tx_lpi_enabled = priv->eee_enabled; 1097 stmmac_set_eee_pls(priv, priv->hw, true); 1098 } 1099 1100 if (priv->dma_cap.fpesel) 1101 stmmac_fpe_link_state_handle(priv, true); 1102 1103 if (priv->plat->flags & STMMAC_FLAG_HWTSTAMP_CORRECT_LATENCY) 1104 stmmac_hwtstamp_correct_latency(priv, priv); 1105 } 1106 1107 static const struct phylink_mac_ops stmmac_phylink_mac_ops = { 1108 .mac_select_pcs = stmmac_mac_select_pcs, 1109 .mac_config = stmmac_mac_config, 1110 .mac_link_down = stmmac_mac_link_down, 1111 .mac_link_up = stmmac_mac_link_up, 1112 }; 1113 1114 /** 1115 * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported 1116 * @priv: driver private structure 1117 * Description: this is to verify if the HW supports the PCS. 1118 * Physical Coding Sublayer (PCS) interface that can be used when the MAC is 1119 * configured for the TBI, RTBI, or SGMII PHY interface. 1120 */ 1121 static void stmmac_check_pcs_mode(struct stmmac_priv *priv) 1122 { 1123 int interface = priv->plat->mac_interface; 1124 1125 if (priv->dma_cap.pcs) { 1126 if ((interface == PHY_INTERFACE_MODE_RGMII) || 1127 (interface == PHY_INTERFACE_MODE_RGMII_ID) || 1128 (interface == PHY_INTERFACE_MODE_RGMII_RXID) || 1129 (interface == PHY_INTERFACE_MODE_RGMII_TXID)) { 1130 netdev_dbg(priv->dev, "PCS RGMII support enabled\n"); 1131 priv->hw->pcs = STMMAC_PCS_RGMII; 1132 } else if (interface == PHY_INTERFACE_MODE_SGMII) { 1133 netdev_dbg(priv->dev, "PCS SGMII support enabled\n"); 1134 priv->hw->pcs = STMMAC_PCS_SGMII; 1135 } 1136 } 1137 } 1138 1139 /** 1140 * stmmac_init_phy - PHY initialization 1141 * @dev: net device structure 1142 * Description: it initializes the driver's PHY state, and attaches the PHY 1143 * to the mac driver. 1144 * Return value: 1145 * 0 on success 1146 */ 1147 static int stmmac_init_phy(struct net_device *dev) 1148 { 1149 struct stmmac_priv *priv = netdev_priv(dev); 1150 struct fwnode_handle *phy_fwnode; 1151 struct fwnode_handle *fwnode; 1152 int ret; 1153 1154 if (!phylink_expects_phy(priv->phylink)) 1155 return 0; 1156 1157 fwnode = priv->plat->port_node; 1158 if (!fwnode) 1159 fwnode = dev_fwnode(priv->device); 1160 1161 if (fwnode) 1162 phy_fwnode = fwnode_get_phy_node(fwnode); 1163 else 1164 phy_fwnode = NULL; 1165 1166 /* Some DT bindings do not set-up the PHY handle. Let's try to 1167 * manually parse it 1168 */ 1169 if (!phy_fwnode || IS_ERR(phy_fwnode)) { 1170 int addr = priv->plat->phy_addr; 1171 struct phy_device *phydev; 1172 1173 if (addr < 0) { 1174 netdev_err(priv->dev, "no phy found\n"); 1175 return -ENODEV; 1176 } 1177 1178 phydev = mdiobus_get_phy(priv->mii, addr); 1179 if (!phydev) { 1180 netdev_err(priv->dev, "no phy at addr %d\n", addr); 1181 return -ENODEV; 1182 } 1183 1184 ret = phylink_connect_phy(priv->phylink, phydev); 1185 } else { 1186 fwnode_handle_put(phy_fwnode); 1187 ret = phylink_fwnode_phy_connect(priv->phylink, fwnode, 0); 1188 } 1189 1190 if (!priv->plat->pmt) { 1191 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL }; 1192 1193 phylink_ethtool_get_wol(priv->phylink, &wol); 1194 device_set_wakeup_capable(priv->device, !!wol.supported); 1195 device_set_wakeup_enable(priv->device, !!wol.wolopts); 1196 } 1197 1198 return ret; 1199 } 1200 1201 static int stmmac_phy_setup(struct stmmac_priv *priv) 1202 { 1203 struct stmmac_mdio_bus_data *mdio_bus_data; 1204 int mode = priv->plat->phy_interface; 1205 struct fwnode_handle *fwnode; 1206 struct phylink *phylink; 1207 int max_speed; 1208 1209 priv->phylink_config.dev = &priv->dev->dev; 1210 priv->phylink_config.type = PHYLINK_NETDEV; 1211 priv->phylink_config.mac_managed_pm = true; 1212 1213 mdio_bus_data = priv->plat->mdio_bus_data; 1214 if (mdio_bus_data) 1215 priv->phylink_config.ovr_an_inband = 1216 mdio_bus_data->xpcs_an_inband; 1217 1218 /* Set the platform/firmware specified interface mode. Note, phylink 1219 * deals with the PHY interface mode, not the MAC interface mode. 1220 */ 1221 __set_bit(mode, priv->phylink_config.supported_interfaces); 1222 1223 /* If we have an xpcs, it defines which PHY interfaces are supported. */ 1224 if (priv->hw->xpcs) 1225 xpcs_get_interfaces(priv->hw->xpcs, 1226 priv->phylink_config.supported_interfaces); 1227 1228 /* Get the MAC specific capabilities */ 1229 stmmac_mac_phylink_get_caps(priv); 1230 1231 priv->phylink_config.mac_capabilities = priv->hw->link.caps; 1232 1233 max_speed = priv->plat->max_speed; 1234 if (max_speed) 1235 phylink_limit_mac_speed(&priv->phylink_config, max_speed); 1236 1237 fwnode = priv->plat->port_node; 1238 if (!fwnode) 1239 fwnode = dev_fwnode(priv->device); 1240 1241 phylink = phylink_create(&priv->phylink_config, fwnode, 1242 mode, &stmmac_phylink_mac_ops); 1243 if (IS_ERR(phylink)) 1244 return PTR_ERR(phylink); 1245 1246 priv->phylink = phylink; 1247 return 0; 1248 } 1249 1250 static void stmmac_display_rx_rings(struct stmmac_priv *priv, 1251 struct stmmac_dma_conf *dma_conf) 1252 { 1253 u32 rx_cnt = priv->plat->rx_queues_to_use; 1254 unsigned int desc_size; 1255 void *head_rx; 1256 u32 queue; 1257 1258 /* Display RX rings */ 1259 for (queue = 0; queue < rx_cnt; queue++) { 1260 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue]; 1261 1262 pr_info("\tRX Queue %u rings\n", queue); 1263 1264 if (priv->extend_desc) { 1265 head_rx = (void *)rx_q->dma_erx; 1266 desc_size = sizeof(struct dma_extended_desc); 1267 } else { 1268 head_rx = (void *)rx_q->dma_rx; 1269 desc_size = sizeof(struct dma_desc); 1270 } 1271 1272 /* Display RX ring */ 1273 stmmac_display_ring(priv, head_rx, dma_conf->dma_rx_size, true, 1274 rx_q->dma_rx_phy, desc_size); 1275 } 1276 } 1277 1278 static void stmmac_display_tx_rings(struct stmmac_priv *priv, 1279 struct stmmac_dma_conf *dma_conf) 1280 { 1281 u32 tx_cnt = priv->plat->tx_queues_to_use; 1282 unsigned int desc_size; 1283 void *head_tx; 1284 u32 queue; 1285 1286 /* Display TX rings */ 1287 for (queue = 0; queue < tx_cnt; queue++) { 1288 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue]; 1289 1290 pr_info("\tTX Queue %d rings\n", queue); 1291 1292 if (priv->extend_desc) { 1293 head_tx = (void *)tx_q->dma_etx; 1294 desc_size = sizeof(struct dma_extended_desc); 1295 } else if (tx_q->tbs & STMMAC_TBS_AVAIL) { 1296 head_tx = (void *)tx_q->dma_entx; 1297 desc_size = sizeof(struct dma_edesc); 1298 } else { 1299 head_tx = (void *)tx_q->dma_tx; 1300 desc_size = sizeof(struct dma_desc); 1301 } 1302 1303 stmmac_display_ring(priv, head_tx, dma_conf->dma_tx_size, false, 1304 tx_q->dma_tx_phy, desc_size); 1305 } 1306 } 1307 1308 static void stmmac_display_rings(struct stmmac_priv *priv, 1309 struct stmmac_dma_conf *dma_conf) 1310 { 1311 /* Display RX ring */ 1312 stmmac_display_rx_rings(priv, dma_conf); 1313 1314 /* Display TX ring */ 1315 stmmac_display_tx_rings(priv, dma_conf); 1316 } 1317 1318 static int stmmac_set_bfsize(int mtu, int bufsize) 1319 { 1320 int ret = bufsize; 1321 1322 if (mtu >= BUF_SIZE_8KiB) 1323 ret = BUF_SIZE_16KiB; 1324 else if (mtu >= BUF_SIZE_4KiB) 1325 ret = BUF_SIZE_8KiB; 1326 else if (mtu >= BUF_SIZE_2KiB) 1327 ret = BUF_SIZE_4KiB; 1328 else if (mtu > DEFAULT_BUFSIZE) 1329 ret = BUF_SIZE_2KiB; 1330 else 1331 ret = DEFAULT_BUFSIZE; 1332 1333 return ret; 1334 } 1335 1336 /** 1337 * stmmac_clear_rx_descriptors - clear RX descriptors 1338 * @priv: driver private structure 1339 * @dma_conf: structure to take the dma data 1340 * @queue: RX queue index 1341 * Description: this function is called to clear the RX descriptors 1342 * in case of both basic and extended descriptors are used. 1343 */ 1344 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, 1345 struct stmmac_dma_conf *dma_conf, 1346 u32 queue) 1347 { 1348 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue]; 1349 int i; 1350 1351 /* Clear the RX descriptors */ 1352 for (i = 0; i < dma_conf->dma_rx_size; i++) 1353 if (priv->extend_desc) 1354 stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic, 1355 priv->use_riwt, priv->mode, 1356 (i == dma_conf->dma_rx_size - 1), 1357 dma_conf->dma_buf_sz); 1358 else 1359 stmmac_init_rx_desc(priv, &rx_q->dma_rx[i], 1360 priv->use_riwt, priv->mode, 1361 (i == dma_conf->dma_rx_size - 1), 1362 dma_conf->dma_buf_sz); 1363 } 1364 1365 /** 1366 * stmmac_clear_tx_descriptors - clear tx descriptors 1367 * @priv: driver private structure 1368 * @dma_conf: structure to take the dma data 1369 * @queue: TX queue index. 1370 * Description: this function is called to clear the TX descriptors 1371 * in case of both basic and extended descriptors are used. 1372 */ 1373 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, 1374 struct stmmac_dma_conf *dma_conf, 1375 u32 queue) 1376 { 1377 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue]; 1378 int i; 1379 1380 /* Clear the TX descriptors */ 1381 for (i = 0; i < dma_conf->dma_tx_size; i++) { 1382 int last = (i == (dma_conf->dma_tx_size - 1)); 1383 struct dma_desc *p; 1384 1385 if (priv->extend_desc) 1386 p = &tx_q->dma_etx[i].basic; 1387 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 1388 p = &tx_q->dma_entx[i].basic; 1389 else 1390 p = &tx_q->dma_tx[i]; 1391 1392 stmmac_init_tx_desc(priv, p, priv->mode, last); 1393 } 1394 } 1395 1396 /** 1397 * stmmac_clear_descriptors - clear descriptors 1398 * @priv: driver private structure 1399 * @dma_conf: structure to take the dma data 1400 * Description: this function is called to clear the TX and RX descriptors 1401 * in case of both basic and extended descriptors are used. 1402 */ 1403 static void stmmac_clear_descriptors(struct stmmac_priv *priv, 1404 struct stmmac_dma_conf *dma_conf) 1405 { 1406 u32 rx_queue_cnt = priv->plat->rx_queues_to_use; 1407 u32 tx_queue_cnt = priv->plat->tx_queues_to_use; 1408 u32 queue; 1409 1410 /* Clear the RX descriptors */ 1411 for (queue = 0; queue < rx_queue_cnt; queue++) 1412 stmmac_clear_rx_descriptors(priv, dma_conf, queue); 1413 1414 /* Clear the TX descriptors */ 1415 for (queue = 0; queue < tx_queue_cnt; queue++) 1416 stmmac_clear_tx_descriptors(priv, dma_conf, queue); 1417 } 1418 1419 /** 1420 * stmmac_init_rx_buffers - init the RX descriptor buffer. 1421 * @priv: driver private structure 1422 * @dma_conf: structure to take the dma data 1423 * @p: descriptor pointer 1424 * @i: descriptor index 1425 * @flags: gfp flag 1426 * @queue: RX queue index 1427 * Description: this function is called to allocate a receive buffer, perform 1428 * the DMA mapping and init the descriptor. 1429 */ 1430 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, 1431 struct stmmac_dma_conf *dma_conf, 1432 struct dma_desc *p, 1433 int i, gfp_t flags, u32 queue) 1434 { 1435 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue]; 1436 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i]; 1437 gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN); 1438 1439 if (priv->dma_cap.host_dma_width <= 32) 1440 gfp |= GFP_DMA32; 1441 1442 if (!buf->page) { 1443 buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp); 1444 if (!buf->page) 1445 return -ENOMEM; 1446 buf->page_offset = stmmac_rx_offset(priv); 1447 } 1448 1449 if (priv->sph && !buf->sec_page) { 1450 buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp); 1451 if (!buf->sec_page) 1452 return -ENOMEM; 1453 1454 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page); 1455 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true); 1456 } else { 1457 buf->sec_page = NULL; 1458 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false); 1459 } 1460 1461 buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset; 1462 1463 stmmac_set_desc_addr(priv, p, buf->addr); 1464 if (dma_conf->dma_buf_sz == BUF_SIZE_16KiB) 1465 stmmac_init_desc3(priv, p); 1466 1467 return 0; 1468 } 1469 1470 /** 1471 * stmmac_free_rx_buffer - free RX dma buffers 1472 * @priv: private structure 1473 * @rx_q: RX queue 1474 * @i: buffer index. 1475 */ 1476 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, 1477 struct stmmac_rx_queue *rx_q, 1478 int i) 1479 { 1480 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i]; 1481 1482 if (buf->page) 1483 page_pool_put_full_page(rx_q->page_pool, buf->page, false); 1484 buf->page = NULL; 1485 1486 if (buf->sec_page) 1487 page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false); 1488 buf->sec_page = NULL; 1489 } 1490 1491 /** 1492 * stmmac_free_tx_buffer - free RX dma buffers 1493 * @priv: private structure 1494 * @dma_conf: structure to take the dma data 1495 * @queue: RX queue index 1496 * @i: buffer index. 1497 */ 1498 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, 1499 struct stmmac_dma_conf *dma_conf, 1500 u32 queue, int i) 1501 { 1502 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue]; 1503 1504 if (tx_q->tx_skbuff_dma[i].buf && 1505 tx_q->tx_skbuff_dma[i].buf_type != STMMAC_TXBUF_T_XDP_TX) { 1506 if (tx_q->tx_skbuff_dma[i].map_as_page) 1507 dma_unmap_page(priv->device, 1508 tx_q->tx_skbuff_dma[i].buf, 1509 tx_q->tx_skbuff_dma[i].len, 1510 DMA_TO_DEVICE); 1511 else 1512 dma_unmap_single(priv->device, 1513 tx_q->tx_skbuff_dma[i].buf, 1514 tx_q->tx_skbuff_dma[i].len, 1515 DMA_TO_DEVICE); 1516 } 1517 1518 if (tx_q->xdpf[i] && 1519 (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_TX || 1520 tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_NDO)) { 1521 xdp_return_frame(tx_q->xdpf[i]); 1522 tx_q->xdpf[i] = NULL; 1523 } 1524 1525 if (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XSK_TX) 1526 tx_q->xsk_frames_done++; 1527 1528 if (tx_q->tx_skbuff[i] && 1529 tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_SKB) { 1530 dev_kfree_skb_any(tx_q->tx_skbuff[i]); 1531 tx_q->tx_skbuff[i] = NULL; 1532 } 1533 1534 tx_q->tx_skbuff_dma[i].buf = 0; 1535 tx_q->tx_skbuff_dma[i].map_as_page = false; 1536 } 1537 1538 /** 1539 * dma_free_rx_skbufs - free RX dma buffers 1540 * @priv: private structure 1541 * @dma_conf: structure to take the dma data 1542 * @queue: RX queue index 1543 */ 1544 static void dma_free_rx_skbufs(struct stmmac_priv *priv, 1545 struct stmmac_dma_conf *dma_conf, 1546 u32 queue) 1547 { 1548 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue]; 1549 int i; 1550 1551 for (i = 0; i < dma_conf->dma_rx_size; i++) 1552 stmmac_free_rx_buffer(priv, rx_q, i); 1553 } 1554 1555 static int stmmac_alloc_rx_buffers(struct stmmac_priv *priv, 1556 struct stmmac_dma_conf *dma_conf, 1557 u32 queue, gfp_t flags) 1558 { 1559 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue]; 1560 int i; 1561 1562 for (i = 0; i < dma_conf->dma_rx_size; i++) { 1563 struct dma_desc *p; 1564 int ret; 1565 1566 if (priv->extend_desc) 1567 p = &((rx_q->dma_erx + i)->basic); 1568 else 1569 p = rx_q->dma_rx + i; 1570 1571 ret = stmmac_init_rx_buffers(priv, dma_conf, p, i, flags, 1572 queue); 1573 if (ret) 1574 return ret; 1575 1576 rx_q->buf_alloc_num++; 1577 } 1578 1579 return 0; 1580 } 1581 1582 /** 1583 * dma_free_rx_xskbufs - free RX dma buffers from XSK pool 1584 * @priv: private structure 1585 * @dma_conf: structure to take the dma data 1586 * @queue: RX queue index 1587 */ 1588 static void dma_free_rx_xskbufs(struct stmmac_priv *priv, 1589 struct stmmac_dma_conf *dma_conf, 1590 u32 queue) 1591 { 1592 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue]; 1593 int i; 1594 1595 for (i = 0; i < dma_conf->dma_rx_size; i++) { 1596 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i]; 1597 1598 if (!buf->xdp) 1599 continue; 1600 1601 xsk_buff_free(buf->xdp); 1602 buf->xdp = NULL; 1603 } 1604 } 1605 1606 static int stmmac_alloc_rx_buffers_zc(struct stmmac_priv *priv, 1607 struct stmmac_dma_conf *dma_conf, 1608 u32 queue) 1609 { 1610 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue]; 1611 int i; 1612 1613 /* struct stmmac_xdp_buff is using cb field (maximum size of 24 bytes) 1614 * in struct xdp_buff_xsk to stash driver specific information. Thus, 1615 * use this macro to make sure no size violations. 1616 */ 1617 XSK_CHECK_PRIV_TYPE(struct stmmac_xdp_buff); 1618 1619 for (i = 0; i < dma_conf->dma_rx_size; i++) { 1620 struct stmmac_rx_buffer *buf; 1621 dma_addr_t dma_addr; 1622 struct dma_desc *p; 1623 1624 if (priv->extend_desc) 1625 p = (struct dma_desc *)(rx_q->dma_erx + i); 1626 else 1627 p = rx_q->dma_rx + i; 1628 1629 buf = &rx_q->buf_pool[i]; 1630 1631 buf->xdp = xsk_buff_alloc(rx_q->xsk_pool); 1632 if (!buf->xdp) 1633 return -ENOMEM; 1634 1635 dma_addr = xsk_buff_xdp_get_dma(buf->xdp); 1636 stmmac_set_desc_addr(priv, p, dma_addr); 1637 rx_q->buf_alloc_num++; 1638 } 1639 1640 return 0; 1641 } 1642 1643 static struct xsk_buff_pool *stmmac_get_xsk_pool(struct stmmac_priv *priv, u32 queue) 1644 { 1645 if (!stmmac_xdp_is_enabled(priv) || !test_bit(queue, priv->af_xdp_zc_qps)) 1646 return NULL; 1647 1648 return xsk_get_pool_from_qid(priv->dev, queue); 1649 } 1650 1651 /** 1652 * __init_dma_rx_desc_rings - init the RX descriptor ring (per queue) 1653 * @priv: driver private structure 1654 * @dma_conf: structure to take the dma data 1655 * @queue: RX queue index 1656 * @flags: gfp flag. 1657 * Description: this function initializes the DMA RX descriptors 1658 * and allocates the socket buffers. It supports the chained and ring 1659 * modes. 1660 */ 1661 static int __init_dma_rx_desc_rings(struct stmmac_priv *priv, 1662 struct stmmac_dma_conf *dma_conf, 1663 u32 queue, gfp_t flags) 1664 { 1665 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue]; 1666 int ret; 1667 1668 netif_dbg(priv, probe, priv->dev, 1669 "(%s) dma_rx_phy=0x%08x\n", __func__, 1670 (u32)rx_q->dma_rx_phy); 1671 1672 stmmac_clear_rx_descriptors(priv, dma_conf, queue); 1673 1674 xdp_rxq_info_unreg_mem_model(&rx_q->xdp_rxq); 1675 1676 rx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue); 1677 1678 if (rx_q->xsk_pool) { 1679 WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq, 1680 MEM_TYPE_XSK_BUFF_POOL, 1681 NULL)); 1682 netdev_info(priv->dev, 1683 "Register MEM_TYPE_XSK_BUFF_POOL RxQ-%d\n", 1684 rx_q->queue_index); 1685 xsk_pool_set_rxq_info(rx_q->xsk_pool, &rx_q->xdp_rxq); 1686 } else { 1687 WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq, 1688 MEM_TYPE_PAGE_POOL, 1689 rx_q->page_pool)); 1690 netdev_info(priv->dev, 1691 "Register MEM_TYPE_PAGE_POOL RxQ-%d\n", 1692 rx_q->queue_index); 1693 } 1694 1695 if (rx_q->xsk_pool) { 1696 /* RX XDP ZC buffer pool may not be populated, e.g. 1697 * xdpsock TX-only. 1698 */ 1699 stmmac_alloc_rx_buffers_zc(priv, dma_conf, queue); 1700 } else { 1701 ret = stmmac_alloc_rx_buffers(priv, dma_conf, queue, flags); 1702 if (ret < 0) 1703 return -ENOMEM; 1704 } 1705 1706 /* Setup the chained descriptor addresses */ 1707 if (priv->mode == STMMAC_CHAIN_MODE) { 1708 if (priv->extend_desc) 1709 stmmac_mode_init(priv, rx_q->dma_erx, 1710 rx_q->dma_rx_phy, 1711 dma_conf->dma_rx_size, 1); 1712 else 1713 stmmac_mode_init(priv, rx_q->dma_rx, 1714 rx_q->dma_rx_phy, 1715 dma_conf->dma_rx_size, 0); 1716 } 1717 1718 return 0; 1719 } 1720 1721 static int init_dma_rx_desc_rings(struct net_device *dev, 1722 struct stmmac_dma_conf *dma_conf, 1723 gfp_t flags) 1724 { 1725 struct stmmac_priv *priv = netdev_priv(dev); 1726 u32 rx_count = priv->plat->rx_queues_to_use; 1727 int queue; 1728 int ret; 1729 1730 /* RX INITIALIZATION */ 1731 netif_dbg(priv, probe, priv->dev, 1732 "SKB addresses:\nskb\t\tskb data\tdma data\n"); 1733 1734 for (queue = 0; queue < rx_count; queue++) { 1735 ret = __init_dma_rx_desc_rings(priv, dma_conf, queue, flags); 1736 if (ret) 1737 goto err_init_rx_buffers; 1738 } 1739 1740 return 0; 1741 1742 err_init_rx_buffers: 1743 while (queue >= 0) { 1744 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue]; 1745 1746 if (rx_q->xsk_pool) 1747 dma_free_rx_xskbufs(priv, dma_conf, queue); 1748 else 1749 dma_free_rx_skbufs(priv, dma_conf, queue); 1750 1751 rx_q->buf_alloc_num = 0; 1752 rx_q->xsk_pool = NULL; 1753 1754 queue--; 1755 } 1756 1757 return ret; 1758 } 1759 1760 /** 1761 * __init_dma_tx_desc_rings - init the TX descriptor ring (per queue) 1762 * @priv: driver private structure 1763 * @dma_conf: structure to take the dma data 1764 * @queue: TX queue index 1765 * Description: this function initializes the DMA TX descriptors 1766 * and allocates the socket buffers. It supports the chained and ring 1767 * modes. 1768 */ 1769 static int __init_dma_tx_desc_rings(struct stmmac_priv *priv, 1770 struct stmmac_dma_conf *dma_conf, 1771 u32 queue) 1772 { 1773 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue]; 1774 int i; 1775 1776 netif_dbg(priv, probe, priv->dev, 1777 "(%s) dma_tx_phy=0x%08x\n", __func__, 1778 (u32)tx_q->dma_tx_phy); 1779 1780 /* Setup the chained descriptor addresses */ 1781 if (priv->mode == STMMAC_CHAIN_MODE) { 1782 if (priv->extend_desc) 1783 stmmac_mode_init(priv, tx_q->dma_etx, 1784 tx_q->dma_tx_phy, 1785 dma_conf->dma_tx_size, 1); 1786 else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) 1787 stmmac_mode_init(priv, tx_q->dma_tx, 1788 tx_q->dma_tx_phy, 1789 dma_conf->dma_tx_size, 0); 1790 } 1791 1792 tx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue); 1793 1794 for (i = 0; i < dma_conf->dma_tx_size; i++) { 1795 struct dma_desc *p; 1796 1797 if (priv->extend_desc) 1798 p = &((tx_q->dma_etx + i)->basic); 1799 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 1800 p = &((tx_q->dma_entx + i)->basic); 1801 else 1802 p = tx_q->dma_tx + i; 1803 1804 stmmac_clear_desc(priv, p); 1805 1806 tx_q->tx_skbuff_dma[i].buf = 0; 1807 tx_q->tx_skbuff_dma[i].map_as_page = false; 1808 tx_q->tx_skbuff_dma[i].len = 0; 1809 tx_q->tx_skbuff_dma[i].last_segment = false; 1810 tx_q->tx_skbuff[i] = NULL; 1811 } 1812 1813 return 0; 1814 } 1815 1816 static int init_dma_tx_desc_rings(struct net_device *dev, 1817 struct stmmac_dma_conf *dma_conf) 1818 { 1819 struct stmmac_priv *priv = netdev_priv(dev); 1820 u32 tx_queue_cnt; 1821 u32 queue; 1822 1823 tx_queue_cnt = priv->plat->tx_queues_to_use; 1824 1825 for (queue = 0; queue < tx_queue_cnt; queue++) 1826 __init_dma_tx_desc_rings(priv, dma_conf, queue); 1827 1828 return 0; 1829 } 1830 1831 /** 1832 * init_dma_desc_rings - init the RX/TX descriptor rings 1833 * @dev: net device structure 1834 * @dma_conf: structure to take the dma data 1835 * @flags: gfp flag. 1836 * Description: this function initializes the DMA RX/TX descriptors 1837 * and allocates the socket buffers. It supports the chained and ring 1838 * modes. 1839 */ 1840 static int init_dma_desc_rings(struct net_device *dev, 1841 struct stmmac_dma_conf *dma_conf, 1842 gfp_t flags) 1843 { 1844 struct stmmac_priv *priv = netdev_priv(dev); 1845 int ret; 1846 1847 ret = init_dma_rx_desc_rings(dev, dma_conf, flags); 1848 if (ret) 1849 return ret; 1850 1851 ret = init_dma_tx_desc_rings(dev, dma_conf); 1852 1853 stmmac_clear_descriptors(priv, dma_conf); 1854 1855 if (netif_msg_hw(priv)) 1856 stmmac_display_rings(priv, dma_conf); 1857 1858 return ret; 1859 } 1860 1861 /** 1862 * dma_free_tx_skbufs - free TX dma buffers 1863 * @priv: private structure 1864 * @dma_conf: structure to take the dma data 1865 * @queue: TX queue index 1866 */ 1867 static void dma_free_tx_skbufs(struct stmmac_priv *priv, 1868 struct stmmac_dma_conf *dma_conf, 1869 u32 queue) 1870 { 1871 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue]; 1872 int i; 1873 1874 tx_q->xsk_frames_done = 0; 1875 1876 for (i = 0; i < dma_conf->dma_tx_size; i++) 1877 stmmac_free_tx_buffer(priv, dma_conf, queue, i); 1878 1879 if (tx_q->xsk_pool && tx_q->xsk_frames_done) { 1880 xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done); 1881 tx_q->xsk_frames_done = 0; 1882 tx_q->xsk_pool = NULL; 1883 } 1884 } 1885 1886 /** 1887 * stmmac_free_tx_skbufs - free TX skb buffers 1888 * @priv: private structure 1889 */ 1890 static void stmmac_free_tx_skbufs(struct stmmac_priv *priv) 1891 { 1892 u32 tx_queue_cnt = priv->plat->tx_queues_to_use; 1893 u32 queue; 1894 1895 for (queue = 0; queue < tx_queue_cnt; queue++) 1896 dma_free_tx_skbufs(priv, &priv->dma_conf, queue); 1897 } 1898 1899 /** 1900 * __free_dma_rx_desc_resources - free RX dma desc resources (per queue) 1901 * @priv: private structure 1902 * @dma_conf: structure to take the dma data 1903 * @queue: RX queue index 1904 */ 1905 static void __free_dma_rx_desc_resources(struct stmmac_priv *priv, 1906 struct stmmac_dma_conf *dma_conf, 1907 u32 queue) 1908 { 1909 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue]; 1910 1911 /* Release the DMA RX socket buffers */ 1912 if (rx_q->xsk_pool) 1913 dma_free_rx_xskbufs(priv, dma_conf, queue); 1914 else 1915 dma_free_rx_skbufs(priv, dma_conf, queue); 1916 1917 rx_q->buf_alloc_num = 0; 1918 rx_q->xsk_pool = NULL; 1919 1920 /* Free DMA regions of consistent memory previously allocated */ 1921 if (!priv->extend_desc) 1922 dma_free_coherent(priv->device, dma_conf->dma_rx_size * 1923 sizeof(struct dma_desc), 1924 rx_q->dma_rx, rx_q->dma_rx_phy); 1925 else 1926 dma_free_coherent(priv->device, dma_conf->dma_rx_size * 1927 sizeof(struct dma_extended_desc), 1928 rx_q->dma_erx, rx_q->dma_rx_phy); 1929 1930 if (xdp_rxq_info_is_reg(&rx_q->xdp_rxq)) 1931 xdp_rxq_info_unreg(&rx_q->xdp_rxq); 1932 1933 kfree(rx_q->buf_pool); 1934 if (rx_q->page_pool) 1935 page_pool_destroy(rx_q->page_pool); 1936 } 1937 1938 static void free_dma_rx_desc_resources(struct stmmac_priv *priv, 1939 struct stmmac_dma_conf *dma_conf) 1940 { 1941 u32 rx_count = priv->plat->rx_queues_to_use; 1942 u32 queue; 1943 1944 /* Free RX queue resources */ 1945 for (queue = 0; queue < rx_count; queue++) 1946 __free_dma_rx_desc_resources(priv, dma_conf, queue); 1947 } 1948 1949 /** 1950 * __free_dma_tx_desc_resources - free TX dma desc resources (per queue) 1951 * @priv: private structure 1952 * @dma_conf: structure to take the dma data 1953 * @queue: TX queue index 1954 */ 1955 static void __free_dma_tx_desc_resources(struct stmmac_priv *priv, 1956 struct stmmac_dma_conf *dma_conf, 1957 u32 queue) 1958 { 1959 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue]; 1960 size_t size; 1961 void *addr; 1962 1963 /* Release the DMA TX socket buffers */ 1964 dma_free_tx_skbufs(priv, dma_conf, queue); 1965 1966 if (priv->extend_desc) { 1967 size = sizeof(struct dma_extended_desc); 1968 addr = tx_q->dma_etx; 1969 } else if (tx_q->tbs & STMMAC_TBS_AVAIL) { 1970 size = sizeof(struct dma_edesc); 1971 addr = tx_q->dma_entx; 1972 } else { 1973 size = sizeof(struct dma_desc); 1974 addr = tx_q->dma_tx; 1975 } 1976 1977 size *= dma_conf->dma_tx_size; 1978 1979 dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy); 1980 1981 kfree(tx_q->tx_skbuff_dma); 1982 kfree(tx_q->tx_skbuff); 1983 } 1984 1985 static void free_dma_tx_desc_resources(struct stmmac_priv *priv, 1986 struct stmmac_dma_conf *dma_conf) 1987 { 1988 u32 tx_count = priv->plat->tx_queues_to_use; 1989 u32 queue; 1990 1991 /* Free TX queue resources */ 1992 for (queue = 0; queue < tx_count; queue++) 1993 __free_dma_tx_desc_resources(priv, dma_conf, queue); 1994 } 1995 1996 /** 1997 * __alloc_dma_rx_desc_resources - alloc RX resources (per queue). 1998 * @priv: private structure 1999 * @dma_conf: structure to take the dma data 2000 * @queue: RX queue index 2001 * Description: according to which descriptor can be used (extend or basic) 2002 * this function allocates the resources for TX and RX paths. In case of 2003 * reception, for example, it pre-allocated the RX socket buffer in order to 2004 * allow zero-copy mechanism. 2005 */ 2006 static int __alloc_dma_rx_desc_resources(struct stmmac_priv *priv, 2007 struct stmmac_dma_conf *dma_conf, 2008 u32 queue) 2009 { 2010 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue]; 2011 struct stmmac_channel *ch = &priv->channel[queue]; 2012 bool xdp_prog = stmmac_xdp_is_enabled(priv); 2013 struct page_pool_params pp_params = { 0 }; 2014 unsigned int num_pages; 2015 unsigned int napi_id; 2016 int ret; 2017 2018 rx_q->queue_index = queue; 2019 rx_q->priv_data = priv; 2020 2021 pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV; 2022 pp_params.pool_size = dma_conf->dma_rx_size; 2023 num_pages = DIV_ROUND_UP(dma_conf->dma_buf_sz, PAGE_SIZE); 2024 pp_params.order = ilog2(num_pages); 2025 pp_params.nid = dev_to_node(priv->device); 2026 pp_params.dev = priv->device; 2027 pp_params.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE; 2028 pp_params.offset = stmmac_rx_offset(priv); 2029 pp_params.max_len = STMMAC_MAX_RX_BUF_SIZE(num_pages); 2030 2031 rx_q->page_pool = page_pool_create(&pp_params); 2032 if (IS_ERR(rx_q->page_pool)) { 2033 ret = PTR_ERR(rx_q->page_pool); 2034 rx_q->page_pool = NULL; 2035 return ret; 2036 } 2037 2038 rx_q->buf_pool = kcalloc(dma_conf->dma_rx_size, 2039 sizeof(*rx_q->buf_pool), 2040 GFP_KERNEL); 2041 if (!rx_q->buf_pool) 2042 return -ENOMEM; 2043 2044 if (priv->extend_desc) { 2045 rx_q->dma_erx = dma_alloc_coherent(priv->device, 2046 dma_conf->dma_rx_size * 2047 sizeof(struct dma_extended_desc), 2048 &rx_q->dma_rx_phy, 2049 GFP_KERNEL); 2050 if (!rx_q->dma_erx) 2051 return -ENOMEM; 2052 2053 } else { 2054 rx_q->dma_rx = dma_alloc_coherent(priv->device, 2055 dma_conf->dma_rx_size * 2056 sizeof(struct dma_desc), 2057 &rx_q->dma_rx_phy, 2058 GFP_KERNEL); 2059 if (!rx_q->dma_rx) 2060 return -ENOMEM; 2061 } 2062 2063 if (stmmac_xdp_is_enabled(priv) && 2064 test_bit(queue, priv->af_xdp_zc_qps)) 2065 napi_id = ch->rxtx_napi.napi_id; 2066 else 2067 napi_id = ch->rx_napi.napi_id; 2068 2069 ret = xdp_rxq_info_reg(&rx_q->xdp_rxq, priv->dev, 2070 rx_q->queue_index, 2071 napi_id); 2072 if (ret) { 2073 netdev_err(priv->dev, "Failed to register xdp rxq info\n"); 2074 return -EINVAL; 2075 } 2076 2077 return 0; 2078 } 2079 2080 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv, 2081 struct stmmac_dma_conf *dma_conf) 2082 { 2083 u32 rx_count = priv->plat->rx_queues_to_use; 2084 u32 queue; 2085 int ret; 2086 2087 /* RX queues buffers and DMA */ 2088 for (queue = 0; queue < rx_count; queue++) { 2089 ret = __alloc_dma_rx_desc_resources(priv, dma_conf, queue); 2090 if (ret) 2091 goto err_dma; 2092 } 2093 2094 return 0; 2095 2096 err_dma: 2097 free_dma_rx_desc_resources(priv, dma_conf); 2098 2099 return ret; 2100 } 2101 2102 /** 2103 * __alloc_dma_tx_desc_resources - alloc TX resources (per queue). 2104 * @priv: private structure 2105 * @dma_conf: structure to take the dma data 2106 * @queue: TX queue index 2107 * Description: according to which descriptor can be used (extend or basic) 2108 * this function allocates the resources for TX and RX paths. In case of 2109 * reception, for example, it pre-allocated the RX socket buffer in order to 2110 * allow zero-copy mechanism. 2111 */ 2112 static int __alloc_dma_tx_desc_resources(struct stmmac_priv *priv, 2113 struct stmmac_dma_conf *dma_conf, 2114 u32 queue) 2115 { 2116 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue]; 2117 size_t size; 2118 void *addr; 2119 2120 tx_q->queue_index = queue; 2121 tx_q->priv_data = priv; 2122 2123 tx_q->tx_skbuff_dma = kcalloc(dma_conf->dma_tx_size, 2124 sizeof(*tx_q->tx_skbuff_dma), 2125 GFP_KERNEL); 2126 if (!tx_q->tx_skbuff_dma) 2127 return -ENOMEM; 2128 2129 tx_q->tx_skbuff = kcalloc(dma_conf->dma_tx_size, 2130 sizeof(struct sk_buff *), 2131 GFP_KERNEL); 2132 if (!tx_q->tx_skbuff) 2133 return -ENOMEM; 2134 2135 if (priv->extend_desc) 2136 size = sizeof(struct dma_extended_desc); 2137 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 2138 size = sizeof(struct dma_edesc); 2139 else 2140 size = sizeof(struct dma_desc); 2141 2142 size *= dma_conf->dma_tx_size; 2143 2144 addr = dma_alloc_coherent(priv->device, size, 2145 &tx_q->dma_tx_phy, GFP_KERNEL); 2146 if (!addr) 2147 return -ENOMEM; 2148 2149 if (priv->extend_desc) 2150 tx_q->dma_etx = addr; 2151 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 2152 tx_q->dma_entx = addr; 2153 else 2154 tx_q->dma_tx = addr; 2155 2156 return 0; 2157 } 2158 2159 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv, 2160 struct stmmac_dma_conf *dma_conf) 2161 { 2162 u32 tx_count = priv->plat->tx_queues_to_use; 2163 u32 queue; 2164 int ret; 2165 2166 /* TX queues buffers and DMA */ 2167 for (queue = 0; queue < tx_count; queue++) { 2168 ret = __alloc_dma_tx_desc_resources(priv, dma_conf, queue); 2169 if (ret) 2170 goto err_dma; 2171 } 2172 2173 return 0; 2174 2175 err_dma: 2176 free_dma_tx_desc_resources(priv, dma_conf); 2177 return ret; 2178 } 2179 2180 /** 2181 * alloc_dma_desc_resources - alloc TX/RX resources. 2182 * @priv: private structure 2183 * @dma_conf: structure to take the dma data 2184 * Description: according to which descriptor can be used (extend or basic) 2185 * this function allocates the resources for TX and RX paths. In case of 2186 * reception, for example, it pre-allocated the RX socket buffer in order to 2187 * allow zero-copy mechanism. 2188 */ 2189 static int alloc_dma_desc_resources(struct stmmac_priv *priv, 2190 struct stmmac_dma_conf *dma_conf) 2191 { 2192 /* RX Allocation */ 2193 int ret = alloc_dma_rx_desc_resources(priv, dma_conf); 2194 2195 if (ret) 2196 return ret; 2197 2198 ret = alloc_dma_tx_desc_resources(priv, dma_conf); 2199 2200 return ret; 2201 } 2202 2203 /** 2204 * free_dma_desc_resources - free dma desc resources 2205 * @priv: private structure 2206 * @dma_conf: structure to take the dma data 2207 */ 2208 static void free_dma_desc_resources(struct stmmac_priv *priv, 2209 struct stmmac_dma_conf *dma_conf) 2210 { 2211 /* Release the DMA TX socket buffers */ 2212 free_dma_tx_desc_resources(priv, dma_conf); 2213 2214 /* Release the DMA RX socket buffers later 2215 * to ensure all pending XDP_TX buffers are returned. 2216 */ 2217 free_dma_rx_desc_resources(priv, dma_conf); 2218 } 2219 2220 /** 2221 * stmmac_mac_enable_rx_queues - Enable MAC rx queues 2222 * @priv: driver private structure 2223 * Description: It is used for enabling the rx queues in the MAC 2224 */ 2225 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv) 2226 { 2227 u32 rx_queues_count = priv->plat->rx_queues_to_use; 2228 int queue; 2229 u8 mode; 2230 2231 for (queue = 0; queue < rx_queues_count; queue++) { 2232 mode = priv->plat->rx_queues_cfg[queue].mode_to_use; 2233 stmmac_rx_queue_enable(priv, priv->hw, mode, queue); 2234 } 2235 } 2236 2237 /** 2238 * stmmac_start_rx_dma - start RX DMA channel 2239 * @priv: driver private structure 2240 * @chan: RX channel index 2241 * Description: 2242 * This starts a RX DMA channel 2243 */ 2244 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan) 2245 { 2246 netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan); 2247 stmmac_start_rx(priv, priv->ioaddr, chan); 2248 } 2249 2250 /** 2251 * stmmac_start_tx_dma - start TX DMA channel 2252 * @priv: driver private structure 2253 * @chan: TX channel index 2254 * Description: 2255 * This starts a TX DMA channel 2256 */ 2257 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan) 2258 { 2259 netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan); 2260 stmmac_start_tx(priv, priv->ioaddr, chan); 2261 } 2262 2263 /** 2264 * stmmac_stop_rx_dma - stop RX DMA channel 2265 * @priv: driver private structure 2266 * @chan: RX channel index 2267 * Description: 2268 * This stops a RX DMA channel 2269 */ 2270 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan) 2271 { 2272 netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan); 2273 stmmac_stop_rx(priv, priv->ioaddr, chan); 2274 } 2275 2276 /** 2277 * stmmac_stop_tx_dma - stop TX DMA channel 2278 * @priv: driver private structure 2279 * @chan: TX channel index 2280 * Description: 2281 * This stops a TX DMA channel 2282 */ 2283 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan) 2284 { 2285 netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan); 2286 stmmac_stop_tx(priv, priv->ioaddr, chan); 2287 } 2288 2289 static void stmmac_enable_all_dma_irq(struct stmmac_priv *priv) 2290 { 2291 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2292 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2293 u32 dma_csr_ch = max(rx_channels_count, tx_channels_count); 2294 u32 chan; 2295 2296 for (chan = 0; chan < dma_csr_ch; chan++) { 2297 struct stmmac_channel *ch = &priv->channel[chan]; 2298 unsigned long flags; 2299 2300 spin_lock_irqsave(&ch->lock, flags); 2301 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1); 2302 spin_unlock_irqrestore(&ch->lock, flags); 2303 } 2304 } 2305 2306 /** 2307 * stmmac_start_all_dma - start all RX and TX DMA channels 2308 * @priv: driver private structure 2309 * Description: 2310 * This starts all the RX and TX DMA channels 2311 */ 2312 static void stmmac_start_all_dma(struct stmmac_priv *priv) 2313 { 2314 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2315 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2316 u32 chan = 0; 2317 2318 for (chan = 0; chan < rx_channels_count; chan++) 2319 stmmac_start_rx_dma(priv, chan); 2320 2321 for (chan = 0; chan < tx_channels_count; chan++) 2322 stmmac_start_tx_dma(priv, chan); 2323 } 2324 2325 /** 2326 * stmmac_stop_all_dma - stop all RX and TX DMA channels 2327 * @priv: driver private structure 2328 * Description: 2329 * This stops the RX and TX DMA channels 2330 */ 2331 static void stmmac_stop_all_dma(struct stmmac_priv *priv) 2332 { 2333 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2334 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2335 u32 chan = 0; 2336 2337 for (chan = 0; chan < rx_channels_count; chan++) 2338 stmmac_stop_rx_dma(priv, chan); 2339 2340 for (chan = 0; chan < tx_channels_count; chan++) 2341 stmmac_stop_tx_dma(priv, chan); 2342 } 2343 2344 /** 2345 * stmmac_dma_operation_mode - HW DMA operation mode 2346 * @priv: driver private structure 2347 * Description: it is used for configuring the DMA operation mode register in 2348 * order to program the tx/rx DMA thresholds or Store-And-Forward mode. 2349 */ 2350 static void stmmac_dma_operation_mode(struct stmmac_priv *priv) 2351 { 2352 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2353 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2354 int rxfifosz = priv->plat->rx_fifo_size; 2355 int txfifosz = priv->plat->tx_fifo_size; 2356 u32 txmode = 0; 2357 u32 rxmode = 0; 2358 u32 chan = 0; 2359 u8 qmode = 0; 2360 2361 if (rxfifosz == 0) 2362 rxfifosz = priv->dma_cap.rx_fifo_size; 2363 if (txfifosz == 0) 2364 txfifosz = priv->dma_cap.tx_fifo_size; 2365 2366 /* Adjust for real per queue fifo size */ 2367 rxfifosz /= rx_channels_count; 2368 txfifosz /= tx_channels_count; 2369 2370 if (priv->plat->force_thresh_dma_mode) { 2371 txmode = tc; 2372 rxmode = tc; 2373 } else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) { 2374 /* 2375 * In case of GMAC, SF mode can be enabled 2376 * to perform the TX COE in HW. This depends on: 2377 * 1) TX COE if actually supported 2378 * 2) There is no bugged Jumbo frame support 2379 * that needs to not insert csum in the TDES. 2380 */ 2381 txmode = SF_DMA_MODE; 2382 rxmode = SF_DMA_MODE; 2383 priv->xstats.threshold = SF_DMA_MODE; 2384 } else { 2385 txmode = tc; 2386 rxmode = SF_DMA_MODE; 2387 } 2388 2389 /* configure all channels */ 2390 for (chan = 0; chan < rx_channels_count; chan++) { 2391 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[chan]; 2392 u32 buf_size; 2393 2394 qmode = priv->plat->rx_queues_cfg[chan].mode_to_use; 2395 2396 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, 2397 rxfifosz, qmode); 2398 2399 if (rx_q->xsk_pool) { 2400 buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool); 2401 stmmac_set_dma_bfsize(priv, priv->ioaddr, 2402 buf_size, 2403 chan); 2404 } else { 2405 stmmac_set_dma_bfsize(priv, priv->ioaddr, 2406 priv->dma_conf.dma_buf_sz, 2407 chan); 2408 } 2409 } 2410 2411 for (chan = 0; chan < tx_channels_count; chan++) { 2412 qmode = priv->plat->tx_queues_cfg[chan].mode_to_use; 2413 2414 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, 2415 txfifosz, qmode); 2416 } 2417 } 2418 2419 static void stmmac_xsk_request_timestamp(void *_priv) 2420 { 2421 struct stmmac_metadata_request *meta_req = _priv; 2422 2423 stmmac_enable_tx_timestamp(meta_req->priv, meta_req->tx_desc); 2424 *meta_req->set_ic = true; 2425 } 2426 2427 static u64 stmmac_xsk_fill_timestamp(void *_priv) 2428 { 2429 struct stmmac_xsk_tx_complete *tx_compl = _priv; 2430 struct stmmac_priv *priv = tx_compl->priv; 2431 struct dma_desc *desc = tx_compl->desc; 2432 bool found = false; 2433 u64 ns = 0; 2434 2435 if (!priv->hwts_tx_en) 2436 return 0; 2437 2438 /* check tx tstamp status */ 2439 if (stmmac_get_tx_timestamp_status(priv, desc)) { 2440 stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns); 2441 found = true; 2442 } else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) { 2443 found = true; 2444 } 2445 2446 if (found) { 2447 ns -= priv->plat->cdc_error_adj; 2448 return ns_to_ktime(ns); 2449 } 2450 2451 return 0; 2452 } 2453 2454 static const struct xsk_tx_metadata_ops stmmac_xsk_tx_metadata_ops = { 2455 .tmo_request_timestamp = stmmac_xsk_request_timestamp, 2456 .tmo_fill_timestamp = stmmac_xsk_fill_timestamp, 2457 }; 2458 2459 static bool stmmac_xdp_xmit_zc(struct stmmac_priv *priv, u32 queue, u32 budget) 2460 { 2461 struct netdev_queue *nq = netdev_get_tx_queue(priv->dev, queue); 2462 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue]; 2463 struct stmmac_txq_stats *txq_stats = &priv->xstats.txq_stats[queue]; 2464 struct xsk_buff_pool *pool = tx_q->xsk_pool; 2465 unsigned int entry = tx_q->cur_tx; 2466 struct dma_desc *tx_desc = NULL; 2467 struct xdp_desc xdp_desc; 2468 bool work_done = true; 2469 u32 tx_set_ic_bit = 0; 2470 2471 /* Avoids TX time-out as we are sharing with slow path */ 2472 txq_trans_cond_update(nq); 2473 2474 budget = min(budget, stmmac_tx_avail(priv, queue)); 2475 2476 while (budget-- > 0) { 2477 struct stmmac_metadata_request meta_req; 2478 struct xsk_tx_metadata *meta = NULL; 2479 dma_addr_t dma_addr; 2480 bool set_ic; 2481 2482 /* We are sharing with slow path and stop XSK TX desc submission when 2483 * available TX ring is less than threshold. 2484 */ 2485 if (unlikely(stmmac_tx_avail(priv, queue) < STMMAC_TX_XSK_AVAIL) || 2486 !netif_carrier_ok(priv->dev)) { 2487 work_done = false; 2488 break; 2489 } 2490 2491 if (!xsk_tx_peek_desc(pool, &xdp_desc)) 2492 break; 2493 2494 if (priv->plat->est && priv->plat->est->enable && 2495 priv->plat->est->max_sdu[queue] && 2496 xdp_desc.len > priv->plat->est->max_sdu[queue]) { 2497 priv->xstats.max_sdu_txq_drop[queue]++; 2498 continue; 2499 } 2500 2501 if (likely(priv->extend_desc)) 2502 tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry); 2503 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 2504 tx_desc = &tx_q->dma_entx[entry].basic; 2505 else 2506 tx_desc = tx_q->dma_tx + entry; 2507 2508 dma_addr = xsk_buff_raw_get_dma(pool, xdp_desc.addr); 2509 meta = xsk_buff_get_metadata(pool, xdp_desc.addr); 2510 xsk_buff_raw_dma_sync_for_device(pool, dma_addr, xdp_desc.len); 2511 2512 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XSK_TX; 2513 2514 /* To return XDP buffer to XSK pool, we simple call 2515 * xsk_tx_completed(), so we don't need to fill up 2516 * 'buf' and 'xdpf'. 2517 */ 2518 tx_q->tx_skbuff_dma[entry].buf = 0; 2519 tx_q->xdpf[entry] = NULL; 2520 2521 tx_q->tx_skbuff_dma[entry].map_as_page = false; 2522 tx_q->tx_skbuff_dma[entry].len = xdp_desc.len; 2523 tx_q->tx_skbuff_dma[entry].last_segment = true; 2524 tx_q->tx_skbuff_dma[entry].is_jumbo = false; 2525 2526 stmmac_set_desc_addr(priv, tx_desc, dma_addr); 2527 2528 tx_q->tx_count_frames++; 2529 2530 if (!priv->tx_coal_frames[queue]) 2531 set_ic = false; 2532 else if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0) 2533 set_ic = true; 2534 else 2535 set_ic = false; 2536 2537 meta_req.priv = priv; 2538 meta_req.tx_desc = tx_desc; 2539 meta_req.set_ic = &set_ic; 2540 xsk_tx_metadata_request(meta, &stmmac_xsk_tx_metadata_ops, 2541 &meta_req); 2542 if (set_ic) { 2543 tx_q->tx_count_frames = 0; 2544 stmmac_set_tx_ic(priv, tx_desc); 2545 tx_set_ic_bit++; 2546 } 2547 2548 stmmac_prepare_tx_desc(priv, tx_desc, 1, xdp_desc.len, 2549 true, priv->mode, true, true, 2550 xdp_desc.len); 2551 2552 stmmac_enable_dma_transmission(priv, priv->ioaddr); 2553 2554 xsk_tx_metadata_to_compl(meta, 2555 &tx_q->tx_skbuff_dma[entry].xsk_meta); 2556 2557 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size); 2558 entry = tx_q->cur_tx; 2559 } 2560 u64_stats_update_begin(&txq_stats->napi_syncp); 2561 u64_stats_add(&txq_stats->napi.tx_set_ic_bit, tx_set_ic_bit); 2562 u64_stats_update_end(&txq_stats->napi_syncp); 2563 2564 if (tx_desc) { 2565 stmmac_flush_tx_descriptors(priv, queue); 2566 xsk_tx_release(pool); 2567 } 2568 2569 /* Return true if all of the 3 conditions are met 2570 * a) TX Budget is still available 2571 * b) work_done = true when XSK TX desc peek is empty (no more 2572 * pending XSK TX for transmission) 2573 */ 2574 return !!budget && work_done; 2575 } 2576 2577 static void stmmac_bump_dma_threshold(struct stmmac_priv *priv, u32 chan) 2578 { 2579 if (unlikely(priv->xstats.threshold != SF_DMA_MODE) && tc <= 256) { 2580 tc += 64; 2581 2582 if (priv->plat->force_thresh_dma_mode) 2583 stmmac_set_dma_operation_mode(priv, tc, tc, chan); 2584 else 2585 stmmac_set_dma_operation_mode(priv, tc, SF_DMA_MODE, 2586 chan); 2587 2588 priv->xstats.threshold = tc; 2589 } 2590 } 2591 2592 /** 2593 * stmmac_tx_clean - to manage the transmission completion 2594 * @priv: driver private structure 2595 * @budget: napi budget limiting this functions packet handling 2596 * @queue: TX queue index 2597 * @pending_packets: signal to arm the TX coal timer 2598 * Description: it reclaims the transmit resources after transmission completes. 2599 * If some packets still needs to be handled, due to TX coalesce, set 2600 * pending_packets to true to make NAPI arm the TX coal timer. 2601 */ 2602 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue, 2603 bool *pending_packets) 2604 { 2605 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue]; 2606 struct stmmac_txq_stats *txq_stats = &priv->xstats.txq_stats[queue]; 2607 unsigned int bytes_compl = 0, pkts_compl = 0; 2608 unsigned int entry, xmits = 0, count = 0; 2609 u32 tx_packets = 0, tx_errors = 0; 2610 2611 __netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue)); 2612 2613 tx_q->xsk_frames_done = 0; 2614 2615 entry = tx_q->dirty_tx; 2616 2617 /* Try to clean all TX complete frame in 1 shot */ 2618 while ((entry != tx_q->cur_tx) && count < priv->dma_conf.dma_tx_size) { 2619 struct xdp_frame *xdpf; 2620 struct sk_buff *skb; 2621 struct dma_desc *p; 2622 int status; 2623 2624 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX || 2625 tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) { 2626 xdpf = tx_q->xdpf[entry]; 2627 skb = NULL; 2628 } else if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) { 2629 xdpf = NULL; 2630 skb = tx_q->tx_skbuff[entry]; 2631 } else { 2632 xdpf = NULL; 2633 skb = NULL; 2634 } 2635 2636 if (priv->extend_desc) 2637 p = (struct dma_desc *)(tx_q->dma_etx + entry); 2638 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 2639 p = &tx_q->dma_entx[entry].basic; 2640 else 2641 p = tx_q->dma_tx + entry; 2642 2643 status = stmmac_tx_status(priv, &priv->xstats, p, priv->ioaddr); 2644 /* Check if the descriptor is owned by the DMA */ 2645 if (unlikely(status & tx_dma_own)) 2646 break; 2647 2648 count++; 2649 2650 /* Make sure descriptor fields are read after reading 2651 * the own bit. 2652 */ 2653 dma_rmb(); 2654 2655 /* Just consider the last segment and ...*/ 2656 if (likely(!(status & tx_not_ls))) { 2657 /* ... verify the status error condition */ 2658 if (unlikely(status & tx_err)) { 2659 tx_errors++; 2660 if (unlikely(status & tx_err_bump_tc)) 2661 stmmac_bump_dma_threshold(priv, queue); 2662 } else { 2663 tx_packets++; 2664 } 2665 if (skb) { 2666 stmmac_get_tx_hwtstamp(priv, p, skb); 2667 } else if (tx_q->xsk_pool && 2668 xp_tx_metadata_enabled(tx_q->xsk_pool)) { 2669 struct stmmac_xsk_tx_complete tx_compl = { 2670 .priv = priv, 2671 .desc = p, 2672 }; 2673 2674 xsk_tx_metadata_complete(&tx_q->tx_skbuff_dma[entry].xsk_meta, 2675 &stmmac_xsk_tx_metadata_ops, 2676 &tx_compl); 2677 } 2678 } 2679 2680 if (likely(tx_q->tx_skbuff_dma[entry].buf && 2681 tx_q->tx_skbuff_dma[entry].buf_type != STMMAC_TXBUF_T_XDP_TX)) { 2682 if (tx_q->tx_skbuff_dma[entry].map_as_page) 2683 dma_unmap_page(priv->device, 2684 tx_q->tx_skbuff_dma[entry].buf, 2685 tx_q->tx_skbuff_dma[entry].len, 2686 DMA_TO_DEVICE); 2687 else 2688 dma_unmap_single(priv->device, 2689 tx_q->tx_skbuff_dma[entry].buf, 2690 tx_q->tx_skbuff_dma[entry].len, 2691 DMA_TO_DEVICE); 2692 tx_q->tx_skbuff_dma[entry].buf = 0; 2693 tx_q->tx_skbuff_dma[entry].len = 0; 2694 tx_q->tx_skbuff_dma[entry].map_as_page = false; 2695 } 2696 2697 stmmac_clean_desc3(priv, tx_q, p); 2698 2699 tx_q->tx_skbuff_dma[entry].last_segment = false; 2700 tx_q->tx_skbuff_dma[entry].is_jumbo = false; 2701 2702 if (xdpf && 2703 tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX) { 2704 xdp_return_frame_rx_napi(xdpf); 2705 tx_q->xdpf[entry] = NULL; 2706 } 2707 2708 if (xdpf && 2709 tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) { 2710 xdp_return_frame(xdpf); 2711 tx_q->xdpf[entry] = NULL; 2712 } 2713 2714 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XSK_TX) 2715 tx_q->xsk_frames_done++; 2716 2717 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) { 2718 if (likely(skb)) { 2719 pkts_compl++; 2720 bytes_compl += skb->len; 2721 dev_consume_skb_any(skb); 2722 tx_q->tx_skbuff[entry] = NULL; 2723 } 2724 } 2725 2726 stmmac_release_tx_desc(priv, p, priv->mode); 2727 2728 entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size); 2729 } 2730 tx_q->dirty_tx = entry; 2731 2732 netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue), 2733 pkts_compl, bytes_compl); 2734 2735 if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev, 2736 queue))) && 2737 stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH(priv)) { 2738 2739 netif_dbg(priv, tx_done, priv->dev, 2740 "%s: restart transmit\n", __func__); 2741 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue)); 2742 } 2743 2744 if (tx_q->xsk_pool) { 2745 bool work_done; 2746 2747 if (tx_q->xsk_frames_done) 2748 xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done); 2749 2750 if (xsk_uses_need_wakeup(tx_q->xsk_pool)) 2751 xsk_set_tx_need_wakeup(tx_q->xsk_pool); 2752 2753 /* For XSK TX, we try to send as many as possible. 2754 * If XSK work done (XSK TX desc empty and budget still 2755 * available), return "budget - 1" to reenable TX IRQ. 2756 * Else, return "budget" to make NAPI continue polling. 2757 */ 2758 work_done = stmmac_xdp_xmit_zc(priv, queue, 2759 STMMAC_XSK_TX_BUDGET_MAX); 2760 if (work_done) 2761 xmits = budget - 1; 2762 else 2763 xmits = budget; 2764 } 2765 2766 if (priv->eee_enabled && !priv->tx_path_in_lpi_mode && 2767 priv->eee_sw_timer_en) { 2768 if (stmmac_enable_eee_mode(priv)) 2769 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer)); 2770 } 2771 2772 /* We still have pending packets, let's call for a new scheduling */ 2773 if (tx_q->dirty_tx != tx_q->cur_tx) 2774 *pending_packets = true; 2775 2776 u64_stats_update_begin(&txq_stats->napi_syncp); 2777 u64_stats_add(&txq_stats->napi.tx_packets, tx_packets); 2778 u64_stats_add(&txq_stats->napi.tx_pkt_n, tx_packets); 2779 u64_stats_inc(&txq_stats->napi.tx_clean); 2780 u64_stats_update_end(&txq_stats->napi_syncp); 2781 2782 priv->xstats.tx_errors += tx_errors; 2783 2784 __netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue)); 2785 2786 /* Combine decisions from TX clean and XSK TX */ 2787 return max(count, xmits); 2788 } 2789 2790 /** 2791 * stmmac_tx_err - to manage the tx error 2792 * @priv: driver private structure 2793 * @chan: channel index 2794 * Description: it cleans the descriptors and restarts the transmission 2795 * in case of transmission errors. 2796 */ 2797 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan) 2798 { 2799 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan]; 2800 2801 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan)); 2802 2803 stmmac_stop_tx_dma(priv, chan); 2804 dma_free_tx_skbufs(priv, &priv->dma_conf, chan); 2805 stmmac_clear_tx_descriptors(priv, &priv->dma_conf, chan); 2806 stmmac_reset_tx_queue(priv, chan); 2807 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 2808 tx_q->dma_tx_phy, chan); 2809 stmmac_start_tx_dma(priv, chan); 2810 2811 priv->xstats.tx_errors++; 2812 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan)); 2813 } 2814 2815 /** 2816 * stmmac_set_dma_operation_mode - Set DMA operation mode by channel 2817 * @priv: driver private structure 2818 * @txmode: TX operating mode 2819 * @rxmode: RX operating mode 2820 * @chan: channel index 2821 * Description: it is used for configuring of the DMA operation mode in 2822 * runtime in order to program the tx/rx DMA thresholds or Store-And-Forward 2823 * mode. 2824 */ 2825 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode, 2826 u32 rxmode, u32 chan) 2827 { 2828 u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use; 2829 u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use; 2830 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2831 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2832 int rxfifosz = priv->plat->rx_fifo_size; 2833 int txfifosz = priv->plat->tx_fifo_size; 2834 2835 if (rxfifosz == 0) 2836 rxfifosz = priv->dma_cap.rx_fifo_size; 2837 if (txfifosz == 0) 2838 txfifosz = priv->dma_cap.tx_fifo_size; 2839 2840 /* Adjust for real per queue fifo size */ 2841 rxfifosz /= rx_channels_count; 2842 txfifosz /= tx_channels_count; 2843 2844 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode); 2845 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode); 2846 } 2847 2848 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv) 2849 { 2850 int ret; 2851 2852 ret = stmmac_safety_feat_irq_status(priv, priv->dev, 2853 priv->ioaddr, priv->dma_cap.asp, &priv->sstats); 2854 if (ret && (ret != -EINVAL)) { 2855 stmmac_global_err(priv); 2856 return true; 2857 } 2858 2859 return false; 2860 } 2861 2862 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan, u32 dir) 2863 { 2864 int status = stmmac_dma_interrupt_status(priv, priv->ioaddr, 2865 &priv->xstats, chan, dir); 2866 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[chan]; 2867 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan]; 2868 struct stmmac_channel *ch = &priv->channel[chan]; 2869 struct napi_struct *rx_napi; 2870 struct napi_struct *tx_napi; 2871 unsigned long flags; 2872 2873 rx_napi = rx_q->xsk_pool ? &ch->rxtx_napi : &ch->rx_napi; 2874 tx_napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi; 2875 2876 if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) { 2877 if (napi_schedule_prep(rx_napi)) { 2878 spin_lock_irqsave(&ch->lock, flags); 2879 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0); 2880 spin_unlock_irqrestore(&ch->lock, flags); 2881 __napi_schedule(rx_napi); 2882 } 2883 } 2884 2885 if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) { 2886 if (napi_schedule_prep(tx_napi)) { 2887 spin_lock_irqsave(&ch->lock, flags); 2888 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1); 2889 spin_unlock_irqrestore(&ch->lock, flags); 2890 __napi_schedule(tx_napi); 2891 } 2892 } 2893 2894 return status; 2895 } 2896 2897 /** 2898 * stmmac_dma_interrupt - DMA ISR 2899 * @priv: driver private structure 2900 * Description: this is the DMA ISR. It is called by the main ISR. 2901 * It calls the dwmac dma routine and schedule poll method in case of some 2902 * work can be done. 2903 */ 2904 static void stmmac_dma_interrupt(struct stmmac_priv *priv) 2905 { 2906 u32 tx_channel_count = priv->plat->tx_queues_to_use; 2907 u32 rx_channel_count = priv->plat->rx_queues_to_use; 2908 u32 channels_to_check = tx_channel_count > rx_channel_count ? 2909 tx_channel_count : rx_channel_count; 2910 u32 chan; 2911 int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)]; 2912 2913 /* Make sure we never check beyond our status buffer. */ 2914 if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status))) 2915 channels_to_check = ARRAY_SIZE(status); 2916 2917 for (chan = 0; chan < channels_to_check; chan++) 2918 status[chan] = stmmac_napi_check(priv, chan, 2919 DMA_DIR_RXTX); 2920 2921 for (chan = 0; chan < tx_channel_count; chan++) { 2922 if (unlikely(status[chan] & tx_hard_error_bump_tc)) { 2923 /* Try to bump up the dma threshold on this failure */ 2924 stmmac_bump_dma_threshold(priv, chan); 2925 } else if (unlikely(status[chan] == tx_hard_error)) { 2926 stmmac_tx_err(priv, chan); 2927 } 2928 } 2929 } 2930 2931 /** 2932 * stmmac_mmc_setup: setup the Mac Management Counters (MMC) 2933 * @priv: driver private structure 2934 * Description: this masks the MMC irq, in fact, the counters are managed in SW. 2935 */ 2936 static void stmmac_mmc_setup(struct stmmac_priv *priv) 2937 { 2938 unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET | 2939 MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET; 2940 2941 stmmac_mmc_intr_all_mask(priv, priv->mmcaddr); 2942 2943 if (priv->dma_cap.rmon) { 2944 stmmac_mmc_ctrl(priv, priv->mmcaddr, mode); 2945 memset(&priv->mmc, 0, sizeof(struct stmmac_counters)); 2946 } else 2947 netdev_info(priv->dev, "No MAC Management Counters available\n"); 2948 } 2949 2950 /** 2951 * stmmac_get_hw_features - get MAC capabilities from the HW cap. register. 2952 * @priv: driver private structure 2953 * Description: 2954 * new GMAC chip generations have a new register to indicate the 2955 * presence of the optional feature/functions. 2956 * This can be also used to override the value passed through the 2957 * platform and necessary for old MAC10/100 and GMAC chips. 2958 */ 2959 static int stmmac_get_hw_features(struct stmmac_priv *priv) 2960 { 2961 return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0; 2962 } 2963 2964 /** 2965 * stmmac_check_ether_addr - check if the MAC addr is valid 2966 * @priv: driver private structure 2967 * Description: 2968 * it is to verify if the MAC address is valid, in case of failures it 2969 * generates a random MAC address 2970 */ 2971 static void stmmac_check_ether_addr(struct stmmac_priv *priv) 2972 { 2973 u8 addr[ETH_ALEN]; 2974 2975 if (!is_valid_ether_addr(priv->dev->dev_addr)) { 2976 stmmac_get_umac_addr(priv, priv->hw, addr, 0); 2977 if (is_valid_ether_addr(addr)) 2978 eth_hw_addr_set(priv->dev, addr); 2979 else 2980 eth_hw_addr_random(priv->dev); 2981 dev_info(priv->device, "device MAC address %pM\n", 2982 priv->dev->dev_addr); 2983 } 2984 } 2985 2986 /** 2987 * stmmac_init_dma_engine - DMA init. 2988 * @priv: driver private structure 2989 * Description: 2990 * It inits the DMA invoking the specific MAC/GMAC callback. 2991 * Some DMA parameters can be passed from the platform; 2992 * in case of these are not passed a default is kept for the MAC or GMAC. 2993 */ 2994 static int stmmac_init_dma_engine(struct stmmac_priv *priv) 2995 { 2996 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2997 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2998 u32 dma_csr_ch = max(rx_channels_count, tx_channels_count); 2999 struct stmmac_rx_queue *rx_q; 3000 struct stmmac_tx_queue *tx_q; 3001 u32 chan = 0; 3002 int atds = 0; 3003 int ret = 0; 3004 3005 if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) { 3006 dev_err(priv->device, "Invalid DMA configuration\n"); 3007 return -EINVAL; 3008 } 3009 3010 if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE)) 3011 atds = 1; 3012 3013 ret = stmmac_reset(priv, priv->ioaddr); 3014 if (ret) { 3015 dev_err(priv->device, "Failed to reset the dma\n"); 3016 return ret; 3017 } 3018 3019 /* DMA Configuration */ 3020 stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds); 3021 3022 if (priv->plat->axi) 3023 stmmac_axi(priv, priv->ioaddr, priv->plat->axi); 3024 3025 /* DMA CSR Channel configuration */ 3026 for (chan = 0; chan < dma_csr_ch; chan++) { 3027 stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan); 3028 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1); 3029 } 3030 3031 /* DMA RX Channel Configuration */ 3032 for (chan = 0; chan < rx_channels_count; chan++) { 3033 rx_q = &priv->dma_conf.rx_queue[chan]; 3034 3035 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 3036 rx_q->dma_rx_phy, chan); 3037 3038 rx_q->rx_tail_addr = rx_q->dma_rx_phy + 3039 (rx_q->buf_alloc_num * 3040 sizeof(struct dma_desc)); 3041 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, 3042 rx_q->rx_tail_addr, chan); 3043 } 3044 3045 /* DMA TX Channel Configuration */ 3046 for (chan = 0; chan < tx_channels_count; chan++) { 3047 tx_q = &priv->dma_conf.tx_queue[chan]; 3048 3049 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 3050 tx_q->dma_tx_phy, chan); 3051 3052 tx_q->tx_tail_addr = tx_q->dma_tx_phy; 3053 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, 3054 tx_q->tx_tail_addr, chan); 3055 } 3056 3057 return ret; 3058 } 3059 3060 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue) 3061 { 3062 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue]; 3063 u32 tx_coal_timer = priv->tx_coal_timer[queue]; 3064 struct stmmac_channel *ch; 3065 struct napi_struct *napi; 3066 3067 if (!tx_coal_timer) 3068 return; 3069 3070 ch = &priv->channel[tx_q->queue_index]; 3071 napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi; 3072 3073 /* Arm timer only if napi is not already scheduled. 3074 * Try to cancel any timer if napi is scheduled, timer will be armed 3075 * again in the next scheduled napi. 3076 */ 3077 if (unlikely(!napi_is_scheduled(napi))) 3078 hrtimer_start(&tx_q->txtimer, 3079 STMMAC_COAL_TIMER(tx_coal_timer), 3080 HRTIMER_MODE_REL); 3081 else 3082 hrtimer_try_to_cancel(&tx_q->txtimer); 3083 } 3084 3085 /** 3086 * stmmac_tx_timer - mitigation sw timer for tx. 3087 * @t: data pointer 3088 * Description: 3089 * This is the timer handler to directly invoke the stmmac_tx_clean. 3090 */ 3091 static enum hrtimer_restart stmmac_tx_timer(struct hrtimer *t) 3092 { 3093 struct stmmac_tx_queue *tx_q = container_of(t, struct stmmac_tx_queue, txtimer); 3094 struct stmmac_priv *priv = tx_q->priv_data; 3095 struct stmmac_channel *ch; 3096 struct napi_struct *napi; 3097 3098 ch = &priv->channel[tx_q->queue_index]; 3099 napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi; 3100 3101 if (likely(napi_schedule_prep(napi))) { 3102 unsigned long flags; 3103 3104 spin_lock_irqsave(&ch->lock, flags); 3105 stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1); 3106 spin_unlock_irqrestore(&ch->lock, flags); 3107 __napi_schedule(napi); 3108 } 3109 3110 return HRTIMER_NORESTART; 3111 } 3112 3113 /** 3114 * stmmac_init_coalesce - init mitigation options. 3115 * @priv: driver private structure 3116 * Description: 3117 * This inits the coalesce parameters: i.e. timer rate, 3118 * timer handler and default threshold used for enabling the 3119 * interrupt on completion bit. 3120 */ 3121 static void stmmac_init_coalesce(struct stmmac_priv *priv) 3122 { 3123 u32 tx_channel_count = priv->plat->tx_queues_to_use; 3124 u32 rx_channel_count = priv->plat->rx_queues_to_use; 3125 u32 chan; 3126 3127 for (chan = 0; chan < tx_channel_count; chan++) { 3128 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan]; 3129 3130 priv->tx_coal_frames[chan] = STMMAC_TX_FRAMES; 3131 priv->tx_coal_timer[chan] = STMMAC_COAL_TX_TIMER; 3132 3133 hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3134 tx_q->txtimer.function = stmmac_tx_timer; 3135 } 3136 3137 for (chan = 0; chan < rx_channel_count; chan++) 3138 priv->rx_coal_frames[chan] = STMMAC_RX_FRAMES; 3139 } 3140 3141 static void stmmac_set_rings_length(struct stmmac_priv *priv) 3142 { 3143 u32 rx_channels_count = priv->plat->rx_queues_to_use; 3144 u32 tx_channels_count = priv->plat->tx_queues_to_use; 3145 u32 chan; 3146 3147 /* set TX ring length */ 3148 for (chan = 0; chan < tx_channels_count; chan++) 3149 stmmac_set_tx_ring_len(priv, priv->ioaddr, 3150 (priv->dma_conf.dma_tx_size - 1), chan); 3151 3152 /* set RX ring length */ 3153 for (chan = 0; chan < rx_channels_count; chan++) 3154 stmmac_set_rx_ring_len(priv, priv->ioaddr, 3155 (priv->dma_conf.dma_rx_size - 1), chan); 3156 } 3157 3158 /** 3159 * stmmac_set_tx_queue_weight - Set TX queue weight 3160 * @priv: driver private structure 3161 * Description: It is used for setting TX queues weight 3162 */ 3163 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv) 3164 { 3165 u32 tx_queues_count = priv->plat->tx_queues_to_use; 3166 u32 weight; 3167 u32 queue; 3168 3169 for (queue = 0; queue < tx_queues_count; queue++) { 3170 weight = priv->plat->tx_queues_cfg[queue].weight; 3171 stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue); 3172 } 3173 } 3174 3175 /** 3176 * stmmac_configure_cbs - Configure CBS in TX queue 3177 * @priv: driver private structure 3178 * Description: It is used for configuring CBS in AVB TX queues 3179 */ 3180 static void stmmac_configure_cbs(struct stmmac_priv *priv) 3181 { 3182 u32 tx_queues_count = priv->plat->tx_queues_to_use; 3183 u32 mode_to_use; 3184 u32 queue; 3185 3186 /* queue 0 is reserved for legacy traffic */ 3187 for (queue = 1; queue < tx_queues_count; queue++) { 3188 mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use; 3189 if (mode_to_use == MTL_QUEUE_DCB) 3190 continue; 3191 3192 stmmac_config_cbs(priv, priv->hw, 3193 priv->plat->tx_queues_cfg[queue].send_slope, 3194 priv->plat->tx_queues_cfg[queue].idle_slope, 3195 priv->plat->tx_queues_cfg[queue].high_credit, 3196 priv->plat->tx_queues_cfg[queue].low_credit, 3197 queue); 3198 } 3199 } 3200 3201 /** 3202 * stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel 3203 * @priv: driver private structure 3204 * Description: It is used for mapping RX queues to RX dma channels 3205 */ 3206 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv) 3207 { 3208 u32 rx_queues_count = priv->plat->rx_queues_to_use; 3209 u32 queue; 3210 u32 chan; 3211 3212 for (queue = 0; queue < rx_queues_count; queue++) { 3213 chan = priv->plat->rx_queues_cfg[queue].chan; 3214 stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan); 3215 } 3216 } 3217 3218 /** 3219 * stmmac_mac_config_rx_queues_prio - Configure RX Queue priority 3220 * @priv: driver private structure 3221 * Description: It is used for configuring the RX Queue Priority 3222 */ 3223 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv) 3224 { 3225 u32 rx_queues_count = priv->plat->rx_queues_to_use; 3226 u32 queue; 3227 u32 prio; 3228 3229 for (queue = 0; queue < rx_queues_count; queue++) { 3230 if (!priv->plat->rx_queues_cfg[queue].use_prio) 3231 continue; 3232 3233 prio = priv->plat->rx_queues_cfg[queue].prio; 3234 stmmac_rx_queue_prio(priv, priv->hw, prio, queue); 3235 } 3236 } 3237 3238 /** 3239 * stmmac_mac_config_tx_queues_prio - Configure TX Queue priority 3240 * @priv: driver private structure 3241 * Description: It is used for configuring the TX Queue Priority 3242 */ 3243 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv) 3244 { 3245 u32 tx_queues_count = priv->plat->tx_queues_to_use; 3246 u32 queue; 3247 u32 prio; 3248 3249 for (queue = 0; queue < tx_queues_count; queue++) { 3250 if (!priv->plat->tx_queues_cfg[queue].use_prio) 3251 continue; 3252 3253 prio = priv->plat->tx_queues_cfg[queue].prio; 3254 stmmac_tx_queue_prio(priv, priv->hw, prio, queue); 3255 } 3256 } 3257 3258 /** 3259 * stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing 3260 * @priv: driver private structure 3261 * Description: It is used for configuring the RX queue routing 3262 */ 3263 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv) 3264 { 3265 u32 rx_queues_count = priv->plat->rx_queues_to_use; 3266 u32 queue; 3267 u8 packet; 3268 3269 for (queue = 0; queue < rx_queues_count; queue++) { 3270 /* no specific packet type routing specified for the queue */ 3271 if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0) 3272 continue; 3273 3274 packet = priv->plat->rx_queues_cfg[queue].pkt_route; 3275 stmmac_rx_queue_routing(priv, priv->hw, packet, queue); 3276 } 3277 } 3278 3279 static void stmmac_mac_config_rss(struct stmmac_priv *priv) 3280 { 3281 if (!priv->dma_cap.rssen || !priv->plat->rss_en) { 3282 priv->rss.enable = false; 3283 return; 3284 } 3285 3286 if (priv->dev->features & NETIF_F_RXHASH) 3287 priv->rss.enable = true; 3288 else 3289 priv->rss.enable = false; 3290 3291 stmmac_rss_configure(priv, priv->hw, &priv->rss, 3292 priv->plat->rx_queues_to_use); 3293 } 3294 3295 /** 3296 * stmmac_mtl_configuration - Configure MTL 3297 * @priv: driver private structure 3298 * Description: It is used for configurring MTL 3299 */ 3300 static void stmmac_mtl_configuration(struct stmmac_priv *priv) 3301 { 3302 u32 rx_queues_count = priv->plat->rx_queues_to_use; 3303 u32 tx_queues_count = priv->plat->tx_queues_to_use; 3304 3305 if (tx_queues_count > 1) 3306 stmmac_set_tx_queue_weight(priv); 3307 3308 /* Configure MTL RX algorithms */ 3309 if (rx_queues_count > 1) 3310 stmmac_prog_mtl_rx_algorithms(priv, priv->hw, 3311 priv->plat->rx_sched_algorithm); 3312 3313 /* Configure MTL TX algorithms */ 3314 if (tx_queues_count > 1) 3315 stmmac_prog_mtl_tx_algorithms(priv, priv->hw, 3316 priv->plat->tx_sched_algorithm); 3317 3318 /* Configure CBS in AVB TX queues */ 3319 if (tx_queues_count > 1) 3320 stmmac_configure_cbs(priv); 3321 3322 /* Map RX MTL to DMA channels */ 3323 stmmac_rx_queue_dma_chan_map(priv); 3324 3325 /* Enable MAC RX Queues */ 3326 stmmac_mac_enable_rx_queues(priv); 3327 3328 /* Set RX priorities */ 3329 if (rx_queues_count > 1) 3330 stmmac_mac_config_rx_queues_prio(priv); 3331 3332 /* Set TX priorities */ 3333 if (tx_queues_count > 1) 3334 stmmac_mac_config_tx_queues_prio(priv); 3335 3336 /* Set RX routing */ 3337 if (rx_queues_count > 1) 3338 stmmac_mac_config_rx_queues_routing(priv); 3339 3340 /* Receive Side Scaling */ 3341 if (rx_queues_count > 1) 3342 stmmac_mac_config_rss(priv); 3343 } 3344 3345 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv) 3346 { 3347 if (priv->dma_cap.asp) { 3348 netdev_info(priv->dev, "Enabling Safety Features\n"); 3349 stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp, 3350 priv->plat->safety_feat_cfg); 3351 } else { 3352 netdev_info(priv->dev, "No Safety Features support found\n"); 3353 } 3354 } 3355 3356 static int stmmac_fpe_start_wq(struct stmmac_priv *priv) 3357 { 3358 char *name; 3359 3360 clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state); 3361 clear_bit(__FPE_REMOVING, &priv->fpe_task_state); 3362 3363 name = priv->wq_name; 3364 sprintf(name, "%s-fpe", priv->dev->name); 3365 3366 priv->fpe_wq = create_singlethread_workqueue(name); 3367 if (!priv->fpe_wq) { 3368 netdev_err(priv->dev, "%s: Failed to create workqueue\n", name); 3369 3370 return -ENOMEM; 3371 } 3372 netdev_info(priv->dev, "FPE workqueue start"); 3373 3374 return 0; 3375 } 3376 3377 /** 3378 * stmmac_hw_setup - setup mac in a usable state. 3379 * @dev : pointer to the device structure. 3380 * @ptp_register: register PTP if set 3381 * Description: 3382 * this is the main function to setup the HW in a usable state because the 3383 * dma engine is reset, the core registers are configured (e.g. AXI, 3384 * Checksum features, timers). The DMA is ready to start receiving and 3385 * transmitting. 3386 * Return value: 3387 * 0 on success and an appropriate (-)ve integer as defined in errno.h 3388 * file on failure. 3389 */ 3390 static int stmmac_hw_setup(struct net_device *dev, bool ptp_register) 3391 { 3392 struct stmmac_priv *priv = netdev_priv(dev); 3393 u32 rx_cnt = priv->plat->rx_queues_to_use; 3394 u32 tx_cnt = priv->plat->tx_queues_to_use; 3395 bool sph_en; 3396 u32 chan; 3397 int ret; 3398 3399 /* DMA initialization and SW reset */ 3400 ret = stmmac_init_dma_engine(priv); 3401 if (ret < 0) { 3402 netdev_err(priv->dev, "%s: DMA engine initialization failed\n", 3403 __func__); 3404 return ret; 3405 } 3406 3407 /* Copy the MAC addr into the HW */ 3408 stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0); 3409 3410 /* PS and related bits will be programmed according to the speed */ 3411 if (priv->hw->pcs) { 3412 int speed = priv->plat->mac_port_sel_speed; 3413 3414 if ((speed == SPEED_10) || (speed == SPEED_100) || 3415 (speed == SPEED_1000)) { 3416 priv->hw->ps = speed; 3417 } else { 3418 dev_warn(priv->device, "invalid port speed\n"); 3419 priv->hw->ps = 0; 3420 } 3421 } 3422 3423 /* Initialize the MAC Core */ 3424 stmmac_core_init(priv, priv->hw, dev); 3425 3426 /* Initialize MTL*/ 3427 stmmac_mtl_configuration(priv); 3428 3429 /* Initialize Safety Features */ 3430 stmmac_safety_feat_configuration(priv); 3431 3432 ret = stmmac_rx_ipc(priv, priv->hw); 3433 if (!ret) { 3434 netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n"); 3435 priv->plat->rx_coe = STMMAC_RX_COE_NONE; 3436 priv->hw->rx_csum = 0; 3437 } 3438 3439 /* Enable the MAC Rx/Tx */ 3440 stmmac_mac_set(priv, priv->ioaddr, true); 3441 3442 /* Set the HW DMA mode and the COE */ 3443 stmmac_dma_operation_mode(priv); 3444 3445 stmmac_mmc_setup(priv); 3446 3447 if (ptp_register) { 3448 ret = clk_prepare_enable(priv->plat->clk_ptp_ref); 3449 if (ret < 0) 3450 netdev_warn(priv->dev, 3451 "failed to enable PTP reference clock: %pe\n", 3452 ERR_PTR(ret)); 3453 } 3454 3455 ret = stmmac_init_ptp(priv); 3456 if (ret == -EOPNOTSUPP) 3457 netdev_info(priv->dev, "PTP not supported by HW\n"); 3458 else if (ret) 3459 netdev_warn(priv->dev, "PTP init failed\n"); 3460 else if (ptp_register) 3461 stmmac_ptp_register(priv); 3462 3463 priv->eee_tw_timer = STMMAC_DEFAULT_TWT_LS; 3464 3465 /* Convert the timer from msec to usec */ 3466 if (!priv->tx_lpi_timer) 3467 priv->tx_lpi_timer = eee_timer * 1000; 3468 3469 if (priv->use_riwt) { 3470 u32 queue; 3471 3472 for (queue = 0; queue < rx_cnt; queue++) { 3473 if (!priv->rx_riwt[queue]) 3474 priv->rx_riwt[queue] = DEF_DMA_RIWT; 3475 3476 stmmac_rx_watchdog(priv, priv->ioaddr, 3477 priv->rx_riwt[queue], queue); 3478 } 3479 } 3480 3481 if (priv->hw->pcs) 3482 stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0); 3483 3484 /* set TX and RX rings length */ 3485 stmmac_set_rings_length(priv); 3486 3487 /* Enable TSO */ 3488 if (priv->tso) { 3489 for (chan = 0; chan < tx_cnt; chan++) { 3490 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan]; 3491 3492 /* TSO and TBS cannot co-exist */ 3493 if (tx_q->tbs & STMMAC_TBS_AVAIL) 3494 continue; 3495 3496 stmmac_enable_tso(priv, priv->ioaddr, 1, chan); 3497 } 3498 } 3499 3500 /* Enable Split Header */ 3501 sph_en = (priv->hw->rx_csum > 0) && priv->sph; 3502 for (chan = 0; chan < rx_cnt; chan++) 3503 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan); 3504 3505 3506 /* VLAN Tag Insertion */ 3507 if (priv->dma_cap.vlins) 3508 stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT); 3509 3510 /* TBS */ 3511 for (chan = 0; chan < tx_cnt; chan++) { 3512 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan]; 3513 int enable = tx_q->tbs & STMMAC_TBS_AVAIL; 3514 3515 stmmac_enable_tbs(priv, priv->ioaddr, enable, chan); 3516 } 3517 3518 /* Configure real RX and TX queues */ 3519 netif_set_real_num_rx_queues(dev, priv->plat->rx_queues_to_use); 3520 netif_set_real_num_tx_queues(dev, priv->plat->tx_queues_to_use); 3521 3522 /* Start the ball rolling... */ 3523 stmmac_start_all_dma(priv); 3524 3525 stmmac_set_hw_vlan_mode(priv, priv->hw); 3526 3527 if (priv->dma_cap.fpesel) { 3528 stmmac_fpe_start_wq(priv); 3529 3530 if (priv->plat->fpe_cfg->enable) 3531 stmmac_fpe_handshake(priv, true); 3532 } 3533 3534 return 0; 3535 } 3536 3537 static void stmmac_hw_teardown(struct net_device *dev) 3538 { 3539 struct stmmac_priv *priv = netdev_priv(dev); 3540 3541 clk_disable_unprepare(priv->plat->clk_ptp_ref); 3542 } 3543 3544 static void stmmac_free_irq(struct net_device *dev, 3545 enum request_irq_err irq_err, int irq_idx) 3546 { 3547 struct stmmac_priv *priv = netdev_priv(dev); 3548 int j; 3549 3550 switch (irq_err) { 3551 case REQ_IRQ_ERR_ALL: 3552 irq_idx = priv->plat->tx_queues_to_use; 3553 fallthrough; 3554 case REQ_IRQ_ERR_TX: 3555 for (j = irq_idx - 1; j >= 0; j--) { 3556 if (priv->tx_irq[j] > 0) { 3557 irq_set_affinity_hint(priv->tx_irq[j], NULL); 3558 free_irq(priv->tx_irq[j], &priv->dma_conf.tx_queue[j]); 3559 } 3560 } 3561 irq_idx = priv->plat->rx_queues_to_use; 3562 fallthrough; 3563 case REQ_IRQ_ERR_RX: 3564 for (j = irq_idx - 1; j >= 0; j--) { 3565 if (priv->rx_irq[j] > 0) { 3566 irq_set_affinity_hint(priv->rx_irq[j], NULL); 3567 free_irq(priv->rx_irq[j], &priv->dma_conf.rx_queue[j]); 3568 } 3569 } 3570 3571 if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq) 3572 free_irq(priv->sfty_ue_irq, dev); 3573 fallthrough; 3574 case REQ_IRQ_ERR_SFTY_UE: 3575 if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq) 3576 free_irq(priv->sfty_ce_irq, dev); 3577 fallthrough; 3578 case REQ_IRQ_ERR_SFTY_CE: 3579 if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) 3580 free_irq(priv->lpi_irq, dev); 3581 fallthrough; 3582 case REQ_IRQ_ERR_LPI: 3583 if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) 3584 free_irq(priv->wol_irq, dev); 3585 fallthrough; 3586 case REQ_IRQ_ERR_SFTY: 3587 if (priv->sfty_irq > 0 && priv->sfty_irq != dev->irq) 3588 free_irq(priv->sfty_irq, dev); 3589 fallthrough; 3590 case REQ_IRQ_ERR_WOL: 3591 free_irq(dev->irq, dev); 3592 fallthrough; 3593 case REQ_IRQ_ERR_MAC: 3594 case REQ_IRQ_ERR_NO: 3595 /* If MAC IRQ request error, no more IRQ to free */ 3596 break; 3597 } 3598 } 3599 3600 static int stmmac_request_irq_multi_msi(struct net_device *dev) 3601 { 3602 struct stmmac_priv *priv = netdev_priv(dev); 3603 enum request_irq_err irq_err; 3604 cpumask_t cpu_mask; 3605 int irq_idx = 0; 3606 char *int_name; 3607 int ret; 3608 int i; 3609 3610 /* For common interrupt */ 3611 int_name = priv->int_name_mac; 3612 sprintf(int_name, "%s:%s", dev->name, "mac"); 3613 ret = request_irq(dev->irq, stmmac_mac_interrupt, 3614 0, int_name, dev); 3615 if (unlikely(ret < 0)) { 3616 netdev_err(priv->dev, 3617 "%s: alloc mac MSI %d (error: %d)\n", 3618 __func__, dev->irq, ret); 3619 irq_err = REQ_IRQ_ERR_MAC; 3620 goto irq_error; 3621 } 3622 3623 /* Request the Wake IRQ in case of another line 3624 * is used for WoL 3625 */ 3626 priv->wol_irq_disabled = true; 3627 if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) { 3628 int_name = priv->int_name_wol; 3629 sprintf(int_name, "%s:%s", dev->name, "wol"); 3630 ret = request_irq(priv->wol_irq, 3631 stmmac_mac_interrupt, 3632 0, int_name, dev); 3633 if (unlikely(ret < 0)) { 3634 netdev_err(priv->dev, 3635 "%s: alloc wol MSI %d (error: %d)\n", 3636 __func__, priv->wol_irq, ret); 3637 irq_err = REQ_IRQ_ERR_WOL; 3638 goto irq_error; 3639 } 3640 } 3641 3642 /* Request the LPI IRQ in case of another line 3643 * is used for LPI 3644 */ 3645 if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) { 3646 int_name = priv->int_name_lpi; 3647 sprintf(int_name, "%s:%s", dev->name, "lpi"); 3648 ret = request_irq(priv->lpi_irq, 3649 stmmac_mac_interrupt, 3650 0, int_name, dev); 3651 if (unlikely(ret < 0)) { 3652 netdev_err(priv->dev, 3653 "%s: alloc lpi MSI %d (error: %d)\n", 3654 __func__, priv->lpi_irq, ret); 3655 irq_err = REQ_IRQ_ERR_LPI; 3656 goto irq_error; 3657 } 3658 } 3659 3660 /* Request the common Safety Feature Correctible/Uncorrectible 3661 * Error line in case of another line is used 3662 */ 3663 if (priv->sfty_irq > 0 && priv->sfty_irq != dev->irq) { 3664 int_name = priv->int_name_sfty; 3665 sprintf(int_name, "%s:%s", dev->name, "safety"); 3666 ret = request_irq(priv->sfty_irq, stmmac_safety_interrupt, 3667 0, int_name, dev); 3668 if (unlikely(ret < 0)) { 3669 netdev_err(priv->dev, 3670 "%s: alloc sfty MSI %d (error: %d)\n", 3671 __func__, priv->sfty_irq, ret); 3672 irq_err = REQ_IRQ_ERR_SFTY; 3673 goto irq_error; 3674 } 3675 } 3676 3677 /* Request the Safety Feature Correctible Error line in 3678 * case of another line is used 3679 */ 3680 if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq) { 3681 int_name = priv->int_name_sfty_ce; 3682 sprintf(int_name, "%s:%s", dev->name, "safety-ce"); 3683 ret = request_irq(priv->sfty_ce_irq, 3684 stmmac_safety_interrupt, 3685 0, int_name, dev); 3686 if (unlikely(ret < 0)) { 3687 netdev_err(priv->dev, 3688 "%s: alloc sfty ce MSI %d (error: %d)\n", 3689 __func__, priv->sfty_ce_irq, ret); 3690 irq_err = REQ_IRQ_ERR_SFTY_CE; 3691 goto irq_error; 3692 } 3693 } 3694 3695 /* Request the Safety Feature Uncorrectible Error line in 3696 * case of another line is used 3697 */ 3698 if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq) { 3699 int_name = priv->int_name_sfty_ue; 3700 sprintf(int_name, "%s:%s", dev->name, "safety-ue"); 3701 ret = request_irq(priv->sfty_ue_irq, 3702 stmmac_safety_interrupt, 3703 0, int_name, dev); 3704 if (unlikely(ret < 0)) { 3705 netdev_err(priv->dev, 3706 "%s: alloc sfty ue MSI %d (error: %d)\n", 3707 __func__, priv->sfty_ue_irq, ret); 3708 irq_err = REQ_IRQ_ERR_SFTY_UE; 3709 goto irq_error; 3710 } 3711 } 3712 3713 /* Request Rx MSI irq */ 3714 for (i = 0; i < priv->plat->rx_queues_to_use; i++) { 3715 if (i >= MTL_MAX_RX_QUEUES) 3716 break; 3717 if (priv->rx_irq[i] == 0) 3718 continue; 3719 3720 int_name = priv->int_name_rx_irq[i]; 3721 sprintf(int_name, "%s:%s-%d", dev->name, "rx", i); 3722 ret = request_irq(priv->rx_irq[i], 3723 stmmac_msi_intr_rx, 3724 0, int_name, &priv->dma_conf.rx_queue[i]); 3725 if (unlikely(ret < 0)) { 3726 netdev_err(priv->dev, 3727 "%s: alloc rx-%d MSI %d (error: %d)\n", 3728 __func__, i, priv->rx_irq[i], ret); 3729 irq_err = REQ_IRQ_ERR_RX; 3730 irq_idx = i; 3731 goto irq_error; 3732 } 3733 cpumask_clear(&cpu_mask); 3734 cpumask_set_cpu(i % num_online_cpus(), &cpu_mask); 3735 irq_set_affinity_hint(priv->rx_irq[i], &cpu_mask); 3736 } 3737 3738 /* Request Tx MSI irq */ 3739 for (i = 0; i < priv->plat->tx_queues_to_use; i++) { 3740 if (i >= MTL_MAX_TX_QUEUES) 3741 break; 3742 if (priv->tx_irq[i] == 0) 3743 continue; 3744 3745 int_name = priv->int_name_tx_irq[i]; 3746 sprintf(int_name, "%s:%s-%d", dev->name, "tx", i); 3747 ret = request_irq(priv->tx_irq[i], 3748 stmmac_msi_intr_tx, 3749 0, int_name, &priv->dma_conf.tx_queue[i]); 3750 if (unlikely(ret < 0)) { 3751 netdev_err(priv->dev, 3752 "%s: alloc tx-%d MSI %d (error: %d)\n", 3753 __func__, i, priv->tx_irq[i], ret); 3754 irq_err = REQ_IRQ_ERR_TX; 3755 irq_idx = i; 3756 goto irq_error; 3757 } 3758 cpumask_clear(&cpu_mask); 3759 cpumask_set_cpu(i % num_online_cpus(), &cpu_mask); 3760 irq_set_affinity_hint(priv->tx_irq[i], &cpu_mask); 3761 } 3762 3763 return 0; 3764 3765 irq_error: 3766 stmmac_free_irq(dev, irq_err, irq_idx); 3767 return ret; 3768 } 3769 3770 static int stmmac_request_irq_single(struct net_device *dev) 3771 { 3772 struct stmmac_priv *priv = netdev_priv(dev); 3773 enum request_irq_err irq_err; 3774 int ret; 3775 3776 ret = request_irq(dev->irq, stmmac_interrupt, 3777 IRQF_SHARED, dev->name, dev); 3778 if (unlikely(ret < 0)) { 3779 netdev_err(priv->dev, 3780 "%s: ERROR: allocating the IRQ %d (error: %d)\n", 3781 __func__, dev->irq, ret); 3782 irq_err = REQ_IRQ_ERR_MAC; 3783 goto irq_error; 3784 } 3785 3786 /* Request the Wake IRQ in case of another line 3787 * is used for WoL 3788 */ 3789 if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) { 3790 ret = request_irq(priv->wol_irq, stmmac_interrupt, 3791 IRQF_SHARED, dev->name, dev); 3792 if (unlikely(ret < 0)) { 3793 netdev_err(priv->dev, 3794 "%s: ERROR: allocating the WoL IRQ %d (%d)\n", 3795 __func__, priv->wol_irq, ret); 3796 irq_err = REQ_IRQ_ERR_WOL; 3797 goto irq_error; 3798 } 3799 } 3800 3801 /* Request the IRQ lines */ 3802 if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) { 3803 ret = request_irq(priv->lpi_irq, stmmac_interrupt, 3804 IRQF_SHARED, dev->name, dev); 3805 if (unlikely(ret < 0)) { 3806 netdev_err(priv->dev, 3807 "%s: ERROR: allocating the LPI IRQ %d (%d)\n", 3808 __func__, priv->lpi_irq, ret); 3809 irq_err = REQ_IRQ_ERR_LPI; 3810 goto irq_error; 3811 } 3812 } 3813 3814 /* Request the common Safety Feature Correctible/Uncorrectible 3815 * Error line in case of another line is used 3816 */ 3817 if (priv->sfty_irq > 0 && priv->sfty_irq != dev->irq) { 3818 ret = request_irq(priv->sfty_irq, stmmac_safety_interrupt, 3819 IRQF_SHARED, dev->name, dev); 3820 if (unlikely(ret < 0)) { 3821 netdev_err(priv->dev, 3822 "%s: ERROR: allocating the sfty IRQ %d (%d)\n", 3823 __func__, priv->sfty_irq, ret); 3824 irq_err = REQ_IRQ_ERR_SFTY; 3825 goto irq_error; 3826 } 3827 } 3828 3829 return 0; 3830 3831 irq_error: 3832 stmmac_free_irq(dev, irq_err, 0); 3833 return ret; 3834 } 3835 3836 static int stmmac_request_irq(struct net_device *dev) 3837 { 3838 struct stmmac_priv *priv = netdev_priv(dev); 3839 int ret; 3840 3841 /* Request the IRQ lines */ 3842 if (priv->plat->flags & STMMAC_FLAG_MULTI_MSI_EN) 3843 ret = stmmac_request_irq_multi_msi(dev); 3844 else 3845 ret = stmmac_request_irq_single(dev); 3846 3847 return ret; 3848 } 3849 3850 /** 3851 * stmmac_setup_dma_desc - Generate a dma_conf and allocate DMA queue 3852 * @priv: driver private structure 3853 * @mtu: MTU to setup the dma queue and buf with 3854 * Description: Allocate and generate a dma_conf based on the provided MTU. 3855 * Allocate the Tx/Rx DMA queue and init them. 3856 * Return value: 3857 * the dma_conf allocated struct on success and an appropriate ERR_PTR on failure. 3858 */ 3859 static struct stmmac_dma_conf * 3860 stmmac_setup_dma_desc(struct stmmac_priv *priv, unsigned int mtu) 3861 { 3862 struct stmmac_dma_conf *dma_conf; 3863 int chan, bfsize, ret; 3864 3865 dma_conf = kzalloc(sizeof(*dma_conf), GFP_KERNEL); 3866 if (!dma_conf) { 3867 netdev_err(priv->dev, "%s: DMA conf allocation failed\n", 3868 __func__); 3869 return ERR_PTR(-ENOMEM); 3870 } 3871 3872 bfsize = stmmac_set_16kib_bfsize(priv, mtu); 3873 if (bfsize < 0) 3874 bfsize = 0; 3875 3876 if (bfsize < BUF_SIZE_16KiB) 3877 bfsize = stmmac_set_bfsize(mtu, 0); 3878 3879 dma_conf->dma_buf_sz = bfsize; 3880 /* Chose the tx/rx size from the already defined one in the 3881 * priv struct. (if defined) 3882 */ 3883 dma_conf->dma_tx_size = priv->dma_conf.dma_tx_size; 3884 dma_conf->dma_rx_size = priv->dma_conf.dma_rx_size; 3885 3886 if (!dma_conf->dma_tx_size) 3887 dma_conf->dma_tx_size = DMA_DEFAULT_TX_SIZE; 3888 if (!dma_conf->dma_rx_size) 3889 dma_conf->dma_rx_size = DMA_DEFAULT_RX_SIZE; 3890 3891 /* Earlier check for TBS */ 3892 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) { 3893 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[chan]; 3894 int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en; 3895 3896 /* Setup per-TXQ tbs flag before TX descriptor alloc */ 3897 tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0; 3898 } 3899 3900 ret = alloc_dma_desc_resources(priv, dma_conf); 3901 if (ret < 0) { 3902 netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n", 3903 __func__); 3904 goto alloc_error; 3905 } 3906 3907 ret = init_dma_desc_rings(priv->dev, dma_conf, GFP_KERNEL); 3908 if (ret < 0) { 3909 netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n", 3910 __func__); 3911 goto init_error; 3912 } 3913 3914 return dma_conf; 3915 3916 init_error: 3917 free_dma_desc_resources(priv, dma_conf); 3918 alloc_error: 3919 kfree(dma_conf); 3920 return ERR_PTR(ret); 3921 } 3922 3923 /** 3924 * __stmmac_open - open entry point of the driver 3925 * @dev : pointer to the device structure. 3926 * @dma_conf : structure to take the dma data 3927 * Description: 3928 * This function is the open entry point of the driver. 3929 * Return value: 3930 * 0 on success and an appropriate (-)ve integer as defined in errno.h 3931 * file on failure. 3932 */ 3933 static int __stmmac_open(struct net_device *dev, 3934 struct stmmac_dma_conf *dma_conf) 3935 { 3936 struct stmmac_priv *priv = netdev_priv(dev); 3937 int mode = priv->plat->phy_interface; 3938 u32 chan; 3939 int ret; 3940 3941 ret = pm_runtime_resume_and_get(priv->device); 3942 if (ret < 0) 3943 return ret; 3944 3945 if (priv->hw->pcs != STMMAC_PCS_TBI && 3946 priv->hw->pcs != STMMAC_PCS_RTBI && 3947 (!priv->hw->xpcs || 3948 xpcs_get_an_mode(priv->hw->xpcs, mode) != DW_AN_C73) && 3949 !priv->hw->lynx_pcs) { 3950 ret = stmmac_init_phy(dev); 3951 if (ret) { 3952 netdev_err(priv->dev, 3953 "%s: Cannot attach to PHY (error: %d)\n", 3954 __func__, ret); 3955 goto init_phy_error; 3956 } 3957 } 3958 3959 priv->rx_copybreak = STMMAC_RX_COPYBREAK; 3960 3961 buf_sz = dma_conf->dma_buf_sz; 3962 for (int i = 0; i < MTL_MAX_TX_QUEUES; i++) 3963 if (priv->dma_conf.tx_queue[i].tbs & STMMAC_TBS_EN) 3964 dma_conf->tx_queue[i].tbs = priv->dma_conf.tx_queue[i].tbs; 3965 memcpy(&priv->dma_conf, dma_conf, sizeof(*dma_conf)); 3966 3967 stmmac_reset_queues_param(priv); 3968 3969 if (!(priv->plat->flags & STMMAC_FLAG_SERDES_UP_AFTER_PHY_LINKUP) && 3970 priv->plat->serdes_powerup) { 3971 ret = priv->plat->serdes_powerup(dev, priv->plat->bsp_priv); 3972 if (ret < 0) { 3973 netdev_err(priv->dev, "%s: Serdes powerup failed\n", 3974 __func__); 3975 goto init_error; 3976 } 3977 } 3978 3979 ret = stmmac_hw_setup(dev, true); 3980 if (ret < 0) { 3981 netdev_err(priv->dev, "%s: Hw setup failed\n", __func__); 3982 goto init_error; 3983 } 3984 3985 stmmac_init_coalesce(priv); 3986 3987 phylink_start(priv->phylink); 3988 /* We may have called phylink_speed_down before */ 3989 phylink_speed_up(priv->phylink); 3990 3991 ret = stmmac_request_irq(dev); 3992 if (ret) 3993 goto irq_error; 3994 3995 stmmac_enable_all_queues(priv); 3996 netif_tx_start_all_queues(priv->dev); 3997 stmmac_enable_all_dma_irq(priv); 3998 3999 return 0; 4000 4001 irq_error: 4002 phylink_stop(priv->phylink); 4003 4004 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 4005 hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer); 4006 4007 stmmac_hw_teardown(dev); 4008 init_error: 4009 phylink_disconnect_phy(priv->phylink); 4010 init_phy_error: 4011 pm_runtime_put(priv->device); 4012 return ret; 4013 } 4014 4015 static int stmmac_open(struct net_device *dev) 4016 { 4017 struct stmmac_priv *priv = netdev_priv(dev); 4018 struct stmmac_dma_conf *dma_conf; 4019 int ret; 4020 4021 dma_conf = stmmac_setup_dma_desc(priv, dev->mtu); 4022 if (IS_ERR(dma_conf)) 4023 return PTR_ERR(dma_conf); 4024 4025 ret = __stmmac_open(dev, dma_conf); 4026 if (ret) 4027 free_dma_desc_resources(priv, dma_conf); 4028 4029 kfree(dma_conf); 4030 return ret; 4031 } 4032 4033 static void stmmac_fpe_stop_wq(struct stmmac_priv *priv) 4034 { 4035 set_bit(__FPE_REMOVING, &priv->fpe_task_state); 4036 4037 if (priv->fpe_wq) { 4038 destroy_workqueue(priv->fpe_wq); 4039 priv->fpe_wq = NULL; 4040 } 4041 4042 netdev_info(priv->dev, "FPE workqueue stop"); 4043 } 4044 4045 /** 4046 * stmmac_release - close entry point of the driver 4047 * @dev : device pointer. 4048 * Description: 4049 * This is the stop entry point of the driver. 4050 */ 4051 static int stmmac_release(struct net_device *dev) 4052 { 4053 struct stmmac_priv *priv = netdev_priv(dev); 4054 u32 chan; 4055 4056 if (device_may_wakeup(priv->device)) 4057 phylink_speed_down(priv->phylink, false); 4058 /* Stop and disconnect the PHY */ 4059 phylink_stop(priv->phylink); 4060 phylink_disconnect_phy(priv->phylink); 4061 4062 stmmac_disable_all_queues(priv); 4063 4064 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 4065 hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer); 4066 4067 netif_tx_disable(dev); 4068 4069 /* Free the IRQ lines */ 4070 stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0); 4071 4072 if (priv->eee_enabled) { 4073 priv->tx_path_in_lpi_mode = false; 4074 del_timer_sync(&priv->eee_ctrl_timer); 4075 } 4076 4077 /* Stop TX/RX DMA and clear the descriptors */ 4078 stmmac_stop_all_dma(priv); 4079 4080 /* Release and free the Rx/Tx resources */ 4081 free_dma_desc_resources(priv, &priv->dma_conf); 4082 4083 /* Disable the MAC Rx/Tx */ 4084 stmmac_mac_set(priv, priv->ioaddr, false); 4085 4086 /* Powerdown Serdes if there is */ 4087 if (priv->plat->serdes_powerdown) 4088 priv->plat->serdes_powerdown(dev, priv->plat->bsp_priv); 4089 4090 netif_carrier_off(dev); 4091 4092 stmmac_release_ptp(priv); 4093 4094 pm_runtime_put(priv->device); 4095 4096 if (priv->dma_cap.fpesel) 4097 stmmac_fpe_stop_wq(priv); 4098 4099 return 0; 4100 } 4101 4102 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb, 4103 struct stmmac_tx_queue *tx_q) 4104 { 4105 u16 tag = 0x0, inner_tag = 0x0; 4106 u32 inner_type = 0x0; 4107 struct dma_desc *p; 4108 4109 if (!priv->dma_cap.vlins) 4110 return false; 4111 if (!skb_vlan_tag_present(skb)) 4112 return false; 4113 if (skb->vlan_proto == htons(ETH_P_8021AD)) { 4114 inner_tag = skb_vlan_tag_get(skb); 4115 inner_type = STMMAC_VLAN_INSERT; 4116 } 4117 4118 tag = skb_vlan_tag_get(skb); 4119 4120 if (tx_q->tbs & STMMAC_TBS_AVAIL) 4121 p = &tx_q->dma_entx[tx_q->cur_tx].basic; 4122 else 4123 p = &tx_q->dma_tx[tx_q->cur_tx]; 4124 4125 if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type)) 4126 return false; 4127 4128 stmmac_set_tx_owner(priv, p); 4129 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size); 4130 return true; 4131 } 4132 4133 /** 4134 * stmmac_tso_allocator - close entry point of the driver 4135 * @priv: driver private structure 4136 * @des: buffer start address 4137 * @total_len: total length to fill in descriptors 4138 * @last_segment: condition for the last descriptor 4139 * @queue: TX queue index 4140 * Description: 4141 * This function fills descriptor and request new descriptors according to 4142 * buffer length to fill 4143 */ 4144 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des, 4145 int total_len, bool last_segment, u32 queue) 4146 { 4147 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue]; 4148 struct dma_desc *desc; 4149 u32 buff_size; 4150 int tmp_len; 4151 4152 tmp_len = total_len; 4153 4154 while (tmp_len > 0) { 4155 dma_addr_t curr_addr; 4156 4157 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, 4158 priv->dma_conf.dma_tx_size); 4159 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]); 4160 4161 if (tx_q->tbs & STMMAC_TBS_AVAIL) 4162 desc = &tx_q->dma_entx[tx_q->cur_tx].basic; 4163 else 4164 desc = &tx_q->dma_tx[tx_q->cur_tx]; 4165 4166 curr_addr = des + (total_len - tmp_len); 4167 if (priv->dma_cap.addr64 <= 32) 4168 desc->des0 = cpu_to_le32(curr_addr); 4169 else 4170 stmmac_set_desc_addr(priv, desc, curr_addr); 4171 4172 buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ? 4173 TSO_MAX_BUFF_SIZE : tmp_len; 4174 4175 stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size, 4176 0, 1, 4177 (last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE), 4178 0, 0); 4179 4180 tmp_len -= TSO_MAX_BUFF_SIZE; 4181 } 4182 } 4183 4184 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue) 4185 { 4186 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue]; 4187 int desc_size; 4188 4189 if (likely(priv->extend_desc)) 4190 desc_size = sizeof(struct dma_extended_desc); 4191 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 4192 desc_size = sizeof(struct dma_edesc); 4193 else 4194 desc_size = sizeof(struct dma_desc); 4195 4196 /* The own bit must be the latest setting done when prepare the 4197 * descriptor and then barrier is needed to make sure that 4198 * all is coherent before granting the DMA engine. 4199 */ 4200 wmb(); 4201 4202 tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size); 4203 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue); 4204 } 4205 4206 /** 4207 * stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO) 4208 * @skb : the socket buffer 4209 * @dev : device pointer 4210 * Description: this is the transmit function that is called on TSO frames 4211 * (support available on GMAC4 and newer chips). 4212 * Diagram below show the ring programming in case of TSO frames: 4213 * 4214 * First Descriptor 4215 * -------- 4216 * | DES0 |---> buffer1 = L2/L3/L4 header 4217 * | DES1 |---> TCP Payload (can continue on next descr...) 4218 * | DES2 |---> buffer 1 and 2 len 4219 * | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0] 4220 * -------- 4221 * | 4222 * ... 4223 * | 4224 * -------- 4225 * | DES0 | --| Split TCP Payload on Buffers 1 and 2 4226 * | DES1 | --| 4227 * | DES2 | --> buffer 1 and 2 len 4228 * | DES3 | 4229 * -------- 4230 * 4231 * mss is fixed when enable tso, so w/o programming the TDES3 ctx field. 4232 */ 4233 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev) 4234 { 4235 struct dma_desc *desc, *first, *mss_desc = NULL; 4236 struct stmmac_priv *priv = netdev_priv(dev); 4237 int nfrags = skb_shinfo(skb)->nr_frags; 4238 u32 queue = skb_get_queue_mapping(skb); 4239 unsigned int first_entry, tx_packets; 4240 struct stmmac_txq_stats *txq_stats; 4241 int tmp_pay_len = 0, first_tx; 4242 struct stmmac_tx_queue *tx_q; 4243 bool has_vlan, set_ic; 4244 u8 proto_hdr_len, hdr; 4245 u32 pay_len, mss; 4246 dma_addr_t des; 4247 int i; 4248 4249 tx_q = &priv->dma_conf.tx_queue[queue]; 4250 txq_stats = &priv->xstats.txq_stats[queue]; 4251 first_tx = tx_q->cur_tx; 4252 4253 /* Compute header lengths */ 4254 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { 4255 proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr); 4256 hdr = sizeof(struct udphdr); 4257 } else { 4258 proto_hdr_len = skb_tcp_all_headers(skb); 4259 hdr = tcp_hdrlen(skb); 4260 } 4261 4262 /* Desc availability based on threshold should be enough safe */ 4263 if (unlikely(stmmac_tx_avail(priv, queue) < 4264 (((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) { 4265 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) { 4266 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, 4267 queue)); 4268 /* This is a hard error, log it. */ 4269 netdev_err(priv->dev, 4270 "%s: Tx Ring full when queue awake\n", 4271 __func__); 4272 } 4273 return NETDEV_TX_BUSY; 4274 } 4275 4276 pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */ 4277 4278 mss = skb_shinfo(skb)->gso_size; 4279 4280 /* set new MSS value if needed */ 4281 if (mss != tx_q->mss) { 4282 if (tx_q->tbs & STMMAC_TBS_AVAIL) 4283 mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic; 4284 else 4285 mss_desc = &tx_q->dma_tx[tx_q->cur_tx]; 4286 4287 stmmac_set_mss(priv, mss_desc, mss); 4288 tx_q->mss = mss; 4289 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, 4290 priv->dma_conf.dma_tx_size); 4291 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]); 4292 } 4293 4294 if (netif_msg_tx_queued(priv)) { 4295 pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n", 4296 __func__, hdr, proto_hdr_len, pay_len, mss); 4297 pr_info("\tskb->len %d, skb->data_len %d\n", skb->len, 4298 skb->data_len); 4299 } 4300 4301 /* Check if VLAN can be inserted by HW */ 4302 has_vlan = stmmac_vlan_insert(priv, skb, tx_q); 4303 4304 first_entry = tx_q->cur_tx; 4305 WARN_ON(tx_q->tx_skbuff[first_entry]); 4306 4307 if (tx_q->tbs & STMMAC_TBS_AVAIL) 4308 desc = &tx_q->dma_entx[first_entry].basic; 4309 else 4310 desc = &tx_q->dma_tx[first_entry]; 4311 first = desc; 4312 4313 if (has_vlan) 4314 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT); 4315 4316 /* first descriptor: fill Headers on Buf1 */ 4317 des = dma_map_single(priv->device, skb->data, skb_headlen(skb), 4318 DMA_TO_DEVICE); 4319 if (dma_mapping_error(priv->device, des)) 4320 goto dma_map_err; 4321 4322 tx_q->tx_skbuff_dma[first_entry].buf = des; 4323 tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb); 4324 tx_q->tx_skbuff_dma[first_entry].map_as_page = false; 4325 tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB; 4326 4327 if (priv->dma_cap.addr64 <= 32) { 4328 first->des0 = cpu_to_le32(des); 4329 4330 /* Fill start of payload in buff2 of first descriptor */ 4331 if (pay_len) 4332 first->des1 = cpu_to_le32(des + proto_hdr_len); 4333 4334 /* If needed take extra descriptors to fill the remaining payload */ 4335 tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE; 4336 } else { 4337 stmmac_set_desc_addr(priv, first, des); 4338 tmp_pay_len = pay_len; 4339 des += proto_hdr_len; 4340 pay_len = 0; 4341 } 4342 4343 stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue); 4344 4345 /* Prepare fragments */ 4346 for (i = 0; i < nfrags; i++) { 4347 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4348 4349 des = skb_frag_dma_map(priv->device, frag, 0, 4350 skb_frag_size(frag), 4351 DMA_TO_DEVICE); 4352 if (dma_mapping_error(priv->device, des)) 4353 goto dma_map_err; 4354 4355 stmmac_tso_allocator(priv, des, skb_frag_size(frag), 4356 (i == nfrags - 1), queue); 4357 4358 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des; 4359 tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag); 4360 tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true; 4361 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB; 4362 } 4363 4364 tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true; 4365 4366 /* Only the last descriptor gets to point to the skb. */ 4367 tx_q->tx_skbuff[tx_q->cur_tx] = skb; 4368 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB; 4369 4370 /* Manage tx mitigation */ 4371 tx_packets = (tx_q->cur_tx + 1) - first_tx; 4372 tx_q->tx_count_frames += tx_packets; 4373 4374 if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en) 4375 set_ic = true; 4376 else if (!priv->tx_coal_frames[queue]) 4377 set_ic = false; 4378 else if (tx_packets > priv->tx_coal_frames[queue]) 4379 set_ic = true; 4380 else if ((tx_q->tx_count_frames % 4381 priv->tx_coal_frames[queue]) < tx_packets) 4382 set_ic = true; 4383 else 4384 set_ic = false; 4385 4386 if (set_ic) { 4387 if (tx_q->tbs & STMMAC_TBS_AVAIL) 4388 desc = &tx_q->dma_entx[tx_q->cur_tx].basic; 4389 else 4390 desc = &tx_q->dma_tx[tx_q->cur_tx]; 4391 4392 tx_q->tx_count_frames = 0; 4393 stmmac_set_tx_ic(priv, desc); 4394 } 4395 4396 /* We've used all descriptors we need for this skb, however, 4397 * advance cur_tx so that it references a fresh descriptor. 4398 * ndo_start_xmit will fill this descriptor the next time it's 4399 * called and stmmac_tx_clean may clean up to this descriptor. 4400 */ 4401 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size); 4402 4403 if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) { 4404 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n", 4405 __func__); 4406 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue)); 4407 } 4408 4409 u64_stats_update_begin(&txq_stats->q_syncp); 4410 u64_stats_add(&txq_stats->q.tx_bytes, skb->len); 4411 u64_stats_inc(&txq_stats->q.tx_tso_frames); 4412 u64_stats_add(&txq_stats->q.tx_tso_nfrags, nfrags); 4413 if (set_ic) 4414 u64_stats_inc(&txq_stats->q.tx_set_ic_bit); 4415 u64_stats_update_end(&txq_stats->q_syncp); 4416 4417 if (priv->sarc_type) 4418 stmmac_set_desc_sarc(priv, first, priv->sarc_type); 4419 4420 skb_tx_timestamp(skb); 4421 4422 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 4423 priv->hwts_tx_en)) { 4424 /* declare that device is doing timestamping */ 4425 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 4426 stmmac_enable_tx_timestamp(priv, first); 4427 } 4428 4429 /* Complete the first descriptor before granting the DMA */ 4430 stmmac_prepare_tso_tx_desc(priv, first, 1, 4431 proto_hdr_len, 4432 pay_len, 4433 1, tx_q->tx_skbuff_dma[first_entry].last_segment, 4434 hdr / 4, (skb->len - proto_hdr_len)); 4435 4436 /* If context desc is used to change MSS */ 4437 if (mss_desc) { 4438 /* Make sure that first descriptor has been completely 4439 * written, including its own bit. This is because MSS is 4440 * actually before first descriptor, so we need to make 4441 * sure that MSS's own bit is the last thing written. 4442 */ 4443 dma_wmb(); 4444 stmmac_set_tx_owner(priv, mss_desc); 4445 } 4446 4447 if (netif_msg_pktdata(priv)) { 4448 pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n", 4449 __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry, 4450 tx_q->cur_tx, first, nfrags); 4451 pr_info(">>> frame to be transmitted: "); 4452 print_pkt(skb->data, skb_headlen(skb)); 4453 } 4454 4455 netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len); 4456 4457 stmmac_flush_tx_descriptors(priv, queue); 4458 stmmac_tx_timer_arm(priv, queue); 4459 4460 return NETDEV_TX_OK; 4461 4462 dma_map_err: 4463 dev_err(priv->device, "Tx dma map failed\n"); 4464 dev_kfree_skb(skb); 4465 priv->xstats.tx_dropped++; 4466 return NETDEV_TX_OK; 4467 } 4468 4469 /** 4470 * stmmac_has_ip_ethertype() - Check if packet has IP ethertype 4471 * @skb: socket buffer to check 4472 * 4473 * Check if a packet has an ethertype that will trigger the IP header checks 4474 * and IP/TCP checksum engine of the stmmac core. 4475 * 4476 * Return: true if the ethertype can trigger the checksum engine, false 4477 * otherwise 4478 */ 4479 static bool stmmac_has_ip_ethertype(struct sk_buff *skb) 4480 { 4481 int depth = 0; 4482 __be16 proto; 4483 4484 proto = __vlan_get_protocol(skb, eth_header_parse_protocol(skb), 4485 &depth); 4486 4487 return (depth <= ETH_HLEN) && 4488 (proto == htons(ETH_P_IP) || proto == htons(ETH_P_IPV6)); 4489 } 4490 4491 /** 4492 * stmmac_xmit - Tx entry point of the driver 4493 * @skb : the socket buffer 4494 * @dev : device pointer 4495 * Description : this is the tx entry point of the driver. 4496 * It programs the chain or the ring and supports oversized frames 4497 * and SG feature. 4498 */ 4499 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev) 4500 { 4501 unsigned int first_entry, tx_packets, enh_desc; 4502 struct stmmac_priv *priv = netdev_priv(dev); 4503 unsigned int nopaged_len = skb_headlen(skb); 4504 int i, csum_insertion = 0, is_jumbo = 0; 4505 u32 queue = skb_get_queue_mapping(skb); 4506 int nfrags = skb_shinfo(skb)->nr_frags; 4507 int gso = skb_shinfo(skb)->gso_type; 4508 struct stmmac_txq_stats *txq_stats; 4509 struct dma_edesc *tbs_desc = NULL; 4510 struct dma_desc *desc, *first; 4511 struct stmmac_tx_queue *tx_q; 4512 bool has_vlan, set_ic; 4513 int entry, first_tx; 4514 dma_addr_t des; 4515 4516 tx_q = &priv->dma_conf.tx_queue[queue]; 4517 txq_stats = &priv->xstats.txq_stats[queue]; 4518 first_tx = tx_q->cur_tx; 4519 4520 if (priv->tx_path_in_lpi_mode && priv->eee_sw_timer_en) 4521 stmmac_disable_eee_mode(priv); 4522 4523 /* Manage oversized TCP frames for GMAC4 device */ 4524 if (skb_is_gso(skb) && priv->tso) { 4525 if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) 4526 return stmmac_tso_xmit(skb, dev); 4527 if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4)) 4528 return stmmac_tso_xmit(skb, dev); 4529 } 4530 4531 if (priv->plat->est && priv->plat->est->enable && 4532 priv->plat->est->max_sdu[queue] && 4533 skb->len > priv->plat->est->max_sdu[queue]){ 4534 priv->xstats.max_sdu_txq_drop[queue]++; 4535 goto max_sdu_err; 4536 } 4537 4538 if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) { 4539 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) { 4540 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, 4541 queue)); 4542 /* This is a hard error, log it. */ 4543 netdev_err(priv->dev, 4544 "%s: Tx Ring full when queue awake\n", 4545 __func__); 4546 } 4547 return NETDEV_TX_BUSY; 4548 } 4549 4550 /* Check if VLAN can be inserted by HW */ 4551 has_vlan = stmmac_vlan_insert(priv, skb, tx_q); 4552 4553 entry = tx_q->cur_tx; 4554 first_entry = entry; 4555 WARN_ON(tx_q->tx_skbuff[first_entry]); 4556 4557 csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL); 4558 /* DWMAC IPs can be synthesized to support tx coe only for a few tx 4559 * queues. In that case, checksum offloading for those queues that don't 4560 * support tx coe needs to fallback to software checksum calculation. 4561 * 4562 * Packets that won't trigger the COE e.g. most DSA-tagged packets will 4563 * also have to be checksummed in software. 4564 */ 4565 if (csum_insertion && 4566 (priv->plat->tx_queues_cfg[queue].coe_unsupported || 4567 !stmmac_has_ip_ethertype(skb))) { 4568 if (unlikely(skb_checksum_help(skb))) 4569 goto dma_map_err; 4570 csum_insertion = !csum_insertion; 4571 } 4572 4573 if (likely(priv->extend_desc)) 4574 desc = (struct dma_desc *)(tx_q->dma_etx + entry); 4575 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 4576 desc = &tx_q->dma_entx[entry].basic; 4577 else 4578 desc = tx_q->dma_tx + entry; 4579 4580 first = desc; 4581 4582 if (has_vlan) 4583 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT); 4584 4585 enh_desc = priv->plat->enh_desc; 4586 /* To program the descriptors according to the size of the frame */ 4587 if (enh_desc) 4588 is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc); 4589 4590 if (unlikely(is_jumbo)) { 4591 entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion); 4592 if (unlikely(entry < 0) && (entry != -EINVAL)) 4593 goto dma_map_err; 4594 } 4595 4596 for (i = 0; i < nfrags; i++) { 4597 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4598 int len = skb_frag_size(frag); 4599 bool last_segment = (i == (nfrags - 1)); 4600 4601 entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size); 4602 WARN_ON(tx_q->tx_skbuff[entry]); 4603 4604 if (likely(priv->extend_desc)) 4605 desc = (struct dma_desc *)(tx_q->dma_etx + entry); 4606 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 4607 desc = &tx_q->dma_entx[entry].basic; 4608 else 4609 desc = tx_q->dma_tx + entry; 4610 4611 des = skb_frag_dma_map(priv->device, frag, 0, len, 4612 DMA_TO_DEVICE); 4613 if (dma_mapping_error(priv->device, des)) 4614 goto dma_map_err; /* should reuse desc w/o issues */ 4615 4616 tx_q->tx_skbuff_dma[entry].buf = des; 4617 4618 stmmac_set_desc_addr(priv, desc, des); 4619 4620 tx_q->tx_skbuff_dma[entry].map_as_page = true; 4621 tx_q->tx_skbuff_dma[entry].len = len; 4622 tx_q->tx_skbuff_dma[entry].last_segment = last_segment; 4623 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB; 4624 4625 /* Prepare the descriptor and set the own bit too */ 4626 stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion, 4627 priv->mode, 1, last_segment, skb->len); 4628 } 4629 4630 /* Only the last descriptor gets to point to the skb. */ 4631 tx_q->tx_skbuff[entry] = skb; 4632 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB; 4633 4634 /* According to the coalesce parameter the IC bit for the latest 4635 * segment is reset and the timer re-started to clean the tx status. 4636 * This approach takes care about the fragments: desc is the first 4637 * element in case of no SG. 4638 */ 4639 tx_packets = (entry + 1) - first_tx; 4640 tx_q->tx_count_frames += tx_packets; 4641 4642 if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en) 4643 set_ic = true; 4644 else if (!priv->tx_coal_frames[queue]) 4645 set_ic = false; 4646 else if (tx_packets > priv->tx_coal_frames[queue]) 4647 set_ic = true; 4648 else if ((tx_q->tx_count_frames % 4649 priv->tx_coal_frames[queue]) < tx_packets) 4650 set_ic = true; 4651 else 4652 set_ic = false; 4653 4654 if (set_ic) { 4655 if (likely(priv->extend_desc)) 4656 desc = &tx_q->dma_etx[entry].basic; 4657 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 4658 desc = &tx_q->dma_entx[entry].basic; 4659 else 4660 desc = &tx_q->dma_tx[entry]; 4661 4662 tx_q->tx_count_frames = 0; 4663 stmmac_set_tx_ic(priv, desc); 4664 } 4665 4666 /* We've used all descriptors we need for this skb, however, 4667 * advance cur_tx so that it references a fresh descriptor. 4668 * ndo_start_xmit will fill this descriptor the next time it's 4669 * called and stmmac_tx_clean may clean up to this descriptor. 4670 */ 4671 entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size); 4672 tx_q->cur_tx = entry; 4673 4674 if (netif_msg_pktdata(priv)) { 4675 netdev_dbg(priv->dev, 4676 "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d", 4677 __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry, 4678 entry, first, nfrags); 4679 4680 netdev_dbg(priv->dev, ">>> frame to be transmitted: "); 4681 print_pkt(skb->data, skb->len); 4682 } 4683 4684 if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) { 4685 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n", 4686 __func__); 4687 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue)); 4688 } 4689 4690 u64_stats_update_begin(&txq_stats->q_syncp); 4691 u64_stats_add(&txq_stats->q.tx_bytes, skb->len); 4692 if (set_ic) 4693 u64_stats_inc(&txq_stats->q.tx_set_ic_bit); 4694 u64_stats_update_end(&txq_stats->q_syncp); 4695 4696 if (priv->sarc_type) 4697 stmmac_set_desc_sarc(priv, first, priv->sarc_type); 4698 4699 skb_tx_timestamp(skb); 4700 4701 /* Ready to fill the first descriptor and set the OWN bit w/o any 4702 * problems because all the descriptors are actually ready to be 4703 * passed to the DMA engine. 4704 */ 4705 if (likely(!is_jumbo)) { 4706 bool last_segment = (nfrags == 0); 4707 4708 des = dma_map_single(priv->device, skb->data, 4709 nopaged_len, DMA_TO_DEVICE); 4710 if (dma_mapping_error(priv->device, des)) 4711 goto dma_map_err; 4712 4713 tx_q->tx_skbuff_dma[first_entry].buf = des; 4714 tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB; 4715 tx_q->tx_skbuff_dma[first_entry].map_as_page = false; 4716 4717 stmmac_set_desc_addr(priv, first, des); 4718 4719 tx_q->tx_skbuff_dma[first_entry].len = nopaged_len; 4720 tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment; 4721 4722 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 4723 priv->hwts_tx_en)) { 4724 /* declare that device is doing timestamping */ 4725 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 4726 stmmac_enable_tx_timestamp(priv, first); 4727 } 4728 4729 /* Prepare the first descriptor setting the OWN bit too */ 4730 stmmac_prepare_tx_desc(priv, first, 1, nopaged_len, 4731 csum_insertion, priv->mode, 0, last_segment, 4732 skb->len); 4733 } 4734 4735 if (tx_q->tbs & STMMAC_TBS_EN) { 4736 struct timespec64 ts = ns_to_timespec64(skb->tstamp); 4737 4738 tbs_desc = &tx_q->dma_entx[first_entry]; 4739 stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec); 4740 } 4741 4742 stmmac_set_tx_owner(priv, first); 4743 4744 netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len); 4745 4746 stmmac_enable_dma_transmission(priv, priv->ioaddr); 4747 4748 stmmac_flush_tx_descriptors(priv, queue); 4749 stmmac_tx_timer_arm(priv, queue); 4750 4751 return NETDEV_TX_OK; 4752 4753 dma_map_err: 4754 netdev_err(priv->dev, "Tx DMA map failed\n"); 4755 max_sdu_err: 4756 dev_kfree_skb(skb); 4757 priv->xstats.tx_dropped++; 4758 return NETDEV_TX_OK; 4759 } 4760 4761 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb) 4762 { 4763 struct vlan_ethhdr *veth = skb_vlan_eth_hdr(skb); 4764 __be16 vlan_proto = veth->h_vlan_proto; 4765 u16 vlanid; 4766 4767 if ((vlan_proto == htons(ETH_P_8021Q) && 4768 dev->features & NETIF_F_HW_VLAN_CTAG_RX) || 4769 (vlan_proto == htons(ETH_P_8021AD) && 4770 dev->features & NETIF_F_HW_VLAN_STAG_RX)) { 4771 /* pop the vlan tag */ 4772 vlanid = ntohs(veth->h_vlan_TCI); 4773 memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2); 4774 skb_pull(skb, VLAN_HLEN); 4775 __vlan_hwaccel_put_tag(skb, vlan_proto, vlanid); 4776 } 4777 } 4778 4779 /** 4780 * stmmac_rx_refill - refill used skb preallocated buffers 4781 * @priv: driver private structure 4782 * @queue: RX queue index 4783 * Description : this is to reallocate the skb for the reception process 4784 * that is based on zero-copy. 4785 */ 4786 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue) 4787 { 4788 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue]; 4789 int dirty = stmmac_rx_dirty(priv, queue); 4790 unsigned int entry = rx_q->dirty_rx; 4791 gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN); 4792 4793 if (priv->dma_cap.host_dma_width <= 32) 4794 gfp |= GFP_DMA32; 4795 4796 while (dirty-- > 0) { 4797 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry]; 4798 struct dma_desc *p; 4799 bool use_rx_wd; 4800 4801 if (priv->extend_desc) 4802 p = (struct dma_desc *)(rx_q->dma_erx + entry); 4803 else 4804 p = rx_q->dma_rx + entry; 4805 4806 if (!buf->page) { 4807 buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp); 4808 if (!buf->page) 4809 break; 4810 } 4811 4812 if (priv->sph && !buf->sec_page) { 4813 buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp); 4814 if (!buf->sec_page) 4815 break; 4816 4817 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page); 4818 } 4819 4820 buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset; 4821 4822 stmmac_set_desc_addr(priv, p, buf->addr); 4823 if (priv->sph) 4824 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true); 4825 else 4826 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false); 4827 stmmac_refill_desc3(priv, rx_q, p); 4828 4829 rx_q->rx_count_frames++; 4830 rx_q->rx_count_frames += priv->rx_coal_frames[queue]; 4831 if (rx_q->rx_count_frames > priv->rx_coal_frames[queue]) 4832 rx_q->rx_count_frames = 0; 4833 4834 use_rx_wd = !priv->rx_coal_frames[queue]; 4835 use_rx_wd |= rx_q->rx_count_frames > 0; 4836 if (!priv->use_riwt) 4837 use_rx_wd = false; 4838 4839 dma_wmb(); 4840 stmmac_set_rx_owner(priv, p, use_rx_wd); 4841 4842 entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_rx_size); 4843 } 4844 rx_q->dirty_rx = entry; 4845 rx_q->rx_tail_addr = rx_q->dma_rx_phy + 4846 (rx_q->dirty_rx * sizeof(struct dma_desc)); 4847 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue); 4848 } 4849 4850 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv, 4851 struct dma_desc *p, 4852 int status, unsigned int len) 4853 { 4854 unsigned int plen = 0, hlen = 0; 4855 int coe = priv->hw->rx_csum; 4856 4857 /* Not first descriptor, buffer is always zero */ 4858 if (priv->sph && len) 4859 return 0; 4860 4861 /* First descriptor, get split header length */ 4862 stmmac_get_rx_header_len(priv, p, &hlen); 4863 if (priv->sph && hlen) { 4864 priv->xstats.rx_split_hdr_pkt_n++; 4865 return hlen; 4866 } 4867 4868 /* First descriptor, not last descriptor and not split header */ 4869 if (status & rx_not_ls) 4870 return priv->dma_conf.dma_buf_sz; 4871 4872 plen = stmmac_get_rx_frame_len(priv, p, coe); 4873 4874 /* First descriptor and last descriptor and not split header */ 4875 return min_t(unsigned int, priv->dma_conf.dma_buf_sz, plen); 4876 } 4877 4878 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv, 4879 struct dma_desc *p, 4880 int status, unsigned int len) 4881 { 4882 int coe = priv->hw->rx_csum; 4883 unsigned int plen = 0; 4884 4885 /* Not split header, buffer is not available */ 4886 if (!priv->sph) 4887 return 0; 4888 4889 /* Not last descriptor */ 4890 if (status & rx_not_ls) 4891 return priv->dma_conf.dma_buf_sz; 4892 4893 plen = stmmac_get_rx_frame_len(priv, p, coe); 4894 4895 /* Last descriptor */ 4896 return plen - len; 4897 } 4898 4899 static int stmmac_xdp_xmit_xdpf(struct stmmac_priv *priv, int queue, 4900 struct xdp_frame *xdpf, bool dma_map) 4901 { 4902 struct stmmac_txq_stats *txq_stats = &priv->xstats.txq_stats[queue]; 4903 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue]; 4904 unsigned int entry = tx_q->cur_tx; 4905 struct dma_desc *tx_desc; 4906 dma_addr_t dma_addr; 4907 bool set_ic; 4908 4909 if (stmmac_tx_avail(priv, queue) < STMMAC_TX_THRESH(priv)) 4910 return STMMAC_XDP_CONSUMED; 4911 4912 if (priv->plat->est && priv->plat->est->enable && 4913 priv->plat->est->max_sdu[queue] && 4914 xdpf->len > priv->plat->est->max_sdu[queue]) { 4915 priv->xstats.max_sdu_txq_drop[queue]++; 4916 return STMMAC_XDP_CONSUMED; 4917 } 4918 4919 if (likely(priv->extend_desc)) 4920 tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry); 4921 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 4922 tx_desc = &tx_q->dma_entx[entry].basic; 4923 else 4924 tx_desc = tx_q->dma_tx + entry; 4925 4926 if (dma_map) { 4927 dma_addr = dma_map_single(priv->device, xdpf->data, 4928 xdpf->len, DMA_TO_DEVICE); 4929 if (dma_mapping_error(priv->device, dma_addr)) 4930 return STMMAC_XDP_CONSUMED; 4931 4932 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_NDO; 4933 } else { 4934 struct page *page = virt_to_page(xdpf->data); 4935 4936 dma_addr = page_pool_get_dma_addr(page) + sizeof(*xdpf) + 4937 xdpf->headroom; 4938 dma_sync_single_for_device(priv->device, dma_addr, 4939 xdpf->len, DMA_BIDIRECTIONAL); 4940 4941 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_TX; 4942 } 4943 4944 tx_q->tx_skbuff_dma[entry].buf = dma_addr; 4945 tx_q->tx_skbuff_dma[entry].map_as_page = false; 4946 tx_q->tx_skbuff_dma[entry].len = xdpf->len; 4947 tx_q->tx_skbuff_dma[entry].last_segment = true; 4948 tx_q->tx_skbuff_dma[entry].is_jumbo = false; 4949 4950 tx_q->xdpf[entry] = xdpf; 4951 4952 stmmac_set_desc_addr(priv, tx_desc, dma_addr); 4953 4954 stmmac_prepare_tx_desc(priv, tx_desc, 1, xdpf->len, 4955 true, priv->mode, true, true, 4956 xdpf->len); 4957 4958 tx_q->tx_count_frames++; 4959 4960 if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0) 4961 set_ic = true; 4962 else 4963 set_ic = false; 4964 4965 if (set_ic) { 4966 tx_q->tx_count_frames = 0; 4967 stmmac_set_tx_ic(priv, tx_desc); 4968 u64_stats_update_begin(&txq_stats->q_syncp); 4969 u64_stats_inc(&txq_stats->q.tx_set_ic_bit); 4970 u64_stats_update_end(&txq_stats->q_syncp); 4971 } 4972 4973 stmmac_enable_dma_transmission(priv, priv->ioaddr); 4974 4975 entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size); 4976 tx_q->cur_tx = entry; 4977 4978 return STMMAC_XDP_TX; 4979 } 4980 4981 static int stmmac_xdp_get_tx_queue(struct stmmac_priv *priv, 4982 int cpu) 4983 { 4984 int index = cpu; 4985 4986 if (unlikely(index < 0)) 4987 index = 0; 4988 4989 while (index >= priv->plat->tx_queues_to_use) 4990 index -= priv->plat->tx_queues_to_use; 4991 4992 return index; 4993 } 4994 4995 static int stmmac_xdp_xmit_back(struct stmmac_priv *priv, 4996 struct xdp_buff *xdp) 4997 { 4998 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp); 4999 int cpu = smp_processor_id(); 5000 struct netdev_queue *nq; 5001 int queue; 5002 int res; 5003 5004 if (unlikely(!xdpf)) 5005 return STMMAC_XDP_CONSUMED; 5006 5007 queue = stmmac_xdp_get_tx_queue(priv, cpu); 5008 nq = netdev_get_tx_queue(priv->dev, queue); 5009 5010 __netif_tx_lock(nq, cpu); 5011 /* Avoids TX time-out as we are sharing with slow path */ 5012 txq_trans_cond_update(nq); 5013 5014 res = stmmac_xdp_xmit_xdpf(priv, queue, xdpf, false); 5015 if (res == STMMAC_XDP_TX) 5016 stmmac_flush_tx_descriptors(priv, queue); 5017 5018 __netif_tx_unlock(nq); 5019 5020 return res; 5021 } 5022 5023 static int __stmmac_xdp_run_prog(struct stmmac_priv *priv, 5024 struct bpf_prog *prog, 5025 struct xdp_buff *xdp) 5026 { 5027 u32 act; 5028 int res; 5029 5030 act = bpf_prog_run_xdp(prog, xdp); 5031 switch (act) { 5032 case XDP_PASS: 5033 res = STMMAC_XDP_PASS; 5034 break; 5035 case XDP_TX: 5036 res = stmmac_xdp_xmit_back(priv, xdp); 5037 break; 5038 case XDP_REDIRECT: 5039 if (xdp_do_redirect(priv->dev, xdp, prog) < 0) 5040 res = STMMAC_XDP_CONSUMED; 5041 else 5042 res = STMMAC_XDP_REDIRECT; 5043 break; 5044 default: 5045 bpf_warn_invalid_xdp_action(priv->dev, prog, act); 5046 fallthrough; 5047 case XDP_ABORTED: 5048 trace_xdp_exception(priv->dev, prog, act); 5049 fallthrough; 5050 case XDP_DROP: 5051 res = STMMAC_XDP_CONSUMED; 5052 break; 5053 } 5054 5055 return res; 5056 } 5057 5058 static struct sk_buff *stmmac_xdp_run_prog(struct stmmac_priv *priv, 5059 struct xdp_buff *xdp) 5060 { 5061 struct bpf_prog *prog; 5062 int res; 5063 5064 prog = READ_ONCE(priv->xdp_prog); 5065 if (!prog) { 5066 res = STMMAC_XDP_PASS; 5067 goto out; 5068 } 5069 5070 res = __stmmac_xdp_run_prog(priv, prog, xdp); 5071 out: 5072 return ERR_PTR(-res); 5073 } 5074 5075 static void stmmac_finalize_xdp_rx(struct stmmac_priv *priv, 5076 int xdp_status) 5077 { 5078 int cpu = smp_processor_id(); 5079 int queue; 5080 5081 queue = stmmac_xdp_get_tx_queue(priv, cpu); 5082 5083 if (xdp_status & STMMAC_XDP_TX) 5084 stmmac_tx_timer_arm(priv, queue); 5085 5086 if (xdp_status & STMMAC_XDP_REDIRECT) 5087 xdp_do_flush(); 5088 } 5089 5090 static struct sk_buff *stmmac_construct_skb_zc(struct stmmac_channel *ch, 5091 struct xdp_buff *xdp) 5092 { 5093 unsigned int metasize = xdp->data - xdp->data_meta; 5094 unsigned int datasize = xdp->data_end - xdp->data; 5095 struct sk_buff *skb; 5096 5097 skb = __napi_alloc_skb(&ch->rxtx_napi, 5098 xdp->data_end - xdp->data_hard_start, 5099 GFP_ATOMIC | __GFP_NOWARN); 5100 if (unlikely(!skb)) 5101 return NULL; 5102 5103 skb_reserve(skb, xdp->data - xdp->data_hard_start); 5104 memcpy(__skb_put(skb, datasize), xdp->data, datasize); 5105 if (metasize) 5106 skb_metadata_set(skb, metasize); 5107 5108 return skb; 5109 } 5110 5111 static void stmmac_dispatch_skb_zc(struct stmmac_priv *priv, u32 queue, 5112 struct dma_desc *p, struct dma_desc *np, 5113 struct xdp_buff *xdp) 5114 { 5115 struct stmmac_rxq_stats *rxq_stats = &priv->xstats.rxq_stats[queue]; 5116 struct stmmac_channel *ch = &priv->channel[queue]; 5117 unsigned int len = xdp->data_end - xdp->data; 5118 enum pkt_hash_types hash_type; 5119 int coe = priv->hw->rx_csum; 5120 struct sk_buff *skb; 5121 u32 hash; 5122 5123 skb = stmmac_construct_skb_zc(ch, xdp); 5124 if (!skb) { 5125 priv->xstats.rx_dropped++; 5126 return; 5127 } 5128 5129 stmmac_get_rx_hwtstamp(priv, p, np, skb); 5130 if (priv->hw->hw_vlan_en) 5131 /* MAC level stripping. */ 5132 stmmac_rx_hw_vlan(priv, priv->hw, p, skb); 5133 else 5134 /* Driver level stripping. */ 5135 stmmac_rx_vlan(priv->dev, skb); 5136 skb->protocol = eth_type_trans(skb, priv->dev); 5137 5138 if (unlikely(!coe) || !stmmac_has_ip_ethertype(skb)) 5139 skb_checksum_none_assert(skb); 5140 else 5141 skb->ip_summed = CHECKSUM_UNNECESSARY; 5142 5143 if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type)) 5144 skb_set_hash(skb, hash, hash_type); 5145 5146 skb_record_rx_queue(skb, queue); 5147 napi_gro_receive(&ch->rxtx_napi, skb); 5148 5149 u64_stats_update_begin(&rxq_stats->napi_syncp); 5150 u64_stats_inc(&rxq_stats->napi.rx_pkt_n); 5151 u64_stats_add(&rxq_stats->napi.rx_bytes, len); 5152 u64_stats_update_end(&rxq_stats->napi_syncp); 5153 } 5154 5155 static bool stmmac_rx_refill_zc(struct stmmac_priv *priv, u32 queue, u32 budget) 5156 { 5157 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue]; 5158 unsigned int entry = rx_q->dirty_rx; 5159 struct dma_desc *rx_desc = NULL; 5160 bool ret = true; 5161 5162 budget = min(budget, stmmac_rx_dirty(priv, queue)); 5163 5164 while (budget-- > 0 && entry != rx_q->cur_rx) { 5165 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry]; 5166 dma_addr_t dma_addr; 5167 bool use_rx_wd; 5168 5169 if (!buf->xdp) { 5170 buf->xdp = xsk_buff_alloc(rx_q->xsk_pool); 5171 if (!buf->xdp) { 5172 ret = false; 5173 break; 5174 } 5175 } 5176 5177 if (priv->extend_desc) 5178 rx_desc = (struct dma_desc *)(rx_q->dma_erx + entry); 5179 else 5180 rx_desc = rx_q->dma_rx + entry; 5181 5182 dma_addr = xsk_buff_xdp_get_dma(buf->xdp); 5183 stmmac_set_desc_addr(priv, rx_desc, dma_addr); 5184 stmmac_set_desc_sec_addr(priv, rx_desc, 0, false); 5185 stmmac_refill_desc3(priv, rx_q, rx_desc); 5186 5187 rx_q->rx_count_frames++; 5188 rx_q->rx_count_frames += priv->rx_coal_frames[queue]; 5189 if (rx_q->rx_count_frames > priv->rx_coal_frames[queue]) 5190 rx_q->rx_count_frames = 0; 5191 5192 use_rx_wd = !priv->rx_coal_frames[queue]; 5193 use_rx_wd |= rx_q->rx_count_frames > 0; 5194 if (!priv->use_riwt) 5195 use_rx_wd = false; 5196 5197 dma_wmb(); 5198 stmmac_set_rx_owner(priv, rx_desc, use_rx_wd); 5199 5200 entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_rx_size); 5201 } 5202 5203 if (rx_desc) { 5204 rx_q->dirty_rx = entry; 5205 rx_q->rx_tail_addr = rx_q->dma_rx_phy + 5206 (rx_q->dirty_rx * sizeof(struct dma_desc)); 5207 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue); 5208 } 5209 5210 return ret; 5211 } 5212 5213 static struct stmmac_xdp_buff *xsk_buff_to_stmmac_ctx(struct xdp_buff *xdp) 5214 { 5215 /* In XDP zero copy data path, xdp field in struct xdp_buff_xsk is used 5216 * to represent incoming packet, whereas cb field in the same structure 5217 * is used to store driver specific info. Thus, struct stmmac_xdp_buff 5218 * is laid on top of xdp and cb fields of struct xdp_buff_xsk. 5219 */ 5220 return (struct stmmac_xdp_buff *)xdp; 5221 } 5222 5223 static int stmmac_rx_zc(struct stmmac_priv *priv, int limit, u32 queue) 5224 { 5225 struct stmmac_rxq_stats *rxq_stats = &priv->xstats.rxq_stats[queue]; 5226 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue]; 5227 unsigned int count = 0, error = 0, len = 0; 5228 int dirty = stmmac_rx_dirty(priv, queue); 5229 unsigned int next_entry = rx_q->cur_rx; 5230 u32 rx_errors = 0, rx_dropped = 0; 5231 unsigned int desc_size; 5232 struct bpf_prog *prog; 5233 bool failure = false; 5234 int xdp_status = 0; 5235 int status = 0; 5236 5237 if (netif_msg_rx_status(priv)) { 5238 void *rx_head; 5239 5240 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__); 5241 if (priv->extend_desc) { 5242 rx_head = (void *)rx_q->dma_erx; 5243 desc_size = sizeof(struct dma_extended_desc); 5244 } else { 5245 rx_head = (void *)rx_q->dma_rx; 5246 desc_size = sizeof(struct dma_desc); 5247 } 5248 5249 stmmac_display_ring(priv, rx_head, priv->dma_conf.dma_rx_size, true, 5250 rx_q->dma_rx_phy, desc_size); 5251 } 5252 while (count < limit) { 5253 struct stmmac_rx_buffer *buf; 5254 struct stmmac_xdp_buff *ctx; 5255 unsigned int buf1_len = 0; 5256 struct dma_desc *np, *p; 5257 int entry; 5258 int res; 5259 5260 if (!count && rx_q->state_saved) { 5261 error = rx_q->state.error; 5262 len = rx_q->state.len; 5263 } else { 5264 rx_q->state_saved = false; 5265 error = 0; 5266 len = 0; 5267 } 5268 5269 if (count >= limit) 5270 break; 5271 5272 read_again: 5273 buf1_len = 0; 5274 entry = next_entry; 5275 buf = &rx_q->buf_pool[entry]; 5276 5277 if (dirty >= STMMAC_RX_FILL_BATCH) { 5278 failure = failure || 5279 !stmmac_rx_refill_zc(priv, queue, dirty); 5280 dirty = 0; 5281 } 5282 5283 if (priv->extend_desc) 5284 p = (struct dma_desc *)(rx_q->dma_erx + entry); 5285 else 5286 p = rx_q->dma_rx + entry; 5287 5288 /* read the status of the incoming frame */ 5289 status = stmmac_rx_status(priv, &priv->xstats, p); 5290 /* check if managed by the DMA otherwise go ahead */ 5291 if (unlikely(status & dma_own)) 5292 break; 5293 5294 /* Prefetch the next RX descriptor */ 5295 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, 5296 priv->dma_conf.dma_rx_size); 5297 next_entry = rx_q->cur_rx; 5298 5299 if (priv->extend_desc) 5300 np = (struct dma_desc *)(rx_q->dma_erx + next_entry); 5301 else 5302 np = rx_q->dma_rx + next_entry; 5303 5304 prefetch(np); 5305 5306 /* Ensure a valid XSK buffer before proceed */ 5307 if (!buf->xdp) 5308 break; 5309 5310 if (priv->extend_desc) 5311 stmmac_rx_extended_status(priv, &priv->xstats, 5312 rx_q->dma_erx + entry); 5313 if (unlikely(status == discard_frame)) { 5314 xsk_buff_free(buf->xdp); 5315 buf->xdp = NULL; 5316 dirty++; 5317 error = 1; 5318 if (!priv->hwts_rx_en) 5319 rx_errors++; 5320 } 5321 5322 if (unlikely(error && (status & rx_not_ls))) 5323 goto read_again; 5324 if (unlikely(error)) { 5325 count++; 5326 continue; 5327 } 5328 5329 /* XSK pool expects RX frame 1:1 mapped to XSK buffer */ 5330 if (likely(status & rx_not_ls)) { 5331 xsk_buff_free(buf->xdp); 5332 buf->xdp = NULL; 5333 dirty++; 5334 count++; 5335 goto read_again; 5336 } 5337 5338 ctx = xsk_buff_to_stmmac_ctx(buf->xdp); 5339 ctx->priv = priv; 5340 ctx->desc = p; 5341 ctx->ndesc = np; 5342 5343 /* XDP ZC Frame only support primary buffers for now */ 5344 buf1_len = stmmac_rx_buf1_len(priv, p, status, len); 5345 len += buf1_len; 5346 5347 /* ACS is disabled; strip manually. */ 5348 if (likely(!(status & rx_not_ls))) { 5349 buf1_len -= ETH_FCS_LEN; 5350 len -= ETH_FCS_LEN; 5351 } 5352 5353 /* RX buffer is good and fit into a XSK pool buffer */ 5354 buf->xdp->data_end = buf->xdp->data + buf1_len; 5355 xsk_buff_dma_sync_for_cpu(buf->xdp, rx_q->xsk_pool); 5356 5357 prog = READ_ONCE(priv->xdp_prog); 5358 res = __stmmac_xdp_run_prog(priv, prog, buf->xdp); 5359 5360 switch (res) { 5361 case STMMAC_XDP_PASS: 5362 stmmac_dispatch_skb_zc(priv, queue, p, np, buf->xdp); 5363 xsk_buff_free(buf->xdp); 5364 break; 5365 case STMMAC_XDP_CONSUMED: 5366 xsk_buff_free(buf->xdp); 5367 rx_dropped++; 5368 break; 5369 case STMMAC_XDP_TX: 5370 case STMMAC_XDP_REDIRECT: 5371 xdp_status |= res; 5372 break; 5373 } 5374 5375 buf->xdp = NULL; 5376 dirty++; 5377 count++; 5378 } 5379 5380 if (status & rx_not_ls) { 5381 rx_q->state_saved = true; 5382 rx_q->state.error = error; 5383 rx_q->state.len = len; 5384 } 5385 5386 stmmac_finalize_xdp_rx(priv, xdp_status); 5387 5388 u64_stats_update_begin(&rxq_stats->napi_syncp); 5389 u64_stats_add(&rxq_stats->napi.rx_pkt_n, count); 5390 u64_stats_update_end(&rxq_stats->napi_syncp); 5391 5392 priv->xstats.rx_dropped += rx_dropped; 5393 priv->xstats.rx_errors += rx_errors; 5394 5395 if (xsk_uses_need_wakeup(rx_q->xsk_pool)) { 5396 if (failure || stmmac_rx_dirty(priv, queue) > 0) 5397 xsk_set_rx_need_wakeup(rx_q->xsk_pool); 5398 else 5399 xsk_clear_rx_need_wakeup(rx_q->xsk_pool); 5400 5401 return (int)count; 5402 } 5403 5404 return failure ? limit : (int)count; 5405 } 5406 5407 /** 5408 * stmmac_rx - manage the receive process 5409 * @priv: driver private structure 5410 * @limit: napi bugget 5411 * @queue: RX queue index. 5412 * Description : this the function called by the napi poll method. 5413 * It gets all the frames inside the ring. 5414 */ 5415 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue) 5416 { 5417 u32 rx_errors = 0, rx_dropped = 0, rx_bytes = 0, rx_packets = 0; 5418 struct stmmac_rxq_stats *rxq_stats = &priv->xstats.rxq_stats[queue]; 5419 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue]; 5420 struct stmmac_channel *ch = &priv->channel[queue]; 5421 unsigned int count = 0, error = 0, len = 0; 5422 int status = 0, coe = priv->hw->rx_csum; 5423 unsigned int next_entry = rx_q->cur_rx; 5424 enum dma_data_direction dma_dir; 5425 unsigned int desc_size; 5426 struct sk_buff *skb = NULL; 5427 struct stmmac_xdp_buff ctx; 5428 int xdp_status = 0; 5429 int buf_sz; 5430 5431 dma_dir = page_pool_get_dma_dir(rx_q->page_pool); 5432 buf_sz = DIV_ROUND_UP(priv->dma_conf.dma_buf_sz, PAGE_SIZE) * PAGE_SIZE; 5433 limit = min(priv->dma_conf.dma_rx_size - 1, (unsigned int)limit); 5434 5435 if (netif_msg_rx_status(priv)) { 5436 void *rx_head; 5437 5438 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__); 5439 if (priv->extend_desc) { 5440 rx_head = (void *)rx_q->dma_erx; 5441 desc_size = sizeof(struct dma_extended_desc); 5442 } else { 5443 rx_head = (void *)rx_q->dma_rx; 5444 desc_size = sizeof(struct dma_desc); 5445 } 5446 5447 stmmac_display_ring(priv, rx_head, priv->dma_conf.dma_rx_size, true, 5448 rx_q->dma_rx_phy, desc_size); 5449 } 5450 while (count < limit) { 5451 unsigned int buf1_len = 0, buf2_len = 0; 5452 enum pkt_hash_types hash_type; 5453 struct stmmac_rx_buffer *buf; 5454 struct dma_desc *np, *p; 5455 int entry; 5456 u32 hash; 5457 5458 if (!count && rx_q->state_saved) { 5459 skb = rx_q->state.skb; 5460 error = rx_q->state.error; 5461 len = rx_q->state.len; 5462 } else { 5463 rx_q->state_saved = false; 5464 skb = NULL; 5465 error = 0; 5466 len = 0; 5467 } 5468 5469 read_again: 5470 if (count >= limit) 5471 break; 5472 5473 buf1_len = 0; 5474 buf2_len = 0; 5475 entry = next_entry; 5476 buf = &rx_q->buf_pool[entry]; 5477 5478 if (priv->extend_desc) 5479 p = (struct dma_desc *)(rx_q->dma_erx + entry); 5480 else 5481 p = rx_q->dma_rx + entry; 5482 5483 /* read the status of the incoming frame */ 5484 status = stmmac_rx_status(priv, &priv->xstats, p); 5485 /* check if managed by the DMA otherwise go ahead */ 5486 if (unlikely(status & dma_own)) 5487 break; 5488 5489 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, 5490 priv->dma_conf.dma_rx_size); 5491 next_entry = rx_q->cur_rx; 5492 5493 if (priv->extend_desc) 5494 np = (struct dma_desc *)(rx_q->dma_erx + next_entry); 5495 else 5496 np = rx_q->dma_rx + next_entry; 5497 5498 prefetch(np); 5499 5500 if (priv->extend_desc) 5501 stmmac_rx_extended_status(priv, &priv->xstats, rx_q->dma_erx + entry); 5502 if (unlikely(status == discard_frame)) { 5503 page_pool_recycle_direct(rx_q->page_pool, buf->page); 5504 buf->page = NULL; 5505 error = 1; 5506 if (!priv->hwts_rx_en) 5507 rx_errors++; 5508 } 5509 5510 if (unlikely(error && (status & rx_not_ls))) 5511 goto read_again; 5512 if (unlikely(error)) { 5513 dev_kfree_skb(skb); 5514 skb = NULL; 5515 count++; 5516 continue; 5517 } 5518 5519 /* Buffer is good. Go on. */ 5520 5521 prefetch(page_address(buf->page) + buf->page_offset); 5522 if (buf->sec_page) 5523 prefetch(page_address(buf->sec_page)); 5524 5525 buf1_len = stmmac_rx_buf1_len(priv, p, status, len); 5526 len += buf1_len; 5527 buf2_len = stmmac_rx_buf2_len(priv, p, status, len); 5528 len += buf2_len; 5529 5530 /* ACS is disabled; strip manually. */ 5531 if (likely(!(status & rx_not_ls))) { 5532 if (buf2_len) { 5533 buf2_len -= ETH_FCS_LEN; 5534 len -= ETH_FCS_LEN; 5535 } else if (buf1_len) { 5536 buf1_len -= ETH_FCS_LEN; 5537 len -= ETH_FCS_LEN; 5538 } 5539 } 5540 5541 if (!skb) { 5542 unsigned int pre_len, sync_len; 5543 5544 dma_sync_single_for_cpu(priv->device, buf->addr, 5545 buf1_len, dma_dir); 5546 5547 xdp_init_buff(&ctx.xdp, buf_sz, &rx_q->xdp_rxq); 5548 xdp_prepare_buff(&ctx.xdp, page_address(buf->page), 5549 buf->page_offset, buf1_len, true); 5550 5551 pre_len = ctx.xdp.data_end - ctx.xdp.data_hard_start - 5552 buf->page_offset; 5553 5554 ctx.priv = priv; 5555 ctx.desc = p; 5556 ctx.ndesc = np; 5557 5558 skb = stmmac_xdp_run_prog(priv, &ctx.xdp); 5559 /* Due xdp_adjust_tail: DMA sync for_device 5560 * cover max len CPU touch 5561 */ 5562 sync_len = ctx.xdp.data_end - ctx.xdp.data_hard_start - 5563 buf->page_offset; 5564 sync_len = max(sync_len, pre_len); 5565 5566 /* For Not XDP_PASS verdict */ 5567 if (IS_ERR(skb)) { 5568 unsigned int xdp_res = -PTR_ERR(skb); 5569 5570 if (xdp_res & STMMAC_XDP_CONSUMED) { 5571 page_pool_put_page(rx_q->page_pool, 5572 virt_to_head_page(ctx.xdp.data), 5573 sync_len, true); 5574 buf->page = NULL; 5575 rx_dropped++; 5576 5577 /* Clear skb as it was set as 5578 * status by XDP program. 5579 */ 5580 skb = NULL; 5581 5582 if (unlikely((status & rx_not_ls))) 5583 goto read_again; 5584 5585 count++; 5586 continue; 5587 } else if (xdp_res & (STMMAC_XDP_TX | 5588 STMMAC_XDP_REDIRECT)) { 5589 xdp_status |= xdp_res; 5590 buf->page = NULL; 5591 skb = NULL; 5592 count++; 5593 continue; 5594 } 5595 } 5596 } 5597 5598 if (!skb) { 5599 /* XDP program may expand or reduce tail */ 5600 buf1_len = ctx.xdp.data_end - ctx.xdp.data; 5601 5602 skb = napi_alloc_skb(&ch->rx_napi, buf1_len); 5603 if (!skb) { 5604 rx_dropped++; 5605 count++; 5606 goto drain_data; 5607 } 5608 5609 /* XDP program may adjust header */ 5610 skb_copy_to_linear_data(skb, ctx.xdp.data, buf1_len); 5611 skb_put(skb, buf1_len); 5612 5613 /* Data payload copied into SKB, page ready for recycle */ 5614 page_pool_recycle_direct(rx_q->page_pool, buf->page); 5615 buf->page = NULL; 5616 } else if (buf1_len) { 5617 dma_sync_single_for_cpu(priv->device, buf->addr, 5618 buf1_len, dma_dir); 5619 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, 5620 buf->page, buf->page_offset, buf1_len, 5621 priv->dma_conf.dma_buf_sz); 5622 5623 /* Data payload appended into SKB */ 5624 skb_mark_for_recycle(skb); 5625 buf->page = NULL; 5626 } 5627 5628 if (buf2_len) { 5629 dma_sync_single_for_cpu(priv->device, buf->sec_addr, 5630 buf2_len, dma_dir); 5631 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, 5632 buf->sec_page, 0, buf2_len, 5633 priv->dma_conf.dma_buf_sz); 5634 5635 /* Data payload appended into SKB */ 5636 skb_mark_for_recycle(skb); 5637 buf->sec_page = NULL; 5638 } 5639 5640 drain_data: 5641 if (likely(status & rx_not_ls)) 5642 goto read_again; 5643 if (!skb) 5644 continue; 5645 5646 /* Got entire packet into SKB. Finish it. */ 5647 5648 stmmac_get_rx_hwtstamp(priv, p, np, skb); 5649 5650 if (priv->hw->hw_vlan_en) 5651 /* MAC level stripping. */ 5652 stmmac_rx_hw_vlan(priv, priv->hw, p, skb); 5653 else 5654 /* Driver level stripping. */ 5655 stmmac_rx_vlan(priv->dev, skb); 5656 5657 skb->protocol = eth_type_trans(skb, priv->dev); 5658 5659 if (unlikely(!coe) || !stmmac_has_ip_ethertype(skb)) 5660 skb_checksum_none_assert(skb); 5661 else 5662 skb->ip_summed = CHECKSUM_UNNECESSARY; 5663 5664 if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type)) 5665 skb_set_hash(skb, hash, hash_type); 5666 5667 skb_record_rx_queue(skb, queue); 5668 napi_gro_receive(&ch->rx_napi, skb); 5669 skb = NULL; 5670 5671 rx_packets++; 5672 rx_bytes += len; 5673 count++; 5674 } 5675 5676 if (status & rx_not_ls || skb) { 5677 rx_q->state_saved = true; 5678 rx_q->state.skb = skb; 5679 rx_q->state.error = error; 5680 rx_q->state.len = len; 5681 } 5682 5683 stmmac_finalize_xdp_rx(priv, xdp_status); 5684 5685 stmmac_rx_refill(priv, queue); 5686 5687 u64_stats_update_begin(&rxq_stats->napi_syncp); 5688 u64_stats_add(&rxq_stats->napi.rx_packets, rx_packets); 5689 u64_stats_add(&rxq_stats->napi.rx_bytes, rx_bytes); 5690 u64_stats_add(&rxq_stats->napi.rx_pkt_n, count); 5691 u64_stats_update_end(&rxq_stats->napi_syncp); 5692 5693 priv->xstats.rx_dropped += rx_dropped; 5694 priv->xstats.rx_errors += rx_errors; 5695 5696 return count; 5697 } 5698 5699 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget) 5700 { 5701 struct stmmac_channel *ch = 5702 container_of(napi, struct stmmac_channel, rx_napi); 5703 struct stmmac_priv *priv = ch->priv_data; 5704 struct stmmac_rxq_stats *rxq_stats; 5705 u32 chan = ch->index; 5706 int work_done; 5707 5708 rxq_stats = &priv->xstats.rxq_stats[chan]; 5709 u64_stats_update_begin(&rxq_stats->napi_syncp); 5710 u64_stats_inc(&rxq_stats->napi.poll); 5711 u64_stats_update_end(&rxq_stats->napi_syncp); 5712 5713 work_done = stmmac_rx(priv, budget, chan); 5714 if (work_done < budget && napi_complete_done(napi, work_done)) { 5715 unsigned long flags; 5716 5717 spin_lock_irqsave(&ch->lock, flags); 5718 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0); 5719 spin_unlock_irqrestore(&ch->lock, flags); 5720 } 5721 5722 return work_done; 5723 } 5724 5725 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget) 5726 { 5727 struct stmmac_channel *ch = 5728 container_of(napi, struct stmmac_channel, tx_napi); 5729 struct stmmac_priv *priv = ch->priv_data; 5730 struct stmmac_txq_stats *txq_stats; 5731 bool pending_packets = false; 5732 u32 chan = ch->index; 5733 int work_done; 5734 5735 txq_stats = &priv->xstats.txq_stats[chan]; 5736 u64_stats_update_begin(&txq_stats->napi_syncp); 5737 u64_stats_inc(&txq_stats->napi.poll); 5738 u64_stats_update_end(&txq_stats->napi_syncp); 5739 5740 work_done = stmmac_tx_clean(priv, budget, chan, &pending_packets); 5741 work_done = min(work_done, budget); 5742 5743 if (work_done < budget && napi_complete_done(napi, work_done)) { 5744 unsigned long flags; 5745 5746 spin_lock_irqsave(&ch->lock, flags); 5747 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1); 5748 spin_unlock_irqrestore(&ch->lock, flags); 5749 } 5750 5751 /* TX still have packet to handle, check if we need to arm tx timer */ 5752 if (pending_packets) 5753 stmmac_tx_timer_arm(priv, chan); 5754 5755 return work_done; 5756 } 5757 5758 static int stmmac_napi_poll_rxtx(struct napi_struct *napi, int budget) 5759 { 5760 struct stmmac_channel *ch = 5761 container_of(napi, struct stmmac_channel, rxtx_napi); 5762 struct stmmac_priv *priv = ch->priv_data; 5763 bool tx_pending_packets = false; 5764 int rx_done, tx_done, rxtx_done; 5765 struct stmmac_rxq_stats *rxq_stats; 5766 struct stmmac_txq_stats *txq_stats; 5767 u32 chan = ch->index; 5768 5769 rxq_stats = &priv->xstats.rxq_stats[chan]; 5770 u64_stats_update_begin(&rxq_stats->napi_syncp); 5771 u64_stats_inc(&rxq_stats->napi.poll); 5772 u64_stats_update_end(&rxq_stats->napi_syncp); 5773 5774 txq_stats = &priv->xstats.txq_stats[chan]; 5775 u64_stats_update_begin(&txq_stats->napi_syncp); 5776 u64_stats_inc(&txq_stats->napi.poll); 5777 u64_stats_update_end(&txq_stats->napi_syncp); 5778 5779 tx_done = stmmac_tx_clean(priv, budget, chan, &tx_pending_packets); 5780 tx_done = min(tx_done, budget); 5781 5782 rx_done = stmmac_rx_zc(priv, budget, chan); 5783 5784 rxtx_done = max(tx_done, rx_done); 5785 5786 /* If either TX or RX work is not complete, return budget 5787 * and keep pooling 5788 */ 5789 if (rxtx_done >= budget) 5790 return budget; 5791 5792 /* all work done, exit the polling mode */ 5793 if (napi_complete_done(napi, rxtx_done)) { 5794 unsigned long flags; 5795 5796 spin_lock_irqsave(&ch->lock, flags); 5797 /* Both RX and TX work done are compelte, 5798 * so enable both RX & TX IRQs. 5799 */ 5800 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1); 5801 spin_unlock_irqrestore(&ch->lock, flags); 5802 } 5803 5804 /* TX still have packet to handle, check if we need to arm tx timer */ 5805 if (tx_pending_packets) 5806 stmmac_tx_timer_arm(priv, chan); 5807 5808 return min(rxtx_done, budget - 1); 5809 } 5810 5811 /** 5812 * stmmac_tx_timeout 5813 * @dev : Pointer to net device structure 5814 * @txqueue: the index of the hanging transmit queue 5815 * Description: this function is called when a packet transmission fails to 5816 * complete within a reasonable time. The driver will mark the error in the 5817 * netdev structure and arrange for the device to be reset to a sane state 5818 * in order to transmit a new packet. 5819 */ 5820 static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue) 5821 { 5822 struct stmmac_priv *priv = netdev_priv(dev); 5823 5824 stmmac_global_err(priv); 5825 } 5826 5827 /** 5828 * stmmac_set_rx_mode - entry point for multicast addressing 5829 * @dev : pointer to the device structure 5830 * Description: 5831 * This function is a driver entry point which gets called by the kernel 5832 * whenever multicast addresses must be enabled/disabled. 5833 * Return value: 5834 * void. 5835 */ 5836 static void stmmac_set_rx_mode(struct net_device *dev) 5837 { 5838 struct stmmac_priv *priv = netdev_priv(dev); 5839 5840 stmmac_set_filter(priv, priv->hw, dev); 5841 } 5842 5843 /** 5844 * stmmac_change_mtu - entry point to change MTU size for the device. 5845 * @dev : device pointer. 5846 * @new_mtu : the new MTU size for the device. 5847 * Description: the Maximum Transfer Unit (MTU) is used by the network layer 5848 * to drive packet transmission. Ethernet has an MTU of 1500 octets 5849 * (ETH_DATA_LEN). This value can be changed with ifconfig. 5850 * Return value: 5851 * 0 on success and an appropriate (-)ve integer as defined in errno.h 5852 * file on failure. 5853 */ 5854 static int stmmac_change_mtu(struct net_device *dev, int new_mtu) 5855 { 5856 struct stmmac_priv *priv = netdev_priv(dev); 5857 int txfifosz = priv->plat->tx_fifo_size; 5858 struct stmmac_dma_conf *dma_conf; 5859 const int mtu = new_mtu; 5860 int ret; 5861 5862 if (txfifosz == 0) 5863 txfifosz = priv->dma_cap.tx_fifo_size; 5864 5865 txfifosz /= priv->plat->tx_queues_to_use; 5866 5867 if (stmmac_xdp_is_enabled(priv) && new_mtu > ETH_DATA_LEN) { 5868 netdev_dbg(priv->dev, "Jumbo frames not supported for XDP\n"); 5869 return -EINVAL; 5870 } 5871 5872 new_mtu = STMMAC_ALIGN(new_mtu); 5873 5874 /* If condition true, FIFO is too small or MTU too large */ 5875 if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB)) 5876 return -EINVAL; 5877 5878 if (netif_running(dev)) { 5879 netdev_dbg(priv->dev, "restarting interface to change its MTU\n"); 5880 /* Try to allocate the new DMA conf with the new mtu */ 5881 dma_conf = stmmac_setup_dma_desc(priv, mtu); 5882 if (IS_ERR(dma_conf)) { 5883 netdev_err(priv->dev, "failed allocating new dma conf for new MTU %d\n", 5884 mtu); 5885 return PTR_ERR(dma_conf); 5886 } 5887 5888 stmmac_release(dev); 5889 5890 ret = __stmmac_open(dev, dma_conf); 5891 if (ret) { 5892 free_dma_desc_resources(priv, dma_conf); 5893 kfree(dma_conf); 5894 netdev_err(priv->dev, "failed reopening the interface after MTU change\n"); 5895 return ret; 5896 } 5897 5898 kfree(dma_conf); 5899 5900 stmmac_set_rx_mode(dev); 5901 } 5902 5903 dev->mtu = mtu; 5904 netdev_update_features(dev); 5905 5906 return 0; 5907 } 5908 5909 static netdev_features_t stmmac_fix_features(struct net_device *dev, 5910 netdev_features_t features) 5911 { 5912 struct stmmac_priv *priv = netdev_priv(dev); 5913 5914 if (priv->plat->rx_coe == STMMAC_RX_COE_NONE) 5915 features &= ~NETIF_F_RXCSUM; 5916 5917 if (!priv->plat->tx_coe) 5918 features &= ~NETIF_F_CSUM_MASK; 5919 5920 /* Some GMAC devices have a bugged Jumbo frame support that 5921 * needs to have the Tx COE disabled for oversized frames 5922 * (due to limited buffer sizes). In this case we disable 5923 * the TX csum insertion in the TDES and not use SF. 5924 */ 5925 if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN)) 5926 features &= ~NETIF_F_CSUM_MASK; 5927 5928 /* Disable tso if asked by ethtool */ 5929 if ((priv->plat->flags & STMMAC_FLAG_TSO_EN) && (priv->dma_cap.tsoen)) { 5930 if (features & NETIF_F_TSO) 5931 priv->tso = true; 5932 else 5933 priv->tso = false; 5934 } 5935 5936 return features; 5937 } 5938 5939 static int stmmac_set_features(struct net_device *netdev, 5940 netdev_features_t features) 5941 { 5942 struct stmmac_priv *priv = netdev_priv(netdev); 5943 5944 /* Keep the COE Type in case of csum is supporting */ 5945 if (features & NETIF_F_RXCSUM) 5946 priv->hw->rx_csum = priv->plat->rx_coe; 5947 else 5948 priv->hw->rx_csum = 0; 5949 /* No check needed because rx_coe has been set before and it will be 5950 * fixed in case of issue. 5951 */ 5952 stmmac_rx_ipc(priv, priv->hw); 5953 5954 if (priv->sph_cap) { 5955 bool sph_en = (priv->hw->rx_csum > 0) && priv->sph; 5956 u32 chan; 5957 5958 for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++) 5959 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan); 5960 } 5961 5962 if (features & NETIF_F_HW_VLAN_CTAG_RX) 5963 priv->hw->hw_vlan_en = true; 5964 else 5965 priv->hw->hw_vlan_en = false; 5966 5967 stmmac_set_hw_vlan_mode(priv, priv->hw); 5968 5969 return 0; 5970 } 5971 5972 static void stmmac_fpe_event_status(struct stmmac_priv *priv, int status) 5973 { 5974 struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg; 5975 enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state; 5976 enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state; 5977 bool *hs_enable = &fpe_cfg->hs_enable; 5978 5979 if (status == FPE_EVENT_UNKNOWN || !*hs_enable) 5980 return; 5981 5982 /* If LP has sent verify mPacket, LP is FPE capable */ 5983 if ((status & FPE_EVENT_RVER) == FPE_EVENT_RVER) { 5984 if (*lp_state < FPE_STATE_CAPABLE) 5985 *lp_state = FPE_STATE_CAPABLE; 5986 5987 /* If user has requested FPE enable, quickly response */ 5988 if (*hs_enable) 5989 stmmac_fpe_send_mpacket(priv, priv->ioaddr, 5990 fpe_cfg, 5991 MPACKET_RESPONSE); 5992 } 5993 5994 /* If Local has sent verify mPacket, Local is FPE capable */ 5995 if ((status & FPE_EVENT_TVER) == FPE_EVENT_TVER) { 5996 if (*lo_state < FPE_STATE_CAPABLE) 5997 *lo_state = FPE_STATE_CAPABLE; 5998 } 5999 6000 /* If LP has sent response mPacket, LP is entering FPE ON */ 6001 if ((status & FPE_EVENT_RRSP) == FPE_EVENT_RRSP) 6002 *lp_state = FPE_STATE_ENTERING_ON; 6003 6004 /* If Local has sent response mPacket, Local is entering FPE ON */ 6005 if ((status & FPE_EVENT_TRSP) == FPE_EVENT_TRSP) 6006 *lo_state = FPE_STATE_ENTERING_ON; 6007 6008 if (!test_bit(__FPE_REMOVING, &priv->fpe_task_state) && 6009 !test_and_set_bit(__FPE_TASK_SCHED, &priv->fpe_task_state) && 6010 priv->fpe_wq) { 6011 queue_work(priv->fpe_wq, &priv->fpe_task); 6012 } 6013 } 6014 6015 static void stmmac_common_interrupt(struct stmmac_priv *priv) 6016 { 6017 u32 rx_cnt = priv->plat->rx_queues_to_use; 6018 u32 tx_cnt = priv->plat->tx_queues_to_use; 6019 u32 queues_count; 6020 u32 queue; 6021 bool xmac; 6022 6023 xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; 6024 queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt; 6025 6026 if (priv->irq_wake) 6027 pm_wakeup_event(priv->device, 0); 6028 6029 if (priv->dma_cap.estsel) 6030 stmmac_est_irq_status(priv, priv, priv->dev, 6031 &priv->xstats, tx_cnt); 6032 6033 if (priv->dma_cap.fpesel) { 6034 int status = stmmac_fpe_irq_status(priv, priv->ioaddr, 6035 priv->dev); 6036 6037 stmmac_fpe_event_status(priv, status); 6038 } 6039 6040 /* To handle GMAC own interrupts */ 6041 if ((priv->plat->has_gmac) || xmac) { 6042 int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats); 6043 6044 if (unlikely(status)) { 6045 /* For LPI we need to save the tx status */ 6046 if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE) 6047 priv->tx_path_in_lpi_mode = true; 6048 if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE) 6049 priv->tx_path_in_lpi_mode = false; 6050 } 6051 6052 for (queue = 0; queue < queues_count; queue++) 6053 stmmac_host_mtl_irq_status(priv, priv->hw, queue); 6054 6055 /* PCS link status */ 6056 if (priv->hw->pcs && 6057 !(priv->plat->flags & STMMAC_FLAG_HAS_INTEGRATED_PCS)) { 6058 if (priv->xstats.pcs_link) 6059 netif_carrier_on(priv->dev); 6060 else 6061 netif_carrier_off(priv->dev); 6062 } 6063 6064 stmmac_timestamp_interrupt(priv, priv); 6065 } 6066 } 6067 6068 /** 6069 * stmmac_interrupt - main ISR 6070 * @irq: interrupt number. 6071 * @dev_id: to pass the net device pointer. 6072 * Description: this is the main driver interrupt service routine. 6073 * It can call: 6074 * o DMA service routine (to manage incoming frame reception and transmission 6075 * status) 6076 * o Core interrupts to manage: remote wake-up, management counter, LPI 6077 * interrupts. 6078 */ 6079 static irqreturn_t stmmac_interrupt(int irq, void *dev_id) 6080 { 6081 struct net_device *dev = (struct net_device *)dev_id; 6082 struct stmmac_priv *priv = netdev_priv(dev); 6083 6084 /* Check if adapter is up */ 6085 if (test_bit(STMMAC_DOWN, &priv->state)) 6086 return IRQ_HANDLED; 6087 6088 /* Check ASP error if it isn't delivered via an individual IRQ */ 6089 if (priv->sfty_irq <= 0 && stmmac_safety_feat_interrupt(priv)) 6090 return IRQ_HANDLED; 6091 6092 /* To handle Common interrupts */ 6093 stmmac_common_interrupt(priv); 6094 6095 /* To handle DMA interrupts */ 6096 stmmac_dma_interrupt(priv); 6097 6098 return IRQ_HANDLED; 6099 } 6100 6101 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id) 6102 { 6103 struct net_device *dev = (struct net_device *)dev_id; 6104 struct stmmac_priv *priv = netdev_priv(dev); 6105 6106 /* Check if adapter is up */ 6107 if (test_bit(STMMAC_DOWN, &priv->state)) 6108 return IRQ_HANDLED; 6109 6110 /* To handle Common interrupts */ 6111 stmmac_common_interrupt(priv); 6112 6113 return IRQ_HANDLED; 6114 } 6115 6116 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id) 6117 { 6118 struct net_device *dev = (struct net_device *)dev_id; 6119 struct stmmac_priv *priv = netdev_priv(dev); 6120 6121 /* Check if adapter is up */ 6122 if (test_bit(STMMAC_DOWN, &priv->state)) 6123 return IRQ_HANDLED; 6124 6125 /* Check if a fatal error happened */ 6126 stmmac_safety_feat_interrupt(priv); 6127 6128 return IRQ_HANDLED; 6129 } 6130 6131 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data) 6132 { 6133 struct stmmac_tx_queue *tx_q = (struct stmmac_tx_queue *)data; 6134 struct stmmac_dma_conf *dma_conf; 6135 int chan = tx_q->queue_index; 6136 struct stmmac_priv *priv; 6137 int status; 6138 6139 dma_conf = container_of(tx_q, struct stmmac_dma_conf, tx_queue[chan]); 6140 priv = container_of(dma_conf, struct stmmac_priv, dma_conf); 6141 6142 /* Check if adapter is up */ 6143 if (test_bit(STMMAC_DOWN, &priv->state)) 6144 return IRQ_HANDLED; 6145 6146 status = stmmac_napi_check(priv, chan, DMA_DIR_TX); 6147 6148 if (unlikely(status & tx_hard_error_bump_tc)) { 6149 /* Try to bump up the dma threshold on this failure */ 6150 stmmac_bump_dma_threshold(priv, chan); 6151 } else if (unlikely(status == tx_hard_error)) { 6152 stmmac_tx_err(priv, chan); 6153 } 6154 6155 return IRQ_HANDLED; 6156 } 6157 6158 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data) 6159 { 6160 struct stmmac_rx_queue *rx_q = (struct stmmac_rx_queue *)data; 6161 struct stmmac_dma_conf *dma_conf; 6162 int chan = rx_q->queue_index; 6163 struct stmmac_priv *priv; 6164 6165 dma_conf = container_of(rx_q, struct stmmac_dma_conf, rx_queue[chan]); 6166 priv = container_of(dma_conf, struct stmmac_priv, dma_conf); 6167 6168 /* Check if adapter is up */ 6169 if (test_bit(STMMAC_DOWN, &priv->state)) 6170 return IRQ_HANDLED; 6171 6172 stmmac_napi_check(priv, chan, DMA_DIR_RX); 6173 6174 return IRQ_HANDLED; 6175 } 6176 6177 /** 6178 * stmmac_ioctl - Entry point for the Ioctl 6179 * @dev: Device pointer. 6180 * @rq: An IOCTL specefic structure, that can contain a pointer to 6181 * a proprietary structure used to pass information to the driver. 6182 * @cmd: IOCTL command 6183 * Description: 6184 * Currently it supports the phy_mii_ioctl(...) and HW time stamping. 6185 */ 6186 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 6187 { 6188 struct stmmac_priv *priv = netdev_priv (dev); 6189 int ret = -EOPNOTSUPP; 6190 6191 if (!netif_running(dev)) 6192 return -EINVAL; 6193 6194 switch (cmd) { 6195 case SIOCGMIIPHY: 6196 case SIOCGMIIREG: 6197 case SIOCSMIIREG: 6198 ret = phylink_mii_ioctl(priv->phylink, rq, cmd); 6199 break; 6200 case SIOCSHWTSTAMP: 6201 ret = stmmac_hwtstamp_set(dev, rq); 6202 break; 6203 case SIOCGHWTSTAMP: 6204 ret = stmmac_hwtstamp_get(dev, rq); 6205 break; 6206 default: 6207 break; 6208 } 6209 6210 return ret; 6211 } 6212 6213 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 6214 void *cb_priv) 6215 { 6216 struct stmmac_priv *priv = cb_priv; 6217 int ret = -EOPNOTSUPP; 6218 6219 if (!tc_cls_can_offload_and_chain0(priv->dev, type_data)) 6220 return ret; 6221 6222 __stmmac_disable_all_queues(priv); 6223 6224 switch (type) { 6225 case TC_SETUP_CLSU32: 6226 ret = stmmac_tc_setup_cls_u32(priv, priv, type_data); 6227 break; 6228 case TC_SETUP_CLSFLOWER: 6229 ret = stmmac_tc_setup_cls(priv, priv, type_data); 6230 break; 6231 default: 6232 break; 6233 } 6234 6235 stmmac_enable_all_queues(priv); 6236 return ret; 6237 } 6238 6239 static LIST_HEAD(stmmac_block_cb_list); 6240 6241 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type, 6242 void *type_data) 6243 { 6244 struct stmmac_priv *priv = netdev_priv(ndev); 6245 6246 switch (type) { 6247 case TC_QUERY_CAPS: 6248 return stmmac_tc_query_caps(priv, priv, type_data); 6249 case TC_SETUP_BLOCK: 6250 return flow_block_cb_setup_simple(type_data, 6251 &stmmac_block_cb_list, 6252 stmmac_setup_tc_block_cb, 6253 priv, priv, true); 6254 case TC_SETUP_QDISC_CBS: 6255 return stmmac_tc_setup_cbs(priv, priv, type_data); 6256 case TC_SETUP_QDISC_TAPRIO: 6257 return stmmac_tc_setup_taprio(priv, priv, type_data); 6258 case TC_SETUP_QDISC_ETF: 6259 return stmmac_tc_setup_etf(priv, priv, type_data); 6260 default: 6261 return -EOPNOTSUPP; 6262 } 6263 } 6264 6265 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb, 6266 struct net_device *sb_dev) 6267 { 6268 int gso = skb_shinfo(skb)->gso_type; 6269 6270 if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) { 6271 /* 6272 * There is no way to determine the number of TSO/USO 6273 * capable Queues. Let's use always the Queue 0 6274 * because if TSO/USO is supported then at least this 6275 * one will be capable. 6276 */ 6277 return 0; 6278 } 6279 6280 return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues; 6281 } 6282 6283 static int stmmac_set_mac_address(struct net_device *ndev, void *addr) 6284 { 6285 struct stmmac_priv *priv = netdev_priv(ndev); 6286 int ret = 0; 6287 6288 ret = pm_runtime_resume_and_get(priv->device); 6289 if (ret < 0) 6290 return ret; 6291 6292 ret = eth_mac_addr(ndev, addr); 6293 if (ret) 6294 goto set_mac_error; 6295 6296 stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0); 6297 6298 set_mac_error: 6299 pm_runtime_put(priv->device); 6300 6301 return ret; 6302 } 6303 6304 #ifdef CONFIG_DEBUG_FS 6305 static struct dentry *stmmac_fs_dir; 6306 6307 static void sysfs_display_ring(void *head, int size, int extend_desc, 6308 struct seq_file *seq, dma_addr_t dma_phy_addr) 6309 { 6310 struct dma_extended_desc *ep = (struct dma_extended_desc *)head; 6311 struct dma_desc *p = (struct dma_desc *)head; 6312 unsigned int desc_size; 6313 dma_addr_t dma_addr; 6314 int i; 6315 6316 desc_size = extend_desc ? sizeof(*ep) : sizeof(*p); 6317 for (i = 0; i < size; i++) { 6318 dma_addr = dma_phy_addr + i * desc_size; 6319 seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n", 6320 i, &dma_addr, 6321 le32_to_cpu(p->des0), le32_to_cpu(p->des1), 6322 le32_to_cpu(p->des2), le32_to_cpu(p->des3)); 6323 if (extend_desc) 6324 p = &(++ep)->basic; 6325 else 6326 p++; 6327 } 6328 } 6329 6330 static int stmmac_rings_status_show(struct seq_file *seq, void *v) 6331 { 6332 struct net_device *dev = seq->private; 6333 struct stmmac_priv *priv = netdev_priv(dev); 6334 u32 rx_count = priv->plat->rx_queues_to_use; 6335 u32 tx_count = priv->plat->tx_queues_to_use; 6336 u32 queue; 6337 6338 if ((dev->flags & IFF_UP) == 0) 6339 return 0; 6340 6341 for (queue = 0; queue < rx_count; queue++) { 6342 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue]; 6343 6344 seq_printf(seq, "RX Queue %d:\n", queue); 6345 6346 if (priv->extend_desc) { 6347 seq_printf(seq, "Extended descriptor ring:\n"); 6348 sysfs_display_ring((void *)rx_q->dma_erx, 6349 priv->dma_conf.dma_rx_size, 1, seq, rx_q->dma_rx_phy); 6350 } else { 6351 seq_printf(seq, "Descriptor ring:\n"); 6352 sysfs_display_ring((void *)rx_q->dma_rx, 6353 priv->dma_conf.dma_rx_size, 0, seq, rx_q->dma_rx_phy); 6354 } 6355 } 6356 6357 for (queue = 0; queue < tx_count; queue++) { 6358 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue]; 6359 6360 seq_printf(seq, "TX Queue %d:\n", queue); 6361 6362 if (priv->extend_desc) { 6363 seq_printf(seq, "Extended descriptor ring:\n"); 6364 sysfs_display_ring((void *)tx_q->dma_etx, 6365 priv->dma_conf.dma_tx_size, 1, seq, tx_q->dma_tx_phy); 6366 } else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) { 6367 seq_printf(seq, "Descriptor ring:\n"); 6368 sysfs_display_ring((void *)tx_q->dma_tx, 6369 priv->dma_conf.dma_tx_size, 0, seq, tx_q->dma_tx_phy); 6370 } 6371 } 6372 6373 return 0; 6374 } 6375 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status); 6376 6377 static int stmmac_dma_cap_show(struct seq_file *seq, void *v) 6378 { 6379 static const char * const dwxgmac_timestamp_source[] = { 6380 "None", 6381 "Internal", 6382 "External", 6383 "Both", 6384 }; 6385 static const char * const dwxgmac_safety_feature_desc[] = { 6386 "No", 6387 "All Safety Features with ECC and Parity", 6388 "All Safety Features without ECC or Parity", 6389 "All Safety Features with Parity Only", 6390 "ECC Only", 6391 "UNDEFINED", 6392 "UNDEFINED", 6393 "UNDEFINED", 6394 }; 6395 struct net_device *dev = seq->private; 6396 struct stmmac_priv *priv = netdev_priv(dev); 6397 6398 if (!priv->hw_cap_support) { 6399 seq_printf(seq, "DMA HW features not supported\n"); 6400 return 0; 6401 } 6402 6403 seq_printf(seq, "==============================\n"); 6404 seq_printf(seq, "\tDMA HW features\n"); 6405 seq_printf(seq, "==============================\n"); 6406 6407 seq_printf(seq, "\t10/100 Mbps: %s\n", 6408 (priv->dma_cap.mbps_10_100) ? "Y" : "N"); 6409 seq_printf(seq, "\t1000 Mbps: %s\n", 6410 (priv->dma_cap.mbps_1000) ? "Y" : "N"); 6411 seq_printf(seq, "\tHalf duplex: %s\n", 6412 (priv->dma_cap.half_duplex) ? "Y" : "N"); 6413 if (priv->plat->has_xgmac) { 6414 seq_printf(seq, 6415 "\tNumber of Additional MAC address registers: %d\n", 6416 priv->dma_cap.multi_addr); 6417 } else { 6418 seq_printf(seq, "\tHash Filter: %s\n", 6419 (priv->dma_cap.hash_filter) ? "Y" : "N"); 6420 seq_printf(seq, "\tMultiple MAC address registers: %s\n", 6421 (priv->dma_cap.multi_addr) ? "Y" : "N"); 6422 } 6423 seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n", 6424 (priv->dma_cap.pcs) ? "Y" : "N"); 6425 seq_printf(seq, "\tSMA (MDIO) Interface: %s\n", 6426 (priv->dma_cap.sma_mdio) ? "Y" : "N"); 6427 seq_printf(seq, "\tPMT Remote wake up: %s\n", 6428 (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N"); 6429 seq_printf(seq, "\tPMT Magic Frame: %s\n", 6430 (priv->dma_cap.pmt_magic_frame) ? "Y" : "N"); 6431 seq_printf(seq, "\tRMON module: %s\n", 6432 (priv->dma_cap.rmon) ? "Y" : "N"); 6433 seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n", 6434 (priv->dma_cap.time_stamp) ? "Y" : "N"); 6435 seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n", 6436 (priv->dma_cap.atime_stamp) ? "Y" : "N"); 6437 if (priv->plat->has_xgmac) 6438 seq_printf(seq, "\tTimestamp System Time Source: %s\n", 6439 dwxgmac_timestamp_source[priv->dma_cap.tssrc]); 6440 seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n", 6441 (priv->dma_cap.eee) ? "Y" : "N"); 6442 seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N"); 6443 seq_printf(seq, "\tChecksum Offload in TX: %s\n", 6444 (priv->dma_cap.tx_coe) ? "Y" : "N"); 6445 if (priv->synopsys_id >= DWMAC_CORE_4_00 || 6446 priv->plat->has_xgmac) { 6447 seq_printf(seq, "\tIP Checksum Offload in RX: %s\n", 6448 (priv->dma_cap.rx_coe) ? "Y" : "N"); 6449 } else { 6450 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n", 6451 (priv->dma_cap.rx_coe_type1) ? "Y" : "N"); 6452 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n", 6453 (priv->dma_cap.rx_coe_type2) ? "Y" : "N"); 6454 seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n", 6455 (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N"); 6456 } 6457 seq_printf(seq, "\tNumber of Additional RX channel: %d\n", 6458 priv->dma_cap.number_rx_channel); 6459 seq_printf(seq, "\tNumber of Additional TX channel: %d\n", 6460 priv->dma_cap.number_tx_channel); 6461 seq_printf(seq, "\tNumber of Additional RX queues: %d\n", 6462 priv->dma_cap.number_rx_queues); 6463 seq_printf(seq, "\tNumber of Additional TX queues: %d\n", 6464 priv->dma_cap.number_tx_queues); 6465 seq_printf(seq, "\tEnhanced descriptors: %s\n", 6466 (priv->dma_cap.enh_desc) ? "Y" : "N"); 6467 seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size); 6468 seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size); 6469 seq_printf(seq, "\tHash Table Size: %lu\n", priv->dma_cap.hash_tb_sz ? 6470 (BIT(priv->dma_cap.hash_tb_sz) << 5) : 0); 6471 seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N"); 6472 seq_printf(seq, "\tNumber of PPS Outputs: %d\n", 6473 priv->dma_cap.pps_out_num); 6474 seq_printf(seq, "\tSafety Features: %s\n", 6475 dwxgmac_safety_feature_desc[priv->dma_cap.asp]); 6476 seq_printf(seq, "\tFlexible RX Parser: %s\n", 6477 priv->dma_cap.frpsel ? "Y" : "N"); 6478 seq_printf(seq, "\tEnhanced Addressing: %d\n", 6479 priv->dma_cap.host_dma_width); 6480 seq_printf(seq, "\tReceive Side Scaling: %s\n", 6481 priv->dma_cap.rssen ? "Y" : "N"); 6482 seq_printf(seq, "\tVLAN Hash Filtering: %s\n", 6483 priv->dma_cap.vlhash ? "Y" : "N"); 6484 seq_printf(seq, "\tSplit Header: %s\n", 6485 priv->dma_cap.sphen ? "Y" : "N"); 6486 seq_printf(seq, "\tVLAN TX Insertion: %s\n", 6487 priv->dma_cap.vlins ? "Y" : "N"); 6488 seq_printf(seq, "\tDouble VLAN: %s\n", 6489 priv->dma_cap.dvlan ? "Y" : "N"); 6490 seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n", 6491 priv->dma_cap.l3l4fnum); 6492 seq_printf(seq, "\tARP Offloading: %s\n", 6493 priv->dma_cap.arpoffsel ? "Y" : "N"); 6494 seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n", 6495 priv->dma_cap.estsel ? "Y" : "N"); 6496 seq_printf(seq, "\tFrame Preemption (FPE): %s\n", 6497 priv->dma_cap.fpesel ? "Y" : "N"); 6498 seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n", 6499 priv->dma_cap.tbssel ? "Y" : "N"); 6500 seq_printf(seq, "\tNumber of DMA Channels Enabled for TBS: %d\n", 6501 priv->dma_cap.tbs_ch_num); 6502 seq_printf(seq, "\tPer-Stream Filtering: %s\n", 6503 priv->dma_cap.sgfsel ? "Y" : "N"); 6504 seq_printf(seq, "\tTX Timestamp FIFO Depth: %lu\n", 6505 BIT(priv->dma_cap.ttsfd) >> 1); 6506 seq_printf(seq, "\tNumber of Traffic Classes: %d\n", 6507 priv->dma_cap.numtc); 6508 seq_printf(seq, "\tDCB Feature: %s\n", 6509 priv->dma_cap.dcben ? "Y" : "N"); 6510 seq_printf(seq, "\tIEEE 1588 High Word Register: %s\n", 6511 priv->dma_cap.advthword ? "Y" : "N"); 6512 seq_printf(seq, "\tPTP Offload: %s\n", 6513 priv->dma_cap.ptoen ? "Y" : "N"); 6514 seq_printf(seq, "\tOne-Step Timestamping: %s\n", 6515 priv->dma_cap.osten ? "Y" : "N"); 6516 seq_printf(seq, "\tPriority-Based Flow Control: %s\n", 6517 priv->dma_cap.pfcen ? "Y" : "N"); 6518 seq_printf(seq, "\tNumber of Flexible RX Parser Instructions: %lu\n", 6519 BIT(priv->dma_cap.frpes) << 6); 6520 seq_printf(seq, "\tNumber of Flexible RX Parser Parsable Bytes: %lu\n", 6521 BIT(priv->dma_cap.frpbs) << 6); 6522 seq_printf(seq, "\tParallel Instruction Processor Engines: %d\n", 6523 priv->dma_cap.frppipe_num); 6524 seq_printf(seq, "\tNumber of Extended VLAN Tag Filters: %lu\n", 6525 priv->dma_cap.nrvf_num ? 6526 (BIT(priv->dma_cap.nrvf_num) << 1) : 0); 6527 seq_printf(seq, "\tWidth of the Time Interval Field in GCL: %d\n", 6528 priv->dma_cap.estwid ? 4 * priv->dma_cap.estwid + 12 : 0); 6529 seq_printf(seq, "\tDepth of GCL: %lu\n", 6530 priv->dma_cap.estdep ? (BIT(priv->dma_cap.estdep) << 5) : 0); 6531 seq_printf(seq, "\tQueue/Channel-Based VLAN Tag Insertion on TX: %s\n", 6532 priv->dma_cap.cbtisel ? "Y" : "N"); 6533 seq_printf(seq, "\tNumber of Auxiliary Snapshot Inputs: %d\n", 6534 priv->dma_cap.aux_snapshot_n); 6535 seq_printf(seq, "\tOne-Step Timestamping for PTP over UDP/IP: %s\n", 6536 priv->dma_cap.pou_ost_en ? "Y" : "N"); 6537 seq_printf(seq, "\tEnhanced DMA: %s\n", 6538 priv->dma_cap.edma ? "Y" : "N"); 6539 seq_printf(seq, "\tDifferent Descriptor Cache: %s\n", 6540 priv->dma_cap.ediffc ? "Y" : "N"); 6541 seq_printf(seq, "\tVxLAN/NVGRE: %s\n", 6542 priv->dma_cap.vxn ? "Y" : "N"); 6543 seq_printf(seq, "\tDebug Memory Interface: %s\n", 6544 priv->dma_cap.dbgmem ? "Y" : "N"); 6545 seq_printf(seq, "\tNumber of Policing Counters: %lu\n", 6546 priv->dma_cap.pcsel ? BIT(priv->dma_cap.pcsel + 3) : 0); 6547 return 0; 6548 } 6549 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap); 6550 6551 /* Use network device events to rename debugfs file entries. 6552 */ 6553 static int stmmac_device_event(struct notifier_block *unused, 6554 unsigned long event, void *ptr) 6555 { 6556 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 6557 struct stmmac_priv *priv = netdev_priv(dev); 6558 6559 if (dev->netdev_ops != &stmmac_netdev_ops) 6560 goto done; 6561 6562 switch (event) { 6563 case NETDEV_CHANGENAME: 6564 if (priv->dbgfs_dir) 6565 priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir, 6566 priv->dbgfs_dir, 6567 stmmac_fs_dir, 6568 dev->name); 6569 break; 6570 } 6571 done: 6572 return NOTIFY_DONE; 6573 } 6574 6575 static struct notifier_block stmmac_notifier = { 6576 .notifier_call = stmmac_device_event, 6577 }; 6578 6579 static void stmmac_init_fs(struct net_device *dev) 6580 { 6581 struct stmmac_priv *priv = netdev_priv(dev); 6582 6583 rtnl_lock(); 6584 6585 /* Create per netdev entries */ 6586 priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir); 6587 6588 /* Entry to report DMA RX/TX rings */ 6589 debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev, 6590 &stmmac_rings_status_fops); 6591 6592 /* Entry to report the DMA HW features */ 6593 debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev, 6594 &stmmac_dma_cap_fops); 6595 6596 rtnl_unlock(); 6597 } 6598 6599 static void stmmac_exit_fs(struct net_device *dev) 6600 { 6601 struct stmmac_priv *priv = netdev_priv(dev); 6602 6603 debugfs_remove_recursive(priv->dbgfs_dir); 6604 } 6605 #endif /* CONFIG_DEBUG_FS */ 6606 6607 static u32 stmmac_vid_crc32_le(__le16 vid_le) 6608 { 6609 unsigned char *data = (unsigned char *)&vid_le; 6610 unsigned char data_byte = 0; 6611 u32 crc = ~0x0; 6612 u32 temp = 0; 6613 int i, bits; 6614 6615 bits = get_bitmask_order(VLAN_VID_MASK); 6616 for (i = 0; i < bits; i++) { 6617 if ((i % 8) == 0) 6618 data_byte = data[i / 8]; 6619 6620 temp = ((crc & 1) ^ data_byte) & 1; 6621 crc >>= 1; 6622 data_byte >>= 1; 6623 6624 if (temp) 6625 crc ^= 0xedb88320; 6626 } 6627 6628 return crc; 6629 } 6630 6631 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double) 6632 { 6633 u32 crc, hash = 0; 6634 __le16 pmatch = 0; 6635 int count = 0; 6636 u16 vid = 0; 6637 6638 for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) { 6639 __le16 vid_le = cpu_to_le16(vid); 6640 crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28; 6641 hash |= (1 << crc); 6642 count++; 6643 } 6644 6645 if (!priv->dma_cap.vlhash) { 6646 if (count > 2) /* VID = 0 always passes filter */ 6647 return -EOPNOTSUPP; 6648 6649 pmatch = cpu_to_le16(vid); 6650 hash = 0; 6651 } 6652 6653 return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double); 6654 } 6655 6656 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid) 6657 { 6658 struct stmmac_priv *priv = netdev_priv(ndev); 6659 bool is_double = false; 6660 int ret; 6661 6662 ret = pm_runtime_resume_and_get(priv->device); 6663 if (ret < 0) 6664 return ret; 6665 6666 if (be16_to_cpu(proto) == ETH_P_8021AD) 6667 is_double = true; 6668 6669 set_bit(vid, priv->active_vlans); 6670 ret = stmmac_vlan_update(priv, is_double); 6671 if (ret) { 6672 clear_bit(vid, priv->active_vlans); 6673 goto err_pm_put; 6674 } 6675 6676 if (priv->hw->num_vlan) { 6677 ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid); 6678 if (ret) 6679 goto err_pm_put; 6680 } 6681 err_pm_put: 6682 pm_runtime_put(priv->device); 6683 6684 return ret; 6685 } 6686 6687 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid) 6688 { 6689 struct stmmac_priv *priv = netdev_priv(ndev); 6690 bool is_double = false; 6691 int ret; 6692 6693 ret = pm_runtime_resume_and_get(priv->device); 6694 if (ret < 0) 6695 return ret; 6696 6697 if (be16_to_cpu(proto) == ETH_P_8021AD) 6698 is_double = true; 6699 6700 clear_bit(vid, priv->active_vlans); 6701 6702 if (priv->hw->num_vlan) { 6703 ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid); 6704 if (ret) 6705 goto del_vlan_error; 6706 } 6707 6708 ret = stmmac_vlan_update(priv, is_double); 6709 6710 del_vlan_error: 6711 pm_runtime_put(priv->device); 6712 6713 return ret; 6714 } 6715 6716 static int stmmac_bpf(struct net_device *dev, struct netdev_bpf *bpf) 6717 { 6718 struct stmmac_priv *priv = netdev_priv(dev); 6719 6720 switch (bpf->command) { 6721 case XDP_SETUP_PROG: 6722 return stmmac_xdp_set_prog(priv, bpf->prog, bpf->extack); 6723 case XDP_SETUP_XSK_POOL: 6724 return stmmac_xdp_setup_pool(priv, bpf->xsk.pool, 6725 bpf->xsk.queue_id); 6726 default: 6727 return -EOPNOTSUPP; 6728 } 6729 } 6730 6731 static int stmmac_xdp_xmit(struct net_device *dev, int num_frames, 6732 struct xdp_frame **frames, u32 flags) 6733 { 6734 struct stmmac_priv *priv = netdev_priv(dev); 6735 int cpu = smp_processor_id(); 6736 struct netdev_queue *nq; 6737 int i, nxmit = 0; 6738 int queue; 6739 6740 if (unlikely(test_bit(STMMAC_DOWN, &priv->state))) 6741 return -ENETDOWN; 6742 6743 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 6744 return -EINVAL; 6745 6746 queue = stmmac_xdp_get_tx_queue(priv, cpu); 6747 nq = netdev_get_tx_queue(priv->dev, queue); 6748 6749 __netif_tx_lock(nq, cpu); 6750 /* Avoids TX time-out as we are sharing with slow path */ 6751 txq_trans_cond_update(nq); 6752 6753 for (i = 0; i < num_frames; i++) { 6754 int res; 6755 6756 res = stmmac_xdp_xmit_xdpf(priv, queue, frames[i], true); 6757 if (res == STMMAC_XDP_CONSUMED) 6758 break; 6759 6760 nxmit++; 6761 } 6762 6763 if (flags & XDP_XMIT_FLUSH) { 6764 stmmac_flush_tx_descriptors(priv, queue); 6765 stmmac_tx_timer_arm(priv, queue); 6766 } 6767 6768 __netif_tx_unlock(nq); 6769 6770 return nxmit; 6771 } 6772 6773 void stmmac_disable_rx_queue(struct stmmac_priv *priv, u32 queue) 6774 { 6775 struct stmmac_channel *ch = &priv->channel[queue]; 6776 unsigned long flags; 6777 6778 spin_lock_irqsave(&ch->lock, flags); 6779 stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 1, 0); 6780 spin_unlock_irqrestore(&ch->lock, flags); 6781 6782 stmmac_stop_rx_dma(priv, queue); 6783 __free_dma_rx_desc_resources(priv, &priv->dma_conf, queue); 6784 } 6785 6786 void stmmac_enable_rx_queue(struct stmmac_priv *priv, u32 queue) 6787 { 6788 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue]; 6789 struct stmmac_channel *ch = &priv->channel[queue]; 6790 unsigned long flags; 6791 u32 buf_size; 6792 int ret; 6793 6794 ret = __alloc_dma_rx_desc_resources(priv, &priv->dma_conf, queue); 6795 if (ret) { 6796 netdev_err(priv->dev, "Failed to alloc RX desc.\n"); 6797 return; 6798 } 6799 6800 ret = __init_dma_rx_desc_rings(priv, &priv->dma_conf, queue, GFP_KERNEL); 6801 if (ret) { 6802 __free_dma_rx_desc_resources(priv, &priv->dma_conf, queue); 6803 netdev_err(priv->dev, "Failed to init RX desc.\n"); 6804 return; 6805 } 6806 6807 stmmac_reset_rx_queue(priv, queue); 6808 stmmac_clear_rx_descriptors(priv, &priv->dma_conf, queue); 6809 6810 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 6811 rx_q->dma_rx_phy, rx_q->queue_index); 6812 6813 rx_q->rx_tail_addr = rx_q->dma_rx_phy + (rx_q->buf_alloc_num * 6814 sizeof(struct dma_desc)); 6815 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, 6816 rx_q->rx_tail_addr, rx_q->queue_index); 6817 6818 if (rx_q->xsk_pool && rx_q->buf_alloc_num) { 6819 buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool); 6820 stmmac_set_dma_bfsize(priv, priv->ioaddr, 6821 buf_size, 6822 rx_q->queue_index); 6823 } else { 6824 stmmac_set_dma_bfsize(priv, priv->ioaddr, 6825 priv->dma_conf.dma_buf_sz, 6826 rx_q->queue_index); 6827 } 6828 6829 stmmac_start_rx_dma(priv, queue); 6830 6831 spin_lock_irqsave(&ch->lock, flags); 6832 stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 1, 0); 6833 spin_unlock_irqrestore(&ch->lock, flags); 6834 } 6835 6836 void stmmac_disable_tx_queue(struct stmmac_priv *priv, u32 queue) 6837 { 6838 struct stmmac_channel *ch = &priv->channel[queue]; 6839 unsigned long flags; 6840 6841 spin_lock_irqsave(&ch->lock, flags); 6842 stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 0, 1); 6843 spin_unlock_irqrestore(&ch->lock, flags); 6844 6845 stmmac_stop_tx_dma(priv, queue); 6846 __free_dma_tx_desc_resources(priv, &priv->dma_conf, queue); 6847 } 6848 6849 void stmmac_enable_tx_queue(struct stmmac_priv *priv, u32 queue) 6850 { 6851 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue]; 6852 struct stmmac_channel *ch = &priv->channel[queue]; 6853 unsigned long flags; 6854 int ret; 6855 6856 ret = __alloc_dma_tx_desc_resources(priv, &priv->dma_conf, queue); 6857 if (ret) { 6858 netdev_err(priv->dev, "Failed to alloc TX desc.\n"); 6859 return; 6860 } 6861 6862 ret = __init_dma_tx_desc_rings(priv, &priv->dma_conf, queue); 6863 if (ret) { 6864 __free_dma_tx_desc_resources(priv, &priv->dma_conf, queue); 6865 netdev_err(priv->dev, "Failed to init TX desc.\n"); 6866 return; 6867 } 6868 6869 stmmac_reset_tx_queue(priv, queue); 6870 stmmac_clear_tx_descriptors(priv, &priv->dma_conf, queue); 6871 6872 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 6873 tx_q->dma_tx_phy, tx_q->queue_index); 6874 6875 if (tx_q->tbs & STMMAC_TBS_AVAIL) 6876 stmmac_enable_tbs(priv, priv->ioaddr, 1, tx_q->queue_index); 6877 6878 tx_q->tx_tail_addr = tx_q->dma_tx_phy; 6879 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, 6880 tx_q->tx_tail_addr, tx_q->queue_index); 6881 6882 stmmac_start_tx_dma(priv, queue); 6883 6884 spin_lock_irqsave(&ch->lock, flags); 6885 stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 0, 1); 6886 spin_unlock_irqrestore(&ch->lock, flags); 6887 } 6888 6889 void stmmac_xdp_release(struct net_device *dev) 6890 { 6891 struct stmmac_priv *priv = netdev_priv(dev); 6892 u32 chan; 6893 6894 /* Ensure tx function is not running */ 6895 netif_tx_disable(dev); 6896 6897 /* Disable NAPI process */ 6898 stmmac_disable_all_queues(priv); 6899 6900 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 6901 hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer); 6902 6903 /* Free the IRQ lines */ 6904 stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0); 6905 6906 /* Stop TX/RX DMA channels */ 6907 stmmac_stop_all_dma(priv); 6908 6909 /* Release and free the Rx/Tx resources */ 6910 free_dma_desc_resources(priv, &priv->dma_conf); 6911 6912 /* Disable the MAC Rx/Tx */ 6913 stmmac_mac_set(priv, priv->ioaddr, false); 6914 6915 /* set trans_start so we don't get spurious 6916 * watchdogs during reset 6917 */ 6918 netif_trans_update(dev); 6919 netif_carrier_off(dev); 6920 } 6921 6922 int stmmac_xdp_open(struct net_device *dev) 6923 { 6924 struct stmmac_priv *priv = netdev_priv(dev); 6925 u32 rx_cnt = priv->plat->rx_queues_to_use; 6926 u32 tx_cnt = priv->plat->tx_queues_to_use; 6927 u32 dma_csr_ch = max(rx_cnt, tx_cnt); 6928 struct stmmac_rx_queue *rx_q; 6929 struct stmmac_tx_queue *tx_q; 6930 u32 buf_size; 6931 bool sph_en; 6932 u32 chan; 6933 int ret; 6934 6935 ret = alloc_dma_desc_resources(priv, &priv->dma_conf); 6936 if (ret < 0) { 6937 netdev_err(dev, "%s: DMA descriptors allocation failed\n", 6938 __func__); 6939 goto dma_desc_error; 6940 } 6941 6942 ret = init_dma_desc_rings(dev, &priv->dma_conf, GFP_KERNEL); 6943 if (ret < 0) { 6944 netdev_err(dev, "%s: DMA descriptors initialization failed\n", 6945 __func__); 6946 goto init_error; 6947 } 6948 6949 stmmac_reset_queues_param(priv); 6950 6951 /* DMA CSR Channel configuration */ 6952 for (chan = 0; chan < dma_csr_ch; chan++) { 6953 stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan); 6954 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1); 6955 } 6956 6957 /* Adjust Split header */ 6958 sph_en = (priv->hw->rx_csum > 0) && priv->sph; 6959 6960 /* DMA RX Channel Configuration */ 6961 for (chan = 0; chan < rx_cnt; chan++) { 6962 rx_q = &priv->dma_conf.rx_queue[chan]; 6963 6964 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 6965 rx_q->dma_rx_phy, chan); 6966 6967 rx_q->rx_tail_addr = rx_q->dma_rx_phy + 6968 (rx_q->buf_alloc_num * 6969 sizeof(struct dma_desc)); 6970 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, 6971 rx_q->rx_tail_addr, chan); 6972 6973 if (rx_q->xsk_pool && rx_q->buf_alloc_num) { 6974 buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool); 6975 stmmac_set_dma_bfsize(priv, priv->ioaddr, 6976 buf_size, 6977 rx_q->queue_index); 6978 } else { 6979 stmmac_set_dma_bfsize(priv, priv->ioaddr, 6980 priv->dma_conf.dma_buf_sz, 6981 rx_q->queue_index); 6982 } 6983 6984 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan); 6985 } 6986 6987 /* DMA TX Channel Configuration */ 6988 for (chan = 0; chan < tx_cnt; chan++) { 6989 tx_q = &priv->dma_conf.tx_queue[chan]; 6990 6991 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 6992 tx_q->dma_tx_phy, chan); 6993 6994 tx_q->tx_tail_addr = tx_q->dma_tx_phy; 6995 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, 6996 tx_q->tx_tail_addr, chan); 6997 6998 hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 6999 tx_q->txtimer.function = stmmac_tx_timer; 7000 } 7001 7002 /* Enable the MAC Rx/Tx */ 7003 stmmac_mac_set(priv, priv->ioaddr, true); 7004 7005 /* Start Rx & Tx DMA Channels */ 7006 stmmac_start_all_dma(priv); 7007 7008 ret = stmmac_request_irq(dev); 7009 if (ret) 7010 goto irq_error; 7011 7012 /* Enable NAPI process*/ 7013 stmmac_enable_all_queues(priv); 7014 netif_carrier_on(dev); 7015 netif_tx_start_all_queues(dev); 7016 stmmac_enable_all_dma_irq(priv); 7017 7018 return 0; 7019 7020 irq_error: 7021 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 7022 hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer); 7023 7024 stmmac_hw_teardown(dev); 7025 init_error: 7026 free_dma_desc_resources(priv, &priv->dma_conf); 7027 dma_desc_error: 7028 return ret; 7029 } 7030 7031 int stmmac_xsk_wakeup(struct net_device *dev, u32 queue, u32 flags) 7032 { 7033 struct stmmac_priv *priv = netdev_priv(dev); 7034 struct stmmac_rx_queue *rx_q; 7035 struct stmmac_tx_queue *tx_q; 7036 struct stmmac_channel *ch; 7037 7038 if (test_bit(STMMAC_DOWN, &priv->state) || 7039 !netif_carrier_ok(priv->dev)) 7040 return -ENETDOWN; 7041 7042 if (!stmmac_xdp_is_enabled(priv)) 7043 return -EINVAL; 7044 7045 if (queue >= priv->plat->rx_queues_to_use || 7046 queue >= priv->plat->tx_queues_to_use) 7047 return -EINVAL; 7048 7049 rx_q = &priv->dma_conf.rx_queue[queue]; 7050 tx_q = &priv->dma_conf.tx_queue[queue]; 7051 ch = &priv->channel[queue]; 7052 7053 if (!rx_q->xsk_pool && !tx_q->xsk_pool) 7054 return -EINVAL; 7055 7056 if (!napi_if_scheduled_mark_missed(&ch->rxtx_napi)) { 7057 /* EQoS does not have per-DMA channel SW interrupt, 7058 * so we schedule RX Napi straight-away. 7059 */ 7060 if (likely(napi_schedule_prep(&ch->rxtx_napi))) 7061 __napi_schedule(&ch->rxtx_napi); 7062 } 7063 7064 return 0; 7065 } 7066 7067 static void stmmac_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) 7068 { 7069 struct stmmac_priv *priv = netdev_priv(dev); 7070 u32 tx_cnt = priv->plat->tx_queues_to_use; 7071 u32 rx_cnt = priv->plat->rx_queues_to_use; 7072 unsigned int start; 7073 int q; 7074 7075 for (q = 0; q < tx_cnt; q++) { 7076 struct stmmac_txq_stats *txq_stats = &priv->xstats.txq_stats[q]; 7077 u64 tx_packets; 7078 u64 tx_bytes; 7079 7080 do { 7081 start = u64_stats_fetch_begin(&txq_stats->q_syncp); 7082 tx_bytes = u64_stats_read(&txq_stats->q.tx_bytes); 7083 } while (u64_stats_fetch_retry(&txq_stats->q_syncp, start)); 7084 do { 7085 start = u64_stats_fetch_begin(&txq_stats->napi_syncp); 7086 tx_packets = u64_stats_read(&txq_stats->napi.tx_packets); 7087 } while (u64_stats_fetch_retry(&txq_stats->napi_syncp, start)); 7088 7089 stats->tx_packets += tx_packets; 7090 stats->tx_bytes += tx_bytes; 7091 } 7092 7093 for (q = 0; q < rx_cnt; q++) { 7094 struct stmmac_rxq_stats *rxq_stats = &priv->xstats.rxq_stats[q]; 7095 u64 rx_packets; 7096 u64 rx_bytes; 7097 7098 do { 7099 start = u64_stats_fetch_begin(&rxq_stats->napi_syncp); 7100 rx_packets = u64_stats_read(&rxq_stats->napi.rx_packets); 7101 rx_bytes = u64_stats_read(&rxq_stats->napi.rx_bytes); 7102 } while (u64_stats_fetch_retry(&rxq_stats->napi_syncp, start)); 7103 7104 stats->rx_packets += rx_packets; 7105 stats->rx_bytes += rx_bytes; 7106 } 7107 7108 stats->rx_dropped = priv->xstats.rx_dropped; 7109 stats->rx_errors = priv->xstats.rx_errors; 7110 stats->tx_dropped = priv->xstats.tx_dropped; 7111 stats->tx_errors = priv->xstats.tx_errors; 7112 stats->tx_carrier_errors = priv->xstats.tx_losscarrier + priv->xstats.tx_carrier; 7113 stats->collisions = priv->xstats.tx_collision + priv->xstats.rx_collision; 7114 stats->rx_length_errors = priv->xstats.rx_length; 7115 stats->rx_crc_errors = priv->xstats.rx_crc_errors; 7116 stats->rx_over_errors = priv->xstats.rx_overflow_cntr; 7117 stats->rx_missed_errors = priv->xstats.rx_missed_cntr; 7118 } 7119 7120 static const struct net_device_ops stmmac_netdev_ops = { 7121 .ndo_open = stmmac_open, 7122 .ndo_start_xmit = stmmac_xmit, 7123 .ndo_stop = stmmac_release, 7124 .ndo_change_mtu = stmmac_change_mtu, 7125 .ndo_fix_features = stmmac_fix_features, 7126 .ndo_set_features = stmmac_set_features, 7127 .ndo_set_rx_mode = stmmac_set_rx_mode, 7128 .ndo_tx_timeout = stmmac_tx_timeout, 7129 .ndo_eth_ioctl = stmmac_ioctl, 7130 .ndo_get_stats64 = stmmac_get_stats64, 7131 .ndo_setup_tc = stmmac_setup_tc, 7132 .ndo_select_queue = stmmac_select_queue, 7133 .ndo_set_mac_address = stmmac_set_mac_address, 7134 .ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid, 7135 .ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid, 7136 .ndo_bpf = stmmac_bpf, 7137 .ndo_xdp_xmit = stmmac_xdp_xmit, 7138 .ndo_xsk_wakeup = stmmac_xsk_wakeup, 7139 }; 7140 7141 static void stmmac_reset_subtask(struct stmmac_priv *priv) 7142 { 7143 if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state)) 7144 return; 7145 if (test_bit(STMMAC_DOWN, &priv->state)) 7146 return; 7147 7148 netdev_err(priv->dev, "Reset adapter.\n"); 7149 7150 rtnl_lock(); 7151 netif_trans_update(priv->dev); 7152 while (test_and_set_bit(STMMAC_RESETING, &priv->state)) 7153 usleep_range(1000, 2000); 7154 7155 set_bit(STMMAC_DOWN, &priv->state); 7156 dev_close(priv->dev); 7157 dev_open(priv->dev, NULL); 7158 clear_bit(STMMAC_DOWN, &priv->state); 7159 clear_bit(STMMAC_RESETING, &priv->state); 7160 rtnl_unlock(); 7161 } 7162 7163 static void stmmac_service_task(struct work_struct *work) 7164 { 7165 struct stmmac_priv *priv = container_of(work, struct stmmac_priv, 7166 service_task); 7167 7168 stmmac_reset_subtask(priv); 7169 clear_bit(STMMAC_SERVICE_SCHED, &priv->state); 7170 } 7171 7172 /** 7173 * stmmac_hw_init - Init the MAC device 7174 * @priv: driver private structure 7175 * Description: this function is to configure the MAC device according to 7176 * some platform parameters or the HW capability register. It prepares the 7177 * driver to use either ring or chain modes and to setup either enhanced or 7178 * normal descriptors. 7179 */ 7180 static int stmmac_hw_init(struct stmmac_priv *priv) 7181 { 7182 int ret; 7183 7184 /* dwmac-sun8i only work in chain mode */ 7185 if (priv->plat->flags & STMMAC_FLAG_HAS_SUN8I) 7186 chain_mode = 1; 7187 priv->chain_mode = chain_mode; 7188 7189 /* Initialize HW Interface */ 7190 ret = stmmac_hwif_init(priv); 7191 if (ret) 7192 return ret; 7193 7194 /* Get the HW capability (new GMAC newer than 3.50a) */ 7195 priv->hw_cap_support = stmmac_get_hw_features(priv); 7196 if (priv->hw_cap_support) { 7197 dev_info(priv->device, "DMA HW capability register supported\n"); 7198 7199 /* We can override some gmac/dma configuration fields: e.g. 7200 * enh_desc, tx_coe (e.g. that are passed through the 7201 * platform) with the values from the HW capability 7202 * register (if supported). 7203 */ 7204 priv->plat->enh_desc = priv->dma_cap.enh_desc; 7205 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up && 7206 !(priv->plat->flags & STMMAC_FLAG_USE_PHY_WOL); 7207 priv->hw->pmt = priv->plat->pmt; 7208 if (priv->dma_cap.hash_tb_sz) { 7209 priv->hw->multicast_filter_bins = 7210 (BIT(priv->dma_cap.hash_tb_sz) << 5); 7211 priv->hw->mcast_bits_log2 = 7212 ilog2(priv->hw->multicast_filter_bins); 7213 } 7214 7215 /* TXCOE doesn't work in thresh DMA mode */ 7216 if (priv->plat->force_thresh_dma_mode) 7217 priv->plat->tx_coe = 0; 7218 else 7219 priv->plat->tx_coe = priv->dma_cap.tx_coe; 7220 7221 /* In case of GMAC4 rx_coe is from HW cap register. */ 7222 priv->plat->rx_coe = priv->dma_cap.rx_coe; 7223 7224 if (priv->dma_cap.rx_coe_type2) 7225 priv->plat->rx_coe = STMMAC_RX_COE_TYPE2; 7226 else if (priv->dma_cap.rx_coe_type1) 7227 priv->plat->rx_coe = STMMAC_RX_COE_TYPE1; 7228 7229 } else { 7230 dev_info(priv->device, "No HW DMA feature register supported\n"); 7231 } 7232 7233 if (priv->plat->rx_coe) { 7234 priv->hw->rx_csum = priv->plat->rx_coe; 7235 dev_info(priv->device, "RX Checksum Offload Engine supported\n"); 7236 if (priv->synopsys_id < DWMAC_CORE_4_00) 7237 dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum); 7238 } 7239 if (priv->plat->tx_coe) 7240 dev_info(priv->device, "TX Checksum insertion supported\n"); 7241 7242 if (priv->plat->pmt) { 7243 dev_info(priv->device, "Wake-Up On Lan supported\n"); 7244 device_set_wakeup_capable(priv->device, 1); 7245 } 7246 7247 if (priv->dma_cap.tsoen) 7248 dev_info(priv->device, "TSO supported\n"); 7249 7250 priv->hw->vlan_fail_q_en = 7251 (priv->plat->flags & STMMAC_FLAG_VLAN_FAIL_Q_EN); 7252 priv->hw->vlan_fail_q = priv->plat->vlan_fail_q; 7253 7254 /* Run HW quirks, if any */ 7255 if (priv->hwif_quirks) { 7256 ret = priv->hwif_quirks(priv); 7257 if (ret) 7258 return ret; 7259 } 7260 7261 /* Rx Watchdog is available in the COREs newer than the 3.40. 7262 * In some case, for example on bugged HW this feature 7263 * has to be disable and this can be done by passing the 7264 * riwt_off field from the platform. 7265 */ 7266 if (((priv->synopsys_id >= DWMAC_CORE_3_50) || 7267 (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) { 7268 priv->use_riwt = 1; 7269 dev_info(priv->device, 7270 "Enable RX Mitigation via HW Watchdog Timer\n"); 7271 } 7272 7273 return 0; 7274 } 7275 7276 static void stmmac_napi_add(struct net_device *dev) 7277 { 7278 struct stmmac_priv *priv = netdev_priv(dev); 7279 u32 queue, maxq; 7280 7281 maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use); 7282 7283 for (queue = 0; queue < maxq; queue++) { 7284 struct stmmac_channel *ch = &priv->channel[queue]; 7285 7286 ch->priv_data = priv; 7287 ch->index = queue; 7288 spin_lock_init(&ch->lock); 7289 7290 if (queue < priv->plat->rx_queues_to_use) { 7291 netif_napi_add(dev, &ch->rx_napi, stmmac_napi_poll_rx); 7292 } 7293 if (queue < priv->plat->tx_queues_to_use) { 7294 netif_napi_add_tx(dev, &ch->tx_napi, 7295 stmmac_napi_poll_tx); 7296 } 7297 if (queue < priv->plat->rx_queues_to_use && 7298 queue < priv->plat->tx_queues_to_use) { 7299 netif_napi_add(dev, &ch->rxtx_napi, 7300 stmmac_napi_poll_rxtx); 7301 } 7302 } 7303 } 7304 7305 static void stmmac_napi_del(struct net_device *dev) 7306 { 7307 struct stmmac_priv *priv = netdev_priv(dev); 7308 u32 queue, maxq; 7309 7310 maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use); 7311 7312 for (queue = 0; queue < maxq; queue++) { 7313 struct stmmac_channel *ch = &priv->channel[queue]; 7314 7315 if (queue < priv->plat->rx_queues_to_use) 7316 netif_napi_del(&ch->rx_napi); 7317 if (queue < priv->plat->tx_queues_to_use) 7318 netif_napi_del(&ch->tx_napi); 7319 if (queue < priv->plat->rx_queues_to_use && 7320 queue < priv->plat->tx_queues_to_use) { 7321 netif_napi_del(&ch->rxtx_napi); 7322 } 7323 } 7324 } 7325 7326 int stmmac_reinit_queues(struct net_device *dev, u32 rx_cnt, u32 tx_cnt) 7327 { 7328 struct stmmac_priv *priv = netdev_priv(dev); 7329 int ret = 0, i; 7330 int max_speed; 7331 7332 if (netif_running(dev)) 7333 stmmac_release(dev); 7334 7335 stmmac_napi_del(dev); 7336 7337 priv->plat->rx_queues_to_use = rx_cnt; 7338 priv->plat->tx_queues_to_use = tx_cnt; 7339 if (!netif_is_rxfh_configured(dev)) 7340 for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++) 7341 priv->rss.table[i] = ethtool_rxfh_indir_default(i, 7342 rx_cnt); 7343 7344 stmmac_mac_phylink_get_caps(priv); 7345 7346 priv->phylink_config.mac_capabilities = priv->hw->link.caps; 7347 7348 max_speed = priv->plat->max_speed; 7349 if (max_speed) 7350 phylink_limit_mac_speed(&priv->phylink_config, max_speed); 7351 7352 stmmac_napi_add(dev); 7353 7354 if (netif_running(dev)) 7355 ret = stmmac_open(dev); 7356 7357 return ret; 7358 } 7359 7360 int stmmac_reinit_ringparam(struct net_device *dev, u32 rx_size, u32 tx_size) 7361 { 7362 struct stmmac_priv *priv = netdev_priv(dev); 7363 int ret = 0; 7364 7365 if (netif_running(dev)) 7366 stmmac_release(dev); 7367 7368 priv->dma_conf.dma_rx_size = rx_size; 7369 priv->dma_conf.dma_tx_size = tx_size; 7370 7371 if (netif_running(dev)) 7372 ret = stmmac_open(dev); 7373 7374 return ret; 7375 } 7376 7377 #define SEND_VERIFY_MPAKCET_FMT "Send Verify mPacket lo_state=%d lp_state=%d\n" 7378 static void stmmac_fpe_lp_task(struct work_struct *work) 7379 { 7380 struct stmmac_priv *priv = container_of(work, struct stmmac_priv, 7381 fpe_task); 7382 struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg; 7383 enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state; 7384 enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state; 7385 bool *hs_enable = &fpe_cfg->hs_enable; 7386 bool *enable = &fpe_cfg->enable; 7387 int retries = 20; 7388 7389 while (retries-- > 0) { 7390 /* Bail out immediately if FPE handshake is OFF */ 7391 if (*lo_state == FPE_STATE_OFF || !*hs_enable) 7392 break; 7393 7394 if (*lo_state == FPE_STATE_ENTERING_ON && 7395 *lp_state == FPE_STATE_ENTERING_ON) { 7396 stmmac_fpe_configure(priv, priv->ioaddr, 7397 fpe_cfg, 7398 priv->plat->tx_queues_to_use, 7399 priv->plat->rx_queues_to_use, 7400 *enable); 7401 7402 netdev_info(priv->dev, "configured FPE\n"); 7403 7404 *lo_state = FPE_STATE_ON; 7405 *lp_state = FPE_STATE_ON; 7406 netdev_info(priv->dev, "!!! BOTH FPE stations ON\n"); 7407 break; 7408 } 7409 7410 if ((*lo_state == FPE_STATE_CAPABLE || 7411 *lo_state == FPE_STATE_ENTERING_ON) && 7412 *lp_state != FPE_STATE_ON) { 7413 netdev_info(priv->dev, SEND_VERIFY_MPAKCET_FMT, 7414 *lo_state, *lp_state); 7415 stmmac_fpe_send_mpacket(priv, priv->ioaddr, 7416 fpe_cfg, 7417 MPACKET_VERIFY); 7418 } 7419 /* Sleep then retry */ 7420 msleep(500); 7421 } 7422 7423 clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state); 7424 } 7425 7426 void stmmac_fpe_handshake(struct stmmac_priv *priv, bool enable) 7427 { 7428 if (priv->plat->fpe_cfg->hs_enable != enable) { 7429 if (enable) { 7430 stmmac_fpe_send_mpacket(priv, priv->ioaddr, 7431 priv->plat->fpe_cfg, 7432 MPACKET_VERIFY); 7433 } else { 7434 priv->plat->fpe_cfg->lo_fpe_state = FPE_STATE_OFF; 7435 priv->plat->fpe_cfg->lp_fpe_state = FPE_STATE_OFF; 7436 } 7437 7438 priv->plat->fpe_cfg->hs_enable = enable; 7439 } 7440 } 7441 7442 static int stmmac_xdp_rx_timestamp(const struct xdp_md *_ctx, u64 *timestamp) 7443 { 7444 const struct stmmac_xdp_buff *ctx = (void *)_ctx; 7445 struct dma_desc *desc_contains_ts = ctx->desc; 7446 struct stmmac_priv *priv = ctx->priv; 7447 struct dma_desc *ndesc = ctx->ndesc; 7448 struct dma_desc *desc = ctx->desc; 7449 u64 ns = 0; 7450 7451 if (!priv->hwts_rx_en) 7452 return -ENODATA; 7453 7454 /* For GMAC4, the valid timestamp is from CTX next desc. */ 7455 if (priv->plat->has_gmac4 || priv->plat->has_xgmac) 7456 desc_contains_ts = ndesc; 7457 7458 /* Check if timestamp is available */ 7459 if (stmmac_get_rx_timestamp_status(priv, desc, ndesc, priv->adv_ts)) { 7460 stmmac_get_timestamp(priv, desc_contains_ts, priv->adv_ts, &ns); 7461 ns -= priv->plat->cdc_error_adj; 7462 *timestamp = ns_to_ktime(ns); 7463 return 0; 7464 } 7465 7466 return -ENODATA; 7467 } 7468 7469 static const struct xdp_metadata_ops stmmac_xdp_metadata_ops = { 7470 .xmo_rx_timestamp = stmmac_xdp_rx_timestamp, 7471 }; 7472 7473 /** 7474 * stmmac_dvr_probe 7475 * @device: device pointer 7476 * @plat_dat: platform data pointer 7477 * @res: stmmac resource pointer 7478 * Description: this is the main probe function used to 7479 * call the alloc_etherdev, allocate the priv structure. 7480 * Return: 7481 * returns 0 on success, otherwise errno. 7482 */ 7483 int stmmac_dvr_probe(struct device *device, 7484 struct plat_stmmacenet_data *plat_dat, 7485 struct stmmac_resources *res) 7486 { 7487 struct net_device *ndev = NULL; 7488 struct stmmac_priv *priv; 7489 u32 rxq; 7490 int i, ret = 0; 7491 7492 ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv), 7493 MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES); 7494 if (!ndev) 7495 return -ENOMEM; 7496 7497 SET_NETDEV_DEV(ndev, device); 7498 7499 priv = netdev_priv(ndev); 7500 priv->device = device; 7501 priv->dev = ndev; 7502 7503 for (i = 0; i < MTL_MAX_RX_QUEUES; i++) 7504 u64_stats_init(&priv->xstats.rxq_stats[i].napi_syncp); 7505 for (i = 0; i < MTL_MAX_TX_QUEUES; i++) { 7506 u64_stats_init(&priv->xstats.txq_stats[i].q_syncp); 7507 u64_stats_init(&priv->xstats.txq_stats[i].napi_syncp); 7508 } 7509 7510 priv->xstats.pcpu_stats = 7511 devm_netdev_alloc_pcpu_stats(device, struct stmmac_pcpu_stats); 7512 if (!priv->xstats.pcpu_stats) 7513 return -ENOMEM; 7514 7515 stmmac_set_ethtool_ops(ndev); 7516 priv->pause = pause; 7517 priv->plat = plat_dat; 7518 priv->ioaddr = res->addr; 7519 priv->dev->base_addr = (unsigned long)res->addr; 7520 priv->plat->dma_cfg->multi_msi_en = 7521 (priv->plat->flags & STMMAC_FLAG_MULTI_MSI_EN); 7522 7523 priv->dev->irq = res->irq; 7524 priv->wol_irq = res->wol_irq; 7525 priv->lpi_irq = res->lpi_irq; 7526 priv->sfty_irq = res->sfty_irq; 7527 priv->sfty_ce_irq = res->sfty_ce_irq; 7528 priv->sfty_ue_irq = res->sfty_ue_irq; 7529 for (i = 0; i < MTL_MAX_RX_QUEUES; i++) 7530 priv->rx_irq[i] = res->rx_irq[i]; 7531 for (i = 0; i < MTL_MAX_TX_QUEUES; i++) 7532 priv->tx_irq[i] = res->tx_irq[i]; 7533 7534 if (!is_zero_ether_addr(res->mac)) 7535 eth_hw_addr_set(priv->dev, res->mac); 7536 7537 dev_set_drvdata(device, priv->dev); 7538 7539 /* Verify driver arguments */ 7540 stmmac_verify_args(); 7541 7542 priv->af_xdp_zc_qps = bitmap_zalloc(MTL_MAX_TX_QUEUES, GFP_KERNEL); 7543 if (!priv->af_xdp_zc_qps) 7544 return -ENOMEM; 7545 7546 /* Allocate workqueue */ 7547 priv->wq = create_singlethread_workqueue("stmmac_wq"); 7548 if (!priv->wq) { 7549 dev_err(priv->device, "failed to create workqueue\n"); 7550 ret = -ENOMEM; 7551 goto error_wq_init; 7552 } 7553 7554 INIT_WORK(&priv->service_task, stmmac_service_task); 7555 7556 /* Initialize Link Partner FPE workqueue */ 7557 INIT_WORK(&priv->fpe_task, stmmac_fpe_lp_task); 7558 7559 /* Override with kernel parameters if supplied XXX CRS XXX 7560 * this needs to have multiple instances 7561 */ 7562 if ((phyaddr >= 0) && (phyaddr <= 31)) 7563 priv->plat->phy_addr = phyaddr; 7564 7565 if (priv->plat->stmmac_rst) { 7566 ret = reset_control_assert(priv->plat->stmmac_rst); 7567 reset_control_deassert(priv->plat->stmmac_rst); 7568 /* Some reset controllers have only reset callback instead of 7569 * assert + deassert callbacks pair. 7570 */ 7571 if (ret == -ENOTSUPP) 7572 reset_control_reset(priv->plat->stmmac_rst); 7573 } 7574 7575 ret = reset_control_deassert(priv->plat->stmmac_ahb_rst); 7576 if (ret == -ENOTSUPP) 7577 dev_err(priv->device, "unable to bring out of ahb reset: %pe\n", 7578 ERR_PTR(ret)); 7579 7580 /* Wait a bit for the reset to take effect */ 7581 udelay(10); 7582 7583 /* Init MAC and get the capabilities */ 7584 ret = stmmac_hw_init(priv); 7585 if (ret) 7586 goto error_hw_init; 7587 7588 /* Only DWMAC core version 5.20 onwards supports HW descriptor prefetch. 7589 */ 7590 if (priv->synopsys_id < DWMAC_CORE_5_20) 7591 priv->plat->dma_cfg->dche = false; 7592 7593 stmmac_check_ether_addr(priv); 7594 7595 ndev->netdev_ops = &stmmac_netdev_ops; 7596 7597 ndev->xdp_metadata_ops = &stmmac_xdp_metadata_ops; 7598 ndev->xsk_tx_metadata_ops = &stmmac_xsk_tx_metadata_ops; 7599 7600 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 7601 NETIF_F_RXCSUM; 7602 ndev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | 7603 NETDEV_XDP_ACT_XSK_ZEROCOPY; 7604 7605 ret = stmmac_tc_init(priv, priv); 7606 if (!ret) { 7607 ndev->hw_features |= NETIF_F_HW_TC; 7608 } 7609 7610 if ((priv->plat->flags & STMMAC_FLAG_TSO_EN) && (priv->dma_cap.tsoen)) { 7611 ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6; 7612 if (priv->plat->has_gmac4) 7613 ndev->hw_features |= NETIF_F_GSO_UDP_L4; 7614 priv->tso = true; 7615 dev_info(priv->device, "TSO feature enabled\n"); 7616 } 7617 7618 if (priv->dma_cap.sphen && 7619 !(priv->plat->flags & STMMAC_FLAG_SPH_DISABLE)) { 7620 ndev->hw_features |= NETIF_F_GRO; 7621 priv->sph_cap = true; 7622 priv->sph = priv->sph_cap; 7623 dev_info(priv->device, "SPH feature enabled\n"); 7624 } 7625 7626 /* Ideally our host DMA address width is the same as for the 7627 * device. However, it may differ and then we have to use our 7628 * host DMA width for allocation and the device DMA width for 7629 * register handling. 7630 */ 7631 if (priv->plat->host_dma_width) 7632 priv->dma_cap.host_dma_width = priv->plat->host_dma_width; 7633 else 7634 priv->dma_cap.host_dma_width = priv->dma_cap.addr64; 7635 7636 if (priv->dma_cap.host_dma_width) { 7637 ret = dma_set_mask_and_coherent(device, 7638 DMA_BIT_MASK(priv->dma_cap.host_dma_width)); 7639 if (!ret) { 7640 dev_info(priv->device, "Using %d/%d bits DMA host/device width\n", 7641 priv->dma_cap.host_dma_width, priv->dma_cap.addr64); 7642 7643 /* 7644 * If more than 32 bits can be addressed, make sure to 7645 * enable enhanced addressing mode. 7646 */ 7647 if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT)) 7648 priv->plat->dma_cfg->eame = true; 7649 } else { 7650 ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32)); 7651 if (ret) { 7652 dev_err(priv->device, "Failed to set DMA Mask\n"); 7653 goto error_hw_init; 7654 } 7655 7656 priv->dma_cap.host_dma_width = 32; 7657 } 7658 } 7659 7660 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA; 7661 ndev->watchdog_timeo = msecs_to_jiffies(watchdog); 7662 #ifdef STMMAC_VLAN_TAG_USED 7663 /* Both mac100 and gmac support receive VLAN tag detection */ 7664 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX; 7665 ndev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 7666 priv->hw->hw_vlan_en = true; 7667 7668 if (priv->dma_cap.vlhash) { 7669 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 7670 ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER; 7671 } 7672 if (priv->dma_cap.vlins) { 7673 ndev->features |= NETIF_F_HW_VLAN_CTAG_TX; 7674 if (priv->dma_cap.dvlan) 7675 ndev->features |= NETIF_F_HW_VLAN_STAG_TX; 7676 } 7677 #endif 7678 priv->msg_enable = netif_msg_init(debug, default_msg_level); 7679 7680 priv->xstats.threshold = tc; 7681 7682 /* Initialize RSS */ 7683 rxq = priv->plat->rx_queues_to_use; 7684 netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key)); 7685 for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++) 7686 priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq); 7687 7688 if (priv->dma_cap.rssen && priv->plat->rss_en) 7689 ndev->features |= NETIF_F_RXHASH; 7690 7691 ndev->vlan_features |= ndev->features; 7692 /* TSO doesn't work on VLANs yet */ 7693 ndev->vlan_features &= ~NETIF_F_TSO; 7694 7695 /* MTU range: 46 - hw-specific max */ 7696 ndev->min_mtu = ETH_ZLEN - ETH_HLEN; 7697 if (priv->plat->has_xgmac) 7698 ndev->max_mtu = XGMAC_JUMBO_LEN; 7699 else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00)) 7700 ndev->max_mtu = JUMBO_LEN; 7701 else 7702 ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN); 7703 /* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu 7704 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range. 7705 */ 7706 if ((priv->plat->maxmtu < ndev->max_mtu) && 7707 (priv->plat->maxmtu >= ndev->min_mtu)) 7708 ndev->max_mtu = priv->plat->maxmtu; 7709 else if (priv->plat->maxmtu < ndev->min_mtu) 7710 dev_warn(priv->device, 7711 "%s: warning: maxmtu having invalid value (%d)\n", 7712 __func__, priv->plat->maxmtu); 7713 7714 if (flow_ctrl) 7715 priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */ 7716 7717 ndev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 7718 7719 /* Setup channels NAPI */ 7720 stmmac_napi_add(ndev); 7721 7722 mutex_init(&priv->lock); 7723 7724 /* If a specific clk_csr value is passed from the platform 7725 * this means that the CSR Clock Range selection cannot be 7726 * changed at run-time and it is fixed. Viceversa the driver'll try to 7727 * set the MDC clock dynamically according to the csr actual 7728 * clock input. 7729 */ 7730 if (priv->plat->clk_csr >= 0) 7731 priv->clk_csr = priv->plat->clk_csr; 7732 else 7733 stmmac_clk_csr_set(priv); 7734 7735 stmmac_check_pcs_mode(priv); 7736 7737 pm_runtime_get_noresume(device); 7738 pm_runtime_set_active(device); 7739 if (!pm_runtime_enabled(device)) 7740 pm_runtime_enable(device); 7741 7742 if (priv->hw->pcs != STMMAC_PCS_TBI && 7743 priv->hw->pcs != STMMAC_PCS_RTBI) { 7744 /* MDIO bus Registration */ 7745 ret = stmmac_mdio_register(ndev); 7746 if (ret < 0) { 7747 dev_err_probe(priv->device, ret, 7748 "%s: MDIO bus (id: %d) registration failed\n", 7749 __func__, priv->plat->bus_id); 7750 goto error_mdio_register; 7751 } 7752 } 7753 7754 if (priv->plat->speed_mode_2500) 7755 priv->plat->speed_mode_2500(ndev, priv->plat->bsp_priv); 7756 7757 if (priv->plat->mdio_bus_data && priv->plat->mdio_bus_data->has_xpcs) { 7758 ret = stmmac_xpcs_setup(priv->mii); 7759 if (ret) 7760 goto error_xpcs_setup; 7761 } 7762 7763 ret = stmmac_phy_setup(priv); 7764 if (ret) { 7765 netdev_err(ndev, "failed to setup phy (%d)\n", ret); 7766 goto error_phy_setup; 7767 } 7768 7769 ret = register_netdev(ndev); 7770 if (ret) { 7771 dev_err(priv->device, "%s: ERROR %i registering the device\n", 7772 __func__, ret); 7773 goto error_netdev_register; 7774 } 7775 7776 #ifdef CONFIG_DEBUG_FS 7777 stmmac_init_fs(ndev); 7778 #endif 7779 7780 if (priv->plat->dump_debug_regs) 7781 priv->plat->dump_debug_regs(priv->plat->bsp_priv); 7782 7783 /* Let pm_runtime_put() disable the clocks. 7784 * If CONFIG_PM is not enabled, the clocks will stay powered. 7785 */ 7786 pm_runtime_put(device); 7787 7788 return ret; 7789 7790 error_netdev_register: 7791 phylink_destroy(priv->phylink); 7792 error_xpcs_setup: 7793 error_phy_setup: 7794 if (priv->hw->pcs != STMMAC_PCS_TBI && 7795 priv->hw->pcs != STMMAC_PCS_RTBI) 7796 stmmac_mdio_unregister(ndev); 7797 error_mdio_register: 7798 stmmac_napi_del(ndev); 7799 error_hw_init: 7800 destroy_workqueue(priv->wq); 7801 error_wq_init: 7802 bitmap_free(priv->af_xdp_zc_qps); 7803 7804 return ret; 7805 } 7806 EXPORT_SYMBOL_GPL(stmmac_dvr_probe); 7807 7808 /** 7809 * stmmac_dvr_remove 7810 * @dev: device pointer 7811 * Description: this function resets the TX/RX processes, disables the MAC RX/TX 7812 * changes the link status, releases the DMA descriptor rings. 7813 */ 7814 void stmmac_dvr_remove(struct device *dev) 7815 { 7816 struct net_device *ndev = dev_get_drvdata(dev); 7817 struct stmmac_priv *priv = netdev_priv(ndev); 7818 7819 netdev_info(priv->dev, "%s: removing driver", __func__); 7820 7821 pm_runtime_get_sync(dev); 7822 7823 stmmac_stop_all_dma(priv); 7824 stmmac_mac_set(priv, priv->ioaddr, false); 7825 netif_carrier_off(ndev); 7826 unregister_netdev(ndev); 7827 7828 #ifdef CONFIG_DEBUG_FS 7829 stmmac_exit_fs(ndev); 7830 #endif 7831 phylink_destroy(priv->phylink); 7832 if (priv->plat->stmmac_rst) 7833 reset_control_assert(priv->plat->stmmac_rst); 7834 reset_control_assert(priv->plat->stmmac_ahb_rst); 7835 if (priv->hw->pcs != STMMAC_PCS_TBI && 7836 priv->hw->pcs != STMMAC_PCS_RTBI) 7837 stmmac_mdio_unregister(ndev); 7838 destroy_workqueue(priv->wq); 7839 mutex_destroy(&priv->lock); 7840 bitmap_free(priv->af_xdp_zc_qps); 7841 7842 pm_runtime_disable(dev); 7843 pm_runtime_put_noidle(dev); 7844 } 7845 EXPORT_SYMBOL_GPL(stmmac_dvr_remove); 7846 7847 /** 7848 * stmmac_suspend - suspend callback 7849 * @dev: device pointer 7850 * Description: this is the function to suspend the device and it is called 7851 * by the platform driver to stop the network queue, release the resources, 7852 * program the PMT register (for WoL), clean and release driver resources. 7853 */ 7854 int stmmac_suspend(struct device *dev) 7855 { 7856 struct net_device *ndev = dev_get_drvdata(dev); 7857 struct stmmac_priv *priv = netdev_priv(ndev); 7858 u32 chan; 7859 7860 if (!ndev || !netif_running(ndev)) 7861 return 0; 7862 7863 mutex_lock(&priv->lock); 7864 7865 netif_device_detach(ndev); 7866 7867 stmmac_disable_all_queues(priv); 7868 7869 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 7870 hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer); 7871 7872 if (priv->eee_enabled) { 7873 priv->tx_path_in_lpi_mode = false; 7874 del_timer_sync(&priv->eee_ctrl_timer); 7875 } 7876 7877 /* Stop TX/RX DMA */ 7878 stmmac_stop_all_dma(priv); 7879 7880 if (priv->plat->serdes_powerdown) 7881 priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv); 7882 7883 /* Enable Power down mode by programming the PMT regs */ 7884 if (device_may_wakeup(priv->device) && priv->plat->pmt) { 7885 stmmac_pmt(priv, priv->hw, priv->wolopts); 7886 priv->irq_wake = 1; 7887 } else { 7888 stmmac_mac_set(priv, priv->ioaddr, false); 7889 pinctrl_pm_select_sleep_state(priv->device); 7890 } 7891 7892 mutex_unlock(&priv->lock); 7893 7894 rtnl_lock(); 7895 if (device_may_wakeup(priv->device) && priv->plat->pmt) { 7896 phylink_suspend(priv->phylink, true); 7897 } else { 7898 if (device_may_wakeup(priv->device)) 7899 phylink_speed_down(priv->phylink, false); 7900 phylink_suspend(priv->phylink, false); 7901 } 7902 rtnl_unlock(); 7903 7904 if (priv->dma_cap.fpesel) { 7905 /* Disable FPE */ 7906 stmmac_fpe_configure(priv, priv->ioaddr, 7907 priv->plat->fpe_cfg, 7908 priv->plat->tx_queues_to_use, 7909 priv->plat->rx_queues_to_use, false); 7910 7911 stmmac_fpe_handshake(priv, false); 7912 stmmac_fpe_stop_wq(priv); 7913 } 7914 7915 priv->speed = SPEED_UNKNOWN; 7916 return 0; 7917 } 7918 EXPORT_SYMBOL_GPL(stmmac_suspend); 7919 7920 static void stmmac_reset_rx_queue(struct stmmac_priv *priv, u32 queue) 7921 { 7922 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue]; 7923 7924 rx_q->cur_rx = 0; 7925 rx_q->dirty_rx = 0; 7926 } 7927 7928 static void stmmac_reset_tx_queue(struct stmmac_priv *priv, u32 queue) 7929 { 7930 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue]; 7931 7932 tx_q->cur_tx = 0; 7933 tx_q->dirty_tx = 0; 7934 tx_q->mss = 0; 7935 7936 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue)); 7937 } 7938 7939 /** 7940 * stmmac_reset_queues_param - reset queue parameters 7941 * @priv: device pointer 7942 */ 7943 static void stmmac_reset_queues_param(struct stmmac_priv *priv) 7944 { 7945 u32 rx_cnt = priv->plat->rx_queues_to_use; 7946 u32 tx_cnt = priv->plat->tx_queues_to_use; 7947 u32 queue; 7948 7949 for (queue = 0; queue < rx_cnt; queue++) 7950 stmmac_reset_rx_queue(priv, queue); 7951 7952 for (queue = 0; queue < tx_cnt; queue++) 7953 stmmac_reset_tx_queue(priv, queue); 7954 } 7955 7956 /** 7957 * stmmac_resume - resume callback 7958 * @dev: device pointer 7959 * Description: when resume this function is invoked to setup the DMA and CORE 7960 * in a usable state. 7961 */ 7962 int stmmac_resume(struct device *dev) 7963 { 7964 struct net_device *ndev = dev_get_drvdata(dev); 7965 struct stmmac_priv *priv = netdev_priv(ndev); 7966 int ret; 7967 7968 if (!netif_running(ndev)) 7969 return 0; 7970 7971 /* Power Down bit, into the PM register, is cleared 7972 * automatically as soon as a magic packet or a Wake-up frame 7973 * is received. Anyway, it's better to manually clear 7974 * this bit because it can generate problems while resuming 7975 * from another devices (e.g. serial console). 7976 */ 7977 if (device_may_wakeup(priv->device) && priv->plat->pmt) { 7978 mutex_lock(&priv->lock); 7979 stmmac_pmt(priv, priv->hw, 0); 7980 mutex_unlock(&priv->lock); 7981 priv->irq_wake = 0; 7982 } else { 7983 pinctrl_pm_select_default_state(priv->device); 7984 /* reset the phy so that it's ready */ 7985 if (priv->mii) 7986 stmmac_mdio_reset(priv->mii); 7987 } 7988 7989 if (!(priv->plat->flags & STMMAC_FLAG_SERDES_UP_AFTER_PHY_LINKUP) && 7990 priv->plat->serdes_powerup) { 7991 ret = priv->plat->serdes_powerup(ndev, 7992 priv->plat->bsp_priv); 7993 7994 if (ret < 0) 7995 return ret; 7996 } 7997 7998 rtnl_lock(); 7999 if (device_may_wakeup(priv->device) && priv->plat->pmt) { 8000 phylink_resume(priv->phylink); 8001 } else { 8002 phylink_resume(priv->phylink); 8003 if (device_may_wakeup(priv->device)) 8004 phylink_speed_up(priv->phylink); 8005 } 8006 rtnl_unlock(); 8007 8008 rtnl_lock(); 8009 mutex_lock(&priv->lock); 8010 8011 stmmac_reset_queues_param(priv); 8012 8013 stmmac_free_tx_skbufs(priv); 8014 stmmac_clear_descriptors(priv, &priv->dma_conf); 8015 8016 stmmac_hw_setup(ndev, false); 8017 stmmac_init_coalesce(priv); 8018 stmmac_set_rx_mode(ndev); 8019 8020 stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw); 8021 8022 stmmac_enable_all_queues(priv); 8023 stmmac_enable_all_dma_irq(priv); 8024 8025 mutex_unlock(&priv->lock); 8026 rtnl_unlock(); 8027 8028 netif_device_attach(ndev); 8029 8030 return 0; 8031 } 8032 EXPORT_SYMBOL_GPL(stmmac_resume); 8033 8034 #ifndef MODULE 8035 static int __init stmmac_cmdline_opt(char *str) 8036 { 8037 char *opt; 8038 8039 if (!str || !*str) 8040 return 1; 8041 while ((opt = strsep(&str, ",")) != NULL) { 8042 if (!strncmp(opt, "debug:", 6)) { 8043 if (kstrtoint(opt + 6, 0, &debug)) 8044 goto err; 8045 } else if (!strncmp(opt, "phyaddr:", 8)) { 8046 if (kstrtoint(opt + 8, 0, &phyaddr)) 8047 goto err; 8048 } else if (!strncmp(opt, "buf_sz:", 7)) { 8049 if (kstrtoint(opt + 7, 0, &buf_sz)) 8050 goto err; 8051 } else if (!strncmp(opt, "tc:", 3)) { 8052 if (kstrtoint(opt + 3, 0, &tc)) 8053 goto err; 8054 } else if (!strncmp(opt, "watchdog:", 9)) { 8055 if (kstrtoint(opt + 9, 0, &watchdog)) 8056 goto err; 8057 } else if (!strncmp(opt, "flow_ctrl:", 10)) { 8058 if (kstrtoint(opt + 10, 0, &flow_ctrl)) 8059 goto err; 8060 } else if (!strncmp(opt, "pause:", 6)) { 8061 if (kstrtoint(opt + 6, 0, &pause)) 8062 goto err; 8063 } else if (!strncmp(opt, "eee_timer:", 10)) { 8064 if (kstrtoint(opt + 10, 0, &eee_timer)) 8065 goto err; 8066 } else if (!strncmp(opt, "chain_mode:", 11)) { 8067 if (kstrtoint(opt + 11, 0, &chain_mode)) 8068 goto err; 8069 } 8070 } 8071 return 1; 8072 8073 err: 8074 pr_err("%s: ERROR broken module parameter conversion", __func__); 8075 return 1; 8076 } 8077 8078 __setup("stmmaceth=", stmmac_cmdline_opt); 8079 #endif /* MODULE */ 8080 8081 static int __init stmmac_init(void) 8082 { 8083 #ifdef CONFIG_DEBUG_FS 8084 /* Create debugfs main directory if it doesn't exist yet */ 8085 if (!stmmac_fs_dir) 8086 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL); 8087 register_netdevice_notifier(&stmmac_notifier); 8088 #endif 8089 8090 return 0; 8091 } 8092 8093 static void __exit stmmac_exit(void) 8094 { 8095 #ifdef CONFIG_DEBUG_FS 8096 unregister_netdevice_notifier(&stmmac_notifier); 8097 debugfs_remove_recursive(stmmac_fs_dir); 8098 #endif 8099 } 8100 8101 module_init(stmmac_init) 8102 module_exit(stmmac_exit) 8103 8104 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver"); 8105 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>"); 8106 MODULE_LICENSE("GPL"); 8107