1 // SPDX-License-Identifier: GPL-2.0-only 2 /******************************************************************************* 3 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers. 4 ST Ethernet IPs are built around a Synopsys IP Core. 5 6 Copyright(C) 2007-2011 STMicroelectronics Ltd 7 8 9 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com> 10 11 Documentation available at: 12 http://www.stlinux.com 13 Support available at: 14 https://bugzilla.stlinux.com/ 15 *******************************************************************************/ 16 17 #include <linux/clk.h> 18 #include <linux/kernel.h> 19 #include <linux/interrupt.h> 20 #include <linux/ip.h> 21 #include <linux/tcp.h> 22 #include <linux/skbuff.h> 23 #include <linux/ethtool.h> 24 #include <linux/if_ether.h> 25 #include <linux/crc32.h> 26 #include <linux/mii.h> 27 #include <linux/if.h> 28 #include <linux/if_vlan.h> 29 #include <linux/dma-mapping.h> 30 #include <linux/slab.h> 31 #include <linux/prefetch.h> 32 #include <linux/pinctrl/consumer.h> 33 #ifdef CONFIG_DEBUG_FS 34 #include <linux/debugfs.h> 35 #include <linux/seq_file.h> 36 #endif /* CONFIG_DEBUG_FS */ 37 #include <linux/net_tstamp.h> 38 #include <linux/phylink.h> 39 #include <net/pkt_cls.h> 40 #include "stmmac_ptp.h" 41 #include "stmmac.h" 42 #include <linux/reset.h> 43 #include <linux/of_mdio.h> 44 #include "dwmac1000.h" 45 #include "dwxgmac2.h" 46 #include "hwif.h" 47 48 #define STMMAC_ALIGN(x) __ALIGN_KERNEL(x, SMP_CACHE_BYTES) 49 #define TSO_MAX_BUFF_SIZE (SZ_16K - 1) 50 51 /* Module parameters */ 52 #define TX_TIMEO 5000 53 static int watchdog = TX_TIMEO; 54 module_param(watchdog, int, 0644); 55 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)"); 56 57 static int debug = -1; 58 module_param(debug, int, 0644); 59 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)"); 60 61 static int phyaddr = -1; 62 module_param(phyaddr, int, 0444); 63 MODULE_PARM_DESC(phyaddr, "Physical device address"); 64 65 #define STMMAC_TX_THRESH (DMA_TX_SIZE / 4) 66 #define STMMAC_RX_THRESH (DMA_RX_SIZE / 4) 67 68 static int flow_ctrl = FLOW_AUTO; 69 module_param(flow_ctrl, int, 0644); 70 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]"); 71 72 static int pause = PAUSE_TIME; 73 module_param(pause, int, 0644); 74 MODULE_PARM_DESC(pause, "Flow Control Pause Time"); 75 76 #define TC_DEFAULT 64 77 static int tc = TC_DEFAULT; 78 module_param(tc, int, 0644); 79 MODULE_PARM_DESC(tc, "DMA threshold control value"); 80 81 #define DEFAULT_BUFSIZE 1536 82 static int buf_sz = DEFAULT_BUFSIZE; 83 module_param(buf_sz, int, 0644); 84 MODULE_PARM_DESC(buf_sz, "DMA buffer size"); 85 86 #define STMMAC_RX_COPYBREAK 256 87 88 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE | 89 NETIF_MSG_LINK | NETIF_MSG_IFUP | 90 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER); 91 92 #define STMMAC_DEFAULT_LPI_TIMER 1000 93 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER; 94 module_param(eee_timer, int, 0644); 95 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec"); 96 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x)) 97 98 /* By default the driver will use the ring mode to manage tx and rx descriptors, 99 * but allow user to force to use the chain instead of the ring 100 */ 101 static unsigned int chain_mode; 102 module_param(chain_mode, int, 0444); 103 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode"); 104 105 static irqreturn_t stmmac_interrupt(int irq, void *dev_id); 106 107 #ifdef CONFIG_DEBUG_FS 108 static void stmmac_init_fs(struct net_device *dev); 109 static void stmmac_exit_fs(struct net_device *dev); 110 #endif 111 112 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x)) 113 114 /** 115 * stmmac_verify_args - verify the driver parameters. 116 * Description: it checks the driver parameters and set a default in case of 117 * errors. 118 */ 119 static void stmmac_verify_args(void) 120 { 121 if (unlikely(watchdog < 0)) 122 watchdog = TX_TIMEO; 123 if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB))) 124 buf_sz = DEFAULT_BUFSIZE; 125 if (unlikely(flow_ctrl > 1)) 126 flow_ctrl = FLOW_AUTO; 127 else if (likely(flow_ctrl < 0)) 128 flow_ctrl = FLOW_OFF; 129 if (unlikely((pause < 0) || (pause > 0xffff))) 130 pause = PAUSE_TIME; 131 if (eee_timer < 0) 132 eee_timer = STMMAC_DEFAULT_LPI_TIMER; 133 } 134 135 /** 136 * stmmac_disable_all_queues - Disable all queues 137 * @priv: driver private structure 138 */ 139 static void stmmac_disable_all_queues(struct stmmac_priv *priv) 140 { 141 u32 rx_queues_cnt = priv->plat->rx_queues_to_use; 142 u32 tx_queues_cnt = priv->plat->tx_queues_to_use; 143 u32 maxq = max(rx_queues_cnt, tx_queues_cnt); 144 u32 queue; 145 146 for (queue = 0; queue < maxq; queue++) { 147 struct stmmac_channel *ch = &priv->channel[queue]; 148 149 if (queue < rx_queues_cnt) 150 napi_disable(&ch->rx_napi); 151 if (queue < tx_queues_cnt) 152 napi_disable(&ch->tx_napi); 153 } 154 } 155 156 /** 157 * stmmac_enable_all_queues - Enable all queues 158 * @priv: driver private structure 159 */ 160 static void stmmac_enable_all_queues(struct stmmac_priv *priv) 161 { 162 u32 rx_queues_cnt = priv->plat->rx_queues_to_use; 163 u32 tx_queues_cnt = priv->plat->tx_queues_to_use; 164 u32 maxq = max(rx_queues_cnt, tx_queues_cnt); 165 u32 queue; 166 167 for (queue = 0; queue < maxq; queue++) { 168 struct stmmac_channel *ch = &priv->channel[queue]; 169 170 if (queue < rx_queues_cnt) 171 napi_enable(&ch->rx_napi); 172 if (queue < tx_queues_cnt) 173 napi_enable(&ch->tx_napi); 174 } 175 } 176 177 /** 178 * stmmac_stop_all_queues - Stop all queues 179 * @priv: driver private structure 180 */ 181 static void stmmac_stop_all_queues(struct stmmac_priv *priv) 182 { 183 u32 tx_queues_cnt = priv->plat->tx_queues_to_use; 184 u32 queue; 185 186 for (queue = 0; queue < tx_queues_cnt; queue++) 187 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue)); 188 } 189 190 /** 191 * stmmac_start_all_queues - Start all queues 192 * @priv: driver private structure 193 */ 194 static void stmmac_start_all_queues(struct stmmac_priv *priv) 195 { 196 u32 tx_queues_cnt = priv->plat->tx_queues_to_use; 197 u32 queue; 198 199 for (queue = 0; queue < tx_queues_cnt; queue++) 200 netif_tx_start_queue(netdev_get_tx_queue(priv->dev, queue)); 201 } 202 203 static void stmmac_service_event_schedule(struct stmmac_priv *priv) 204 { 205 if (!test_bit(STMMAC_DOWN, &priv->state) && 206 !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state)) 207 queue_work(priv->wq, &priv->service_task); 208 } 209 210 static void stmmac_global_err(struct stmmac_priv *priv) 211 { 212 netif_carrier_off(priv->dev); 213 set_bit(STMMAC_RESET_REQUESTED, &priv->state); 214 stmmac_service_event_schedule(priv); 215 } 216 217 /** 218 * stmmac_clk_csr_set - dynamically set the MDC clock 219 * @priv: driver private structure 220 * Description: this is to dynamically set the MDC clock according to the csr 221 * clock input. 222 * Note: 223 * If a specific clk_csr value is passed from the platform 224 * this means that the CSR Clock Range selection cannot be 225 * changed at run-time and it is fixed (as reported in the driver 226 * documentation). Viceversa the driver will try to set the MDC 227 * clock dynamically according to the actual clock input. 228 */ 229 static void stmmac_clk_csr_set(struct stmmac_priv *priv) 230 { 231 u32 clk_rate; 232 233 clk_rate = clk_get_rate(priv->plat->stmmac_clk); 234 235 /* Platform provided default clk_csr would be assumed valid 236 * for all other cases except for the below mentioned ones. 237 * For values higher than the IEEE 802.3 specified frequency 238 * we can not estimate the proper divider as it is not known 239 * the frequency of clk_csr_i. So we do not change the default 240 * divider. 241 */ 242 if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) { 243 if (clk_rate < CSR_F_35M) 244 priv->clk_csr = STMMAC_CSR_20_35M; 245 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M)) 246 priv->clk_csr = STMMAC_CSR_35_60M; 247 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M)) 248 priv->clk_csr = STMMAC_CSR_60_100M; 249 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M)) 250 priv->clk_csr = STMMAC_CSR_100_150M; 251 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M)) 252 priv->clk_csr = STMMAC_CSR_150_250M; 253 else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M)) 254 priv->clk_csr = STMMAC_CSR_250_300M; 255 } 256 257 if (priv->plat->has_sun8i) { 258 if (clk_rate > 160000000) 259 priv->clk_csr = 0x03; 260 else if (clk_rate > 80000000) 261 priv->clk_csr = 0x02; 262 else if (clk_rate > 40000000) 263 priv->clk_csr = 0x01; 264 else 265 priv->clk_csr = 0; 266 } 267 268 if (priv->plat->has_xgmac) { 269 if (clk_rate > 400000000) 270 priv->clk_csr = 0x5; 271 else if (clk_rate > 350000000) 272 priv->clk_csr = 0x4; 273 else if (clk_rate > 300000000) 274 priv->clk_csr = 0x3; 275 else if (clk_rate > 250000000) 276 priv->clk_csr = 0x2; 277 else if (clk_rate > 150000000) 278 priv->clk_csr = 0x1; 279 else 280 priv->clk_csr = 0x0; 281 } 282 } 283 284 static void print_pkt(unsigned char *buf, int len) 285 { 286 pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf); 287 print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len); 288 } 289 290 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue) 291 { 292 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 293 u32 avail; 294 295 if (tx_q->dirty_tx > tx_q->cur_tx) 296 avail = tx_q->dirty_tx - tx_q->cur_tx - 1; 297 else 298 avail = DMA_TX_SIZE - tx_q->cur_tx + tx_q->dirty_tx - 1; 299 300 return avail; 301 } 302 303 /** 304 * stmmac_rx_dirty - Get RX queue dirty 305 * @priv: driver private structure 306 * @queue: RX queue index 307 */ 308 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue) 309 { 310 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 311 u32 dirty; 312 313 if (rx_q->dirty_rx <= rx_q->cur_rx) 314 dirty = rx_q->cur_rx - rx_q->dirty_rx; 315 else 316 dirty = DMA_RX_SIZE - rx_q->dirty_rx + rx_q->cur_rx; 317 318 return dirty; 319 } 320 321 /** 322 * stmmac_enable_eee_mode - check and enter in LPI mode 323 * @priv: driver private structure 324 * Description: this function is to verify and enter in LPI mode in case of 325 * EEE. 326 */ 327 static void stmmac_enable_eee_mode(struct stmmac_priv *priv) 328 { 329 u32 tx_cnt = priv->plat->tx_queues_to_use; 330 u32 queue; 331 332 /* check if all TX queues have the work finished */ 333 for (queue = 0; queue < tx_cnt; queue++) { 334 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 335 336 if (tx_q->dirty_tx != tx_q->cur_tx) 337 return; /* still unfinished work */ 338 } 339 340 /* Check and enter in LPI mode */ 341 if (!priv->tx_path_in_lpi_mode) 342 stmmac_set_eee_mode(priv, priv->hw, 343 priv->plat->en_tx_lpi_clockgating); 344 } 345 346 /** 347 * stmmac_disable_eee_mode - disable and exit from LPI mode 348 * @priv: driver private structure 349 * Description: this function is to exit and disable EEE in case of 350 * LPI state is true. This is called by the xmit. 351 */ 352 void stmmac_disable_eee_mode(struct stmmac_priv *priv) 353 { 354 stmmac_reset_eee_mode(priv, priv->hw); 355 del_timer_sync(&priv->eee_ctrl_timer); 356 priv->tx_path_in_lpi_mode = false; 357 } 358 359 /** 360 * stmmac_eee_ctrl_timer - EEE TX SW timer. 361 * @arg : data hook 362 * Description: 363 * if there is no data transfer and if we are not in LPI state, 364 * then MAC Transmitter can be moved to LPI state. 365 */ 366 static void stmmac_eee_ctrl_timer(struct timer_list *t) 367 { 368 struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer); 369 370 stmmac_enable_eee_mode(priv); 371 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer)); 372 } 373 374 /** 375 * stmmac_eee_init - init EEE 376 * @priv: driver private structure 377 * Description: 378 * if the GMAC supports the EEE (from the HW cap reg) and the phy device 379 * can also manage EEE, this function enable the LPI state and start related 380 * timer. 381 */ 382 bool stmmac_eee_init(struct stmmac_priv *priv) 383 { 384 int tx_lpi_timer = priv->tx_lpi_timer; 385 386 /* Using PCS we cannot dial with the phy registers at this stage 387 * so we do not support extra feature like EEE. 388 */ 389 if ((priv->hw->pcs == STMMAC_PCS_RGMII) || 390 (priv->hw->pcs == STMMAC_PCS_TBI) || 391 (priv->hw->pcs == STMMAC_PCS_RTBI)) 392 return false; 393 394 /* Check if MAC core supports the EEE feature. */ 395 if (!priv->dma_cap.eee) 396 return false; 397 398 mutex_lock(&priv->lock); 399 400 /* Check if it needs to be deactivated */ 401 if (!priv->eee_active) { 402 if (priv->eee_enabled) { 403 netdev_dbg(priv->dev, "disable EEE\n"); 404 del_timer_sync(&priv->eee_ctrl_timer); 405 stmmac_set_eee_timer(priv, priv->hw, 0, tx_lpi_timer); 406 } 407 mutex_unlock(&priv->lock); 408 return false; 409 } 410 411 if (priv->eee_active && !priv->eee_enabled) { 412 timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0); 413 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer)); 414 stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS, 415 tx_lpi_timer); 416 } 417 418 mutex_unlock(&priv->lock); 419 netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n"); 420 return true; 421 } 422 423 /* stmmac_get_tx_hwtstamp - get HW TX timestamps 424 * @priv: driver private structure 425 * @p : descriptor pointer 426 * @skb : the socket buffer 427 * Description : 428 * This function will read timestamp from the descriptor & pass it to stack. 429 * and also perform some sanity checks. 430 */ 431 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv, 432 struct dma_desc *p, struct sk_buff *skb) 433 { 434 struct skb_shared_hwtstamps shhwtstamp; 435 u64 ns = 0; 436 437 if (!priv->hwts_tx_en) 438 return; 439 440 /* exit if skb doesn't support hw tstamp */ 441 if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))) 442 return; 443 444 /* check tx tstamp status */ 445 if (stmmac_get_tx_timestamp_status(priv, p)) { 446 /* get the valid tstamp */ 447 stmmac_get_timestamp(priv, p, priv->adv_ts, &ns); 448 449 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps)); 450 shhwtstamp.hwtstamp = ns_to_ktime(ns); 451 452 netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns); 453 /* pass tstamp to stack */ 454 skb_tstamp_tx(skb, &shhwtstamp); 455 } 456 457 return; 458 } 459 460 /* stmmac_get_rx_hwtstamp - get HW RX timestamps 461 * @priv: driver private structure 462 * @p : descriptor pointer 463 * @np : next descriptor pointer 464 * @skb : the socket buffer 465 * Description : 466 * This function will read received packet's timestamp from the descriptor 467 * and pass it to stack. It also perform some sanity checks. 468 */ 469 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p, 470 struct dma_desc *np, struct sk_buff *skb) 471 { 472 struct skb_shared_hwtstamps *shhwtstamp = NULL; 473 struct dma_desc *desc = p; 474 u64 ns = 0; 475 476 if (!priv->hwts_rx_en) 477 return; 478 /* For GMAC4, the valid timestamp is from CTX next desc. */ 479 if (priv->plat->has_gmac4 || priv->plat->has_xgmac) 480 desc = np; 481 482 /* Check if timestamp is available */ 483 if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) { 484 stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns); 485 netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns); 486 shhwtstamp = skb_hwtstamps(skb); 487 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps)); 488 shhwtstamp->hwtstamp = ns_to_ktime(ns); 489 } else { 490 netdev_dbg(priv->dev, "cannot get RX hw timestamp\n"); 491 } 492 } 493 494 /** 495 * stmmac_hwtstamp_set - control hardware timestamping. 496 * @dev: device pointer. 497 * @ifr: An IOCTL specific structure, that can contain a pointer to 498 * a proprietary structure used to pass information to the driver. 499 * Description: 500 * This function configures the MAC to enable/disable both outgoing(TX) 501 * and incoming(RX) packets time stamping based on user input. 502 * Return Value: 503 * 0 on success and an appropriate -ve integer on failure. 504 */ 505 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr) 506 { 507 struct stmmac_priv *priv = netdev_priv(dev); 508 struct hwtstamp_config config; 509 struct timespec64 now; 510 u64 temp = 0; 511 u32 ptp_v2 = 0; 512 u32 tstamp_all = 0; 513 u32 ptp_over_ipv4_udp = 0; 514 u32 ptp_over_ipv6_udp = 0; 515 u32 ptp_over_ethernet = 0; 516 u32 snap_type_sel = 0; 517 u32 ts_master_en = 0; 518 u32 ts_event_en = 0; 519 u32 sec_inc = 0; 520 u32 value = 0; 521 bool xmac; 522 523 xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; 524 525 if (!(priv->dma_cap.time_stamp || priv->adv_ts)) { 526 netdev_alert(priv->dev, "No support for HW time stamping\n"); 527 priv->hwts_tx_en = 0; 528 priv->hwts_rx_en = 0; 529 530 return -EOPNOTSUPP; 531 } 532 533 if (copy_from_user(&config, ifr->ifr_data, 534 sizeof(config))) 535 return -EFAULT; 536 537 netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n", 538 __func__, config.flags, config.tx_type, config.rx_filter); 539 540 /* reserved for future extensions */ 541 if (config.flags) 542 return -EINVAL; 543 544 if (config.tx_type != HWTSTAMP_TX_OFF && 545 config.tx_type != HWTSTAMP_TX_ON) 546 return -ERANGE; 547 548 if (priv->adv_ts) { 549 switch (config.rx_filter) { 550 case HWTSTAMP_FILTER_NONE: 551 /* time stamp no incoming packet at all */ 552 config.rx_filter = HWTSTAMP_FILTER_NONE; 553 break; 554 555 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 556 /* PTP v1, UDP, any kind of event packet */ 557 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 558 /* 'xmac' hardware can support Sync, Pdelay_Req and 559 * Pdelay_resp by setting bit14 and bits17/16 to 01 560 * This leaves Delay_Req timestamps out. 561 * Enable all events *and* general purpose message 562 * timestamping 563 */ 564 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 565 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 566 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 567 break; 568 569 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 570 /* PTP v1, UDP, Sync packet */ 571 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC; 572 /* take time stamp for SYNC messages only */ 573 ts_event_en = PTP_TCR_TSEVNTENA; 574 575 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 576 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 577 break; 578 579 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 580 /* PTP v1, UDP, Delay_req packet */ 581 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ; 582 /* take time stamp for Delay_Req messages only */ 583 ts_master_en = PTP_TCR_TSMSTRENA; 584 ts_event_en = PTP_TCR_TSEVNTENA; 585 586 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 587 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 588 break; 589 590 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 591 /* PTP v2, UDP, any kind of event packet */ 592 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT; 593 ptp_v2 = PTP_TCR_TSVER2ENA; 594 /* take time stamp for all event messages */ 595 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 596 597 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 598 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 599 break; 600 601 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 602 /* PTP v2, UDP, Sync packet */ 603 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC; 604 ptp_v2 = PTP_TCR_TSVER2ENA; 605 /* take time stamp for SYNC messages only */ 606 ts_event_en = PTP_TCR_TSEVNTENA; 607 608 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 609 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 610 break; 611 612 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 613 /* PTP v2, UDP, Delay_req packet */ 614 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ; 615 ptp_v2 = PTP_TCR_TSVER2ENA; 616 /* take time stamp for Delay_Req messages only */ 617 ts_master_en = PTP_TCR_TSMSTRENA; 618 ts_event_en = PTP_TCR_TSEVNTENA; 619 620 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 621 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 622 break; 623 624 case HWTSTAMP_FILTER_PTP_V2_EVENT: 625 /* PTP v2/802.AS1 any layer, any kind of event packet */ 626 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 627 ptp_v2 = PTP_TCR_TSVER2ENA; 628 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 629 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 630 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 631 ptp_over_ethernet = PTP_TCR_TSIPENA; 632 break; 633 634 case HWTSTAMP_FILTER_PTP_V2_SYNC: 635 /* PTP v2/802.AS1, any layer, Sync packet */ 636 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC; 637 ptp_v2 = PTP_TCR_TSVER2ENA; 638 /* take time stamp for SYNC messages only */ 639 ts_event_en = PTP_TCR_TSEVNTENA; 640 641 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 642 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 643 ptp_over_ethernet = PTP_TCR_TSIPENA; 644 break; 645 646 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 647 /* PTP v2/802.AS1, any layer, Delay_req packet */ 648 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ; 649 ptp_v2 = PTP_TCR_TSVER2ENA; 650 /* take time stamp for Delay_Req messages only */ 651 ts_master_en = PTP_TCR_TSMSTRENA; 652 ts_event_en = PTP_TCR_TSEVNTENA; 653 654 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 655 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 656 ptp_over_ethernet = PTP_TCR_TSIPENA; 657 break; 658 659 case HWTSTAMP_FILTER_NTP_ALL: 660 case HWTSTAMP_FILTER_ALL: 661 /* time stamp any incoming packet */ 662 config.rx_filter = HWTSTAMP_FILTER_ALL; 663 tstamp_all = PTP_TCR_TSENALL; 664 break; 665 666 default: 667 return -ERANGE; 668 } 669 } else { 670 switch (config.rx_filter) { 671 case HWTSTAMP_FILTER_NONE: 672 config.rx_filter = HWTSTAMP_FILTER_NONE; 673 break; 674 default: 675 /* PTP v1, UDP, any kind of event packet */ 676 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 677 break; 678 } 679 } 680 priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1); 681 priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON; 682 683 if (!priv->hwts_tx_en && !priv->hwts_rx_en) 684 stmmac_config_hw_tstamping(priv, priv->ptpaddr, 0); 685 else { 686 value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR | 687 tstamp_all | ptp_v2 | ptp_over_ethernet | 688 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en | 689 ts_master_en | snap_type_sel); 690 stmmac_config_hw_tstamping(priv, priv->ptpaddr, value); 691 692 /* program Sub Second Increment reg */ 693 stmmac_config_sub_second_increment(priv, 694 priv->ptpaddr, priv->plat->clk_ptp_rate, 695 xmac, &sec_inc); 696 temp = div_u64(1000000000ULL, sec_inc); 697 698 /* Store sub second increment and flags for later use */ 699 priv->sub_second_inc = sec_inc; 700 priv->systime_flags = value; 701 702 /* calculate default added value: 703 * formula is : 704 * addend = (2^32)/freq_div_ratio; 705 * where, freq_div_ratio = 1e9ns/sec_inc 706 */ 707 temp = (u64)(temp << 32); 708 priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate); 709 stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend); 710 711 /* initialize system time */ 712 ktime_get_real_ts64(&now); 713 714 /* lower 32 bits of tv_sec are safe until y2106 */ 715 stmmac_init_systime(priv, priv->ptpaddr, 716 (u32)now.tv_sec, now.tv_nsec); 717 } 718 719 memcpy(&priv->tstamp_config, &config, sizeof(config)); 720 721 return copy_to_user(ifr->ifr_data, &config, 722 sizeof(config)) ? -EFAULT : 0; 723 } 724 725 /** 726 * stmmac_hwtstamp_get - read hardware timestamping. 727 * @dev: device pointer. 728 * @ifr: An IOCTL specific structure, that can contain a pointer to 729 * a proprietary structure used to pass information to the driver. 730 * Description: 731 * This function obtain the current hardware timestamping settings 732 as requested. 733 */ 734 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr) 735 { 736 struct stmmac_priv *priv = netdev_priv(dev); 737 struct hwtstamp_config *config = &priv->tstamp_config; 738 739 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp)) 740 return -EOPNOTSUPP; 741 742 return copy_to_user(ifr->ifr_data, config, 743 sizeof(*config)) ? -EFAULT : 0; 744 } 745 746 /** 747 * stmmac_init_ptp - init PTP 748 * @priv: driver private structure 749 * Description: this is to verify if the HW supports the PTPv1 or PTPv2. 750 * This is done by looking at the HW cap. register. 751 * This function also registers the ptp driver. 752 */ 753 static int stmmac_init_ptp(struct stmmac_priv *priv) 754 { 755 bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; 756 757 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp)) 758 return -EOPNOTSUPP; 759 760 priv->adv_ts = 0; 761 /* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */ 762 if (xmac && priv->dma_cap.atime_stamp) 763 priv->adv_ts = 1; 764 /* Dwmac 3.x core with extend_desc can support adv_ts */ 765 else if (priv->extend_desc && priv->dma_cap.atime_stamp) 766 priv->adv_ts = 1; 767 768 if (priv->dma_cap.time_stamp) 769 netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n"); 770 771 if (priv->adv_ts) 772 netdev_info(priv->dev, 773 "IEEE 1588-2008 Advanced Timestamp supported\n"); 774 775 priv->hwts_tx_en = 0; 776 priv->hwts_rx_en = 0; 777 778 stmmac_ptp_register(priv); 779 780 return 0; 781 } 782 783 static void stmmac_release_ptp(struct stmmac_priv *priv) 784 { 785 if (priv->plat->clk_ptp_ref) 786 clk_disable_unprepare(priv->plat->clk_ptp_ref); 787 stmmac_ptp_unregister(priv); 788 } 789 790 /** 791 * stmmac_mac_flow_ctrl - Configure flow control in all queues 792 * @priv: driver private structure 793 * Description: It is used for configuring the flow control in all queues 794 */ 795 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex) 796 { 797 u32 tx_cnt = priv->plat->tx_queues_to_use; 798 799 stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl, 800 priv->pause, tx_cnt); 801 } 802 803 static void stmmac_validate(struct phylink_config *config, 804 unsigned long *supported, 805 struct phylink_link_state *state) 806 { 807 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); 808 __ETHTOOL_DECLARE_LINK_MODE_MASK(mac_supported) = { 0, }; 809 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; 810 int tx_cnt = priv->plat->tx_queues_to_use; 811 int max_speed = priv->plat->max_speed; 812 813 phylink_set(mac_supported, 10baseT_Half); 814 phylink_set(mac_supported, 10baseT_Full); 815 phylink_set(mac_supported, 100baseT_Half); 816 phylink_set(mac_supported, 100baseT_Full); 817 phylink_set(mac_supported, 1000baseT_Half); 818 phylink_set(mac_supported, 1000baseT_Full); 819 phylink_set(mac_supported, 1000baseKX_Full); 820 821 phylink_set(mac_supported, Autoneg); 822 phylink_set(mac_supported, Pause); 823 phylink_set(mac_supported, Asym_Pause); 824 phylink_set_port_modes(mac_supported); 825 826 /* Cut down 1G if asked to */ 827 if ((max_speed > 0) && (max_speed < 1000)) { 828 phylink_set(mask, 1000baseT_Full); 829 phylink_set(mask, 1000baseX_Full); 830 } else if (priv->plat->has_xgmac) { 831 phylink_set(mac_supported, 2500baseT_Full); 832 phylink_set(mac_supported, 5000baseT_Full); 833 phylink_set(mac_supported, 10000baseSR_Full); 834 phylink_set(mac_supported, 10000baseLR_Full); 835 phylink_set(mac_supported, 10000baseER_Full); 836 phylink_set(mac_supported, 10000baseLRM_Full); 837 phylink_set(mac_supported, 10000baseT_Full); 838 phylink_set(mac_supported, 10000baseKX4_Full); 839 phylink_set(mac_supported, 10000baseKR_Full); 840 } 841 842 /* Half-Duplex can only work with single queue */ 843 if (tx_cnt > 1) { 844 phylink_set(mask, 10baseT_Half); 845 phylink_set(mask, 100baseT_Half); 846 phylink_set(mask, 1000baseT_Half); 847 } 848 849 bitmap_and(supported, supported, mac_supported, 850 __ETHTOOL_LINK_MODE_MASK_NBITS); 851 bitmap_andnot(supported, supported, mask, 852 __ETHTOOL_LINK_MODE_MASK_NBITS); 853 bitmap_and(state->advertising, state->advertising, mac_supported, 854 __ETHTOOL_LINK_MODE_MASK_NBITS); 855 bitmap_andnot(state->advertising, state->advertising, mask, 856 __ETHTOOL_LINK_MODE_MASK_NBITS); 857 } 858 859 static int stmmac_mac_link_state(struct phylink_config *config, 860 struct phylink_link_state *state) 861 { 862 return -EOPNOTSUPP; 863 } 864 865 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode, 866 const struct phylink_link_state *state) 867 { 868 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); 869 u32 ctrl; 870 871 ctrl = readl(priv->ioaddr + MAC_CTRL_REG); 872 ctrl &= ~priv->hw->link.speed_mask; 873 874 if (state->interface == PHY_INTERFACE_MODE_USXGMII) { 875 switch (state->speed) { 876 case SPEED_10000: 877 ctrl |= priv->hw->link.xgmii.speed10000; 878 break; 879 case SPEED_5000: 880 ctrl |= priv->hw->link.xgmii.speed5000; 881 break; 882 case SPEED_2500: 883 ctrl |= priv->hw->link.xgmii.speed2500; 884 break; 885 default: 886 return; 887 } 888 } else { 889 switch (state->speed) { 890 case SPEED_2500: 891 ctrl |= priv->hw->link.speed2500; 892 break; 893 case SPEED_1000: 894 ctrl |= priv->hw->link.speed1000; 895 break; 896 case SPEED_100: 897 ctrl |= priv->hw->link.speed100; 898 break; 899 case SPEED_10: 900 ctrl |= priv->hw->link.speed10; 901 break; 902 default: 903 return; 904 } 905 } 906 907 priv->speed = state->speed; 908 909 if (priv->plat->fix_mac_speed) 910 priv->plat->fix_mac_speed(priv->plat->bsp_priv, state->speed); 911 912 if (!state->duplex) 913 ctrl &= ~priv->hw->link.duplex; 914 else 915 ctrl |= priv->hw->link.duplex; 916 917 /* Flow Control operation */ 918 if (state->pause) 919 stmmac_mac_flow_ctrl(priv, state->duplex); 920 921 writel(ctrl, priv->ioaddr + MAC_CTRL_REG); 922 } 923 924 static void stmmac_mac_an_restart(struct phylink_config *config) 925 { 926 /* Not Supported */ 927 } 928 929 static void stmmac_mac_link_down(struct phylink_config *config, 930 unsigned int mode, phy_interface_t interface) 931 { 932 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); 933 934 stmmac_mac_set(priv, priv->ioaddr, false); 935 priv->eee_active = false; 936 stmmac_eee_init(priv); 937 stmmac_set_eee_pls(priv, priv->hw, false); 938 } 939 940 static void stmmac_mac_link_up(struct phylink_config *config, 941 unsigned int mode, phy_interface_t interface, 942 struct phy_device *phy) 943 { 944 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); 945 946 stmmac_mac_set(priv, priv->ioaddr, true); 947 if (phy && priv->dma_cap.eee) { 948 priv->eee_active = phy_init_eee(phy, 1) >= 0; 949 priv->eee_enabled = stmmac_eee_init(priv); 950 stmmac_set_eee_pls(priv, priv->hw, true); 951 } 952 } 953 954 static const struct phylink_mac_ops stmmac_phylink_mac_ops = { 955 .validate = stmmac_validate, 956 .mac_link_state = stmmac_mac_link_state, 957 .mac_config = stmmac_mac_config, 958 .mac_an_restart = stmmac_mac_an_restart, 959 .mac_link_down = stmmac_mac_link_down, 960 .mac_link_up = stmmac_mac_link_up, 961 }; 962 963 /** 964 * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported 965 * @priv: driver private structure 966 * Description: this is to verify if the HW supports the PCS. 967 * Physical Coding Sublayer (PCS) interface that can be used when the MAC is 968 * configured for the TBI, RTBI, or SGMII PHY interface. 969 */ 970 static void stmmac_check_pcs_mode(struct stmmac_priv *priv) 971 { 972 int interface = priv->plat->interface; 973 974 if (priv->dma_cap.pcs) { 975 if ((interface == PHY_INTERFACE_MODE_RGMII) || 976 (interface == PHY_INTERFACE_MODE_RGMII_ID) || 977 (interface == PHY_INTERFACE_MODE_RGMII_RXID) || 978 (interface == PHY_INTERFACE_MODE_RGMII_TXID)) { 979 netdev_dbg(priv->dev, "PCS RGMII support enabled\n"); 980 priv->hw->pcs = STMMAC_PCS_RGMII; 981 } else if (interface == PHY_INTERFACE_MODE_SGMII) { 982 netdev_dbg(priv->dev, "PCS SGMII support enabled\n"); 983 priv->hw->pcs = STMMAC_PCS_SGMII; 984 } 985 } 986 } 987 988 /** 989 * stmmac_init_phy - PHY initialization 990 * @dev: net device structure 991 * Description: it initializes the driver's PHY state, and attaches the PHY 992 * to the mac driver. 993 * Return value: 994 * 0 on success 995 */ 996 static int stmmac_init_phy(struct net_device *dev) 997 { 998 struct stmmac_priv *priv = netdev_priv(dev); 999 struct device_node *node; 1000 int ret; 1001 1002 node = priv->plat->phylink_node; 1003 1004 if (node) 1005 ret = phylink_of_phy_connect(priv->phylink, node, 0); 1006 1007 /* Some DT bindings do not set-up the PHY handle. Let's try to 1008 * manually parse it 1009 */ 1010 if (!node || ret) { 1011 int addr = priv->plat->phy_addr; 1012 struct phy_device *phydev; 1013 1014 phydev = mdiobus_get_phy(priv->mii, addr); 1015 if (!phydev) { 1016 netdev_err(priv->dev, "no phy at addr %d\n", addr); 1017 return -ENODEV; 1018 } 1019 1020 ret = phylink_connect_phy(priv->phylink, phydev); 1021 } 1022 1023 return ret; 1024 } 1025 1026 static int stmmac_phy_setup(struct stmmac_priv *priv) 1027 { 1028 struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node); 1029 int mode = priv->plat->interface; 1030 struct phylink *phylink; 1031 1032 priv->phylink_config.dev = &priv->dev->dev; 1033 priv->phylink_config.type = PHYLINK_NETDEV; 1034 1035 phylink = phylink_create(&priv->phylink_config, fwnode, 1036 mode, &stmmac_phylink_mac_ops); 1037 if (IS_ERR(phylink)) 1038 return PTR_ERR(phylink); 1039 1040 priv->phylink = phylink; 1041 return 0; 1042 } 1043 1044 static void stmmac_display_rx_rings(struct stmmac_priv *priv) 1045 { 1046 u32 rx_cnt = priv->plat->rx_queues_to_use; 1047 void *head_rx; 1048 u32 queue; 1049 1050 /* Display RX rings */ 1051 for (queue = 0; queue < rx_cnt; queue++) { 1052 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1053 1054 pr_info("\tRX Queue %u rings\n", queue); 1055 1056 if (priv->extend_desc) 1057 head_rx = (void *)rx_q->dma_erx; 1058 else 1059 head_rx = (void *)rx_q->dma_rx; 1060 1061 /* Display RX ring */ 1062 stmmac_display_ring(priv, head_rx, DMA_RX_SIZE, true); 1063 } 1064 } 1065 1066 static void stmmac_display_tx_rings(struct stmmac_priv *priv) 1067 { 1068 u32 tx_cnt = priv->plat->tx_queues_to_use; 1069 void *head_tx; 1070 u32 queue; 1071 1072 /* Display TX rings */ 1073 for (queue = 0; queue < tx_cnt; queue++) { 1074 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1075 1076 pr_info("\tTX Queue %d rings\n", queue); 1077 1078 if (priv->extend_desc) 1079 head_tx = (void *)tx_q->dma_etx; 1080 else 1081 head_tx = (void *)tx_q->dma_tx; 1082 1083 stmmac_display_ring(priv, head_tx, DMA_TX_SIZE, false); 1084 } 1085 } 1086 1087 static void stmmac_display_rings(struct stmmac_priv *priv) 1088 { 1089 /* Display RX ring */ 1090 stmmac_display_rx_rings(priv); 1091 1092 /* Display TX ring */ 1093 stmmac_display_tx_rings(priv); 1094 } 1095 1096 static int stmmac_set_bfsize(int mtu, int bufsize) 1097 { 1098 int ret = bufsize; 1099 1100 if (mtu >= BUF_SIZE_4KiB) 1101 ret = BUF_SIZE_8KiB; 1102 else if (mtu >= BUF_SIZE_2KiB) 1103 ret = BUF_SIZE_4KiB; 1104 else if (mtu > DEFAULT_BUFSIZE) 1105 ret = BUF_SIZE_2KiB; 1106 else 1107 ret = DEFAULT_BUFSIZE; 1108 1109 return ret; 1110 } 1111 1112 /** 1113 * stmmac_clear_rx_descriptors - clear RX descriptors 1114 * @priv: driver private structure 1115 * @queue: RX queue index 1116 * Description: this function is called to clear the RX descriptors 1117 * in case of both basic and extended descriptors are used. 1118 */ 1119 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue) 1120 { 1121 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1122 int i; 1123 1124 /* Clear the RX descriptors */ 1125 for (i = 0; i < DMA_RX_SIZE; i++) 1126 if (priv->extend_desc) 1127 stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic, 1128 priv->use_riwt, priv->mode, 1129 (i == DMA_RX_SIZE - 1), 1130 priv->dma_buf_sz); 1131 else 1132 stmmac_init_rx_desc(priv, &rx_q->dma_rx[i], 1133 priv->use_riwt, priv->mode, 1134 (i == DMA_RX_SIZE - 1), 1135 priv->dma_buf_sz); 1136 } 1137 1138 /** 1139 * stmmac_clear_tx_descriptors - clear tx descriptors 1140 * @priv: driver private structure 1141 * @queue: TX queue index. 1142 * Description: this function is called to clear the TX descriptors 1143 * in case of both basic and extended descriptors are used. 1144 */ 1145 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue) 1146 { 1147 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1148 int i; 1149 1150 /* Clear the TX descriptors */ 1151 for (i = 0; i < DMA_TX_SIZE; i++) 1152 if (priv->extend_desc) 1153 stmmac_init_tx_desc(priv, &tx_q->dma_etx[i].basic, 1154 priv->mode, (i == DMA_TX_SIZE - 1)); 1155 else 1156 stmmac_init_tx_desc(priv, &tx_q->dma_tx[i], 1157 priv->mode, (i == DMA_TX_SIZE - 1)); 1158 } 1159 1160 /** 1161 * stmmac_clear_descriptors - clear descriptors 1162 * @priv: driver private structure 1163 * Description: this function is called to clear the TX and RX descriptors 1164 * in case of both basic and extended descriptors are used. 1165 */ 1166 static void stmmac_clear_descriptors(struct stmmac_priv *priv) 1167 { 1168 u32 rx_queue_cnt = priv->plat->rx_queues_to_use; 1169 u32 tx_queue_cnt = priv->plat->tx_queues_to_use; 1170 u32 queue; 1171 1172 /* Clear the RX descriptors */ 1173 for (queue = 0; queue < rx_queue_cnt; queue++) 1174 stmmac_clear_rx_descriptors(priv, queue); 1175 1176 /* Clear the TX descriptors */ 1177 for (queue = 0; queue < tx_queue_cnt; queue++) 1178 stmmac_clear_tx_descriptors(priv, queue); 1179 } 1180 1181 /** 1182 * stmmac_init_rx_buffers - init the RX descriptor buffer. 1183 * @priv: driver private structure 1184 * @p: descriptor pointer 1185 * @i: descriptor index 1186 * @flags: gfp flag 1187 * @queue: RX queue index 1188 * Description: this function is called to allocate a receive buffer, perform 1189 * the DMA mapping and init the descriptor. 1190 */ 1191 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p, 1192 int i, gfp_t flags, u32 queue) 1193 { 1194 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1195 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i]; 1196 1197 buf->page = page_pool_dev_alloc_pages(rx_q->page_pool); 1198 if (!buf->page) 1199 return -ENOMEM; 1200 1201 buf->addr = page_pool_get_dma_addr(buf->page); 1202 stmmac_set_desc_addr(priv, p, buf->addr); 1203 if (priv->dma_buf_sz == BUF_SIZE_16KiB) 1204 stmmac_init_desc3(priv, p); 1205 1206 return 0; 1207 } 1208 1209 /** 1210 * stmmac_free_rx_buffer - free RX dma buffers 1211 * @priv: private structure 1212 * @queue: RX queue index 1213 * @i: buffer index. 1214 */ 1215 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i) 1216 { 1217 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1218 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i]; 1219 1220 if (buf->page) 1221 page_pool_put_page(rx_q->page_pool, buf->page, false); 1222 buf->page = NULL; 1223 } 1224 1225 /** 1226 * stmmac_free_tx_buffer - free RX dma buffers 1227 * @priv: private structure 1228 * @queue: RX queue index 1229 * @i: buffer index. 1230 */ 1231 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i) 1232 { 1233 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1234 1235 if (tx_q->tx_skbuff_dma[i].buf) { 1236 if (tx_q->tx_skbuff_dma[i].map_as_page) 1237 dma_unmap_page(priv->device, 1238 tx_q->tx_skbuff_dma[i].buf, 1239 tx_q->tx_skbuff_dma[i].len, 1240 DMA_TO_DEVICE); 1241 else 1242 dma_unmap_single(priv->device, 1243 tx_q->tx_skbuff_dma[i].buf, 1244 tx_q->tx_skbuff_dma[i].len, 1245 DMA_TO_DEVICE); 1246 } 1247 1248 if (tx_q->tx_skbuff[i]) { 1249 dev_kfree_skb_any(tx_q->tx_skbuff[i]); 1250 tx_q->tx_skbuff[i] = NULL; 1251 tx_q->tx_skbuff_dma[i].buf = 0; 1252 tx_q->tx_skbuff_dma[i].map_as_page = false; 1253 } 1254 } 1255 1256 /** 1257 * init_dma_rx_desc_rings - init the RX descriptor rings 1258 * @dev: net device structure 1259 * @flags: gfp flag. 1260 * Description: this function initializes the DMA RX descriptors 1261 * and allocates the socket buffers. It supports the chained and ring 1262 * modes. 1263 */ 1264 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags) 1265 { 1266 struct stmmac_priv *priv = netdev_priv(dev); 1267 u32 rx_count = priv->plat->rx_queues_to_use; 1268 int ret = -ENOMEM; 1269 int bfsize = 0; 1270 int queue; 1271 int i; 1272 1273 bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu); 1274 if (bfsize < 0) 1275 bfsize = 0; 1276 1277 if (bfsize < BUF_SIZE_16KiB) 1278 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz); 1279 1280 priv->dma_buf_sz = bfsize; 1281 1282 /* RX INITIALIZATION */ 1283 netif_dbg(priv, probe, priv->dev, 1284 "SKB addresses:\nskb\t\tskb data\tdma data\n"); 1285 1286 for (queue = 0; queue < rx_count; queue++) { 1287 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1288 1289 netif_dbg(priv, probe, priv->dev, 1290 "(%s) dma_rx_phy=0x%08x\n", __func__, 1291 (u32)rx_q->dma_rx_phy); 1292 1293 stmmac_clear_rx_descriptors(priv, queue); 1294 1295 for (i = 0; i < DMA_RX_SIZE; i++) { 1296 struct dma_desc *p; 1297 1298 if (priv->extend_desc) 1299 p = &((rx_q->dma_erx + i)->basic); 1300 else 1301 p = rx_q->dma_rx + i; 1302 1303 ret = stmmac_init_rx_buffers(priv, p, i, flags, 1304 queue); 1305 if (ret) 1306 goto err_init_rx_buffers; 1307 } 1308 1309 rx_q->cur_rx = 0; 1310 rx_q->dirty_rx = (unsigned int)(i - DMA_RX_SIZE); 1311 1312 /* Setup the chained descriptor addresses */ 1313 if (priv->mode == STMMAC_CHAIN_MODE) { 1314 if (priv->extend_desc) 1315 stmmac_mode_init(priv, rx_q->dma_erx, 1316 rx_q->dma_rx_phy, DMA_RX_SIZE, 1); 1317 else 1318 stmmac_mode_init(priv, rx_q->dma_rx, 1319 rx_q->dma_rx_phy, DMA_RX_SIZE, 0); 1320 } 1321 } 1322 1323 buf_sz = bfsize; 1324 1325 return 0; 1326 1327 err_init_rx_buffers: 1328 while (queue >= 0) { 1329 while (--i >= 0) 1330 stmmac_free_rx_buffer(priv, queue, i); 1331 1332 if (queue == 0) 1333 break; 1334 1335 i = DMA_RX_SIZE; 1336 queue--; 1337 } 1338 1339 return ret; 1340 } 1341 1342 /** 1343 * init_dma_tx_desc_rings - init the TX descriptor rings 1344 * @dev: net device structure. 1345 * Description: this function initializes the DMA TX descriptors 1346 * and allocates the socket buffers. It supports the chained and ring 1347 * modes. 1348 */ 1349 static int init_dma_tx_desc_rings(struct net_device *dev) 1350 { 1351 struct stmmac_priv *priv = netdev_priv(dev); 1352 u32 tx_queue_cnt = priv->plat->tx_queues_to_use; 1353 u32 queue; 1354 int i; 1355 1356 for (queue = 0; queue < tx_queue_cnt; queue++) { 1357 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1358 1359 netif_dbg(priv, probe, priv->dev, 1360 "(%s) dma_tx_phy=0x%08x\n", __func__, 1361 (u32)tx_q->dma_tx_phy); 1362 1363 /* Setup the chained descriptor addresses */ 1364 if (priv->mode == STMMAC_CHAIN_MODE) { 1365 if (priv->extend_desc) 1366 stmmac_mode_init(priv, tx_q->dma_etx, 1367 tx_q->dma_tx_phy, DMA_TX_SIZE, 1); 1368 else 1369 stmmac_mode_init(priv, tx_q->dma_tx, 1370 tx_q->dma_tx_phy, DMA_TX_SIZE, 0); 1371 } 1372 1373 for (i = 0; i < DMA_TX_SIZE; i++) { 1374 struct dma_desc *p; 1375 if (priv->extend_desc) 1376 p = &((tx_q->dma_etx + i)->basic); 1377 else 1378 p = tx_q->dma_tx + i; 1379 1380 stmmac_clear_desc(priv, p); 1381 1382 tx_q->tx_skbuff_dma[i].buf = 0; 1383 tx_q->tx_skbuff_dma[i].map_as_page = false; 1384 tx_q->tx_skbuff_dma[i].len = 0; 1385 tx_q->tx_skbuff_dma[i].last_segment = false; 1386 tx_q->tx_skbuff[i] = NULL; 1387 } 1388 1389 tx_q->dirty_tx = 0; 1390 tx_q->cur_tx = 0; 1391 tx_q->mss = 0; 1392 1393 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue)); 1394 } 1395 1396 return 0; 1397 } 1398 1399 /** 1400 * init_dma_desc_rings - init the RX/TX descriptor rings 1401 * @dev: net device structure 1402 * @flags: gfp flag. 1403 * Description: this function initializes the DMA RX/TX descriptors 1404 * and allocates the socket buffers. It supports the chained and ring 1405 * modes. 1406 */ 1407 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags) 1408 { 1409 struct stmmac_priv *priv = netdev_priv(dev); 1410 int ret; 1411 1412 ret = init_dma_rx_desc_rings(dev, flags); 1413 if (ret) 1414 return ret; 1415 1416 ret = init_dma_tx_desc_rings(dev); 1417 1418 stmmac_clear_descriptors(priv); 1419 1420 if (netif_msg_hw(priv)) 1421 stmmac_display_rings(priv); 1422 1423 return ret; 1424 } 1425 1426 /** 1427 * dma_free_rx_skbufs - free RX dma buffers 1428 * @priv: private structure 1429 * @queue: RX queue index 1430 */ 1431 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue) 1432 { 1433 int i; 1434 1435 for (i = 0; i < DMA_RX_SIZE; i++) 1436 stmmac_free_rx_buffer(priv, queue, i); 1437 } 1438 1439 /** 1440 * dma_free_tx_skbufs - free TX dma buffers 1441 * @priv: private structure 1442 * @queue: TX queue index 1443 */ 1444 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue) 1445 { 1446 int i; 1447 1448 for (i = 0; i < DMA_TX_SIZE; i++) 1449 stmmac_free_tx_buffer(priv, queue, i); 1450 } 1451 1452 /** 1453 * free_dma_rx_desc_resources - free RX dma desc resources 1454 * @priv: private structure 1455 */ 1456 static void free_dma_rx_desc_resources(struct stmmac_priv *priv) 1457 { 1458 u32 rx_count = priv->plat->rx_queues_to_use; 1459 u32 queue; 1460 1461 /* Free RX queue resources */ 1462 for (queue = 0; queue < rx_count; queue++) { 1463 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1464 1465 /* Release the DMA RX socket buffers */ 1466 dma_free_rx_skbufs(priv, queue); 1467 1468 /* Free DMA regions of consistent memory previously allocated */ 1469 if (!priv->extend_desc) 1470 dma_free_coherent(priv->device, 1471 DMA_RX_SIZE * sizeof(struct dma_desc), 1472 rx_q->dma_rx, rx_q->dma_rx_phy); 1473 else 1474 dma_free_coherent(priv->device, DMA_RX_SIZE * 1475 sizeof(struct dma_extended_desc), 1476 rx_q->dma_erx, rx_q->dma_rx_phy); 1477 1478 kfree(rx_q->buf_pool); 1479 if (rx_q->page_pool) { 1480 page_pool_request_shutdown(rx_q->page_pool); 1481 page_pool_destroy(rx_q->page_pool); 1482 } 1483 } 1484 } 1485 1486 /** 1487 * free_dma_tx_desc_resources - free TX dma desc resources 1488 * @priv: private structure 1489 */ 1490 static void free_dma_tx_desc_resources(struct stmmac_priv *priv) 1491 { 1492 u32 tx_count = priv->plat->tx_queues_to_use; 1493 u32 queue; 1494 1495 /* Free TX queue resources */ 1496 for (queue = 0; queue < tx_count; queue++) { 1497 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1498 1499 /* Release the DMA TX socket buffers */ 1500 dma_free_tx_skbufs(priv, queue); 1501 1502 /* Free DMA regions of consistent memory previously allocated */ 1503 if (!priv->extend_desc) 1504 dma_free_coherent(priv->device, 1505 DMA_TX_SIZE * sizeof(struct dma_desc), 1506 tx_q->dma_tx, tx_q->dma_tx_phy); 1507 else 1508 dma_free_coherent(priv->device, DMA_TX_SIZE * 1509 sizeof(struct dma_extended_desc), 1510 tx_q->dma_etx, tx_q->dma_tx_phy); 1511 1512 kfree(tx_q->tx_skbuff_dma); 1513 kfree(tx_q->tx_skbuff); 1514 } 1515 } 1516 1517 /** 1518 * alloc_dma_rx_desc_resources - alloc RX resources. 1519 * @priv: private structure 1520 * Description: according to which descriptor can be used (extend or basic) 1521 * this function allocates the resources for TX and RX paths. In case of 1522 * reception, for example, it pre-allocated the RX socket buffer in order to 1523 * allow zero-copy mechanism. 1524 */ 1525 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv) 1526 { 1527 u32 rx_count = priv->plat->rx_queues_to_use; 1528 int ret = -ENOMEM; 1529 u32 queue; 1530 1531 /* RX queues buffers and DMA */ 1532 for (queue = 0; queue < rx_count; queue++) { 1533 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1534 struct page_pool_params pp_params = { 0 }; 1535 1536 rx_q->queue_index = queue; 1537 rx_q->priv_data = priv; 1538 1539 pp_params.flags = PP_FLAG_DMA_MAP; 1540 pp_params.pool_size = DMA_RX_SIZE; 1541 pp_params.order = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE); 1542 pp_params.nid = dev_to_node(priv->device); 1543 pp_params.dev = priv->device; 1544 pp_params.dma_dir = DMA_FROM_DEVICE; 1545 1546 rx_q->page_pool = page_pool_create(&pp_params); 1547 if (IS_ERR(rx_q->page_pool)) { 1548 ret = PTR_ERR(rx_q->page_pool); 1549 rx_q->page_pool = NULL; 1550 goto err_dma; 1551 } 1552 1553 rx_q->buf_pool = kcalloc(DMA_RX_SIZE, sizeof(*rx_q->buf_pool), 1554 GFP_KERNEL); 1555 if (!rx_q->buf_pool) 1556 goto err_dma; 1557 1558 if (priv->extend_desc) { 1559 rx_q->dma_erx = dma_alloc_coherent(priv->device, 1560 DMA_RX_SIZE * sizeof(struct dma_extended_desc), 1561 &rx_q->dma_rx_phy, 1562 GFP_KERNEL); 1563 if (!rx_q->dma_erx) 1564 goto err_dma; 1565 1566 } else { 1567 rx_q->dma_rx = dma_alloc_coherent(priv->device, 1568 DMA_RX_SIZE * sizeof(struct dma_desc), 1569 &rx_q->dma_rx_phy, 1570 GFP_KERNEL); 1571 if (!rx_q->dma_rx) 1572 goto err_dma; 1573 } 1574 } 1575 1576 return 0; 1577 1578 err_dma: 1579 free_dma_rx_desc_resources(priv); 1580 1581 return ret; 1582 } 1583 1584 /** 1585 * alloc_dma_tx_desc_resources - alloc TX resources. 1586 * @priv: private structure 1587 * Description: according to which descriptor can be used (extend or basic) 1588 * this function allocates the resources for TX and RX paths. In case of 1589 * reception, for example, it pre-allocated the RX socket buffer in order to 1590 * allow zero-copy mechanism. 1591 */ 1592 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv) 1593 { 1594 u32 tx_count = priv->plat->tx_queues_to_use; 1595 int ret = -ENOMEM; 1596 u32 queue; 1597 1598 /* TX queues buffers and DMA */ 1599 for (queue = 0; queue < tx_count; queue++) { 1600 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1601 1602 tx_q->queue_index = queue; 1603 tx_q->priv_data = priv; 1604 1605 tx_q->tx_skbuff_dma = kcalloc(DMA_TX_SIZE, 1606 sizeof(*tx_q->tx_skbuff_dma), 1607 GFP_KERNEL); 1608 if (!tx_q->tx_skbuff_dma) 1609 goto err_dma; 1610 1611 tx_q->tx_skbuff = kcalloc(DMA_TX_SIZE, 1612 sizeof(struct sk_buff *), 1613 GFP_KERNEL); 1614 if (!tx_q->tx_skbuff) 1615 goto err_dma; 1616 1617 if (priv->extend_desc) { 1618 tx_q->dma_etx = dma_alloc_coherent(priv->device, 1619 DMA_TX_SIZE * sizeof(struct dma_extended_desc), 1620 &tx_q->dma_tx_phy, 1621 GFP_KERNEL); 1622 if (!tx_q->dma_etx) 1623 goto err_dma; 1624 } else { 1625 tx_q->dma_tx = dma_alloc_coherent(priv->device, 1626 DMA_TX_SIZE * sizeof(struct dma_desc), 1627 &tx_q->dma_tx_phy, 1628 GFP_KERNEL); 1629 if (!tx_q->dma_tx) 1630 goto err_dma; 1631 } 1632 } 1633 1634 return 0; 1635 1636 err_dma: 1637 free_dma_tx_desc_resources(priv); 1638 1639 return ret; 1640 } 1641 1642 /** 1643 * alloc_dma_desc_resources - alloc TX/RX resources. 1644 * @priv: private structure 1645 * Description: according to which descriptor can be used (extend or basic) 1646 * this function allocates the resources for TX and RX paths. In case of 1647 * reception, for example, it pre-allocated the RX socket buffer in order to 1648 * allow zero-copy mechanism. 1649 */ 1650 static int alloc_dma_desc_resources(struct stmmac_priv *priv) 1651 { 1652 /* RX Allocation */ 1653 int ret = alloc_dma_rx_desc_resources(priv); 1654 1655 if (ret) 1656 return ret; 1657 1658 ret = alloc_dma_tx_desc_resources(priv); 1659 1660 return ret; 1661 } 1662 1663 /** 1664 * free_dma_desc_resources - free dma desc resources 1665 * @priv: private structure 1666 */ 1667 static void free_dma_desc_resources(struct stmmac_priv *priv) 1668 { 1669 /* Release the DMA RX socket buffers */ 1670 free_dma_rx_desc_resources(priv); 1671 1672 /* Release the DMA TX socket buffers */ 1673 free_dma_tx_desc_resources(priv); 1674 } 1675 1676 /** 1677 * stmmac_mac_enable_rx_queues - Enable MAC rx queues 1678 * @priv: driver private structure 1679 * Description: It is used for enabling the rx queues in the MAC 1680 */ 1681 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv) 1682 { 1683 u32 rx_queues_count = priv->plat->rx_queues_to_use; 1684 int queue; 1685 u8 mode; 1686 1687 for (queue = 0; queue < rx_queues_count; queue++) { 1688 mode = priv->plat->rx_queues_cfg[queue].mode_to_use; 1689 stmmac_rx_queue_enable(priv, priv->hw, mode, queue); 1690 } 1691 } 1692 1693 /** 1694 * stmmac_start_rx_dma - start RX DMA channel 1695 * @priv: driver private structure 1696 * @chan: RX channel index 1697 * Description: 1698 * This starts a RX DMA channel 1699 */ 1700 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan) 1701 { 1702 netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan); 1703 stmmac_start_rx(priv, priv->ioaddr, chan); 1704 } 1705 1706 /** 1707 * stmmac_start_tx_dma - start TX DMA channel 1708 * @priv: driver private structure 1709 * @chan: TX channel index 1710 * Description: 1711 * This starts a TX DMA channel 1712 */ 1713 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan) 1714 { 1715 netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan); 1716 stmmac_start_tx(priv, priv->ioaddr, chan); 1717 } 1718 1719 /** 1720 * stmmac_stop_rx_dma - stop RX DMA channel 1721 * @priv: driver private structure 1722 * @chan: RX channel index 1723 * Description: 1724 * This stops a RX DMA channel 1725 */ 1726 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan) 1727 { 1728 netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan); 1729 stmmac_stop_rx(priv, priv->ioaddr, chan); 1730 } 1731 1732 /** 1733 * stmmac_stop_tx_dma - stop TX DMA channel 1734 * @priv: driver private structure 1735 * @chan: TX channel index 1736 * Description: 1737 * This stops a TX DMA channel 1738 */ 1739 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan) 1740 { 1741 netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan); 1742 stmmac_stop_tx(priv, priv->ioaddr, chan); 1743 } 1744 1745 /** 1746 * stmmac_start_all_dma - start all RX and TX DMA channels 1747 * @priv: driver private structure 1748 * Description: 1749 * This starts all the RX and TX DMA channels 1750 */ 1751 static void stmmac_start_all_dma(struct stmmac_priv *priv) 1752 { 1753 u32 rx_channels_count = priv->plat->rx_queues_to_use; 1754 u32 tx_channels_count = priv->plat->tx_queues_to_use; 1755 u32 chan = 0; 1756 1757 for (chan = 0; chan < rx_channels_count; chan++) 1758 stmmac_start_rx_dma(priv, chan); 1759 1760 for (chan = 0; chan < tx_channels_count; chan++) 1761 stmmac_start_tx_dma(priv, chan); 1762 } 1763 1764 /** 1765 * stmmac_stop_all_dma - stop all RX and TX DMA channels 1766 * @priv: driver private structure 1767 * Description: 1768 * This stops the RX and TX DMA channels 1769 */ 1770 static void stmmac_stop_all_dma(struct stmmac_priv *priv) 1771 { 1772 u32 rx_channels_count = priv->plat->rx_queues_to_use; 1773 u32 tx_channels_count = priv->plat->tx_queues_to_use; 1774 u32 chan = 0; 1775 1776 for (chan = 0; chan < rx_channels_count; chan++) 1777 stmmac_stop_rx_dma(priv, chan); 1778 1779 for (chan = 0; chan < tx_channels_count; chan++) 1780 stmmac_stop_tx_dma(priv, chan); 1781 } 1782 1783 /** 1784 * stmmac_dma_operation_mode - HW DMA operation mode 1785 * @priv: driver private structure 1786 * Description: it is used for configuring the DMA operation mode register in 1787 * order to program the tx/rx DMA thresholds or Store-And-Forward mode. 1788 */ 1789 static void stmmac_dma_operation_mode(struct stmmac_priv *priv) 1790 { 1791 u32 rx_channels_count = priv->plat->rx_queues_to_use; 1792 u32 tx_channels_count = priv->plat->tx_queues_to_use; 1793 int rxfifosz = priv->plat->rx_fifo_size; 1794 int txfifosz = priv->plat->tx_fifo_size; 1795 u32 txmode = 0; 1796 u32 rxmode = 0; 1797 u32 chan = 0; 1798 u8 qmode = 0; 1799 1800 if (rxfifosz == 0) 1801 rxfifosz = priv->dma_cap.rx_fifo_size; 1802 if (txfifosz == 0) 1803 txfifosz = priv->dma_cap.tx_fifo_size; 1804 1805 /* Adjust for real per queue fifo size */ 1806 rxfifosz /= rx_channels_count; 1807 txfifosz /= tx_channels_count; 1808 1809 if (priv->plat->force_thresh_dma_mode) { 1810 txmode = tc; 1811 rxmode = tc; 1812 } else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) { 1813 /* 1814 * In case of GMAC, SF mode can be enabled 1815 * to perform the TX COE in HW. This depends on: 1816 * 1) TX COE if actually supported 1817 * 2) There is no bugged Jumbo frame support 1818 * that needs to not insert csum in the TDES. 1819 */ 1820 txmode = SF_DMA_MODE; 1821 rxmode = SF_DMA_MODE; 1822 priv->xstats.threshold = SF_DMA_MODE; 1823 } else { 1824 txmode = tc; 1825 rxmode = SF_DMA_MODE; 1826 } 1827 1828 /* configure all channels */ 1829 for (chan = 0; chan < rx_channels_count; chan++) { 1830 qmode = priv->plat->rx_queues_cfg[chan].mode_to_use; 1831 1832 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, 1833 rxfifosz, qmode); 1834 stmmac_set_dma_bfsize(priv, priv->ioaddr, priv->dma_buf_sz, 1835 chan); 1836 } 1837 1838 for (chan = 0; chan < tx_channels_count; chan++) { 1839 qmode = priv->plat->tx_queues_cfg[chan].mode_to_use; 1840 1841 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, 1842 txfifosz, qmode); 1843 } 1844 } 1845 1846 /** 1847 * stmmac_tx_clean - to manage the transmission completion 1848 * @priv: driver private structure 1849 * @queue: TX queue index 1850 * Description: it reclaims the transmit resources after transmission completes. 1851 */ 1852 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue) 1853 { 1854 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1855 unsigned int bytes_compl = 0, pkts_compl = 0; 1856 unsigned int entry, count = 0; 1857 1858 __netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue)); 1859 1860 priv->xstats.tx_clean++; 1861 1862 entry = tx_q->dirty_tx; 1863 while ((entry != tx_q->cur_tx) && (count < budget)) { 1864 struct sk_buff *skb = tx_q->tx_skbuff[entry]; 1865 struct dma_desc *p; 1866 int status; 1867 1868 if (priv->extend_desc) 1869 p = (struct dma_desc *)(tx_q->dma_etx + entry); 1870 else 1871 p = tx_q->dma_tx + entry; 1872 1873 status = stmmac_tx_status(priv, &priv->dev->stats, 1874 &priv->xstats, p, priv->ioaddr); 1875 /* Check if the descriptor is owned by the DMA */ 1876 if (unlikely(status & tx_dma_own)) 1877 break; 1878 1879 count++; 1880 1881 /* Make sure descriptor fields are read after reading 1882 * the own bit. 1883 */ 1884 dma_rmb(); 1885 1886 /* Just consider the last segment and ...*/ 1887 if (likely(!(status & tx_not_ls))) { 1888 /* ... verify the status error condition */ 1889 if (unlikely(status & tx_err)) { 1890 priv->dev->stats.tx_errors++; 1891 } else { 1892 priv->dev->stats.tx_packets++; 1893 priv->xstats.tx_pkt_n++; 1894 } 1895 stmmac_get_tx_hwtstamp(priv, p, skb); 1896 } 1897 1898 if (likely(tx_q->tx_skbuff_dma[entry].buf)) { 1899 if (tx_q->tx_skbuff_dma[entry].map_as_page) 1900 dma_unmap_page(priv->device, 1901 tx_q->tx_skbuff_dma[entry].buf, 1902 tx_q->tx_skbuff_dma[entry].len, 1903 DMA_TO_DEVICE); 1904 else 1905 dma_unmap_single(priv->device, 1906 tx_q->tx_skbuff_dma[entry].buf, 1907 tx_q->tx_skbuff_dma[entry].len, 1908 DMA_TO_DEVICE); 1909 tx_q->tx_skbuff_dma[entry].buf = 0; 1910 tx_q->tx_skbuff_dma[entry].len = 0; 1911 tx_q->tx_skbuff_dma[entry].map_as_page = false; 1912 } 1913 1914 stmmac_clean_desc3(priv, tx_q, p); 1915 1916 tx_q->tx_skbuff_dma[entry].last_segment = false; 1917 tx_q->tx_skbuff_dma[entry].is_jumbo = false; 1918 1919 if (likely(skb != NULL)) { 1920 pkts_compl++; 1921 bytes_compl += skb->len; 1922 dev_consume_skb_any(skb); 1923 tx_q->tx_skbuff[entry] = NULL; 1924 } 1925 1926 stmmac_release_tx_desc(priv, p, priv->mode); 1927 1928 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE); 1929 } 1930 tx_q->dirty_tx = entry; 1931 1932 netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue), 1933 pkts_compl, bytes_compl); 1934 1935 if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev, 1936 queue))) && 1937 stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH) { 1938 1939 netif_dbg(priv, tx_done, priv->dev, 1940 "%s: restart transmit\n", __func__); 1941 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue)); 1942 } 1943 1944 if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) { 1945 stmmac_enable_eee_mode(priv); 1946 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer)); 1947 } 1948 1949 /* We still have pending packets, let's call for a new scheduling */ 1950 if (tx_q->dirty_tx != tx_q->cur_tx) 1951 mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(10)); 1952 1953 __netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue)); 1954 1955 return count; 1956 } 1957 1958 /** 1959 * stmmac_tx_err - to manage the tx error 1960 * @priv: driver private structure 1961 * @chan: channel index 1962 * Description: it cleans the descriptors and restarts the transmission 1963 * in case of transmission errors. 1964 */ 1965 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan) 1966 { 1967 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 1968 int i; 1969 1970 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan)); 1971 1972 stmmac_stop_tx_dma(priv, chan); 1973 dma_free_tx_skbufs(priv, chan); 1974 for (i = 0; i < DMA_TX_SIZE; i++) 1975 if (priv->extend_desc) 1976 stmmac_init_tx_desc(priv, &tx_q->dma_etx[i].basic, 1977 priv->mode, (i == DMA_TX_SIZE - 1)); 1978 else 1979 stmmac_init_tx_desc(priv, &tx_q->dma_tx[i], 1980 priv->mode, (i == DMA_TX_SIZE - 1)); 1981 tx_q->dirty_tx = 0; 1982 tx_q->cur_tx = 0; 1983 tx_q->mss = 0; 1984 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan)); 1985 stmmac_start_tx_dma(priv, chan); 1986 1987 priv->dev->stats.tx_errors++; 1988 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan)); 1989 } 1990 1991 /** 1992 * stmmac_set_dma_operation_mode - Set DMA operation mode by channel 1993 * @priv: driver private structure 1994 * @txmode: TX operating mode 1995 * @rxmode: RX operating mode 1996 * @chan: channel index 1997 * Description: it is used for configuring of the DMA operation mode in 1998 * runtime in order to program the tx/rx DMA thresholds or Store-And-Forward 1999 * mode. 2000 */ 2001 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode, 2002 u32 rxmode, u32 chan) 2003 { 2004 u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use; 2005 u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use; 2006 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2007 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2008 int rxfifosz = priv->plat->rx_fifo_size; 2009 int txfifosz = priv->plat->tx_fifo_size; 2010 2011 if (rxfifosz == 0) 2012 rxfifosz = priv->dma_cap.rx_fifo_size; 2013 if (txfifosz == 0) 2014 txfifosz = priv->dma_cap.tx_fifo_size; 2015 2016 /* Adjust for real per queue fifo size */ 2017 rxfifosz /= rx_channels_count; 2018 txfifosz /= tx_channels_count; 2019 2020 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode); 2021 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode); 2022 } 2023 2024 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv) 2025 { 2026 int ret; 2027 2028 ret = stmmac_safety_feat_irq_status(priv, priv->dev, 2029 priv->ioaddr, priv->dma_cap.asp, &priv->sstats); 2030 if (ret && (ret != -EINVAL)) { 2031 stmmac_global_err(priv); 2032 return true; 2033 } 2034 2035 return false; 2036 } 2037 2038 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan) 2039 { 2040 int status = stmmac_dma_interrupt_status(priv, priv->ioaddr, 2041 &priv->xstats, chan); 2042 struct stmmac_channel *ch = &priv->channel[chan]; 2043 2044 if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) { 2045 if (napi_schedule_prep(&ch->rx_napi)) { 2046 stmmac_disable_dma_irq(priv, priv->ioaddr, chan); 2047 __napi_schedule_irqoff(&ch->rx_napi); 2048 status |= handle_tx; 2049 } 2050 } 2051 2052 if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) 2053 napi_schedule_irqoff(&ch->tx_napi); 2054 2055 return status; 2056 } 2057 2058 /** 2059 * stmmac_dma_interrupt - DMA ISR 2060 * @priv: driver private structure 2061 * Description: this is the DMA ISR. It is called by the main ISR. 2062 * It calls the dwmac dma routine and schedule poll method in case of some 2063 * work can be done. 2064 */ 2065 static void stmmac_dma_interrupt(struct stmmac_priv *priv) 2066 { 2067 u32 tx_channel_count = priv->plat->tx_queues_to_use; 2068 u32 rx_channel_count = priv->plat->rx_queues_to_use; 2069 u32 channels_to_check = tx_channel_count > rx_channel_count ? 2070 tx_channel_count : rx_channel_count; 2071 u32 chan; 2072 int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)]; 2073 2074 /* Make sure we never check beyond our status buffer. */ 2075 if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status))) 2076 channels_to_check = ARRAY_SIZE(status); 2077 2078 for (chan = 0; chan < channels_to_check; chan++) 2079 status[chan] = stmmac_napi_check(priv, chan); 2080 2081 for (chan = 0; chan < tx_channel_count; chan++) { 2082 if (unlikely(status[chan] & tx_hard_error_bump_tc)) { 2083 /* Try to bump up the dma threshold on this failure */ 2084 if (unlikely(priv->xstats.threshold != SF_DMA_MODE) && 2085 (tc <= 256)) { 2086 tc += 64; 2087 if (priv->plat->force_thresh_dma_mode) 2088 stmmac_set_dma_operation_mode(priv, 2089 tc, 2090 tc, 2091 chan); 2092 else 2093 stmmac_set_dma_operation_mode(priv, 2094 tc, 2095 SF_DMA_MODE, 2096 chan); 2097 priv->xstats.threshold = tc; 2098 } 2099 } else if (unlikely(status[chan] == tx_hard_error)) { 2100 stmmac_tx_err(priv, chan); 2101 } 2102 } 2103 } 2104 2105 /** 2106 * stmmac_mmc_setup: setup the Mac Management Counters (MMC) 2107 * @priv: driver private structure 2108 * Description: this masks the MMC irq, in fact, the counters are managed in SW. 2109 */ 2110 static void stmmac_mmc_setup(struct stmmac_priv *priv) 2111 { 2112 unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET | 2113 MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET; 2114 2115 stmmac_mmc_intr_all_mask(priv, priv->mmcaddr); 2116 2117 if (priv->dma_cap.rmon) { 2118 stmmac_mmc_ctrl(priv, priv->mmcaddr, mode); 2119 memset(&priv->mmc, 0, sizeof(struct stmmac_counters)); 2120 } else 2121 netdev_info(priv->dev, "No MAC Management Counters available\n"); 2122 } 2123 2124 /** 2125 * stmmac_get_hw_features - get MAC capabilities from the HW cap. register. 2126 * @priv: driver private structure 2127 * Description: 2128 * new GMAC chip generations have a new register to indicate the 2129 * presence of the optional feature/functions. 2130 * This can be also used to override the value passed through the 2131 * platform and necessary for old MAC10/100 and GMAC chips. 2132 */ 2133 static int stmmac_get_hw_features(struct stmmac_priv *priv) 2134 { 2135 return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0; 2136 } 2137 2138 /** 2139 * stmmac_check_ether_addr - check if the MAC addr is valid 2140 * @priv: driver private structure 2141 * Description: 2142 * it is to verify if the MAC address is valid, in case of failures it 2143 * generates a random MAC address 2144 */ 2145 static void stmmac_check_ether_addr(struct stmmac_priv *priv) 2146 { 2147 if (!is_valid_ether_addr(priv->dev->dev_addr)) { 2148 stmmac_get_umac_addr(priv, priv->hw, priv->dev->dev_addr, 0); 2149 if (!is_valid_ether_addr(priv->dev->dev_addr)) 2150 eth_hw_addr_random(priv->dev); 2151 dev_info(priv->device, "device MAC address %pM\n", 2152 priv->dev->dev_addr); 2153 } 2154 } 2155 2156 /** 2157 * stmmac_init_dma_engine - DMA init. 2158 * @priv: driver private structure 2159 * Description: 2160 * It inits the DMA invoking the specific MAC/GMAC callback. 2161 * Some DMA parameters can be passed from the platform; 2162 * in case of these are not passed a default is kept for the MAC or GMAC. 2163 */ 2164 static int stmmac_init_dma_engine(struct stmmac_priv *priv) 2165 { 2166 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2167 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2168 u32 dma_csr_ch = max(rx_channels_count, tx_channels_count); 2169 struct stmmac_rx_queue *rx_q; 2170 struct stmmac_tx_queue *tx_q; 2171 u32 chan = 0; 2172 int atds = 0; 2173 int ret = 0; 2174 2175 if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) { 2176 dev_err(priv->device, "Invalid DMA configuration\n"); 2177 return -EINVAL; 2178 } 2179 2180 if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE)) 2181 atds = 1; 2182 2183 ret = stmmac_reset(priv, priv->ioaddr); 2184 if (ret) { 2185 dev_err(priv->device, "Failed to reset the dma\n"); 2186 return ret; 2187 } 2188 2189 /* DMA Configuration */ 2190 stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds); 2191 2192 if (priv->plat->axi) 2193 stmmac_axi(priv, priv->ioaddr, priv->plat->axi); 2194 2195 /* DMA CSR Channel configuration */ 2196 for (chan = 0; chan < dma_csr_ch; chan++) 2197 stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan); 2198 2199 /* DMA RX Channel Configuration */ 2200 for (chan = 0; chan < rx_channels_count; chan++) { 2201 rx_q = &priv->rx_queue[chan]; 2202 2203 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 2204 rx_q->dma_rx_phy, chan); 2205 2206 rx_q->rx_tail_addr = rx_q->dma_rx_phy + 2207 (DMA_RX_SIZE * sizeof(struct dma_desc)); 2208 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, 2209 rx_q->rx_tail_addr, chan); 2210 } 2211 2212 /* DMA TX Channel Configuration */ 2213 for (chan = 0; chan < tx_channels_count; chan++) { 2214 tx_q = &priv->tx_queue[chan]; 2215 2216 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 2217 tx_q->dma_tx_phy, chan); 2218 2219 tx_q->tx_tail_addr = tx_q->dma_tx_phy; 2220 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, 2221 tx_q->tx_tail_addr, chan); 2222 } 2223 2224 return ret; 2225 } 2226 2227 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue) 2228 { 2229 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 2230 2231 mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer)); 2232 } 2233 2234 /** 2235 * stmmac_tx_timer - mitigation sw timer for tx. 2236 * @data: data pointer 2237 * Description: 2238 * This is the timer handler to directly invoke the stmmac_tx_clean. 2239 */ 2240 static void stmmac_tx_timer(struct timer_list *t) 2241 { 2242 struct stmmac_tx_queue *tx_q = from_timer(tx_q, t, txtimer); 2243 struct stmmac_priv *priv = tx_q->priv_data; 2244 struct stmmac_channel *ch; 2245 2246 ch = &priv->channel[tx_q->queue_index]; 2247 2248 /* 2249 * If NAPI is already running we can miss some events. Let's rearm 2250 * the timer and try again. 2251 */ 2252 if (likely(napi_schedule_prep(&ch->tx_napi))) 2253 __napi_schedule(&ch->tx_napi); 2254 else 2255 mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(10)); 2256 } 2257 2258 /** 2259 * stmmac_init_coalesce - init mitigation options. 2260 * @priv: driver private structure 2261 * Description: 2262 * This inits the coalesce parameters: i.e. timer rate, 2263 * timer handler and default threshold used for enabling the 2264 * interrupt on completion bit. 2265 */ 2266 static void stmmac_init_coalesce(struct stmmac_priv *priv) 2267 { 2268 u32 tx_channel_count = priv->plat->tx_queues_to_use; 2269 u32 chan; 2270 2271 priv->tx_coal_frames = STMMAC_TX_FRAMES; 2272 priv->tx_coal_timer = STMMAC_COAL_TX_TIMER; 2273 priv->rx_coal_frames = STMMAC_RX_FRAMES; 2274 2275 for (chan = 0; chan < tx_channel_count; chan++) { 2276 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 2277 2278 timer_setup(&tx_q->txtimer, stmmac_tx_timer, 0); 2279 } 2280 } 2281 2282 static void stmmac_set_rings_length(struct stmmac_priv *priv) 2283 { 2284 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2285 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2286 u32 chan; 2287 2288 /* set TX ring length */ 2289 for (chan = 0; chan < tx_channels_count; chan++) 2290 stmmac_set_tx_ring_len(priv, priv->ioaddr, 2291 (DMA_TX_SIZE - 1), chan); 2292 2293 /* set RX ring length */ 2294 for (chan = 0; chan < rx_channels_count; chan++) 2295 stmmac_set_rx_ring_len(priv, priv->ioaddr, 2296 (DMA_RX_SIZE - 1), chan); 2297 } 2298 2299 /** 2300 * stmmac_set_tx_queue_weight - Set TX queue weight 2301 * @priv: driver private structure 2302 * Description: It is used for setting TX queues weight 2303 */ 2304 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv) 2305 { 2306 u32 tx_queues_count = priv->plat->tx_queues_to_use; 2307 u32 weight; 2308 u32 queue; 2309 2310 for (queue = 0; queue < tx_queues_count; queue++) { 2311 weight = priv->plat->tx_queues_cfg[queue].weight; 2312 stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue); 2313 } 2314 } 2315 2316 /** 2317 * stmmac_configure_cbs - Configure CBS in TX queue 2318 * @priv: driver private structure 2319 * Description: It is used for configuring CBS in AVB TX queues 2320 */ 2321 static void stmmac_configure_cbs(struct stmmac_priv *priv) 2322 { 2323 u32 tx_queues_count = priv->plat->tx_queues_to_use; 2324 u32 mode_to_use; 2325 u32 queue; 2326 2327 /* queue 0 is reserved for legacy traffic */ 2328 for (queue = 1; queue < tx_queues_count; queue++) { 2329 mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use; 2330 if (mode_to_use == MTL_QUEUE_DCB) 2331 continue; 2332 2333 stmmac_config_cbs(priv, priv->hw, 2334 priv->plat->tx_queues_cfg[queue].send_slope, 2335 priv->plat->tx_queues_cfg[queue].idle_slope, 2336 priv->plat->tx_queues_cfg[queue].high_credit, 2337 priv->plat->tx_queues_cfg[queue].low_credit, 2338 queue); 2339 } 2340 } 2341 2342 /** 2343 * stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel 2344 * @priv: driver private structure 2345 * Description: It is used for mapping RX queues to RX dma channels 2346 */ 2347 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv) 2348 { 2349 u32 rx_queues_count = priv->plat->rx_queues_to_use; 2350 u32 queue; 2351 u32 chan; 2352 2353 for (queue = 0; queue < rx_queues_count; queue++) { 2354 chan = priv->plat->rx_queues_cfg[queue].chan; 2355 stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan); 2356 } 2357 } 2358 2359 /** 2360 * stmmac_mac_config_rx_queues_prio - Configure RX Queue priority 2361 * @priv: driver private structure 2362 * Description: It is used for configuring the RX Queue Priority 2363 */ 2364 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv) 2365 { 2366 u32 rx_queues_count = priv->plat->rx_queues_to_use; 2367 u32 queue; 2368 u32 prio; 2369 2370 for (queue = 0; queue < rx_queues_count; queue++) { 2371 if (!priv->plat->rx_queues_cfg[queue].use_prio) 2372 continue; 2373 2374 prio = priv->plat->rx_queues_cfg[queue].prio; 2375 stmmac_rx_queue_prio(priv, priv->hw, prio, queue); 2376 } 2377 } 2378 2379 /** 2380 * stmmac_mac_config_tx_queues_prio - Configure TX Queue priority 2381 * @priv: driver private structure 2382 * Description: It is used for configuring the TX Queue Priority 2383 */ 2384 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv) 2385 { 2386 u32 tx_queues_count = priv->plat->tx_queues_to_use; 2387 u32 queue; 2388 u32 prio; 2389 2390 for (queue = 0; queue < tx_queues_count; queue++) { 2391 if (!priv->plat->tx_queues_cfg[queue].use_prio) 2392 continue; 2393 2394 prio = priv->plat->tx_queues_cfg[queue].prio; 2395 stmmac_tx_queue_prio(priv, priv->hw, prio, queue); 2396 } 2397 } 2398 2399 /** 2400 * stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing 2401 * @priv: driver private structure 2402 * Description: It is used for configuring the RX queue routing 2403 */ 2404 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv) 2405 { 2406 u32 rx_queues_count = priv->plat->rx_queues_to_use; 2407 u32 queue; 2408 u8 packet; 2409 2410 for (queue = 0; queue < rx_queues_count; queue++) { 2411 /* no specific packet type routing specified for the queue */ 2412 if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0) 2413 continue; 2414 2415 packet = priv->plat->rx_queues_cfg[queue].pkt_route; 2416 stmmac_rx_queue_routing(priv, priv->hw, packet, queue); 2417 } 2418 } 2419 2420 static void stmmac_mac_config_rss(struct stmmac_priv *priv) 2421 { 2422 if (!priv->dma_cap.rssen || !priv->plat->rss_en) { 2423 priv->rss.enable = false; 2424 return; 2425 } 2426 2427 if (priv->dev->features & NETIF_F_RXHASH) 2428 priv->rss.enable = true; 2429 else 2430 priv->rss.enable = false; 2431 2432 stmmac_rss_configure(priv, priv->hw, &priv->rss, 2433 priv->plat->rx_queues_to_use); 2434 } 2435 2436 /** 2437 * stmmac_mtl_configuration - Configure MTL 2438 * @priv: driver private structure 2439 * Description: It is used for configurring MTL 2440 */ 2441 static void stmmac_mtl_configuration(struct stmmac_priv *priv) 2442 { 2443 u32 rx_queues_count = priv->plat->rx_queues_to_use; 2444 u32 tx_queues_count = priv->plat->tx_queues_to_use; 2445 2446 if (tx_queues_count > 1) 2447 stmmac_set_tx_queue_weight(priv); 2448 2449 /* Configure MTL RX algorithms */ 2450 if (rx_queues_count > 1) 2451 stmmac_prog_mtl_rx_algorithms(priv, priv->hw, 2452 priv->plat->rx_sched_algorithm); 2453 2454 /* Configure MTL TX algorithms */ 2455 if (tx_queues_count > 1) 2456 stmmac_prog_mtl_tx_algorithms(priv, priv->hw, 2457 priv->plat->tx_sched_algorithm); 2458 2459 /* Configure CBS in AVB TX queues */ 2460 if (tx_queues_count > 1) 2461 stmmac_configure_cbs(priv); 2462 2463 /* Map RX MTL to DMA channels */ 2464 stmmac_rx_queue_dma_chan_map(priv); 2465 2466 /* Enable MAC RX Queues */ 2467 stmmac_mac_enable_rx_queues(priv); 2468 2469 /* Set RX priorities */ 2470 if (rx_queues_count > 1) 2471 stmmac_mac_config_rx_queues_prio(priv); 2472 2473 /* Set TX priorities */ 2474 if (tx_queues_count > 1) 2475 stmmac_mac_config_tx_queues_prio(priv); 2476 2477 /* Set RX routing */ 2478 if (rx_queues_count > 1) 2479 stmmac_mac_config_rx_queues_routing(priv); 2480 2481 /* Receive Side Scaling */ 2482 if (rx_queues_count > 1) 2483 stmmac_mac_config_rss(priv); 2484 } 2485 2486 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv) 2487 { 2488 if (priv->dma_cap.asp) { 2489 netdev_info(priv->dev, "Enabling Safety Features\n"); 2490 stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp); 2491 } else { 2492 netdev_info(priv->dev, "No Safety Features support found\n"); 2493 } 2494 } 2495 2496 /** 2497 * stmmac_hw_setup - setup mac in a usable state. 2498 * @dev : pointer to the device structure. 2499 * Description: 2500 * this is the main function to setup the HW in a usable state because the 2501 * dma engine is reset, the core registers are configured (e.g. AXI, 2502 * Checksum features, timers). The DMA is ready to start receiving and 2503 * transmitting. 2504 * Return value: 2505 * 0 on success and an appropriate (-)ve integer as defined in errno.h 2506 * file on failure. 2507 */ 2508 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp) 2509 { 2510 struct stmmac_priv *priv = netdev_priv(dev); 2511 u32 rx_cnt = priv->plat->rx_queues_to_use; 2512 u32 tx_cnt = priv->plat->tx_queues_to_use; 2513 u32 chan; 2514 int ret; 2515 2516 /* DMA initialization and SW reset */ 2517 ret = stmmac_init_dma_engine(priv); 2518 if (ret < 0) { 2519 netdev_err(priv->dev, "%s: DMA engine initialization failed\n", 2520 __func__); 2521 return ret; 2522 } 2523 2524 /* Copy the MAC addr into the HW */ 2525 stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0); 2526 2527 /* PS and related bits will be programmed according to the speed */ 2528 if (priv->hw->pcs) { 2529 int speed = priv->plat->mac_port_sel_speed; 2530 2531 if ((speed == SPEED_10) || (speed == SPEED_100) || 2532 (speed == SPEED_1000)) { 2533 priv->hw->ps = speed; 2534 } else { 2535 dev_warn(priv->device, "invalid port speed\n"); 2536 priv->hw->ps = 0; 2537 } 2538 } 2539 2540 /* Initialize the MAC Core */ 2541 stmmac_core_init(priv, priv->hw, dev); 2542 2543 /* Initialize MTL*/ 2544 stmmac_mtl_configuration(priv); 2545 2546 /* Initialize Safety Features */ 2547 stmmac_safety_feat_configuration(priv); 2548 2549 ret = stmmac_rx_ipc(priv, priv->hw); 2550 if (!ret) { 2551 netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n"); 2552 priv->plat->rx_coe = STMMAC_RX_COE_NONE; 2553 priv->hw->rx_csum = 0; 2554 } 2555 2556 /* Enable the MAC Rx/Tx */ 2557 stmmac_mac_set(priv, priv->ioaddr, true); 2558 2559 /* Set the HW DMA mode and the COE */ 2560 stmmac_dma_operation_mode(priv); 2561 2562 stmmac_mmc_setup(priv); 2563 2564 if (init_ptp) { 2565 ret = clk_prepare_enable(priv->plat->clk_ptp_ref); 2566 if (ret < 0) 2567 netdev_warn(priv->dev, "failed to enable PTP reference clock: %d\n", ret); 2568 2569 ret = stmmac_init_ptp(priv); 2570 if (ret == -EOPNOTSUPP) 2571 netdev_warn(priv->dev, "PTP not supported by HW\n"); 2572 else if (ret) 2573 netdev_warn(priv->dev, "PTP init failed\n"); 2574 } 2575 2576 priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS; 2577 2578 if (priv->use_riwt) { 2579 ret = stmmac_rx_watchdog(priv, priv->ioaddr, MIN_DMA_RIWT, rx_cnt); 2580 if (!ret) 2581 priv->rx_riwt = MIN_DMA_RIWT; 2582 } 2583 2584 if (priv->hw->pcs) 2585 stmmac_pcs_ctrl_ane(priv, priv->hw, 1, priv->hw->ps, 0); 2586 2587 /* set TX and RX rings length */ 2588 stmmac_set_rings_length(priv); 2589 2590 /* Enable TSO */ 2591 if (priv->tso) { 2592 for (chan = 0; chan < tx_cnt; chan++) 2593 stmmac_enable_tso(priv, priv->ioaddr, 1, chan); 2594 } 2595 2596 /* Start the ball rolling... */ 2597 stmmac_start_all_dma(priv); 2598 2599 return 0; 2600 } 2601 2602 static void stmmac_hw_teardown(struct net_device *dev) 2603 { 2604 struct stmmac_priv *priv = netdev_priv(dev); 2605 2606 clk_disable_unprepare(priv->plat->clk_ptp_ref); 2607 } 2608 2609 /** 2610 * stmmac_open - open entry point of the driver 2611 * @dev : pointer to the device structure. 2612 * Description: 2613 * This function is the open entry point of the driver. 2614 * Return value: 2615 * 0 on success and an appropriate (-)ve integer as defined in errno.h 2616 * file on failure. 2617 */ 2618 static int stmmac_open(struct net_device *dev) 2619 { 2620 struct stmmac_priv *priv = netdev_priv(dev); 2621 u32 chan; 2622 int ret; 2623 2624 if (priv->hw->pcs != STMMAC_PCS_RGMII && 2625 priv->hw->pcs != STMMAC_PCS_TBI && 2626 priv->hw->pcs != STMMAC_PCS_RTBI) { 2627 ret = stmmac_init_phy(dev); 2628 if (ret) { 2629 netdev_err(priv->dev, 2630 "%s: Cannot attach to PHY (error: %d)\n", 2631 __func__, ret); 2632 return ret; 2633 } 2634 } 2635 2636 /* Extra statistics */ 2637 memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats)); 2638 priv->xstats.threshold = tc; 2639 2640 priv->dma_buf_sz = STMMAC_ALIGN(buf_sz); 2641 priv->rx_copybreak = STMMAC_RX_COPYBREAK; 2642 2643 ret = alloc_dma_desc_resources(priv); 2644 if (ret < 0) { 2645 netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n", 2646 __func__); 2647 goto dma_desc_error; 2648 } 2649 2650 ret = init_dma_desc_rings(dev, GFP_KERNEL); 2651 if (ret < 0) { 2652 netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n", 2653 __func__); 2654 goto init_error; 2655 } 2656 2657 ret = stmmac_hw_setup(dev, true); 2658 if (ret < 0) { 2659 netdev_err(priv->dev, "%s: Hw setup failed\n", __func__); 2660 goto init_error; 2661 } 2662 2663 stmmac_init_coalesce(priv); 2664 2665 phylink_start(priv->phylink); 2666 2667 /* Request the IRQ lines */ 2668 ret = request_irq(dev->irq, stmmac_interrupt, 2669 IRQF_SHARED, dev->name, dev); 2670 if (unlikely(ret < 0)) { 2671 netdev_err(priv->dev, 2672 "%s: ERROR: allocating the IRQ %d (error: %d)\n", 2673 __func__, dev->irq, ret); 2674 goto irq_error; 2675 } 2676 2677 /* Request the Wake IRQ in case of another line is used for WoL */ 2678 if (priv->wol_irq != dev->irq) { 2679 ret = request_irq(priv->wol_irq, stmmac_interrupt, 2680 IRQF_SHARED, dev->name, dev); 2681 if (unlikely(ret < 0)) { 2682 netdev_err(priv->dev, 2683 "%s: ERROR: allocating the WoL IRQ %d (%d)\n", 2684 __func__, priv->wol_irq, ret); 2685 goto wolirq_error; 2686 } 2687 } 2688 2689 /* Request the IRQ lines */ 2690 if (priv->lpi_irq > 0) { 2691 ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED, 2692 dev->name, dev); 2693 if (unlikely(ret < 0)) { 2694 netdev_err(priv->dev, 2695 "%s: ERROR: allocating the LPI IRQ %d (%d)\n", 2696 __func__, priv->lpi_irq, ret); 2697 goto lpiirq_error; 2698 } 2699 } 2700 2701 stmmac_enable_all_queues(priv); 2702 stmmac_start_all_queues(priv); 2703 2704 return 0; 2705 2706 lpiirq_error: 2707 if (priv->wol_irq != dev->irq) 2708 free_irq(priv->wol_irq, dev); 2709 wolirq_error: 2710 free_irq(dev->irq, dev); 2711 irq_error: 2712 phylink_stop(priv->phylink); 2713 2714 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 2715 del_timer_sync(&priv->tx_queue[chan].txtimer); 2716 2717 stmmac_hw_teardown(dev); 2718 init_error: 2719 free_dma_desc_resources(priv); 2720 dma_desc_error: 2721 phylink_disconnect_phy(priv->phylink); 2722 return ret; 2723 } 2724 2725 /** 2726 * stmmac_release - close entry point of the driver 2727 * @dev : device pointer. 2728 * Description: 2729 * This is the stop entry point of the driver. 2730 */ 2731 static int stmmac_release(struct net_device *dev) 2732 { 2733 struct stmmac_priv *priv = netdev_priv(dev); 2734 u32 chan; 2735 2736 if (priv->eee_enabled) 2737 del_timer_sync(&priv->eee_ctrl_timer); 2738 2739 /* Stop and disconnect the PHY */ 2740 phylink_stop(priv->phylink); 2741 phylink_disconnect_phy(priv->phylink); 2742 2743 stmmac_stop_all_queues(priv); 2744 2745 stmmac_disable_all_queues(priv); 2746 2747 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 2748 del_timer_sync(&priv->tx_queue[chan].txtimer); 2749 2750 /* Free the IRQ lines */ 2751 free_irq(dev->irq, dev); 2752 if (priv->wol_irq != dev->irq) 2753 free_irq(priv->wol_irq, dev); 2754 if (priv->lpi_irq > 0) 2755 free_irq(priv->lpi_irq, dev); 2756 2757 /* Stop TX/RX DMA and clear the descriptors */ 2758 stmmac_stop_all_dma(priv); 2759 2760 /* Release and free the Rx/Tx resources */ 2761 free_dma_desc_resources(priv); 2762 2763 /* Disable the MAC Rx/Tx */ 2764 stmmac_mac_set(priv, priv->ioaddr, false); 2765 2766 netif_carrier_off(dev); 2767 2768 stmmac_release_ptp(priv); 2769 2770 return 0; 2771 } 2772 2773 /** 2774 * stmmac_tso_allocator - close entry point of the driver 2775 * @priv: driver private structure 2776 * @des: buffer start address 2777 * @total_len: total length to fill in descriptors 2778 * @last_segmant: condition for the last descriptor 2779 * @queue: TX queue index 2780 * Description: 2781 * This function fills descriptor and request new descriptors according to 2782 * buffer length to fill 2783 */ 2784 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des, 2785 int total_len, bool last_segment, u32 queue) 2786 { 2787 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 2788 struct dma_desc *desc; 2789 u32 buff_size; 2790 int tmp_len; 2791 2792 tmp_len = total_len; 2793 2794 while (tmp_len > 0) { 2795 dma_addr_t curr_addr; 2796 2797 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE); 2798 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]); 2799 desc = tx_q->dma_tx + tx_q->cur_tx; 2800 2801 curr_addr = des + (total_len - tmp_len); 2802 if (priv->dma_cap.addr64 <= 32) 2803 desc->des0 = cpu_to_le32(curr_addr); 2804 else 2805 stmmac_set_desc_addr(priv, desc, curr_addr); 2806 2807 buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ? 2808 TSO_MAX_BUFF_SIZE : tmp_len; 2809 2810 stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size, 2811 0, 1, 2812 (last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE), 2813 0, 0); 2814 2815 tmp_len -= TSO_MAX_BUFF_SIZE; 2816 } 2817 } 2818 2819 /** 2820 * stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO) 2821 * @skb : the socket buffer 2822 * @dev : device pointer 2823 * Description: this is the transmit function that is called on TSO frames 2824 * (support available on GMAC4 and newer chips). 2825 * Diagram below show the ring programming in case of TSO frames: 2826 * 2827 * First Descriptor 2828 * -------- 2829 * | DES0 |---> buffer1 = L2/L3/L4 header 2830 * | DES1 |---> TCP Payload (can continue on next descr...) 2831 * | DES2 |---> buffer 1 and 2 len 2832 * | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0] 2833 * -------- 2834 * | 2835 * ... 2836 * | 2837 * -------- 2838 * | DES0 | --| Split TCP Payload on Buffers 1 and 2 2839 * | DES1 | --| 2840 * | DES2 | --> buffer 1 and 2 len 2841 * | DES3 | 2842 * -------- 2843 * 2844 * mss is fixed when enable tso, so w/o programming the TDES3 ctx field. 2845 */ 2846 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev) 2847 { 2848 struct dma_desc *desc, *first, *mss_desc = NULL; 2849 struct stmmac_priv *priv = netdev_priv(dev); 2850 int nfrags = skb_shinfo(skb)->nr_frags; 2851 u32 queue = skb_get_queue_mapping(skb); 2852 unsigned int first_entry; 2853 struct stmmac_tx_queue *tx_q; 2854 int tmp_pay_len = 0; 2855 u32 pay_len, mss; 2856 u8 proto_hdr_len; 2857 dma_addr_t des; 2858 int i; 2859 2860 tx_q = &priv->tx_queue[queue]; 2861 2862 /* Compute header lengths */ 2863 proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 2864 2865 /* Desc availability based on threshold should be enough safe */ 2866 if (unlikely(stmmac_tx_avail(priv, queue) < 2867 (((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) { 2868 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) { 2869 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, 2870 queue)); 2871 /* This is a hard error, log it. */ 2872 netdev_err(priv->dev, 2873 "%s: Tx Ring full when queue awake\n", 2874 __func__); 2875 } 2876 return NETDEV_TX_BUSY; 2877 } 2878 2879 pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */ 2880 2881 mss = skb_shinfo(skb)->gso_size; 2882 2883 /* set new MSS value if needed */ 2884 if (mss != tx_q->mss) { 2885 mss_desc = tx_q->dma_tx + tx_q->cur_tx; 2886 stmmac_set_mss(priv, mss_desc, mss); 2887 tx_q->mss = mss; 2888 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE); 2889 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]); 2890 } 2891 2892 if (netif_msg_tx_queued(priv)) { 2893 pr_info("%s: tcphdrlen %d, hdr_len %d, pay_len %d, mss %d\n", 2894 __func__, tcp_hdrlen(skb), proto_hdr_len, pay_len, mss); 2895 pr_info("\tskb->len %d, skb->data_len %d\n", skb->len, 2896 skb->data_len); 2897 } 2898 2899 first_entry = tx_q->cur_tx; 2900 WARN_ON(tx_q->tx_skbuff[first_entry]); 2901 2902 desc = tx_q->dma_tx + first_entry; 2903 first = desc; 2904 2905 /* first descriptor: fill Headers on Buf1 */ 2906 des = dma_map_single(priv->device, skb->data, skb_headlen(skb), 2907 DMA_TO_DEVICE); 2908 if (dma_mapping_error(priv->device, des)) 2909 goto dma_map_err; 2910 2911 tx_q->tx_skbuff_dma[first_entry].buf = des; 2912 tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb); 2913 2914 if (priv->dma_cap.addr64 <= 32) { 2915 first->des0 = cpu_to_le32(des); 2916 2917 /* Fill start of payload in buff2 of first descriptor */ 2918 if (pay_len) 2919 first->des1 = cpu_to_le32(des + proto_hdr_len); 2920 2921 /* If needed take extra descriptors to fill the remaining payload */ 2922 tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE; 2923 } else { 2924 stmmac_set_desc_addr(priv, first, des); 2925 tmp_pay_len = pay_len; 2926 } 2927 2928 stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue); 2929 2930 /* Prepare fragments */ 2931 for (i = 0; i < nfrags; i++) { 2932 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2933 2934 des = skb_frag_dma_map(priv->device, frag, 0, 2935 skb_frag_size(frag), 2936 DMA_TO_DEVICE); 2937 if (dma_mapping_error(priv->device, des)) 2938 goto dma_map_err; 2939 2940 stmmac_tso_allocator(priv, des, skb_frag_size(frag), 2941 (i == nfrags - 1), queue); 2942 2943 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des; 2944 tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag); 2945 tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true; 2946 } 2947 2948 tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true; 2949 2950 /* Only the last descriptor gets to point to the skb. */ 2951 tx_q->tx_skbuff[tx_q->cur_tx] = skb; 2952 2953 /* We've used all descriptors we need for this skb, however, 2954 * advance cur_tx so that it references a fresh descriptor. 2955 * ndo_start_xmit will fill this descriptor the next time it's 2956 * called and stmmac_tx_clean may clean up to this descriptor. 2957 */ 2958 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE); 2959 2960 if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) { 2961 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n", 2962 __func__); 2963 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue)); 2964 } 2965 2966 dev->stats.tx_bytes += skb->len; 2967 priv->xstats.tx_tso_frames++; 2968 priv->xstats.tx_tso_nfrags += nfrags; 2969 2970 /* Manage tx mitigation */ 2971 tx_q->tx_count_frames += nfrags + 1; 2972 if (likely(priv->tx_coal_frames > tx_q->tx_count_frames) && 2973 !(priv->synopsys_id >= DWMAC_CORE_4_00 && 2974 (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 2975 priv->hwts_tx_en)) { 2976 stmmac_tx_timer_arm(priv, queue); 2977 } else { 2978 tx_q->tx_count_frames = 0; 2979 stmmac_set_tx_ic(priv, desc); 2980 priv->xstats.tx_set_ic_bit++; 2981 } 2982 2983 skb_tx_timestamp(skb); 2984 2985 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 2986 priv->hwts_tx_en)) { 2987 /* declare that device is doing timestamping */ 2988 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 2989 stmmac_enable_tx_timestamp(priv, first); 2990 } 2991 2992 /* Complete the first descriptor before granting the DMA */ 2993 stmmac_prepare_tso_tx_desc(priv, first, 1, 2994 proto_hdr_len, 2995 pay_len, 2996 1, tx_q->tx_skbuff_dma[first_entry].last_segment, 2997 tcp_hdrlen(skb) / 4, (skb->len - proto_hdr_len)); 2998 2999 /* If context desc is used to change MSS */ 3000 if (mss_desc) { 3001 /* Make sure that first descriptor has been completely 3002 * written, including its own bit. This is because MSS is 3003 * actually before first descriptor, so we need to make 3004 * sure that MSS's own bit is the last thing written. 3005 */ 3006 dma_wmb(); 3007 stmmac_set_tx_owner(priv, mss_desc); 3008 } 3009 3010 /* The own bit must be the latest setting done when prepare the 3011 * descriptor and then barrier is needed to make sure that 3012 * all is coherent before granting the DMA engine. 3013 */ 3014 wmb(); 3015 3016 if (netif_msg_pktdata(priv)) { 3017 pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n", 3018 __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry, 3019 tx_q->cur_tx, first, nfrags); 3020 3021 stmmac_display_ring(priv, (void *)tx_q->dma_tx, DMA_TX_SIZE, 0); 3022 3023 pr_info(">>> frame to be transmitted: "); 3024 print_pkt(skb->data, skb_headlen(skb)); 3025 } 3026 3027 netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len); 3028 3029 tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * sizeof(*desc)); 3030 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue); 3031 3032 return NETDEV_TX_OK; 3033 3034 dma_map_err: 3035 dev_err(priv->device, "Tx dma map failed\n"); 3036 dev_kfree_skb(skb); 3037 priv->dev->stats.tx_dropped++; 3038 return NETDEV_TX_OK; 3039 } 3040 3041 /** 3042 * stmmac_xmit - Tx entry point of the driver 3043 * @skb : the socket buffer 3044 * @dev : device pointer 3045 * Description : this is the tx entry point of the driver. 3046 * It programs the chain or the ring and supports oversized frames 3047 * and SG feature. 3048 */ 3049 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev) 3050 { 3051 struct stmmac_priv *priv = netdev_priv(dev); 3052 unsigned int nopaged_len = skb_headlen(skb); 3053 int i, csum_insertion = 0, is_jumbo = 0; 3054 u32 queue = skb_get_queue_mapping(skb); 3055 int nfrags = skb_shinfo(skb)->nr_frags; 3056 struct dma_desc *desc, *first; 3057 struct stmmac_tx_queue *tx_q; 3058 unsigned int first_entry; 3059 unsigned int enh_desc; 3060 dma_addr_t des; 3061 int entry; 3062 3063 tx_q = &priv->tx_queue[queue]; 3064 3065 if (priv->tx_path_in_lpi_mode) 3066 stmmac_disable_eee_mode(priv); 3067 3068 /* Manage oversized TCP frames for GMAC4 device */ 3069 if (skb_is_gso(skb) && priv->tso) { 3070 if (skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) 3071 return stmmac_tso_xmit(skb, dev); 3072 } 3073 3074 if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) { 3075 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) { 3076 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, 3077 queue)); 3078 /* This is a hard error, log it. */ 3079 netdev_err(priv->dev, 3080 "%s: Tx Ring full when queue awake\n", 3081 __func__); 3082 } 3083 return NETDEV_TX_BUSY; 3084 } 3085 3086 entry = tx_q->cur_tx; 3087 first_entry = entry; 3088 WARN_ON(tx_q->tx_skbuff[first_entry]); 3089 3090 csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL); 3091 3092 if (likely(priv->extend_desc)) 3093 desc = (struct dma_desc *)(tx_q->dma_etx + entry); 3094 else 3095 desc = tx_q->dma_tx + entry; 3096 3097 first = desc; 3098 3099 enh_desc = priv->plat->enh_desc; 3100 /* To program the descriptors according to the size of the frame */ 3101 if (enh_desc) 3102 is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc); 3103 3104 if (unlikely(is_jumbo)) { 3105 entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion); 3106 if (unlikely(entry < 0) && (entry != -EINVAL)) 3107 goto dma_map_err; 3108 } 3109 3110 for (i = 0; i < nfrags; i++) { 3111 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3112 int len = skb_frag_size(frag); 3113 bool last_segment = (i == (nfrags - 1)); 3114 3115 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE); 3116 WARN_ON(tx_q->tx_skbuff[entry]); 3117 3118 if (likely(priv->extend_desc)) 3119 desc = (struct dma_desc *)(tx_q->dma_etx + entry); 3120 else 3121 desc = tx_q->dma_tx + entry; 3122 3123 des = skb_frag_dma_map(priv->device, frag, 0, len, 3124 DMA_TO_DEVICE); 3125 if (dma_mapping_error(priv->device, des)) 3126 goto dma_map_err; /* should reuse desc w/o issues */ 3127 3128 tx_q->tx_skbuff_dma[entry].buf = des; 3129 3130 stmmac_set_desc_addr(priv, desc, des); 3131 3132 tx_q->tx_skbuff_dma[entry].map_as_page = true; 3133 tx_q->tx_skbuff_dma[entry].len = len; 3134 tx_q->tx_skbuff_dma[entry].last_segment = last_segment; 3135 3136 /* Prepare the descriptor and set the own bit too */ 3137 stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion, 3138 priv->mode, 1, last_segment, skb->len); 3139 } 3140 3141 /* Only the last descriptor gets to point to the skb. */ 3142 tx_q->tx_skbuff[entry] = skb; 3143 3144 /* We've used all descriptors we need for this skb, however, 3145 * advance cur_tx so that it references a fresh descriptor. 3146 * ndo_start_xmit will fill this descriptor the next time it's 3147 * called and stmmac_tx_clean may clean up to this descriptor. 3148 */ 3149 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE); 3150 tx_q->cur_tx = entry; 3151 3152 if (netif_msg_pktdata(priv)) { 3153 void *tx_head; 3154 3155 netdev_dbg(priv->dev, 3156 "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d", 3157 __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry, 3158 entry, first, nfrags); 3159 3160 if (priv->extend_desc) 3161 tx_head = (void *)tx_q->dma_etx; 3162 else 3163 tx_head = (void *)tx_q->dma_tx; 3164 3165 stmmac_display_ring(priv, tx_head, DMA_TX_SIZE, false); 3166 3167 netdev_dbg(priv->dev, ">>> frame to be transmitted: "); 3168 print_pkt(skb->data, skb->len); 3169 } 3170 3171 if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) { 3172 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n", 3173 __func__); 3174 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue)); 3175 } 3176 3177 dev->stats.tx_bytes += skb->len; 3178 3179 /* According to the coalesce parameter the IC bit for the latest 3180 * segment is reset and the timer re-started to clean the tx status. 3181 * This approach takes care about the fragments: desc is the first 3182 * element in case of no SG. 3183 */ 3184 tx_q->tx_count_frames += nfrags + 1; 3185 if (likely(priv->tx_coal_frames > tx_q->tx_count_frames) && 3186 !(priv->synopsys_id >= DWMAC_CORE_4_00 && 3187 (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 3188 priv->hwts_tx_en)) { 3189 stmmac_tx_timer_arm(priv, queue); 3190 } else { 3191 tx_q->tx_count_frames = 0; 3192 stmmac_set_tx_ic(priv, desc); 3193 priv->xstats.tx_set_ic_bit++; 3194 } 3195 3196 skb_tx_timestamp(skb); 3197 3198 /* Ready to fill the first descriptor and set the OWN bit w/o any 3199 * problems because all the descriptors are actually ready to be 3200 * passed to the DMA engine. 3201 */ 3202 if (likely(!is_jumbo)) { 3203 bool last_segment = (nfrags == 0); 3204 3205 des = dma_map_single(priv->device, skb->data, 3206 nopaged_len, DMA_TO_DEVICE); 3207 if (dma_mapping_error(priv->device, des)) 3208 goto dma_map_err; 3209 3210 tx_q->tx_skbuff_dma[first_entry].buf = des; 3211 3212 stmmac_set_desc_addr(priv, first, des); 3213 3214 tx_q->tx_skbuff_dma[first_entry].len = nopaged_len; 3215 tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment; 3216 3217 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 3218 priv->hwts_tx_en)) { 3219 /* declare that device is doing timestamping */ 3220 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 3221 stmmac_enable_tx_timestamp(priv, first); 3222 } 3223 3224 /* Prepare the first descriptor setting the OWN bit too */ 3225 stmmac_prepare_tx_desc(priv, first, 1, nopaged_len, 3226 csum_insertion, priv->mode, 1, last_segment, 3227 skb->len); 3228 } else { 3229 stmmac_set_tx_owner(priv, first); 3230 } 3231 3232 /* The own bit must be the latest setting done when prepare the 3233 * descriptor and then barrier is needed to make sure that 3234 * all is coherent before granting the DMA engine. 3235 */ 3236 wmb(); 3237 3238 netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len); 3239 3240 stmmac_enable_dma_transmission(priv, priv->ioaddr); 3241 3242 tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * sizeof(*desc)); 3243 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue); 3244 3245 return NETDEV_TX_OK; 3246 3247 dma_map_err: 3248 netdev_err(priv->dev, "Tx DMA map failed\n"); 3249 dev_kfree_skb(skb); 3250 priv->dev->stats.tx_dropped++; 3251 return NETDEV_TX_OK; 3252 } 3253 3254 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb) 3255 { 3256 struct vlan_ethhdr *veth; 3257 __be16 vlan_proto; 3258 u16 vlanid; 3259 3260 veth = (struct vlan_ethhdr *)skb->data; 3261 vlan_proto = veth->h_vlan_proto; 3262 3263 if ((vlan_proto == htons(ETH_P_8021Q) && 3264 dev->features & NETIF_F_HW_VLAN_CTAG_RX) || 3265 (vlan_proto == htons(ETH_P_8021AD) && 3266 dev->features & NETIF_F_HW_VLAN_STAG_RX)) { 3267 /* pop the vlan tag */ 3268 vlanid = ntohs(veth->h_vlan_TCI); 3269 memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2); 3270 skb_pull(skb, VLAN_HLEN); 3271 __vlan_hwaccel_put_tag(skb, vlan_proto, vlanid); 3272 } 3273 } 3274 3275 3276 static inline int stmmac_rx_threshold_count(struct stmmac_rx_queue *rx_q) 3277 { 3278 if (rx_q->rx_zeroc_thresh < STMMAC_RX_THRESH) 3279 return 0; 3280 3281 return 1; 3282 } 3283 3284 /** 3285 * stmmac_rx_refill - refill used skb preallocated buffers 3286 * @priv: driver private structure 3287 * @queue: RX queue index 3288 * Description : this is to reallocate the skb for the reception process 3289 * that is based on zero-copy. 3290 */ 3291 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue) 3292 { 3293 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 3294 int len, dirty = stmmac_rx_dirty(priv, queue); 3295 unsigned int entry = rx_q->dirty_rx; 3296 3297 len = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE) * PAGE_SIZE; 3298 3299 while (dirty-- > 0) { 3300 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry]; 3301 struct dma_desc *p; 3302 bool use_rx_wd; 3303 3304 if (priv->extend_desc) 3305 p = (struct dma_desc *)(rx_q->dma_erx + entry); 3306 else 3307 p = rx_q->dma_rx + entry; 3308 3309 if (!buf->page) { 3310 buf->page = page_pool_dev_alloc_pages(rx_q->page_pool); 3311 if (!buf->page) 3312 break; 3313 } 3314 3315 buf->addr = page_pool_get_dma_addr(buf->page); 3316 3317 /* Sync whole allocation to device. This will invalidate old 3318 * data. 3319 */ 3320 dma_sync_single_for_device(priv->device, buf->addr, len, 3321 DMA_FROM_DEVICE); 3322 3323 stmmac_set_desc_addr(priv, p, buf->addr); 3324 stmmac_refill_desc3(priv, rx_q, p); 3325 3326 rx_q->rx_count_frames++; 3327 rx_q->rx_count_frames %= priv->rx_coal_frames; 3328 use_rx_wd = priv->use_riwt && rx_q->rx_count_frames; 3329 3330 dma_wmb(); 3331 stmmac_set_rx_owner(priv, p, use_rx_wd); 3332 3333 entry = STMMAC_GET_ENTRY(entry, DMA_RX_SIZE); 3334 } 3335 rx_q->dirty_rx = entry; 3336 rx_q->rx_tail_addr = rx_q->dma_rx_phy + 3337 (rx_q->dirty_rx * sizeof(struct dma_desc)); 3338 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue); 3339 } 3340 3341 /** 3342 * stmmac_rx - manage the receive process 3343 * @priv: driver private structure 3344 * @limit: napi bugget 3345 * @queue: RX queue index. 3346 * Description : this the function called by the napi poll method. 3347 * It gets all the frames inside the ring. 3348 */ 3349 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue) 3350 { 3351 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 3352 struct stmmac_channel *ch = &priv->channel[queue]; 3353 unsigned int next_entry = rx_q->cur_rx; 3354 int coe = priv->hw->rx_csum; 3355 unsigned int count = 0; 3356 3357 if (netif_msg_rx_status(priv)) { 3358 void *rx_head; 3359 3360 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__); 3361 if (priv->extend_desc) 3362 rx_head = (void *)rx_q->dma_erx; 3363 else 3364 rx_head = (void *)rx_q->dma_rx; 3365 3366 stmmac_display_ring(priv, rx_head, DMA_RX_SIZE, true); 3367 } 3368 while (count < limit) { 3369 struct stmmac_rx_buffer *buf; 3370 struct dma_desc *np, *p; 3371 int entry, status; 3372 3373 entry = next_entry; 3374 buf = &rx_q->buf_pool[entry]; 3375 3376 if (priv->extend_desc) 3377 p = (struct dma_desc *)(rx_q->dma_erx + entry); 3378 else 3379 p = rx_q->dma_rx + entry; 3380 3381 /* read the status of the incoming frame */ 3382 status = stmmac_rx_status(priv, &priv->dev->stats, 3383 &priv->xstats, p); 3384 /* check if managed by the DMA otherwise go ahead */ 3385 if (unlikely(status & dma_own)) 3386 break; 3387 3388 count++; 3389 3390 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, DMA_RX_SIZE); 3391 next_entry = rx_q->cur_rx; 3392 3393 if (priv->extend_desc) 3394 np = (struct dma_desc *)(rx_q->dma_erx + next_entry); 3395 else 3396 np = rx_q->dma_rx + next_entry; 3397 3398 prefetch(np); 3399 3400 if (priv->extend_desc) 3401 stmmac_rx_extended_status(priv, &priv->dev->stats, 3402 &priv->xstats, rx_q->dma_erx + entry); 3403 if (unlikely(status == discard_frame)) { 3404 page_pool_recycle_direct(rx_q->page_pool, buf->page); 3405 priv->dev->stats.rx_errors++; 3406 buf->page = NULL; 3407 } else { 3408 enum pkt_hash_types hash_type; 3409 struct sk_buff *skb; 3410 unsigned int des; 3411 int frame_len; 3412 u32 hash; 3413 3414 stmmac_get_desc_addr(priv, p, &des); 3415 frame_len = stmmac_get_rx_frame_len(priv, p, coe); 3416 3417 /* If frame length is greater than skb buffer size 3418 * (preallocated during init) then the packet is 3419 * ignored 3420 */ 3421 if (frame_len > priv->dma_buf_sz) { 3422 if (net_ratelimit()) 3423 netdev_err(priv->dev, 3424 "len %d larger than size (%d)\n", 3425 frame_len, priv->dma_buf_sz); 3426 priv->dev->stats.rx_length_errors++; 3427 continue; 3428 } 3429 3430 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3 3431 * Type frames (LLC/LLC-SNAP) 3432 * 3433 * llc_snap is never checked in GMAC >= 4, so this ACS 3434 * feature is always disabled and packets need to be 3435 * stripped manually. 3436 */ 3437 if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00) || 3438 unlikely(status != llc_snap)) 3439 frame_len -= ETH_FCS_LEN; 3440 3441 if (netif_msg_rx_status(priv)) { 3442 netdev_dbg(priv->dev, "\tdesc: %p [entry %d] buff=0x%x\n", 3443 p, entry, des); 3444 netdev_dbg(priv->dev, "frame size %d, COE: %d\n", 3445 frame_len, status); 3446 } 3447 3448 skb = netdev_alloc_skb_ip_align(priv->dev, frame_len); 3449 if (unlikely(!skb)) { 3450 priv->dev->stats.rx_dropped++; 3451 continue; 3452 } 3453 3454 dma_sync_single_for_cpu(priv->device, buf->addr, 3455 frame_len, DMA_FROM_DEVICE); 3456 skb_copy_to_linear_data(skb, page_address(buf->page), 3457 frame_len); 3458 skb_put(skb, frame_len); 3459 3460 if (netif_msg_pktdata(priv)) { 3461 netdev_dbg(priv->dev, "frame received (%dbytes)", 3462 frame_len); 3463 print_pkt(skb->data, frame_len); 3464 } 3465 3466 stmmac_get_rx_hwtstamp(priv, p, np, skb); 3467 3468 stmmac_rx_vlan(priv->dev, skb); 3469 3470 skb->protocol = eth_type_trans(skb, priv->dev); 3471 3472 if (unlikely(!coe)) 3473 skb_checksum_none_assert(skb); 3474 else 3475 skb->ip_summed = CHECKSUM_UNNECESSARY; 3476 3477 if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type)) 3478 skb_set_hash(skb, hash, hash_type); 3479 3480 skb_record_rx_queue(skb, queue); 3481 napi_gro_receive(&ch->rx_napi, skb); 3482 3483 /* Data payload copied into SKB, page ready for recycle */ 3484 page_pool_recycle_direct(rx_q->page_pool, buf->page); 3485 buf->page = NULL; 3486 3487 priv->dev->stats.rx_packets++; 3488 priv->dev->stats.rx_bytes += frame_len; 3489 } 3490 } 3491 3492 stmmac_rx_refill(priv, queue); 3493 3494 priv->xstats.rx_pkt_n += count; 3495 3496 return count; 3497 } 3498 3499 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget) 3500 { 3501 struct stmmac_channel *ch = 3502 container_of(napi, struct stmmac_channel, rx_napi); 3503 struct stmmac_priv *priv = ch->priv_data; 3504 u32 chan = ch->index; 3505 int work_done; 3506 3507 priv->xstats.napi_poll++; 3508 3509 work_done = stmmac_rx(priv, budget, chan); 3510 if (work_done < budget && napi_complete_done(napi, work_done)) 3511 stmmac_enable_dma_irq(priv, priv->ioaddr, chan); 3512 return work_done; 3513 } 3514 3515 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget) 3516 { 3517 struct stmmac_channel *ch = 3518 container_of(napi, struct stmmac_channel, tx_napi); 3519 struct stmmac_priv *priv = ch->priv_data; 3520 struct stmmac_tx_queue *tx_q; 3521 u32 chan = ch->index; 3522 int work_done; 3523 3524 priv->xstats.napi_poll++; 3525 3526 work_done = stmmac_tx_clean(priv, DMA_TX_SIZE, chan); 3527 work_done = min(work_done, budget); 3528 3529 if (work_done < budget) 3530 napi_complete_done(napi, work_done); 3531 3532 /* Force transmission restart */ 3533 tx_q = &priv->tx_queue[chan]; 3534 if (tx_q->cur_tx != tx_q->dirty_tx) { 3535 stmmac_enable_dma_transmission(priv, priv->ioaddr); 3536 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, 3537 chan); 3538 } 3539 3540 return work_done; 3541 } 3542 3543 /** 3544 * stmmac_tx_timeout 3545 * @dev : Pointer to net device structure 3546 * Description: this function is called when a packet transmission fails to 3547 * complete within a reasonable time. The driver will mark the error in the 3548 * netdev structure and arrange for the device to be reset to a sane state 3549 * in order to transmit a new packet. 3550 */ 3551 static void stmmac_tx_timeout(struct net_device *dev) 3552 { 3553 struct stmmac_priv *priv = netdev_priv(dev); 3554 3555 stmmac_global_err(priv); 3556 } 3557 3558 /** 3559 * stmmac_set_rx_mode - entry point for multicast addressing 3560 * @dev : pointer to the device structure 3561 * Description: 3562 * This function is a driver entry point which gets called by the kernel 3563 * whenever multicast addresses must be enabled/disabled. 3564 * Return value: 3565 * void. 3566 */ 3567 static void stmmac_set_rx_mode(struct net_device *dev) 3568 { 3569 struct stmmac_priv *priv = netdev_priv(dev); 3570 3571 stmmac_set_filter(priv, priv->hw, dev); 3572 } 3573 3574 /** 3575 * stmmac_change_mtu - entry point to change MTU size for the device. 3576 * @dev : device pointer. 3577 * @new_mtu : the new MTU size for the device. 3578 * Description: the Maximum Transfer Unit (MTU) is used by the network layer 3579 * to drive packet transmission. Ethernet has an MTU of 1500 octets 3580 * (ETH_DATA_LEN). This value can be changed with ifconfig. 3581 * Return value: 3582 * 0 on success and an appropriate (-)ve integer as defined in errno.h 3583 * file on failure. 3584 */ 3585 static int stmmac_change_mtu(struct net_device *dev, int new_mtu) 3586 { 3587 struct stmmac_priv *priv = netdev_priv(dev); 3588 3589 if (netif_running(dev)) { 3590 netdev_err(priv->dev, "must be stopped to change its MTU\n"); 3591 return -EBUSY; 3592 } 3593 3594 dev->mtu = new_mtu; 3595 3596 netdev_update_features(dev); 3597 3598 return 0; 3599 } 3600 3601 static netdev_features_t stmmac_fix_features(struct net_device *dev, 3602 netdev_features_t features) 3603 { 3604 struct stmmac_priv *priv = netdev_priv(dev); 3605 3606 if (priv->plat->rx_coe == STMMAC_RX_COE_NONE) 3607 features &= ~NETIF_F_RXCSUM; 3608 3609 if (!priv->plat->tx_coe) 3610 features &= ~NETIF_F_CSUM_MASK; 3611 3612 /* Some GMAC devices have a bugged Jumbo frame support that 3613 * needs to have the Tx COE disabled for oversized frames 3614 * (due to limited buffer sizes). In this case we disable 3615 * the TX csum insertion in the TDES and not use SF. 3616 */ 3617 if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN)) 3618 features &= ~NETIF_F_CSUM_MASK; 3619 3620 /* Disable tso if asked by ethtool */ 3621 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) { 3622 if (features & NETIF_F_TSO) 3623 priv->tso = true; 3624 else 3625 priv->tso = false; 3626 } 3627 3628 return features; 3629 } 3630 3631 static int stmmac_set_features(struct net_device *netdev, 3632 netdev_features_t features) 3633 { 3634 struct stmmac_priv *priv = netdev_priv(netdev); 3635 3636 /* Keep the COE Type in case of csum is supporting */ 3637 if (features & NETIF_F_RXCSUM) 3638 priv->hw->rx_csum = priv->plat->rx_coe; 3639 else 3640 priv->hw->rx_csum = 0; 3641 /* No check needed because rx_coe has been set before and it will be 3642 * fixed in case of issue. 3643 */ 3644 stmmac_rx_ipc(priv, priv->hw); 3645 3646 return 0; 3647 } 3648 3649 /** 3650 * stmmac_interrupt - main ISR 3651 * @irq: interrupt number. 3652 * @dev_id: to pass the net device pointer. 3653 * Description: this is the main driver interrupt service routine. 3654 * It can call: 3655 * o DMA service routine (to manage incoming frame reception and transmission 3656 * status) 3657 * o Core interrupts to manage: remote wake-up, management counter, LPI 3658 * interrupts. 3659 */ 3660 static irqreturn_t stmmac_interrupt(int irq, void *dev_id) 3661 { 3662 struct net_device *dev = (struct net_device *)dev_id; 3663 struct stmmac_priv *priv = netdev_priv(dev); 3664 u32 rx_cnt = priv->plat->rx_queues_to_use; 3665 u32 tx_cnt = priv->plat->tx_queues_to_use; 3666 u32 queues_count; 3667 u32 queue; 3668 bool xmac; 3669 3670 xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; 3671 queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt; 3672 3673 if (priv->irq_wake) 3674 pm_wakeup_event(priv->device, 0); 3675 3676 if (unlikely(!dev)) { 3677 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__); 3678 return IRQ_NONE; 3679 } 3680 3681 /* Check if adapter is up */ 3682 if (test_bit(STMMAC_DOWN, &priv->state)) 3683 return IRQ_HANDLED; 3684 /* Check if a fatal error happened */ 3685 if (stmmac_safety_feat_interrupt(priv)) 3686 return IRQ_HANDLED; 3687 3688 /* To handle GMAC own interrupts */ 3689 if ((priv->plat->has_gmac) || xmac) { 3690 int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats); 3691 int mtl_status; 3692 3693 if (unlikely(status)) { 3694 /* For LPI we need to save the tx status */ 3695 if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE) 3696 priv->tx_path_in_lpi_mode = true; 3697 if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE) 3698 priv->tx_path_in_lpi_mode = false; 3699 } 3700 3701 for (queue = 0; queue < queues_count; queue++) { 3702 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 3703 3704 mtl_status = stmmac_host_mtl_irq_status(priv, priv->hw, 3705 queue); 3706 if (mtl_status != -EINVAL) 3707 status |= mtl_status; 3708 3709 if (status & CORE_IRQ_MTL_RX_OVERFLOW) 3710 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, 3711 rx_q->rx_tail_addr, 3712 queue); 3713 } 3714 3715 /* PCS link status */ 3716 if (priv->hw->pcs) { 3717 if (priv->xstats.pcs_link) 3718 netif_carrier_on(dev); 3719 else 3720 netif_carrier_off(dev); 3721 } 3722 } 3723 3724 /* To handle DMA interrupts */ 3725 stmmac_dma_interrupt(priv); 3726 3727 return IRQ_HANDLED; 3728 } 3729 3730 #ifdef CONFIG_NET_POLL_CONTROLLER 3731 /* Polling receive - used by NETCONSOLE and other diagnostic tools 3732 * to allow network I/O with interrupts disabled. 3733 */ 3734 static void stmmac_poll_controller(struct net_device *dev) 3735 { 3736 disable_irq(dev->irq); 3737 stmmac_interrupt(dev->irq, dev); 3738 enable_irq(dev->irq); 3739 } 3740 #endif 3741 3742 /** 3743 * stmmac_ioctl - Entry point for the Ioctl 3744 * @dev: Device pointer. 3745 * @rq: An IOCTL specefic structure, that can contain a pointer to 3746 * a proprietary structure used to pass information to the driver. 3747 * @cmd: IOCTL command 3748 * Description: 3749 * Currently it supports the phy_mii_ioctl(...) and HW time stamping. 3750 */ 3751 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 3752 { 3753 struct stmmac_priv *priv = netdev_priv (dev); 3754 int ret = -EOPNOTSUPP; 3755 3756 if (!netif_running(dev)) 3757 return -EINVAL; 3758 3759 switch (cmd) { 3760 case SIOCGMIIPHY: 3761 case SIOCGMIIREG: 3762 case SIOCSMIIREG: 3763 ret = phylink_mii_ioctl(priv->phylink, rq, cmd); 3764 break; 3765 case SIOCSHWTSTAMP: 3766 ret = stmmac_hwtstamp_set(dev, rq); 3767 break; 3768 case SIOCGHWTSTAMP: 3769 ret = stmmac_hwtstamp_get(dev, rq); 3770 break; 3771 default: 3772 break; 3773 } 3774 3775 return ret; 3776 } 3777 3778 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 3779 void *cb_priv) 3780 { 3781 struct stmmac_priv *priv = cb_priv; 3782 int ret = -EOPNOTSUPP; 3783 3784 stmmac_disable_all_queues(priv); 3785 3786 switch (type) { 3787 case TC_SETUP_CLSU32: 3788 if (tc_cls_can_offload_and_chain0(priv->dev, type_data)) 3789 ret = stmmac_tc_setup_cls_u32(priv, priv, type_data); 3790 break; 3791 default: 3792 break; 3793 } 3794 3795 stmmac_enable_all_queues(priv); 3796 return ret; 3797 } 3798 3799 static LIST_HEAD(stmmac_block_cb_list); 3800 3801 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type, 3802 void *type_data) 3803 { 3804 struct stmmac_priv *priv = netdev_priv(ndev); 3805 3806 switch (type) { 3807 case TC_SETUP_BLOCK: 3808 return flow_block_cb_setup_simple(type_data, 3809 &stmmac_block_cb_list, 3810 stmmac_setup_tc_block_cb, 3811 priv, priv, true); 3812 case TC_SETUP_QDISC_CBS: 3813 return stmmac_tc_setup_cbs(priv, priv, type_data); 3814 default: 3815 return -EOPNOTSUPP; 3816 } 3817 } 3818 3819 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb, 3820 struct net_device *sb_dev) 3821 { 3822 if (skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) { 3823 /* 3824 * There is no way to determine the number of TSO 3825 * capable Queues. Let's use always the Queue 0 3826 * because if TSO is supported then at least this 3827 * one will be capable. 3828 */ 3829 return 0; 3830 } 3831 3832 return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues; 3833 } 3834 3835 static int stmmac_set_mac_address(struct net_device *ndev, void *addr) 3836 { 3837 struct stmmac_priv *priv = netdev_priv(ndev); 3838 int ret = 0; 3839 3840 ret = eth_mac_addr(ndev, addr); 3841 if (ret) 3842 return ret; 3843 3844 stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0); 3845 3846 return ret; 3847 } 3848 3849 #ifdef CONFIG_DEBUG_FS 3850 static struct dentry *stmmac_fs_dir; 3851 3852 static void sysfs_display_ring(void *head, int size, int extend_desc, 3853 struct seq_file *seq) 3854 { 3855 int i; 3856 struct dma_extended_desc *ep = (struct dma_extended_desc *)head; 3857 struct dma_desc *p = (struct dma_desc *)head; 3858 3859 for (i = 0; i < size; i++) { 3860 if (extend_desc) { 3861 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n", 3862 i, (unsigned int)virt_to_phys(ep), 3863 le32_to_cpu(ep->basic.des0), 3864 le32_to_cpu(ep->basic.des1), 3865 le32_to_cpu(ep->basic.des2), 3866 le32_to_cpu(ep->basic.des3)); 3867 ep++; 3868 } else { 3869 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n", 3870 i, (unsigned int)virt_to_phys(p), 3871 le32_to_cpu(p->des0), le32_to_cpu(p->des1), 3872 le32_to_cpu(p->des2), le32_to_cpu(p->des3)); 3873 p++; 3874 } 3875 seq_printf(seq, "\n"); 3876 } 3877 } 3878 3879 static int stmmac_rings_status_show(struct seq_file *seq, void *v) 3880 { 3881 struct net_device *dev = seq->private; 3882 struct stmmac_priv *priv = netdev_priv(dev); 3883 u32 rx_count = priv->plat->rx_queues_to_use; 3884 u32 tx_count = priv->plat->tx_queues_to_use; 3885 u32 queue; 3886 3887 if ((dev->flags & IFF_UP) == 0) 3888 return 0; 3889 3890 for (queue = 0; queue < rx_count; queue++) { 3891 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 3892 3893 seq_printf(seq, "RX Queue %d:\n", queue); 3894 3895 if (priv->extend_desc) { 3896 seq_printf(seq, "Extended descriptor ring:\n"); 3897 sysfs_display_ring((void *)rx_q->dma_erx, 3898 DMA_RX_SIZE, 1, seq); 3899 } else { 3900 seq_printf(seq, "Descriptor ring:\n"); 3901 sysfs_display_ring((void *)rx_q->dma_rx, 3902 DMA_RX_SIZE, 0, seq); 3903 } 3904 } 3905 3906 for (queue = 0; queue < tx_count; queue++) { 3907 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 3908 3909 seq_printf(seq, "TX Queue %d:\n", queue); 3910 3911 if (priv->extend_desc) { 3912 seq_printf(seq, "Extended descriptor ring:\n"); 3913 sysfs_display_ring((void *)tx_q->dma_etx, 3914 DMA_TX_SIZE, 1, seq); 3915 } else { 3916 seq_printf(seq, "Descriptor ring:\n"); 3917 sysfs_display_ring((void *)tx_q->dma_tx, 3918 DMA_TX_SIZE, 0, seq); 3919 } 3920 } 3921 3922 return 0; 3923 } 3924 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status); 3925 3926 static int stmmac_dma_cap_show(struct seq_file *seq, void *v) 3927 { 3928 struct net_device *dev = seq->private; 3929 struct stmmac_priv *priv = netdev_priv(dev); 3930 3931 if (!priv->hw_cap_support) { 3932 seq_printf(seq, "DMA HW features not supported\n"); 3933 return 0; 3934 } 3935 3936 seq_printf(seq, "==============================\n"); 3937 seq_printf(seq, "\tDMA HW features\n"); 3938 seq_printf(seq, "==============================\n"); 3939 3940 seq_printf(seq, "\t10/100 Mbps: %s\n", 3941 (priv->dma_cap.mbps_10_100) ? "Y" : "N"); 3942 seq_printf(seq, "\t1000 Mbps: %s\n", 3943 (priv->dma_cap.mbps_1000) ? "Y" : "N"); 3944 seq_printf(seq, "\tHalf duplex: %s\n", 3945 (priv->dma_cap.half_duplex) ? "Y" : "N"); 3946 seq_printf(seq, "\tHash Filter: %s\n", 3947 (priv->dma_cap.hash_filter) ? "Y" : "N"); 3948 seq_printf(seq, "\tMultiple MAC address registers: %s\n", 3949 (priv->dma_cap.multi_addr) ? "Y" : "N"); 3950 seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n", 3951 (priv->dma_cap.pcs) ? "Y" : "N"); 3952 seq_printf(seq, "\tSMA (MDIO) Interface: %s\n", 3953 (priv->dma_cap.sma_mdio) ? "Y" : "N"); 3954 seq_printf(seq, "\tPMT Remote wake up: %s\n", 3955 (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N"); 3956 seq_printf(seq, "\tPMT Magic Frame: %s\n", 3957 (priv->dma_cap.pmt_magic_frame) ? "Y" : "N"); 3958 seq_printf(seq, "\tRMON module: %s\n", 3959 (priv->dma_cap.rmon) ? "Y" : "N"); 3960 seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n", 3961 (priv->dma_cap.time_stamp) ? "Y" : "N"); 3962 seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n", 3963 (priv->dma_cap.atime_stamp) ? "Y" : "N"); 3964 seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n", 3965 (priv->dma_cap.eee) ? "Y" : "N"); 3966 seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N"); 3967 seq_printf(seq, "\tChecksum Offload in TX: %s\n", 3968 (priv->dma_cap.tx_coe) ? "Y" : "N"); 3969 if (priv->synopsys_id >= DWMAC_CORE_4_00) { 3970 seq_printf(seq, "\tIP Checksum Offload in RX: %s\n", 3971 (priv->dma_cap.rx_coe) ? "Y" : "N"); 3972 } else { 3973 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n", 3974 (priv->dma_cap.rx_coe_type1) ? "Y" : "N"); 3975 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n", 3976 (priv->dma_cap.rx_coe_type2) ? "Y" : "N"); 3977 } 3978 seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n", 3979 (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N"); 3980 seq_printf(seq, "\tNumber of Additional RX channel: %d\n", 3981 priv->dma_cap.number_rx_channel); 3982 seq_printf(seq, "\tNumber of Additional TX channel: %d\n", 3983 priv->dma_cap.number_tx_channel); 3984 seq_printf(seq, "\tEnhanced descriptors: %s\n", 3985 (priv->dma_cap.enh_desc) ? "Y" : "N"); 3986 3987 return 0; 3988 } 3989 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap); 3990 3991 static void stmmac_init_fs(struct net_device *dev) 3992 { 3993 struct stmmac_priv *priv = netdev_priv(dev); 3994 3995 /* Create per netdev entries */ 3996 priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir); 3997 3998 /* Entry to report DMA RX/TX rings */ 3999 debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev, 4000 &stmmac_rings_status_fops); 4001 4002 /* Entry to report the DMA HW features */ 4003 debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev, 4004 &stmmac_dma_cap_fops); 4005 } 4006 4007 static void stmmac_exit_fs(struct net_device *dev) 4008 { 4009 struct stmmac_priv *priv = netdev_priv(dev); 4010 4011 debugfs_remove_recursive(priv->dbgfs_dir); 4012 } 4013 #endif /* CONFIG_DEBUG_FS */ 4014 4015 static u32 stmmac_vid_crc32_le(__le16 vid_le) 4016 { 4017 unsigned char *data = (unsigned char *)&vid_le; 4018 unsigned char data_byte = 0; 4019 u32 crc = ~0x0; 4020 u32 temp = 0; 4021 int i, bits; 4022 4023 bits = get_bitmask_order(VLAN_VID_MASK); 4024 for (i = 0; i < bits; i++) { 4025 if ((i % 8) == 0) 4026 data_byte = data[i / 8]; 4027 4028 temp = ((crc & 1) ^ data_byte) & 1; 4029 crc >>= 1; 4030 data_byte >>= 1; 4031 4032 if (temp) 4033 crc ^= 0xedb88320; 4034 } 4035 4036 return crc; 4037 } 4038 4039 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double) 4040 { 4041 u32 crc, hash = 0; 4042 u16 vid; 4043 4044 for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) { 4045 __le16 vid_le = cpu_to_le16(vid); 4046 crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28; 4047 hash |= (1 << crc); 4048 } 4049 4050 return stmmac_update_vlan_hash(priv, priv->hw, hash, is_double); 4051 } 4052 4053 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid) 4054 { 4055 struct stmmac_priv *priv = netdev_priv(ndev); 4056 bool is_double = false; 4057 int ret; 4058 4059 if (!priv->dma_cap.vlhash) 4060 return -EOPNOTSUPP; 4061 if (be16_to_cpu(proto) == ETH_P_8021AD) 4062 is_double = true; 4063 4064 set_bit(vid, priv->active_vlans); 4065 ret = stmmac_vlan_update(priv, is_double); 4066 if (ret) { 4067 clear_bit(vid, priv->active_vlans); 4068 return ret; 4069 } 4070 4071 return ret; 4072 } 4073 4074 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid) 4075 { 4076 struct stmmac_priv *priv = netdev_priv(ndev); 4077 bool is_double = false; 4078 4079 if (!priv->dma_cap.vlhash) 4080 return -EOPNOTSUPP; 4081 if (be16_to_cpu(proto) == ETH_P_8021AD) 4082 is_double = true; 4083 4084 clear_bit(vid, priv->active_vlans); 4085 return stmmac_vlan_update(priv, is_double); 4086 } 4087 4088 static const struct net_device_ops stmmac_netdev_ops = { 4089 .ndo_open = stmmac_open, 4090 .ndo_start_xmit = stmmac_xmit, 4091 .ndo_stop = stmmac_release, 4092 .ndo_change_mtu = stmmac_change_mtu, 4093 .ndo_fix_features = stmmac_fix_features, 4094 .ndo_set_features = stmmac_set_features, 4095 .ndo_set_rx_mode = stmmac_set_rx_mode, 4096 .ndo_tx_timeout = stmmac_tx_timeout, 4097 .ndo_do_ioctl = stmmac_ioctl, 4098 .ndo_setup_tc = stmmac_setup_tc, 4099 .ndo_select_queue = stmmac_select_queue, 4100 #ifdef CONFIG_NET_POLL_CONTROLLER 4101 .ndo_poll_controller = stmmac_poll_controller, 4102 #endif 4103 .ndo_set_mac_address = stmmac_set_mac_address, 4104 .ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid, 4105 .ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid, 4106 }; 4107 4108 static void stmmac_reset_subtask(struct stmmac_priv *priv) 4109 { 4110 if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state)) 4111 return; 4112 if (test_bit(STMMAC_DOWN, &priv->state)) 4113 return; 4114 4115 netdev_err(priv->dev, "Reset adapter.\n"); 4116 4117 rtnl_lock(); 4118 netif_trans_update(priv->dev); 4119 while (test_and_set_bit(STMMAC_RESETING, &priv->state)) 4120 usleep_range(1000, 2000); 4121 4122 set_bit(STMMAC_DOWN, &priv->state); 4123 dev_close(priv->dev); 4124 dev_open(priv->dev, NULL); 4125 clear_bit(STMMAC_DOWN, &priv->state); 4126 clear_bit(STMMAC_RESETING, &priv->state); 4127 rtnl_unlock(); 4128 } 4129 4130 static void stmmac_service_task(struct work_struct *work) 4131 { 4132 struct stmmac_priv *priv = container_of(work, struct stmmac_priv, 4133 service_task); 4134 4135 stmmac_reset_subtask(priv); 4136 clear_bit(STMMAC_SERVICE_SCHED, &priv->state); 4137 } 4138 4139 /** 4140 * stmmac_hw_init - Init the MAC device 4141 * @priv: driver private structure 4142 * Description: this function is to configure the MAC device according to 4143 * some platform parameters or the HW capability register. It prepares the 4144 * driver to use either ring or chain modes and to setup either enhanced or 4145 * normal descriptors. 4146 */ 4147 static int stmmac_hw_init(struct stmmac_priv *priv) 4148 { 4149 int ret; 4150 4151 /* dwmac-sun8i only work in chain mode */ 4152 if (priv->plat->has_sun8i) 4153 chain_mode = 1; 4154 priv->chain_mode = chain_mode; 4155 4156 /* Initialize HW Interface */ 4157 ret = stmmac_hwif_init(priv); 4158 if (ret) 4159 return ret; 4160 4161 /* Get the HW capability (new GMAC newer than 3.50a) */ 4162 priv->hw_cap_support = stmmac_get_hw_features(priv); 4163 if (priv->hw_cap_support) { 4164 dev_info(priv->device, "DMA HW capability register supported\n"); 4165 4166 /* We can override some gmac/dma configuration fields: e.g. 4167 * enh_desc, tx_coe (e.g. that are passed through the 4168 * platform) with the values from the HW capability 4169 * register (if supported). 4170 */ 4171 priv->plat->enh_desc = priv->dma_cap.enh_desc; 4172 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up; 4173 priv->hw->pmt = priv->plat->pmt; 4174 if (priv->dma_cap.hash_tb_sz) { 4175 priv->hw->multicast_filter_bins = 4176 (BIT(priv->dma_cap.hash_tb_sz) << 5); 4177 priv->hw->mcast_bits_log2 = 4178 ilog2(priv->hw->multicast_filter_bins); 4179 } 4180 4181 /* TXCOE doesn't work in thresh DMA mode */ 4182 if (priv->plat->force_thresh_dma_mode) 4183 priv->plat->tx_coe = 0; 4184 else 4185 priv->plat->tx_coe = priv->dma_cap.tx_coe; 4186 4187 /* In case of GMAC4 rx_coe is from HW cap register. */ 4188 priv->plat->rx_coe = priv->dma_cap.rx_coe; 4189 4190 if (priv->dma_cap.rx_coe_type2) 4191 priv->plat->rx_coe = STMMAC_RX_COE_TYPE2; 4192 else if (priv->dma_cap.rx_coe_type1) 4193 priv->plat->rx_coe = STMMAC_RX_COE_TYPE1; 4194 4195 } else { 4196 dev_info(priv->device, "No HW DMA feature register supported\n"); 4197 } 4198 4199 if (priv->plat->rx_coe) { 4200 priv->hw->rx_csum = priv->plat->rx_coe; 4201 dev_info(priv->device, "RX Checksum Offload Engine supported\n"); 4202 if (priv->synopsys_id < DWMAC_CORE_4_00) 4203 dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum); 4204 } 4205 if (priv->plat->tx_coe) 4206 dev_info(priv->device, "TX Checksum insertion supported\n"); 4207 4208 if (priv->plat->pmt) { 4209 dev_info(priv->device, "Wake-Up On Lan supported\n"); 4210 device_set_wakeup_capable(priv->device, 1); 4211 } 4212 4213 if (priv->dma_cap.tsoen) 4214 dev_info(priv->device, "TSO supported\n"); 4215 4216 /* Run HW quirks, if any */ 4217 if (priv->hwif_quirks) { 4218 ret = priv->hwif_quirks(priv); 4219 if (ret) 4220 return ret; 4221 } 4222 4223 /* Rx Watchdog is available in the COREs newer than the 3.40. 4224 * In some case, for example on bugged HW this feature 4225 * has to be disable and this can be done by passing the 4226 * riwt_off field from the platform. 4227 */ 4228 if (((priv->synopsys_id >= DWMAC_CORE_3_50) || 4229 (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) { 4230 priv->use_riwt = 1; 4231 dev_info(priv->device, 4232 "Enable RX Mitigation via HW Watchdog Timer\n"); 4233 } 4234 4235 return 0; 4236 } 4237 4238 /** 4239 * stmmac_dvr_probe 4240 * @device: device pointer 4241 * @plat_dat: platform data pointer 4242 * @res: stmmac resource pointer 4243 * Description: this is the main probe function used to 4244 * call the alloc_etherdev, allocate the priv structure. 4245 * Return: 4246 * returns 0 on success, otherwise errno. 4247 */ 4248 int stmmac_dvr_probe(struct device *device, 4249 struct plat_stmmacenet_data *plat_dat, 4250 struct stmmac_resources *res) 4251 { 4252 struct net_device *ndev = NULL; 4253 struct stmmac_priv *priv; 4254 u32 queue, rxq, maxq; 4255 int i, ret = 0; 4256 4257 ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv), 4258 MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES); 4259 if (!ndev) 4260 return -ENOMEM; 4261 4262 SET_NETDEV_DEV(ndev, device); 4263 4264 priv = netdev_priv(ndev); 4265 priv->device = device; 4266 priv->dev = ndev; 4267 4268 stmmac_set_ethtool_ops(ndev); 4269 priv->pause = pause; 4270 priv->plat = plat_dat; 4271 priv->ioaddr = res->addr; 4272 priv->dev->base_addr = (unsigned long)res->addr; 4273 4274 priv->dev->irq = res->irq; 4275 priv->wol_irq = res->wol_irq; 4276 priv->lpi_irq = res->lpi_irq; 4277 4278 if (!IS_ERR_OR_NULL(res->mac)) 4279 memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN); 4280 4281 dev_set_drvdata(device, priv->dev); 4282 4283 /* Verify driver arguments */ 4284 stmmac_verify_args(); 4285 4286 /* Allocate workqueue */ 4287 priv->wq = create_singlethread_workqueue("stmmac_wq"); 4288 if (!priv->wq) { 4289 dev_err(priv->device, "failed to create workqueue\n"); 4290 return -ENOMEM; 4291 } 4292 4293 INIT_WORK(&priv->service_task, stmmac_service_task); 4294 4295 /* Override with kernel parameters if supplied XXX CRS XXX 4296 * this needs to have multiple instances 4297 */ 4298 if ((phyaddr >= 0) && (phyaddr <= 31)) 4299 priv->plat->phy_addr = phyaddr; 4300 4301 if (priv->plat->stmmac_rst) { 4302 ret = reset_control_assert(priv->plat->stmmac_rst); 4303 reset_control_deassert(priv->plat->stmmac_rst); 4304 /* Some reset controllers have only reset callback instead of 4305 * assert + deassert callbacks pair. 4306 */ 4307 if (ret == -ENOTSUPP) 4308 reset_control_reset(priv->plat->stmmac_rst); 4309 } 4310 4311 /* Init MAC and get the capabilities */ 4312 ret = stmmac_hw_init(priv); 4313 if (ret) 4314 goto error_hw_init; 4315 4316 stmmac_check_ether_addr(priv); 4317 4318 /* Configure real RX and TX queues */ 4319 netif_set_real_num_rx_queues(ndev, priv->plat->rx_queues_to_use); 4320 netif_set_real_num_tx_queues(ndev, priv->plat->tx_queues_to_use); 4321 4322 ndev->netdev_ops = &stmmac_netdev_ops; 4323 4324 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 4325 NETIF_F_RXCSUM; 4326 4327 ret = stmmac_tc_init(priv, priv); 4328 if (!ret) { 4329 ndev->hw_features |= NETIF_F_HW_TC; 4330 } 4331 4332 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) { 4333 ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6; 4334 priv->tso = true; 4335 dev_info(priv->device, "TSO feature enabled\n"); 4336 } 4337 4338 if (priv->dma_cap.addr64) { 4339 ret = dma_set_mask_and_coherent(device, 4340 DMA_BIT_MASK(priv->dma_cap.addr64)); 4341 if (!ret) { 4342 dev_info(priv->device, "Using %d bits DMA width\n", 4343 priv->dma_cap.addr64); 4344 } else { 4345 ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32)); 4346 if (ret) { 4347 dev_err(priv->device, "Failed to set DMA Mask\n"); 4348 goto error_hw_init; 4349 } 4350 4351 priv->dma_cap.addr64 = 32; 4352 } 4353 } 4354 4355 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA; 4356 ndev->watchdog_timeo = msecs_to_jiffies(watchdog); 4357 #ifdef STMMAC_VLAN_TAG_USED 4358 /* Both mac100 and gmac support receive VLAN tag detection */ 4359 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX; 4360 if (priv->dma_cap.vlhash) { 4361 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4362 ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER; 4363 } 4364 #endif 4365 priv->msg_enable = netif_msg_init(debug, default_msg_level); 4366 4367 /* Initialize RSS */ 4368 rxq = priv->plat->rx_queues_to_use; 4369 netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key)); 4370 for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++) 4371 priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq); 4372 4373 if (priv->dma_cap.rssen && priv->plat->rss_en) 4374 ndev->features |= NETIF_F_RXHASH; 4375 4376 /* MTU range: 46 - hw-specific max */ 4377 ndev->min_mtu = ETH_ZLEN - ETH_HLEN; 4378 if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00)) 4379 ndev->max_mtu = JUMBO_LEN; 4380 else if (priv->plat->has_xgmac) 4381 ndev->max_mtu = XGMAC_JUMBO_LEN; 4382 else 4383 ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN); 4384 /* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu 4385 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range. 4386 */ 4387 if ((priv->plat->maxmtu < ndev->max_mtu) && 4388 (priv->plat->maxmtu >= ndev->min_mtu)) 4389 ndev->max_mtu = priv->plat->maxmtu; 4390 else if (priv->plat->maxmtu < ndev->min_mtu) 4391 dev_warn(priv->device, 4392 "%s: warning: maxmtu having invalid value (%d)\n", 4393 __func__, priv->plat->maxmtu); 4394 4395 if (flow_ctrl) 4396 priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */ 4397 4398 /* Setup channels NAPI */ 4399 maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use); 4400 4401 for (queue = 0; queue < maxq; queue++) { 4402 struct stmmac_channel *ch = &priv->channel[queue]; 4403 4404 ch->priv_data = priv; 4405 ch->index = queue; 4406 4407 if (queue < priv->plat->rx_queues_to_use) { 4408 netif_napi_add(ndev, &ch->rx_napi, stmmac_napi_poll_rx, 4409 NAPI_POLL_WEIGHT); 4410 } 4411 if (queue < priv->plat->tx_queues_to_use) { 4412 netif_tx_napi_add(ndev, &ch->tx_napi, 4413 stmmac_napi_poll_tx, 4414 NAPI_POLL_WEIGHT); 4415 } 4416 } 4417 4418 mutex_init(&priv->lock); 4419 4420 /* If a specific clk_csr value is passed from the platform 4421 * this means that the CSR Clock Range selection cannot be 4422 * changed at run-time and it is fixed. Viceversa the driver'll try to 4423 * set the MDC clock dynamically according to the csr actual 4424 * clock input. 4425 */ 4426 if (priv->plat->clk_csr >= 0) 4427 priv->clk_csr = priv->plat->clk_csr; 4428 else 4429 stmmac_clk_csr_set(priv); 4430 4431 stmmac_check_pcs_mode(priv); 4432 4433 if (priv->hw->pcs != STMMAC_PCS_RGMII && 4434 priv->hw->pcs != STMMAC_PCS_TBI && 4435 priv->hw->pcs != STMMAC_PCS_RTBI) { 4436 /* MDIO bus Registration */ 4437 ret = stmmac_mdio_register(ndev); 4438 if (ret < 0) { 4439 dev_err(priv->device, 4440 "%s: MDIO bus (id: %d) registration failed", 4441 __func__, priv->plat->bus_id); 4442 goto error_mdio_register; 4443 } 4444 } 4445 4446 ret = stmmac_phy_setup(priv); 4447 if (ret) { 4448 netdev_err(ndev, "failed to setup phy (%d)\n", ret); 4449 goto error_phy_setup; 4450 } 4451 4452 ret = register_netdev(ndev); 4453 if (ret) { 4454 dev_err(priv->device, "%s: ERROR %i registering the device\n", 4455 __func__, ret); 4456 goto error_netdev_register; 4457 } 4458 4459 #ifdef CONFIG_DEBUG_FS 4460 stmmac_init_fs(ndev); 4461 #endif 4462 4463 return ret; 4464 4465 error_netdev_register: 4466 phylink_destroy(priv->phylink); 4467 error_phy_setup: 4468 if (priv->hw->pcs != STMMAC_PCS_RGMII && 4469 priv->hw->pcs != STMMAC_PCS_TBI && 4470 priv->hw->pcs != STMMAC_PCS_RTBI) 4471 stmmac_mdio_unregister(ndev); 4472 error_mdio_register: 4473 for (queue = 0; queue < maxq; queue++) { 4474 struct stmmac_channel *ch = &priv->channel[queue]; 4475 4476 if (queue < priv->plat->rx_queues_to_use) 4477 netif_napi_del(&ch->rx_napi); 4478 if (queue < priv->plat->tx_queues_to_use) 4479 netif_napi_del(&ch->tx_napi); 4480 } 4481 error_hw_init: 4482 destroy_workqueue(priv->wq); 4483 4484 return ret; 4485 } 4486 EXPORT_SYMBOL_GPL(stmmac_dvr_probe); 4487 4488 /** 4489 * stmmac_dvr_remove 4490 * @dev: device pointer 4491 * Description: this function resets the TX/RX processes, disables the MAC RX/TX 4492 * changes the link status, releases the DMA descriptor rings. 4493 */ 4494 int stmmac_dvr_remove(struct device *dev) 4495 { 4496 struct net_device *ndev = dev_get_drvdata(dev); 4497 struct stmmac_priv *priv = netdev_priv(ndev); 4498 4499 netdev_info(priv->dev, "%s: removing driver", __func__); 4500 4501 #ifdef CONFIG_DEBUG_FS 4502 stmmac_exit_fs(ndev); 4503 #endif 4504 stmmac_stop_all_dma(priv); 4505 4506 stmmac_mac_set(priv, priv->ioaddr, false); 4507 netif_carrier_off(ndev); 4508 unregister_netdev(ndev); 4509 phylink_destroy(priv->phylink); 4510 if (priv->plat->stmmac_rst) 4511 reset_control_assert(priv->plat->stmmac_rst); 4512 clk_disable_unprepare(priv->plat->pclk); 4513 clk_disable_unprepare(priv->plat->stmmac_clk); 4514 if (priv->hw->pcs != STMMAC_PCS_RGMII && 4515 priv->hw->pcs != STMMAC_PCS_TBI && 4516 priv->hw->pcs != STMMAC_PCS_RTBI) 4517 stmmac_mdio_unregister(ndev); 4518 destroy_workqueue(priv->wq); 4519 mutex_destroy(&priv->lock); 4520 4521 return 0; 4522 } 4523 EXPORT_SYMBOL_GPL(stmmac_dvr_remove); 4524 4525 /** 4526 * stmmac_suspend - suspend callback 4527 * @dev: device pointer 4528 * Description: this is the function to suspend the device and it is called 4529 * by the platform driver to stop the network queue, release the resources, 4530 * program the PMT register (for WoL), clean and release driver resources. 4531 */ 4532 int stmmac_suspend(struct device *dev) 4533 { 4534 struct net_device *ndev = dev_get_drvdata(dev); 4535 struct stmmac_priv *priv = netdev_priv(ndev); 4536 4537 if (!ndev || !netif_running(ndev)) 4538 return 0; 4539 4540 phylink_stop(priv->phylink); 4541 4542 mutex_lock(&priv->lock); 4543 4544 netif_device_detach(ndev); 4545 stmmac_stop_all_queues(priv); 4546 4547 stmmac_disable_all_queues(priv); 4548 4549 /* Stop TX/RX DMA */ 4550 stmmac_stop_all_dma(priv); 4551 4552 /* Enable Power down mode by programming the PMT regs */ 4553 if (device_may_wakeup(priv->device)) { 4554 stmmac_pmt(priv, priv->hw, priv->wolopts); 4555 priv->irq_wake = 1; 4556 } else { 4557 stmmac_mac_set(priv, priv->ioaddr, false); 4558 pinctrl_pm_select_sleep_state(priv->device); 4559 /* Disable clock in case of PWM is off */ 4560 clk_disable(priv->plat->pclk); 4561 clk_disable(priv->plat->stmmac_clk); 4562 } 4563 mutex_unlock(&priv->lock); 4564 4565 priv->speed = SPEED_UNKNOWN; 4566 return 0; 4567 } 4568 EXPORT_SYMBOL_GPL(stmmac_suspend); 4569 4570 /** 4571 * stmmac_reset_queues_param - reset queue parameters 4572 * @dev: device pointer 4573 */ 4574 static void stmmac_reset_queues_param(struct stmmac_priv *priv) 4575 { 4576 u32 rx_cnt = priv->plat->rx_queues_to_use; 4577 u32 tx_cnt = priv->plat->tx_queues_to_use; 4578 u32 queue; 4579 4580 for (queue = 0; queue < rx_cnt; queue++) { 4581 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 4582 4583 rx_q->cur_rx = 0; 4584 rx_q->dirty_rx = 0; 4585 } 4586 4587 for (queue = 0; queue < tx_cnt; queue++) { 4588 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 4589 4590 tx_q->cur_tx = 0; 4591 tx_q->dirty_tx = 0; 4592 tx_q->mss = 0; 4593 } 4594 } 4595 4596 /** 4597 * stmmac_resume - resume callback 4598 * @dev: device pointer 4599 * Description: when resume this function is invoked to setup the DMA and CORE 4600 * in a usable state. 4601 */ 4602 int stmmac_resume(struct device *dev) 4603 { 4604 struct net_device *ndev = dev_get_drvdata(dev); 4605 struct stmmac_priv *priv = netdev_priv(ndev); 4606 4607 if (!netif_running(ndev)) 4608 return 0; 4609 4610 /* Power Down bit, into the PM register, is cleared 4611 * automatically as soon as a magic packet or a Wake-up frame 4612 * is received. Anyway, it's better to manually clear 4613 * this bit because it can generate problems while resuming 4614 * from another devices (e.g. serial console). 4615 */ 4616 if (device_may_wakeup(priv->device)) { 4617 mutex_lock(&priv->lock); 4618 stmmac_pmt(priv, priv->hw, 0); 4619 mutex_unlock(&priv->lock); 4620 priv->irq_wake = 0; 4621 } else { 4622 pinctrl_pm_select_default_state(priv->device); 4623 /* enable the clk previously disabled */ 4624 clk_enable(priv->plat->stmmac_clk); 4625 clk_enable(priv->plat->pclk); 4626 /* reset the phy so that it's ready */ 4627 if (priv->mii) 4628 stmmac_mdio_reset(priv->mii); 4629 } 4630 4631 netif_device_attach(ndev); 4632 4633 mutex_lock(&priv->lock); 4634 4635 stmmac_reset_queues_param(priv); 4636 4637 stmmac_clear_descriptors(priv); 4638 4639 stmmac_hw_setup(ndev, false); 4640 stmmac_init_coalesce(priv); 4641 stmmac_set_rx_mode(ndev); 4642 4643 stmmac_enable_all_queues(priv); 4644 4645 stmmac_start_all_queues(priv); 4646 4647 mutex_unlock(&priv->lock); 4648 4649 phylink_start(priv->phylink); 4650 4651 return 0; 4652 } 4653 EXPORT_SYMBOL_GPL(stmmac_resume); 4654 4655 #ifndef MODULE 4656 static int __init stmmac_cmdline_opt(char *str) 4657 { 4658 char *opt; 4659 4660 if (!str || !*str) 4661 return -EINVAL; 4662 while ((opt = strsep(&str, ",")) != NULL) { 4663 if (!strncmp(opt, "debug:", 6)) { 4664 if (kstrtoint(opt + 6, 0, &debug)) 4665 goto err; 4666 } else if (!strncmp(opt, "phyaddr:", 8)) { 4667 if (kstrtoint(opt + 8, 0, &phyaddr)) 4668 goto err; 4669 } else if (!strncmp(opt, "buf_sz:", 7)) { 4670 if (kstrtoint(opt + 7, 0, &buf_sz)) 4671 goto err; 4672 } else if (!strncmp(opt, "tc:", 3)) { 4673 if (kstrtoint(opt + 3, 0, &tc)) 4674 goto err; 4675 } else if (!strncmp(opt, "watchdog:", 9)) { 4676 if (kstrtoint(opt + 9, 0, &watchdog)) 4677 goto err; 4678 } else if (!strncmp(opt, "flow_ctrl:", 10)) { 4679 if (kstrtoint(opt + 10, 0, &flow_ctrl)) 4680 goto err; 4681 } else if (!strncmp(opt, "pause:", 6)) { 4682 if (kstrtoint(opt + 6, 0, &pause)) 4683 goto err; 4684 } else if (!strncmp(opt, "eee_timer:", 10)) { 4685 if (kstrtoint(opt + 10, 0, &eee_timer)) 4686 goto err; 4687 } else if (!strncmp(opt, "chain_mode:", 11)) { 4688 if (kstrtoint(opt + 11, 0, &chain_mode)) 4689 goto err; 4690 } 4691 } 4692 return 0; 4693 4694 err: 4695 pr_err("%s: ERROR broken module parameter conversion", __func__); 4696 return -EINVAL; 4697 } 4698 4699 __setup("stmmaceth=", stmmac_cmdline_opt); 4700 #endif /* MODULE */ 4701 4702 static int __init stmmac_init(void) 4703 { 4704 #ifdef CONFIG_DEBUG_FS 4705 /* Create debugfs main directory if it doesn't exist yet */ 4706 if (!stmmac_fs_dir) 4707 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL); 4708 #endif 4709 4710 return 0; 4711 } 4712 4713 static void __exit stmmac_exit(void) 4714 { 4715 #ifdef CONFIG_DEBUG_FS 4716 debugfs_remove_recursive(stmmac_fs_dir); 4717 #endif 4718 } 4719 4720 module_init(stmmac_init) 4721 module_exit(stmmac_exit) 4722 4723 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver"); 4724 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>"); 4725 MODULE_LICENSE("GPL"); 4726