xref: /linux/drivers/net/ethernet/stmicro/stmmac/stmmac_main.c (revision 0f93242d96ff5a04fe02c4978e8dddb014235971)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*******************************************************************************
3   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
4   ST Ethernet IPs are built around a Synopsys IP Core.
5 
6 	Copyright(C) 2007-2011 STMicroelectronics Ltd
7 
8 
9   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
10 
11   Documentation available at:
12 	http://www.stlinux.com
13   Support available at:
14 	https://bugzilla.stlinux.com/
15 *******************************************************************************/
16 
17 #include <linux/clk.h>
18 #include <linux/kernel.h>
19 #include <linux/interrupt.h>
20 #include <linux/ip.h>
21 #include <linux/tcp.h>
22 #include <linux/skbuff.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_ether.h>
25 #include <linux/crc32.h>
26 #include <linux/mii.h>
27 #include <linux/if.h>
28 #include <linux/if_vlan.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/slab.h>
31 #include <linux/prefetch.h>
32 #include <linux/pinctrl/consumer.h>
33 #ifdef CONFIG_DEBUG_FS
34 #include <linux/debugfs.h>
35 #include <linux/seq_file.h>
36 #endif /* CONFIG_DEBUG_FS */
37 #include <linux/net_tstamp.h>
38 #include <linux/phylink.h>
39 #include <net/pkt_cls.h>
40 #include "stmmac_ptp.h"
41 #include "stmmac.h"
42 #include <linux/reset.h>
43 #include <linux/of_mdio.h>
44 #include "dwmac1000.h"
45 #include "dwxgmac2.h"
46 #include "hwif.h"
47 
48 #define	STMMAC_ALIGN(x)		__ALIGN_KERNEL(x, SMP_CACHE_BYTES)
49 #define	TSO_MAX_BUFF_SIZE	(SZ_16K - 1)
50 
51 /* Module parameters */
52 #define TX_TIMEO	5000
53 static int watchdog = TX_TIMEO;
54 module_param(watchdog, int, 0644);
55 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
56 
57 static int debug = -1;
58 module_param(debug, int, 0644);
59 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
60 
61 static int phyaddr = -1;
62 module_param(phyaddr, int, 0444);
63 MODULE_PARM_DESC(phyaddr, "Physical device address");
64 
65 #define STMMAC_TX_THRESH	(DMA_TX_SIZE / 4)
66 #define STMMAC_RX_THRESH	(DMA_RX_SIZE / 4)
67 
68 static int flow_ctrl = FLOW_AUTO;
69 module_param(flow_ctrl, int, 0644);
70 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
71 
72 static int pause = PAUSE_TIME;
73 module_param(pause, int, 0644);
74 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
75 
76 #define TC_DEFAULT 64
77 static int tc = TC_DEFAULT;
78 module_param(tc, int, 0644);
79 MODULE_PARM_DESC(tc, "DMA threshold control value");
80 
81 #define	DEFAULT_BUFSIZE	1536
82 static int buf_sz = DEFAULT_BUFSIZE;
83 module_param(buf_sz, int, 0644);
84 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
85 
86 #define	STMMAC_RX_COPYBREAK	256
87 
88 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
89 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
90 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
91 
92 #define STMMAC_DEFAULT_LPI_TIMER	1000
93 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
94 module_param(eee_timer, int, 0644);
95 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
96 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
97 
98 /* By default the driver will use the ring mode to manage tx and rx descriptors,
99  * but allow user to force to use the chain instead of the ring
100  */
101 static unsigned int chain_mode;
102 module_param(chain_mode, int, 0444);
103 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
104 
105 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
106 
107 #ifdef CONFIG_DEBUG_FS
108 static int stmmac_init_fs(struct net_device *dev);
109 static void stmmac_exit_fs(struct net_device *dev);
110 #endif
111 
112 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
113 
114 /**
115  * stmmac_verify_args - verify the driver parameters.
116  * Description: it checks the driver parameters and set a default in case of
117  * errors.
118  */
119 static void stmmac_verify_args(void)
120 {
121 	if (unlikely(watchdog < 0))
122 		watchdog = TX_TIMEO;
123 	if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
124 		buf_sz = DEFAULT_BUFSIZE;
125 	if (unlikely(flow_ctrl > 1))
126 		flow_ctrl = FLOW_AUTO;
127 	else if (likely(flow_ctrl < 0))
128 		flow_ctrl = FLOW_OFF;
129 	if (unlikely((pause < 0) || (pause > 0xffff)))
130 		pause = PAUSE_TIME;
131 	if (eee_timer < 0)
132 		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
133 }
134 
135 /**
136  * stmmac_disable_all_queues - Disable all queues
137  * @priv: driver private structure
138  */
139 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
140 {
141 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
142 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
143 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
144 	u32 queue;
145 
146 	for (queue = 0; queue < maxq; queue++) {
147 		struct stmmac_channel *ch = &priv->channel[queue];
148 
149 		if (queue < rx_queues_cnt)
150 			napi_disable(&ch->rx_napi);
151 		if (queue < tx_queues_cnt)
152 			napi_disable(&ch->tx_napi);
153 	}
154 }
155 
156 /**
157  * stmmac_enable_all_queues - Enable all queues
158  * @priv: driver private structure
159  */
160 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
161 {
162 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
163 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
164 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
165 	u32 queue;
166 
167 	for (queue = 0; queue < maxq; queue++) {
168 		struct stmmac_channel *ch = &priv->channel[queue];
169 
170 		if (queue < rx_queues_cnt)
171 			napi_enable(&ch->rx_napi);
172 		if (queue < tx_queues_cnt)
173 			napi_enable(&ch->tx_napi);
174 	}
175 }
176 
177 /**
178  * stmmac_stop_all_queues - Stop all queues
179  * @priv: driver private structure
180  */
181 static void stmmac_stop_all_queues(struct stmmac_priv *priv)
182 {
183 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
184 	u32 queue;
185 
186 	for (queue = 0; queue < tx_queues_cnt; queue++)
187 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
188 }
189 
190 /**
191  * stmmac_start_all_queues - Start all queues
192  * @priv: driver private structure
193  */
194 static void stmmac_start_all_queues(struct stmmac_priv *priv)
195 {
196 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
197 	u32 queue;
198 
199 	for (queue = 0; queue < tx_queues_cnt; queue++)
200 		netif_tx_start_queue(netdev_get_tx_queue(priv->dev, queue));
201 }
202 
203 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
204 {
205 	if (!test_bit(STMMAC_DOWN, &priv->state) &&
206 	    !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
207 		queue_work(priv->wq, &priv->service_task);
208 }
209 
210 static void stmmac_global_err(struct stmmac_priv *priv)
211 {
212 	netif_carrier_off(priv->dev);
213 	set_bit(STMMAC_RESET_REQUESTED, &priv->state);
214 	stmmac_service_event_schedule(priv);
215 }
216 
217 /**
218  * stmmac_clk_csr_set - dynamically set the MDC clock
219  * @priv: driver private structure
220  * Description: this is to dynamically set the MDC clock according to the csr
221  * clock input.
222  * Note:
223  *	If a specific clk_csr value is passed from the platform
224  *	this means that the CSR Clock Range selection cannot be
225  *	changed at run-time and it is fixed (as reported in the driver
226  *	documentation). Viceversa the driver will try to set the MDC
227  *	clock dynamically according to the actual clock input.
228  */
229 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
230 {
231 	u32 clk_rate;
232 
233 	clk_rate = clk_get_rate(priv->plat->stmmac_clk);
234 
235 	/* Platform provided default clk_csr would be assumed valid
236 	 * for all other cases except for the below mentioned ones.
237 	 * For values higher than the IEEE 802.3 specified frequency
238 	 * we can not estimate the proper divider as it is not known
239 	 * the frequency of clk_csr_i. So we do not change the default
240 	 * divider.
241 	 */
242 	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
243 		if (clk_rate < CSR_F_35M)
244 			priv->clk_csr = STMMAC_CSR_20_35M;
245 		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
246 			priv->clk_csr = STMMAC_CSR_35_60M;
247 		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
248 			priv->clk_csr = STMMAC_CSR_60_100M;
249 		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
250 			priv->clk_csr = STMMAC_CSR_100_150M;
251 		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
252 			priv->clk_csr = STMMAC_CSR_150_250M;
253 		else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
254 			priv->clk_csr = STMMAC_CSR_250_300M;
255 	}
256 
257 	if (priv->plat->has_sun8i) {
258 		if (clk_rate > 160000000)
259 			priv->clk_csr = 0x03;
260 		else if (clk_rate > 80000000)
261 			priv->clk_csr = 0x02;
262 		else if (clk_rate > 40000000)
263 			priv->clk_csr = 0x01;
264 		else
265 			priv->clk_csr = 0;
266 	}
267 
268 	if (priv->plat->has_xgmac) {
269 		if (clk_rate > 400000000)
270 			priv->clk_csr = 0x5;
271 		else if (clk_rate > 350000000)
272 			priv->clk_csr = 0x4;
273 		else if (clk_rate > 300000000)
274 			priv->clk_csr = 0x3;
275 		else if (clk_rate > 250000000)
276 			priv->clk_csr = 0x2;
277 		else if (clk_rate > 150000000)
278 			priv->clk_csr = 0x1;
279 		else
280 			priv->clk_csr = 0x0;
281 	}
282 }
283 
284 static void print_pkt(unsigned char *buf, int len)
285 {
286 	pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
287 	print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
288 }
289 
290 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
291 {
292 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
293 	u32 avail;
294 
295 	if (tx_q->dirty_tx > tx_q->cur_tx)
296 		avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
297 	else
298 		avail = DMA_TX_SIZE - tx_q->cur_tx + tx_q->dirty_tx - 1;
299 
300 	return avail;
301 }
302 
303 /**
304  * stmmac_rx_dirty - Get RX queue dirty
305  * @priv: driver private structure
306  * @queue: RX queue index
307  */
308 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
309 {
310 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
311 	u32 dirty;
312 
313 	if (rx_q->dirty_rx <= rx_q->cur_rx)
314 		dirty = rx_q->cur_rx - rx_q->dirty_rx;
315 	else
316 		dirty = DMA_RX_SIZE - rx_q->dirty_rx + rx_q->cur_rx;
317 
318 	return dirty;
319 }
320 
321 /**
322  * stmmac_enable_eee_mode - check and enter in LPI mode
323  * @priv: driver private structure
324  * Description: this function is to verify and enter in LPI mode in case of
325  * EEE.
326  */
327 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
328 {
329 	u32 tx_cnt = priv->plat->tx_queues_to_use;
330 	u32 queue;
331 
332 	/* check if all TX queues have the work finished */
333 	for (queue = 0; queue < tx_cnt; queue++) {
334 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
335 
336 		if (tx_q->dirty_tx != tx_q->cur_tx)
337 			return; /* still unfinished work */
338 	}
339 
340 	/* Check and enter in LPI mode */
341 	if (!priv->tx_path_in_lpi_mode)
342 		stmmac_set_eee_mode(priv, priv->hw,
343 				priv->plat->en_tx_lpi_clockgating);
344 }
345 
346 /**
347  * stmmac_disable_eee_mode - disable and exit from LPI mode
348  * @priv: driver private structure
349  * Description: this function is to exit and disable EEE in case of
350  * LPI state is true. This is called by the xmit.
351  */
352 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
353 {
354 	stmmac_reset_eee_mode(priv, priv->hw);
355 	del_timer_sync(&priv->eee_ctrl_timer);
356 	priv->tx_path_in_lpi_mode = false;
357 }
358 
359 /**
360  * stmmac_eee_ctrl_timer - EEE TX SW timer.
361  * @arg : data hook
362  * Description:
363  *  if there is no data transfer and if we are not in LPI state,
364  *  then MAC Transmitter can be moved to LPI state.
365  */
366 static void stmmac_eee_ctrl_timer(struct timer_list *t)
367 {
368 	struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
369 
370 	stmmac_enable_eee_mode(priv);
371 	mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
372 }
373 
374 /**
375  * stmmac_eee_init - init EEE
376  * @priv: driver private structure
377  * Description:
378  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
379  *  can also manage EEE, this function enable the LPI state and start related
380  *  timer.
381  */
382 bool stmmac_eee_init(struct stmmac_priv *priv)
383 {
384 	int tx_lpi_timer = priv->tx_lpi_timer;
385 
386 	/* Using PCS we cannot dial with the phy registers at this stage
387 	 * so we do not support extra feature like EEE.
388 	 */
389 	if ((priv->hw->pcs == STMMAC_PCS_RGMII) ||
390 	    (priv->hw->pcs == STMMAC_PCS_TBI) ||
391 	    (priv->hw->pcs == STMMAC_PCS_RTBI))
392 		return false;
393 
394 	/* Check if MAC core supports the EEE feature. */
395 	if (!priv->dma_cap.eee)
396 		return false;
397 
398 	mutex_lock(&priv->lock);
399 
400 	/* Check if it needs to be deactivated */
401 	if (!priv->eee_active) {
402 		if (priv->eee_enabled) {
403 			netdev_dbg(priv->dev, "disable EEE\n");
404 			del_timer_sync(&priv->eee_ctrl_timer);
405 			stmmac_set_eee_timer(priv, priv->hw, 0, tx_lpi_timer);
406 		}
407 		mutex_unlock(&priv->lock);
408 		return false;
409 	}
410 
411 	if (priv->eee_active && !priv->eee_enabled) {
412 		timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
413 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
414 		stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
415 				     tx_lpi_timer);
416 	}
417 
418 	mutex_unlock(&priv->lock);
419 	netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
420 	return true;
421 }
422 
423 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
424  * @priv: driver private structure
425  * @p : descriptor pointer
426  * @skb : the socket buffer
427  * Description :
428  * This function will read timestamp from the descriptor & pass it to stack.
429  * and also perform some sanity checks.
430  */
431 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
432 				   struct dma_desc *p, struct sk_buff *skb)
433 {
434 	struct skb_shared_hwtstamps shhwtstamp;
435 	u64 ns = 0;
436 
437 	if (!priv->hwts_tx_en)
438 		return;
439 
440 	/* exit if skb doesn't support hw tstamp */
441 	if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
442 		return;
443 
444 	/* check tx tstamp status */
445 	if (stmmac_get_tx_timestamp_status(priv, p)) {
446 		/* get the valid tstamp */
447 		stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
448 
449 		memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
450 		shhwtstamp.hwtstamp = ns_to_ktime(ns);
451 
452 		netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
453 		/* pass tstamp to stack */
454 		skb_tstamp_tx(skb, &shhwtstamp);
455 	}
456 
457 	return;
458 }
459 
460 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
461  * @priv: driver private structure
462  * @p : descriptor pointer
463  * @np : next descriptor pointer
464  * @skb : the socket buffer
465  * Description :
466  * This function will read received packet's timestamp from the descriptor
467  * and pass it to stack. It also perform some sanity checks.
468  */
469 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
470 				   struct dma_desc *np, struct sk_buff *skb)
471 {
472 	struct skb_shared_hwtstamps *shhwtstamp = NULL;
473 	struct dma_desc *desc = p;
474 	u64 ns = 0;
475 
476 	if (!priv->hwts_rx_en)
477 		return;
478 	/* For GMAC4, the valid timestamp is from CTX next desc. */
479 	if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
480 		desc = np;
481 
482 	/* Check if timestamp is available */
483 	if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
484 		stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
485 		netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
486 		shhwtstamp = skb_hwtstamps(skb);
487 		memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
488 		shhwtstamp->hwtstamp = ns_to_ktime(ns);
489 	} else  {
490 		netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
491 	}
492 }
493 
494 /**
495  *  stmmac_hwtstamp_set - control hardware timestamping.
496  *  @dev: device pointer.
497  *  @ifr: An IOCTL specific structure, that can contain a pointer to
498  *  a proprietary structure used to pass information to the driver.
499  *  Description:
500  *  This function configures the MAC to enable/disable both outgoing(TX)
501  *  and incoming(RX) packets time stamping based on user input.
502  *  Return Value:
503  *  0 on success and an appropriate -ve integer on failure.
504  */
505 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
506 {
507 	struct stmmac_priv *priv = netdev_priv(dev);
508 	struct hwtstamp_config config;
509 	struct timespec64 now;
510 	u64 temp = 0;
511 	u32 ptp_v2 = 0;
512 	u32 tstamp_all = 0;
513 	u32 ptp_over_ipv4_udp = 0;
514 	u32 ptp_over_ipv6_udp = 0;
515 	u32 ptp_over_ethernet = 0;
516 	u32 snap_type_sel = 0;
517 	u32 ts_master_en = 0;
518 	u32 ts_event_en = 0;
519 	u32 sec_inc = 0;
520 	u32 value = 0;
521 	bool xmac;
522 
523 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
524 
525 	if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
526 		netdev_alert(priv->dev, "No support for HW time stamping\n");
527 		priv->hwts_tx_en = 0;
528 		priv->hwts_rx_en = 0;
529 
530 		return -EOPNOTSUPP;
531 	}
532 
533 	if (copy_from_user(&config, ifr->ifr_data,
534 			   sizeof(config)))
535 		return -EFAULT;
536 
537 	netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
538 		   __func__, config.flags, config.tx_type, config.rx_filter);
539 
540 	/* reserved for future extensions */
541 	if (config.flags)
542 		return -EINVAL;
543 
544 	if (config.tx_type != HWTSTAMP_TX_OFF &&
545 	    config.tx_type != HWTSTAMP_TX_ON)
546 		return -ERANGE;
547 
548 	if (priv->adv_ts) {
549 		switch (config.rx_filter) {
550 		case HWTSTAMP_FILTER_NONE:
551 			/* time stamp no incoming packet at all */
552 			config.rx_filter = HWTSTAMP_FILTER_NONE;
553 			break;
554 
555 		case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
556 			/* PTP v1, UDP, any kind of event packet */
557 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
558 			/* 'xmac' hardware can support Sync, Pdelay_Req and
559 			 * Pdelay_resp by setting bit14 and bits17/16 to 01
560 			 * This leaves Delay_Req timestamps out.
561 			 * Enable all events *and* general purpose message
562 			 * timestamping
563 			 */
564 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
565 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
566 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
567 			break;
568 
569 		case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
570 			/* PTP v1, UDP, Sync packet */
571 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
572 			/* take time stamp for SYNC messages only */
573 			ts_event_en = PTP_TCR_TSEVNTENA;
574 
575 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
576 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
577 			break;
578 
579 		case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
580 			/* PTP v1, UDP, Delay_req packet */
581 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
582 			/* take time stamp for Delay_Req messages only */
583 			ts_master_en = PTP_TCR_TSMSTRENA;
584 			ts_event_en = PTP_TCR_TSEVNTENA;
585 
586 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
587 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
588 			break;
589 
590 		case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
591 			/* PTP v2, UDP, any kind of event packet */
592 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
593 			ptp_v2 = PTP_TCR_TSVER2ENA;
594 			/* take time stamp for all event messages */
595 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
596 
597 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
598 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
599 			break;
600 
601 		case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
602 			/* PTP v2, UDP, Sync packet */
603 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
604 			ptp_v2 = PTP_TCR_TSVER2ENA;
605 			/* take time stamp for SYNC messages only */
606 			ts_event_en = PTP_TCR_TSEVNTENA;
607 
608 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
609 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
610 			break;
611 
612 		case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
613 			/* PTP v2, UDP, Delay_req packet */
614 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
615 			ptp_v2 = PTP_TCR_TSVER2ENA;
616 			/* take time stamp for Delay_Req messages only */
617 			ts_master_en = PTP_TCR_TSMSTRENA;
618 			ts_event_en = PTP_TCR_TSEVNTENA;
619 
620 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
621 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
622 			break;
623 
624 		case HWTSTAMP_FILTER_PTP_V2_EVENT:
625 			/* PTP v2/802.AS1 any layer, any kind of event packet */
626 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
627 			ptp_v2 = PTP_TCR_TSVER2ENA;
628 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
629 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
630 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
631 			ptp_over_ethernet = PTP_TCR_TSIPENA;
632 			break;
633 
634 		case HWTSTAMP_FILTER_PTP_V2_SYNC:
635 			/* PTP v2/802.AS1, any layer, Sync packet */
636 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
637 			ptp_v2 = PTP_TCR_TSVER2ENA;
638 			/* take time stamp for SYNC messages only */
639 			ts_event_en = PTP_TCR_TSEVNTENA;
640 
641 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
642 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
643 			ptp_over_ethernet = PTP_TCR_TSIPENA;
644 			break;
645 
646 		case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
647 			/* PTP v2/802.AS1, any layer, Delay_req packet */
648 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
649 			ptp_v2 = PTP_TCR_TSVER2ENA;
650 			/* take time stamp for Delay_Req messages only */
651 			ts_master_en = PTP_TCR_TSMSTRENA;
652 			ts_event_en = PTP_TCR_TSEVNTENA;
653 
654 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
655 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
656 			ptp_over_ethernet = PTP_TCR_TSIPENA;
657 			break;
658 
659 		case HWTSTAMP_FILTER_NTP_ALL:
660 		case HWTSTAMP_FILTER_ALL:
661 			/* time stamp any incoming packet */
662 			config.rx_filter = HWTSTAMP_FILTER_ALL;
663 			tstamp_all = PTP_TCR_TSENALL;
664 			break;
665 
666 		default:
667 			return -ERANGE;
668 		}
669 	} else {
670 		switch (config.rx_filter) {
671 		case HWTSTAMP_FILTER_NONE:
672 			config.rx_filter = HWTSTAMP_FILTER_NONE;
673 			break;
674 		default:
675 			/* PTP v1, UDP, any kind of event packet */
676 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
677 			break;
678 		}
679 	}
680 	priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
681 	priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
682 
683 	if (!priv->hwts_tx_en && !priv->hwts_rx_en)
684 		stmmac_config_hw_tstamping(priv, priv->ptpaddr, 0);
685 	else {
686 		value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
687 			 tstamp_all | ptp_v2 | ptp_over_ethernet |
688 			 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
689 			 ts_master_en | snap_type_sel);
690 		stmmac_config_hw_tstamping(priv, priv->ptpaddr, value);
691 
692 		/* program Sub Second Increment reg */
693 		stmmac_config_sub_second_increment(priv,
694 				priv->ptpaddr, priv->plat->clk_ptp_rate,
695 				xmac, &sec_inc);
696 		temp = div_u64(1000000000ULL, sec_inc);
697 
698 		/* Store sub second increment and flags for later use */
699 		priv->sub_second_inc = sec_inc;
700 		priv->systime_flags = value;
701 
702 		/* calculate default added value:
703 		 * formula is :
704 		 * addend = (2^32)/freq_div_ratio;
705 		 * where, freq_div_ratio = 1e9ns/sec_inc
706 		 */
707 		temp = (u64)(temp << 32);
708 		priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
709 		stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
710 
711 		/* initialize system time */
712 		ktime_get_real_ts64(&now);
713 
714 		/* lower 32 bits of tv_sec are safe until y2106 */
715 		stmmac_init_systime(priv, priv->ptpaddr,
716 				(u32)now.tv_sec, now.tv_nsec);
717 	}
718 
719 	memcpy(&priv->tstamp_config, &config, sizeof(config));
720 
721 	return copy_to_user(ifr->ifr_data, &config,
722 			    sizeof(config)) ? -EFAULT : 0;
723 }
724 
725 /**
726  *  stmmac_hwtstamp_get - read hardware timestamping.
727  *  @dev: device pointer.
728  *  @ifr: An IOCTL specific structure, that can contain a pointer to
729  *  a proprietary structure used to pass information to the driver.
730  *  Description:
731  *  This function obtain the current hardware timestamping settings
732     as requested.
733  */
734 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
735 {
736 	struct stmmac_priv *priv = netdev_priv(dev);
737 	struct hwtstamp_config *config = &priv->tstamp_config;
738 
739 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
740 		return -EOPNOTSUPP;
741 
742 	return copy_to_user(ifr->ifr_data, config,
743 			    sizeof(*config)) ? -EFAULT : 0;
744 }
745 
746 /**
747  * stmmac_init_ptp - init PTP
748  * @priv: driver private structure
749  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
750  * This is done by looking at the HW cap. register.
751  * This function also registers the ptp driver.
752  */
753 static int stmmac_init_ptp(struct stmmac_priv *priv)
754 {
755 	bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
756 
757 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
758 		return -EOPNOTSUPP;
759 
760 	priv->adv_ts = 0;
761 	/* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
762 	if (xmac && priv->dma_cap.atime_stamp)
763 		priv->adv_ts = 1;
764 	/* Dwmac 3.x core with extend_desc can support adv_ts */
765 	else if (priv->extend_desc && priv->dma_cap.atime_stamp)
766 		priv->adv_ts = 1;
767 
768 	if (priv->dma_cap.time_stamp)
769 		netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
770 
771 	if (priv->adv_ts)
772 		netdev_info(priv->dev,
773 			    "IEEE 1588-2008 Advanced Timestamp supported\n");
774 
775 	priv->hwts_tx_en = 0;
776 	priv->hwts_rx_en = 0;
777 
778 	stmmac_ptp_register(priv);
779 
780 	return 0;
781 }
782 
783 static void stmmac_release_ptp(struct stmmac_priv *priv)
784 {
785 	if (priv->plat->clk_ptp_ref)
786 		clk_disable_unprepare(priv->plat->clk_ptp_ref);
787 	stmmac_ptp_unregister(priv);
788 }
789 
790 /**
791  *  stmmac_mac_flow_ctrl - Configure flow control in all queues
792  *  @priv: driver private structure
793  *  Description: It is used for configuring the flow control in all queues
794  */
795 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
796 {
797 	u32 tx_cnt = priv->plat->tx_queues_to_use;
798 
799 	stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
800 			priv->pause, tx_cnt);
801 }
802 
803 static void stmmac_validate(struct phylink_config *config,
804 			    unsigned long *supported,
805 			    struct phylink_link_state *state)
806 {
807 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
808 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mac_supported) = { 0, };
809 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
810 	int tx_cnt = priv->plat->tx_queues_to_use;
811 	int max_speed = priv->plat->max_speed;
812 
813 	phylink_set(mac_supported, 10baseT_Half);
814 	phylink_set(mac_supported, 10baseT_Full);
815 	phylink_set(mac_supported, 100baseT_Half);
816 	phylink_set(mac_supported, 100baseT_Full);
817 
818 	phylink_set(mac_supported, Autoneg);
819 	phylink_set(mac_supported, Pause);
820 	phylink_set(mac_supported, Asym_Pause);
821 	phylink_set_port_modes(mac_supported);
822 
823 	if (priv->plat->has_gmac ||
824 	    priv->plat->has_gmac4 ||
825 	    priv->plat->has_xgmac) {
826 		phylink_set(mac_supported, 1000baseT_Half);
827 		phylink_set(mac_supported, 1000baseT_Full);
828 		phylink_set(mac_supported, 1000baseKX_Full);
829 	}
830 
831 	/* Cut down 1G if asked to */
832 	if ((max_speed > 0) && (max_speed < 1000)) {
833 		phylink_set(mask, 1000baseT_Full);
834 		phylink_set(mask, 1000baseX_Full);
835 	} else if (priv->plat->has_xgmac) {
836 		phylink_set(mac_supported, 2500baseT_Full);
837 		phylink_set(mac_supported, 5000baseT_Full);
838 		phylink_set(mac_supported, 10000baseSR_Full);
839 		phylink_set(mac_supported, 10000baseLR_Full);
840 		phylink_set(mac_supported, 10000baseER_Full);
841 		phylink_set(mac_supported, 10000baseLRM_Full);
842 		phylink_set(mac_supported, 10000baseT_Full);
843 		phylink_set(mac_supported, 10000baseKX4_Full);
844 		phylink_set(mac_supported, 10000baseKR_Full);
845 	}
846 
847 	/* Half-Duplex can only work with single queue */
848 	if (tx_cnt > 1) {
849 		phylink_set(mask, 10baseT_Half);
850 		phylink_set(mask, 100baseT_Half);
851 		phylink_set(mask, 1000baseT_Half);
852 	}
853 
854 	bitmap_and(supported, supported, mac_supported,
855 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
856 	bitmap_andnot(supported, supported, mask,
857 		      __ETHTOOL_LINK_MODE_MASK_NBITS);
858 	bitmap_and(state->advertising, state->advertising, mac_supported,
859 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
860 	bitmap_andnot(state->advertising, state->advertising, mask,
861 		      __ETHTOOL_LINK_MODE_MASK_NBITS);
862 }
863 
864 static int stmmac_mac_link_state(struct phylink_config *config,
865 				 struct phylink_link_state *state)
866 {
867 	return -EOPNOTSUPP;
868 }
869 
870 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
871 			      const struct phylink_link_state *state)
872 {
873 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
874 	u32 ctrl;
875 
876 	ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
877 	ctrl &= ~priv->hw->link.speed_mask;
878 
879 	if (state->interface == PHY_INTERFACE_MODE_USXGMII) {
880 		switch (state->speed) {
881 		case SPEED_10000:
882 			ctrl |= priv->hw->link.xgmii.speed10000;
883 			break;
884 		case SPEED_5000:
885 			ctrl |= priv->hw->link.xgmii.speed5000;
886 			break;
887 		case SPEED_2500:
888 			ctrl |= priv->hw->link.xgmii.speed2500;
889 			break;
890 		default:
891 			return;
892 		}
893 	} else {
894 		switch (state->speed) {
895 		case SPEED_2500:
896 			ctrl |= priv->hw->link.speed2500;
897 			break;
898 		case SPEED_1000:
899 			ctrl |= priv->hw->link.speed1000;
900 			break;
901 		case SPEED_100:
902 			ctrl |= priv->hw->link.speed100;
903 			break;
904 		case SPEED_10:
905 			ctrl |= priv->hw->link.speed10;
906 			break;
907 		default:
908 			return;
909 		}
910 	}
911 
912 	priv->speed = state->speed;
913 
914 	if (priv->plat->fix_mac_speed)
915 		priv->plat->fix_mac_speed(priv->plat->bsp_priv, state->speed);
916 
917 	if (!state->duplex)
918 		ctrl &= ~priv->hw->link.duplex;
919 	else
920 		ctrl |= priv->hw->link.duplex;
921 
922 	/* Flow Control operation */
923 	if (state->pause)
924 		stmmac_mac_flow_ctrl(priv, state->duplex);
925 
926 	writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
927 }
928 
929 static void stmmac_mac_an_restart(struct phylink_config *config)
930 {
931 	/* Not Supported */
932 }
933 
934 static void stmmac_mac_link_down(struct phylink_config *config,
935 				 unsigned int mode, phy_interface_t interface)
936 {
937 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
938 
939 	stmmac_mac_set(priv, priv->ioaddr, false);
940 	priv->eee_active = false;
941 	stmmac_eee_init(priv);
942 	stmmac_set_eee_pls(priv, priv->hw, false);
943 }
944 
945 static void stmmac_mac_link_up(struct phylink_config *config,
946 			       unsigned int mode, phy_interface_t interface,
947 			       struct phy_device *phy)
948 {
949 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
950 
951 	stmmac_mac_set(priv, priv->ioaddr, true);
952 	if (phy && priv->dma_cap.eee) {
953 		priv->eee_active = phy_init_eee(phy, 1) >= 0;
954 		priv->eee_enabled = stmmac_eee_init(priv);
955 		stmmac_set_eee_pls(priv, priv->hw, true);
956 	}
957 }
958 
959 static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
960 	.validate = stmmac_validate,
961 	.mac_link_state = stmmac_mac_link_state,
962 	.mac_config = stmmac_mac_config,
963 	.mac_an_restart = stmmac_mac_an_restart,
964 	.mac_link_down = stmmac_mac_link_down,
965 	.mac_link_up = stmmac_mac_link_up,
966 };
967 
968 /**
969  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
970  * @priv: driver private structure
971  * Description: this is to verify if the HW supports the PCS.
972  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
973  * configured for the TBI, RTBI, or SGMII PHY interface.
974  */
975 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
976 {
977 	int interface = priv->plat->interface;
978 
979 	if (priv->dma_cap.pcs) {
980 		if ((interface == PHY_INTERFACE_MODE_RGMII) ||
981 		    (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
982 		    (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
983 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
984 			netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
985 			priv->hw->pcs = STMMAC_PCS_RGMII;
986 		} else if (interface == PHY_INTERFACE_MODE_SGMII) {
987 			netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
988 			priv->hw->pcs = STMMAC_PCS_SGMII;
989 		}
990 	}
991 }
992 
993 /**
994  * stmmac_init_phy - PHY initialization
995  * @dev: net device structure
996  * Description: it initializes the driver's PHY state, and attaches the PHY
997  * to the mac driver.
998  *  Return value:
999  *  0 on success
1000  */
1001 static int stmmac_init_phy(struct net_device *dev)
1002 {
1003 	struct stmmac_priv *priv = netdev_priv(dev);
1004 	struct device_node *node;
1005 	int ret;
1006 
1007 	node = priv->plat->phylink_node;
1008 
1009 	if (node)
1010 		ret = phylink_of_phy_connect(priv->phylink, node, 0);
1011 
1012 	/* Some DT bindings do not set-up the PHY handle. Let's try to
1013 	 * manually parse it
1014 	 */
1015 	if (!node || ret) {
1016 		int addr = priv->plat->phy_addr;
1017 		struct phy_device *phydev;
1018 
1019 		phydev = mdiobus_get_phy(priv->mii, addr);
1020 		if (!phydev) {
1021 			netdev_err(priv->dev, "no phy at addr %d\n", addr);
1022 			return -ENODEV;
1023 		}
1024 
1025 		ret = phylink_connect_phy(priv->phylink, phydev);
1026 	}
1027 
1028 	return ret;
1029 }
1030 
1031 static int stmmac_phy_setup(struct stmmac_priv *priv)
1032 {
1033 	struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node);
1034 	int mode = priv->plat->interface;
1035 	struct phylink *phylink;
1036 
1037 	priv->phylink_config.dev = &priv->dev->dev;
1038 	priv->phylink_config.type = PHYLINK_NETDEV;
1039 
1040 	phylink = phylink_create(&priv->phylink_config, fwnode,
1041 				 mode, &stmmac_phylink_mac_ops);
1042 	if (IS_ERR(phylink))
1043 		return PTR_ERR(phylink);
1044 
1045 	priv->phylink = phylink;
1046 	return 0;
1047 }
1048 
1049 static void stmmac_display_rx_rings(struct stmmac_priv *priv)
1050 {
1051 	u32 rx_cnt = priv->plat->rx_queues_to_use;
1052 	void *head_rx;
1053 	u32 queue;
1054 
1055 	/* Display RX rings */
1056 	for (queue = 0; queue < rx_cnt; queue++) {
1057 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1058 
1059 		pr_info("\tRX Queue %u rings\n", queue);
1060 
1061 		if (priv->extend_desc)
1062 			head_rx = (void *)rx_q->dma_erx;
1063 		else
1064 			head_rx = (void *)rx_q->dma_rx;
1065 
1066 		/* Display RX ring */
1067 		stmmac_display_ring(priv, head_rx, DMA_RX_SIZE, true);
1068 	}
1069 }
1070 
1071 static void stmmac_display_tx_rings(struct stmmac_priv *priv)
1072 {
1073 	u32 tx_cnt = priv->plat->tx_queues_to_use;
1074 	void *head_tx;
1075 	u32 queue;
1076 
1077 	/* Display TX rings */
1078 	for (queue = 0; queue < tx_cnt; queue++) {
1079 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1080 
1081 		pr_info("\tTX Queue %d rings\n", queue);
1082 
1083 		if (priv->extend_desc)
1084 			head_tx = (void *)tx_q->dma_etx;
1085 		else
1086 			head_tx = (void *)tx_q->dma_tx;
1087 
1088 		stmmac_display_ring(priv, head_tx, DMA_TX_SIZE, false);
1089 	}
1090 }
1091 
1092 static void stmmac_display_rings(struct stmmac_priv *priv)
1093 {
1094 	/* Display RX ring */
1095 	stmmac_display_rx_rings(priv);
1096 
1097 	/* Display TX ring */
1098 	stmmac_display_tx_rings(priv);
1099 }
1100 
1101 static int stmmac_set_bfsize(int mtu, int bufsize)
1102 {
1103 	int ret = bufsize;
1104 
1105 	if (mtu >= BUF_SIZE_4KiB)
1106 		ret = BUF_SIZE_8KiB;
1107 	else if (mtu >= BUF_SIZE_2KiB)
1108 		ret = BUF_SIZE_4KiB;
1109 	else if (mtu > DEFAULT_BUFSIZE)
1110 		ret = BUF_SIZE_2KiB;
1111 	else
1112 		ret = DEFAULT_BUFSIZE;
1113 
1114 	return ret;
1115 }
1116 
1117 /**
1118  * stmmac_clear_rx_descriptors - clear RX descriptors
1119  * @priv: driver private structure
1120  * @queue: RX queue index
1121  * Description: this function is called to clear the RX descriptors
1122  * in case of both basic and extended descriptors are used.
1123  */
1124 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue)
1125 {
1126 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1127 	int i;
1128 
1129 	/* Clear the RX descriptors */
1130 	for (i = 0; i < DMA_RX_SIZE; i++)
1131 		if (priv->extend_desc)
1132 			stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1133 					priv->use_riwt, priv->mode,
1134 					(i == DMA_RX_SIZE - 1),
1135 					priv->dma_buf_sz);
1136 		else
1137 			stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1138 					priv->use_riwt, priv->mode,
1139 					(i == DMA_RX_SIZE - 1),
1140 					priv->dma_buf_sz);
1141 }
1142 
1143 /**
1144  * stmmac_clear_tx_descriptors - clear tx descriptors
1145  * @priv: driver private structure
1146  * @queue: TX queue index.
1147  * Description: this function is called to clear the TX descriptors
1148  * in case of both basic and extended descriptors are used.
1149  */
1150 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue)
1151 {
1152 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1153 	int i;
1154 
1155 	/* Clear the TX descriptors */
1156 	for (i = 0; i < DMA_TX_SIZE; i++)
1157 		if (priv->extend_desc)
1158 			stmmac_init_tx_desc(priv, &tx_q->dma_etx[i].basic,
1159 					priv->mode, (i == DMA_TX_SIZE - 1));
1160 		else
1161 			stmmac_init_tx_desc(priv, &tx_q->dma_tx[i],
1162 					priv->mode, (i == DMA_TX_SIZE - 1));
1163 }
1164 
1165 /**
1166  * stmmac_clear_descriptors - clear descriptors
1167  * @priv: driver private structure
1168  * Description: this function is called to clear the TX and RX descriptors
1169  * in case of both basic and extended descriptors are used.
1170  */
1171 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
1172 {
1173 	u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1174 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1175 	u32 queue;
1176 
1177 	/* Clear the RX descriptors */
1178 	for (queue = 0; queue < rx_queue_cnt; queue++)
1179 		stmmac_clear_rx_descriptors(priv, queue);
1180 
1181 	/* Clear the TX descriptors */
1182 	for (queue = 0; queue < tx_queue_cnt; queue++)
1183 		stmmac_clear_tx_descriptors(priv, queue);
1184 }
1185 
1186 /**
1187  * stmmac_init_rx_buffers - init the RX descriptor buffer.
1188  * @priv: driver private structure
1189  * @p: descriptor pointer
1190  * @i: descriptor index
1191  * @flags: gfp flag
1192  * @queue: RX queue index
1193  * Description: this function is called to allocate a receive buffer, perform
1194  * the DMA mapping and init the descriptor.
1195  */
1196 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
1197 				  int i, gfp_t flags, u32 queue)
1198 {
1199 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1200 	struct sk_buff *skb;
1201 
1202 	skb = __netdev_alloc_skb_ip_align(priv->dev, priv->dma_buf_sz, flags);
1203 	if (!skb) {
1204 		netdev_err(priv->dev,
1205 			   "%s: Rx init fails; skb is NULL\n", __func__);
1206 		return -ENOMEM;
1207 	}
1208 	rx_q->rx_skbuff[i] = skb;
1209 	rx_q->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
1210 						priv->dma_buf_sz,
1211 						DMA_FROM_DEVICE);
1212 	if (dma_mapping_error(priv->device, rx_q->rx_skbuff_dma[i])) {
1213 		netdev_err(priv->dev, "%s: DMA mapping error\n", __func__);
1214 		dev_kfree_skb_any(skb);
1215 		return -EINVAL;
1216 	}
1217 
1218 	stmmac_set_desc_addr(priv, p, rx_q->rx_skbuff_dma[i]);
1219 
1220 	if (priv->dma_buf_sz == BUF_SIZE_16KiB)
1221 		stmmac_init_desc3(priv, p);
1222 
1223 	return 0;
1224 }
1225 
1226 /**
1227  * stmmac_free_rx_buffer - free RX dma buffers
1228  * @priv: private structure
1229  * @queue: RX queue index
1230  * @i: buffer index.
1231  */
1232 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1233 {
1234 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1235 
1236 	if (rx_q->rx_skbuff[i]) {
1237 		dma_unmap_single(priv->device, rx_q->rx_skbuff_dma[i],
1238 				 priv->dma_buf_sz, DMA_FROM_DEVICE);
1239 		dev_kfree_skb_any(rx_q->rx_skbuff[i]);
1240 	}
1241 	rx_q->rx_skbuff[i] = NULL;
1242 }
1243 
1244 /**
1245  * stmmac_free_tx_buffer - free RX dma buffers
1246  * @priv: private structure
1247  * @queue: RX queue index
1248  * @i: buffer index.
1249  */
1250 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1251 {
1252 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1253 
1254 	if (tx_q->tx_skbuff_dma[i].buf) {
1255 		if (tx_q->tx_skbuff_dma[i].map_as_page)
1256 			dma_unmap_page(priv->device,
1257 				       tx_q->tx_skbuff_dma[i].buf,
1258 				       tx_q->tx_skbuff_dma[i].len,
1259 				       DMA_TO_DEVICE);
1260 		else
1261 			dma_unmap_single(priv->device,
1262 					 tx_q->tx_skbuff_dma[i].buf,
1263 					 tx_q->tx_skbuff_dma[i].len,
1264 					 DMA_TO_DEVICE);
1265 	}
1266 
1267 	if (tx_q->tx_skbuff[i]) {
1268 		dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1269 		tx_q->tx_skbuff[i] = NULL;
1270 		tx_q->tx_skbuff_dma[i].buf = 0;
1271 		tx_q->tx_skbuff_dma[i].map_as_page = false;
1272 	}
1273 }
1274 
1275 /**
1276  * init_dma_rx_desc_rings - init the RX descriptor rings
1277  * @dev: net device structure
1278  * @flags: gfp flag.
1279  * Description: this function initializes the DMA RX descriptors
1280  * and allocates the socket buffers. It supports the chained and ring
1281  * modes.
1282  */
1283 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags)
1284 {
1285 	struct stmmac_priv *priv = netdev_priv(dev);
1286 	u32 rx_count = priv->plat->rx_queues_to_use;
1287 	int ret = -ENOMEM;
1288 	int bfsize = 0;
1289 	int queue;
1290 	int i;
1291 
1292 	bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu);
1293 	if (bfsize < 0)
1294 		bfsize = 0;
1295 
1296 	if (bfsize < BUF_SIZE_16KiB)
1297 		bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
1298 
1299 	priv->dma_buf_sz = bfsize;
1300 
1301 	/* RX INITIALIZATION */
1302 	netif_dbg(priv, probe, priv->dev,
1303 		  "SKB addresses:\nskb\t\tskb data\tdma data\n");
1304 
1305 	for (queue = 0; queue < rx_count; queue++) {
1306 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1307 
1308 		netif_dbg(priv, probe, priv->dev,
1309 			  "(%s) dma_rx_phy=0x%08x\n", __func__,
1310 			  (u32)rx_q->dma_rx_phy);
1311 
1312 		for (i = 0; i < DMA_RX_SIZE; i++) {
1313 			struct dma_desc *p;
1314 
1315 			if (priv->extend_desc)
1316 				p = &((rx_q->dma_erx + i)->basic);
1317 			else
1318 				p = rx_q->dma_rx + i;
1319 
1320 			ret = stmmac_init_rx_buffers(priv, p, i, flags,
1321 						     queue);
1322 			if (ret)
1323 				goto err_init_rx_buffers;
1324 
1325 			netif_dbg(priv, probe, priv->dev, "[%p]\t[%p]\t[%x]\n",
1326 				  rx_q->rx_skbuff[i], rx_q->rx_skbuff[i]->data,
1327 				  (unsigned int)rx_q->rx_skbuff_dma[i]);
1328 		}
1329 
1330 		rx_q->cur_rx = 0;
1331 		rx_q->dirty_rx = (unsigned int)(i - DMA_RX_SIZE);
1332 
1333 		stmmac_clear_rx_descriptors(priv, queue);
1334 
1335 		/* Setup the chained descriptor addresses */
1336 		if (priv->mode == STMMAC_CHAIN_MODE) {
1337 			if (priv->extend_desc)
1338 				stmmac_mode_init(priv, rx_q->dma_erx,
1339 						rx_q->dma_rx_phy, DMA_RX_SIZE, 1);
1340 			else
1341 				stmmac_mode_init(priv, rx_q->dma_rx,
1342 						rx_q->dma_rx_phy, DMA_RX_SIZE, 0);
1343 		}
1344 	}
1345 
1346 	buf_sz = bfsize;
1347 
1348 	return 0;
1349 
1350 err_init_rx_buffers:
1351 	while (queue >= 0) {
1352 		while (--i >= 0)
1353 			stmmac_free_rx_buffer(priv, queue, i);
1354 
1355 		if (queue == 0)
1356 			break;
1357 
1358 		i = DMA_RX_SIZE;
1359 		queue--;
1360 	}
1361 
1362 	return ret;
1363 }
1364 
1365 /**
1366  * init_dma_tx_desc_rings - init the TX descriptor rings
1367  * @dev: net device structure.
1368  * Description: this function initializes the DMA TX descriptors
1369  * and allocates the socket buffers. It supports the chained and ring
1370  * modes.
1371  */
1372 static int init_dma_tx_desc_rings(struct net_device *dev)
1373 {
1374 	struct stmmac_priv *priv = netdev_priv(dev);
1375 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1376 	u32 queue;
1377 	int i;
1378 
1379 	for (queue = 0; queue < tx_queue_cnt; queue++) {
1380 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1381 
1382 		netif_dbg(priv, probe, priv->dev,
1383 			  "(%s) dma_tx_phy=0x%08x\n", __func__,
1384 			 (u32)tx_q->dma_tx_phy);
1385 
1386 		/* Setup the chained descriptor addresses */
1387 		if (priv->mode == STMMAC_CHAIN_MODE) {
1388 			if (priv->extend_desc)
1389 				stmmac_mode_init(priv, tx_q->dma_etx,
1390 						tx_q->dma_tx_phy, DMA_TX_SIZE, 1);
1391 			else
1392 				stmmac_mode_init(priv, tx_q->dma_tx,
1393 						tx_q->dma_tx_phy, DMA_TX_SIZE, 0);
1394 		}
1395 
1396 		for (i = 0; i < DMA_TX_SIZE; i++) {
1397 			struct dma_desc *p;
1398 			if (priv->extend_desc)
1399 				p = &((tx_q->dma_etx + i)->basic);
1400 			else
1401 				p = tx_q->dma_tx + i;
1402 
1403 			stmmac_clear_desc(priv, p);
1404 
1405 			tx_q->tx_skbuff_dma[i].buf = 0;
1406 			tx_q->tx_skbuff_dma[i].map_as_page = false;
1407 			tx_q->tx_skbuff_dma[i].len = 0;
1408 			tx_q->tx_skbuff_dma[i].last_segment = false;
1409 			tx_q->tx_skbuff[i] = NULL;
1410 		}
1411 
1412 		tx_q->dirty_tx = 0;
1413 		tx_q->cur_tx = 0;
1414 		tx_q->mss = 0;
1415 
1416 		netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
1417 	}
1418 
1419 	return 0;
1420 }
1421 
1422 /**
1423  * init_dma_desc_rings - init the RX/TX descriptor rings
1424  * @dev: net device structure
1425  * @flags: gfp flag.
1426  * Description: this function initializes the DMA RX/TX descriptors
1427  * and allocates the socket buffers. It supports the chained and ring
1428  * modes.
1429  */
1430 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1431 {
1432 	struct stmmac_priv *priv = netdev_priv(dev);
1433 	int ret;
1434 
1435 	ret = init_dma_rx_desc_rings(dev, flags);
1436 	if (ret)
1437 		return ret;
1438 
1439 	ret = init_dma_tx_desc_rings(dev);
1440 
1441 	stmmac_clear_descriptors(priv);
1442 
1443 	if (netif_msg_hw(priv))
1444 		stmmac_display_rings(priv);
1445 
1446 	return ret;
1447 }
1448 
1449 /**
1450  * dma_free_rx_skbufs - free RX dma buffers
1451  * @priv: private structure
1452  * @queue: RX queue index
1453  */
1454 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue)
1455 {
1456 	int i;
1457 
1458 	for (i = 0; i < DMA_RX_SIZE; i++)
1459 		stmmac_free_rx_buffer(priv, queue, i);
1460 }
1461 
1462 /**
1463  * dma_free_tx_skbufs - free TX dma buffers
1464  * @priv: private structure
1465  * @queue: TX queue index
1466  */
1467 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue)
1468 {
1469 	int i;
1470 
1471 	for (i = 0; i < DMA_TX_SIZE; i++)
1472 		stmmac_free_tx_buffer(priv, queue, i);
1473 }
1474 
1475 /**
1476  * free_dma_rx_desc_resources - free RX dma desc resources
1477  * @priv: private structure
1478  */
1479 static void free_dma_rx_desc_resources(struct stmmac_priv *priv)
1480 {
1481 	u32 rx_count = priv->plat->rx_queues_to_use;
1482 	u32 queue;
1483 
1484 	/* Free RX queue resources */
1485 	for (queue = 0; queue < rx_count; queue++) {
1486 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1487 
1488 		/* Release the DMA RX socket buffers */
1489 		dma_free_rx_skbufs(priv, queue);
1490 
1491 		/* Free DMA regions of consistent memory previously allocated */
1492 		if (!priv->extend_desc)
1493 			dma_free_coherent(priv->device,
1494 					  DMA_RX_SIZE * sizeof(struct dma_desc),
1495 					  rx_q->dma_rx, rx_q->dma_rx_phy);
1496 		else
1497 			dma_free_coherent(priv->device, DMA_RX_SIZE *
1498 					  sizeof(struct dma_extended_desc),
1499 					  rx_q->dma_erx, rx_q->dma_rx_phy);
1500 
1501 		kfree(rx_q->rx_skbuff_dma);
1502 		kfree(rx_q->rx_skbuff);
1503 	}
1504 }
1505 
1506 /**
1507  * free_dma_tx_desc_resources - free TX dma desc resources
1508  * @priv: private structure
1509  */
1510 static void free_dma_tx_desc_resources(struct stmmac_priv *priv)
1511 {
1512 	u32 tx_count = priv->plat->tx_queues_to_use;
1513 	u32 queue;
1514 
1515 	/* Free TX queue resources */
1516 	for (queue = 0; queue < tx_count; queue++) {
1517 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1518 
1519 		/* Release the DMA TX socket buffers */
1520 		dma_free_tx_skbufs(priv, queue);
1521 
1522 		/* Free DMA regions of consistent memory previously allocated */
1523 		if (!priv->extend_desc)
1524 			dma_free_coherent(priv->device,
1525 					  DMA_TX_SIZE * sizeof(struct dma_desc),
1526 					  tx_q->dma_tx, tx_q->dma_tx_phy);
1527 		else
1528 			dma_free_coherent(priv->device, DMA_TX_SIZE *
1529 					  sizeof(struct dma_extended_desc),
1530 					  tx_q->dma_etx, tx_q->dma_tx_phy);
1531 
1532 		kfree(tx_q->tx_skbuff_dma);
1533 		kfree(tx_q->tx_skbuff);
1534 	}
1535 }
1536 
1537 /**
1538  * alloc_dma_rx_desc_resources - alloc RX resources.
1539  * @priv: private structure
1540  * Description: according to which descriptor can be used (extend or basic)
1541  * this function allocates the resources for TX and RX paths. In case of
1542  * reception, for example, it pre-allocated the RX socket buffer in order to
1543  * allow zero-copy mechanism.
1544  */
1545 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv)
1546 {
1547 	u32 rx_count = priv->plat->rx_queues_to_use;
1548 	int ret = -ENOMEM;
1549 	u32 queue;
1550 
1551 	/* RX queues buffers and DMA */
1552 	for (queue = 0; queue < rx_count; queue++) {
1553 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1554 
1555 		rx_q->queue_index = queue;
1556 		rx_q->priv_data = priv;
1557 
1558 		rx_q->rx_skbuff_dma = kmalloc_array(DMA_RX_SIZE,
1559 						    sizeof(dma_addr_t),
1560 						    GFP_KERNEL);
1561 		if (!rx_q->rx_skbuff_dma)
1562 			goto err_dma;
1563 
1564 		rx_q->rx_skbuff = kmalloc_array(DMA_RX_SIZE,
1565 						sizeof(struct sk_buff *),
1566 						GFP_KERNEL);
1567 		if (!rx_q->rx_skbuff)
1568 			goto err_dma;
1569 
1570 		if (priv->extend_desc) {
1571 			rx_q->dma_erx = dma_alloc_coherent(priv->device,
1572 							   DMA_RX_SIZE * sizeof(struct dma_extended_desc),
1573 							   &rx_q->dma_rx_phy,
1574 							   GFP_KERNEL);
1575 			if (!rx_q->dma_erx)
1576 				goto err_dma;
1577 
1578 		} else {
1579 			rx_q->dma_rx = dma_alloc_coherent(priv->device,
1580 							  DMA_RX_SIZE * sizeof(struct dma_desc),
1581 							  &rx_q->dma_rx_phy,
1582 							  GFP_KERNEL);
1583 			if (!rx_q->dma_rx)
1584 				goto err_dma;
1585 		}
1586 	}
1587 
1588 	return 0;
1589 
1590 err_dma:
1591 	free_dma_rx_desc_resources(priv);
1592 
1593 	return ret;
1594 }
1595 
1596 /**
1597  * alloc_dma_tx_desc_resources - alloc TX resources.
1598  * @priv: private structure
1599  * Description: according to which descriptor can be used (extend or basic)
1600  * this function allocates the resources for TX and RX paths. In case of
1601  * reception, for example, it pre-allocated the RX socket buffer in order to
1602  * allow zero-copy mechanism.
1603  */
1604 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv)
1605 {
1606 	u32 tx_count = priv->plat->tx_queues_to_use;
1607 	int ret = -ENOMEM;
1608 	u32 queue;
1609 
1610 	/* TX queues buffers and DMA */
1611 	for (queue = 0; queue < tx_count; queue++) {
1612 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1613 
1614 		tx_q->queue_index = queue;
1615 		tx_q->priv_data = priv;
1616 
1617 		tx_q->tx_skbuff_dma = kmalloc_array(DMA_TX_SIZE,
1618 						    sizeof(*tx_q->tx_skbuff_dma),
1619 						    GFP_KERNEL);
1620 		if (!tx_q->tx_skbuff_dma)
1621 			goto err_dma;
1622 
1623 		tx_q->tx_skbuff = kmalloc_array(DMA_TX_SIZE,
1624 						sizeof(struct sk_buff *),
1625 						GFP_KERNEL);
1626 		if (!tx_q->tx_skbuff)
1627 			goto err_dma;
1628 
1629 		if (priv->extend_desc) {
1630 			tx_q->dma_etx = dma_alloc_coherent(priv->device,
1631 							   DMA_TX_SIZE * sizeof(struct dma_extended_desc),
1632 							   &tx_q->dma_tx_phy,
1633 							   GFP_KERNEL);
1634 			if (!tx_q->dma_etx)
1635 				goto err_dma;
1636 		} else {
1637 			tx_q->dma_tx = dma_alloc_coherent(priv->device,
1638 							  DMA_TX_SIZE * sizeof(struct dma_desc),
1639 							  &tx_q->dma_tx_phy,
1640 							  GFP_KERNEL);
1641 			if (!tx_q->dma_tx)
1642 				goto err_dma;
1643 		}
1644 	}
1645 
1646 	return 0;
1647 
1648 err_dma:
1649 	free_dma_tx_desc_resources(priv);
1650 
1651 	return ret;
1652 }
1653 
1654 /**
1655  * alloc_dma_desc_resources - alloc TX/RX resources.
1656  * @priv: private structure
1657  * Description: according to which descriptor can be used (extend or basic)
1658  * this function allocates the resources for TX and RX paths. In case of
1659  * reception, for example, it pre-allocated the RX socket buffer in order to
1660  * allow zero-copy mechanism.
1661  */
1662 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1663 {
1664 	/* RX Allocation */
1665 	int ret = alloc_dma_rx_desc_resources(priv);
1666 
1667 	if (ret)
1668 		return ret;
1669 
1670 	ret = alloc_dma_tx_desc_resources(priv);
1671 
1672 	return ret;
1673 }
1674 
1675 /**
1676  * free_dma_desc_resources - free dma desc resources
1677  * @priv: private structure
1678  */
1679 static void free_dma_desc_resources(struct stmmac_priv *priv)
1680 {
1681 	/* Release the DMA RX socket buffers */
1682 	free_dma_rx_desc_resources(priv);
1683 
1684 	/* Release the DMA TX socket buffers */
1685 	free_dma_tx_desc_resources(priv);
1686 }
1687 
1688 /**
1689  *  stmmac_mac_enable_rx_queues - Enable MAC rx queues
1690  *  @priv: driver private structure
1691  *  Description: It is used for enabling the rx queues in the MAC
1692  */
1693 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
1694 {
1695 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
1696 	int queue;
1697 	u8 mode;
1698 
1699 	for (queue = 0; queue < rx_queues_count; queue++) {
1700 		mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
1701 		stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
1702 	}
1703 }
1704 
1705 /**
1706  * stmmac_start_rx_dma - start RX DMA channel
1707  * @priv: driver private structure
1708  * @chan: RX channel index
1709  * Description:
1710  * This starts a RX DMA channel
1711  */
1712 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
1713 {
1714 	netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
1715 	stmmac_start_rx(priv, priv->ioaddr, chan);
1716 }
1717 
1718 /**
1719  * stmmac_start_tx_dma - start TX DMA channel
1720  * @priv: driver private structure
1721  * @chan: TX channel index
1722  * Description:
1723  * This starts a TX DMA channel
1724  */
1725 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
1726 {
1727 	netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
1728 	stmmac_start_tx(priv, priv->ioaddr, chan);
1729 }
1730 
1731 /**
1732  * stmmac_stop_rx_dma - stop RX DMA channel
1733  * @priv: driver private structure
1734  * @chan: RX channel index
1735  * Description:
1736  * This stops a RX DMA channel
1737  */
1738 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
1739 {
1740 	netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
1741 	stmmac_stop_rx(priv, priv->ioaddr, chan);
1742 }
1743 
1744 /**
1745  * stmmac_stop_tx_dma - stop TX DMA channel
1746  * @priv: driver private structure
1747  * @chan: TX channel index
1748  * Description:
1749  * This stops a TX DMA channel
1750  */
1751 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
1752 {
1753 	netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
1754 	stmmac_stop_tx(priv, priv->ioaddr, chan);
1755 }
1756 
1757 /**
1758  * stmmac_start_all_dma - start all RX and TX DMA channels
1759  * @priv: driver private structure
1760  * Description:
1761  * This starts all the RX and TX DMA channels
1762  */
1763 static void stmmac_start_all_dma(struct stmmac_priv *priv)
1764 {
1765 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1766 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1767 	u32 chan = 0;
1768 
1769 	for (chan = 0; chan < rx_channels_count; chan++)
1770 		stmmac_start_rx_dma(priv, chan);
1771 
1772 	for (chan = 0; chan < tx_channels_count; chan++)
1773 		stmmac_start_tx_dma(priv, chan);
1774 }
1775 
1776 /**
1777  * stmmac_stop_all_dma - stop all RX and TX DMA channels
1778  * @priv: driver private structure
1779  * Description:
1780  * This stops the RX and TX DMA channels
1781  */
1782 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
1783 {
1784 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1785 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1786 	u32 chan = 0;
1787 
1788 	for (chan = 0; chan < rx_channels_count; chan++)
1789 		stmmac_stop_rx_dma(priv, chan);
1790 
1791 	for (chan = 0; chan < tx_channels_count; chan++)
1792 		stmmac_stop_tx_dma(priv, chan);
1793 }
1794 
1795 /**
1796  *  stmmac_dma_operation_mode - HW DMA operation mode
1797  *  @priv: driver private structure
1798  *  Description: it is used for configuring the DMA operation mode register in
1799  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1800  */
1801 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1802 {
1803 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1804 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1805 	int rxfifosz = priv->plat->rx_fifo_size;
1806 	int txfifosz = priv->plat->tx_fifo_size;
1807 	u32 txmode = 0;
1808 	u32 rxmode = 0;
1809 	u32 chan = 0;
1810 	u8 qmode = 0;
1811 
1812 	if (rxfifosz == 0)
1813 		rxfifosz = priv->dma_cap.rx_fifo_size;
1814 	if (txfifosz == 0)
1815 		txfifosz = priv->dma_cap.tx_fifo_size;
1816 
1817 	/* Adjust for real per queue fifo size */
1818 	rxfifosz /= rx_channels_count;
1819 	txfifosz /= tx_channels_count;
1820 
1821 	if (priv->plat->force_thresh_dma_mode) {
1822 		txmode = tc;
1823 		rxmode = tc;
1824 	} else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1825 		/*
1826 		 * In case of GMAC, SF mode can be enabled
1827 		 * to perform the TX COE in HW. This depends on:
1828 		 * 1) TX COE if actually supported
1829 		 * 2) There is no bugged Jumbo frame support
1830 		 *    that needs to not insert csum in the TDES.
1831 		 */
1832 		txmode = SF_DMA_MODE;
1833 		rxmode = SF_DMA_MODE;
1834 		priv->xstats.threshold = SF_DMA_MODE;
1835 	} else {
1836 		txmode = tc;
1837 		rxmode = SF_DMA_MODE;
1838 	}
1839 
1840 	/* configure all channels */
1841 	for (chan = 0; chan < rx_channels_count; chan++) {
1842 		qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
1843 
1844 		stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
1845 				rxfifosz, qmode);
1846 		stmmac_set_dma_bfsize(priv, priv->ioaddr, priv->dma_buf_sz,
1847 				chan);
1848 	}
1849 
1850 	for (chan = 0; chan < tx_channels_count; chan++) {
1851 		qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
1852 
1853 		stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
1854 				txfifosz, qmode);
1855 	}
1856 }
1857 
1858 /**
1859  * stmmac_tx_clean - to manage the transmission completion
1860  * @priv: driver private structure
1861  * @queue: TX queue index
1862  * Description: it reclaims the transmit resources after transmission completes.
1863  */
1864 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
1865 {
1866 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1867 	unsigned int bytes_compl = 0, pkts_compl = 0;
1868 	unsigned int entry, count = 0;
1869 
1870 	__netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
1871 
1872 	priv->xstats.tx_clean++;
1873 
1874 	entry = tx_q->dirty_tx;
1875 	while ((entry != tx_q->cur_tx) && (count < budget)) {
1876 		struct sk_buff *skb = tx_q->tx_skbuff[entry];
1877 		struct dma_desc *p;
1878 		int status;
1879 
1880 		if (priv->extend_desc)
1881 			p = (struct dma_desc *)(tx_q->dma_etx + entry);
1882 		else
1883 			p = tx_q->dma_tx + entry;
1884 
1885 		status = stmmac_tx_status(priv, &priv->dev->stats,
1886 				&priv->xstats, p, priv->ioaddr);
1887 		/* Check if the descriptor is owned by the DMA */
1888 		if (unlikely(status & tx_dma_own))
1889 			break;
1890 
1891 		count++;
1892 
1893 		/* Make sure descriptor fields are read after reading
1894 		 * the own bit.
1895 		 */
1896 		dma_rmb();
1897 
1898 		/* Just consider the last segment and ...*/
1899 		if (likely(!(status & tx_not_ls))) {
1900 			/* ... verify the status error condition */
1901 			if (unlikely(status & tx_err)) {
1902 				priv->dev->stats.tx_errors++;
1903 			} else {
1904 				priv->dev->stats.tx_packets++;
1905 				priv->xstats.tx_pkt_n++;
1906 			}
1907 			stmmac_get_tx_hwtstamp(priv, p, skb);
1908 		}
1909 
1910 		if (likely(tx_q->tx_skbuff_dma[entry].buf)) {
1911 			if (tx_q->tx_skbuff_dma[entry].map_as_page)
1912 				dma_unmap_page(priv->device,
1913 					       tx_q->tx_skbuff_dma[entry].buf,
1914 					       tx_q->tx_skbuff_dma[entry].len,
1915 					       DMA_TO_DEVICE);
1916 			else
1917 				dma_unmap_single(priv->device,
1918 						 tx_q->tx_skbuff_dma[entry].buf,
1919 						 tx_q->tx_skbuff_dma[entry].len,
1920 						 DMA_TO_DEVICE);
1921 			tx_q->tx_skbuff_dma[entry].buf = 0;
1922 			tx_q->tx_skbuff_dma[entry].len = 0;
1923 			tx_q->tx_skbuff_dma[entry].map_as_page = false;
1924 		}
1925 
1926 		stmmac_clean_desc3(priv, tx_q, p);
1927 
1928 		tx_q->tx_skbuff_dma[entry].last_segment = false;
1929 		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
1930 
1931 		if (likely(skb != NULL)) {
1932 			pkts_compl++;
1933 			bytes_compl += skb->len;
1934 			dev_consume_skb_any(skb);
1935 			tx_q->tx_skbuff[entry] = NULL;
1936 		}
1937 
1938 		stmmac_release_tx_desc(priv, p, priv->mode);
1939 
1940 		entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
1941 	}
1942 	tx_q->dirty_tx = entry;
1943 
1944 	netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
1945 				  pkts_compl, bytes_compl);
1946 
1947 	if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
1948 								queue))) &&
1949 	    stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH) {
1950 
1951 		netif_dbg(priv, tx_done, priv->dev,
1952 			  "%s: restart transmit\n", __func__);
1953 		netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
1954 	}
1955 
1956 	if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1957 		stmmac_enable_eee_mode(priv);
1958 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1959 	}
1960 
1961 	/* We still have pending packets, let's call for a new scheduling */
1962 	if (tx_q->dirty_tx != tx_q->cur_tx)
1963 		mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(10));
1964 
1965 	__netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
1966 
1967 	return count;
1968 }
1969 
1970 /**
1971  * stmmac_tx_err - to manage the tx error
1972  * @priv: driver private structure
1973  * @chan: channel index
1974  * Description: it cleans the descriptors and restarts the transmission
1975  * in case of transmission errors.
1976  */
1977 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
1978 {
1979 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
1980 	int i;
1981 
1982 	netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
1983 
1984 	stmmac_stop_tx_dma(priv, chan);
1985 	dma_free_tx_skbufs(priv, chan);
1986 	for (i = 0; i < DMA_TX_SIZE; i++)
1987 		if (priv->extend_desc)
1988 			stmmac_init_tx_desc(priv, &tx_q->dma_etx[i].basic,
1989 					priv->mode, (i == DMA_TX_SIZE - 1));
1990 		else
1991 			stmmac_init_tx_desc(priv, &tx_q->dma_tx[i],
1992 					priv->mode, (i == DMA_TX_SIZE - 1));
1993 	tx_q->dirty_tx = 0;
1994 	tx_q->cur_tx = 0;
1995 	tx_q->mss = 0;
1996 	netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan));
1997 	stmmac_start_tx_dma(priv, chan);
1998 
1999 	priv->dev->stats.tx_errors++;
2000 	netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
2001 }
2002 
2003 /**
2004  *  stmmac_set_dma_operation_mode - Set DMA operation mode by channel
2005  *  @priv: driver private structure
2006  *  @txmode: TX operating mode
2007  *  @rxmode: RX operating mode
2008  *  @chan: channel index
2009  *  Description: it is used for configuring of the DMA operation mode in
2010  *  runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
2011  *  mode.
2012  */
2013 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
2014 					  u32 rxmode, u32 chan)
2015 {
2016 	u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2017 	u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2018 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2019 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2020 	int rxfifosz = priv->plat->rx_fifo_size;
2021 	int txfifosz = priv->plat->tx_fifo_size;
2022 
2023 	if (rxfifosz == 0)
2024 		rxfifosz = priv->dma_cap.rx_fifo_size;
2025 	if (txfifosz == 0)
2026 		txfifosz = priv->dma_cap.tx_fifo_size;
2027 
2028 	/* Adjust for real per queue fifo size */
2029 	rxfifosz /= rx_channels_count;
2030 	txfifosz /= tx_channels_count;
2031 
2032 	stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2033 	stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2034 }
2035 
2036 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2037 {
2038 	int ret;
2039 
2040 	ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2041 			priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2042 	if (ret && (ret != -EINVAL)) {
2043 		stmmac_global_err(priv);
2044 		return true;
2045 	}
2046 
2047 	return false;
2048 }
2049 
2050 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan)
2051 {
2052 	int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2053 						 &priv->xstats, chan);
2054 	struct stmmac_channel *ch = &priv->channel[chan];
2055 
2056 	if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2057 		if (napi_schedule_prep(&ch->rx_napi)) {
2058 			stmmac_disable_dma_irq(priv, priv->ioaddr, chan);
2059 			__napi_schedule_irqoff(&ch->rx_napi);
2060 			status |= handle_tx;
2061 		}
2062 	}
2063 
2064 	if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use))
2065 		napi_schedule_irqoff(&ch->tx_napi);
2066 
2067 	return status;
2068 }
2069 
2070 /**
2071  * stmmac_dma_interrupt - DMA ISR
2072  * @priv: driver private structure
2073  * Description: this is the DMA ISR. It is called by the main ISR.
2074  * It calls the dwmac dma routine and schedule poll method in case of some
2075  * work can be done.
2076  */
2077 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2078 {
2079 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2080 	u32 rx_channel_count = priv->plat->rx_queues_to_use;
2081 	u32 channels_to_check = tx_channel_count > rx_channel_count ?
2082 				tx_channel_count : rx_channel_count;
2083 	u32 chan;
2084 	int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2085 
2086 	/* Make sure we never check beyond our status buffer. */
2087 	if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2088 		channels_to_check = ARRAY_SIZE(status);
2089 
2090 	for (chan = 0; chan < channels_to_check; chan++)
2091 		status[chan] = stmmac_napi_check(priv, chan);
2092 
2093 	for (chan = 0; chan < tx_channel_count; chan++) {
2094 		if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2095 			/* Try to bump up the dma threshold on this failure */
2096 			if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
2097 			    (tc <= 256)) {
2098 				tc += 64;
2099 				if (priv->plat->force_thresh_dma_mode)
2100 					stmmac_set_dma_operation_mode(priv,
2101 								      tc,
2102 								      tc,
2103 								      chan);
2104 				else
2105 					stmmac_set_dma_operation_mode(priv,
2106 								    tc,
2107 								    SF_DMA_MODE,
2108 								    chan);
2109 				priv->xstats.threshold = tc;
2110 			}
2111 		} else if (unlikely(status[chan] == tx_hard_error)) {
2112 			stmmac_tx_err(priv, chan);
2113 		}
2114 	}
2115 }
2116 
2117 /**
2118  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2119  * @priv: driver private structure
2120  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2121  */
2122 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2123 {
2124 	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2125 			    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2126 
2127 	stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2128 
2129 	if (priv->dma_cap.rmon) {
2130 		stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2131 		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2132 	} else
2133 		netdev_info(priv->dev, "No MAC Management Counters available\n");
2134 }
2135 
2136 /**
2137  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2138  * @priv: driver private structure
2139  * Description:
2140  *  new GMAC chip generations have a new register to indicate the
2141  *  presence of the optional feature/functions.
2142  *  This can be also used to override the value passed through the
2143  *  platform and necessary for old MAC10/100 and GMAC chips.
2144  */
2145 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2146 {
2147 	return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2148 }
2149 
2150 /**
2151  * stmmac_check_ether_addr - check if the MAC addr is valid
2152  * @priv: driver private structure
2153  * Description:
2154  * it is to verify if the MAC address is valid, in case of failures it
2155  * generates a random MAC address
2156  */
2157 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2158 {
2159 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2160 		stmmac_get_umac_addr(priv, priv->hw, priv->dev->dev_addr, 0);
2161 		if (!is_valid_ether_addr(priv->dev->dev_addr))
2162 			eth_hw_addr_random(priv->dev);
2163 		dev_info(priv->device, "device MAC address %pM\n",
2164 			 priv->dev->dev_addr);
2165 	}
2166 }
2167 
2168 /**
2169  * stmmac_init_dma_engine - DMA init.
2170  * @priv: driver private structure
2171  * Description:
2172  * It inits the DMA invoking the specific MAC/GMAC callback.
2173  * Some DMA parameters can be passed from the platform;
2174  * in case of these are not passed a default is kept for the MAC or GMAC.
2175  */
2176 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2177 {
2178 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2179 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2180 	u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2181 	struct stmmac_rx_queue *rx_q;
2182 	struct stmmac_tx_queue *tx_q;
2183 	u32 chan = 0;
2184 	int atds = 0;
2185 	int ret = 0;
2186 
2187 	if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2188 		dev_err(priv->device, "Invalid DMA configuration\n");
2189 		return -EINVAL;
2190 	}
2191 
2192 	if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2193 		atds = 1;
2194 
2195 	ret = stmmac_reset(priv, priv->ioaddr);
2196 	if (ret) {
2197 		dev_err(priv->device, "Failed to reset the dma\n");
2198 		return ret;
2199 	}
2200 
2201 	/* DMA Configuration */
2202 	stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2203 
2204 	if (priv->plat->axi)
2205 		stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2206 
2207 	/* DMA CSR Channel configuration */
2208 	for (chan = 0; chan < dma_csr_ch; chan++)
2209 		stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2210 
2211 	/* DMA RX Channel Configuration */
2212 	for (chan = 0; chan < rx_channels_count; chan++) {
2213 		rx_q = &priv->rx_queue[chan];
2214 
2215 		stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2216 				    rx_q->dma_rx_phy, chan);
2217 
2218 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2219 			    (DMA_RX_SIZE * sizeof(struct dma_desc));
2220 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2221 				       rx_q->rx_tail_addr, chan);
2222 	}
2223 
2224 	/* DMA TX Channel Configuration */
2225 	for (chan = 0; chan < tx_channels_count; chan++) {
2226 		tx_q = &priv->tx_queue[chan];
2227 
2228 		stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2229 				    tx_q->dma_tx_phy, chan);
2230 
2231 		tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2232 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2233 				       tx_q->tx_tail_addr, chan);
2234 	}
2235 
2236 	return ret;
2237 }
2238 
2239 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2240 {
2241 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2242 
2243 	mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer));
2244 }
2245 
2246 /**
2247  * stmmac_tx_timer - mitigation sw timer for tx.
2248  * @data: data pointer
2249  * Description:
2250  * This is the timer handler to directly invoke the stmmac_tx_clean.
2251  */
2252 static void stmmac_tx_timer(struct timer_list *t)
2253 {
2254 	struct stmmac_tx_queue *tx_q = from_timer(tx_q, t, txtimer);
2255 	struct stmmac_priv *priv = tx_q->priv_data;
2256 	struct stmmac_channel *ch;
2257 
2258 	ch = &priv->channel[tx_q->queue_index];
2259 
2260 	/*
2261 	 * If NAPI is already running we can miss some events. Let's rearm
2262 	 * the timer and try again.
2263 	 */
2264 	if (likely(napi_schedule_prep(&ch->tx_napi)))
2265 		__napi_schedule(&ch->tx_napi);
2266 	else
2267 		mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(10));
2268 }
2269 
2270 /**
2271  * stmmac_init_tx_coalesce - init tx mitigation options.
2272  * @priv: driver private structure
2273  * Description:
2274  * This inits the transmit coalesce parameters: i.e. timer rate,
2275  * timer handler and default threshold used for enabling the
2276  * interrupt on completion bit.
2277  */
2278 static void stmmac_init_tx_coalesce(struct stmmac_priv *priv)
2279 {
2280 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2281 	u32 chan;
2282 
2283 	priv->tx_coal_frames = STMMAC_TX_FRAMES;
2284 	priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
2285 
2286 	for (chan = 0; chan < tx_channel_count; chan++) {
2287 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2288 
2289 		timer_setup(&tx_q->txtimer, stmmac_tx_timer, 0);
2290 	}
2291 }
2292 
2293 static void stmmac_set_rings_length(struct stmmac_priv *priv)
2294 {
2295 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2296 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2297 	u32 chan;
2298 
2299 	/* set TX ring length */
2300 	for (chan = 0; chan < tx_channels_count; chan++)
2301 		stmmac_set_tx_ring_len(priv, priv->ioaddr,
2302 				(DMA_TX_SIZE - 1), chan);
2303 
2304 	/* set RX ring length */
2305 	for (chan = 0; chan < rx_channels_count; chan++)
2306 		stmmac_set_rx_ring_len(priv, priv->ioaddr,
2307 				(DMA_RX_SIZE - 1), chan);
2308 }
2309 
2310 /**
2311  *  stmmac_set_tx_queue_weight - Set TX queue weight
2312  *  @priv: driver private structure
2313  *  Description: It is used for setting TX queues weight
2314  */
2315 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
2316 {
2317 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2318 	u32 weight;
2319 	u32 queue;
2320 
2321 	for (queue = 0; queue < tx_queues_count; queue++) {
2322 		weight = priv->plat->tx_queues_cfg[queue].weight;
2323 		stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
2324 	}
2325 }
2326 
2327 /**
2328  *  stmmac_configure_cbs - Configure CBS in TX queue
2329  *  @priv: driver private structure
2330  *  Description: It is used for configuring CBS in AVB TX queues
2331  */
2332 static void stmmac_configure_cbs(struct stmmac_priv *priv)
2333 {
2334 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2335 	u32 mode_to_use;
2336 	u32 queue;
2337 
2338 	/* queue 0 is reserved for legacy traffic */
2339 	for (queue = 1; queue < tx_queues_count; queue++) {
2340 		mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
2341 		if (mode_to_use == MTL_QUEUE_DCB)
2342 			continue;
2343 
2344 		stmmac_config_cbs(priv, priv->hw,
2345 				priv->plat->tx_queues_cfg[queue].send_slope,
2346 				priv->plat->tx_queues_cfg[queue].idle_slope,
2347 				priv->plat->tx_queues_cfg[queue].high_credit,
2348 				priv->plat->tx_queues_cfg[queue].low_credit,
2349 				queue);
2350 	}
2351 }
2352 
2353 /**
2354  *  stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
2355  *  @priv: driver private structure
2356  *  Description: It is used for mapping RX queues to RX dma channels
2357  */
2358 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
2359 {
2360 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2361 	u32 queue;
2362 	u32 chan;
2363 
2364 	for (queue = 0; queue < rx_queues_count; queue++) {
2365 		chan = priv->plat->rx_queues_cfg[queue].chan;
2366 		stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
2367 	}
2368 }
2369 
2370 /**
2371  *  stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
2372  *  @priv: driver private structure
2373  *  Description: It is used for configuring the RX Queue Priority
2374  */
2375 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
2376 {
2377 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2378 	u32 queue;
2379 	u32 prio;
2380 
2381 	for (queue = 0; queue < rx_queues_count; queue++) {
2382 		if (!priv->plat->rx_queues_cfg[queue].use_prio)
2383 			continue;
2384 
2385 		prio = priv->plat->rx_queues_cfg[queue].prio;
2386 		stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
2387 	}
2388 }
2389 
2390 /**
2391  *  stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
2392  *  @priv: driver private structure
2393  *  Description: It is used for configuring the TX Queue Priority
2394  */
2395 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
2396 {
2397 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2398 	u32 queue;
2399 	u32 prio;
2400 
2401 	for (queue = 0; queue < tx_queues_count; queue++) {
2402 		if (!priv->plat->tx_queues_cfg[queue].use_prio)
2403 			continue;
2404 
2405 		prio = priv->plat->tx_queues_cfg[queue].prio;
2406 		stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
2407 	}
2408 }
2409 
2410 /**
2411  *  stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
2412  *  @priv: driver private structure
2413  *  Description: It is used for configuring the RX queue routing
2414  */
2415 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
2416 {
2417 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2418 	u32 queue;
2419 	u8 packet;
2420 
2421 	for (queue = 0; queue < rx_queues_count; queue++) {
2422 		/* no specific packet type routing specified for the queue */
2423 		if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
2424 			continue;
2425 
2426 		packet = priv->plat->rx_queues_cfg[queue].pkt_route;
2427 		stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
2428 	}
2429 }
2430 
2431 /**
2432  *  stmmac_mtl_configuration - Configure MTL
2433  *  @priv: driver private structure
2434  *  Description: It is used for configurring MTL
2435  */
2436 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
2437 {
2438 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2439 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2440 
2441 	if (tx_queues_count > 1)
2442 		stmmac_set_tx_queue_weight(priv);
2443 
2444 	/* Configure MTL RX algorithms */
2445 	if (rx_queues_count > 1)
2446 		stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
2447 				priv->plat->rx_sched_algorithm);
2448 
2449 	/* Configure MTL TX algorithms */
2450 	if (tx_queues_count > 1)
2451 		stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
2452 				priv->plat->tx_sched_algorithm);
2453 
2454 	/* Configure CBS in AVB TX queues */
2455 	if (tx_queues_count > 1)
2456 		stmmac_configure_cbs(priv);
2457 
2458 	/* Map RX MTL to DMA channels */
2459 	stmmac_rx_queue_dma_chan_map(priv);
2460 
2461 	/* Enable MAC RX Queues */
2462 	stmmac_mac_enable_rx_queues(priv);
2463 
2464 	/* Set RX priorities */
2465 	if (rx_queues_count > 1)
2466 		stmmac_mac_config_rx_queues_prio(priv);
2467 
2468 	/* Set TX priorities */
2469 	if (tx_queues_count > 1)
2470 		stmmac_mac_config_tx_queues_prio(priv);
2471 
2472 	/* Set RX routing */
2473 	if (rx_queues_count > 1)
2474 		stmmac_mac_config_rx_queues_routing(priv);
2475 }
2476 
2477 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
2478 {
2479 	if (priv->dma_cap.asp) {
2480 		netdev_info(priv->dev, "Enabling Safety Features\n");
2481 		stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp);
2482 	} else {
2483 		netdev_info(priv->dev, "No Safety Features support found\n");
2484 	}
2485 }
2486 
2487 /**
2488  * stmmac_hw_setup - setup mac in a usable state.
2489  *  @dev : pointer to the device structure.
2490  *  Description:
2491  *  this is the main function to setup the HW in a usable state because the
2492  *  dma engine is reset, the core registers are configured (e.g. AXI,
2493  *  Checksum features, timers). The DMA is ready to start receiving and
2494  *  transmitting.
2495  *  Return value:
2496  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2497  *  file on failure.
2498  */
2499 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
2500 {
2501 	struct stmmac_priv *priv = netdev_priv(dev);
2502 	u32 rx_cnt = priv->plat->rx_queues_to_use;
2503 	u32 tx_cnt = priv->plat->tx_queues_to_use;
2504 	u32 chan;
2505 	int ret;
2506 
2507 	/* DMA initialization and SW reset */
2508 	ret = stmmac_init_dma_engine(priv);
2509 	if (ret < 0) {
2510 		netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
2511 			   __func__);
2512 		return ret;
2513 	}
2514 
2515 	/* Copy the MAC addr into the HW  */
2516 	stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
2517 
2518 	/* PS and related bits will be programmed according to the speed */
2519 	if (priv->hw->pcs) {
2520 		int speed = priv->plat->mac_port_sel_speed;
2521 
2522 		if ((speed == SPEED_10) || (speed == SPEED_100) ||
2523 		    (speed == SPEED_1000)) {
2524 			priv->hw->ps = speed;
2525 		} else {
2526 			dev_warn(priv->device, "invalid port speed\n");
2527 			priv->hw->ps = 0;
2528 		}
2529 	}
2530 
2531 	/* Initialize the MAC Core */
2532 	stmmac_core_init(priv, priv->hw, dev);
2533 
2534 	/* Initialize MTL*/
2535 	stmmac_mtl_configuration(priv);
2536 
2537 	/* Initialize Safety Features */
2538 	stmmac_safety_feat_configuration(priv);
2539 
2540 	ret = stmmac_rx_ipc(priv, priv->hw);
2541 	if (!ret) {
2542 		netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
2543 		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
2544 		priv->hw->rx_csum = 0;
2545 	}
2546 
2547 	/* Enable the MAC Rx/Tx */
2548 	stmmac_mac_set(priv, priv->ioaddr, true);
2549 
2550 	/* Set the HW DMA mode and the COE */
2551 	stmmac_dma_operation_mode(priv);
2552 
2553 	stmmac_mmc_setup(priv);
2554 
2555 	if (init_ptp) {
2556 		ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
2557 		if (ret < 0)
2558 			netdev_warn(priv->dev, "failed to enable PTP reference clock: %d\n", ret);
2559 
2560 		ret = stmmac_init_ptp(priv);
2561 		if (ret == -EOPNOTSUPP)
2562 			netdev_warn(priv->dev, "PTP not supported by HW\n");
2563 		else if (ret)
2564 			netdev_warn(priv->dev, "PTP init failed\n");
2565 	}
2566 
2567 	priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
2568 
2569 	if (priv->use_riwt) {
2570 		ret = stmmac_rx_watchdog(priv, priv->ioaddr, MIN_DMA_RIWT, rx_cnt);
2571 		if (!ret)
2572 			priv->rx_riwt = MIN_DMA_RIWT;
2573 	}
2574 
2575 	if (priv->hw->pcs)
2576 		stmmac_pcs_ctrl_ane(priv, priv->hw, 1, priv->hw->ps, 0);
2577 
2578 	/* set TX and RX rings length */
2579 	stmmac_set_rings_length(priv);
2580 
2581 	/* Enable TSO */
2582 	if (priv->tso) {
2583 		for (chan = 0; chan < tx_cnt; chan++)
2584 			stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
2585 	}
2586 
2587 	/* Start the ball rolling... */
2588 	stmmac_start_all_dma(priv);
2589 
2590 	return 0;
2591 }
2592 
2593 static void stmmac_hw_teardown(struct net_device *dev)
2594 {
2595 	struct stmmac_priv *priv = netdev_priv(dev);
2596 
2597 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
2598 }
2599 
2600 /**
2601  *  stmmac_open - open entry point of the driver
2602  *  @dev : pointer to the device structure.
2603  *  Description:
2604  *  This function is the open entry point of the driver.
2605  *  Return value:
2606  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2607  *  file on failure.
2608  */
2609 static int stmmac_open(struct net_device *dev)
2610 {
2611 	struct stmmac_priv *priv = netdev_priv(dev);
2612 	u32 chan;
2613 	int ret;
2614 
2615 	if (priv->hw->pcs != STMMAC_PCS_RGMII &&
2616 	    priv->hw->pcs != STMMAC_PCS_TBI &&
2617 	    priv->hw->pcs != STMMAC_PCS_RTBI) {
2618 		ret = stmmac_init_phy(dev);
2619 		if (ret) {
2620 			netdev_err(priv->dev,
2621 				   "%s: Cannot attach to PHY (error: %d)\n",
2622 				   __func__, ret);
2623 			return ret;
2624 		}
2625 	}
2626 
2627 	/* Extra statistics */
2628 	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
2629 	priv->xstats.threshold = tc;
2630 
2631 	priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
2632 	priv->rx_copybreak = STMMAC_RX_COPYBREAK;
2633 
2634 	ret = alloc_dma_desc_resources(priv);
2635 	if (ret < 0) {
2636 		netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
2637 			   __func__);
2638 		goto dma_desc_error;
2639 	}
2640 
2641 	ret = init_dma_desc_rings(dev, GFP_KERNEL);
2642 	if (ret < 0) {
2643 		netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
2644 			   __func__);
2645 		goto init_error;
2646 	}
2647 
2648 	ret = stmmac_hw_setup(dev, true);
2649 	if (ret < 0) {
2650 		netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
2651 		goto init_error;
2652 	}
2653 
2654 	stmmac_init_tx_coalesce(priv);
2655 
2656 	phylink_start(priv->phylink);
2657 
2658 	/* Request the IRQ lines */
2659 	ret = request_irq(dev->irq, stmmac_interrupt,
2660 			  IRQF_SHARED, dev->name, dev);
2661 	if (unlikely(ret < 0)) {
2662 		netdev_err(priv->dev,
2663 			   "%s: ERROR: allocating the IRQ %d (error: %d)\n",
2664 			   __func__, dev->irq, ret);
2665 		goto irq_error;
2666 	}
2667 
2668 	/* Request the Wake IRQ in case of another line is used for WoL */
2669 	if (priv->wol_irq != dev->irq) {
2670 		ret = request_irq(priv->wol_irq, stmmac_interrupt,
2671 				  IRQF_SHARED, dev->name, dev);
2672 		if (unlikely(ret < 0)) {
2673 			netdev_err(priv->dev,
2674 				   "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
2675 				   __func__, priv->wol_irq, ret);
2676 			goto wolirq_error;
2677 		}
2678 	}
2679 
2680 	/* Request the IRQ lines */
2681 	if (priv->lpi_irq > 0) {
2682 		ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
2683 				  dev->name, dev);
2684 		if (unlikely(ret < 0)) {
2685 			netdev_err(priv->dev,
2686 				   "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
2687 				   __func__, priv->lpi_irq, ret);
2688 			goto lpiirq_error;
2689 		}
2690 	}
2691 
2692 	stmmac_enable_all_queues(priv);
2693 	stmmac_start_all_queues(priv);
2694 
2695 	return 0;
2696 
2697 lpiirq_error:
2698 	if (priv->wol_irq != dev->irq)
2699 		free_irq(priv->wol_irq, dev);
2700 wolirq_error:
2701 	free_irq(dev->irq, dev);
2702 irq_error:
2703 	phylink_stop(priv->phylink);
2704 
2705 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2706 		del_timer_sync(&priv->tx_queue[chan].txtimer);
2707 
2708 	stmmac_hw_teardown(dev);
2709 init_error:
2710 	free_dma_desc_resources(priv);
2711 dma_desc_error:
2712 	phylink_disconnect_phy(priv->phylink);
2713 	return ret;
2714 }
2715 
2716 /**
2717  *  stmmac_release - close entry point of the driver
2718  *  @dev : device pointer.
2719  *  Description:
2720  *  This is the stop entry point of the driver.
2721  */
2722 static int stmmac_release(struct net_device *dev)
2723 {
2724 	struct stmmac_priv *priv = netdev_priv(dev);
2725 	u32 chan;
2726 
2727 	if (priv->eee_enabled)
2728 		del_timer_sync(&priv->eee_ctrl_timer);
2729 
2730 	/* Stop and disconnect the PHY */
2731 	phylink_stop(priv->phylink);
2732 	phylink_disconnect_phy(priv->phylink);
2733 
2734 	stmmac_stop_all_queues(priv);
2735 
2736 	stmmac_disable_all_queues(priv);
2737 
2738 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2739 		del_timer_sync(&priv->tx_queue[chan].txtimer);
2740 
2741 	/* Free the IRQ lines */
2742 	free_irq(dev->irq, dev);
2743 	if (priv->wol_irq != dev->irq)
2744 		free_irq(priv->wol_irq, dev);
2745 	if (priv->lpi_irq > 0)
2746 		free_irq(priv->lpi_irq, dev);
2747 
2748 	/* Stop TX/RX DMA and clear the descriptors */
2749 	stmmac_stop_all_dma(priv);
2750 
2751 	/* Release and free the Rx/Tx resources */
2752 	free_dma_desc_resources(priv);
2753 
2754 	/* Disable the MAC Rx/Tx */
2755 	stmmac_mac_set(priv, priv->ioaddr, false);
2756 
2757 	netif_carrier_off(dev);
2758 
2759 	stmmac_release_ptp(priv);
2760 
2761 	return 0;
2762 }
2763 
2764 /**
2765  *  stmmac_tso_allocator - close entry point of the driver
2766  *  @priv: driver private structure
2767  *  @des: buffer start address
2768  *  @total_len: total length to fill in descriptors
2769  *  @last_segmant: condition for the last descriptor
2770  *  @queue: TX queue index
2771  *  Description:
2772  *  This function fills descriptor and request new descriptors according to
2773  *  buffer length to fill
2774  */
2775 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
2776 				 int total_len, bool last_segment, u32 queue)
2777 {
2778 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2779 	struct dma_desc *desc;
2780 	u32 buff_size;
2781 	int tmp_len;
2782 
2783 	tmp_len = total_len;
2784 
2785 	while (tmp_len > 0) {
2786 		dma_addr_t curr_addr;
2787 
2788 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2789 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
2790 		desc = tx_q->dma_tx + tx_q->cur_tx;
2791 
2792 		curr_addr = des + (total_len - tmp_len);
2793 		if (priv->dma_cap.addr64 <= 32)
2794 			desc->des0 = cpu_to_le32(curr_addr);
2795 		else
2796 			stmmac_set_desc_addr(priv, desc, curr_addr);
2797 
2798 		buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
2799 			    TSO_MAX_BUFF_SIZE : tmp_len;
2800 
2801 		stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
2802 				0, 1,
2803 				(last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
2804 				0, 0);
2805 
2806 		tmp_len -= TSO_MAX_BUFF_SIZE;
2807 	}
2808 }
2809 
2810 /**
2811  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
2812  *  @skb : the socket buffer
2813  *  @dev : device pointer
2814  *  Description: this is the transmit function that is called on TSO frames
2815  *  (support available on GMAC4 and newer chips).
2816  *  Diagram below show the ring programming in case of TSO frames:
2817  *
2818  *  First Descriptor
2819  *   --------
2820  *   | DES0 |---> buffer1 = L2/L3/L4 header
2821  *   | DES1 |---> TCP Payload (can continue on next descr...)
2822  *   | DES2 |---> buffer 1 and 2 len
2823  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
2824  *   --------
2825  *	|
2826  *     ...
2827  *	|
2828  *   --------
2829  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
2830  *   | DES1 | --|
2831  *   | DES2 | --> buffer 1 and 2 len
2832  *   | DES3 |
2833  *   --------
2834  *
2835  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
2836  */
2837 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
2838 {
2839 	struct dma_desc *desc, *first, *mss_desc = NULL;
2840 	struct stmmac_priv *priv = netdev_priv(dev);
2841 	int nfrags = skb_shinfo(skb)->nr_frags;
2842 	u32 queue = skb_get_queue_mapping(skb);
2843 	unsigned int first_entry;
2844 	struct stmmac_tx_queue *tx_q;
2845 	int tmp_pay_len = 0;
2846 	u32 pay_len, mss;
2847 	u8 proto_hdr_len;
2848 	dma_addr_t des;
2849 	int i;
2850 
2851 	tx_q = &priv->tx_queue[queue];
2852 
2853 	/* Compute header lengths */
2854 	proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2855 
2856 	/* Desc availability based on threshold should be enough safe */
2857 	if (unlikely(stmmac_tx_avail(priv, queue) <
2858 		(((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
2859 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
2860 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
2861 								queue));
2862 			/* This is a hard error, log it. */
2863 			netdev_err(priv->dev,
2864 				   "%s: Tx Ring full when queue awake\n",
2865 				   __func__);
2866 		}
2867 		return NETDEV_TX_BUSY;
2868 	}
2869 
2870 	pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
2871 
2872 	mss = skb_shinfo(skb)->gso_size;
2873 
2874 	/* set new MSS value if needed */
2875 	if (mss != tx_q->mss) {
2876 		mss_desc = tx_q->dma_tx + tx_q->cur_tx;
2877 		stmmac_set_mss(priv, mss_desc, mss);
2878 		tx_q->mss = mss;
2879 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2880 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
2881 	}
2882 
2883 	if (netif_msg_tx_queued(priv)) {
2884 		pr_info("%s: tcphdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
2885 			__func__, tcp_hdrlen(skb), proto_hdr_len, pay_len, mss);
2886 		pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
2887 			skb->data_len);
2888 	}
2889 
2890 	first_entry = tx_q->cur_tx;
2891 	WARN_ON(tx_q->tx_skbuff[first_entry]);
2892 
2893 	desc = tx_q->dma_tx + first_entry;
2894 	first = desc;
2895 
2896 	/* first descriptor: fill Headers on Buf1 */
2897 	des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
2898 			     DMA_TO_DEVICE);
2899 	if (dma_mapping_error(priv->device, des))
2900 		goto dma_map_err;
2901 
2902 	tx_q->tx_skbuff_dma[first_entry].buf = des;
2903 	tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
2904 
2905 	if (priv->dma_cap.addr64 <= 32) {
2906 		first->des0 = cpu_to_le32(des);
2907 
2908 		/* Fill start of payload in buff2 of first descriptor */
2909 		if (pay_len)
2910 			first->des1 = cpu_to_le32(des + proto_hdr_len);
2911 
2912 		/* If needed take extra descriptors to fill the remaining payload */
2913 		tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
2914 	} else {
2915 		stmmac_set_desc_addr(priv, first, des);
2916 		tmp_pay_len = pay_len;
2917 	}
2918 
2919 	stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
2920 
2921 	/* Prepare fragments */
2922 	for (i = 0; i < nfrags; i++) {
2923 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2924 
2925 		des = skb_frag_dma_map(priv->device, frag, 0,
2926 				       skb_frag_size(frag),
2927 				       DMA_TO_DEVICE);
2928 		if (dma_mapping_error(priv->device, des))
2929 			goto dma_map_err;
2930 
2931 		stmmac_tso_allocator(priv, des, skb_frag_size(frag),
2932 				     (i == nfrags - 1), queue);
2933 
2934 		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
2935 		tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
2936 		tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
2937 	}
2938 
2939 	tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
2940 
2941 	/* Only the last descriptor gets to point to the skb. */
2942 	tx_q->tx_skbuff[tx_q->cur_tx] = skb;
2943 
2944 	/* We've used all descriptors we need for this skb, however,
2945 	 * advance cur_tx so that it references a fresh descriptor.
2946 	 * ndo_start_xmit will fill this descriptor the next time it's
2947 	 * called and stmmac_tx_clean may clean up to this descriptor.
2948 	 */
2949 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2950 
2951 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
2952 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
2953 			  __func__);
2954 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
2955 	}
2956 
2957 	dev->stats.tx_bytes += skb->len;
2958 	priv->xstats.tx_tso_frames++;
2959 	priv->xstats.tx_tso_nfrags += nfrags;
2960 
2961 	/* Manage tx mitigation */
2962 	tx_q->tx_count_frames += nfrags + 1;
2963 	if (likely(priv->tx_coal_frames > tx_q->tx_count_frames) &&
2964 	    !(priv->synopsys_id >= DWMAC_CORE_4_00 &&
2965 	    (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2966 	    priv->hwts_tx_en)) {
2967 		stmmac_tx_timer_arm(priv, queue);
2968 	} else {
2969 		tx_q->tx_count_frames = 0;
2970 		stmmac_set_tx_ic(priv, desc);
2971 		priv->xstats.tx_set_ic_bit++;
2972 	}
2973 
2974 	skb_tx_timestamp(skb);
2975 
2976 	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2977 		     priv->hwts_tx_en)) {
2978 		/* declare that device is doing timestamping */
2979 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2980 		stmmac_enable_tx_timestamp(priv, first);
2981 	}
2982 
2983 	/* Complete the first descriptor before granting the DMA */
2984 	stmmac_prepare_tso_tx_desc(priv, first, 1,
2985 			proto_hdr_len,
2986 			pay_len,
2987 			1, tx_q->tx_skbuff_dma[first_entry].last_segment,
2988 			tcp_hdrlen(skb) / 4, (skb->len - proto_hdr_len));
2989 
2990 	/* If context desc is used to change MSS */
2991 	if (mss_desc) {
2992 		/* Make sure that first descriptor has been completely
2993 		 * written, including its own bit. This is because MSS is
2994 		 * actually before first descriptor, so we need to make
2995 		 * sure that MSS's own bit is the last thing written.
2996 		 */
2997 		dma_wmb();
2998 		stmmac_set_tx_owner(priv, mss_desc);
2999 	}
3000 
3001 	/* The own bit must be the latest setting done when prepare the
3002 	 * descriptor and then barrier is needed to make sure that
3003 	 * all is coherent before granting the DMA engine.
3004 	 */
3005 	wmb();
3006 
3007 	if (netif_msg_pktdata(priv)) {
3008 		pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
3009 			__func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3010 			tx_q->cur_tx, first, nfrags);
3011 
3012 		stmmac_display_ring(priv, (void *)tx_q->dma_tx, DMA_TX_SIZE, 0);
3013 
3014 		pr_info(">>> frame to be transmitted: ");
3015 		print_pkt(skb->data, skb_headlen(skb));
3016 	}
3017 
3018 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3019 
3020 	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * sizeof(*desc));
3021 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3022 
3023 	return NETDEV_TX_OK;
3024 
3025 dma_map_err:
3026 	dev_err(priv->device, "Tx dma map failed\n");
3027 	dev_kfree_skb(skb);
3028 	priv->dev->stats.tx_dropped++;
3029 	return NETDEV_TX_OK;
3030 }
3031 
3032 /**
3033  *  stmmac_xmit - Tx entry point of the driver
3034  *  @skb : the socket buffer
3035  *  @dev : device pointer
3036  *  Description : this is the tx entry point of the driver.
3037  *  It programs the chain or the ring and supports oversized frames
3038  *  and SG feature.
3039  */
3040 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
3041 {
3042 	struct stmmac_priv *priv = netdev_priv(dev);
3043 	unsigned int nopaged_len = skb_headlen(skb);
3044 	int i, csum_insertion = 0, is_jumbo = 0;
3045 	u32 queue = skb_get_queue_mapping(skb);
3046 	int nfrags = skb_shinfo(skb)->nr_frags;
3047 	struct dma_desc *desc, *first;
3048 	struct stmmac_tx_queue *tx_q;
3049 	unsigned int first_entry;
3050 	unsigned int enh_desc;
3051 	dma_addr_t des;
3052 	int entry;
3053 
3054 	tx_q = &priv->tx_queue[queue];
3055 
3056 	if (priv->tx_path_in_lpi_mode)
3057 		stmmac_disable_eee_mode(priv);
3058 
3059 	/* Manage oversized TCP frames for GMAC4 device */
3060 	if (skb_is_gso(skb) && priv->tso) {
3061 		if (skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
3062 			return stmmac_tso_xmit(skb, dev);
3063 	}
3064 
3065 	if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
3066 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3067 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3068 								queue));
3069 			/* This is a hard error, log it. */
3070 			netdev_err(priv->dev,
3071 				   "%s: Tx Ring full when queue awake\n",
3072 				   __func__);
3073 		}
3074 		return NETDEV_TX_BUSY;
3075 	}
3076 
3077 	entry = tx_q->cur_tx;
3078 	first_entry = entry;
3079 	WARN_ON(tx_q->tx_skbuff[first_entry]);
3080 
3081 	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
3082 
3083 	if (likely(priv->extend_desc))
3084 		desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3085 	else
3086 		desc = tx_q->dma_tx + entry;
3087 
3088 	first = desc;
3089 
3090 	enh_desc = priv->plat->enh_desc;
3091 	/* To program the descriptors according to the size of the frame */
3092 	if (enh_desc)
3093 		is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
3094 
3095 	if (unlikely(is_jumbo)) {
3096 		entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
3097 		if (unlikely(entry < 0) && (entry != -EINVAL))
3098 			goto dma_map_err;
3099 	}
3100 
3101 	for (i = 0; i < nfrags; i++) {
3102 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3103 		int len = skb_frag_size(frag);
3104 		bool last_segment = (i == (nfrags - 1));
3105 
3106 		entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
3107 		WARN_ON(tx_q->tx_skbuff[entry]);
3108 
3109 		if (likely(priv->extend_desc))
3110 			desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3111 		else
3112 			desc = tx_q->dma_tx + entry;
3113 
3114 		des = skb_frag_dma_map(priv->device, frag, 0, len,
3115 				       DMA_TO_DEVICE);
3116 		if (dma_mapping_error(priv->device, des))
3117 			goto dma_map_err; /* should reuse desc w/o issues */
3118 
3119 		tx_q->tx_skbuff_dma[entry].buf = des;
3120 
3121 		stmmac_set_desc_addr(priv, desc, des);
3122 
3123 		tx_q->tx_skbuff_dma[entry].map_as_page = true;
3124 		tx_q->tx_skbuff_dma[entry].len = len;
3125 		tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
3126 
3127 		/* Prepare the descriptor and set the own bit too */
3128 		stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
3129 				priv->mode, 1, last_segment, skb->len);
3130 	}
3131 
3132 	/* Only the last descriptor gets to point to the skb. */
3133 	tx_q->tx_skbuff[entry] = skb;
3134 
3135 	/* We've used all descriptors we need for this skb, however,
3136 	 * advance cur_tx so that it references a fresh descriptor.
3137 	 * ndo_start_xmit will fill this descriptor the next time it's
3138 	 * called and stmmac_tx_clean may clean up to this descriptor.
3139 	 */
3140 	entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
3141 	tx_q->cur_tx = entry;
3142 
3143 	if (netif_msg_pktdata(priv)) {
3144 		void *tx_head;
3145 
3146 		netdev_dbg(priv->dev,
3147 			   "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
3148 			   __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3149 			   entry, first, nfrags);
3150 
3151 		if (priv->extend_desc)
3152 			tx_head = (void *)tx_q->dma_etx;
3153 		else
3154 			tx_head = (void *)tx_q->dma_tx;
3155 
3156 		stmmac_display_ring(priv, tx_head, DMA_TX_SIZE, false);
3157 
3158 		netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
3159 		print_pkt(skb->data, skb->len);
3160 	}
3161 
3162 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3163 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3164 			  __func__);
3165 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3166 	}
3167 
3168 	dev->stats.tx_bytes += skb->len;
3169 
3170 	/* According to the coalesce parameter the IC bit for the latest
3171 	 * segment is reset and the timer re-started to clean the tx status.
3172 	 * This approach takes care about the fragments: desc is the first
3173 	 * element in case of no SG.
3174 	 */
3175 	tx_q->tx_count_frames += nfrags + 1;
3176 	if (likely(priv->tx_coal_frames > tx_q->tx_count_frames) &&
3177 	    !(priv->synopsys_id >= DWMAC_CORE_4_00 &&
3178 	    (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3179 	    priv->hwts_tx_en)) {
3180 		stmmac_tx_timer_arm(priv, queue);
3181 	} else {
3182 		tx_q->tx_count_frames = 0;
3183 		stmmac_set_tx_ic(priv, desc);
3184 		priv->xstats.tx_set_ic_bit++;
3185 	}
3186 
3187 	skb_tx_timestamp(skb);
3188 
3189 	/* Ready to fill the first descriptor and set the OWN bit w/o any
3190 	 * problems because all the descriptors are actually ready to be
3191 	 * passed to the DMA engine.
3192 	 */
3193 	if (likely(!is_jumbo)) {
3194 		bool last_segment = (nfrags == 0);
3195 
3196 		des = dma_map_single(priv->device, skb->data,
3197 				     nopaged_len, DMA_TO_DEVICE);
3198 		if (dma_mapping_error(priv->device, des))
3199 			goto dma_map_err;
3200 
3201 		tx_q->tx_skbuff_dma[first_entry].buf = des;
3202 
3203 		stmmac_set_desc_addr(priv, first, des);
3204 
3205 		tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
3206 		tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
3207 
3208 		if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3209 			     priv->hwts_tx_en)) {
3210 			/* declare that device is doing timestamping */
3211 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3212 			stmmac_enable_tx_timestamp(priv, first);
3213 		}
3214 
3215 		/* Prepare the first descriptor setting the OWN bit too */
3216 		stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
3217 				csum_insertion, priv->mode, 1, last_segment,
3218 				skb->len);
3219 	} else {
3220 		stmmac_set_tx_owner(priv, first);
3221 	}
3222 
3223 	/* The own bit must be the latest setting done when prepare the
3224 	 * descriptor and then barrier is needed to make sure that
3225 	 * all is coherent before granting the DMA engine.
3226 	 */
3227 	wmb();
3228 
3229 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3230 
3231 	stmmac_enable_dma_transmission(priv, priv->ioaddr);
3232 
3233 	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * sizeof(*desc));
3234 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3235 
3236 	return NETDEV_TX_OK;
3237 
3238 dma_map_err:
3239 	netdev_err(priv->dev, "Tx DMA map failed\n");
3240 	dev_kfree_skb(skb);
3241 	priv->dev->stats.tx_dropped++;
3242 	return NETDEV_TX_OK;
3243 }
3244 
3245 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
3246 {
3247 	struct vlan_ethhdr *veth;
3248 	__be16 vlan_proto;
3249 	u16 vlanid;
3250 
3251 	veth = (struct vlan_ethhdr *)skb->data;
3252 	vlan_proto = veth->h_vlan_proto;
3253 
3254 	if ((vlan_proto == htons(ETH_P_8021Q) &&
3255 	     dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
3256 	    (vlan_proto == htons(ETH_P_8021AD) &&
3257 	     dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
3258 		/* pop the vlan tag */
3259 		vlanid = ntohs(veth->h_vlan_TCI);
3260 		memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
3261 		skb_pull(skb, VLAN_HLEN);
3262 		__vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
3263 	}
3264 }
3265 
3266 
3267 static inline int stmmac_rx_threshold_count(struct stmmac_rx_queue *rx_q)
3268 {
3269 	if (rx_q->rx_zeroc_thresh < STMMAC_RX_THRESH)
3270 		return 0;
3271 
3272 	return 1;
3273 }
3274 
3275 /**
3276  * stmmac_rx_refill - refill used skb preallocated buffers
3277  * @priv: driver private structure
3278  * @queue: RX queue index
3279  * Description : this is to reallocate the skb for the reception process
3280  * that is based on zero-copy.
3281  */
3282 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
3283 {
3284 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3285 	int dirty = stmmac_rx_dirty(priv, queue);
3286 	unsigned int entry = rx_q->dirty_rx;
3287 
3288 	int bfsize = priv->dma_buf_sz;
3289 
3290 	while (dirty-- > 0) {
3291 		struct dma_desc *p;
3292 
3293 		if (priv->extend_desc)
3294 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
3295 		else
3296 			p = rx_q->dma_rx + entry;
3297 
3298 		if (likely(!rx_q->rx_skbuff[entry])) {
3299 			struct sk_buff *skb;
3300 
3301 			skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
3302 			if (unlikely(!skb)) {
3303 				/* so for a while no zero-copy! */
3304 				rx_q->rx_zeroc_thresh = STMMAC_RX_THRESH;
3305 				if (unlikely(net_ratelimit()))
3306 					dev_err(priv->device,
3307 						"fail to alloc skb entry %d\n",
3308 						entry);
3309 				break;
3310 			}
3311 
3312 			rx_q->rx_skbuff[entry] = skb;
3313 			rx_q->rx_skbuff_dma[entry] =
3314 			    dma_map_single(priv->device, skb->data, bfsize,
3315 					   DMA_FROM_DEVICE);
3316 			if (dma_mapping_error(priv->device,
3317 					      rx_q->rx_skbuff_dma[entry])) {
3318 				netdev_err(priv->dev, "Rx DMA map failed\n");
3319 				dev_kfree_skb(skb);
3320 				break;
3321 			}
3322 
3323 			stmmac_set_desc_addr(priv, p, rx_q->rx_skbuff_dma[entry]);
3324 			stmmac_refill_desc3(priv, rx_q, p);
3325 
3326 			if (rx_q->rx_zeroc_thresh > 0)
3327 				rx_q->rx_zeroc_thresh--;
3328 
3329 			netif_dbg(priv, rx_status, priv->dev,
3330 				  "refill entry #%d\n", entry);
3331 		}
3332 		dma_wmb();
3333 
3334 		stmmac_set_rx_owner(priv, p, priv->use_riwt);
3335 
3336 		dma_wmb();
3337 
3338 		entry = STMMAC_GET_ENTRY(entry, DMA_RX_SIZE);
3339 	}
3340 	rx_q->dirty_rx = entry;
3341 	rx_q->rx_tail_addr = rx_q->dma_rx_phy +
3342 			    (rx_q->dirty_rx * sizeof(struct dma_desc));
3343 	stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
3344 }
3345 
3346 /**
3347  * stmmac_rx - manage the receive process
3348  * @priv: driver private structure
3349  * @limit: napi bugget
3350  * @queue: RX queue index.
3351  * Description :  this the function called by the napi poll method.
3352  * It gets all the frames inside the ring.
3353  */
3354 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
3355 {
3356 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3357 	struct stmmac_channel *ch = &priv->channel[queue];
3358 	unsigned int next_entry = rx_q->cur_rx;
3359 	int coe = priv->hw->rx_csum;
3360 	unsigned int count = 0;
3361 	bool xmac;
3362 
3363 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
3364 
3365 	if (netif_msg_rx_status(priv)) {
3366 		void *rx_head;
3367 
3368 		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
3369 		if (priv->extend_desc)
3370 			rx_head = (void *)rx_q->dma_erx;
3371 		else
3372 			rx_head = (void *)rx_q->dma_rx;
3373 
3374 		stmmac_display_ring(priv, rx_head, DMA_RX_SIZE, true);
3375 	}
3376 	while (count < limit) {
3377 		int entry, status;
3378 		struct dma_desc *p;
3379 		struct dma_desc *np;
3380 
3381 		entry = next_entry;
3382 
3383 		if (priv->extend_desc)
3384 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
3385 		else
3386 			p = rx_q->dma_rx + entry;
3387 
3388 		/* read the status of the incoming frame */
3389 		status = stmmac_rx_status(priv, &priv->dev->stats,
3390 				&priv->xstats, p);
3391 		/* check if managed by the DMA otherwise go ahead */
3392 		if (unlikely(status & dma_own))
3393 			break;
3394 
3395 		count++;
3396 
3397 		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, DMA_RX_SIZE);
3398 		next_entry = rx_q->cur_rx;
3399 
3400 		if (priv->extend_desc)
3401 			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
3402 		else
3403 			np = rx_q->dma_rx + next_entry;
3404 
3405 		prefetch(np);
3406 
3407 		if (priv->extend_desc)
3408 			stmmac_rx_extended_status(priv, &priv->dev->stats,
3409 					&priv->xstats, rx_q->dma_erx + entry);
3410 		if (unlikely(status == discard_frame)) {
3411 			priv->dev->stats.rx_errors++;
3412 			if (priv->hwts_rx_en && !priv->extend_desc) {
3413 				/* DESC2 & DESC3 will be overwritten by device
3414 				 * with timestamp value, hence reinitialize
3415 				 * them in stmmac_rx_refill() function so that
3416 				 * device can reuse it.
3417 				 */
3418 				dev_kfree_skb_any(rx_q->rx_skbuff[entry]);
3419 				rx_q->rx_skbuff[entry] = NULL;
3420 				dma_unmap_single(priv->device,
3421 						 rx_q->rx_skbuff_dma[entry],
3422 						 priv->dma_buf_sz,
3423 						 DMA_FROM_DEVICE);
3424 			}
3425 		} else {
3426 			struct sk_buff *skb;
3427 			int frame_len;
3428 			unsigned int des;
3429 
3430 			stmmac_get_desc_addr(priv, p, &des);
3431 			frame_len = stmmac_get_rx_frame_len(priv, p, coe);
3432 
3433 			/*  If frame length is greater than skb buffer size
3434 			 *  (preallocated during init) then the packet is
3435 			 *  ignored
3436 			 */
3437 			if (frame_len > priv->dma_buf_sz) {
3438 				if (net_ratelimit())
3439 					netdev_err(priv->dev,
3440 						   "len %d larger than size (%d)\n",
3441 						   frame_len, priv->dma_buf_sz);
3442 				priv->dev->stats.rx_length_errors++;
3443 				continue;
3444 			}
3445 
3446 			/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
3447 			 * Type frames (LLC/LLC-SNAP)
3448 			 *
3449 			 * llc_snap is never checked in GMAC >= 4, so this ACS
3450 			 * feature is always disabled and packets need to be
3451 			 * stripped manually.
3452 			 */
3453 			if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
3454 			    unlikely(status != llc_snap))
3455 				frame_len -= ETH_FCS_LEN;
3456 
3457 			if (netif_msg_rx_status(priv)) {
3458 				netdev_dbg(priv->dev, "\tdesc: %p [entry %d] buff=0x%x\n",
3459 					   p, entry, des);
3460 				netdev_dbg(priv->dev, "frame size %d, COE: %d\n",
3461 					   frame_len, status);
3462 			}
3463 
3464 			/* The zero-copy is always used for all the sizes
3465 			 * in case of GMAC4 because it needs
3466 			 * to refill the used descriptors, always.
3467 			 */
3468 			if (unlikely(!xmac &&
3469 				     ((frame_len < priv->rx_copybreak) ||
3470 				     stmmac_rx_threshold_count(rx_q)))) {
3471 				skb = netdev_alloc_skb_ip_align(priv->dev,
3472 								frame_len);
3473 				if (unlikely(!skb)) {
3474 					if (net_ratelimit())
3475 						dev_warn(priv->device,
3476 							 "packet dropped\n");
3477 					priv->dev->stats.rx_dropped++;
3478 					continue;
3479 				}
3480 
3481 				dma_sync_single_for_cpu(priv->device,
3482 							rx_q->rx_skbuff_dma
3483 							[entry], frame_len,
3484 							DMA_FROM_DEVICE);
3485 				skb_copy_to_linear_data(skb,
3486 							rx_q->
3487 							rx_skbuff[entry]->data,
3488 							frame_len);
3489 
3490 				skb_put(skb, frame_len);
3491 				dma_sync_single_for_device(priv->device,
3492 							   rx_q->rx_skbuff_dma
3493 							   [entry], frame_len,
3494 							   DMA_FROM_DEVICE);
3495 			} else {
3496 				skb = rx_q->rx_skbuff[entry];
3497 				if (unlikely(!skb)) {
3498 					if (net_ratelimit())
3499 						netdev_err(priv->dev,
3500 							   "%s: Inconsistent Rx chain\n",
3501 							   priv->dev->name);
3502 					priv->dev->stats.rx_dropped++;
3503 					continue;
3504 				}
3505 				prefetch(skb->data - NET_IP_ALIGN);
3506 				rx_q->rx_skbuff[entry] = NULL;
3507 				rx_q->rx_zeroc_thresh++;
3508 
3509 				skb_put(skb, frame_len);
3510 				dma_unmap_single(priv->device,
3511 						 rx_q->rx_skbuff_dma[entry],
3512 						 priv->dma_buf_sz,
3513 						 DMA_FROM_DEVICE);
3514 			}
3515 
3516 			if (netif_msg_pktdata(priv)) {
3517 				netdev_dbg(priv->dev, "frame received (%dbytes)",
3518 					   frame_len);
3519 				print_pkt(skb->data, frame_len);
3520 			}
3521 
3522 			stmmac_get_rx_hwtstamp(priv, p, np, skb);
3523 
3524 			stmmac_rx_vlan(priv->dev, skb);
3525 
3526 			skb->protocol = eth_type_trans(skb, priv->dev);
3527 
3528 			if (unlikely(!coe))
3529 				skb_checksum_none_assert(skb);
3530 			else
3531 				skb->ip_summed = CHECKSUM_UNNECESSARY;
3532 
3533 			napi_gro_receive(&ch->rx_napi, skb);
3534 
3535 			priv->dev->stats.rx_packets++;
3536 			priv->dev->stats.rx_bytes += frame_len;
3537 		}
3538 	}
3539 
3540 	stmmac_rx_refill(priv, queue);
3541 
3542 	priv->xstats.rx_pkt_n += count;
3543 
3544 	return count;
3545 }
3546 
3547 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
3548 {
3549 	struct stmmac_channel *ch =
3550 		container_of(napi, struct stmmac_channel, rx_napi);
3551 	struct stmmac_priv *priv = ch->priv_data;
3552 	u32 chan = ch->index;
3553 	int work_done;
3554 
3555 	priv->xstats.napi_poll++;
3556 
3557 	work_done = stmmac_rx(priv, budget, chan);
3558 	if (work_done < budget && napi_complete_done(napi, work_done))
3559 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan);
3560 	return work_done;
3561 }
3562 
3563 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
3564 {
3565 	struct stmmac_channel *ch =
3566 		container_of(napi, struct stmmac_channel, tx_napi);
3567 	struct stmmac_priv *priv = ch->priv_data;
3568 	struct stmmac_tx_queue *tx_q;
3569 	u32 chan = ch->index;
3570 	int work_done;
3571 
3572 	priv->xstats.napi_poll++;
3573 
3574 	work_done = stmmac_tx_clean(priv, DMA_TX_SIZE, chan);
3575 	work_done = min(work_done, budget);
3576 
3577 	if (work_done < budget)
3578 		napi_complete_done(napi, work_done);
3579 
3580 	/* Force transmission restart */
3581 	tx_q = &priv->tx_queue[chan];
3582 	if (tx_q->cur_tx != tx_q->dirty_tx) {
3583 		stmmac_enable_dma_transmission(priv, priv->ioaddr);
3584 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr,
3585 				       chan);
3586 	}
3587 
3588 	return work_done;
3589 }
3590 
3591 /**
3592  *  stmmac_tx_timeout
3593  *  @dev : Pointer to net device structure
3594  *  Description: this function is called when a packet transmission fails to
3595  *   complete within a reasonable time. The driver will mark the error in the
3596  *   netdev structure and arrange for the device to be reset to a sane state
3597  *   in order to transmit a new packet.
3598  */
3599 static void stmmac_tx_timeout(struct net_device *dev)
3600 {
3601 	struct stmmac_priv *priv = netdev_priv(dev);
3602 
3603 	stmmac_global_err(priv);
3604 }
3605 
3606 /**
3607  *  stmmac_set_rx_mode - entry point for multicast addressing
3608  *  @dev : pointer to the device structure
3609  *  Description:
3610  *  This function is a driver entry point which gets called by the kernel
3611  *  whenever multicast addresses must be enabled/disabled.
3612  *  Return value:
3613  *  void.
3614  */
3615 static void stmmac_set_rx_mode(struct net_device *dev)
3616 {
3617 	struct stmmac_priv *priv = netdev_priv(dev);
3618 
3619 	stmmac_set_filter(priv, priv->hw, dev);
3620 }
3621 
3622 /**
3623  *  stmmac_change_mtu - entry point to change MTU size for the device.
3624  *  @dev : device pointer.
3625  *  @new_mtu : the new MTU size for the device.
3626  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
3627  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
3628  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
3629  *  Return value:
3630  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3631  *  file on failure.
3632  */
3633 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
3634 {
3635 	struct stmmac_priv *priv = netdev_priv(dev);
3636 
3637 	if (netif_running(dev)) {
3638 		netdev_err(priv->dev, "must be stopped to change its MTU\n");
3639 		return -EBUSY;
3640 	}
3641 
3642 	dev->mtu = new_mtu;
3643 
3644 	netdev_update_features(dev);
3645 
3646 	return 0;
3647 }
3648 
3649 static netdev_features_t stmmac_fix_features(struct net_device *dev,
3650 					     netdev_features_t features)
3651 {
3652 	struct stmmac_priv *priv = netdev_priv(dev);
3653 
3654 	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
3655 		features &= ~NETIF_F_RXCSUM;
3656 
3657 	if (!priv->plat->tx_coe)
3658 		features &= ~NETIF_F_CSUM_MASK;
3659 
3660 	/* Some GMAC devices have a bugged Jumbo frame support that
3661 	 * needs to have the Tx COE disabled for oversized frames
3662 	 * (due to limited buffer sizes). In this case we disable
3663 	 * the TX csum insertion in the TDES and not use SF.
3664 	 */
3665 	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
3666 		features &= ~NETIF_F_CSUM_MASK;
3667 
3668 	/* Disable tso if asked by ethtool */
3669 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
3670 		if (features & NETIF_F_TSO)
3671 			priv->tso = true;
3672 		else
3673 			priv->tso = false;
3674 	}
3675 
3676 	return features;
3677 }
3678 
3679 static int stmmac_set_features(struct net_device *netdev,
3680 			       netdev_features_t features)
3681 {
3682 	struct stmmac_priv *priv = netdev_priv(netdev);
3683 
3684 	/* Keep the COE Type in case of csum is supporting */
3685 	if (features & NETIF_F_RXCSUM)
3686 		priv->hw->rx_csum = priv->plat->rx_coe;
3687 	else
3688 		priv->hw->rx_csum = 0;
3689 	/* No check needed because rx_coe has been set before and it will be
3690 	 * fixed in case of issue.
3691 	 */
3692 	stmmac_rx_ipc(priv, priv->hw);
3693 
3694 	return 0;
3695 }
3696 
3697 /**
3698  *  stmmac_interrupt - main ISR
3699  *  @irq: interrupt number.
3700  *  @dev_id: to pass the net device pointer.
3701  *  Description: this is the main driver interrupt service routine.
3702  *  It can call:
3703  *  o DMA service routine (to manage incoming frame reception and transmission
3704  *    status)
3705  *  o Core interrupts to manage: remote wake-up, management counter, LPI
3706  *    interrupts.
3707  */
3708 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
3709 {
3710 	struct net_device *dev = (struct net_device *)dev_id;
3711 	struct stmmac_priv *priv = netdev_priv(dev);
3712 	u32 rx_cnt = priv->plat->rx_queues_to_use;
3713 	u32 tx_cnt = priv->plat->tx_queues_to_use;
3714 	u32 queues_count;
3715 	u32 queue;
3716 	bool xmac;
3717 
3718 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
3719 	queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
3720 
3721 	if (priv->irq_wake)
3722 		pm_wakeup_event(priv->device, 0);
3723 
3724 	if (unlikely(!dev)) {
3725 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
3726 		return IRQ_NONE;
3727 	}
3728 
3729 	/* Check if adapter is up */
3730 	if (test_bit(STMMAC_DOWN, &priv->state))
3731 		return IRQ_HANDLED;
3732 	/* Check if a fatal error happened */
3733 	if (stmmac_safety_feat_interrupt(priv))
3734 		return IRQ_HANDLED;
3735 
3736 	/* To handle GMAC own interrupts */
3737 	if ((priv->plat->has_gmac) || xmac) {
3738 		int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
3739 		int mtl_status;
3740 
3741 		if (unlikely(status)) {
3742 			/* For LPI we need to save the tx status */
3743 			if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
3744 				priv->tx_path_in_lpi_mode = true;
3745 			if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
3746 				priv->tx_path_in_lpi_mode = false;
3747 		}
3748 
3749 		for (queue = 0; queue < queues_count; queue++) {
3750 			struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3751 
3752 			mtl_status = stmmac_host_mtl_irq_status(priv, priv->hw,
3753 								queue);
3754 			if (mtl_status != -EINVAL)
3755 				status |= mtl_status;
3756 
3757 			if (status & CORE_IRQ_MTL_RX_OVERFLOW)
3758 				stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
3759 						       rx_q->rx_tail_addr,
3760 						       queue);
3761 		}
3762 
3763 		/* PCS link status */
3764 		if (priv->hw->pcs) {
3765 			if (priv->xstats.pcs_link)
3766 				netif_carrier_on(dev);
3767 			else
3768 				netif_carrier_off(dev);
3769 		}
3770 	}
3771 
3772 	/* To handle DMA interrupts */
3773 	stmmac_dma_interrupt(priv);
3774 
3775 	return IRQ_HANDLED;
3776 }
3777 
3778 #ifdef CONFIG_NET_POLL_CONTROLLER
3779 /* Polling receive - used by NETCONSOLE and other diagnostic tools
3780  * to allow network I/O with interrupts disabled.
3781  */
3782 static void stmmac_poll_controller(struct net_device *dev)
3783 {
3784 	disable_irq(dev->irq);
3785 	stmmac_interrupt(dev->irq, dev);
3786 	enable_irq(dev->irq);
3787 }
3788 #endif
3789 
3790 /**
3791  *  stmmac_ioctl - Entry point for the Ioctl
3792  *  @dev: Device pointer.
3793  *  @rq: An IOCTL specefic structure, that can contain a pointer to
3794  *  a proprietary structure used to pass information to the driver.
3795  *  @cmd: IOCTL command
3796  *  Description:
3797  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
3798  */
3799 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3800 {
3801 	struct stmmac_priv *priv = netdev_priv (dev);
3802 	int ret = -EOPNOTSUPP;
3803 
3804 	if (!netif_running(dev))
3805 		return -EINVAL;
3806 
3807 	switch (cmd) {
3808 	case SIOCGMIIPHY:
3809 	case SIOCGMIIREG:
3810 	case SIOCSMIIREG:
3811 		ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
3812 		break;
3813 	case SIOCSHWTSTAMP:
3814 		ret = stmmac_hwtstamp_set(dev, rq);
3815 		break;
3816 	case SIOCGHWTSTAMP:
3817 		ret = stmmac_hwtstamp_get(dev, rq);
3818 		break;
3819 	default:
3820 		break;
3821 	}
3822 
3823 	return ret;
3824 }
3825 
3826 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
3827 				    void *cb_priv)
3828 {
3829 	struct stmmac_priv *priv = cb_priv;
3830 	int ret = -EOPNOTSUPP;
3831 
3832 	stmmac_disable_all_queues(priv);
3833 
3834 	switch (type) {
3835 	case TC_SETUP_CLSU32:
3836 		if (tc_cls_can_offload_and_chain0(priv->dev, type_data))
3837 			ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
3838 		break;
3839 	default:
3840 		break;
3841 	}
3842 
3843 	stmmac_enable_all_queues(priv);
3844 	return ret;
3845 }
3846 
3847 static int stmmac_setup_tc_block(struct stmmac_priv *priv,
3848 				 struct tc_block_offload *f)
3849 {
3850 	if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
3851 		return -EOPNOTSUPP;
3852 
3853 	switch (f->command) {
3854 	case TC_BLOCK_BIND:
3855 		return tcf_block_cb_register(f->block, stmmac_setup_tc_block_cb,
3856 				priv, priv, f->extack);
3857 	case TC_BLOCK_UNBIND:
3858 		tcf_block_cb_unregister(f->block, stmmac_setup_tc_block_cb, priv);
3859 		return 0;
3860 	default:
3861 		return -EOPNOTSUPP;
3862 	}
3863 }
3864 
3865 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
3866 			   void *type_data)
3867 {
3868 	struct stmmac_priv *priv = netdev_priv(ndev);
3869 
3870 	switch (type) {
3871 	case TC_SETUP_BLOCK:
3872 		return stmmac_setup_tc_block(priv, type_data);
3873 	case TC_SETUP_QDISC_CBS:
3874 		return stmmac_tc_setup_cbs(priv, priv, type_data);
3875 	default:
3876 		return -EOPNOTSUPP;
3877 	}
3878 }
3879 
3880 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
3881 			       struct net_device *sb_dev)
3882 {
3883 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
3884 		/*
3885 		 * There is no way to determine the number of TSO
3886 		 * capable Queues. Let's use always the Queue 0
3887 		 * because if TSO is supported then at least this
3888 		 * one will be capable.
3889 		 */
3890 		return 0;
3891 	}
3892 
3893 	return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
3894 }
3895 
3896 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
3897 {
3898 	struct stmmac_priv *priv = netdev_priv(ndev);
3899 	int ret = 0;
3900 
3901 	ret = eth_mac_addr(ndev, addr);
3902 	if (ret)
3903 		return ret;
3904 
3905 	stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
3906 
3907 	return ret;
3908 }
3909 
3910 #ifdef CONFIG_DEBUG_FS
3911 static struct dentry *stmmac_fs_dir;
3912 
3913 static void sysfs_display_ring(void *head, int size, int extend_desc,
3914 			       struct seq_file *seq)
3915 {
3916 	int i;
3917 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
3918 	struct dma_desc *p = (struct dma_desc *)head;
3919 
3920 	for (i = 0; i < size; i++) {
3921 		if (extend_desc) {
3922 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
3923 				   i, (unsigned int)virt_to_phys(ep),
3924 				   le32_to_cpu(ep->basic.des0),
3925 				   le32_to_cpu(ep->basic.des1),
3926 				   le32_to_cpu(ep->basic.des2),
3927 				   le32_to_cpu(ep->basic.des3));
3928 			ep++;
3929 		} else {
3930 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
3931 				   i, (unsigned int)virt_to_phys(p),
3932 				   le32_to_cpu(p->des0), le32_to_cpu(p->des1),
3933 				   le32_to_cpu(p->des2), le32_to_cpu(p->des3));
3934 			p++;
3935 		}
3936 		seq_printf(seq, "\n");
3937 	}
3938 }
3939 
3940 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
3941 {
3942 	struct net_device *dev = seq->private;
3943 	struct stmmac_priv *priv = netdev_priv(dev);
3944 	u32 rx_count = priv->plat->rx_queues_to_use;
3945 	u32 tx_count = priv->plat->tx_queues_to_use;
3946 	u32 queue;
3947 
3948 	if ((dev->flags & IFF_UP) == 0)
3949 		return 0;
3950 
3951 	for (queue = 0; queue < rx_count; queue++) {
3952 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3953 
3954 		seq_printf(seq, "RX Queue %d:\n", queue);
3955 
3956 		if (priv->extend_desc) {
3957 			seq_printf(seq, "Extended descriptor ring:\n");
3958 			sysfs_display_ring((void *)rx_q->dma_erx,
3959 					   DMA_RX_SIZE, 1, seq);
3960 		} else {
3961 			seq_printf(seq, "Descriptor ring:\n");
3962 			sysfs_display_ring((void *)rx_q->dma_rx,
3963 					   DMA_RX_SIZE, 0, seq);
3964 		}
3965 	}
3966 
3967 	for (queue = 0; queue < tx_count; queue++) {
3968 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
3969 
3970 		seq_printf(seq, "TX Queue %d:\n", queue);
3971 
3972 		if (priv->extend_desc) {
3973 			seq_printf(seq, "Extended descriptor ring:\n");
3974 			sysfs_display_ring((void *)tx_q->dma_etx,
3975 					   DMA_TX_SIZE, 1, seq);
3976 		} else {
3977 			seq_printf(seq, "Descriptor ring:\n");
3978 			sysfs_display_ring((void *)tx_q->dma_tx,
3979 					   DMA_TX_SIZE, 0, seq);
3980 		}
3981 	}
3982 
3983 	return 0;
3984 }
3985 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
3986 
3987 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
3988 {
3989 	struct net_device *dev = seq->private;
3990 	struct stmmac_priv *priv = netdev_priv(dev);
3991 
3992 	if (!priv->hw_cap_support) {
3993 		seq_printf(seq, "DMA HW features not supported\n");
3994 		return 0;
3995 	}
3996 
3997 	seq_printf(seq, "==============================\n");
3998 	seq_printf(seq, "\tDMA HW features\n");
3999 	seq_printf(seq, "==============================\n");
4000 
4001 	seq_printf(seq, "\t10/100 Mbps: %s\n",
4002 		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
4003 	seq_printf(seq, "\t1000 Mbps: %s\n",
4004 		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
4005 	seq_printf(seq, "\tHalf duplex: %s\n",
4006 		   (priv->dma_cap.half_duplex) ? "Y" : "N");
4007 	seq_printf(seq, "\tHash Filter: %s\n",
4008 		   (priv->dma_cap.hash_filter) ? "Y" : "N");
4009 	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
4010 		   (priv->dma_cap.multi_addr) ? "Y" : "N");
4011 	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
4012 		   (priv->dma_cap.pcs) ? "Y" : "N");
4013 	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
4014 		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
4015 	seq_printf(seq, "\tPMT Remote wake up: %s\n",
4016 		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
4017 	seq_printf(seq, "\tPMT Magic Frame: %s\n",
4018 		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
4019 	seq_printf(seq, "\tRMON module: %s\n",
4020 		   (priv->dma_cap.rmon) ? "Y" : "N");
4021 	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
4022 		   (priv->dma_cap.time_stamp) ? "Y" : "N");
4023 	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
4024 		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
4025 	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
4026 		   (priv->dma_cap.eee) ? "Y" : "N");
4027 	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
4028 	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
4029 		   (priv->dma_cap.tx_coe) ? "Y" : "N");
4030 	if (priv->synopsys_id >= DWMAC_CORE_4_00) {
4031 		seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
4032 			   (priv->dma_cap.rx_coe) ? "Y" : "N");
4033 	} else {
4034 		seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
4035 			   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
4036 		seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
4037 			   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
4038 	}
4039 	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
4040 		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
4041 	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
4042 		   priv->dma_cap.number_rx_channel);
4043 	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
4044 		   priv->dma_cap.number_tx_channel);
4045 	seq_printf(seq, "\tEnhanced descriptors: %s\n",
4046 		   (priv->dma_cap.enh_desc) ? "Y" : "N");
4047 
4048 	return 0;
4049 }
4050 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
4051 
4052 static int stmmac_init_fs(struct net_device *dev)
4053 {
4054 	struct stmmac_priv *priv = netdev_priv(dev);
4055 
4056 	/* Create per netdev entries */
4057 	priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
4058 
4059 	if (!priv->dbgfs_dir || IS_ERR(priv->dbgfs_dir)) {
4060 		netdev_err(priv->dev, "ERROR failed to create debugfs directory\n");
4061 
4062 		return -ENOMEM;
4063 	}
4064 
4065 	/* Entry to report DMA RX/TX rings */
4066 	priv->dbgfs_rings_status =
4067 		debugfs_create_file("descriptors_status", 0444,
4068 				    priv->dbgfs_dir, dev,
4069 				    &stmmac_rings_status_fops);
4070 
4071 	if (!priv->dbgfs_rings_status || IS_ERR(priv->dbgfs_rings_status)) {
4072 		netdev_err(priv->dev, "ERROR creating stmmac ring debugfs file\n");
4073 		debugfs_remove_recursive(priv->dbgfs_dir);
4074 
4075 		return -ENOMEM;
4076 	}
4077 
4078 	/* Entry to report the DMA HW features */
4079 	priv->dbgfs_dma_cap = debugfs_create_file("dma_cap", 0444,
4080 						  priv->dbgfs_dir,
4081 						  dev, &stmmac_dma_cap_fops);
4082 
4083 	if (!priv->dbgfs_dma_cap || IS_ERR(priv->dbgfs_dma_cap)) {
4084 		netdev_err(priv->dev, "ERROR creating stmmac MMC debugfs file\n");
4085 		debugfs_remove_recursive(priv->dbgfs_dir);
4086 
4087 		return -ENOMEM;
4088 	}
4089 
4090 	return 0;
4091 }
4092 
4093 static void stmmac_exit_fs(struct net_device *dev)
4094 {
4095 	struct stmmac_priv *priv = netdev_priv(dev);
4096 
4097 	debugfs_remove_recursive(priv->dbgfs_dir);
4098 }
4099 #endif /* CONFIG_DEBUG_FS */
4100 
4101 static const struct net_device_ops stmmac_netdev_ops = {
4102 	.ndo_open = stmmac_open,
4103 	.ndo_start_xmit = stmmac_xmit,
4104 	.ndo_stop = stmmac_release,
4105 	.ndo_change_mtu = stmmac_change_mtu,
4106 	.ndo_fix_features = stmmac_fix_features,
4107 	.ndo_set_features = stmmac_set_features,
4108 	.ndo_set_rx_mode = stmmac_set_rx_mode,
4109 	.ndo_tx_timeout = stmmac_tx_timeout,
4110 	.ndo_do_ioctl = stmmac_ioctl,
4111 	.ndo_setup_tc = stmmac_setup_tc,
4112 	.ndo_select_queue = stmmac_select_queue,
4113 #ifdef CONFIG_NET_POLL_CONTROLLER
4114 	.ndo_poll_controller = stmmac_poll_controller,
4115 #endif
4116 	.ndo_set_mac_address = stmmac_set_mac_address,
4117 };
4118 
4119 static void stmmac_reset_subtask(struct stmmac_priv *priv)
4120 {
4121 	if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
4122 		return;
4123 	if (test_bit(STMMAC_DOWN, &priv->state))
4124 		return;
4125 
4126 	netdev_err(priv->dev, "Reset adapter.\n");
4127 
4128 	rtnl_lock();
4129 	netif_trans_update(priv->dev);
4130 	while (test_and_set_bit(STMMAC_RESETING, &priv->state))
4131 		usleep_range(1000, 2000);
4132 
4133 	set_bit(STMMAC_DOWN, &priv->state);
4134 	dev_close(priv->dev);
4135 	dev_open(priv->dev, NULL);
4136 	clear_bit(STMMAC_DOWN, &priv->state);
4137 	clear_bit(STMMAC_RESETING, &priv->state);
4138 	rtnl_unlock();
4139 }
4140 
4141 static void stmmac_service_task(struct work_struct *work)
4142 {
4143 	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
4144 			service_task);
4145 
4146 	stmmac_reset_subtask(priv);
4147 	clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
4148 }
4149 
4150 /**
4151  *  stmmac_hw_init - Init the MAC device
4152  *  @priv: driver private structure
4153  *  Description: this function is to configure the MAC device according to
4154  *  some platform parameters or the HW capability register. It prepares the
4155  *  driver to use either ring or chain modes and to setup either enhanced or
4156  *  normal descriptors.
4157  */
4158 static int stmmac_hw_init(struct stmmac_priv *priv)
4159 {
4160 	int ret;
4161 
4162 	/* dwmac-sun8i only work in chain mode */
4163 	if (priv->plat->has_sun8i)
4164 		chain_mode = 1;
4165 	priv->chain_mode = chain_mode;
4166 
4167 	/* Initialize HW Interface */
4168 	ret = stmmac_hwif_init(priv);
4169 	if (ret)
4170 		return ret;
4171 
4172 	/* Get the HW capability (new GMAC newer than 3.50a) */
4173 	priv->hw_cap_support = stmmac_get_hw_features(priv);
4174 	if (priv->hw_cap_support) {
4175 		dev_info(priv->device, "DMA HW capability register supported\n");
4176 
4177 		/* We can override some gmac/dma configuration fields: e.g.
4178 		 * enh_desc, tx_coe (e.g. that are passed through the
4179 		 * platform) with the values from the HW capability
4180 		 * register (if supported).
4181 		 */
4182 		priv->plat->enh_desc = priv->dma_cap.enh_desc;
4183 		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
4184 		priv->hw->pmt = priv->plat->pmt;
4185 
4186 		/* TXCOE doesn't work in thresh DMA mode */
4187 		if (priv->plat->force_thresh_dma_mode)
4188 			priv->plat->tx_coe = 0;
4189 		else
4190 			priv->plat->tx_coe = priv->dma_cap.tx_coe;
4191 
4192 		/* In case of GMAC4 rx_coe is from HW cap register. */
4193 		priv->plat->rx_coe = priv->dma_cap.rx_coe;
4194 
4195 		if (priv->dma_cap.rx_coe_type2)
4196 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
4197 		else if (priv->dma_cap.rx_coe_type1)
4198 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
4199 
4200 	} else {
4201 		dev_info(priv->device, "No HW DMA feature register supported\n");
4202 	}
4203 
4204 	if (priv->plat->rx_coe) {
4205 		priv->hw->rx_csum = priv->plat->rx_coe;
4206 		dev_info(priv->device, "RX Checksum Offload Engine supported\n");
4207 		if (priv->synopsys_id < DWMAC_CORE_4_00)
4208 			dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
4209 	}
4210 	if (priv->plat->tx_coe)
4211 		dev_info(priv->device, "TX Checksum insertion supported\n");
4212 
4213 	if (priv->plat->pmt) {
4214 		dev_info(priv->device, "Wake-Up On Lan supported\n");
4215 		device_set_wakeup_capable(priv->device, 1);
4216 	}
4217 
4218 	if (priv->dma_cap.tsoen)
4219 		dev_info(priv->device, "TSO supported\n");
4220 
4221 	/* Run HW quirks, if any */
4222 	if (priv->hwif_quirks) {
4223 		ret = priv->hwif_quirks(priv);
4224 		if (ret)
4225 			return ret;
4226 	}
4227 
4228 	/* Rx Watchdog is available in the COREs newer than the 3.40.
4229 	 * In some case, for example on bugged HW this feature
4230 	 * has to be disable and this can be done by passing the
4231 	 * riwt_off field from the platform.
4232 	 */
4233 	if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
4234 	    (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
4235 		priv->use_riwt = 1;
4236 		dev_info(priv->device,
4237 			 "Enable RX Mitigation via HW Watchdog Timer\n");
4238 	}
4239 
4240 	return 0;
4241 }
4242 
4243 /**
4244  * stmmac_dvr_probe
4245  * @device: device pointer
4246  * @plat_dat: platform data pointer
4247  * @res: stmmac resource pointer
4248  * Description: this is the main probe function used to
4249  * call the alloc_etherdev, allocate the priv structure.
4250  * Return:
4251  * returns 0 on success, otherwise errno.
4252  */
4253 int stmmac_dvr_probe(struct device *device,
4254 		     struct plat_stmmacenet_data *plat_dat,
4255 		     struct stmmac_resources *res)
4256 {
4257 	struct net_device *ndev = NULL;
4258 	struct stmmac_priv *priv;
4259 	u32 queue, maxq;
4260 	int ret = 0;
4261 
4262 	ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
4263 				       MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
4264 	if (!ndev)
4265 		return -ENOMEM;
4266 
4267 	SET_NETDEV_DEV(ndev, device);
4268 
4269 	priv = netdev_priv(ndev);
4270 	priv->device = device;
4271 	priv->dev = ndev;
4272 
4273 	stmmac_set_ethtool_ops(ndev);
4274 	priv->pause = pause;
4275 	priv->plat = plat_dat;
4276 	priv->ioaddr = res->addr;
4277 	priv->dev->base_addr = (unsigned long)res->addr;
4278 
4279 	priv->dev->irq = res->irq;
4280 	priv->wol_irq = res->wol_irq;
4281 	priv->lpi_irq = res->lpi_irq;
4282 
4283 	if (!IS_ERR_OR_NULL(res->mac))
4284 		memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
4285 
4286 	dev_set_drvdata(device, priv->dev);
4287 
4288 	/* Verify driver arguments */
4289 	stmmac_verify_args();
4290 
4291 	/* Allocate workqueue */
4292 	priv->wq = create_singlethread_workqueue("stmmac_wq");
4293 	if (!priv->wq) {
4294 		dev_err(priv->device, "failed to create workqueue\n");
4295 		return -ENOMEM;
4296 	}
4297 
4298 	INIT_WORK(&priv->service_task, stmmac_service_task);
4299 
4300 	/* Override with kernel parameters if supplied XXX CRS XXX
4301 	 * this needs to have multiple instances
4302 	 */
4303 	if ((phyaddr >= 0) && (phyaddr <= 31))
4304 		priv->plat->phy_addr = phyaddr;
4305 
4306 	if (priv->plat->stmmac_rst) {
4307 		ret = reset_control_assert(priv->plat->stmmac_rst);
4308 		reset_control_deassert(priv->plat->stmmac_rst);
4309 		/* Some reset controllers have only reset callback instead of
4310 		 * assert + deassert callbacks pair.
4311 		 */
4312 		if (ret == -ENOTSUPP)
4313 			reset_control_reset(priv->plat->stmmac_rst);
4314 	}
4315 
4316 	/* Init MAC and get the capabilities */
4317 	ret = stmmac_hw_init(priv);
4318 	if (ret)
4319 		goto error_hw_init;
4320 
4321 	stmmac_check_ether_addr(priv);
4322 
4323 	/* Configure real RX and TX queues */
4324 	netif_set_real_num_rx_queues(ndev, priv->plat->rx_queues_to_use);
4325 	netif_set_real_num_tx_queues(ndev, priv->plat->tx_queues_to_use);
4326 
4327 	ndev->netdev_ops = &stmmac_netdev_ops;
4328 
4329 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4330 			    NETIF_F_RXCSUM;
4331 
4332 	ret = stmmac_tc_init(priv, priv);
4333 	if (!ret) {
4334 		ndev->hw_features |= NETIF_F_HW_TC;
4335 	}
4336 
4337 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
4338 		ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
4339 		priv->tso = true;
4340 		dev_info(priv->device, "TSO feature enabled\n");
4341 	}
4342 
4343 	if (priv->dma_cap.addr64) {
4344 		ret = dma_set_mask_and_coherent(device,
4345 				DMA_BIT_MASK(priv->dma_cap.addr64));
4346 		if (!ret) {
4347 			dev_info(priv->device, "Using %d bits DMA width\n",
4348 				 priv->dma_cap.addr64);
4349 		} else {
4350 			ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
4351 			if (ret) {
4352 				dev_err(priv->device, "Failed to set DMA Mask\n");
4353 				goto error_hw_init;
4354 			}
4355 
4356 			priv->dma_cap.addr64 = 32;
4357 		}
4358 	}
4359 
4360 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
4361 	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
4362 #ifdef STMMAC_VLAN_TAG_USED
4363 	/* Both mac100 and gmac support receive VLAN tag detection */
4364 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
4365 #endif
4366 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
4367 
4368 	/* MTU range: 46 - hw-specific max */
4369 	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
4370 	if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
4371 		ndev->max_mtu = JUMBO_LEN;
4372 	else if (priv->plat->has_xgmac)
4373 		ndev->max_mtu = XGMAC_JUMBO_LEN;
4374 	else
4375 		ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
4376 	/* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
4377 	 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
4378 	 */
4379 	if ((priv->plat->maxmtu < ndev->max_mtu) &&
4380 	    (priv->plat->maxmtu >= ndev->min_mtu))
4381 		ndev->max_mtu = priv->plat->maxmtu;
4382 	else if (priv->plat->maxmtu < ndev->min_mtu)
4383 		dev_warn(priv->device,
4384 			 "%s: warning: maxmtu having invalid value (%d)\n",
4385 			 __func__, priv->plat->maxmtu);
4386 
4387 	if (flow_ctrl)
4388 		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
4389 
4390 	/* Setup channels NAPI */
4391 	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
4392 
4393 	for (queue = 0; queue < maxq; queue++) {
4394 		struct stmmac_channel *ch = &priv->channel[queue];
4395 
4396 		ch->priv_data = priv;
4397 		ch->index = queue;
4398 
4399 		if (queue < priv->plat->rx_queues_to_use) {
4400 			netif_napi_add(ndev, &ch->rx_napi, stmmac_napi_poll_rx,
4401 				       NAPI_POLL_WEIGHT);
4402 		}
4403 		if (queue < priv->plat->tx_queues_to_use) {
4404 			netif_napi_add(ndev, &ch->tx_napi, stmmac_napi_poll_tx,
4405 				       NAPI_POLL_WEIGHT);
4406 		}
4407 	}
4408 
4409 	mutex_init(&priv->lock);
4410 
4411 	/* If a specific clk_csr value is passed from the platform
4412 	 * this means that the CSR Clock Range selection cannot be
4413 	 * changed at run-time and it is fixed. Viceversa the driver'll try to
4414 	 * set the MDC clock dynamically according to the csr actual
4415 	 * clock input.
4416 	 */
4417 	if (priv->plat->clk_csr >= 0)
4418 		priv->clk_csr = priv->plat->clk_csr;
4419 	else
4420 		stmmac_clk_csr_set(priv);
4421 
4422 	stmmac_check_pcs_mode(priv);
4423 
4424 	if (priv->hw->pcs != STMMAC_PCS_RGMII  &&
4425 	    priv->hw->pcs != STMMAC_PCS_TBI &&
4426 	    priv->hw->pcs != STMMAC_PCS_RTBI) {
4427 		/* MDIO bus Registration */
4428 		ret = stmmac_mdio_register(ndev);
4429 		if (ret < 0) {
4430 			dev_err(priv->device,
4431 				"%s: MDIO bus (id: %d) registration failed",
4432 				__func__, priv->plat->bus_id);
4433 			goto error_mdio_register;
4434 		}
4435 	}
4436 
4437 	ret = stmmac_phy_setup(priv);
4438 	if (ret) {
4439 		netdev_err(ndev, "failed to setup phy (%d)\n", ret);
4440 		goto error_phy_setup;
4441 	}
4442 
4443 	ret = register_netdev(ndev);
4444 	if (ret) {
4445 		dev_err(priv->device, "%s: ERROR %i registering the device\n",
4446 			__func__, ret);
4447 		goto error_netdev_register;
4448 	}
4449 
4450 #ifdef CONFIG_DEBUG_FS
4451 	ret = stmmac_init_fs(ndev);
4452 	if (ret < 0)
4453 		netdev_warn(priv->dev, "%s: failed debugFS registration\n",
4454 			    __func__);
4455 #endif
4456 
4457 	return ret;
4458 
4459 error_netdev_register:
4460 	phylink_destroy(priv->phylink);
4461 error_phy_setup:
4462 	if (priv->hw->pcs != STMMAC_PCS_RGMII &&
4463 	    priv->hw->pcs != STMMAC_PCS_TBI &&
4464 	    priv->hw->pcs != STMMAC_PCS_RTBI)
4465 		stmmac_mdio_unregister(ndev);
4466 error_mdio_register:
4467 	for (queue = 0; queue < maxq; queue++) {
4468 		struct stmmac_channel *ch = &priv->channel[queue];
4469 
4470 		if (queue < priv->plat->rx_queues_to_use)
4471 			netif_napi_del(&ch->rx_napi);
4472 		if (queue < priv->plat->tx_queues_to_use)
4473 			netif_napi_del(&ch->tx_napi);
4474 	}
4475 error_hw_init:
4476 	destroy_workqueue(priv->wq);
4477 
4478 	return ret;
4479 }
4480 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
4481 
4482 /**
4483  * stmmac_dvr_remove
4484  * @dev: device pointer
4485  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
4486  * changes the link status, releases the DMA descriptor rings.
4487  */
4488 int stmmac_dvr_remove(struct device *dev)
4489 {
4490 	struct net_device *ndev = dev_get_drvdata(dev);
4491 	struct stmmac_priv *priv = netdev_priv(ndev);
4492 
4493 	netdev_info(priv->dev, "%s: removing driver", __func__);
4494 
4495 #ifdef CONFIG_DEBUG_FS
4496 	stmmac_exit_fs(ndev);
4497 #endif
4498 	stmmac_stop_all_dma(priv);
4499 
4500 	stmmac_mac_set(priv, priv->ioaddr, false);
4501 	netif_carrier_off(ndev);
4502 	unregister_netdev(ndev);
4503 	phylink_destroy(priv->phylink);
4504 	if (priv->plat->stmmac_rst)
4505 		reset_control_assert(priv->plat->stmmac_rst);
4506 	clk_disable_unprepare(priv->plat->pclk);
4507 	clk_disable_unprepare(priv->plat->stmmac_clk);
4508 	if (priv->hw->pcs != STMMAC_PCS_RGMII &&
4509 	    priv->hw->pcs != STMMAC_PCS_TBI &&
4510 	    priv->hw->pcs != STMMAC_PCS_RTBI)
4511 		stmmac_mdio_unregister(ndev);
4512 	destroy_workqueue(priv->wq);
4513 	mutex_destroy(&priv->lock);
4514 
4515 	return 0;
4516 }
4517 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
4518 
4519 /**
4520  * stmmac_suspend - suspend callback
4521  * @dev: device pointer
4522  * Description: this is the function to suspend the device and it is called
4523  * by the platform driver to stop the network queue, release the resources,
4524  * program the PMT register (for WoL), clean and release driver resources.
4525  */
4526 int stmmac_suspend(struct device *dev)
4527 {
4528 	struct net_device *ndev = dev_get_drvdata(dev);
4529 	struct stmmac_priv *priv = netdev_priv(ndev);
4530 
4531 	if (!ndev || !netif_running(ndev))
4532 		return 0;
4533 
4534 	phylink_stop(priv->phylink);
4535 
4536 	mutex_lock(&priv->lock);
4537 
4538 	netif_device_detach(ndev);
4539 	stmmac_stop_all_queues(priv);
4540 
4541 	stmmac_disable_all_queues(priv);
4542 
4543 	/* Stop TX/RX DMA */
4544 	stmmac_stop_all_dma(priv);
4545 
4546 	/* Enable Power down mode by programming the PMT regs */
4547 	if (device_may_wakeup(priv->device)) {
4548 		stmmac_pmt(priv, priv->hw, priv->wolopts);
4549 		priv->irq_wake = 1;
4550 	} else {
4551 		stmmac_mac_set(priv, priv->ioaddr, false);
4552 		pinctrl_pm_select_sleep_state(priv->device);
4553 		/* Disable clock in case of PWM is off */
4554 		clk_disable(priv->plat->pclk);
4555 		clk_disable(priv->plat->stmmac_clk);
4556 	}
4557 	mutex_unlock(&priv->lock);
4558 
4559 	priv->speed = SPEED_UNKNOWN;
4560 	return 0;
4561 }
4562 EXPORT_SYMBOL_GPL(stmmac_suspend);
4563 
4564 /**
4565  * stmmac_reset_queues_param - reset queue parameters
4566  * @dev: device pointer
4567  */
4568 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
4569 {
4570 	u32 rx_cnt = priv->plat->rx_queues_to_use;
4571 	u32 tx_cnt = priv->plat->tx_queues_to_use;
4572 	u32 queue;
4573 
4574 	for (queue = 0; queue < rx_cnt; queue++) {
4575 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4576 
4577 		rx_q->cur_rx = 0;
4578 		rx_q->dirty_rx = 0;
4579 	}
4580 
4581 	for (queue = 0; queue < tx_cnt; queue++) {
4582 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4583 
4584 		tx_q->cur_tx = 0;
4585 		tx_q->dirty_tx = 0;
4586 		tx_q->mss = 0;
4587 	}
4588 }
4589 
4590 /**
4591  * stmmac_resume - resume callback
4592  * @dev: device pointer
4593  * Description: when resume this function is invoked to setup the DMA and CORE
4594  * in a usable state.
4595  */
4596 int stmmac_resume(struct device *dev)
4597 {
4598 	struct net_device *ndev = dev_get_drvdata(dev);
4599 	struct stmmac_priv *priv = netdev_priv(ndev);
4600 
4601 	if (!netif_running(ndev))
4602 		return 0;
4603 
4604 	/* Power Down bit, into the PM register, is cleared
4605 	 * automatically as soon as a magic packet or a Wake-up frame
4606 	 * is received. Anyway, it's better to manually clear
4607 	 * this bit because it can generate problems while resuming
4608 	 * from another devices (e.g. serial console).
4609 	 */
4610 	if (device_may_wakeup(priv->device)) {
4611 		mutex_lock(&priv->lock);
4612 		stmmac_pmt(priv, priv->hw, 0);
4613 		mutex_unlock(&priv->lock);
4614 		priv->irq_wake = 0;
4615 	} else {
4616 		pinctrl_pm_select_default_state(priv->device);
4617 		/* enable the clk previously disabled */
4618 		clk_enable(priv->plat->stmmac_clk);
4619 		clk_enable(priv->plat->pclk);
4620 		/* reset the phy so that it's ready */
4621 		if (priv->mii)
4622 			stmmac_mdio_reset(priv->mii);
4623 	}
4624 
4625 	netif_device_attach(ndev);
4626 
4627 	mutex_lock(&priv->lock);
4628 
4629 	stmmac_reset_queues_param(priv);
4630 
4631 	stmmac_clear_descriptors(priv);
4632 
4633 	stmmac_hw_setup(ndev, false);
4634 	stmmac_init_tx_coalesce(priv);
4635 	stmmac_set_rx_mode(ndev);
4636 
4637 	stmmac_enable_all_queues(priv);
4638 
4639 	stmmac_start_all_queues(priv);
4640 
4641 	mutex_unlock(&priv->lock);
4642 
4643 	phylink_start(priv->phylink);
4644 
4645 	return 0;
4646 }
4647 EXPORT_SYMBOL_GPL(stmmac_resume);
4648 
4649 #ifndef MODULE
4650 static int __init stmmac_cmdline_opt(char *str)
4651 {
4652 	char *opt;
4653 
4654 	if (!str || !*str)
4655 		return -EINVAL;
4656 	while ((opt = strsep(&str, ",")) != NULL) {
4657 		if (!strncmp(opt, "debug:", 6)) {
4658 			if (kstrtoint(opt + 6, 0, &debug))
4659 				goto err;
4660 		} else if (!strncmp(opt, "phyaddr:", 8)) {
4661 			if (kstrtoint(opt + 8, 0, &phyaddr))
4662 				goto err;
4663 		} else if (!strncmp(opt, "buf_sz:", 7)) {
4664 			if (kstrtoint(opt + 7, 0, &buf_sz))
4665 				goto err;
4666 		} else if (!strncmp(opt, "tc:", 3)) {
4667 			if (kstrtoint(opt + 3, 0, &tc))
4668 				goto err;
4669 		} else if (!strncmp(opt, "watchdog:", 9)) {
4670 			if (kstrtoint(opt + 9, 0, &watchdog))
4671 				goto err;
4672 		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
4673 			if (kstrtoint(opt + 10, 0, &flow_ctrl))
4674 				goto err;
4675 		} else if (!strncmp(opt, "pause:", 6)) {
4676 			if (kstrtoint(opt + 6, 0, &pause))
4677 				goto err;
4678 		} else if (!strncmp(opt, "eee_timer:", 10)) {
4679 			if (kstrtoint(opt + 10, 0, &eee_timer))
4680 				goto err;
4681 		} else if (!strncmp(opt, "chain_mode:", 11)) {
4682 			if (kstrtoint(opt + 11, 0, &chain_mode))
4683 				goto err;
4684 		}
4685 	}
4686 	return 0;
4687 
4688 err:
4689 	pr_err("%s: ERROR broken module parameter conversion", __func__);
4690 	return -EINVAL;
4691 }
4692 
4693 __setup("stmmaceth=", stmmac_cmdline_opt);
4694 #endif /* MODULE */
4695 
4696 static int __init stmmac_init(void)
4697 {
4698 #ifdef CONFIG_DEBUG_FS
4699 	/* Create debugfs main directory if it doesn't exist yet */
4700 	if (!stmmac_fs_dir) {
4701 		stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
4702 
4703 		if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
4704 			pr_err("ERROR %s, debugfs create directory failed\n",
4705 			       STMMAC_RESOURCE_NAME);
4706 
4707 			return -ENOMEM;
4708 		}
4709 	}
4710 #endif
4711 
4712 	return 0;
4713 }
4714 
4715 static void __exit stmmac_exit(void)
4716 {
4717 #ifdef CONFIG_DEBUG_FS
4718 	debugfs_remove_recursive(stmmac_fs_dir);
4719 #endif
4720 }
4721 
4722 module_init(stmmac_init)
4723 module_exit(stmmac_exit)
4724 
4725 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
4726 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
4727 MODULE_LICENSE("GPL");
4728