xref: /linux/drivers/net/ethernet/stmicro/stmmac/stmmac_main.c (revision 0c874100108f03401cb3154801d2671bbad40ad4)
1 /*******************************************************************************
2   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3   ST Ethernet IPs are built around a Synopsys IP Core.
4 
5 	Copyright(C) 2007-2011 STMicroelectronics Ltd
6 
7   This program is free software; you can redistribute it and/or modify it
8   under the terms and conditions of the GNU General Public License,
9   version 2, as published by the Free Software Foundation.
10 
11   This program is distributed in the hope it will be useful, but WITHOUT
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14   more details.
15 
16   The full GNU General Public License is included in this distribution in
17   the file called "COPYING".
18 
19   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
20 
21   Documentation available at:
22 	http://www.stlinux.com
23   Support available at:
24 	https://bugzilla.stlinux.com/
25 *******************************************************************************/
26 
27 #include <linux/clk.h>
28 #include <linux/kernel.h>
29 #include <linux/interrupt.h>
30 #include <linux/ip.h>
31 #include <linux/tcp.h>
32 #include <linux/skbuff.h>
33 #include <linux/ethtool.h>
34 #include <linux/if_ether.h>
35 #include <linux/crc32.h>
36 #include <linux/mii.h>
37 #include <linux/if.h>
38 #include <linux/if_vlan.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/slab.h>
41 #include <linux/prefetch.h>
42 #include <linux/pinctrl/consumer.h>
43 #ifdef CONFIG_DEBUG_FS
44 #include <linux/debugfs.h>
45 #include <linux/seq_file.h>
46 #endif /* CONFIG_DEBUG_FS */
47 #include <linux/net_tstamp.h>
48 #include <net/pkt_cls.h>
49 #include "stmmac_ptp.h"
50 #include "stmmac.h"
51 #include <linux/reset.h>
52 #include <linux/of_mdio.h>
53 #include "dwmac1000.h"
54 #include "dwxgmac2.h"
55 #include "hwif.h"
56 
57 #define	STMMAC_ALIGN(x)		__ALIGN_KERNEL(x, SMP_CACHE_BYTES)
58 #define	TSO_MAX_BUFF_SIZE	(SZ_16K - 1)
59 
60 /* Module parameters */
61 #define TX_TIMEO	5000
62 static int watchdog = TX_TIMEO;
63 module_param(watchdog, int, 0644);
64 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
65 
66 static int debug = -1;
67 module_param(debug, int, 0644);
68 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
69 
70 static int phyaddr = -1;
71 module_param(phyaddr, int, 0444);
72 MODULE_PARM_DESC(phyaddr, "Physical device address");
73 
74 #define STMMAC_TX_THRESH	(DMA_TX_SIZE / 4)
75 #define STMMAC_RX_THRESH	(DMA_RX_SIZE / 4)
76 
77 static int flow_ctrl = FLOW_OFF;
78 module_param(flow_ctrl, int, 0644);
79 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
80 
81 static int pause = PAUSE_TIME;
82 module_param(pause, int, 0644);
83 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
84 
85 #define TC_DEFAULT 64
86 static int tc = TC_DEFAULT;
87 module_param(tc, int, 0644);
88 MODULE_PARM_DESC(tc, "DMA threshold control value");
89 
90 #define	DEFAULT_BUFSIZE	1536
91 static int buf_sz = DEFAULT_BUFSIZE;
92 module_param(buf_sz, int, 0644);
93 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
94 
95 #define	STMMAC_RX_COPYBREAK	256
96 
97 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
98 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
99 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
100 
101 #define STMMAC_DEFAULT_LPI_TIMER	1000
102 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
103 module_param(eee_timer, int, 0644);
104 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
105 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
106 
107 /* By default the driver will use the ring mode to manage tx and rx descriptors,
108  * but allow user to force to use the chain instead of the ring
109  */
110 static unsigned int chain_mode;
111 module_param(chain_mode, int, 0444);
112 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
113 
114 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
115 
116 #ifdef CONFIG_DEBUG_FS
117 static int stmmac_init_fs(struct net_device *dev);
118 static void stmmac_exit_fs(struct net_device *dev);
119 #endif
120 
121 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
122 
123 /**
124  * stmmac_verify_args - verify the driver parameters.
125  * Description: it checks the driver parameters and set a default in case of
126  * errors.
127  */
128 static void stmmac_verify_args(void)
129 {
130 	if (unlikely(watchdog < 0))
131 		watchdog = TX_TIMEO;
132 	if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
133 		buf_sz = DEFAULT_BUFSIZE;
134 	if (unlikely(flow_ctrl > 1))
135 		flow_ctrl = FLOW_AUTO;
136 	else if (likely(flow_ctrl < 0))
137 		flow_ctrl = FLOW_OFF;
138 	if (unlikely((pause < 0) || (pause > 0xffff)))
139 		pause = PAUSE_TIME;
140 	if (eee_timer < 0)
141 		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
142 }
143 
144 /**
145  * stmmac_disable_all_queues - Disable all queues
146  * @priv: driver private structure
147  */
148 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
149 {
150 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
151 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
152 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
153 	u32 queue;
154 
155 	for (queue = 0; queue < maxq; queue++) {
156 		struct stmmac_channel *ch = &priv->channel[queue];
157 
158 		napi_disable(&ch->napi);
159 	}
160 }
161 
162 /**
163  * stmmac_enable_all_queues - Enable all queues
164  * @priv: driver private structure
165  */
166 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
167 {
168 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
169 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
170 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
171 	u32 queue;
172 
173 	for (queue = 0; queue < maxq; queue++) {
174 		struct stmmac_channel *ch = &priv->channel[queue];
175 
176 		napi_enable(&ch->napi);
177 	}
178 }
179 
180 /**
181  * stmmac_stop_all_queues - Stop all queues
182  * @priv: driver private structure
183  */
184 static void stmmac_stop_all_queues(struct stmmac_priv *priv)
185 {
186 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
187 	u32 queue;
188 
189 	for (queue = 0; queue < tx_queues_cnt; queue++)
190 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
191 }
192 
193 /**
194  * stmmac_start_all_queues - Start all queues
195  * @priv: driver private structure
196  */
197 static void stmmac_start_all_queues(struct stmmac_priv *priv)
198 {
199 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
200 	u32 queue;
201 
202 	for (queue = 0; queue < tx_queues_cnt; queue++)
203 		netif_tx_start_queue(netdev_get_tx_queue(priv->dev, queue));
204 }
205 
206 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
207 {
208 	if (!test_bit(STMMAC_DOWN, &priv->state) &&
209 	    !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
210 		queue_work(priv->wq, &priv->service_task);
211 }
212 
213 static void stmmac_global_err(struct stmmac_priv *priv)
214 {
215 	netif_carrier_off(priv->dev);
216 	set_bit(STMMAC_RESET_REQUESTED, &priv->state);
217 	stmmac_service_event_schedule(priv);
218 }
219 
220 /**
221  * stmmac_clk_csr_set - dynamically set the MDC clock
222  * @priv: driver private structure
223  * Description: this is to dynamically set the MDC clock according to the csr
224  * clock input.
225  * Note:
226  *	If a specific clk_csr value is passed from the platform
227  *	this means that the CSR Clock Range selection cannot be
228  *	changed at run-time and it is fixed (as reported in the driver
229  *	documentation). Viceversa the driver will try to set the MDC
230  *	clock dynamically according to the actual clock input.
231  */
232 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
233 {
234 	u32 clk_rate;
235 
236 	clk_rate = clk_get_rate(priv->plat->stmmac_clk);
237 
238 	/* Platform provided default clk_csr would be assumed valid
239 	 * for all other cases except for the below mentioned ones.
240 	 * For values higher than the IEEE 802.3 specified frequency
241 	 * we can not estimate the proper divider as it is not known
242 	 * the frequency of clk_csr_i. So we do not change the default
243 	 * divider.
244 	 */
245 	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
246 		if (clk_rate < CSR_F_35M)
247 			priv->clk_csr = STMMAC_CSR_20_35M;
248 		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
249 			priv->clk_csr = STMMAC_CSR_35_60M;
250 		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
251 			priv->clk_csr = STMMAC_CSR_60_100M;
252 		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
253 			priv->clk_csr = STMMAC_CSR_100_150M;
254 		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
255 			priv->clk_csr = STMMAC_CSR_150_250M;
256 		else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
257 			priv->clk_csr = STMMAC_CSR_250_300M;
258 	}
259 
260 	if (priv->plat->has_sun8i) {
261 		if (clk_rate > 160000000)
262 			priv->clk_csr = 0x03;
263 		else if (clk_rate > 80000000)
264 			priv->clk_csr = 0x02;
265 		else if (clk_rate > 40000000)
266 			priv->clk_csr = 0x01;
267 		else
268 			priv->clk_csr = 0;
269 	}
270 
271 	if (priv->plat->has_xgmac) {
272 		if (clk_rate > 400000000)
273 			priv->clk_csr = 0x5;
274 		else if (clk_rate > 350000000)
275 			priv->clk_csr = 0x4;
276 		else if (clk_rate > 300000000)
277 			priv->clk_csr = 0x3;
278 		else if (clk_rate > 250000000)
279 			priv->clk_csr = 0x2;
280 		else if (clk_rate > 150000000)
281 			priv->clk_csr = 0x1;
282 		else
283 			priv->clk_csr = 0x0;
284 	}
285 }
286 
287 static void print_pkt(unsigned char *buf, int len)
288 {
289 	pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
290 	print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
291 }
292 
293 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
294 {
295 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
296 	u32 avail;
297 
298 	if (tx_q->dirty_tx > tx_q->cur_tx)
299 		avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
300 	else
301 		avail = DMA_TX_SIZE - tx_q->cur_tx + tx_q->dirty_tx - 1;
302 
303 	return avail;
304 }
305 
306 /**
307  * stmmac_rx_dirty - Get RX queue dirty
308  * @priv: driver private structure
309  * @queue: RX queue index
310  */
311 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
312 {
313 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
314 	u32 dirty;
315 
316 	if (rx_q->dirty_rx <= rx_q->cur_rx)
317 		dirty = rx_q->cur_rx - rx_q->dirty_rx;
318 	else
319 		dirty = DMA_RX_SIZE - rx_q->dirty_rx + rx_q->cur_rx;
320 
321 	return dirty;
322 }
323 
324 /**
325  * stmmac_hw_fix_mac_speed - callback for speed selection
326  * @priv: driver private structure
327  * Description: on some platforms (e.g. ST), some HW system configuration
328  * registers have to be set according to the link speed negotiated.
329  */
330 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
331 {
332 	struct net_device *ndev = priv->dev;
333 	struct phy_device *phydev = ndev->phydev;
334 
335 	if (likely(priv->plat->fix_mac_speed))
336 		priv->plat->fix_mac_speed(priv->plat->bsp_priv, phydev->speed);
337 }
338 
339 /**
340  * stmmac_enable_eee_mode - check and enter in LPI mode
341  * @priv: driver private structure
342  * Description: this function is to verify and enter in LPI mode in case of
343  * EEE.
344  */
345 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
346 {
347 	u32 tx_cnt = priv->plat->tx_queues_to_use;
348 	u32 queue;
349 
350 	/* check if all TX queues have the work finished */
351 	for (queue = 0; queue < tx_cnt; queue++) {
352 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
353 
354 		if (tx_q->dirty_tx != tx_q->cur_tx)
355 			return; /* still unfinished work */
356 	}
357 
358 	/* Check and enter in LPI mode */
359 	if (!priv->tx_path_in_lpi_mode)
360 		stmmac_set_eee_mode(priv, priv->hw,
361 				priv->plat->en_tx_lpi_clockgating);
362 }
363 
364 /**
365  * stmmac_disable_eee_mode - disable and exit from LPI mode
366  * @priv: driver private structure
367  * Description: this function is to exit and disable EEE in case of
368  * LPI state is true. This is called by the xmit.
369  */
370 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
371 {
372 	stmmac_reset_eee_mode(priv, priv->hw);
373 	del_timer_sync(&priv->eee_ctrl_timer);
374 	priv->tx_path_in_lpi_mode = false;
375 }
376 
377 /**
378  * stmmac_eee_ctrl_timer - EEE TX SW timer.
379  * @arg : data hook
380  * Description:
381  *  if there is no data transfer and if we are not in LPI state,
382  *  then MAC Transmitter can be moved to LPI state.
383  */
384 static void stmmac_eee_ctrl_timer(struct timer_list *t)
385 {
386 	struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
387 
388 	stmmac_enable_eee_mode(priv);
389 	mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
390 }
391 
392 /**
393  * stmmac_eee_init - init EEE
394  * @priv: driver private structure
395  * Description:
396  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
397  *  can also manage EEE, this function enable the LPI state and start related
398  *  timer.
399  */
400 bool stmmac_eee_init(struct stmmac_priv *priv)
401 {
402 	struct net_device *ndev = priv->dev;
403 	int interface = priv->plat->interface;
404 	bool ret = false;
405 
406 	if ((interface != PHY_INTERFACE_MODE_MII) &&
407 	    (interface != PHY_INTERFACE_MODE_GMII) &&
408 	    !phy_interface_mode_is_rgmii(interface))
409 		goto out;
410 
411 	/* Using PCS we cannot dial with the phy registers at this stage
412 	 * so we do not support extra feature like EEE.
413 	 */
414 	if ((priv->hw->pcs == STMMAC_PCS_RGMII) ||
415 	    (priv->hw->pcs == STMMAC_PCS_TBI) ||
416 	    (priv->hw->pcs == STMMAC_PCS_RTBI))
417 		goto out;
418 
419 	/* MAC core supports the EEE feature. */
420 	if (priv->dma_cap.eee) {
421 		int tx_lpi_timer = priv->tx_lpi_timer;
422 
423 		/* Check if the PHY supports EEE */
424 		if (phy_init_eee(ndev->phydev, 1)) {
425 			/* To manage at run-time if the EEE cannot be supported
426 			 * anymore (for example because the lp caps have been
427 			 * changed).
428 			 * In that case the driver disable own timers.
429 			 */
430 			mutex_lock(&priv->lock);
431 			if (priv->eee_active) {
432 				netdev_dbg(priv->dev, "disable EEE\n");
433 				del_timer_sync(&priv->eee_ctrl_timer);
434 				stmmac_set_eee_timer(priv, priv->hw, 0,
435 						tx_lpi_timer);
436 			}
437 			priv->eee_active = 0;
438 			mutex_unlock(&priv->lock);
439 			goto out;
440 		}
441 		/* Activate the EEE and start timers */
442 		mutex_lock(&priv->lock);
443 		if (!priv->eee_active) {
444 			priv->eee_active = 1;
445 			timer_setup(&priv->eee_ctrl_timer,
446 				    stmmac_eee_ctrl_timer, 0);
447 			mod_timer(&priv->eee_ctrl_timer,
448 				  STMMAC_LPI_T(eee_timer));
449 
450 			stmmac_set_eee_timer(priv, priv->hw,
451 					STMMAC_DEFAULT_LIT_LS, tx_lpi_timer);
452 		}
453 		/* Set HW EEE according to the speed */
454 		stmmac_set_eee_pls(priv, priv->hw, ndev->phydev->link);
455 
456 		ret = true;
457 		mutex_unlock(&priv->lock);
458 
459 		netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
460 	}
461 out:
462 	return ret;
463 }
464 
465 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
466  * @priv: driver private structure
467  * @p : descriptor pointer
468  * @skb : the socket buffer
469  * Description :
470  * This function will read timestamp from the descriptor & pass it to stack.
471  * and also perform some sanity checks.
472  */
473 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
474 				   struct dma_desc *p, struct sk_buff *skb)
475 {
476 	struct skb_shared_hwtstamps shhwtstamp;
477 	u64 ns;
478 
479 	if (!priv->hwts_tx_en)
480 		return;
481 
482 	/* exit if skb doesn't support hw tstamp */
483 	if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
484 		return;
485 
486 	/* check tx tstamp status */
487 	if (stmmac_get_tx_timestamp_status(priv, p)) {
488 		/* get the valid tstamp */
489 		stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
490 
491 		memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
492 		shhwtstamp.hwtstamp = ns_to_ktime(ns);
493 
494 		netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
495 		/* pass tstamp to stack */
496 		skb_tstamp_tx(skb, &shhwtstamp);
497 	}
498 
499 	return;
500 }
501 
502 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
503  * @priv: driver private structure
504  * @p : descriptor pointer
505  * @np : next descriptor pointer
506  * @skb : the socket buffer
507  * Description :
508  * This function will read received packet's timestamp from the descriptor
509  * and pass it to stack. It also perform some sanity checks.
510  */
511 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
512 				   struct dma_desc *np, struct sk_buff *skb)
513 {
514 	struct skb_shared_hwtstamps *shhwtstamp = NULL;
515 	struct dma_desc *desc = p;
516 	u64 ns;
517 
518 	if (!priv->hwts_rx_en)
519 		return;
520 	/* For GMAC4, the valid timestamp is from CTX next desc. */
521 	if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
522 		desc = np;
523 
524 	/* Check if timestamp is available */
525 	if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
526 		stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
527 		netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
528 		shhwtstamp = skb_hwtstamps(skb);
529 		memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
530 		shhwtstamp->hwtstamp = ns_to_ktime(ns);
531 	} else  {
532 		netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
533 	}
534 }
535 
536 /**
537  *  stmmac_hwtstamp_ioctl - control hardware timestamping.
538  *  @dev: device pointer.
539  *  @ifr: An IOCTL specific structure, that can contain a pointer to
540  *  a proprietary structure used to pass information to the driver.
541  *  Description:
542  *  This function configures the MAC to enable/disable both outgoing(TX)
543  *  and incoming(RX) packets time stamping based on user input.
544  *  Return Value:
545  *  0 on success and an appropriate -ve integer on failure.
546  */
547 static int stmmac_hwtstamp_ioctl(struct net_device *dev, struct ifreq *ifr)
548 {
549 	struct stmmac_priv *priv = netdev_priv(dev);
550 	struct hwtstamp_config config;
551 	struct timespec64 now;
552 	u64 temp = 0;
553 	u32 ptp_v2 = 0;
554 	u32 tstamp_all = 0;
555 	u32 ptp_over_ipv4_udp = 0;
556 	u32 ptp_over_ipv6_udp = 0;
557 	u32 ptp_over_ethernet = 0;
558 	u32 snap_type_sel = 0;
559 	u32 ts_master_en = 0;
560 	u32 ts_event_en = 0;
561 	u32 value = 0;
562 	u32 sec_inc;
563 	bool xmac;
564 
565 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
566 
567 	if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
568 		netdev_alert(priv->dev, "No support for HW time stamping\n");
569 		priv->hwts_tx_en = 0;
570 		priv->hwts_rx_en = 0;
571 
572 		return -EOPNOTSUPP;
573 	}
574 
575 	if (copy_from_user(&config, ifr->ifr_data,
576 			   sizeof(struct hwtstamp_config)))
577 		return -EFAULT;
578 
579 	netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
580 		   __func__, config.flags, config.tx_type, config.rx_filter);
581 
582 	/* reserved for future extensions */
583 	if (config.flags)
584 		return -EINVAL;
585 
586 	if (config.tx_type != HWTSTAMP_TX_OFF &&
587 	    config.tx_type != HWTSTAMP_TX_ON)
588 		return -ERANGE;
589 
590 	if (priv->adv_ts) {
591 		switch (config.rx_filter) {
592 		case HWTSTAMP_FILTER_NONE:
593 			/* time stamp no incoming packet at all */
594 			config.rx_filter = HWTSTAMP_FILTER_NONE;
595 			break;
596 
597 		case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
598 			/* PTP v1, UDP, any kind of event packet */
599 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
600 			/* take time stamp for all event messages */
601 			if (xmac)
602 				snap_type_sel = PTP_GMAC4_TCR_SNAPTYPSEL_1;
603 			else
604 				snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
605 
606 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
607 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
608 			break;
609 
610 		case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
611 			/* PTP v1, UDP, Sync packet */
612 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
613 			/* take time stamp for SYNC messages only */
614 			ts_event_en = PTP_TCR_TSEVNTENA;
615 
616 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
617 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
618 			break;
619 
620 		case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
621 			/* PTP v1, UDP, Delay_req packet */
622 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
623 			/* take time stamp for Delay_Req messages only */
624 			ts_master_en = PTP_TCR_TSMSTRENA;
625 			ts_event_en = PTP_TCR_TSEVNTENA;
626 
627 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
628 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
629 			break;
630 
631 		case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
632 			/* PTP v2, UDP, any kind of event packet */
633 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
634 			ptp_v2 = PTP_TCR_TSVER2ENA;
635 			/* take time stamp for all event messages */
636 			if (xmac)
637 				snap_type_sel = PTP_GMAC4_TCR_SNAPTYPSEL_1;
638 			else
639 				snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
640 
641 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
642 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
643 			break;
644 
645 		case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
646 			/* PTP v2, UDP, Sync packet */
647 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
648 			ptp_v2 = PTP_TCR_TSVER2ENA;
649 			/* take time stamp for SYNC messages only */
650 			ts_event_en = PTP_TCR_TSEVNTENA;
651 
652 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
653 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
654 			break;
655 
656 		case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
657 			/* PTP v2, UDP, Delay_req packet */
658 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
659 			ptp_v2 = PTP_TCR_TSVER2ENA;
660 			/* take time stamp for Delay_Req messages only */
661 			ts_master_en = PTP_TCR_TSMSTRENA;
662 			ts_event_en = PTP_TCR_TSEVNTENA;
663 
664 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
665 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
666 			break;
667 
668 		case HWTSTAMP_FILTER_PTP_V2_EVENT:
669 			/* PTP v2/802.AS1 any layer, any kind of event packet */
670 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
671 			ptp_v2 = PTP_TCR_TSVER2ENA;
672 			/* take time stamp for all event messages */
673 			if (xmac)
674 				snap_type_sel = PTP_GMAC4_TCR_SNAPTYPSEL_1;
675 			else
676 				snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
677 
678 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
679 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
680 			ptp_over_ethernet = PTP_TCR_TSIPENA;
681 			break;
682 
683 		case HWTSTAMP_FILTER_PTP_V2_SYNC:
684 			/* PTP v2/802.AS1, any layer, Sync packet */
685 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
686 			ptp_v2 = PTP_TCR_TSVER2ENA;
687 			/* take time stamp for SYNC messages only */
688 			ts_event_en = PTP_TCR_TSEVNTENA;
689 
690 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
691 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
692 			ptp_over_ethernet = PTP_TCR_TSIPENA;
693 			break;
694 
695 		case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
696 			/* PTP v2/802.AS1, any layer, Delay_req packet */
697 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
698 			ptp_v2 = PTP_TCR_TSVER2ENA;
699 			/* take time stamp for Delay_Req messages only */
700 			ts_master_en = PTP_TCR_TSMSTRENA;
701 			ts_event_en = PTP_TCR_TSEVNTENA;
702 
703 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
704 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
705 			ptp_over_ethernet = PTP_TCR_TSIPENA;
706 			break;
707 
708 		case HWTSTAMP_FILTER_NTP_ALL:
709 		case HWTSTAMP_FILTER_ALL:
710 			/* time stamp any incoming packet */
711 			config.rx_filter = HWTSTAMP_FILTER_ALL;
712 			tstamp_all = PTP_TCR_TSENALL;
713 			break;
714 
715 		default:
716 			return -ERANGE;
717 		}
718 	} else {
719 		switch (config.rx_filter) {
720 		case HWTSTAMP_FILTER_NONE:
721 			config.rx_filter = HWTSTAMP_FILTER_NONE;
722 			break;
723 		default:
724 			/* PTP v1, UDP, any kind of event packet */
725 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
726 			break;
727 		}
728 	}
729 	priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
730 	priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
731 
732 	if (!priv->hwts_tx_en && !priv->hwts_rx_en)
733 		stmmac_config_hw_tstamping(priv, priv->ptpaddr, 0);
734 	else {
735 		value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
736 			 tstamp_all | ptp_v2 | ptp_over_ethernet |
737 			 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
738 			 ts_master_en | snap_type_sel);
739 		stmmac_config_hw_tstamping(priv, priv->ptpaddr, value);
740 
741 		/* program Sub Second Increment reg */
742 		stmmac_config_sub_second_increment(priv,
743 				priv->ptpaddr, priv->plat->clk_ptp_rate,
744 				xmac, &sec_inc);
745 		temp = div_u64(1000000000ULL, sec_inc);
746 
747 		/* Store sub second increment and flags for later use */
748 		priv->sub_second_inc = sec_inc;
749 		priv->systime_flags = value;
750 
751 		/* calculate default added value:
752 		 * formula is :
753 		 * addend = (2^32)/freq_div_ratio;
754 		 * where, freq_div_ratio = 1e9ns/sec_inc
755 		 */
756 		temp = (u64)(temp << 32);
757 		priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
758 		stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
759 
760 		/* initialize system time */
761 		ktime_get_real_ts64(&now);
762 
763 		/* lower 32 bits of tv_sec are safe until y2106 */
764 		stmmac_init_systime(priv, priv->ptpaddr,
765 				(u32)now.tv_sec, now.tv_nsec);
766 	}
767 
768 	return copy_to_user(ifr->ifr_data, &config,
769 			    sizeof(struct hwtstamp_config)) ? -EFAULT : 0;
770 }
771 
772 /**
773  * stmmac_init_ptp - init PTP
774  * @priv: driver private structure
775  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
776  * This is done by looking at the HW cap. register.
777  * This function also registers the ptp driver.
778  */
779 static int stmmac_init_ptp(struct stmmac_priv *priv)
780 {
781 	bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
782 
783 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
784 		return -EOPNOTSUPP;
785 
786 	priv->adv_ts = 0;
787 	/* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
788 	if (xmac && priv->dma_cap.atime_stamp)
789 		priv->adv_ts = 1;
790 	/* Dwmac 3.x core with extend_desc can support adv_ts */
791 	else if (priv->extend_desc && priv->dma_cap.atime_stamp)
792 		priv->adv_ts = 1;
793 
794 	if (priv->dma_cap.time_stamp)
795 		netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
796 
797 	if (priv->adv_ts)
798 		netdev_info(priv->dev,
799 			    "IEEE 1588-2008 Advanced Timestamp supported\n");
800 
801 	priv->hwts_tx_en = 0;
802 	priv->hwts_rx_en = 0;
803 
804 	stmmac_ptp_register(priv);
805 
806 	return 0;
807 }
808 
809 static void stmmac_release_ptp(struct stmmac_priv *priv)
810 {
811 	if (priv->plat->clk_ptp_ref)
812 		clk_disable_unprepare(priv->plat->clk_ptp_ref);
813 	stmmac_ptp_unregister(priv);
814 }
815 
816 /**
817  *  stmmac_mac_flow_ctrl - Configure flow control in all queues
818  *  @priv: driver private structure
819  *  Description: It is used for configuring the flow control in all queues
820  */
821 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
822 {
823 	u32 tx_cnt = priv->plat->tx_queues_to_use;
824 
825 	stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
826 			priv->pause, tx_cnt);
827 }
828 
829 /**
830  * stmmac_adjust_link - adjusts the link parameters
831  * @dev: net device structure
832  * Description: this is the helper called by the physical abstraction layer
833  * drivers to communicate the phy link status. According the speed and duplex
834  * this driver can invoke registered glue-logic as well.
835  * It also invoke the eee initialization because it could happen when switch
836  * on different networks (that are eee capable).
837  */
838 static void stmmac_adjust_link(struct net_device *dev)
839 {
840 	struct stmmac_priv *priv = netdev_priv(dev);
841 	struct phy_device *phydev = dev->phydev;
842 	bool new_state = false;
843 
844 	if (!phydev)
845 		return;
846 
847 	mutex_lock(&priv->lock);
848 
849 	if (phydev->link) {
850 		u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
851 
852 		/* Now we make sure that we can be in full duplex mode.
853 		 * If not, we operate in half-duplex mode. */
854 		if (phydev->duplex != priv->oldduplex) {
855 			new_state = true;
856 			if (!phydev->duplex)
857 				ctrl &= ~priv->hw->link.duplex;
858 			else
859 				ctrl |= priv->hw->link.duplex;
860 			priv->oldduplex = phydev->duplex;
861 		}
862 		/* Flow Control operation */
863 		if (phydev->pause)
864 			stmmac_mac_flow_ctrl(priv, phydev->duplex);
865 
866 		if (phydev->speed != priv->speed) {
867 			new_state = true;
868 			ctrl &= ~priv->hw->link.speed_mask;
869 			switch (phydev->speed) {
870 			case SPEED_1000:
871 				ctrl |= priv->hw->link.speed1000;
872 				break;
873 			case SPEED_100:
874 				ctrl |= priv->hw->link.speed100;
875 				break;
876 			case SPEED_10:
877 				ctrl |= priv->hw->link.speed10;
878 				break;
879 			default:
880 				netif_warn(priv, link, priv->dev,
881 					   "broken speed: %d\n", phydev->speed);
882 				phydev->speed = SPEED_UNKNOWN;
883 				break;
884 			}
885 			if (phydev->speed != SPEED_UNKNOWN)
886 				stmmac_hw_fix_mac_speed(priv);
887 			priv->speed = phydev->speed;
888 		}
889 
890 		writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
891 
892 		if (!priv->oldlink) {
893 			new_state = true;
894 			priv->oldlink = true;
895 		}
896 	} else if (priv->oldlink) {
897 		new_state = true;
898 		priv->oldlink = false;
899 		priv->speed = SPEED_UNKNOWN;
900 		priv->oldduplex = DUPLEX_UNKNOWN;
901 	}
902 
903 	if (new_state && netif_msg_link(priv))
904 		phy_print_status(phydev);
905 
906 	mutex_unlock(&priv->lock);
907 
908 	if (phydev->is_pseudo_fixed_link)
909 		/* Stop PHY layer to call the hook to adjust the link in case
910 		 * of a switch is attached to the stmmac driver.
911 		 */
912 		phydev->irq = PHY_IGNORE_INTERRUPT;
913 	else
914 		/* At this stage, init the EEE if supported.
915 		 * Never called in case of fixed_link.
916 		 */
917 		priv->eee_enabled = stmmac_eee_init(priv);
918 }
919 
920 /**
921  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
922  * @priv: driver private structure
923  * Description: this is to verify if the HW supports the PCS.
924  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
925  * configured for the TBI, RTBI, or SGMII PHY interface.
926  */
927 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
928 {
929 	int interface = priv->plat->interface;
930 
931 	if (priv->dma_cap.pcs) {
932 		if ((interface == PHY_INTERFACE_MODE_RGMII) ||
933 		    (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
934 		    (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
935 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
936 			netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
937 			priv->hw->pcs = STMMAC_PCS_RGMII;
938 		} else if (interface == PHY_INTERFACE_MODE_SGMII) {
939 			netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
940 			priv->hw->pcs = STMMAC_PCS_SGMII;
941 		}
942 	}
943 }
944 
945 /**
946  * stmmac_init_phy - PHY initialization
947  * @dev: net device structure
948  * Description: it initializes the driver's PHY state, and attaches the PHY
949  * to the mac driver.
950  *  Return value:
951  *  0 on success
952  */
953 static int stmmac_init_phy(struct net_device *dev)
954 {
955 	struct stmmac_priv *priv = netdev_priv(dev);
956 	u32 tx_cnt = priv->plat->tx_queues_to_use;
957 	struct phy_device *phydev;
958 	char phy_id_fmt[MII_BUS_ID_SIZE + 3];
959 	char bus_id[MII_BUS_ID_SIZE];
960 	int interface = priv->plat->interface;
961 	int max_speed = priv->plat->max_speed;
962 	priv->oldlink = false;
963 	priv->speed = SPEED_UNKNOWN;
964 	priv->oldduplex = DUPLEX_UNKNOWN;
965 
966 	if (priv->plat->phy_node) {
967 		phydev = of_phy_connect(dev, priv->plat->phy_node,
968 					&stmmac_adjust_link, 0, interface);
969 	} else {
970 		snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
971 			 priv->plat->bus_id);
972 
973 		snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
974 			 priv->plat->phy_addr);
975 		netdev_dbg(priv->dev, "%s: trying to attach to %s\n", __func__,
976 			   phy_id_fmt);
977 
978 		phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link,
979 				     interface);
980 	}
981 
982 	if (IS_ERR_OR_NULL(phydev)) {
983 		netdev_err(priv->dev, "Could not attach to PHY\n");
984 		if (!phydev)
985 			return -ENODEV;
986 
987 		return PTR_ERR(phydev);
988 	}
989 
990 	/* Stop Advertising 1000BASE Capability if interface is not GMII */
991 	if ((interface == PHY_INTERFACE_MODE_MII) ||
992 	    (interface == PHY_INTERFACE_MODE_RMII) ||
993 		(max_speed < 1000 && max_speed > 0))
994 		phy_set_max_speed(phydev, SPEED_100);
995 
996 	/*
997 	 * Half-duplex mode not supported with multiqueue
998 	 * half-duplex can only works with single queue
999 	 */
1000 	if (tx_cnt > 1) {
1001 		phy_remove_link_mode(phydev,
1002 				     ETHTOOL_LINK_MODE_10baseT_Half_BIT);
1003 		phy_remove_link_mode(phydev,
1004 				     ETHTOOL_LINK_MODE_100baseT_Half_BIT);
1005 		phy_remove_link_mode(phydev,
1006 				     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
1007 	}
1008 
1009 	/*
1010 	 * Broken HW is sometimes missing the pull-up resistor on the
1011 	 * MDIO line, which results in reads to non-existent devices returning
1012 	 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
1013 	 * device as well.
1014 	 * Note: phydev->phy_id is the result of reading the UID PHY registers.
1015 	 */
1016 	if (!priv->plat->phy_node && phydev->phy_id == 0) {
1017 		phy_disconnect(phydev);
1018 		return -ENODEV;
1019 	}
1020 
1021 	/* stmmac_adjust_link will change this to PHY_IGNORE_INTERRUPT to avoid
1022 	 * subsequent PHY polling, make sure we force a link transition if
1023 	 * we have a UP/DOWN/UP transition
1024 	 */
1025 	if (phydev->is_pseudo_fixed_link)
1026 		phydev->irq = PHY_POLL;
1027 
1028 	phy_attached_info(phydev);
1029 	return 0;
1030 }
1031 
1032 static void stmmac_display_rx_rings(struct stmmac_priv *priv)
1033 {
1034 	u32 rx_cnt = priv->plat->rx_queues_to_use;
1035 	void *head_rx;
1036 	u32 queue;
1037 
1038 	/* Display RX rings */
1039 	for (queue = 0; queue < rx_cnt; queue++) {
1040 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1041 
1042 		pr_info("\tRX Queue %u rings\n", queue);
1043 
1044 		if (priv->extend_desc)
1045 			head_rx = (void *)rx_q->dma_erx;
1046 		else
1047 			head_rx = (void *)rx_q->dma_rx;
1048 
1049 		/* Display RX ring */
1050 		stmmac_display_ring(priv, head_rx, DMA_RX_SIZE, true);
1051 	}
1052 }
1053 
1054 static void stmmac_display_tx_rings(struct stmmac_priv *priv)
1055 {
1056 	u32 tx_cnt = priv->plat->tx_queues_to_use;
1057 	void *head_tx;
1058 	u32 queue;
1059 
1060 	/* Display TX rings */
1061 	for (queue = 0; queue < tx_cnt; queue++) {
1062 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1063 
1064 		pr_info("\tTX Queue %d rings\n", queue);
1065 
1066 		if (priv->extend_desc)
1067 			head_tx = (void *)tx_q->dma_etx;
1068 		else
1069 			head_tx = (void *)tx_q->dma_tx;
1070 
1071 		stmmac_display_ring(priv, head_tx, DMA_TX_SIZE, false);
1072 	}
1073 }
1074 
1075 static void stmmac_display_rings(struct stmmac_priv *priv)
1076 {
1077 	/* Display RX ring */
1078 	stmmac_display_rx_rings(priv);
1079 
1080 	/* Display TX ring */
1081 	stmmac_display_tx_rings(priv);
1082 }
1083 
1084 static int stmmac_set_bfsize(int mtu, int bufsize)
1085 {
1086 	int ret = bufsize;
1087 
1088 	if (mtu >= BUF_SIZE_4KiB)
1089 		ret = BUF_SIZE_8KiB;
1090 	else if (mtu >= BUF_SIZE_2KiB)
1091 		ret = BUF_SIZE_4KiB;
1092 	else if (mtu > DEFAULT_BUFSIZE)
1093 		ret = BUF_SIZE_2KiB;
1094 	else
1095 		ret = DEFAULT_BUFSIZE;
1096 
1097 	return ret;
1098 }
1099 
1100 /**
1101  * stmmac_clear_rx_descriptors - clear RX descriptors
1102  * @priv: driver private structure
1103  * @queue: RX queue index
1104  * Description: this function is called to clear the RX descriptors
1105  * in case of both basic and extended descriptors are used.
1106  */
1107 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue)
1108 {
1109 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1110 	int i;
1111 
1112 	/* Clear the RX descriptors */
1113 	for (i = 0; i < DMA_RX_SIZE; i++)
1114 		if (priv->extend_desc)
1115 			stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1116 					priv->use_riwt, priv->mode,
1117 					(i == DMA_RX_SIZE - 1));
1118 		else
1119 			stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1120 					priv->use_riwt, priv->mode,
1121 					(i == DMA_RX_SIZE - 1));
1122 }
1123 
1124 /**
1125  * stmmac_clear_tx_descriptors - clear tx descriptors
1126  * @priv: driver private structure
1127  * @queue: TX queue index.
1128  * Description: this function is called to clear the TX descriptors
1129  * in case of both basic and extended descriptors are used.
1130  */
1131 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue)
1132 {
1133 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1134 	int i;
1135 
1136 	/* Clear the TX descriptors */
1137 	for (i = 0; i < DMA_TX_SIZE; i++)
1138 		if (priv->extend_desc)
1139 			stmmac_init_tx_desc(priv, &tx_q->dma_etx[i].basic,
1140 					priv->mode, (i == DMA_TX_SIZE - 1));
1141 		else
1142 			stmmac_init_tx_desc(priv, &tx_q->dma_tx[i],
1143 					priv->mode, (i == DMA_TX_SIZE - 1));
1144 }
1145 
1146 /**
1147  * stmmac_clear_descriptors - clear descriptors
1148  * @priv: driver private structure
1149  * Description: this function is called to clear the TX and RX descriptors
1150  * in case of both basic and extended descriptors are used.
1151  */
1152 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
1153 {
1154 	u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1155 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1156 	u32 queue;
1157 
1158 	/* Clear the RX descriptors */
1159 	for (queue = 0; queue < rx_queue_cnt; queue++)
1160 		stmmac_clear_rx_descriptors(priv, queue);
1161 
1162 	/* Clear the TX descriptors */
1163 	for (queue = 0; queue < tx_queue_cnt; queue++)
1164 		stmmac_clear_tx_descriptors(priv, queue);
1165 }
1166 
1167 /**
1168  * stmmac_init_rx_buffers - init the RX descriptor buffer.
1169  * @priv: driver private structure
1170  * @p: descriptor pointer
1171  * @i: descriptor index
1172  * @flags: gfp flag
1173  * @queue: RX queue index
1174  * Description: this function is called to allocate a receive buffer, perform
1175  * the DMA mapping and init the descriptor.
1176  */
1177 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
1178 				  int i, gfp_t flags, u32 queue)
1179 {
1180 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1181 	struct sk_buff *skb;
1182 
1183 	skb = __netdev_alloc_skb_ip_align(priv->dev, priv->dma_buf_sz, flags);
1184 	if (!skb) {
1185 		netdev_err(priv->dev,
1186 			   "%s: Rx init fails; skb is NULL\n", __func__);
1187 		return -ENOMEM;
1188 	}
1189 	rx_q->rx_skbuff[i] = skb;
1190 	rx_q->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
1191 						priv->dma_buf_sz,
1192 						DMA_FROM_DEVICE);
1193 	if (dma_mapping_error(priv->device, rx_q->rx_skbuff_dma[i])) {
1194 		netdev_err(priv->dev, "%s: DMA mapping error\n", __func__);
1195 		dev_kfree_skb_any(skb);
1196 		return -EINVAL;
1197 	}
1198 
1199 	stmmac_set_desc_addr(priv, p, rx_q->rx_skbuff_dma[i]);
1200 
1201 	if (priv->dma_buf_sz == BUF_SIZE_16KiB)
1202 		stmmac_init_desc3(priv, p);
1203 
1204 	return 0;
1205 }
1206 
1207 /**
1208  * stmmac_free_rx_buffer - free RX dma buffers
1209  * @priv: private structure
1210  * @queue: RX queue index
1211  * @i: buffer index.
1212  */
1213 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1214 {
1215 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1216 
1217 	if (rx_q->rx_skbuff[i]) {
1218 		dma_unmap_single(priv->device, rx_q->rx_skbuff_dma[i],
1219 				 priv->dma_buf_sz, DMA_FROM_DEVICE);
1220 		dev_kfree_skb_any(rx_q->rx_skbuff[i]);
1221 	}
1222 	rx_q->rx_skbuff[i] = NULL;
1223 }
1224 
1225 /**
1226  * stmmac_free_tx_buffer - free RX dma buffers
1227  * @priv: private structure
1228  * @queue: RX queue index
1229  * @i: buffer index.
1230  */
1231 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1232 {
1233 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1234 
1235 	if (tx_q->tx_skbuff_dma[i].buf) {
1236 		if (tx_q->tx_skbuff_dma[i].map_as_page)
1237 			dma_unmap_page(priv->device,
1238 				       tx_q->tx_skbuff_dma[i].buf,
1239 				       tx_q->tx_skbuff_dma[i].len,
1240 				       DMA_TO_DEVICE);
1241 		else
1242 			dma_unmap_single(priv->device,
1243 					 tx_q->tx_skbuff_dma[i].buf,
1244 					 tx_q->tx_skbuff_dma[i].len,
1245 					 DMA_TO_DEVICE);
1246 	}
1247 
1248 	if (tx_q->tx_skbuff[i]) {
1249 		dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1250 		tx_q->tx_skbuff[i] = NULL;
1251 		tx_q->tx_skbuff_dma[i].buf = 0;
1252 		tx_q->tx_skbuff_dma[i].map_as_page = false;
1253 	}
1254 }
1255 
1256 /**
1257  * init_dma_rx_desc_rings - init the RX descriptor rings
1258  * @dev: net device structure
1259  * @flags: gfp flag.
1260  * Description: this function initializes the DMA RX descriptors
1261  * and allocates the socket buffers. It supports the chained and ring
1262  * modes.
1263  */
1264 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags)
1265 {
1266 	struct stmmac_priv *priv = netdev_priv(dev);
1267 	u32 rx_count = priv->plat->rx_queues_to_use;
1268 	int ret = -ENOMEM;
1269 	int bfsize = 0;
1270 	int queue;
1271 	int i;
1272 
1273 	bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu);
1274 	if (bfsize < 0)
1275 		bfsize = 0;
1276 
1277 	if (bfsize < BUF_SIZE_16KiB)
1278 		bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
1279 
1280 	priv->dma_buf_sz = bfsize;
1281 
1282 	/* RX INITIALIZATION */
1283 	netif_dbg(priv, probe, priv->dev,
1284 		  "SKB addresses:\nskb\t\tskb data\tdma data\n");
1285 
1286 	for (queue = 0; queue < rx_count; queue++) {
1287 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1288 
1289 		netif_dbg(priv, probe, priv->dev,
1290 			  "(%s) dma_rx_phy=0x%08x\n", __func__,
1291 			  (u32)rx_q->dma_rx_phy);
1292 
1293 		for (i = 0; i < DMA_RX_SIZE; i++) {
1294 			struct dma_desc *p;
1295 
1296 			if (priv->extend_desc)
1297 				p = &((rx_q->dma_erx + i)->basic);
1298 			else
1299 				p = rx_q->dma_rx + i;
1300 
1301 			ret = stmmac_init_rx_buffers(priv, p, i, flags,
1302 						     queue);
1303 			if (ret)
1304 				goto err_init_rx_buffers;
1305 
1306 			netif_dbg(priv, probe, priv->dev, "[%p]\t[%p]\t[%x]\n",
1307 				  rx_q->rx_skbuff[i], rx_q->rx_skbuff[i]->data,
1308 				  (unsigned int)rx_q->rx_skbuff_dma[i]);
1309 		}
1310 
1311 		rx_q->cur_rx = 0;
1312 		rx_q->dirty_rx = (unsigned int)(i - DMA_RX_SIZE);
1313 
1314 		stmmac_clear_rx_descriptors(priv, queue);
1315 
1316 		/* Setup the chained descriptor addresses */
1317 		if (priv->mode == STMMAC_CHAIN_MODE) {
1318 			if (priv->extend_desc)
1319 				stmmac_mode_init(priv, rx_q->dma_erx,
1320 						rx_q->dma_rx_phy, DMA_RX_SIZE, 1);
1321 			else
1322 				stmmac_mode_init(priv, rx_q->dma_rx,
1323 						rx_q->dma_rx_phy, DMA_RX_SIZE, 0);
1324 		}
1325 	}
1326 
1327 	buf_sz = bfsize;
1328 
1329 	return 0;
1330 
1331 err_init_rx_buffers:
1332 	while (queue >= 0) {
1333 		while (--i >= 0)
1334 			stmmac_free_rx_buffer(priv, queue, i);
1335 
1336 		if (queue == 0)
1337 			break;
1338 
1339 		i = DMA_RX_SIZE;
1340 		queue--;
1341 	}
1342 
1343 	return ret;
1344 }
1345 
1346 /**
1347  * init_dma_tx_desc_rings - init the TX descriptor rings
1348  * @dev: net device structure.
1349  * Description: this function initializes the DMA TX descriptors
1350  * and allocates the socket buffers. It supports the chained and ring
1351  * modes.
1352  */
1353 static int init_dma_tx_desc_rings(struct net_device *dev)
1354 {
1355 	struct stmmac_priv *priv = netdev_priv(dev);
1356 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1357 	u32 queue;
1358 	int i;
1359 
1360 	for (queue = 0; queue < tx_queue_cnt; queue++) {
1361 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1362 
1363 		netif_dbg(priv, probe, priv->dev,
1364 			  "(%s) dma_tx_phy=0x%08x\n", __func__,
1365 			 (u32)tx_q->dma_tx_phy);
1366 
1367 		/* Setup the chained descriptor addresses */
1368 		if (priv->mode == STMMAC_CHAIN_MODE) {
1369 			if (priv->extend_desc)
1370 				stmmac_mode_init(priv, tx_q->dma_etx,
1371 						tx_q->dma_tx_phy, DMA_TX_SIZE, 1);
1372 			else
1373 				stmmac_mode_init(priv, tx_q->dma_tx,
1374 						tx_q->dma_tx_phy, DMA_TX_SIZE, 0);
1375 		}
1376 
1377 		for (i = 0; i < DMA_TX_SIZE; i++) {
1378 			struct dma_desc *p;
1379 			if (priv->extend_desc)
1380 				p = &((tx_q->dma_etx + i)->basic);
1381 			else
1382 				p = tx_q->dma_tx + i;
1383 
1384 			stmmac_clear_desc(priv, p);
1385 
1386 			tx_q->tx_skbuff_dma[i].buf = 0;
1387 			tx_q->tx_skbuff_dma[i].map_as_page = false;
1388 			tx_q->tx_skbuff_dma[i].len = 0;
1389 			tx_q->tx_skbuff_dma[i].last_segment = false;
1390 			tx_q->tx_skbuff[i] = NULL;
1391 		}
1392 
1393 		tx_q->dirty_tx = 0;
1394 		tx_q->cur_tx = 0;
1395 		tx_q->mss = 0;
1396 
1397 		netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
1398 	}
1399 
1400 	return 0;
1401 }
1402 
1403 /**
1404  * init_dma_desc_rings - init the RX/TX descriptor rings
1405  * @dev: net device structure
1406  * @flags: gfp flag.
1407  * Description: this function initializes the DMA RX/TX descriptors
1408  * and allocates the socket buffers. It supports the chained and ring
1409  * modes.
1410  */
1411 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1412 {
1413 	struct stmmac_priv *priv = netdev_priv(dev);
1414 	int ret;
1415 
1416 	ret = init_dma_rx_desc_rings(dev, flags);
1417 	if (ret)
1418 		return ret;
1419 
1420 	ret = init_dma_tx_desc_rings(dev);
1421 
1422 	stmmac_clear_descriptors(priv);
1423 
1424 	if (netif_msg_hw(priv))
1425 		stmmac_display_rings(priv);
1426 
1427 	return ret;
1428 }
1429 
1430 /**
1431  * dma_free_rx_skbufs - free RX dma buffers
1432  * @priv: private structure
1433  * @queue: RX queue index
1434  */
1435 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue)
1436 {
1437 	int i;
1438 
1439 	for (i = 0; i < DMA_RX_SIZE; i++)
1440 		stmmac_free_rx_buffer(priv, queue, i);
1441 }
1442 
1443 /**
1444  * dma_free_tx_skbufs - free TX dma buffers
1445  * @priv: private structure
1446  * @queue: TX queue index
1447  */
1448 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue)
1449 {
1450 	int i;
1451 
1452 	for (i = 0; i < DMA_TX_SIZE; i++)
1453 		stmmac_free_tx_buffer(priv, queue, i);
1454 }
1455 
1456 /**
1457  * free_dma_rx_desc_resources - free RX dma desc resources
1458  * @priv: private structure
1459  */
1460 static void free_dma_rx_desc_resources(struct stmmac_priv *priv)
1461 {
1462 	u32 rx_count = priv->plat->rx_queues_to_use;
1463 	u32 queue;
1464 
1465 	/* Free RX queue resources */
1466 	for (queue = 0; queue < rx_count; queue++) {
1467 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1468 
1469 		/* Release the DMA RX socket buffers */
1470 		dma_free_rx_skbufs(priv, queue);
1471 
1472 		/* Free DMA regions of consistent memory previously allocated */
1473 		if (!priv->extend_desc)
1474 			dma_free_coherent(priv->device,
1475 					  DMA_RX_SIZE * sizeof(struct dma_desc),
1476 					  rx_q->dma_rx, rx_q->dma_rx_phy);
1477 		else
1478 			dma_free_coherent(priv->device, DMA_RX_SIZE *
1479 					  sizeof(struct dma_extended_desc),
1480 					  rx_q->dma_erx, rx_q->dma_rx_phy);
1481 
1482 		kfree(rx_q->rx_skbuff_dma);
1483 		kfree(rx_q->rx_skbuff);
1484 	}
1485 }
1486 
1487 /**
1488  * free_dma_tx_desc_resources - free TX dma desc resources
1489  * @priv: private structure
1490  */
1491 static void free_dma_tx_desc_resources(struct stmmac_priv *priv)
1492 {
1493 	u32 tx_count = priv->plat->tx_queues_to_use;
1494 	u32 queue;
1495 
1496 	/* Free TX queue resources */
1497 	for (queue = 0; queue < tx_count; queue++) {
1498 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1499 
1500 		/* Release the DMA TX socket buffers */
1501 		dma_free_tx_skbufs(priv, queue);
1502 
1503 		/* Free DMA regions of consistent memory previously allocated */
1504 		if (!priv->extend_desc)
1505 			dma_free_coherent(priv->device,
1506 					  DMA_TX_SIZE * sizeof(struct dma_desc),
1507 					  tx_q->dma_tx, tx_q->dma_tx_phy);
1508 		else
1509 			dma_free_coherent(priv->device, DMA_TX_SIZE *
1510 					  sizeof(struct dma_extended_desc),
1511 					  tx_q->dma_etx, tx_q->dma_tx_phy);
1512 
1513 		kfree(tx_q->tx_skbuff_dma);
1514 		kfree(tx_q->tx_skbuff);
1515 	}
1516 }
1517 
1518 /**
1519  * alloc_dma_rx_desc_resources - alloc RX resources.
1520  * @priv: private structure
1521  * Description: according to which descriptor can be used (extend or basic)
1522  * this function allocates the resources for TX and RX paths. In case of
1523  * reception, for example, it pre-allocated the RX socket buffer in order to
1524  * allow zero-copy mechanism.
1525  */
1526 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv)
1527 {
1528 	u32 rx_count = priv->plat->rx_queues_to_use;
1529 	int ret = -ENOMEM;
1530 	u32 queue;
1531 
1532 	/* RX queues buffers and DMA */
1533 	for (queue = 0; queue < rx_count; queue++) {
1534 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1535 
1536 		rx_q->queue_index = queue;
1537 		rx_q->priv_data = priv;
1538 
1539 		rx_q->rx_skbuff_dma = kmalloc_array(DMA_RX_SIZE,
1540 						    sizeof(dma_addr_t),
1541 						    GFP_KERNEL);
1542 		if (!rx_q->rx_skbuff_dma)
1543 			goto err_dma;
1544 
1545 		rx_q->rx_skbuff = kmalloc_array(DMA_RX_SIZE,
1546 						sizeof(struct sk_buff *),
1547 						GFP_KERNEL);
1548 		if (!rx_q->rx_skbuff)
1549 			goto err_dma;
1550 
1551 		if (priv->extend_desc) {
1552 			rx_q->dma_erx = dma_zalloc_coherent(priv->device,
1553 							    DMA_RX_SIZE *
1554 							    sizeof(struct
1555 							    dma_extended_desc),
1556 							    &rx_q->dma_rx_phy,
1557 							    GFP_KERNEL);
1558 			if (!rx_q->dma_erx)
1559 				goto err_dma;
1560 
1561 		} else {
1562 			rx_q->dma_rx = dma_zalloc_coherent(priv->device,
1563 							   DMA_RX_SIZE *
1564 							   sizeof(struct
1565 							   dma_desc),
1566 							   &rx_q->dma_rx_phy,
1567 							   GFP_KERNEL);
1568 			if (!rx_q->dma_rx)
1569 				goto err_dma;
1570 		}
1571 	}
1572 
1573 	return 0;
1574 
1575 err_dma:
1576 	free_dma_rx_desc_resources(priv);
1577 
1578 	return ret;
1579 }
1580 
1581 /**
1582  * alloc_dma_tx_desc_resources - alloc TX resources.
1583  * @priv: private structure
1584  * Description: according to which descriptor can be used (extend or basic)
1585  * this function allocates the resources for TX and RX paths. In case of
1586  * reception, for example, it pre-allocated the RX socket buffer in order to
1587  * allow zero-copy mechanism.
1588  */
1589 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv)
1590 {
1591 	u32 tx_count = priv->plat->tx_queues_to_use;
1592 	int ret = -ENOMEM;
1593 	u32 queue;
1594 
1595 	/* TX queues buffers and DMA */
1596 	for (queue = 0; queue < tx_count; queue++) {
1597 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1598 
1599 		tx_q->queue_index = queue;
1600 		tx_q->priv_data = priv;
1601 
1602 		tx_q->tx_skbuff_dma = kmalloc_array(DMA_TX_SIZE,
1603 						    sizeof(*tx_q->tx_skbuff_dma),
1604 						    GFP_KERNEL);
1605 		if (!tx_q->tx_skbuff_dma)
1606 			goto err_dma;
1607 
1608 		tx_q->tx_skbuff = kmalloc_array(DMA_TX_SIZE,
1609 						sizeof(struct sk_buff *),
1610 						GFP_KERNEL);
1611 		if (!tx_q->tx_skbuff)
1612 			goto err_dma;
1613 
1614 		if (priv->extend_desc) {
1615 			tx_q->dma_etx = dma_zalloc_coherent(priv->device,
1616 							    DMA_TX_SIZE *
1617 							    sizeof(struct
1618 							    dma_extended_desc),
1619 							    &tx_q->dma_tx_phy,
1620 							    GFP_KERNEL);
1621 			if (!tx_q->dma_etx)
1622 				goto err_dma;
1623 		} else {
1624 			tx_q->dma_tx = dma_zalloc_coherent(priv->device,
1625 							   DMA_TX_SIZE *
1626 							   sizeof(struct
1627 								  dma_desc),
1628 							   &tx_q->dma_tx_phy,
1629 							   GFP_KERNEL);
1630 			if (!tx_q->dma_tx)
1631 				goto err_dma;
1632 		}
1633 	}
1634 
1635 	return 0;
1636 
1637 err_dma:
1638 	free_dma_tx_desc_resources(priv);
1639 
1640 	return ret;
1641 }
1642 
1643 /**
1644  * alloc_dma_desc_resources - alloc TX/RX resources.
1645  * @priv: private structure
1646  * Description: according to which descriptor can be used (extend or basic)
1647  * this function allocates the resources for TX and RX paths. In case of
1648  * reception, for example, it pre-allocated the RX socket buffer in order to
1649  * allow zero-copy mechanism.
1650  */
1651 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1652 {
1653 	/* RX Allocation */
1654 	int ret = alloc_dma_rx_desc_resources(priv);
1655 
1656 	if (ret)
1657 		return ret;
1658 
1659 	ret = alloc_dma_tx_desc_resources(priv);
1660 
1661 	return ret;
1662 }
1663 
1664 /**
1665  * free_dma_desc_resources - free dma desc resources
1666  * @priv: private structure
1667  */
1668 static void free_dma_desc_resources(struct stmmac_priv *priv)
1669 {
1670 	/* Release the DMA RX socket buffers */
1671 	free_dma_rx_desc_resources(priv);
1672 
1673 	/* Release the DMA TX socket buffers */
1674 	free_dma_tx_desc_resources(priv);
1675 }
1676 
1677 /**
1678  *  stmmac_mac_enable_rx_queues - Enable MAC rx queues
1679  *  @priv: driver private structure
1680  *  Description: It is used for enabling the rx queues in the MAC
1681  */
1682 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
1683 {
1684 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
1685 	int queue;
1686 	u8 mode;
1687 
1688 	for (queue = 0; queue < rx_queues_count; queue++) {
1689 		mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
1690 		stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
1691 	}
1692 }
1693 
1694 /**
1695  * stmmac_start_rx_dma - start RX DMA channel
1696  * @priv: driver private structure
1697  * @chan: RX channel index
1698  * Description:
1699  * This starts a RX DMA channel
1700  */
1701 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
1702 {
1703 	netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
1704 	stmmac_start_rx(priv, priv->ioaddr, chan);
1705 }
1706 
1707 /**
1708  * stmmac_start_tx_dma - start TX DMA channel
1709  * @priv: driver private structure
1710  * @chan: TX channel index
1711  * Description:
1712  * This starts a TX DMA channel
1713  */
1714 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
1715 {
1716 	netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
1717 	stmmac_start_tx(priv, priv->ioaddr, chan);
1718 }
1719 
1720 /**
1721  * stmmac_stop_rx_dma - stop RX DMA channel
1722  * @priv: driver private structure
1723  * @chan: RX channel index
1724  * Description:
1725  * This stops a RX DMA channel
1726  */
1727 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
1728 {
1729 	netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
1730 	stmmac_stop_rx(priv, priv->ioaddr, chan);
1731 }
1732 
1733 /**
1734  * stmmac_stop_tx_dma - stop TX DMA channel
1735  * @priv: driver private structure
1736  * @chan: TX channel index
1737  * Description:
1738  * This stops a TX DMA channel
1739  */
1740 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
1741 {
1742 	netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
1743 	stmmac_stop_tx(priv, priv->ioaddr, chan);
1744 }
1745 
1746 /**
1747  * stmmac_start_all_dma - start all RX and TX DMA channels
1748  * @priv: driver private structure
1749  * Description:
1750  * This starts all the RX and TX DMA channels
1751  */
1752 static void stmmac_start_all_dma(struct stmmac_priv *priv)
1753 {
1754 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1755 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1756 	u32 chan = 0;
1757 
1758 	for (chan = 0; chan < rx_channels_count; chan++)
1759 		stmmac_start_rx_dma(priv, chan);
1760 
1761 	for (chan = 0; chan < tx_channels_count; chan++)
1762 		stmmac_start_tx_dma(priv, chan);
1763 }
1764 
1765 /**
1766  * stmmac_stop_all_dma - stop all RX and TX DMA channels
1767  * @priv: driver private structure
1768  * Description:
1769  * This stops the RX and TX DMA channels
1770  */
1771 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
1772 {
1773 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1774 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1775 	u32 chan = 0;
1776 
1777 	for (chan = 0; chan < rx_channels_count; chan++)
1778 		stmmac_stop_rx_dma(priv, chan);
1779 
1780 	for (chan = 0; chan < tx_channels_count; chan++)
1781 		stmmac_stop_tx_dma(priv, chan);
1782 }
1783 
1784 /**
1785  *  stmmac_dma_operation_mode - HW DMA operation mode
1786  *  @priv: driver private structure
1787  *  Description: it is used for configuring the DMA operation mode register in
1788  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1789  */
1790 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1791 {
1792 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1793 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1794 	int rxfifosz = priv->plat->rx_fifo_size;
1795 	int txfifosz = priv->plat->tx_fifo_size;
1796 	u32 txmode = 0;
1797 	u32 rxmode = 0;
1798 	u32 chan = 0;
1799 	u8 qmode = 0;
1800 
1801 	if (rxfifosz == 0)
1802 		rxfifosz = priv->dma_cap.rx_fifo_size;
1803 	if (txfifosz == 0)
1804 		txfifosz = priv->dma_cap.tx_fifo_size;
1805 
1806 	/* Adjust for real per queue fifo size */
1807 	rxfifosz /= rx_channels_count;
1808 	txfifosz /= tx_channels_count;
1809 
1810 	if (priv->plat->force_thresh_dma_mode) {
1811 		txmode = tc;
1812 		rxmode = tc;
1813 	} else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1814 		/*
1815 		 * In case of GMAC, SF mode can be enabled
1816 		 * to perform the TX COE in HW. This depends on:
1817 		 * 1) TX COE if actually supported
1818 		 * 2) There is no bugged Jumbo frame support
1819 		 *    that needs to not insert csum in the TDES.
1820 		 */
1821 		txmode = SF_DMA_MODE;
1822 		rxmode = SF_DMA_MODE;
1823 		priv->xstats.threshold = SF_DMA_MODE;
1824 	} else {
1825 		txmode = tc;
1826 		rxmode = SF_DMA_MODE;
1827 	}
1828 
1829 	/* configure all channels */
1830 	for (chan = 0; chan < rx_channels_count; chan++) {
1831 		qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
1832 
1833 		stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
1834 				rxfifosz, qmode);
1835 		stmmac_set_dma_bfsize(priv, priv->ioaddr, priv->dma_buf_sz,
1836 				chan);
1837 	}
1838 
1839 	for (chan = 0; chan < tx_channels_count; chan++) {
1840 		qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
1841 
1842 		stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
1843 				txfifosz, qmode);
1844 	}
1845 }
1846 
1847 /**
1848  * stmmac_tx_clean - to manage the transmission completion
1849  * @priv: driver private structure
1850  * @queue: TX queue index
1851  * Description: it reclaims the transmit resources after transmission completes.
1852  */
1853 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
1854 {
1855 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1856 	unsigned int bytes_compl = 0, pkts_compl = 0;
1857 	unsigned int entry, count = 0;
1858 
1859 	__netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
1860 
1861 	priv->xstats.tx_clean++;
1862 
1863 	entry = tx_q->dirty_tx;
1864 	while ((entry != tx_q->cur_tx) && (count < budget)) {
1865 		struct sk_buff *skb = tx_q->tx_skbuff[entry];
1866 		struct dma_desc *p;
1867 		int status;
1868 
1869 		if (priv->extend_desc)
1870 			p = (struct dma_desc *)(tx_q->dma_etx + entry);
1871 		else
1872 			p = tx_q->dma_tx + entry;
1873 
1874 		status = stmmac_tx_status(priv, &priv->dev->stats,
1875 				&priv->xstats, p, priv->ioaddr);
1876 		/* Check if the descriptor is owned by the DMA */
1877 		if (unlikely(status & tx_dma_own))
1878 			break;
1879 
1880 		count++;
1881 
1882 		/* Make sure descriptor fields are read after reading
1883 		 * the own bit.
1884 		 */
1885 		dma_rmb();
1886 
1887 		/* Just consider the last segment and ...*/
1888 		if (likely(!(status & tx_not_ls))) {
1889 			/* ... verify the status error condition */
1890 			if (unlikely(status & tx_err)) {
1891 				priv->dev->stats.tx_errors++;
1892 			} else {
1893 				priv->dev->stats.tx_packets++;
1894 				priv->xstats.tx_pkt_n++;
1895 			}
1896 			stmmac_get_tx_hwtstamp(priv, p, skb);
1897 		}
1898 
1899 		if (likely(tx_q->tx_skbuff_dma[entry].buf)) {
1900 			if (tx_q->tx_skbuff_dma[entry].map_as_page)
1901 				dma_unmap_page(priv->device,
1902 					       tx_q->tx_skbuff_dma[entry].buf,
1903 					       tx_q->tx_skbuff_dma[entry].len,
1904 					       DMA_TO_DEVICE);
1905 			else
1906 				dma_unmap_single(priv->device,
1907 						 tx_q->tx_skbuff_dma[entry].buf,
1908 						 tx_q->tx_skbuff_dma[entry].len,
1909 						 DMA_TO_DEVICE);
1910 			tx_q->tx_skbuff_dma[entry].buf = 0;
1911 			tx_q->tx_skbuff_dma[entry].len = 0;
1912 			tx_q->tx_skbuff_dma[entry].map_as_page = false;
1913 		}
1914 
1915 		stmmac_clean_desc3(priv, tx_q, p);
1916 
1917 		tx_q->tx_skbuff_dma[entry].last_segment = false;
1918 		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
1919 
1920 		if (likely(skb != NULL)) {
1921 			pkts_compl++;
1922 			bytes_compl += skb->len;
1923 			dev_consume_skb_any(skb);
1924 			tx_q->tx_skbuff[entry] = NULL;
1925 		}
1926 
1927 		stmmac_release_tx_desc(priv, p, priv->mode);
1928 
1929 		entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
1930 	}
1931 	tx_q->dirty_tx = entry;
1932 
1933 	netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
1934 				  pkts_compl, bytes_compl);
1935 
1936 	if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
1937 								queue))) &&
1938 	    stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH) {
1939 
1940 		netif_dbg(priv, tx_done, priv->dev,
1941 			  "%s: restart transmit\n", __func__);
1942 		netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
1943 	}
1944 
1945 	if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1946 		stmmac_enable_eee_mode(priv);
1947 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1948 	}
1949 
1950 	__netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
1951 
1952 	return count;
1953 }
1954 
1955 /**
1956  * stmmac_tx_err - to manage the tx error
1957  * @priv: driver private structure
1958  * @chan: channel index
1959  * Description: it cleans the descriptors and restarts the transmission
1960  * in case of transmission errors.
1961  */
1962 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
1963 {
1964 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
1965 	int i;
1966 
1967 	netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
1968 
1969 	stmmac_stop_tx_dma(priv, chan);
1970 	dma_free_tx_skbufs(priv, chan);
1971 	for (i = 0; i < DMA_TX_SIZE; i++)
1972 		if (priv->extend_desc)
1973 			stmmac_init_tx_desc(priv, &tx_q->dma_etx[i].basic,
1974 					priv->mode, (i == DMA_TX_SIZE - 1));
1975 		else
1976 			stmmac_init_tx_desc(priv, &tx_q->dma_tx[i],
1977 					priv->mode, (i == DMA_TX_SIZE - 1));
1978 	tx_q->dirty_tx = 0;
1979 	tx_q->cur_tx = 0;
1980 	tx_q->mss = 0;
1981 	netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan));
1982 	stmmac_start_tx_dma(priv, chan);
1983 
1984 	priv->dev->stats.tx_errors++;
1985 	netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
1986 }
1987 
1988 /**
1989  *  stmmac_set_dma_operation_mode - Set DMA operation mode by channel
1990  *  @priv: driver private structure
1991  *  @txmode: TX operating mode
1992  *  @rxmode: RX operating mode
1993  *  @chan: channel index
1994  *  Description: it is used for configuring of the DMA operation mode in
1995  *  runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
1996  *  mode.
1997  */
1998 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
1999 					  u32 rxmode, u32 chan)
2000 {
2001 	u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2002 	u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2003 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2004 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2005 	int rxfifosz = priv->plat->rx_fifo_size;
2006 	int txfifosz = priv->plat->tx_fifo_size;
2007 
2008 	if (rxfifosz == 0)
2009 		rxfifosz = priv->dma_cap.rx_fifo_size;
2010 	if (txfifosz == 0)
2011 		txfifosz = priv->dma_cap.tx_fifo_size;
2012 
2013 	/* Adjust for real per queue fifo size */
2014 	rxfifosz /= rx_channels_count;
2015 	txfifosz /= tx_channels_count;
2016 
2017 	stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2018 	stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2019 }
2020 
2021 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2022 {
2023 	int ret;
2024 
2025 	ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2026 			priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2027 	if (ret && (ret != -EINVAL)) {
2028 		stmmac_global_err(priv);
2029 		return true;
2030 	}
2031 
2032 	return false;
2033 }
2034 
2035 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan)
2036 {
2037 	int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2038 						 &priv->xstats, chan);
2039 	struct stmmac_channel *ch = &priv->channel[chan];
2040 	bool needs_work = false;
2041 
2042 	if ((status & handle_rx) && ch->has_rx) {
2043 		needs_work = true;
2044 	} else {
2045 		status &= ~handle_rx;
2046 	}
2047 
2048 	if ((status & handle_tx) && ch->has_tx) {
2049 		needs_work = true;
2050 	} else {
2051 		status &= ~handle_tx;
2052 	}
2053 
2054 	if (needs_work && napi_schedule_prep(&ch->napi)) {
2055 		stmmac_disable_dma_irq(priv, priv->ioaddr, chan);
2056 		__napi_schedule(&ch->napi);
2057 	}
2058 
2059 	return status;
2060 }
2061 
2062 /**
2063  * stmmac_dma_interrupt - DMA ISR
2064  * @priv: driver private structure
2065  * Description: this is the DMA ISR. It is called by the main ISR.
2066  * It calls the dwmac dma routine and schedule poll method in case of some
2067  * work can be done.
2068  */
2069 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2070 {
2071 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2072 	u32 rx_channel_count = priv->plat->rx_queues_to_use;
2073 	u32 channels_to_check = tx_channel_count > rx_channel_count ?
2074 				tx_channel_count : rx_channel_count;
2075 	u32 chan;
2076 	int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2077 
2078 	/* Make sure we never check beyond our status buffer. */
2079 	if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2080 		channels_to_check = ARRAY_SIZE(status);
2081 
2082 	for (chan = 0; chan < channels_to_check; chan++)
2083 		status[chan] = stmmac_napi_check(priv, chan);
2084 
2085 	for (chan = 0; chan < tx_channel_count; chan++) {
2086 		if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2087 			/* Try to bump up the dma threshold on this failure */
2088 			if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
2089 			    (tc <= 256)) {
2090 				tc += 64;
2091 				if (priv->plat->force_thresh_dma_mode)
2092 					stmmac_set_dma_operation_mode(priv,
2093 								      tc,
2094 								      tc,
2095 								      chan);
2096 				else
2097 					stmmac_set_dma_operation_mode(priv,
2098 								    tc,
2099 								    SF_DMA_MODE,
2100 								    chan);
2101 				priv->xstats.threshold = tc;
2102 			}
2103 		} else if (unlikely(status[chan] == tx_hard_error)) {
2104 			stmmac_tx_err(priv, chan);
2105 		}
2106 	}
2107 }
2108 
2109 /**
2110  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2111  * @priv: driver private structure
2112  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2113  */
2114 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2115 {
2116 	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2117 			    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2118 
2119 	dwmac_mmc_intr_all_mask(priv->mmcaddr);
2120 
2121 	if (priv->dma_cap.rmon) {
2122 		dwmac_mmc_ctrl(priv->mmcaddr, mode);
2123 		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2124 	} else
2125 		netdev_info(priv->dev, "No MAC Management Counters available\n");
2126 }
2127 
2128 /**
2129  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2130  * @priv: driver private structure
2131  * Description:
2132  *  new GMAC chip generations have a new register to indicate the
2133  *  presence of the optional feature/functions.
2134  *  This can be also used to override the value passed through the
2135  *  platform and necessary for old MAC10/100 and GMAC chips.
2136  */
2137 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2138 {
2139 	return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2140 }
2141 
2142 /**
2143  * stmmac_check_ether_addr - check if the MAC addr is valid
2144  * @priv: driver private structure
2145  * Description:
2146  * it is to verify if the MAC address is valid, in case of failures it
2147  * generates a random MAC address
2148  */
2149 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2150 {
2151 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2152 		stmmac_get_umac_addr(priv, priv->hw, priv->dev->dev_addr, 0);
2153 		if (!is_valid_ether_addr(priv->dev->dev_addr))
2154 			eth_hw_addr_random(priv->dev);
2155 		netdev_info(priv->dev, "device MAC address %pM\n",
2156 			    priv->dev->dev_addr);
2157 	}
2158 }
2159 
2160 /**
2161  * stmmac_init_dma_engine - DMA init.
2162  * @priv: driver private structure
2163  * Description:
2164  * It inits the DMA invoking the specific MAC/GMAC callback.
2165  * Some DMA parameters can be passed from the platform;
2166  * in case of these are not passed a default is kept for the MAC or GMAC.
2167  */
2168 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2169 {
2170 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2171 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2172 	u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2173 	struct stmmac_rx_queue *rx_q;
2174 	struct stmmac_tx_queue *tx_q;
2175 	u32 chan = 0;
2176 	int atds = 0;
2177 	int ret = 0;
2178 
2179 	if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2180 		dev_err(priv->device, "Invalid DMA configuration\n");
2181 		return -EINVAL;
2182 	}
2183 
2184 	if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2185 		atds = 1;
2186 
2187 	ret = stmmac_reset(priv, priv->ioaddr);
2188 	if (ret) {
2189 		dev_err(priv->device, "Failed to reset the dma\n");
2190 		return ret;
2191 	}
2192 
2193 	/* DMA Configuration */
2194 	stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2195 
2196 	if (priv->plat->axi)
2197 		stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2198 
2199 	/* DMA RX Channel Configuration */
2200 	for (chan = 0; chan < rx_channels_count; chan++) {
2201 		rx_q = &priv->rx_queue[chan];
2202 
2203 		stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2204 				    rx_q->dma_rx_phy, chan);
2205 
2206 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2207 			    (DMA_RX_SIZE * sizeof(struct dma_desc));
2208 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2209 				       rx_q->rx_tail_addr, chan);
2210 	}
2211 
2212 	/* DMA TX Channel Configuration */
2213 	for (chan = 0; chan < tx_channels_count; chan++) {
2214 		tx_q = &priv->tx_queue[chan];
2215 
2216 		stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2217 				    tx_q->dma_tx_phy, chan);
2218 
2219 		tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2220 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2221 				       tx_q->tx_tail_addr, chan);
2222 	}
2223 
2224 	/* DMA CSR Channel configuration */
2225 	for (chan = 0; chan < dma_csr_ch; chan++)
2226 		stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2227 
2228 	return ret;
2229 }
2230 
2231 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2232 {
2233 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2234 
2235 	mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer));
2236 }
2237 
2238 /**
2239  * stmmac_tx_timer - mitigation sw timer for tx.
2240  * @data: data pointer
2241  * Description:
2242  * This is the timer handler to directly invoke the stmmac_tx_clean.
2243  */
2244 static void stmmac_tx_timer(struct timer_list *t)
2245 {
2246 	struct stmmac_tx_queue *tx_q = from_timer(tx_q, t, txtimer);
2247 	struct stmmac_priv *priv = tx_q->priv_data;
2248 	struct stmmac_channel *ch;
2249 
2250 	ch = &priv->channel[tx_q->queue_index];
2251 
2252 	if (likely(napi_schedule_prep(&ch->napi)))
2253 		__napi_schedule(&ch->napi);
2254 }
2255 
2256 /**
2257  * stmmac_init_tx_coalesce - init tx mitigation options.
2258  * @priv: driver private structure
2259  * Description:
2260  * This inits the transmit coalesce parameters: i.e. timer rate,
2261  * timer handler and default threshold used for enabling the
2262  * interrupt on completion bit.
2263  */
2264 static void stmmac_init_tx_coalesce(struct stmmac_priv *priv)
2265 {
2266 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2267 	u32 chan;
2268 
2269 	priv->tx_coal_frames = STMMAC_TX_FRAMES;
2270 	priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
2271 
2272 	for (chan = 0; chan < tx_channel_count; chan++) {
2273 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2274 
2275 		timer_setup(&tx_q->txtimer, stmmac_tx_timer, 0);
2276 	}
2277 }
2278 
2279 static void stmmac_set_rings_length(struct stmmac_priv *priv)
2280 {
2281 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2282 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2283 	u32 chan;
2284 
2285 	/* set TX ring length */
2286 	for (chan = 0; chan < tx_channels_count; chan++)
2287 		stmmac_set_tx_ring_len(priv, priv->ioaddr,
2288 				(DMA_TX_SIZE - 1), chan);
2289 
2290 	/* set RX ring length */
2291 	for (chan = 0; chan < rx_channels_count; chan++)
2292 		stmmac_set_rx_ring_len(priv, priv->ioaddr,
2293 				(DMA_RX_SIZE - 1), chan);
2294 }
2295 
2296 /**
2297  *  stmmac_set_tx_queue_weight - Set TX queue weight
2298  *  @priv: driver private structure
2299  *  Description: It is used for setting TX queues weight
2300  */
2301 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
2302 {
2303 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2304 	u32 weight;
2305 	u32 queue;
2306 
2307 	for (queue = 0; queue < tx_queues_count; queue++) {
2308 		weight = priv->plat->tx_queues_cfg[queue].weight;
2309 		stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
2310 	}
2311 }
2312 
2313 /**
2314  *  stmmac_configure_cbs - Configure CBS in TX queue
2315  *  @priv: driver private structure
2316  *  Description: It is used for configuring CBS in AVB TX queues
2317  */
2318 static void stmmac_configure_cbs(struct stmmac_priv *priv)
2319 {
2320 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2321 	u32 mode_to_use;
2322 	u32 queue;
2323 
2324 	/* queue 0 is reserved for legacy traffic */
2325 	for (queue = 1; queue < tx_queues_count; queue++) {
2326 		mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
2327 		if (mode_to_use == MTL_QUEUE_DCB)
2328 			continue;
2329 
2330 		stmmac_config_cbs(priv, priv->hw,
2331 				priv->plat->tx_queues_cfg[queue].send_slope,
2332 				priv->plat->tx_queues_cfg[queue].idle_slope,
2333 				priv->plat->tx_queues_cfg[queue].high_credit,
2334 				priv->plat->tx_queues_cfg[queue].low_credit,
2335 				queue);
2336 	}
2337 }
2338 
2339 /**
2340  *  stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
2341  *  @priv: driver private structure
2342  *  Description: It is used for mapping RX queues to RX dma channels
2343  */
2344 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
2345 {
2346 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2347 	u32 queue;
2348 	u32 chan;
2349 
2350 	for (queue = 0; queue < rx_queues_count; queue++) {
2351 		chan = priv->plat->rx_queues_cfg[queue].chan;
2352 		stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
2353 	}
2354 }
2355 
2356 /**
2357  *  stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
2358  *  @priv: driver private structure
2359  *  Description: It is used for configuring the RX Queue Priority
2360  */
2361 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
2362 {
2363 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2364 	u32 queue;
2365 	u32 prio;
2366 
2367 	for (queue = 0; queue < rx_queues_count; queue++) {
2368 		if (!priv->plat->rx_queues_cfg[queue].use_prio)
2369 			continue;
2370 
2371 		prio = priv->plat->rx_queues_cfg[queue].prio;
2372 		stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
2373 	}
2374 }
2375 
2376 /**
2377  *  stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
2378  *  @priv: driver private structure
2379  *  Description: It is used for configuring the TX Queue Priority
2380  */
2381 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
2382 {
2383 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2384 	u32 queue;
2385 	u32 prio;
2386 
2387 	for (queue = 0; queue < tx_queues_count; queue++) {
2388 		if (!priv->plat->tx_queues_cfg[queue].use_prio)
2389 			continue;
2390 
2391 		prio = priv->plat->tx_queues_cfg[queue].prio;
2392 		stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
2393 	}
2394 }
2395 
2396 /**
2397  *  stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
2398  *  @priv: driver private structure
2399  *  Description: It is used for configuring the RX queue routing
2400  */
2401 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
2402 {
2403 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2404 	u32 queue;
2405 	u8 packet;
2406 
2407 	for (queue = 0; queue < rx_queues_count; queue++) {
2408 		/* no specific packet type routing specified for the queue */
2409 		if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
2410 			continue;
2411 
2412 		packet = priv->plat->rx_queues_cfg[queue].pkt_route;
2413 		stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
2414 	}
2415 }
2416 
2417 /**
2418  *  stmmac_mtl_configuration - Configure MTL
2419  *  @priv: driver private structure
2420  *  Description: It is used for configurring MTL
2421  */
2422 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
2423 {
2424 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2425 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2426 
2427 	if (tx_queues_count > 1)
2428 		stmmac_set_tx_queue_weight(priv);
2429 
2430 	/* Configure MTL RX algorithms */
2431 	if (rx_queues_count > 1)
2432 		stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
2433 				priv->plat->rx_sched_algorithm);
2434 
2435 	/* Configure MTL TX algorithms */
2436 	if (tx_queues_count > 1)
2437 		stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
2438 				priv->plat->tx_sched_algorithm);
2439 
2440 	/* Configure CBS in AVB TX queues */
2441 	if (tx_queues_count > 1)
2442 		stmmac_configure_cbs(priv);
2443 
2444 	/* Map RX MTL to DMA channels */
2445 	stmmac_rx_queue_dma_chan_map(priv);
2446 
2447 	/* Enable MAC RX Queues */
2448 	stmmac_mac_enable_rx_queues(priv);
2449 
2450 	/* Set RX priorities */
2451 	if (rx_queues_count > 1)
2452 		stmmac_mac_config_rx_queues_prio(priv);
2453 
2454 	/* Set TX priorities */
2455 	if (tx_queues_count > 1)
2456 		stmmac_mac_config_tx_queues_prio(priv);
2457 
2458 	/* Set RX routing */
2459 	if (rx_queues_count > 1)
2460 		stmmac_mac_config_rx_queues_routing(priv);
2461 }
2462 
2463 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
2464 {
2465 	if (priv->dma_cap.asp) {
2466 		netdev_info(priv->dev, "Enabling Safety Features\n");
2467 		stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp);
2468 	} else {
2469 		netdev_info(priv->dev, "No Safety Features support found\n");
2470 	}
2471 }
2472 
2473 /**
2474  * stmmac_hw_setup - setup mac in a usable state.
2475  *  @dev : pointer to the device structure.
2476  *  Description:
2477  *  this is the main function to setup the HW in a usable state because the
2478  *  dma engine is reset, the core registers are configured (e.g. AXI,
2479  *  Checksum features, timers). The DMA is ready to start receiving and
2480  *  transmitting.
2481  *  Return value:
2482  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2483  *  file on failure.
2484  */
2485 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
2486 {
2487 	struct stmmac_priv *priv = netdev_priv(dev);
2488 	u32 rx_cnt = priv->plat->rx_queues_to_use;
2489 	u32 tx_cnt = priv->plat->tx_queues_to_use;
2490 	u32 chan;
2491 	int ret;
2492 
2493 	/* DMA initialization and SW reset */
2494 	ret = stmmac_init_dma_engine(priv);
2495 	if (ret < 0) {
2496 		netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
2497 			   __func__);
2498 		return ret;
2499 	}
2500 
2501 	/* Copy the MAC addr into the HW  */
2502 	stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
2503 
2504 	/* PS and related bits will be programmed according to the speed */
2505 	if (priv->hw->pcs) {
2506 		int speed = priv->plat->mac_port_sel_speed;
2507 
2508 		if ((speed == SPEED_10) || (speed == SPEED_100) ||
2509 		    (speed == SPEED_1000)) {
2510 			priv->hw->ps = speed;
2511 		} else {
2512 			dev_warn(priv->device, "invalid port speed\n");
2513 			priv->hw->ps = 0;
2514 		}
2515 	}
2516 
2517 	/* Initialize the MAC Core */
2518 	stmmac_core_init(priv, priv->hw, dev);
2519 
2520 	/* Initialize MTL*/
2521 	stmmac_mtl_configuration(priv);
2522 
2523 	/* Initialize Safety Features */
2524 	stmmac_safety_feat_configuration(priv);
2525 
2526 	ret = stmmac_rx_ipc(priv, priv->hw);
2527 	if (!ret) {
2528 		netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
2529 		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
2530 		priv->hw->rx_csum = 0;
2531 	}
2532 
2533 	/* Enable the MAC Rx/Tx */
2534 	stmmac_mac_set(priv, priv->ioaddr, true);
2535 
2536 	/* Set the HW DMA mode and the COE */
2537 	stmmac_dma_operation_mode(priv);
2538 
2539 	stmmac_mmc_setup(priv);
2540 
2541 	if (init_ptp) {
2542 		ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
2543 		if (ret < 0)
2544 			netdev_warn(priv->dev, "failed to enable PTP reference clock: %d\n", ret);
2545 
2546 		ret = stmmac_init_ptp(priv);
2547 		if (ret == -EOPNOTSUPP)
2548 			netdev_warn(priv->dev, "PTP not supported by HW\n");
2549 		else if (ret)
2550 			netdev_warn(priv->dev, "PTP init failed\n");
2551 	}
2552 
2553 #ifdef CONFIG_DEBUG_FS
2554 	ret = stmmac_init_fs(dev);
2555 	if (ret < 0)
2556 		netdev_warn(priv->dev, "%s: failed debugFS registration\n",
2557 			    __func__);
2558 #endif
2559 	priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
2560 
2561 	if (priv->use_riwt) {
2562 		ret = stmmac_rx_watchdog(priv, priv->ioaddr, MAX_DMA_RIWT, rx_cnt);
2563 		if (!ret)
2564 			priv->rx_riwt = MAX_DMA_RIWT;
2565 	}
2566 
2567 	if (priv->hw->pcs)
2568 		stmmac_pcs_ctrl_ane(priv, priv->hw, 1, priv->hw->ps, 0);
2569 
2570 	/* set TX and RX rings length */
2571 	stmmac_set_rings_length(priv);
2572 
2573 	/* Enable TSO */
2574 	if (priv->tso) {
2575 		for (chan = 0; chan < tx_cnt; chan++)
2576 			stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
2577 	}
2578 
2579 	/* Start the ball rolling... */
2580 	stmmac_start_all_dma(priv);
2581 
2582 	return 0;
2583 }
2584 
2585 static void stmmac_hw_teardown(struct net_device *dev)
2586 {
2587 	struct stmmac_priv *priv = netdev_priv(dev);
2588 
2589 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
2590 }
2591 
2592 /**
2593  *  stmmac_open - open entry point of the driver
2594  *  @dev : pointer to the device structure.
2595  *  Description:
2596  *  This function is the open entry point of the driver.
2597  *  Return value:
2598  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2599  *  file on failure.
2600  */
2601 static int stmmac_open(struct net_device *dev)
2602 {
2603 	struct stmmac_priv *priv = netdev_priv(dev);
2604 	u32 chan;
2605 	int ret;
2606 
2607 	stmmac_check_ether_addr(priv);
2608 
2609 	if (priv->hw->pcs != STMMAC_PCS_RGMII &&
2610 	    priv->hw->pcs != STMMAC_PCS_TBI &&
2611 	    priv->hw->pcs != STMMAC_PCS_RTBI) {
2612 		ret = stmmac_init_phy(dev);
2613 		if (ret) {
2614 			netdev_err(priv->dev,
2615 				   "%s: Cannot attach to PHY (error: %d)\n",
2616 				   __func__, ret);
2617 			return ret;
2618 		}
2619 	}
2620 
2621 	/* Extra statistics */
2622 	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
2623 	priv->xstats.threshold = tc;
2624 
2625 	priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
2626 	priv->rx_copybreak = STMMAC_RX_COPYBREAK;
2627 
2628 	ret = alloc_dma_desc_resources(priv);
2629 	if (ret < 0) {
2630 		netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
2631 			   __func__);
2632 		goto dma_desc_error;
2633 	}
2634 
2635 	ret = init_dma_desc_rings(dev, GFP_KERNEL);
2636 	if (ret < 0) {
2637 		netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
2638 			   __func__);
2639 		goto init_error;
2640 	}
2641 
2642 	ret = stmmac_hw_setup(dev, true);
2643 	if (ret < 0) {
2644 		netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
2645 		goto init_error;
2646 	}
2647 
2648 	stmmac_init_tx_coalesce(priv);
2649 
2650 	if (dev->phydev)
2651 		phy_start(dev->phydev);
2652 
2653 	/* Request the IRQ lines */
2654 	ret = request_irq(dev->irq, stmmac_interrupt,
2655 			  IRQF_SHARED, dev->name, dev);
2656 	if (unlikely(ret < 0)) {
2657 		netdev_err(priv->dev,
2658 			   "%s: ERROR: allocating the IRQ %d (error: %d)\n",
2659 			   __func__, dev->irq, ret);
2660 		goto irq_error;
2661 	}
2662 
2663 	/* Request the Wake IRQ in case of another line is used for WoL */
2664 	if (priv->wol_irq != dev->irq) {
2665 		ret = request_irq(priv->wol_irq, stmmac_interrupt,
2666 				  IRQF_SHARED, dev->name, dev);
2667 		if (unlikely(ret < 0)) {
2668 			netdev_err(priv->dev,
2669 				   "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
2670 				   __func__, priv->wol_irq, ret);
2671 			goto wolirq_error;
2672 		}
2673 	}
2674 
2675 	/* Request the IRQ lines */
2676 	if (priv->lpi_irq > 0) {
2677 		ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
2678 				  dev->name, dev);
2679 		if (unlikely(ret < 0)) {
2680 			netdev_err(priv->dev,
2681 				   "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
2682 				   __func__, priv->lpi_irq, ret);
2683 			goto lpiirq_error;
2684 		}
2685 	}
2686 
2687 	stmmac_enable_all_queues(priv);
2688 	stmmac_start_all_queues(priv);
2689 
2690 	return 0;
2691 
2692 lpiirq_error:
2693 	if (priv->wol_irq != dev->irq)
2694 		free_irq(priv->wol_irq, dev);
2695 wolirq_error:
2696 	free_irq(dev->irq, dev);
2697 irq_error:
2698 	if (dev->phydev)
2699 		phy_stop(dev->phydev);
2700 
2701 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2702 		del_timer_sync(&priv->tx_queue[chan].txtimer);
2703 
2704 	stmmac_hw_teardown(dev);
2705 init_error:
2706 	free_dma_desc_resources(priv);
2707 dma_desc_error:
2708 	if (dev->phydev)
2709 		phy_disconnect(dev->phydev);
2710 
2711 	return ret;
2712 }
2713 
2714 /**
2715  *  stmmac_release - close entry point of the driver
2716  *  @dev : device pointer.
2717  *  Description:
2718  *  This is the stop entry point of the driver.
2719  */
2720 static int stmmac_release(struct net_device *dev)
2721 {
2722 	struct stmmac_priv *priv = netdev_priv(dev);
2723 	u32 chan;
2724 
2725 	if (priv->eee_enabled)
2726 		del_timer_sync(&priv->eee_ctrl_timer);
2727 
2728 	/* Stop and disconnect the PHY */
2729 	if (dev->phydev) {
2730 		phy_stop(dev->phydev);
2731 		phy_disconnect(dev->phydev);
2732 	}
2733 
2734 	stmmac_stop_all_queues(priv);
2735 
2736 	stmmac_disable_all_queues(priv);
2737 
2738 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2739 		del_timer_sync(&priv->tx_queue[chan].txtimer);
2740 
2741 	/* Free the IRQ lines */
2742 	free_irq(dev->irq, dev);
2743 	if (priv->wol_irq != dev->irq)
2744 		free_irq(priv->wol_irq, dev);
2745 	if (priv->lpi_irq > 0)
2746 		free_irq(priv->lpi_irq, dev);
2747 
2748 	/* Stop TX/RX DMA and clear the descriptors */
2749 	stmmac_stop_all_dma(priv);
2750 
2751 	/* Release and free the Rx/Tx resources */
2752 	free_dma_desc_resources(priv);
2753 
2754 	/* Disable the MAC Rx/Tx */
2755 	stmmac_mac_set(priv, priv->ioaddr, false);
2756 
2757 	netif_carrier_off(dev);
2758 
2759 #ifdef CONFIG_DEBUG_FS
2760 	stmmac_exit_fs(dev);
2761 #endif
2762 
2763 	stmmac_release_ptp(priv);
2764 
2765 	return 0;
2766 }
2767 
2768 /**
2769  *  stmmac_tso_allocator - close entry point of the driver
2770  *  @priv: driver private structure
2771  *  @des: buffer start address
2772  *  @total_len: total length to fill in descriptors
2773  *  @last_segmant: condition for the last descriptor
2774  *  @queue: TX queue index
2775  *  Description:
2776  *  This function fills descriptor and request new descriptors according to
2777  *  buffer length to fill
2778  */
2779 static void stmmac_tso_allocator(struct stmmac_priv *priv, unsigned int des,
2780 				 int total_len, bool last_segment, u32 queue)
2781 {
2782 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2783 	struct dma_desc *desc;
2784 	u32 buff_size;
2785 	int tmp_len;
2786 
2787 	tmp_len = total_len;
2788 
2789 	while (tmp_len > 0) {
2790 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2791 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
2792 		desc = tx_q->dma_tx + tx_q->cur_tx;
2793 
2794 		desc->des0 = cpu_to_le32(des + (total_len - tmp_len));
2795 		buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
2796 			    TSO_MAX_BUFF_SIZE : tmp_len;
2797 
2798 		stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
2799 				0, 1,
2800 				(last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
2801 				0, 0);
2802 
2803 		tmp_len -= TSO_MAX_BUFF_SIZE;
2804 	}
2805 }
2806 
2807 /**
2808  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
2809  *  @skb : the socket buffer
2810  *  @dev : device pointer
2811  *  Description: this is the transmit function that is called on TSO frames
2812  *  (support available on GMAC4 and newer chips).
2813  *  Diagram below show the ring programming in case of TSO frames:
2814  *
2815  *  First Descriptor
2816  *   --------
2817  *   | DES0 |---> buffer1 = L2/L3/L4 header
2818  *   | DES1 |---> TCP Payload (can continue on next descr...)
2819  *   | DES2 |---> buffer 1 and 2 len
2820  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
2821  *   --------
2822  *	|
2823  *     ...
2824  *	|
2825  *   --------
2826  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
2827  *   | DES1 | --|
2828  *   | DES2 | --> buffer 1 and 2 len
2829  *   | DES3 |
2830  *   --------
2831  *
2832  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
2833  */
2834 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
2835 {
2836 	struct dma_desc *desc, *first, *mss_desc = NULL;
2837 	struct stmmac_priv *priv = netdev_priv(dev);
2838 	int nfrags = skb_shinfo(skb)->nr_frags;
2839 	u32 queue = skb_get_queue_mapping(skb);
2840 	unsigned int first_entry, des;
2841 	struct stmmac_tx_queue *tx_q;
2842 	int tmp_pay_len = 0;
2843 	u32 pay_len, mss;
2844 	u8 proto_hdr_len;
2845 	int i;
2846 
2847 	tx_q = &priv->tx_queue[queue];
2848 
2849 	/* Compute header lengths */
2850 	proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2851 
2852 	/* Desc availability based on threshold should be enough safe */
2853 	if (unlikely(stmmac_tx_avail(priv, queue) <
2854 		(((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
2855 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
2856 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
2857 								queue));
2858 			/* This is a hard error, log it. */
2859 			netdev_err(priv->dev,
2860 				   "%s: Tx Ring full when queue awake\n",
2861 				   __func__);
2862 		}
2863 		return NETDEV_TX_BUSY;
2864 	}
2865 
2866 	pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
2867 
2868 	mss = skb_shinfo(skb)->gso_size;
2869 
2870 	/* set new MSS value if needed */
2871 	if (mss != tx_q->mss) {
2872 		mss_desc = tx_q->dma_tx + tx_q->cur_tx;
2873 		stmmac_set_mss(priv, mss_desc, mss);
2874 		tx_q->mss = mss;
2875 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2876 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
2877 	}
2878 
2879 	if (netif_msg_tx_queued(priv)) {
2880 		pr_info("%s: tcphdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
2881 			__func__, tcp_hdrlen(skb), proto_hdr_len, pay_len, mss);
2882 		pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
2883 			skb->data_len);
2884 	}
2885 
2886 	first_entry = tx_q->cur_tx;
2887 	WARN_ON(tx_q->tx_skbuff[first_entry]);
2888 
2889 	desc = tx_q->dma_tx + first_entry;
2890 	first = desc;
2891 
2892 	/* first descriptor: fill Headers on Buf1 */
2893 	des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
2894 			     DMA_TO_DEVICE);
2895 	if (dma_mapping_error(priv->device, des))
2896 		goto dma_map_err;
2897 
2898 	tx_q->tx_skbuff_dma[first_entry].buf = des;
2899 	tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
2900 
2901 	first->des0 = cpu_to_le32(des);
2902 
2903 	/* Fill start of payload in buff2 of first descriptor */
2904 	if (pay_len)
2905 		first->des1 = cpu_to_le32(des + proto_hdr_len);
2906 
2907 	/* If needed take extra descriptors to fill the remaining payload */
2908 	tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
2909 
2910 	stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
2911 
2912 	/* Prepare fragments */
2913 	for (i = 0; i < nfrags; i++) {
2914 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2915 
2916 		des = skb_frag_dma_map(priv->device, frag, 0,
2917 				       skb_frag_size(frag),
2918 				       DMA_TO_DEVICE);
2919 		if (dma_mapping_error(priv->device, des))
2920 			goto dma_map_err;
2921 
2922 		stmmac_tso_allocator(priv, des, skb_frag_size(frag),
2923 				     (i == nfrags - 1), queue);
2924 
2925 		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
2926 		tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
2927 		tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
2928 	}
2929 
2930 	tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
2931 
2932 	/* Only the last descriptor gets to point to the skb. */
2933 	tx_q->tx_skbuff[tx_q->cur_tx] = skb;
2934 
2935 	/* We've used all descriptors we need for this skb, however,
2936 	 * advance cur_tx so that it references a fresh descriptor.
2937 	 * ndo_start_xmit will fill this descriptor the next time it's
2938 	 * called and stmmac_tx_clean may clean up to this descriptor.
2939 	 */
2940 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2941 
2942 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
2943 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
2944 			  __func__);
2945 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
2946 	}
2947 
2948 	dev->stats.tx_bytes += skb->len;
2949 	priv->xstats.tx_tso_frames++;
2950 	priv->xstats.tx_tso_nfrags += nfrags;
2951 
2952 	/* Manage tx mitigation */
2953 	tx_q->tx_count_frames += nfrags + 1;
2954 	if (priv->tx_coal_frames <= tx_q->tx_count_frames) {
2955 		stmmac_set_tx_ic(priv, desc);
2956 		priv->xstats.tx_set_ic_bit++;
2957 		tx_q->tx_count_frames = 0;
2958 	} else {
2959 		stmmac_tx_timer_arm(priv, queue);
2960 	}
2961 
2962 	skb_tx_timestamp(skb);
2963 
2964 	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2965 		     priv->hwts_tx_en)) {
2966 		/* declare that device is doing timestamping */
2967 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2968 		stmmac_enable_tx_timestamp(priv, first);
2969 	}
2970 
2971 	/* Complete the first descriptor before granting the DMA */
2972 	stmmac_prepare_tso_tx_desc(priv, first, 1,
2973 			proto_hdr_len,
2974 			pay_len,
2975 			1, tx_q->tx_skbuff_dma[first_entry].last_segment,
2976 			tcp_hdrlen(skb) / 4, (skb->len - proto_hdr_len));
2977 
2978 	/* If context desc is used to change MSS */
2979 	if (mss_desc) {
2980 		/* Make sure that first descriptor has been completely
2981 		 * written, including its own bit. This is because MSS is
2982 		 * actually before first descriptor, so we need to make
2983 		 * sure that MSS's own bit is the last thing written.
2984 		 */
2985 		dma_wmb();
2986 		stmmac_set_tx_owner(priv, mss_desc);
2987 	}
2988 
2989 	/* The own bit must be the latest setting done when prepare the
2990 	 * descriptor and then barrier is needed to make sure that
2991 	 * all is coherent before granting the DMA engine.
2992 	 */
2993 	wmb();
2994 
2995 	if (netif_msg_pktdata(priv)) {
2996 		pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
2997 			__func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
2998 			tx_q->cur_tx, first, nfrags);
2999 
3000 		stmmac_display_ring(priv, (void *)tx_q->dma_tx, DMA_TX_SIZE, 0);
3001 
3002 		pr_info(">>> frame to be transmitted: ");
3003 		print_pkt(skb->data, skb_headlen(skb));
3004 	}
3005 
3006 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3007 
3008 	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * sizeof(*desc));
3009 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3010 
3011 	return NETDEV_TX_OK;
3012 
3013 dma_map_err:
3014 	dev_err(priv->device, "Tx dma map failed\n");
3015 	dev_kfree_skb(skb);
3016 	priv->dev->stats.tx_dropped++;
3017 	return NETDEV_TX_OK;
3018 }
3019 
3020 /**
3021  *  stmmac_xmit - Tx entry point of the driver
3022  *  @skb : the socket buffer
3023  *  @dev : device pointer
3024  *  Description : this is the tx entry point of the driver.
3025  *  It programs the chain or the ring and supports oversized frames
3026  *  and SG feature.
3027  */
3028 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
3029 {
3030 	struct stmmac_priv *priv = netdev_priv(dev);
3031 	unsigned int nopaged_len = skb_headlen(skb);
3032 	int i, csum_insertion = 0, is_jumbo = 0;
3033 	u32 queue = skb_get_queue_mapping(skb);
3034 	int nfrags = skb_shinfo(skb)->nr_frags;
3035 	int entry;
3036 	unsigned int first_entry;
3037 	struct dma_desc *desc, *first;
3038 	struct stmmac_tx_queue *tx_q;
3039 	unsigned int enh_desc;
3040 	unsigned int des;
3041 
3042 	tx_q = &priv->tx_queue[queue];
3043 
3044 	/* Manage oversized TCP frames for GMAC4 device */
3045 	if (skb_is_gso(skb) && priv->tso) {
3046 		if (skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
3047 			return stmmac_tso_xmit(skb, dev);
3048 	}
3049 
3050 	if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
3051 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3052 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3053 								queue));
3054 			/* This is a hard error, log it. */
3055 			netdev_err(priv->dev,
3056 				   "%s: Tx Ring full when queue awake\n",
3057 				   __func__);
3058 		}
3059 		return NETDEV_TX_BUSY;
3060 	}
3061 
3062 	if (priv->tx_path_in_lpi_mode)
3063 		stmmac_disable_eee_mode(priv);
3064 
3065 	entry = tx_q->cur_tx;
3066 	first_entry = entry;
3067 	WARN_ON(tx_q->tx_skbuff[first_entry]);
3068 
3069 	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
3070 
3071 	if (likely(priv->extend_desc))
3072 		desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3073 	else
3074 		desc = tx_q->dma_tx + entry;
3075 
3076 	first = desc;
3077 
3078 	enh_desc = priv->plat->enh_desc;
3079 	/* To program the descriptors according to the size of the frame */
3080 	if (enh_desc)
3081 		is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
3082 
3083 	if (unlikely(is_jumbo)) {
3084 		entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
3085 		if (unlikely(entry < 0) && (entry != -EINVAL))
3086 			goto dma_map_err;
3087 	}
3088 
3089 	for (i = 0; i < nfrags; i++) {
3090 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3091 		int len = skb_frag_size(frag);
3092 		bool last_segment = (i == (nfrags - 1));
3093 
3094 		entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
3095 		WARN_ON(tx_q->tx_skbuff[entry]);
3096 
3097 		if (likely(priv->extend_desc))
3098 			desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3099 		else
3100 			desc = tx_q->dma_tx + entry;
3101 
3102 		des = skb_frag_dma_map(priv->device, frag, 0, len,
3103 				       DMA_TO_DEVICE);
3104 		if (dma_mapping_error(priv->device, des))
3105 			goto dma_map_err; /* should reuse desc w/o issues */
3106 
3107 		tx_q->tx_skbuff_dma[entry].buf = des;
3108 
3109 		stmmac_set_desc_addr(priv, desc, des);
3110 
3111 		tx_q->tx_skbuff_dma[entry].map_as_page = true;
3112 		tx_q->tx_skbuff_dma[entry].len = len;
3113 		tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
3114 
3115 		/* Prepare the descriptor and set the own bit too */
3116 		stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
3117 				priv->mode, 1, last_segment, skb->len);
3118 	}
3119 
3120 	/* Only the last descriptor gets to point to the skb. */
3121 	tx_q->tx_skbuff[entry] = skb;
3122 
3123 	/* We've used all descriptors we need for this skb, however,
3124 	 * advance cur_tx so that it references a fresh descriptor.
3125 	 * ndo_start_xmit will fill this descriptor the next time it's
3126 	 * called and stmmac_tx_clean may clean up to this descriptor.
3127 	 */
3128 	entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
3129 	tx_q->cur_tx = entry;
3130 
3131 	if (netif_msg_pktdata(priv)) {
3132 		void *tx_head;
3133 
3134 		netdev_dbg(priv->dev,
3135 			   "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
3136 			   __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3137 			   entry, first, nfrags);
3138 
3139 		if (priv->extend_desc)
3140 			tx_head = (void *)tx_q->dma_etx;
3141 		else
3142 			tx_head = (void *)tx_q->dma_tx;
3143 
3144 		stmmac_display_ring(priv, tx_head, DMA_TX_SIZE, false);
3145 
3146 		netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
3147 		print_pkt(skb->data, skb->len);
3148 	}
3149 
3150 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3151 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3152 			  __func__);
3153 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3154 	}
3155 
3156 	dev->stats.tx_bytes += skb->len;
3157 
3158 	/* According to the coalesce parameter the IC bit for the latest
3159 	 * segment is reset and the timer re-started to clean the tx status.
3160 	 * This approach takes care about the fragments: desc is the first
3161 	 * element in case of no SG.
3162 	 */
3163 	tx_q->tx_count_frames += nfrags + 1;
3164 	if (priv->tx_coal_frames <= tx_q->tx_count_frames) {
3165 		stmmac_set_tx_ic(priv, desc);
3166 		priv->xstats.tx_set_ic_bit++;
3167 		tx_q->tx_count_frames = 0;
3168 	} else {
3169 		stmmac_tx_timer_arm(priv, queue);
3170 	}
3171 
3172 	skb_tx_timestamp(skb);
3173 
3174 	/* Ready to fill the first descriptor and set the OWN bit w/o any
3175 	 * problems because all the descriptors are actually ready to be
3176 	 * passed to the DMA engine.
3177 	 */
3178 	if (likely(!is_jumbo)) {
3179 		bool last_segment = (nfrags == 0);
3180 
3181 		des = dma_map_single(priv->device, skb->data,
3182 				     nopaged_len, DMA_TO_DEVICE);
3183 		if (dma_mapping_error(priv->device, des))
3184 			goto dma_map_err;
3185 
3186 		tx_q->tx_skbuff_dma[first_entry].buf = des;
3187 
3188 		stmmac_set_desc_addr(priv, first, des);
3189 
3190 		tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
3191 		tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
3192 
3193 		if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3194 			     priv->hwts_tx_en)) {
3195 			/* declare that device is doing timestamping */
3196 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3197 			stmmac_enable_tx_timestamp(priv, first);
3198 		}
3199 
3200 		/* Prepare the first descriptor setting the OWN bit too */
3201 		stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
3202 				csum_insertion, priv->mode, 1, last_segment,
3203 				skb->len);
3204 
3205 		/* The own bit must be the latest setting done when prepare the
3206 		 * descriptor and then barrier is needed to make sure that
3207 		 * all is coherent before granting the DMA engine.
3208 		 */
3209 		wmb();
3210 	}
3211 
3212 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3213 
3214 	stmmac_enable_dma_transmission(priv, priv->ioaddr);
3215 
3216 	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * sizeof(*desc));
3217 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3218 
3219 	return NETDEV_TX_OK;
3220 
3221 dma_map_err:
3222 	netdev_err(priv->dev, "Tx DMA map failed\n");
3223 	dev_kfree_skb(skb);
3224 	priv->dev->stats.tx_dropped++;
3225 	return NETDEV_TX_OK;
3226 }
3227 
3228 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
3229 {
3230 	struct vlan_ethhdr *veth;
3231 	__be16 vlan_proto;
3232 	u16 vlanid;
3233 
3234 	veth = (struct vlan_ethhdr *)skb->data;
3235 	vlan_proto = veth->h_vlan_proto;
3236 
3237 	if ((vlan_proto == htons(ETH_P_8021Q) &&
3238 	     dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
3239 	    (vlan_proto == htons(ETH_P_8021AD) &&
3240 	     dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
3241 		/* pop the vlan tag */
3242 		vlanid = ntohs(veth->h_vlan_TCI);
3243 		memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
3244 		skb_pull(skb, VLAN_HLEN);
3245 		__vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
3246 	}
3247 }
3248 
3249 
3250 static inline int stmmac_rx_threshold_count(struct stmmac_rx_queue *rx_q)
3251 {
3252 	if (rx_q->rx_zeroc_thresh < STMMAC_RX_THRESH)
3253 		return 0;
3254 
3255 	return 1;
3256 }
3257 
3258 /**
3259  * stmmac_rx_refill - refill used skb preallocated buffers
3260  * @priv: driver private structure
3261  * @queue: RX queue index
3262  * Description : this is to reallocate the skb for the reception process
3263  * that is based on zero-copy.
3264  */
3265 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
3266 {
3267 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3268 	int dirty = stmmac_rx_dirty(priv, queue);
3269 	unsigned int entry = rx_q->dirty_rx;
3270 
3271 	int bfsize = priv->dma_buf_sz;
3272 
3273 	while (dirty-- > 0) {
3274 		struct dma_desc *p;
3275 
3276 		if (priv->extend_desc)
3277 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
3278 		else
3279 			p = rx_q->dma_rx + entry;
3280 
3281 		if (likely(!rx_q->rx_skbuff[entry])) {
3282 			struct sk_buff *skb;
3283 
3284 			skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
3285 			if (unlikely(!skb)) {
3286 				/* so for a while no zero-copy! */
3287 				rx_q->rx_zeroc_thresh = STMMAC_RX_THRESH;
3288 				if (unlikely(net_ratelimit()))
3289 					dev_err(priv->device,
3290 						"fail to alloc skb entry %d\n",
3291 						entry);
3292 				break;
3293 			}
3294 
3295 			rx_q->rx_skbuff[entry] = skb;
3296 			rx_q->rx_skbuff_dma[entry] =
3297 			    dma_map_single(priv->device, skb->data, bfsize,
3298 					   DMA_FROM_DEVICE);
3299 			if (dma_mapping_error(priv->device,
3300 					      rx_q->rx_skbuff_dma[entry])) {
3301 				netdev_err(priv->dev, "Rx DMA map failed\n");
3302 				dev_kfree_skb(skb);
3303 				break;
3304 			}
3305 
3306 			stmmac_set_desc_addr(priv, p, rx_q->rx_skbuff_dma[entry]);
3307 			stmmac_refill_desc3(priv, rx_q, p);
3308 
3309 			if (rx_q->rx_zeroc_thresh > 0)
3310 				rx_q->rx_zeroc_thresh--;
3311 
3312 			netif_dbg(priv, rx_status, priv->dev,
3313 				  "refill entry #%d\n", entry);
3314 		}
3315 		dma_wmb();
3316 
3317 		stmmac_set_rx_owner(priv, p, priv->use_riwt);
3318 
3319 		dma_wmb();
3320 
3321 		entry = STMMAC_GET_ENTRY(entry, DMA_RX_SIZE);
3322 	}
3323 	rx_q->dirty_rx = entry;
3324 }
3325 
3326 /**
3327  * stmmac_rx - manage the receive process
3328  * @priv: driver private structure
3329  * @limit: napi bugget
3330  * @queue: RX queue index.
3331  * Description :  this the function called by the napi poll method.
3332  * It gets all the frames inside the ring.
3333  */
3334 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
3335 {
3336 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3337 	struct stmmac_channel *ch = &priv->channel[queue];
3338 	unsigned int entry = rx_q->cur_rx;
3339 	int coe = priv->hw->rx_csum;
3340 	unsigned int next_entry;
3341 	unsigned int count = 0;
3342 	bool xmac;
3343 
3344 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
3345 
3346 	if (netif_msg_rx_status(priv)) {
3347 		void *rx_head;
3348 
3349 		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
3350 		if (priv->extend_desc)
3351 			rx_head = (void *)rx_q->dma_erx;
3352 		else
3353 			rx_head = (void *)rx_q->dma_rx;
3354 
3355 		stmmac_display_ring(priv, rx_head, DMA_RX_SIZE, true);
3356 	}
3357 	while (count < limit) {
3358 		int status;
3359 		struct dma_desc *p;
3360 		struct dma_desc *np;
3361 
3362 		if (priv->extend_desc)
3363 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
3364 		else
3365 			p = rx_q->dma_rx + entry;
3366 
3367 		/* read the status of the incoming frame */
3368 		status = stmmac_rx_status(priv, &priv->dev->stats,
3369 				&priv->xstats, p);
3370 		/* check if managed by the DMA otherwise go ahead */
3371 		if (unlikely(status & dma_own))
3372 			break;
3373 
3374 		count++;
3375 
3376 		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, DMA_RX_SIZE);
3377 		next_entry = rx_q->cur_rx;
3378 
3379 		if (priv->extend_desc)
3380 			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
3381 		else
3382 			np = rx_q->dma_rx + next_entry;
3383 
3384 		prefetch(np);
3385 
3386 		if (priv->extend_desc)
3387 			stmmac_rx_extended_status(priv, &priv->dev->stats,
3388 					&priv->xstats, rx_q->dma_erx + entry);
3389 		if (unlikely(status == discard_frame)) {
3390 			priv->dev->stats.rx_errors++;
3391 			if (priv->hwts_rx_en && !priv->extend_desc) {
3392 				/* DESC2 & DESC3 will be overwritten by device
3393 				 * with timestamp value, hence reinitialize
3394 				 * them in stmmac_rx_refill() function so that
3395 				 * device can reuse it.
3396 				 */
3397 				dev_kfree_skb_any(rx_q->rx_skbuff[entry]);
3398 				rx_q->rx_skbuff[entry] = NULL;
3399 				dma_unmap_single(priv->device,
3400 						 rx_q->rx_skbuff_dma[entry],
3401 						 priv->dma_buf_sz,
3402 						 DMA_FROM_DEVICE);
3403 			}
3404 		} else {
3405 			struct sk_buff *skb;
3406 			int frame_len;
3407 			unsigned int des;
3408 
3409 			stmmac_get_desc_addr(priv, p, &des);
3410 			frame_len = stmmac_get_rx_frame_len(priv, p, coe);
3411 
3412 			/*  If frame length is greater than skb buffer size
3413 			 *  (preallocated during init) then the packet is
3414 			 *  ignored
3415 			 */
3416 			if (frame_len > priv->dma_buf_sz) {
3417 				netdev_err(priv->dev,
3418 					   "len %d larger than size (%d)\n",
3419 					   frame_len, priv->dma_buf_sz);
3420 				priv->dev->stats.rx_length_errors++;
3421 				break;
3422 			}
3423 
3424 			/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
3425 			 * Type frames (LLC/LLC-SNAP)
3426 			 *
3427 			 * llc_snap is never checked in GMAC >= 4, so this ACS
3428 			 * feature is always disabled and packets need to be
3429 			 * stripped manually.
3430 			 */
3431 			if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
3432 			    unlikely(status != llc_snap))
3433 				frame_len -= ETH_FCS_LEN;
3434 
3435 			if (netif_msg_rx_status(priv)) {
3436 				netdev_dbg(priv->dev, "\tdesc: %p [entry %d] buff=0x%x\n",
3437 					   p, entry, des);
3438 				netdev_dbg(priv->dev, "frame size %d, COE: %d\n",
3439 					   frame_len, status);
3440 			}
3441 
3442 			/* The zero-copy is always used for all the sizes
3443 			 * in case of GMAC4 because it needs
3444 			 * to refill the used descriptors, always.
3445 			 */
3446 			if (unlikely(!xmac &&
3447 				     ((frame_len < priv->rx_copybreak) ||
3448 				     stmmac_rx_threshold_count(rx_q)))) {
3449 				skb = netdev_alloc_skb_ip_align(priv->dev,
3450 								frame_len);
3451 				if (unlikely(!skb)) {
3452 					if (net_ratelimit())
3453 						dev_warn(priv->device,
3454 							 "packet dropped\n");
3455 					priv->dev->stats.rx_dropped++;
3456 					break;
3457 				}
3458 
3459 				dma_sync_single_for_cpu(priv->device,
3460 							rx_q->rx_skbuff_dma
3461 							[entry], frame_len,
3462 							DMA_FROM_DEVICE);
3463 				skb_copy_to_linear_data(skb,
3464 							rx_q->
3465 							rx_skbuff[entry]->data,
3466 							frame_len);
3467 
3468 				skb_put(skb, frame_len);
3469 				dma_sync_single_for_device(priv->device,
3470 							   rx_q->rx_skbuff_dma
3471 							   [entry], frame_len,
3472 							   DMA_FROM_DEVICE);
3473 			} else {
3474 				skb = rx_q->rx_skbuff[entry];
3475 				if (unlikely(!skb)) {
3476 					netdev_err(priv->dev,
3477 						   "%s: Inconsistent Rx chain\n",
3478 						   priv->dev->name);
3479 					priv->dev->stats.rx_dropped++;
3480 					break;
3481 				}
3482 				prefetch(skb->data - NET_IP_ALIGN);
3483 				rx_q->rx_skbuff[entry] = NULL;
3484 				rx_q->rx_zeroc_thresh++;
3485 
3486 				skb_put(skb, frame_len);
3487 				dma_unmap_single(priv->device,
3488 						 rx_q->rx_skbuff_dma[entry],
3489 						 priv->dma_buf_sz,
3490 						 DMA_FROM_DEVICE);
3491 			}
3492 
3493 			if (netif_msg_pktdata(priv)) {
3494 				netdev_dbg(priv->dev, "frame received (%dbytes)",
3495 					   frame_len);
3496 				print_pkt(skb->data, frame_len);
3497 			}
3498 
3499 			stmmac_get_rx_hwtstamp(priv, p, np, skb);
3500 
3501 			stmmac_rx_vlan(priv->dev, skb);
3502 
3503 			skb->protocol = eth_type_trans(skb, priv->dev);
3504 
3505 			if (unlikely(!coe))
3506 				skb_checksum_none_assert(skb);
3507 			else
3508 				skb->ip_summed = CHECKSUM_UNNECESSARY;
3509 
3510 			napi_gro_receive(&ch->napi, skb);
3511 
3512 			priv->dev->stats.rx_packets++;
3513 			priv->dev->stats.rx_bytes += frame_len;
3514 		}
3515 		entry = next_entry;
3516 	}
3517 
3518 	stmmac_rx_refill(priv, queue);
3519 
3520 	priv->xstats.rx_pkt_n += count;
3521 
3522 	return count;
3523 }
3524 
3525 /**
3526  *  stmmac_poll - stmmac poll method (NAPI)
3527  *  @napi : pointer to the napi structure.
3528  *  @budget : maximum number of packets that the current CPU can receive from
3529  *	      all interfaces.
3530  *  Description :
3531  *  To look at the incoming frames and clear the tx resources.
3532  */
3533 static int stmmac_napi_poll(struct napi_struct *napi, int budget)
3534 {
3535 	struct stmmac_channel *ch =
3536 		container_of(napi, struct stmmac_channel, napi);
3537 	struct stmmac_priv *priv = ch->priv_data;
3538 	int work_done = 0, work_rem = budget;
3539 	u32 chan = ch->index;
3540 
3541 	priv->xstats.napi_poll++;
3542 
3543 	if (ch->has_tx) {
3544 		int done = stmmac_tx_clean(priv, work_rem, chan);
3545 
3546 		work_done += done;
3547 		work_rem -= done;
3548 	}
3549 
3550 	if (ch->has_rx) {
3551 		int done = stmmac_rx(priv, work_rem, chan);
3552 
3553 		work_done += done;
3554 		work_rem -= done;
3555 	}
3556 
3557 	if (work_done < budget && napi_complete_done(napi, work_done))
3558 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan);
3559 
3560 	return work_done;
3561 }
3562 
3563 /**
3564  *  stmmac_tx_timeout
3565  *  @dev : Pointer to net device structure
3566  *  Description: this function is called when a packet transmission fails to
3567  *   complete within a reasonable time. The driver will mark the error in the
3568  *   netdev structure and arrange for the device to be reset to a sane state
3569  *   in order to transmit a new packet.
3570  */
3571 static void stmmac_tx_timeout(struct net_device *dev)
3572 {
3573 	struct stmmac_priv *priv = netdev_priv(dev);
3574 
3575 	stmmac_global_err(priv);
3576 }
3577 
3578 /**
3579  *  stmmac_set_rx_mode - entry point for multicast addressing
3580  *  @dev : pointer to the device structure
3581  *  Description:
3582  *  This function is a driver entry point which gets called by the kernel
3583  *  whenever multicast addresses must be enabled/disabled.
3584  *  Return value:
3585  *  void.
3586  */
3587 static void stmmac_set_rx_mode(struct net_device *dev)
3588 {
3589 	struct stmmac_priv *priv = netdev_priv(dev);
3590 
3591 	stmmac_set_filter(priv, priv->hw, dev);
3592 }
3593 
3594 /**
3595  *  stmmac_change_mtu - entry point to change MTU size for the device.
3596  *  @dev : device pointer.
3597  *  @new_mtu : the new MTU size for the device.
3598  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
3599  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
3600  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
3601  *  Return value:
3602  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3603  *  file on failure.
3604  */
3605 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
3606 {
3607 	struct stmmac_priv *priv = netdev_priv(dev);
3608 
3609 	if (netif_running(dev)) {
3610 		netdev_err(priv->dev, "must be stopped to change its MTU\n");
3611 		return -EBUSY;
3612 	}
3613 
3614 	dev->mtu = new_mtu;
3615 
3616 	netdev_update_features(dev);
3617 
3618 	return 0;
3619 }
3620 
3621 static netdev_features_t stmmac_fix_features(struct net_device *dev,
3622 					     netdev_features_t features)
3623 {
3624 	struct stmmac_priv *priv = netdev_priv(dev);
3625 
3626 	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
3627 		features &= ~NETIF_F_RXCSUM;
3628 
3629 	if (!priv->plat->tx_coe)
3630 		features &= ~NETIF_F_CSUM_MASK;
3631 
3632 	/* Some GMAC devices have a bugged Jumbo frame support that
3633 	 * needs to have the Tx COE disabled for oversized frames
3634 	 * (due to limited buffer sizes). In this case we disable
3635 	 * the TX csum insertion in the TDES and not use SF.
3636 	 */
3637 	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
3638 		features &= ~NETIF_F_CSUM_MASK;
3639 
3640 	/* Disable tso if asked by ethtool */
3641 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
3642 		if (features & NETIF_F_TSO)
3643 			priv->tso = true;
3644 		else
3645 			priv->tso = false;
3646 	}
3647 
3648 	return features;
3649 }
3650 
3651 static int stmmac_set_features(struct net_device *netdev,
3652 			       netdev_features_t features)
3653 {
3654 	struct stmmac_priv *priv = netdev_priv(netdev);
3655 
3656 	/* Keep the COE Type in case of csum is supporting */
3657 	if (features & NETIF_F_RXCSUM)
3658 		priv->hw->rx_csum = priv->plat->rx_coe;
3659 	else
3660 		priv->hw->rx_csum = 0;
3661 	/* No check needed because rx_coe has been set before and it will be
3662 	 * fixed in case of issue.
3663 	 */
3664 	stmmac_rx_ipc(priv, priv->hw);
3665 
3666 	return 0;
3667 }
3668 
3669 /**
3670  *  stmmac_interrupt - main ISR
3671  *  @irq: interrupt number.
3672  *  @dev_id: to pass the net device pointer.
3673  *  Description: this is the main driver interrupt service routine.
3674  *  It can call:
3675  *  o DMA service routine (to manage incoming frame reception and transmission
3676  *    status)
3677  *  o Core interrupts to manage: remote wake-up, management counter, LPI
3678  *    interrupts.
3679  */
3680 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
3681 {
3682 	struct net_device *dev = (struct net_device *)dev_id;
3683 	struct stmmac_priv *priv = netdev_priv(dev);
3684 	u32 rx_cnt = priv->plat->rx_queues_to_use;
3685 	u32 tx_cnt = priv->plat->tx_queues_to_use;
3686 	u32 queues_count;
3687 	u32 queue;
3688 	bool xmac;
3689 
3690 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
3691 	queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
3692 
3693 	if (priv->irq_wake)
3694 		pm_wakeup_event(priv->device, 0);
3695 
3696 	if (unlikely(!dev)) {
3697 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
3698 		return IRQ_NONE;
3699 	}
3700 
3701 	/* Check if adapter is up */
3702 	if (test_bit(STMMAC_DOWN, &priv->state))
3703 		return IRQ_HANDLED;
3704 	/* Check if a fatal error happened */
3705 	if (stmmac_safety_feat_interrupt(priv))
3706 		return IRQ_HANDLED;
3707 
3708 	/* To handle GMAC own interrupts */
3709 	if ((priv->plat->has_gmac) || xmac) {
3710 		int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
3711 		int mtl_status;
3712 
3713 		if (unlikely(status)) {
3714 			/* For LPI we need to save the tx status */
3715 			if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
3716 				priv->tx_path_in_lpi_mode = true;
3717 			if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
3718 				priv->tx_path_in_lpi_mode = false;
3719 		}
3720 
3721 		for (queue = 0; queue < queues_count; queue++) {
3722 			struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3723 
3724 			mtl_status = stmmac_host_mtl_irq_status(priv, priv->hw,
3725 								queue);
3726 			if (mtl_status != -EINVAL)
3727 				status |= mtl_status;
3728 
3729 			if (status & CORE_IRQ_MTL_RX_OVERFLOW)
3730 				stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
3731 						       rx_q->rx_tail_addr,
3732 						       queue);
3733 		}
3734 
3735 		/* PCS link status */
3736 		if (priv->hw->pcs) {
3737 			if (priv->xstats.pcs_link)
3738 				netif_carrier_on(dev);
3739 			else
3740 				netif_carrier_off(dev);
3741 		}
3742 	}
3743 
3744 	/* To handle DMA interrupts */
3745 	stmmac_dma_interrupt(priv);
3746 
3747 	return IRQ_HANDLED;
3748 }
3749 
3750 #ifdef CONFIG_NET_POLL_CONTROLLER
3751 /* Polling receive - used by NETCONSOLE and other diagnostic tools
3752  * to allow network I/O with interrupts disabled.
3753  */
3754 static void stmmac_poll_controller(struct net_device *dev)
3755 {
3756 	disable_irq(dev->irq);
3757 	stmmac_interrupt(dev->irq, dev);
3758 	enable_irq(dev->irq);
3759 }
3760 #endif
3761 
3762 /**
3763  *  stmmac_ioctl - Entry point for the Ioctl
3764  *  @dev: Device pointer.
3765  *  @rq: An IOCTL specefic structure, that can contain a pointer to
3766  *  a proprietary structure used to pass information to the driver.
3767  *  @cmd: IOCTL command
3768  *  Description:
3769  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
3770  */
3771 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3772 {
3773 	int ret = -EOPNOTSUPP;
3774 
3775 	if (!netif_running(dev))
3776 		return -EINVAL;
3777 
3778 	switch (cmd) {
3779 	case SIOCGMIIPHY:
3780 	case SIOCGMIIREG:
3781 	case SIOCSMIIREG:
3782 		if (!dev->phydev)
3783 			return -EINVAL;
3784 		ret = phy_mii_ioctl(dev->phydev, rq, cmd);
3785 		break;
3786 	case SIOCSHWTSTAMP:
3787 		ret = stmmac_hwtstamp_ioctl(dev, rq);
3788 		break;
3789 	default:
3790 		break;
3791 	}
3792 
3793 	return ret;
3794 }
3795 
3796 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
3797 				    void *cb_priv)
3798 {
3799 	struct stmmac_priv *priv = cb_priv;
3800 	int ret = -EOPNOTSUPP;
3801 
3802 	stmmac_disable_all_queues(priv);
3803 
3804 	switch (type) {
3805 	case TC_SETUP_CLSU32:
3806 		if (tc_cls_can_offload_and_chain0(priv->dev, type_data))
3807 			ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
3808 		break;
3809 	default:
3810 		break;
3811 	}
3812 
3813 	stmmac_enable_all_queues(priv);
3814 	return ret;
3815 }
3816 
3817 static int stmmac_setup_tc_block(struct stmmac_priv *priv,
3818 				 struct tc_block_offload *f)
3819 {
3820 	if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
3821 		return -EOPNOTSUPP;
3822 
3823 	switch (f->command) {
3824 	case TC_BLOCK_BIND:
3825 		return tcf_block_cb_register(f->block, stmmac_setup_tc_block_cb,
3826 				priv, priv, f->extack);
3827 	case TC_BLOCK_UNBIND:
3828 		tcf_block_cb_unregister(f->block, stmmac_setup_tc_block_cb, priv);
3829 		return 0;
3830 	default:
3831 		return -EOPNOTSUPP;
3832 	}
3833 }
3834 
3835 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
3836 			   void *type_data)
3837 {
3838 	struct stmmac_priv *priv = netdev_priv(ndev);
3839 
3840 	switch (type) {
3841 	case TC_SETUP_BLOCK:
3842 		return stmmac_setup_tc_block(priv, type_data);
3843 	case TC_SETUP_QDISC_CBS:
3844 		return stmmac_tc_setup_cbs(priv, priv, type_data);
3845 	default:
3846 		return -EOPNOTSUPP;
3847 	}
3848 }
3849 
3850 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
3851 {
3852 	struct stmmac_priv *priv = netdev_priv(ndev);
3853 	int ret = 0;
3854 
3855 	ret = eth_mac_addr(ndev, addr);
3856 	if (ret)
3857 		return ret;
3858 
3859 	stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
3860 
3861 	return ret;
3862 }
3863 
3864 #ifdef CONFIG_DEBUG_FS
3865 static struct dentry *stmmac_fs_dir;
3866 
3867 static void sysfs_display_ring(void *head, int size, int extend_desc,
3868 			       struct seq_file *seq)
3869 {
3870 	int i;
3871 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
3872 	struct dma_desc *p = (struct dma_desc *)head;
3873 
3874 	for (i = 0; i < size; i++) {
3875 		if (extend_desc) {
3876 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
3877 				   i, (unsigned int)virt_to_phys(ep),
3878 				   le32_to_cpu(ep->basic.des0),
3879 				   le32_to_cpu(ep->basic.des1),
3880 				   le32_to_cpu(ep->basic.des2),
3881 				   le32_to_cpu(ep->basic.des3));
3882 			ep++;
3883 		} else {
3884 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
3885 				   i, (unsigned int)virt_to_phys(p),
3886 				   le32_to_cpu(p->des0), le32_to_cpu(p->des1),
3887 				   le32_to_cpu(p->des2), le32_to_cpu(p->des3));
3888 			p++;
3889 		}
3890 		seq_printf(seq, "\n");
3891 	}
3892 }
3893 
3894 static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
3895 {
3896 	struct net_device *dev = seq->private;
3897 	struct stmmac_priv *priv = netdev_priv(dev);
3898 	u32 rx_count = priv->plat->rx_queues_to_use;
3899 	u32 tx_count = priv->plat->tx_queues_to_use;
3900 	u32 queue;
3901 
3902 	for (queue = 0; queue < rx_count; queue++) {
3903 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3904 
3905 		seq_printf(seq, "RX Queue %d:\n", queue);
3906 
3907 		if (priv->extend_desc) {
3908 			seq_printf(seq, "Extended descriptor ring:\n");
3909 			sysfs_display_ring((void *)rx_q->dma_erx,
3910 					   DMA_RX_SIZE, 1, seq);
3911 		} else {
3912 			seq_printf(seq, "Descriptor ring:\n");
3913 			sysfs_display_ring((void *)rx_q->dma_rx,
3914 					   DMA_RX_SIZE, 0, seq);
3915 		}
3916 	}
3917 
3918 	for (queue = 0; queue < tx_count; queue++) {
3919 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
3920 
3921 		seq_printf(seq, "TX Queue %d:\n", queue);
3922 
3923 		if (priv->extend_desc) {
3924 			seq_printf(seq, "Extended descriptor ring:\n");
3925 			sysfs_display_ring((void *)tx_q->dma_etx,
3926 					   DMA_TX_SIZE, 1, seq);
3927 		} else {
3928 			seq_printf(seq, "Descriptor ring:\n");
3929 			sysfs_display_ring((void *)tx_q->dma_tx,
3930 					   DMA_TX_SIZE, 0, seq);
3931 		}
3932 	}
3933 
3934 	return 0;
3935 }
3936 
3937 static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
3938 {
3939 	return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
3940 }
3941 
3942 /* Debugfs files, should appear in /sys/kernel/debug/stmmaceth/eth0 */
3943 
3944 static const struct file_operations stmmac_rings_status_fops = {
3945 	.owner = THIS_MODULE,
3946 	.open = stmmac_sysfs_ring_open,
3947 	.read = seq_read,
3948 	.llseek = seq_lseek,
3949 	.release = single_release,
3950 };
3951 
3952 static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
3953 {
3954 	struct net_device *dev = seq->private;
3955 	struct stmmac_priv *priv = netdev_priv(dev);
3956 
3957 	if (!priv->hw_cap_support) {
3958 		seq_printf(seq, "DMA HW features not supported\n");
3959 		return 0;
3960 	}
3961 
3962 	seq_printf(seq, "==============================\n");
3963 	seq_printf(seq, "\tDMA HW features\n");
3964 	seq_printf(seq, "==============================\n");
3965 
3966 	seq_printf(seq, "\t10/100 Mbps: %s\n",
3967 		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
3968 	seq_printf(seq, "\t1000 Mbps: %s\n",
3969 		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
3970 	seq_printf(seq, "\tHalf duplex: %s\n",
3971 		   (priv->dma_cap.half_duplex) ? "Y" : "N");
3972 	seq_printf(seq, "\tHash Filter: %s\n",
3973 		   (priv->dma_cap.hash_filter) ? "Y" : "N");
3974 	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
3975 		   (priv->dma_cap.multi_addr) ? "Y" : "N");
3976 	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
3977 		   (priv->dma_cap.pcs) ? "Y" : "N");
3978 	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
3979 		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
3980 	seq_printf(seq, "\tPMT Remote wake up: %s\n",
3981 		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
3982 	seq_printf(seq, "\tPMT Magic Frame: %s\n",
3983 		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
3984 	seq_printf(seq, "\tRMON module: %s\n",
3985 		   (priv->dma_cap.rmon) ? "Y" : "N");
3986 	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
3987 		   (priv->dma_cap.time_stamp) ? "Y" : "N");
3988 	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
3989 		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
3990 	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
3991 		   (priv->dma_cap.eee) ? "Y" : "N");
3992 	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
3993 	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
3994 		   (priv->dma_cap.tx_coe) ? "Y" : "N");
3995 	if (priv->synopsys_id >= DWMAC_CORE_4_00) {
3996 		seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
3997 			   (priv->dma_cap.rx_coe) ? "Y" : "N");
3998 	} else {
3999 		seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
4000 			   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
4001 		seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
4002 			   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
4003 	}
4004 	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
4005 		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
4006 	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
4007 		   priv->dma_cap.number_rx_channel);
4008 	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
4009 		   priv->dma_cap.number_tx_channel);
4010 	seq_printf(seq, "\tEnhanced descriptors: %s\n",
4011 		   (priv->dma_cap.enh_desc) ? "Y" : "N");
4012 
4013 	return 0;
4014 }
4015 
4016 static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
4017 {
4018 	return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
4019 }
4020 
4021 static const struct file_operations stmmac_dma_cap_fops = {
4022 	.owner = THIS_MODULE,
4023 	.open = stmmac_sysfs_dma_cap_open,
4024 	.read = seq_read,
4025 	.llseek = seq_lseek,
4026 	.release = single_release,
4027 };
4028 
4029 static int stmmac_init_fs(struct net_device *dev)
4030 {
4031 	struct stmmac_priv *priv = netdev_priv(dev);
4032 
4033 	/* Create per netdev entries */
4034 	priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
4035 
4036 	if (!priv->dbgfs_dir || IS_ERR(priv->dbgfs_dir)) {
4037 		netdev_err(priv->dev, "ERROR failed to create debugfs directory\n");
4038 
4039 		return -ENOMEM;
4040 	}
4041 
4042 	/* Entry to report DMA RX/TX rings */
4043 	priv->dbgfs_rings_status =
4044 		debugfs_create_file("descriptors_status", 0444,
4045 				    priv->dbgfs_dir, dev,
4046 				    &stmmac_rings_status_fops);
4047 
4048 	if (!priv->dbgfs_rings_status || IS_ERR(priv->dbgfs_rings_status)) {
4049 		netdev_err(priv->dev, "ERROR creating stmmac ring debugfs file\n");
4050 		debugfs_remove_recursive(priv->dbgfs_dir);
4051 
4052 		return -ENOMEM;
4053 	}
4054 
4055 	/* Entry to report the DMA HW features */
4056 	priv->dbgfs_dma_cap = debugfs_create_file("dma_cap", 0444,
4057 						  priv->dbgfs_dir,
4058 						  dev, &stmmac_dma_cap_fops);
4059 
4060 	if (!priv->dbgfs_dma_cap || IS_ERR(priv->dbgfs_dma_cap)) {
4061 		netdev_err(priv->dev, "ERROR creating stmmac MMC debugfs file\n");
4062 		debugfs_remove_recursive(priv->dbgfs_dir);
4063 
4064 		return -ENOMEM;
4065 	}
4066 
4067 	return 0;
4068 }
4069 
4070 static void stmmac_exit_fs(struct net_device *dev)
4071 {
4072 	struct stmmac_priv *priv = netdev_priv(dev);
4073 
4074 	debugfs_remove_recursive(priv->dbgfs_dir);
4075 }
4076 #endif /* CONFIG_DEBUG_FS */
4077 
4078 static const struct net_device_ops stmmac_netdev_ops = {
4079 	.ndo_open = stmmac_open,
4080 	.ndo_start_xmit = stmmac_xmit,
4081 	.ndo_stop = stmmac_release,
4082 	.ndo_change_mtu = stmmac_change_mtu,
4083 	.ndo_fix_features = stmmac_fix_features,
4084 	.ndo_set_features = stmmac_set_features,
4085 	.ndo_set_rx_mode = stmmac_set_rx_mode,
4086 	.ndo_tx_timeout = stmmac_tx_timeout,
4087 	.ndo_do_ioctl = stmmac_ioctl,
4088 	.ndo_setup_tc = stmmac_setup_tc,
4089 #ifdef CONFIG_NET_POLL_CONTROLLER
4090 	.ndo_poll_controller = stmmac_poll_controller,
4091 #endif
4092 	.ndo_set_mac_address = stmmac_set_mac_address,
4093 };
4094 
4095 static void stmmac_reset_subtask(struct stmmac_priv *priv)
4096 {
4097 	if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
4098 		return;
4099 	if (test_bit(STMMAC_DOWN, &priv->state))
4100 		return;
4101 
4102 	netdev_err(priv->dev, "Reset adapter.\n");
4103 
4104 	rtnl_lock();
4105 	netif_trans_update(priv->dev);
4106 	while (test_and_set_bit(STMMAC_RESETING, &priv->state))
4107 		usleep_range(1000, 2000);
4108 
4109 	set_bit(STMMAC_DOWN, &priv->state);
4110 	dev_close(priv->dev);
4111 	dev_open(priv->dev);
4112 	clear_bit(STMMAC_DOWN, &priv->state);
4113 	clear_bit(STMMAC_RESETING, &priv->state);
4114 	rtnl_unlock();
4115 }
4116 
4117 static void stmmac_service_task(struct work_struct *work)
4118 {
4119 	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
4120 			service_task);
4121 
4122 	stmmac_reset_subtask(priv);
4123 	clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
4124 }
4125 
4126 /**
4127  *  stmmac_hw_init - Init the MAC device
4128  *  @priv: driver private structure
4129  *  Description: this function is to configure the MAC device according to
4130  *  some platform parameters or the HW capability register. It prepares the
4131  *  driver to use either ring or chain modes and to setup either enhanced or
4132  *  normal descriptors.
4133  */
4134 static int stmmac_hw_init(struct stmmac_priv *priv)
4135 {
4136 	int ret;
4137 
4138 	/* dwmac-sun8i only work in chain mode */
4139 	if (priv->plat->has_sun8i)
4140 		chain_mode = 1;
4141 	priv->chain_mode = chain_mode;
4142 
4143 	/* Initialize HW Interface */
4144 	ret = stmmac_hwif_init(priv);
4145 	if (ret)
4146 		return ret;
4147 
4148 	/* Get the HW capability (new GMAC newer than 3.50a) */
4149 	priv->hw_cap_support = stmmac_get_hw_features(priv);
4150 	if (priv->hw_cap_support) {
4151 		dev_info(priv->device, "DMA HW capability register supported\n");
4152 
4153 		/* We can override some gmac/dma configuration fields: e.g.
4154 		 * enh_desc, tx_coe (e.g. that are passed through the
4155 		 * platform) with the values from the HW capability
4156 		 * register (if supported).
4157 		 */
4158 		priv->plat->enh_desc = priv->dma_cap.enh_desc;
4159 		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
4160 		priv->hw->pmt = priv->plat->pmt;
4161 
4162 		/* TXCOE doesn't work in thresh DMA mode */
4163 		if (priv->plat->force_thresh_dma_mode)
4164 			priv->plat->tx_coe = 0;
4165 		else
4166 			priv->plat->tx_coe = priv->dma_cap.tx_coe;
4167 
4168 		/* In case of GMAC4 rx_coe is from HW cap register. */
4169 		priv->plat->rx_coe = priv->dma_cap.rx_coe;
4170 
4171 		if (priv->dma_cap.rx_coe_type2)
4172 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
4173 		else if (priv->dma_cap.rx_coe_type1)
4174 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
4175 
4176 	} else {
4177 		dev_info(priv->device, "No HW DMA feature register supported\n");
4178 	}
4179 
4180 	if (priv->plat->rx_coe) {
4181 		priv->hw->rx_csum = priv->plat->rx_coe;
4182 		dev_info(priv->device, "RX Checksum Offload Engine supported\n");
4183 		if (priv->synopsys_id < DWMAC_CORE_4_00)
4184 			dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
4185 	}
4186 	if (priv->plat->tx_coe)
4187 		dev_info(priv->device, "TX Checksum insertion supported\n");
4188 
4189 	if (priv->plat->pmt) {
4190 		dev_info(priv->device, "Wake-Up On Lan supported\n");
4191 		device_set_wakeup_capable(priv->device, 1);
4192 	}
4193 
4194 	if (priv->dma_cap.tsoen)
4195 		dev_info(priv->device, "TSO supported\n");
4196 
4197 	/* Run HW quirks, if any */
4198 	if (priv->hwif_quirks) {
4199 		ret = priv->hwif_quirks(priv);
4200 		if (ret)
4201 			return ret;
4202 	}
4203 
4204 	return 0;
4205 }
4206 
4207 /**
4208  * stmmac_dvr_probe
4209  * @device: device pointer
4210  * @plat_dat: platform data pointer
4211  * @res: stmmac resource pointer
4212  * Description: this is the main probe function used to
4213  * call the alloc_etherdev, allocate the priv structure.
4214  * Return:
4215  * returns 0 on success, otherwise errno.
4216  */
4217 int stmmac_dvr_probe(struct device *device,
4218 		     struct plat_stmmacenet_data *plat_dat,
4219 		     struct stmmac_resources *res)
4220 {
4221 	struct net_device *ndev = NULL;
4222 	struct stmmac_priv *priv;
4223 	u32 queue, maxq;
4224 	int ret = 0;
4225 
4226 	ndev = alloc_etherdev_mqs(sizeof(struct stmmac_priv),
4227 				  MTL_MAX_TX_QUEUES,
4228 				  MTL_MAX_RX_QUEUES);
4229 	if (!ndev)
4230 		return -ENOMEM;
4231 
4232 	SET_NETDEV_DEV(ndev, device);
4233 
4234 	priv = netdev_priv(ndev);
4235 	priv->device = device;
4236 	priv->dev = ndev;
4237 
4238 	stmmac_set_ethtool_ops(ndev);
4239 	priv->pause = pause;
4240 	priv->plat = plat_dat;
4241 	priv->ioaddr = res->addr;
4242 	priv->dev->base_addr = (unsigned long)res->addr;
4243 
4244 	priv->dev->irq = res->irq;
4245 	priv->wol_irq = res->wol_irq;
4246 	priv->lpi_irq = res->lpi_irq;
4247 
4248 	if (res->mac)
4249 		memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
4250 
4251 	dev_set_drvdata(device, priv->dev);
4252 
4253 	/* Verify driver arguments */
4254 	stmmac_verify_args();
4255 
4256 	/* Allocate workqueue */
4257 	priv->wq = create_singlethread_workqueue("stmmac_wq");
4258 	if (!priv->wq) {
4259 		dev_err(priv->device, "failed to create workqueue\n");
4260 		goto error_wq;
4261 	}
4262 
4263 	INIT_WORK(&priv->service_task, stmmac_service_task);
4264 
4265 	/* Override with kernel parameters if supplied XXX CRS XXX
4266 	 * this needs to have multiple instances
4267 	 */
4268 	if ((phyaddr >= 0) && (phyaddr <= 31))
4269 		priv->plat->phy_addr = phyaddr;
4270 
4271 	if (priv->plat->stmmac_rst) {
4272 		ret = reset_control_assert(priv->plat->stmmac_rst);
4273 		reset_control_deassert(priv->plat->stmmac_rst);
4274 		/* Some reset controllers have only reset callback instead of
4275 		 * assert + deassert callbacks pair.
4276 		 */
4277 		if (ret == -ENOTSUPP)
4278 			reset_control_reset(priv->plat->stmmac_rst);
4279 	}
4280 
4281 	/* Init MAC and get the capabilities */
4282 	ret = stmmac_hw_init(priv);
4283 	if (ret)
4284 		goto error_hw_init;
4285 
4286 	/* Configure real RX and TX queues */
4287 	netif_set_real_num_rx_queues(ndev, priv->plat->rx_queues_to_use);
4288 	netif_set_real_num_tx_queues(ndev, priv->plat->tx_queues_to_use);
4289 
4290 	ndev->netdev_ops = &stmmac_netdev_ops;
4291 
4292 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4293 			    NETIF_F_RXCSUM;
4294 
4295 	ret = stmmac_tc_init(priv, priv);
4296 	if (!ret) {
4297 		ndev->hw_features |= NETIF_F_HW_TC;
4298 	}
4299 
4300 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
4301 		ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
4302 		priv->tso = true;
4303 		dev_info(priv->device, "TSO feature enabled\n");
4304 	}
4305 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
4306 	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
4307 #ifdef STMMAC_VLAN_TAG_USED
4308 	/* Both mac100 and gmac support receive VLAN tag detection */
4309 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
4310 #endif
4311 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
4312 
4313 	/* MTU range: 46 - hw-specific max */
4314 	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
4315 	if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
4316 		ndev->max_mtu = JUMBO_LEN;
4317 	else if (priv->plat->has_xgmac)
4318 		ndev->max_mtu = XGMAC_JUMBO_LEN;
4319 	else
4320 		ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
4321 	/* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
4322 	 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
4323 	 */
4324 	if ((priv->plat->maxmtu < ndev->max_mtu) &&
4325 	    (priv->plat->maxmtu >= ndev->min_mtu))
4326 		ndev->max_mtu = priv->plat->maxmtu;
4327 	else if (priv->plat->maxmtu < ndev->min_mtu)
4328 		dev_warn(priv->device,
4329 			 "%s: warning: maxmtu having invalid value (%d)\n",
4330 			 __func__, priv->plat->maxmtu);
4331 
4332 	if (flow_ctrl)
4333 		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
4334 
4335 	/* Rx Watchdog is available in the COREs newer than the 3.40.
4336 	 * In some case, for example on bugged HW this feature
4337 	 * has to be disable and this can be done by passing the
4338 	 * riwt_off field from the platform.
4339 	 */
4340 	if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
4341 	    (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
4342 		priv->use_riwt = 1;
4343 		dev_info(priv->device,
4344 			 "Enable RX Mitigation via HW Watchdog Timer\n");
4345 	}
4346 
4347 	/* Setup channels NAPI */
4348 	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
4349 
4350 	for (queue = 0; queue < maxq; queue++) {
4351 		struct stmmac_channel *ch = &priv->channel[queue];
4352 
4353 		ch->priv_data = priv;
4354 		ch->index = queue;
4355 
4356 		if (queue < priv->plat->rx_queues_to_use)
4357 			ch->has_rx = true;
4358 		if (queue < priv->plat->tx_queues_to_use)
4359 			ch->has_tx = true;
4360 
4361 		netif_napi_add(ndev, &ch->napi, stmmac_napi_poll,
4362 			       NAPI_POLL_WEIGHT);
4363 	}
4364 
4365 	mutex_init(&priv->lock);
4366 
4367 	/* If a specific clk_csr value is passed from the platform
4368 	 * this means that the CSR Clock Range selection cannot be
4369 	 * changed at run-time and it is fixed. Viceversa the driver'll try to
4370 	 * set the MDC clock dynamically according to the csr actual
4371 	 * clock input.
4372 	 */
4373 	if (!priv->plat->clk_csr)
4374 		stmmac_clk_csr_set(priv);
4375 	else
4376 		priv->clk_csr = priv->plat->clk_csr;
4377 
4378 	stmmac_check_pcs_mode(priv);
4379 
4380 	if (priv->hw->pcs != STMMAC_PCS_RGMII  &&
4381 	    priv->hw->pcs != STMMAC_PCS_TBI &&
4382 	    priv->hw->pcs != STMMAC_PCS_RTBI) {
4383 		/* MDIO bus Registration */
4384 		ret = stmmac_mdio_register(ndev);
4385 		if (ret < 0) {
4386 			dev_err(priv->device,
4387 				"%s: MDIO bus (id: %d) registration failed",
4388 				__func__, priv->plat->bus_id);
4389 			goto error_mdio_register;
4390 		}
4391 	}
4392 
4393 	ret = register_netdev(ndev);
4394 	if (ret) {
4395 		dev_err(priv->device, "%s: ERROR %i registering the device\n",
4396 			__func__, ret);
4397 		goto error_netdev_register;
4398 	}
4399 
4400 	return ret;
4401 
4402 error_netdev_register:
4403 	if (priv->hw->pcs != STMMAC_PCS_RGMII &&
4404 	    priv->hw->pcs != STMMAC_PCS_TBI &&
4405 	    priv->hw->pcs != STMMAC_PCS_RTBI)
4406 		stmmac_mdio_unregister(ndev);
4407 error_mdio_register:
4408 	for (queue = 0; queue < maxq; queue++) {
4409 		struct stmmac_channel *ch = &priv->channel[queue];
4410 
4411 		netif_napi_del(&ch->napi);
4412 	}
4413 error_hw_init:
4414 	destroy_workqueue(priv->wq);
4415 error_wq:
4416 	free_netdev(ndev);
4417 
4418 	return ret;
4419 }
4420 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
4421 
4422 /**
4423  * stmmac_dvr_remove
4424  * @dev: device pointer
4425  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
4426  * changes the link status, releases the DMA descriptor rings.
4427  */
4428 int stmmac_dvr_remove(struct device *dev)
4429 {
4430 	struct net_device *ndev = dev_get_drvdata(dev);
4431 	struct stmmac_priv *priv = netdev_priv(ndev);
4432 
4433 	netdev_info(priv->dev, "%s: removing driver", __func__);
4434 
4435 	stmmac_stop_all_dma(priv);
4436 
4437 	stmmac_mac_set(priv, priv->ioaddr, false);
4438 	netif_carrier_off(ndev);
4439 	unregister_netdev(ndev);
4440 	if (priv->plat->stmmac_rst)
4441 		reset_control_assert(priv->plat->stmmac_rst);
4442 	clk_disable_unprepare(priv->plat->pclk);
4443 	clk_disable_unprepare(priv->plat->stmmac_clk);
4444 	if (priv->hw->pcs != STMMAC_PCS_RGMII &&
4445 	    priv->hw->pcs != STMMAC_PCS_TBI &&
4446 	    priv->hw->pcs != STMMAC_PCS_RTBI)
4447 		stmmac_mdio_unregister(ndev);
4448 	destroy_workqueue(priv->wq);
4449 	mutex_destroy(&priv->lock);
4450 	free_netdev(ndev);
4451 
4452 	return 0;
4453 }
4454 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
4455 
4456 /**
4457  * stmmac_suspend - suspend callback
4458  * @dev: device pointer
4459  * Description: this is the function to suspend the device and it is called
4460  * by the platform driver to stop the network queue, release the resources,
4461  * program the PMT register (for WoL), clean and release driver resources.
4462  */
4463 int stmmac_suspend(struct device *dev)
4464 {
4465 	struct net_device *ndev = dev_get_drvdata(dev);
4466 	struct stmmac_priv *priv = netdev_priv(ndev);
4467 
4468 	if (!ndev || !netif_running(ndev))
4469 		return 0;
4470 
4471 	if (ndev->phydev)
4472 		phy_stop(ndev->phydev);
4473 
4474 	mutex_lock(&priv->lock);
4475 
4476 	netif_device_detach(ndev);
4477 	stmmac_stop_all_queues(priv);
4478 
4479 	stmmac_disable_all_queues(priv);
4480 
4481 	/* Stop TX/RX DMA */
4482 	stmmac_stop_all_dma(priv);
4483 
4484 	/* Enable Power down mode by programming the PMT regs */
4485 	if (device_may_wakeup(priv->device)) {
4486 		stmmac_pmt(priv, priv->hw, priv->wolopts);
4487 		priv->irq_wake = 1;
4488 	} else {
4489 		stmmac_mac_set(priv, priv->ioaddr, false);
4490 		pinctrl_pm_select_sleep_state(priv->device);
4491 		/* Disable clock in case of PWM is off */
4492 		clk_disable(priv->plat->pclk);
4493 		clk_disable(priv->plat->stmmac_clk);
4494 	}
4495 	mutex_unlock(&priv->lock);
4496 
4497 	priv->oldlink = false;
4498 	priv->speed = SPEED_UNKNOWN;
4499 	priv->oldduplex = DUPLEX_UNKNOWN;
4500 	return 0;
4501 }
4502 EXPORT_SYMBOL_GPL(stmmac_suspend);
4503 
4504 /**
4505  * stmmac_reset_queues_param - reset queue parameters
4506  * @dev: device pointer
4507  */
4508 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
4509 {
4510 	u32 rx_cnt = priv->plat->rx_queues_to_use;
4511 	u32 tx_cnt = priv->plat->tx_queues_to_use;
4512 	u32 queue;
4513 
4514 	for (queue = 0; queue < rx_cnt; queue++) {
4515 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4516 
4517 		rx_q->cur_rx = 0;
4518 		rx_q->dirty_rx = 0;
4519 	}
4520 
4521 	for (queue = 0; queue < tx_cnt; queue++) {
4522 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4523 
4524 		tx_q->cur_tx = 0;
4525 		tx_q->dirty_tx = 0;
4526 		tx_q->mss = 0;
4527 	}
4528 }
4529 
4530 /**
4531  * stmmac_resume - resume callback
4532  * @dev: device pointer
4533  * Description: when resume this function is invoked to setup the DMA and CORE
4534  * in a usable state.
4535  */
4536 int stmmac_resume(struct device *dev)
4537 {
4538 	struct net_device *ndev = dev_get_drvdata(dev);
4539 	struct stmmac_priv *priv = netdev_priv(ndev);
4540 
4541 	if (!netif_running(ndev))
4542 		return 0;
4543 
4544 	/* Power Down bit, into the PM register, is cleared
4545 	 * automatically as soon as a magic packet or a Wake-up frame
4546 	 * is received. Anyway, it's better to manually clear
4547 	 * this bit because it can generate problems while resuming
4548 	 * from another devices (e.g. serial console).
4549 	 */
4550 	if (device_may_wakeup(priv->device)) {
4551 		mutex_lock(&priv->lock);
4552 		stmmac_pmt(priv, priv->hw, 0);
4553 		mutex_unlock(&priv->lock);
4554 		priv->irq_wake = 0;
4555 	} else {
4556 		pinctrl_pm_select_default_state(priv->device);
4557 		/* enable the clk previously disabled */
4558 		clk_enable(priv->plat->stmmac_clk);
4559 		clk_enable(priv->plat->pclk);
4560 		/* reset the phy so that it's ready */
4561 		if (priv->mii)
4562 			stmmac_mdio_reset(priv->mii);
4563 	}
4564 
4565 	netif_device_attach(ndev);
4566 
4567 	mutex_lock(&priv->lock);
4568 
4569 	stmmac_reset_queues_param(priv);
4570 
4571 	stmmac_clear_descriptors(priv);
4572 
4573 	stmmac_hw_setup(ndev, false);
4574 	stmmac_init_tx_coalesce(priv);
4575 	stmmac_set_rx_mode(ndev);
4576 
4577 	stmmac_enable_all_queues(priv);
4578 
4579 	stmmac_start_all_queues(priv);
4580 
4581 	mutex_unlock(&priv->lock);
4582 
4583 	if (ndev->phydev)
4584 		phy_start(ndev->phydev);
4585 
4586 	return 0;
4587 }
4588 EXPORT_SYMBOL_GPL(stmmac_resume);
4589 
4590 #ifndef MODULE
4591 static int __init stmmac_cmdline_opt(char *str)
4592 {
4593 	char *opt;
4594 
4595 	if (!str || !*str)
4596 		return -EINVAL;
4597 	while ((opt = strsep(&str, ",")) != NULL) {
4598 		if (!strncmp(opt, "debug:", 6)) {
4599 			if (kstrtoint(opt + 6, 0, &debug))
4600 				goto err;
4601 		} else if (!strncmp(opt, "phyaddr:", 8)) {
4602 			if (kstrtoint(opt + 8, 0, &phyaddr))
4603 				goto err;
4604 		} else if (!strncmp(opt, "buf_sz:", 7)) {
4605 			if (kstrtoint(opt + 7, 0, &buf_sz))
4606 				goto err;
4607 		} else if (!strncmp(opt, "tc:", 3)) {
4608 			if (kstrtoint(opt + 3, 0, &tc))
4609 				goto err;
4610 		} else if (!strncmp(opt, "watchdog:", 9)) {
4611 			if (kstrtoint(opt + 9, 0, &watchdog))
4612 				goto err;
4613 		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
4614 			if (kstrtoint(opt + 10, 0, &flow_ctrl))
4615 				goto err;
4616 		} else if (!strncmp(opt, "pause:", 6)) {
4617 			if (kstrtoint(opt + 6, 0, &pause))
4618 				goto err;
4619 		} else if (!strncmp(opt, "eee_timer:", 10)) {
4620 			if (kstrtoint(opt + 10, 0, &eee_timer))
4621 				goto err;
4622 		} else if (!strncmp(opt, "chain_mode:", 11)) {
4623 			if (kstrtoint(opt + 11, 0, &chain_mode))
4624 				goto err;
4625 		}
4626 	}
4627 	return 0;
4628 
4629 err:
4630 	pr_err("%s: ERROR broken module parameter conversion", __func__);
4631 	return -EINVAL;
4632 }
4633 
4634 __setup("stmmaceth=", stmmac_cmdline_opt);
4635 #endif /* MODULE */
4636 
4637 static int __init stmmac_init(void)
4638 {
4639 #ifdef CONFIG_DEBUG_FS
4640 	/* Create debugfs main directory if it doesn't exist yet */
4641 	if (!stmmac_fs_dir) {
4642 		stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
4643 
4644 		if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
4645 			pr_err("ERROR %s, debugfs create directory failed\n",
4646 			       STMMAC_RESOURCE_NAME);
4647 
4648 			return -ENOMEM;
4649 		}
4650 	}
4651 #endif
4652 
4653 	return 0;
4654 }
4655 
4656 static void __exit stmmac_exit(void)
4657 {
4658 #ifdef CONFIG_DEBUG_FS
4659 	debugfs_remove_recursive(stmmac_fs_dir);
4660 #endif
4661 }
4662 
4663 module_init(stmmac_init)
4664 module_exit(stmmac_exit)
4665 
4666 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
4667 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
4668 MODULE_LICENSE("GPL");
4669