xref: /linux/drivers/net/ethernet/stmicro/stmmac/stmmac_main.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*******************************************************************************
2   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3   ST Ethernet IPs are built around a Synopsys IP Core.
4 
5 	Copyright(C) 2007-2011 STMicroelectronics Ltd
6 
7   This program is free software; you can redistribute it and/or modify it
8   under the terms and conditions of the GNU General Public License,
9   version 2, as published by the Free Software Foundation.
10 
11   This program is distributed in the hope it will be useful, but WITHOUT
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14   more details.
15 
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc.,
18   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 
20   The full GNU General Public License is included in this distribution in
21   the file called "COPYING".
22 
23   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
24 
25   Documentation available at:
26 	http://www.stlinux.com
27   Support available at:
28 	https://bugzilla.stlinux.com/
29 *******************************************************************************/
30 
31 #include <linux/clk.h>
32 #include <linux/kernel.h>
33 #include <linux/interrupt.h>
34 #include <linux/ip.h>
35 #include <linux/tcp.h>
36 #include <linux/skbuff.h>
37 #include <linux/ethtool.h>
38 #include <linux/if_ether.h>
39 #include <linux/crc32.h>
40 #include <linux/mii.h>
41 #include <linux/if.h>
42 #include <linux/if_vlan.h>
43 #include <linux/dma-mapping.h>
44 #include <linux/slab.h>
45 #include <linux/prefetch.h>
46 #include <linux/pinctrl/consumer.h>
47 #ifdef CONFIG_DEBUG_FS
48 #include <linux/debugfs.h>
49 #include <linux/seq_file.h>
50 #endif /* CONFIG_DEBUG_FS */
51 #include <linux/net_tstamp.h>
52 #include "stmmac_ptp.h"
53 #include "stmmac.h"
54 #include <linux/reset.h>
55 #include <linux/of_mdio.h>
56 #include "dwmac1000.h"
57 
58 #define STMMAC_ALIGN(x)	L1_CACHE_ALIGN(x)
59 #define	TSO_MAX_BUFF_SIZE	(SZ_16K - 1)
60 
61 /* Module parameters */
62 #define TX_TIMEO	5000
63 static int watchdog = TX_TIMEO;
64 module_param(watchdog, int, S_IRUGO | S_IWUSR);
65 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
66 
67 static int debug = -1;
68 module_param(debug, int, S_IRUGO | S_IWUSR);
69 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
70 
71 static int phyaddr = -1;
72 module_param(phyaddr, int, S_IRUGO);
73 MODULE_PARM_DESC(phyaddr, "Physical device address");
74 
75 #define STMMAC_TX_THRESH	(DMA_TX_SIZE / 4)
76 #define STMMAC_RX_THRESH	(DMA_RX_SIZE / 4)
77 
78 static int flow_ctrl = FLOW_OFF;
79 module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
80 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
81 
82 static int pause = PAUSE_TIME;
83 module_param(pause, int, S_IRUGO | S_IWUSR);
84 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
85 
86 #define TC_DEFAULT 64
87 static int tc = TC_DEFAULT;
88 module_param(tc, int, S_IRUGO | S_IWUSR);
89 MODULE_PARM_DESC(tc, "DMA threshold control value");
90 
91 #define	DEFAULT_BUFSIZE	1536
92 static int buf_sz = DEFAULT_BUFSIZE;
93 module_param(buf_sz, int, S_IRUGO | S_IWUSR);
94 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
95 
96 #define	STMMAC_RX_COPYBREAK	256
97 
98 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
99 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
100 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
101 
102 #define STMMAC_DEFAULT_LPI_TIMER	1000
103 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
104 module_param(eee_timer, int, S_IRUGO | S_IWUSR);
105 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
106 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
107 
108 /* By default the driver will use the ring mode to manage tx and rx descriptors
109  * but passing this value so user can force to use the chain instead of the ring
110  */
111 static unsigned int chain_mode;
112 module_param(chain_mode, int, S_IRUGO);
113 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
114 
115 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
116 
117 #ifdef CONFIG_DEBUG_FS
118 static int stmmac_init_fs(struct net_device *dev);
119 static void stmmac_exit_fs(struct net_device *dev);
120 #endif
121 
122 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
123 
124 /**
125  * stmmac_verify_args - verify the driver parameters.
126  * Description: it checks the driver parameters and set a default in case of
127  * errors.
128  */
129 static void stmmac_verify_args(void)
130 {
131 	if (unlikely(watchdog < 0))
132 		watchdog = TX_TIMEO;
133 	if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
134 		buf_sz = DEFAULT_BUFSIZE;
135 	if (unlikely(flow_ctrl > 1))
136 		flow_ctrl = FLOW_AUTO;
137 	else if (likely(flow_ctrl < 0))
138 		flow_ctrl = FLOW_OFF;
139 	if (unlikely((pause < 0) || (pause > 0xffff)))
140 		pause = PAUSE_TIME;
141 	if (eee_timer < 0)
142 		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
143 }
144 
145 /**
146  * stmmac_clk_csr_set - dynamically set the MDC clock
147  * @priv: driver private structure
148  * Description: this is to dynamically set the MDC clock according to the csr
149  * clock input.
150  * Note:
151  *	If a specific clk_csr value is passed from the platform
152  *	this means that the CSR Clock Range selection cannot be
153  *	changed at run-time and it is fixed (as reported in the driver
154  *	documentation). Viceversa the driver will try to set the MDC
155  *	clock dynamically according to the actual clock input.
156  */
157 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
158 {
159 	u32 clk_rate;
160 
161 	clk_rate = clk_get_rate(priv->stmmac_clk);
162 
163 	/* Platform provided default clk_csr would be assumed valid
164 	 * for all other cases except for the below mentioned ones.
165 	 * For values higher than the IEEE 802.3 specified frequency
166 	 * we can not estimate the proper divider as it is not known
167 	 * the frequency of clk_csr_i. So we do not change the default
168 	 * divider.
169 	 */
170 	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
171 		if (clk_rate < CSR_F_35M)
172 			priv->clk_csr = STMMAC_CSR_20_35M;
173 		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
174 			priv->clk_csr = STMMAC_CSR_35_60M;
175 		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
176 			priv->clk_csr = STMMAC_CSR_60_100M;
177 		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
178 			priv->clk_csr = STMMAC_CSR_100_150M;
179 		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
180 			priv->clk_csr = STMMAC_CSR_150_250M;
181 		else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
182 			priv->clk_csr = STMMAC_CSR_250_300M;
183 	}
184 }
185 
186 static void print_pkt(unsigned char *buf, int len)
187 {
188 	pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
189 	print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
190 }
191 
192 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
193 {
194 	unsigned avail;
195 
196 	if (priv->dirty_tx > priv->cur_tx)
197 		avail = priv->dirty_tx - priv->cur_tx - 1;
198 	else
199 		avail = DMA_TX_SIZE - priv->cur_tx + priv->dirty_tx - 1;
200 
201 	return avail;
202 }
203 
204 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv)
205 {
206 	unsigned dirty;
207 
208 	if (priv->dirty_rx <= priv->cur_rx)
209 		dirty = priv->cur_rx - priv->dirty_rx;
210 	else
211 		dirty = DMA_RX_SIZE - priv->dirty_rx + priv->cur_rx;
212 
213 	return dirty;
214 }
215 
216 /**
217  * stmmac_hw_fix_mac_speed - callback for speed selection
218  * @priv: driver private structure
219  * Description: on some platforms (e.g. ST), some HW system configuraton
220  * registers have to be set according to the link speed negotiated.
221  */
222 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
223 {
224 	struct phy_device *phydev = priv->phydev;
225 
226 	if (likely(priv->plat->fix_mac_speed))
227 		priv->plat->fix_mac_speed(priv->plat->bsp_priv, phydev->speed);
228 }
229 
230 /**
231  * stmmac_enable_eee_mode - check and enter in LPI mode
232  * @priv: driver private structure
233  * Description: this function is to verify and enter in LPI mode in case of
234  * EEE.
235  */
236 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
237 {
238 	/* Check and enter in LPI mode */
239 	if ((priv->dirty_tx == priv->cur_tx) &&
240 	    (priv->tx_path_in_lpi_mode == false))
241 		priv->hw->mac->set_eee_mode(priv->hw);
242 }
243 
244 /**
245  * stmmac_disable_eee_mode - disable and exit from LPI mode
246  * @priv: driver private structure
247  * Description: this function is to exit and disable EEE in case of
248  * LPI state is true. This is called by the xmit.
249  */
250 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
251 {
252 	priv->hw->mac->reset_eee_mode(priv->hw);
253 	del_timer_sync(&priv->eee_ctrl_timer);
254 	priv->tx_path_in_lpi_mode = false;
255 }
256 
257 /**
258  * stmmac_eee_ctrl_timer - EEE TX SW timer.
259  * @arg : data hook
260  * Description:
261  *  if there is no data transfer and if we are not in LPI state,
262  *  then MAC Transmitter can be moved to LPI state.
263  */
264 static void stmmac_eee_ctrl_timer(unsigned long arg)
265 {
266 	struct stmmac_priv *priv = (struct stmmac_priv *)arg;
267 
268 	stmmac_enable_eee_mode(priv);
269 	mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
270 }
271 
272 /**
273  * stmmac_eee_init - init EEE
274  * @priv: driver private structure
275  * Description:
276  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
277  *  can also manage EEE, this function enable the LPI state and start related
278  *  timer.
279  */
280 bool stmmac_eee_init(struct stmmac_priv *priv)
281 {
282 	unsigned long flags;
283 	bool ret = false;
284 
285 	/* Using PCS we cannot dial with the phy registers at this stage
286 	 * so we do not support extra feature like EEE.
287 	 */
288 	if ((priv->pcs == STMMAC_PCS_RGMII) || (priv->pcs == STMMAC_PCS_TBI) ||
289 	    (priv->pcs == STMMAC_PCS_RTBI))
290 		goto out;
291 
292 	/* MAC core supports the EEE feature. */
293 	if (priv->dma_cap.eee) {
294 		int tx_lpi_timer = priv->tx_lpi_timer;
295 
296 		/* Check if the PHY supports EEE */
297 		if (phy_init_eee(priv->phydev, 1)) {
298 			/* To manage at run-time if the EEE cannot be supported
299 			 * anymore (for example because the lp caps have been
300 			 * changed).
301 			 * In that case the driver disable own timers.
302 			 */
303 			spin_lock_irqsave(&priv->lock, flags);
304 			if (priv->eee_active) {
305 				pr_debug("stmmac: disable EEE\n");
306 				del_timer_sync(&priv->eee_ctrl_timer);
307 				priv->hw->mac->set_eee_timer(priv->hw, 0,
308 							     tx_lpi_timer);
309 			}
310 			priv->eee_active = 0;
311 			spin_unlock_irqrestore(&priv->lock, flags);
312 			goto out;
313 		}
314 		/* Activate the EEE and start timers */
315 		spin_lock_irqsave(&priv->lock, flags);
316 		if (!priv->eee_active) {
317 			priv->eee_active = 1;
318 			setup_timer(&priv->eee_ctrl_timer,
319 				    stmmac_eee_ctrl_timer,
320 				    (unsigned long)priv);
321 			mod_timer(&priv->eee_ctrl_timer,
322 				  STMMAC_LPI_T(eee_timer));
323 
324 			priv->hw->mac->set_eee_timer(priv->hw,
325 						     STMMAC_DEFAULT_LIT_LS,
326 						     tx_lpi_timer);
327 		}
328 		/* Set HW EEE according to the speed */
329 		priv->hw->mac->set_eee_pls(priv->hw, priv->phydev->link);
330 
331 		ret = true;
332 		spin_unlock_irqrestore(&priv->lock, flags);
333 
334 		pr_debug("stmmac: Energy-Efficient Ethernet initialized\n");
335 	}
336 out:
337 	return ret;
338 }
339 
340 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
341  * @priv: driver private structure
342  * @entry : descriptor index to be used.
343  * @skb : the socket buffer
344  * Description :
345  * This function will read timestamp from the descriptor & pass it to stack.
346  * and also perform some sanity checks.
347  */
348 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
349 				   unsigned int entry, struct sk_buff *skb)
350 {
351 	struct skb_shared_hwtstamps shhwtstamp;
352 	u64 ns;
353 	void *desc = NULL;
354 
355 	if (!priv->hwts_tx_en)
356 		return;
357 
358 	/* exit if skb doesn't support hw tstamp */
359 	if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
360 		return;
361 
362 	if (priv->adv_ts)
363 		desc = (priv->dma_etx + entry);
364 	else
365 		desc = (priv->dma_tx + entry);
366 
367 	/* check tx tstamp status */
368 	if (!priv->hw->desc->get_tx_timestamp_status((struct dma_desc *)desc))
369 		return;
370 
371 	/* get the valid tstamp */
372 	ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
373 
374 	memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
375 	shhwtstamp.hwtstamp = ns_to_ktime(ns);
376 	/* pass tstamp to stack */
377 	skb_tstamp_tx(skb, &shhwtstamp);
378 
379 	return;
380 }
381 
382 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
383  * @priv: driver private structure
384  * @entry : descriptor index to be used.
385  * @skb : the socket buffer
386  * Description :
387  * This function will read received packet's timestamp from the descriptor
388  * and pass it to stack. It also perform some sanity checks.
389  */
390 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv,
391 				   unsigned int entry, struct sk_buff *skb)
392 {
393 	struct skb_shared_hwtstamps *shhwtstamp = NULL;
394 	u64 ns;
395 	void *desc = NULL;
396 
397 	if (!priv->hwts_rx_en)
398 		return;
399 
400 	if (priv->adv_ts)
401 		desc = (priv->dma_erx + entry);
402 	else
403 		desc = (priv->dma_rx + entry);
404 
405 	/* exit if rx tstamp is not valid */
406 	if (!priv->hw->desc->get_rx_timestamp_status(desc, priv->adv_ts))
407 		return;
408 
409 	/* get valid tstamp */
410 	ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
411 	shhwtstamp = skb_hwtstamps(skb);
412 	memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
413 	shhwtstamp->hwtstamp = ns_to_ktime(ns);
414 }
415 
416 /**
417  *  stmmac_hwtstamp_ioctl - control hardware timestamping.
418  *  @dev: device pointer.
419  *  @ifr: An IOCTL specefic structure, that can contain a pointer to
420  *  a proprietary structure used to pass information to the driver.
421  *  Description:
422  *  This function configures the MAC to enable/disable both outgoing(TX)
423  *  and incoming(RX) packets time stamping based on user input.
424  *  Return Value:
425  *  0 on success and an appropriate -ve integer on failure.
426  */
427 static int stmmac_hwtstamp_ioctl(struct net_device *dev, struct ifreq *ifr)
428 {
429 	struct stmmac_priv *priv = netdev_priv(dev);
430 	struct hwtstamp_config config;
431 	struct timespec64 now;
432 	u64 temp = 0;
433 	u32 ptp_v2 = 0;
434 	u32 tstamp_all = 0;
435 	u32 ptp_over_ipv4_udp = 0;
436 	u32 ptp_over_ipv6_udp = 0;
437 	u32 ptp_over_ethernet = 0;
438 	u32 snap_type_sel = 0;
439 	u32 ts_master_en = 0;
440 	u32 ts_event_en = 0;
441 	u32 value = 0;
442 	u32 sec_inc;
443 
444 	if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
445 		netdev_alert(priv->dev, "No support for HW time stamping\n");
446 		priv->hwts_tx_en = 0;
447 		priv->hwts_rx_en = 0;
448 
449 		return -EOPNOTSUPP;
450 	}
451 
452 	if (copy_from_user(&config, ifr->ifr_data,
453 			   sizeof(struct hwtstamp_config)))
454 		return -EFAULT;
455 
456 	pr_debug("%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
457 		 __func__, config.flags, config.tx_type, config.rx_filter);
458 
459 	/* reserved for future extensions */
460 	if (config.flags)
461 		return -EINVAL;
462 
463 	if (config.tx_type != HWTSTAMP_TX_OFF &&
464 	    config.tx_type != HWTSTAMP_TX_ON)
465 		return -ERANGE;
466 
467 	if (priv->adv_ts) {
468 		switch (config.rx_filter) {
469 		case HWTSTAMP_FILTER_NONE:
470 			/* time stamp no incoming packet at all */
471 			config.rx_filter = HWTSTAMP_FILTER_NONE;
472 			break;
473 
474 		case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
475 			/* PTP v1, UDP, any kind of event packet */
476 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
477 			/* take time stamp for all event messages */
478 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
479 
480 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
481 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
482 			break;
483 
484 		case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
485 			/* PTP v1, UDP, Sync packet */
486 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
487 			/* take time stamp for SYNC messages only */
488 			ts_event_en = PTP_TCR_TSEVNTENA;
489 
490 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
491 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
492 			break;
493 
494 		case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
495 			/* PTP v1, UDP, Delay_req packet */
496 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
497 			/* take time stamp for Delay_Req messages only */
498 			ts_master_en = PTP_TCR_TSMSTRENA;
499 			ts_event_en = PTP_TCR_TSEVNTENA;
500 
501 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
502 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
503 			break;
504 
505 		case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
506 			/* PTP v2, UDP, any kind of event packet */
507 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
508 			ptp_v2 = PTP_TCR_TSVER2ENA;
509 			/* take time stamp for all event messages */
510 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
511 
512 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
513 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
514 			break;
515 
516 		case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
517 			/* PTP v2, UDP, Sync packet */
518 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
519 			ptp_v2 = PTP_TCR_TSVER2ENA;
520 			/* take time stamp for SYNC messages only */
521 			ts_event_en = PTP_TCR_TSEVNTENA;
522 
523 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
524 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
525 			break;
526 
527 		case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
528 			/* PTP v2, UDP, Delay_req packet */
529 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
530 			ptp_v2 = PTP_TCR_TSVER2ENA;
531 			/* take time stamp for Delay_Req messages only */
532 			ts_master_en = PTP_TCR_TSMSTRENA;
533 			ts_event_en = PTP_TCR_TSEVNTENA;
534 
535 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
536 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
537 			break;
538 
539 		case HWTSTAMP_FILTER_PTP_V2_EVENT:
540 			/* PTP v2/802.AS1 any layer, any kind of event packet */
541 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
542 			ptp_v2 = PTP_TCR_TSVER2ENA;
543 			/* take time stamp for all event messages */
544 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
545 
546 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
547 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
548 			ptp_over_ethernet = PTP_TCR_TSIPENA;
549 			break;
550 
551 		case HWTSTAMP_FILTER_PTP_V2_SYNC:
552 			/* PTP v2/802.AS1, any layer, Sync packet */
553 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
554 			ptp_v2 = PTP_TCR_TSVER2ENA;
555 			/* take time stamp for SYNC messages only */
556 			ts_event_en = PTP_TCR_TSEVNTENA;
557 
558 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
559 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
560 			ptp_over_ethernet = PTP_TCR_TSIPENA;
561 			break;
562 
563 		case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
564 			/* PTP v2/802.AS1, any layer, Delay_req packet */
565 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
566 			ptp_v2 = PTP_TCR_TSVER2ENA;
567 			/* take time stamp for Delay_Req messages only */
568 			ts_master_en = PTP_TCR_TSMSTRENA;
569 			ts_event_en = PTP_TCR_TSEVNTENA;
570 
571 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
572 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
573 			ptp_over_ethernet = PTP_TCR_TSIPENA;
574 			break;
575 
576 		case HWTSTAMP_FILTER_ALL:
577 			/* time stamp any incoming packet */
578 			config.rx_filter = HWTSTAMP_FILTER_ALL;
579 			tstamp_all = PTP_TCR_TSENALL;
580 			break;
581 
582 		default:
583 			return -ERANGE;
584 		}
585 	} else {
586 		switch (config.rx_filter) {
587 		case HWTSTAMP_FILTER_NONE:
588 			config.rx_filter = HWTSTAMP_FILTER_NONE;
589 			break;
590 		default:
591 			/* PTP v1, UDP, any kind of event packet */
592 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
593 			break;
594 		}
595 	}
596 	priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
597 	priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
598 
599 	if (!priv->hwts_tx_en && !priv->hwts_rx_en)
600 		priv->hw->ptp->config_hw_tstamping(priv->ioaddr, 0);
601 	else {
602 		value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
603 			 tstamp_all | ptp_v2 | ptp_over_ethernet |
604 			 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
605 			 ts_master_en | snap_type_sel);
606 		priv->hw->ptp->config_hw_tstamping(priv->ioaddr, value);
607 
608 		/* program Sub Second Increment reg */
609 		sec_inc = priv->hw->ptp->config_sub_second_increment(
610 			priv->ioaddr, priv->clk_ptp_rate);
611 		temp = div_u64(1000000000ULL, sec_inc);
612 
613 		/* calculate default added value:
614 		 * formula is :
615 		 * addend = (2^32)/freq_div_ratio;
616 		 * where, freq_div_ratio = 1e9ns/sec_inc
617 		 */
618 		temp = (u64)(temp << 32);
619 		priv->default_addend = div_u64(temp, priv->clk_ptp_rate);
620 		priv->hw->ptp->config_addend(priv->ioaddr,
621 					     priv->default_addend);
622 
623 		/* initialize system time */
624 		ktime_get_real_ts64(&now);
625 
626 		/* lower 32 bits of tv_sec are safe until y2106 */
627 		priv->hw->ptp->init_systime(priv->ioaddr, (u32)now.tv_sec,
628 					    now.tv_nsec);
629 	}
630 
631 	return copy_to_user(ifr->ifr_data, &config,
632 			    sizeof(struct hwtstamp_config)) ? -EFAULT : 0;
633 }
634 
635 /**
636  * stmmac_init_ptp - init PTP
637  * @priv: driver private structure
638  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
639  * This is done by looking at the HW cap. register.
640  * This function also registers the ptp driver.
641  */
642 static int stmmac_init_ptp(struct stmmac_priv *priv)
643 {
644 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
645 		return -EOPNOTSUPP;
646 
647 	/* Fall-back to main clock in case of no PTP ref is passed */
648 	priv->clk_ptp_ref = devm_clk_get(priv->device, "clk_ptp_ref");
649 	if (IS_ERR(priv->clk_ptp_ref)) {
650 		priv->clk_ptp_rate = clk_get_rate(priv->stmmac_clk);
651 		priv->clk_ptp_ref = NULL;
652 	} else {
653 		clk_prepare_enable(priv->clk_ptp_ref);
654 		priv->clk_ptp_rate = clk_get_rate(priv->clk_ptp_ref);
655 	}
656 
657 	priv->adv_ts = 0;
658 	if (priv->dma_cap.atime_stamp && priv->extend_desc)
659 		priv->adv_ts = 1;
660 
661 	if (netif_msg_hw(priv) && priv->dma_cap.time_stamp)
662 		pr_debug("IEEE 1588-2002 Time Stamp supported\n");
663 
664 	if (netif_msg_hw(priv) && priv->adv_ts)
665 		pr_debug("IEEE 1588-2008 Advanced Time Stamp supported\n");
666 
667 	priv->hw->ptp = &stmmac_ptp;
668 	priv->hwts_tx_en = 0;
669 	priv->hwts_rx_en = 0;
670 
671 	return stmmac_ptp_register(priv);
672 }
673 
674 static void stmmac_release_ptp(struct stmmac_priv *priv)
675 {
676 	if (priv->clk_ptp_ref)
677 		clk_disable_unprepare(priv->clk_ptp_ref);
678 	stmmac_ptp_unregister(priv);
679 }
680 
681 /**
682  * stmmac_adjust_link - adjusts the link parameters
683  * @dev: net device structure
684  * Description: this is the helper called by the physical abstraction layer
685  * drivers to communicate the phy link status. According the speed and duplex
686  * this driver can invoke registered glue-logic as well.
687  * It also invoke the eee initialization because it could happen when switch
688  * on different networks (that are eee capable).
689  */
690 static void stmmac_adjust_link(struct net_device *dev)
691 {
692 	struct stmmac_priv *priv = netdev_priv(dev);
693 	struct phy_device *phydev = priv->phydev;
694 	unsigned long flags;
695 	int new_state = 0;
696 	unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;
697 
698 	if (phydev == NULL)
699 		return;
700 
701 	spin_lock_irqsave(&priv->lock, flags);
702 
703 	if (phydev->link) {
704 		u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
705 
706 		/* Now we make sure that we can be in full duplex mode.
707 		 * If not, we operate in half-duplex mode. */
708 		if (phydev->duplex != priv->oldduplex) {
709 			new_state = 1;
710 			if (!(phydev->duplex))
711 				ctrl &= ~priv->hw->link.duplex;
712 			else
713 				ctrl |= priv->hw->link.duplex;
714 			priv->oldduplex = phydev->duplex;
715 		}
716 		/* Flow Control operation */
717 		if (phydev->pause)
718 			priv->hw->mac->flow_ctrl(priv->hw, phydev->duplex,
719 						 fc, pause_time);
720 
721 		if (phydev->speed != priv->speed) {
722 			new_state = 1;
723 			switch (phydev->speed) {
724 			case 1000:
725 				if (likely((priv->plat->has_gmac) ||
726 					   (priv->plat->has_gmac4)))
727 					ctrl &= ~priv->hw->link.port;
728 				stmmac_hw_fix_mac_speed(priv);
729 				break;
730 			case 100:
731 			case 10:
732 				if (likely((priv->plat->has_gmac) ||
733 					   (priv->plat->has_gmac4))) {
734 					ctrl |= priv->hw->link.port;
735 					if (phydev->speed == SPEED_100) {
736 						ctrl |= priv->hw->link.speed;
737 					} else {
738 						ctrl &= ~(priv->hw->link.speed);
739 					}
740 				} else {
741 					ctrl &= ~priv->hw->link.port;
742 				}
743 				stmmac_hw_fix_mac_speed(priv);
744 				break;
745 			default:
746 				if (netif_msg_link(priv))
747 					pr_warn("%s: Speed (%d) not 10/100\n",
748 						dev->name, phydev->speed);
749 				break;
750 			}
751 
752 			priv->speed = phydev->speed;
753 		}
754 
755 		writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
756 
757 		if (!priv->oldlink) {
758 			new_state = 1;
759 			priv->oldlink = 1;
760 		}
761 	} else if (priv->oldlink) {
762 		new_state = 1;
763 		priv->oldlink = 0;
764 		priv->speed = 0;
765 		priv->oldduplex = -1;
766 	}
767 
768 	if (new_state && netif_msg_link(priv))
769 		phy_print_status(phydev);
770 
771 	spin_unlock_irqrestore(&priv->lock, flags);
772 
773 	if (phydev->is_pseudo_fixed_link)
774 		/* Stop PHY layer to call the hook to adjust the link in case
775 		 * of a switch is attached to the stmmac driver.
776 		 */
777 		phydev->irq = PHY_IGNORE_INTERRUPT;
778 	else
779 		/* At this stage, init the EEE if supported.
780 		 * Never called in case of fixed_link.
781 		 */
782 		priv->eee_enabled = stmmac_eee_init(priv);
783 }
784 
785 /**
786  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
787  * @priv: driver private structure
788  * Description: this is to verify if the HW supports the PCS.
789  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
790  * configured for the TBI, RTBI, or SGMII PHY interface.
791  */
792 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
793 {
794 	int interface = priv->plat->interface;
795 
796 	if (priv->dma_cap.pcs) {
797 		if ((interface == PHY_INTERFACE_MODE_RGMII) ||
798 		    (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
799 		    (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
800 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
801 			pr_debug("STMMAC: PCS RGMII support enable\n");
802 			priv->pcs = STMMAC_PCS_RGMII;
803 		} else if (interface == PHY_INTERFACE_MODE_SGMII) {
804 			pr_debug("STMMAC: PCS SGMII support enable\n");
805 			priv->pcs = STMMAC_PCS_SGMII;
806 		}
807 	}
808 }
809 
810 /**
811  * stmmac_init_phy - PHY initialization
812  * @dev: net device structure
813  * Description: it initializes the driver's PHY state, and attaches the PHY
814  * to the mac driver.
815  *  Return value:
816  *  0 on success
817  */
818 static int stmmac_init_phy(struct net_device *dev)
819 {
820 	struct stmmac_priv *priv = netdev_priv(dev);
821 	struct phy_device *phydev;
822 	char phy_id_fmt[MII_BUS_ID_SIZE + 3];
823 	char bus_id[MII_BUS_ID_SIZE];
824 	int interface = priv->plat->interface;
825 	int max_speed = priv->plat->max_speed;
826 	priv->oldlink = 0;
827 	priv->speed = 0;
828 	priv->oldduplex = -1;
829 
830 	if (priv->plat->phy_node) {
831 		phydev = of_phy_connect(dev, priv->plat->phy_node,
832 					&stmmac_adjust_link, 0, interface);
833 	} else {
834 		snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
835 			 priv->plat->bus_id);
836 
837 		snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
838 			 priv->plat->phy_addr);
839 		pr_debug("stmmac_init_phy:  trying to attach to %s\n",
840 			 phy_id_fmt);
841 
842 		phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link,
843 				     interface);
844 	}
845 
846 	if (IS_ERR_OR_NULL(phydev)) {
847 		pr_err("%s: Could not attach to PHY\n", dev->name);
848 		if (!phydev)
849 			return -ENODEV;
850 
851 		return PTR_ERR(phydev);
852 	}
853 
854 	/* Stop Advertising 1000BASE Capability if interface is not GMII */
855 	if ((interface == PHY_INTERFACE_MODE_MII) ||
856 	    (interface == PHY_INTERFACE_MODE_RMII) ||
857 		(max_speed < 1000 && max_speed > 0))
858 		phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
859 					 SUPPORTED_1000baseT_Full);
860 
861 	/*
862 	 * Broken HW is sometimes missing the pull-up resistor on the
863 	 * MDIO line, which results in reads to non-existent devices returning
864 	 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
865 	 * device as well.
866 	 * Note: phydev->phy_id is the result of reading the UID PHY registers.
867 	 */
868 	if (!priv->plat->phy_node && phydev->phy_id == 0) {
869 		phy_disconnect(phydev);
870 		return -ENODEV;
871 	}
872 
873 	pr_debug("stmmac_init_phy:  %s: attached to PHY (UID 0x%x)"
874 		 " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
875 
876 	priv->phydev = phydev;
877 
878 	return 0;
879 }
880 
881 static void stmmac_display_rings(struct stmmac_priv *priv)
882 {
883 	void *head_rx, *head_tx;
884 
885 	if (priv->extend_desc) {
886 		head_rx = (void *)priv->dma_erx;
887 		head_tx = (void *)priv->dma_etx;
888 	} else {
889 		head_rx = (void *)priv->dma_rx;
890 		head_tx = (void *)priv->dma_tx;
891 	}
892 
893 	/* Display Rx ring */
894 	priv->hw->desc->display_ring(head_rx, DMA_RX_SIZE, true);
895 	/* Display Tx ring */
896 	priv->hw->desc->display_ring(head_tx, DMA_TX_SIZE, false);
897 }
898 
899 static int stmmac_set_bfsize(int mtu, int bufsize)
900 {
901 	int ret = bufsize;
902 
903 	if (mtu >= BUF_SIZE_4KiB)
904 		ret = BUF_SIZE_8KiB;
905 	else if (mtu >= BUF_SIZE_2KiB)
906 		ret = BUF_SIZE_4KiB;
907 	else if (mtu > DEFAULT_BUFSIZE)
908 		ret = BUF_SIZE_2KiB;
909 	else
910 		ret = DEFAULT_BUFSIZE;
911 
912 	return ret;
913 }
914 
915 /**
916  * stmmac_clear_descriptors - clear descriptors
917  * @priv: driver private structure
918  * Description: this function is called to clear the tx and rx descriptors
919  * in case of both basic and extended descriptors are used.
920  */
921 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
922 {
923 	int i;
924 
925 	/* Clear the Rx/Tx descriptors */
926 	for (i = 0; i < DMA_RX_SIZE; i++)
927 		if (priv->extend_desc)
928 			priv->hw->desc->init_rx_desc(&priv->dma_erx[i].basic,
929 						     priv->use_riwt, priv->mode,
930 						     (i == DMA_RX_SIZE - 1));
931 		else
932 			priv->hw->desc->init_rx_desc(&priv->dma_rx[i],
933 						     priv->use_riwt, priv->mode,
934 						     (i == DMA_RX_SIZE - 1));
935 	for (i = 0; i < DMA_TX_SIZE; i++)
936 		if (priv->extend_desc)
937 			priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
938 						     priv->mode,
939 						     (i == DMA_TX_SIZE - 1));
940 		else
941 			priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
942 						     priv->mode,
943 						     (i == DMA_TX_SIZE - 1));
944 }
945 
946 /**
947  * stmmac_init_rx_buffers - init the RX descriptor buffer.
948  * @priv: driver private structure
949  * @p: descriptor pointer
950  * @i: descriptor index
951  * @flags: gfp flag.
952  * Description: this function is called to allocate a receive buffer, perform
953  * the DMA mapping and init the descriptor.
954  */
955 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
956 				  int i, gfp_t flags)
957 {
958 	struct sk_buff *skb;
959 
960 	skb = __netdev_alloc_skb_ip_align(priv->dev, priv->dma_buf_sz, flags);
961 	if (!skb) {
962 		pr_err("%s: Rx init fails; skb is NULL\n", __func__);
963 		return -ENOMEM;
964 	}
965 	priv->rx_skbuff[i] = skb;
966 	priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
967 						priv->dma_buf_sz,
968 						DMA_FROM_DEVICE);
969 	if (dma_mapping_error(priv->device, priv->rx_skbuff_dma[i])) {
970 		pr_err("%s: DMA mapping error\n", __func__);
971 		dev_kfree_skb_any(skb);
972 		return -EINVAL;
973 	}
974 
975 	if (priv->synopsys_id >= DWMAC_CORE_4_00)
976 		p->des0 = priv->rx_skbuff_dma[i];
977 	else
978 		p->des2 = priv->rx_skbuff_dma[i];
979 
980 	if ((priv->hw->mode->init_desc3) &&
981 	    (priv->dma_buf_sz == BUF_SIZE_16KiB))
982 		priv->hw->mode->init_desc3(p);
983 
984 	return 0;
985 }
986 
987 static void stmmac_free_rx_buffers(struct stmmac_priv *priv, int i)
988 {
989 	if (priv->rx_skbuff[i]) {
990 		dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
991 				 priv->dma_buf_sz, DMA_FROM_DEVICE);
992 		dev_kfree_skb_any(priv->rx_skbuff[i]);
993 	}
994 	priv->rx_skbuff[i] = NULL;
995 }
996 
997 /**
998  * init_dma_desc_rings - init the RX/TX descriptor rings
999  * @dev: net device structure
1000  * @flags: gfp flag.
1001  * Description: this function initializes the DMA RX/TX descriptors
1002  * and allocates the socket buffers. It suppors the chained and ring
1003  * modes.
1004  */
1005 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1006 {
1007 	int i;
1008 	struct stmmac_priv *priv = netdev_priv(dev);
1009 	unsigned int bfsize = 0;
1010 	int ret = -ENOMEM;
1011 
1012 	if (priv->hw->mode->set_16kib_bfsize)
1013 		bfsize = priv->hw->mode->set_16kib_bfsize(dev->mtu);
1014 
1015 	if (bfsize < BUF_SIZE_16KiB)
1016 		bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
1017 
1018 	priv->dma_buf_sz = bfsize;
1019 
1020 	if (netif_msg_probe(priv)) {
1021 		pr_debug("(%s) dma_rx_phy=0x%08x dma_tx_phy=0x%08x\n", __func__,
1022 			 (u32) priv->dma_rx_phy, (u32) priv->dma_tx_phy);
1023 
1024 		/* RX INITIALIZATION */
1025 		pr_debug("\tSKB addresses:\nskb\t\tskb data\tdma data\n");
1026 	}
1027 	for (i = 0; i < DMA_RX_SIZE; i++) {
1028 		struct dma_desc *p;
1029 		if (priv->extend_desc)
1030 			p = &((priv->dma_erx + i)->basic);
1031 		else
1032 			p = priv->dma_rx + i;
1033 
1034 		ret = stmmac_init_rx_buffers(priv, p, i, flags);
1035 		if (ret)
1036 			goto err_init_rx_buffers;
1037 
1038 		if (netif_msg_probe(priv))
1039 			pr_debug("[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
1040 				 priv->rx_skbuff[i]->data,
1041 				 (unsigned int)priv->rx_skbuff_dma[i]);
1042 	}
1043 	priv->cur_rx = 0;
1044 	priv->dirty_rx = (unsigned int)(i - DMA_RX_SIZE);
1045 	buf_sz = bfsize;
1046 
1047 	/* Setup the chained descriptor addresses */
1048 	if (priv->mode == STMMAC_CHAIN_MODE) {
1049 		if (priv->extend_desc) {
1050 			priv->hw->mode->init(priv->dma_erx, priv->dma_rx_phy,
1051 					     DMA_RX_SIZE, 1);
1052 			priv->hw->mode->init(priv->dma_etx, priv->dma_tx_phy,
1053 					     DMA_TX_SIZE, 1);
1054 		} else {
1055 			priv->hw->mode->init(priv->dma_rx, priv->dma_rx_phy,
1056 					     DMA_RX_SIZE, 0);
1057 			priv->hw->mode->init(priv->dma_tx, priv->dma_tx_phy,
1058 					     DMA_TX_SIZE, 0);
1059 		}
1060 	}
1061 
1062 	/* TX INITIALIZATION */
1063 	for (i = 0; i < DMA_TX_SIZE; i++) {
1064 		struct dma_desc *p;
1065 		if (priv->extend_desc)
1066 			p = &((priv->dma_etx + i)->basic);
1067 		else
1068 			p = priv->dma_tx + i;
1069 
1070 		if (priv->synopsys_id >= DWMAC_CORE_4_00) {
1071 			p->des0 = 0;
1072 			p->des1 = 0;
1073 			p->des2 = 0;
1074 			p->des3 = 0;
1075 		} else {
1076 			p->des2 = 0;
1077 		}
1078 
1079 		priv->tx_skbuff_dma[i].buf = 0;
1080 		priv->tx_skbuff_dma[i].map_as_page = false;
1081 		priv->tx_skbuff_dma[i].len = 0;
1082 		priv->tx_skbuff_dma[i].last_segment = false;
1083 		priv->tx_skbuff[i] = NULL;
1084 	}
1085 
1086 	priv->dirty_tx = 0;
1087 	priv->cur_tx = 0;
1088 	netdev_reset_queue(priv->dev);
1089 
1090 	stmmac_clear_descriptors(priv);
1091 
1092 	if (netif_msg_hw(priv))
1093 		stmmac_display_rings(priv);
1094 
1095 	return 0;
1096 err_init_rx_buffers:
1097 	while (--i >= 0)
1098 		stmmac_free_rx_buffers(priv, i);
1099 	return ret;
1100 }
1101 
1102 static void dma_free_rx_skbufs(struct stmmac_priv *priv)
1103 {
1104 	int i;
1105 
1106 	for (i = 0; i < DMA_RX_SIZE; i++)
1107 		stmmac_free_rx_buffers(priv, i);
1108 }
1109 
1110 static void dma_free_tx_skbufs(struct stmmac_priv *priv)
1111 {
1112 	int i;
1113 
1114 	for (i = 0; i < DMA_TX_SIZE; i++) {
1115 		struct dma_desc *p;
1116 
1117 		if (priv->extend_desc)
1118 			p = &((priv->dma_etx + i)->basic);
1119 		else
1120 			p = priv->dma_tx + i;
1121 
1122 		if (priv->tx_skbuff_dma[i].buf) {
1123 			if (priv->tx_skbuff_dma[i].map_as_page)
1124 				dma_unmap_page(priv->device,
1125 					       priv->tx_skbuff_dma[i].buf,
1126 					       priv->tx_skbuff_dma[i].len,
1127 					       DMA_TO_DEVICE);
1128 			else
1129 				dma_unmap_single(priv->device,
1130 						 priv->tx_skbuff_dma[i].buf,
1131 						 priv->tx_skbuff_dma[i].len,
1132 						 DMA_TO_DEVICE);
1133 		}
1134 
1135 		if (priv->tx_skbuff[i] != NULL) {
1136 			dev_kfree_skb_any(priv->tx_skbuff[i]);
1137 			priv->tx_skbuff[i] = NULL;
1138 			priv->tx_skbuff_dma[i].buf = 0;
1139 			priv->tx_skbuff_dma[i].map_as_page = false;
1140 		}
1141 	}
1142 }
1143 
1144 /**
1145  * alloc_dma_desc_resources - alloc TX/RX resources.
1146  * @priv: private structure
1147  * Description: according to which descriptor can be used (extend or basic)
1148  * this function allocates the resources for TX and RX paths. In case of
1149  * reception, for example, it pre-allocated the RX socket buffer in order to
1150  * allow zero-copy mechanism.
1151  */
1152 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1153 {
1154 	int ret = -ENOMEM;
1155 
1156 	priv->rx_skbuff_dma = kmalloc_array(DMA_RX_SIZE, sizeof(dma_addr_t),
1157 					    GFP_KERNEL);
1158 	if (!priv->rx_skbuff_dma)
1159 		return -ENOMEM;
1160 
1161 	priv->rx_skbuff = kmalloc_array(DMA_RX_SIZE, sizeof(struct sk_buff *),
1162 					GFP_KERNEL);
1163 	if (!priv->rx_skbuff)
1164 		goto err_rx_skbuff;
1165 
1166 	priv->tx_skbuff_dma = kmalloc_array(DMA_TX_SIZE,
1167 					    sizeof(*priv->tx_skbuff_dma),
1168 					    GFP_KERNEL);
1169 	if (!priv->tx_skbuff_dma)
1170 		goto err_tx_skbuff_dma;
1171 
1172 	priv->tx_skbuff = kmalloc_array(DMA_TX_SIZE, sizeof(struct sk_buff *),
1173 					GFP_KERNEL);
1174 	if (!priv->tx_skbuff)
1175 		goto err_tx_skbuff;
1176 
1177 	if (priv->extend_desc) {
1178 		priv->dma_erx = dma_zalloc_coherent(priv->device, DMA_RX_SIZE *
1179 						    sizeof(struct
1180 							   dma_extended_desc),
1181 						    &priv->dma_rx_phy,
1182 						    GFP_KERNEL);
1183 		if (!priv->dma_erx)
1184 			goto err_dma;
1185 
1186 		priv->dma_etx = dma_zalloc_coherent(priv->device, DMA_TX_SIZE *
1187 						    sizeof(struct
1188 							   dma_extended_desc),
1189 						    &priv->dma_tx_phy,
1190 						    GFP_KERNEL);
1191 		if (!priv->dma_etx) {
1192 			dma_free_coherent(priv->device, DMA_RX_SIZE *
1193 					  sizeof(struct dma_extended_desc),
1194 					  priv->dma_erx, priv->dma_rx_phy);
1195 			goto err_dma;
1196 		}
1197 	} else {
1198 		priv->dma_rx = dma_zalloc_coherent(priv->device, DMA_RX_SIZE *
1199 						   sizeof(struct dma_desc),
1200 						   &priv->dma_rx_phy,
1201 						   GFP_KERNEL);
1202 		if (!priv->dma_rx)
1203 			goto err_dma;
1204 
1205 		priv->dma_tx = dma_zalloc_coherent(priv->device, DMA_TX_SIZE *
1206 						   sizeof(struct dma_desc),
1207 						   &priv->dma_tx_phy,
1208 						   GFP_KERNEL);
1209 		if (!priv->dma_tx) {
1210 			dma_free_coherent(priv->device, DMA_RX_SIZE *
1211 					  sizeof(struct dma_desc),
1212 					  priv->dma_rx, priv->dma_rx_phy);
1213 			goto err_dma;
1214 		}
1215 	}
1216 
1217 	return 0;
1218 
1219 err_dma:
1220 	kfree(priv->tx_skbuff);
1221 err_tx_skbuff:
1222 	kfree(priv->tx_skbuff_dma);
1223 err_tx_skbuff_dma:
1224 	kfree(priv->rx_skbuff);
1225 err_rx_skbuff:
1226 	kfree(priv->rx_skbuff_dma);
1227 	return ret;
1228 }
1229 
1230 static void free_dma_desc_resources(struct stmmac_priv *priv)
1231 {
1232 	/* Release the DMA TX/RX socket buffers */
1233 	dma_free_rx_skbufs(priv);
1234 	dma_free_tx_skbufs(priv);
1235 
1236 	/* Free DMA regions of consistent memory previously allocated */
1237 	if (!priv->extend_desc) {
1238 		dma_free_coherent(priv->device,
1239 				  DMA_TX_SIZE * sizeof(struct dma_desc),
1240 				  priv->dma_tx, priv->dma_tx_phy);
1241 		dma_free_coherent(priv->device,
1242 				  DMA_RX_SIZE * sizeof(struct dma_desc),
1243 				  priv->dma_rx, priv->dma_rx_phy);
1244 	} else {
1245 		dma_free_coherent(priv->device, DMA_TX_SIZE *
1246 				  sizeof(struct dma_extended_desc),
1247 				  priv->dma_etx, priv->dma_tx_phy);
1248 		dma_free_coherent(priv->device, DMA_RX_SIZE *
1249 				  sizeof(struct dma_extended_desc),
1250 				  priv->dma_erx, priv->dma_rx_phy);
1251 	}
1252 	kfree(priv->rx_skbuff_dma);
1253 	kfree(priv->rx_skbuff);
1254 	kfree(priv->tx_skbuff_dma);
1255 	kfree(priv->tx_skbuff);
1256 }
1257 
1258 /**
1259  *  stmmac_dma_operation_mode - HW DMA operation mode
1260  *  @priv: driver private structure
1261  *  Description: it is used for configuring the DMA operation mode register in
1262  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1263  */
1264 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1265 {
1266 	int rxfifosz = priv->plat->rx_fifo_size;
1267 
1268 	if (priv->plat->force_thresh_dma_mode)
1269 		priv->hw->dma->dma_mode(priv->ioaddr, tc, tc, rxfifosz);
1270 	else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1271 		/*
1272 		 * In case of GMAC, SF mode can be enabled
1273 		 * to perform the TX COE in HW. This depends on:
1274 		 * 1) TX COE if actually supported
1275 		 * 2) There is no bugged Jumbo frame support
1276 		 *    that needs to not insert csum in the TDES.
1277 		 */
1278 		priv->hw->dma->dma_mode(priv->ioaddr, SF_DMA_MODE, SF_DMA_MODE,
1279 					rxfifosz);
1280 		priv->xstats.threshold = SF_DMA_MODE;
1281 	} else
1282 		priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE,
1283 					rxfifosz);
1284 }
1285 
1286 /**
1287  * stmmac_tx_clean - to manage the transmission completion
1288  * @priv: driver private structure
1289  * Description: it reclaims the transmit resources after transmission completes.
1290  */
1291 static void stmmac_tx_clean(struct stmmac_priv *priv)
1292 {
1293 	unsigned int bytes_compl = 0, pkts_compl = 0;
1294 	unsigned int entry = priv->dirty_tx;
1295 
1296 	spin_lock(&priv->tx_lock);
1297 
1298 	priv->xstats.tx_clean++;
1299 
1300 	while (entry != priv->cur_tx) {
1301 		struct sk_buff *skb = priv->tx_skbuff[entry];
1302 		struct dma_desc *p;
1303 		int status;
1304 
1305 		if (priv->extend_desc)
1306 			p = (struct dma_desc *)(priv->dma_etx + entry);
1307 		else
1308 			p = priv->dma_tx + entry;
1309 
1310 		status = priv->hw->desc->tx_status(&priv->dev->stats,
1311 						      &priv->xstats, p,
1312 						      priv->ioaddr);
1313 		/* Check if the descriptor is owned by the DMA */
1314 		if (unlikely(status & tx_dma_own))
1315 			break;
1316 
1317 		/* Just consider the last segment and ...*/
1318 		if (likely(!(status & tx_not_ls))) {
1319 			/* ... verify the status error condition */
1320 			if (unlikely(status & tx_err)) {
1321 				priv->dev->stats.tx_errors++;
1322 			} else {
1323 				priv->dev->stats.tx_packets++;
1324 				priv->xstats.tx_pkt_n++;
1325 			}
1326 			stmmac_get_tx_hwtstamp(priv, entry, skb);
1327 		}
1328 
1329 		if (likely(priv->tx_skbuff_dma[entry].buf)) {
1330 			if (priv->tx_skbuff_dma[entry].map_as_page)
1331 				dma_unmap_page(priv->device,
1332 					       priv->tx_skbuff_dma[entry].buf,
1333 					       priv->tx_skbuff_dma[entry].len,
1334 					       DMA_TO_DEVICE);
1335 			else
1336 				dma_unmap_single(priv->device,
1337 						 priv->tx_skbuff_dma[entry].buf,
1338 						 priv->tx_skbuff_dma[entry].len,
1339 						 DMA_TO_DEVICE);
1340 			priv->tx_skbuff_dma[entry].buf = 0;
1341 			priv->tx_skbuff_dma[entry].len = 0;
1342 			priv->tx_skbuff_dma[entry].map_as_page = false;
1343 		}
1344 
1345 		if (priv->hw->mode->clean_desc3)
1346 			priv->hw->mode->clean_desc3(priv, p);
1347 
1348 		priv->tx_skbuff_dma[entry].last_segment = false;
1349 		priv->tx_skbuff_dma[entry].is_jumbo = false;
1350 
1351 		if (likely(skb != NULL)) {
1352 			pkts_compl++;
1353 			bytes_compl += skb->len;
1354 			dev_consume_skb_any(skb);
1355 			priv->tx_skbuff[entry] = NULL;
1356 		}
1357 
1358 		priv->hw->desc->release_tx_desc(p, priv->mode);
1359 
1360 		entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
1361 	}
1362 	priv->dirty_tx = entry;
1363 
1364 	netdev_completed_queue(priv->dev, pkts_compl, bytes_compl);
1365 
1366 	if (unlikely(netif_queue_stopped(priv->dev) &&
1367 		     stmmac_tx_avail(priv) > STMMAC_TX_THRESH)) {
1368 		netif_tx_lock(priv->dev);
1369 		if (netif_queue_stopped(priv->dev) &&
1370 		    stmmac_tx_avail(priv) > STMMAC_TX_THRESH) {
1371 			if (netif_msg_tx_done(priv))
1372 				pr_debug("%s: restart transmit\n", __func__);
1373 			netif_wake_queue(priv->dev);
1374 		}
1375 		netif_tx_unlock(priv->dev);
1376 	}
1377 
1378 	if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1379 		stmmac_enable_eee_mode(priv);
1380 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1381 	}
1382 	spin_unlock(&priv->tx_lock);
1383 }
1384 
1385 static inline void stmmac_enable_dma_irq(struct stmmac_priv *priv)
1386 {
1387 	priv->hw->dma->enable_dma_irq(priv->ioaddr);
1388 }
1389 
1390 static inline void stmmac_disable_dma_irq(struct stmmac_priv *priv)
1391 {
1392 	priv->hw->dma->disable_dma_irq(priv->ioaddr);
1393 }
1394 
1395 /**
1396  * stmmac_tx_err - to manage the tx error
1397  * @priv: driver private structure
1398  * Description: it cleans the descriptors and restarts the transmission
1399  * in case of transmission errors.
1400  */
1401 static void stmmac_tx_err(struct stmmac_priv *priv)
1402 {
1403 	int i;
1404 	netif_stop_queue(priv->dev);
1405 
1406 	priv->hw->dma->stop_tx(priv->ioaddr);
1407 	dma_free_tx_skbufs(priv);
1408 	for (i = 0; i < DMA_TX_SIZE; i++)
1409 		if (priv->extend_desc)
1410 			priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
1411 						     priv->mode,
1412 						     (i == DMA_TX_SIZE - 1));
1413 		else
1414 			priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
1415 						     priv->mode,
1416 						     (i == DMA_TX_SIZE - 1));
1417 	priv->dirty_tx = 0;
1418 	priv->cur_tx = 0;
1419 	netdev_reset_queue(priv->dev);
1420 	priv->hw->dma->start_tx(priv->ioaddr);
1421 
1422 	priv->dev->stats.tx_errors++;
1423 	netif_wake_queue(priv->dev);
1424 }
1425 
1426 /**
1427  * stmmac_dma_interrupt - DMA ISR
1428  * @priv: driver private structure
1429  * Description: this is the DMA ISR. It is called by the main ISR.
1430  * It calls the dwmac dma routine and schedule poll method in case of some
1431  * work can be done.
1432  */
1433 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
1434 {
1435 	int status;
1436 	int rxfifosz = priv->plat->rx_fifo_size;
1437 
1438 	status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
1439 	if (likely((status & handle_rx)) || (status & handle_tx)) {
1440 		if (likely(napi_schedule_prep(&priv->napi))) {
1441 			stmmac_disable_dma_irq(priv);
1442 			__napi_schedule(&priv->napi);
1443 		}
1444 	}
1445 	if (unlikely(status & tx_hard_error_bump_tc)) {
1446 		/* Try to bump up the dma threshold on this failure */
1447 		if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
1448 		    (tc <= 256)) {
1449 			tc += 64;
1450 			if (priv->plat->force_thresh_dma_mode)
1451 				priv->hw->dma->dma_mode(priv->ioaddr, tc, tc,
1452 							rxfifosz);
1453 			else
1454 				priv->hw->dma->dma_mode(priv->ioaddr, tc,
1455 							SF_DMA_MODE, rxfifosz);
1456 			priv->xstats.threshold = tc;
1457 		}
1458 	} else if (unlikely(status == tx_hard_error))
1459 		stmmac_tx_err(priv);
1460 }
1461 
1462 /**
1463  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
1464  * @priv: driver private structure
1465  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
1466  */
1467 static void stmmac_mmc_setup(struct stmmac_priv *priv)
1468 {
1469 	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
1470 			    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
1471 
1472 	if (priv->synopsys_id >= DWMAC_CORE_4_00)
1473 		priv->mmcaddr = priv->ioaddr + MMC_GMAC4_OFFSET;
1474 	else
1475 		priv->mmcaddr = priv->ioaddr + MMC_GMAC3_X_OFFSET;
1476 
1477 	dwmac_mmc_intr_all_mask(priv->mmcaddr);
1478 
1479 	if (priv->dma_cap.rmon) {
1480 		dwmac_mmc_ctrl(priv->mmcaddr, mode);
1481 		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
1482 	} else
1483 		pr_info(" No MAC Management Counters available\n");
1484 }
1485 
1486 /**
1487  * stmmac_selec_desc_mode - to select among: normal/alternate/extend descriptors
1488  * @priv: driver private structure
1489  * Description: select the Enhanced/Alternate or Normal descriptors.
1490  * In case of Enhanced/Alternate, it checks if the extended descriptors are
1491  * supported by the HW capability register.
1492  */
1493 static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
1494 {
1495 	if (priv->plat->enh_desc) {
1496 		pr_info(" Enhanced/Alternate descriptors\n");
1497 
1498 		/* GMAC older than 3.50 has no extended descriptors */
1499 		if (priv->synopsys_id >= DWMAC_CORE_3_50) {
1500 			pr_info("\tEnabled extended descriptors\n");
1501 			priv->extend_desc = 1;
1502 		} else
1503 			pr_warn("Extended descriptors not supported\n");
1504 
1505 		priv->hw->desc = &enh_desc_ops;
1506 	} else {
1507 		pr_info(" Normal descriptors\n");
1508 		priv->hw->desc = &ndesc_ops;
1509 	}
1510 }
1511 
1512 /**
1513  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
1514  * @priv: driver private structure
1515  * Description:
1516  *  new GMAC chip generations have a new register to indicate the
1517  *  presence of the optional feature/functions.
1518  *  This can be also used to override the value passed through the
1519  *  platform and necessary for old MAC10/100 and GMAC chips.
1520  */
1521 static int stmmac_get_hw_features(struct stmmac_priv *priv)
1522 {
1523 	u32 ret = 0;
1524 
1525 	if (priv->hw->dma->get_hw_feature) {
1526 		priv->hw->dma->get_hw_feature(priv->ioaddr,
1527 					      &priv->dma_cap);
1528 		ret = 1;
1529 	}
1530 
1531 	return ret;
1532 }
1533 
1534 /**
1535  * stmmac_check_ether_addr - check if the MAC addr is valid
1536  * @priv: driver private structure
1537  * Description:
1538  * it is to verify if the MAC address is valid, in case of failures it
1539  * generates a random MAC address
1540  */
1541 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
1542 {
1543 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
1544 		priv->hw->mac->get_umac_addr(priv->hw,
1545 					     priv->dev->dev_addr, 0);
1546 		if (!is_valid_ether_addr(priv->dev->dev_addr))
1547 			eth_hw_addr_random(priv->dev);
1548 		pr_info("%s: device MAC address %pM\n", priv->dev->name,
1549 			priv->dev->dev_addr);
1550 	}
1551 }
1552 
1553 /**
1554  * stmmac_init_dma_engine - DMA init.
1555  * @priv: driver private structure
1556  * Description:
1557  * It inits the DMA invoking the specific MAC/GMAC callback.
1558  * Some DMA parameters can be passed from the platform;
1559  * in case of these are not passed a default is kept for the MAC or GMAC.
1560  */
1561 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
1562 {
1563 	int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, aal = 0;
1564 	int mixed_burst = 0;
1565 	int atds = 0;
1566 	int ret = 0;
1567 
1568 	if (priv->plat->dma_cfg) {
1569 		pbl = priv->plat->dma_cfg->pbl;
1570 		fixed_burst = priv->plat->dma_cfg->fixed_burst;
1571 		mixed_burst = priv->plat->dma_cfg->mixed_burst;
1572 		aal = priv->plat->dma_cfg->aal;
1573 	}
1574 
1575 	if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
1576 		atds = 1;
1577 
1578 	ret = priv->hw->dma->reset(priv->ioaddr);
1579 	if (ret) {
1580 		dev_err(priv->device, "Failed to reset the dma\n");
1581 		return ret;
1582 	}
1583 
1584 	priv->hw->dma->init(priv->ioaddr, pbl, fixed_burst, mixed_burst,
1585 			    aal, priv->dma_tx_phy, priv->dma_rx_phy, atds);
1586 
1587 	if (priv->synopsys_id >= DWMAC_CORE_4_00) {
1588 		priv->rx_tail_addr = priv->dma_rx_phy +
1589 			    (DMA_RX_SIZE * sizeof(struct dma_desc));
1590 		priv->hw->dma->set_rx_tail_ptr(priv->ioaddr, priv->rx_tail_addr,
1591 					       STMMAC_CHAN0);
1592 
1593 		priv->tx_tail_addr = priv->dma_tx_phy +
1594 			    (DMA_TX_SIZE * sizeof(struct dma_desc));
1595 		priv->hw->dma->set_tx_tail_ptr(priv->ioaddr, priv->tx_tail_addr,
1596 					       STMMAC_CHAN0);
1597 	}
1598 
1599 	if (priv->plat->axi && priv->hw->dma->axi)
1600 		priv->hw->dma->axi(priv->ioaddr, priv->plat->axi);
1601 
1602 	return ret;
1603 }
1604 
1605 /**
1606  * stmmac_tx_timer - mitigation sw timer for tx.
1607  * @data: data pointer
1608  * Description:
1609  * This is the timer handler to directly invoke the stmmac_tx_clean.
1610  */
1611 static void stmmac_tx_timer(unsigned long data)
1612 {
1613 	struct stmmac_priv *priv = (struct stmmac_priv *)data;
1614 
1615 	stmmac_tx_clean(priv);
1616 }
1617 
1618 /**
1619  * stmmac_init_tx_coalesce - init tx mitigation options.
1620  * @priv: driver private structure
1621  * Description:
1622  * This inits the transmit coalesce parameters: i.e. timer rate,
1623  * timer handler and default threshold used for enabling the
1624  * interrupt on completion bit.
1625  */
1626 static void stmmac_init_tx_coalesce(struct stmmac_priv *priv)
1627 {
1628 	priv->tx_coal_frames = STMMAC_TX_FRAMES;
1629 	priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
1630 	init_timer(&priv->txtimer);
1631 	priv->txtimer.expires = STMMAC_COAL_TIMER(priv->tx_coal_timer);
1632 	priv->txtimer.data = (unsigned long)priv;
1633 	priv->txtimer.function = stmmac_tx_timer;
1634 	add_timer(&priv->txtimer);
1635 }
1636 
1637 /**
1638  * stmmac_hw_setup - setup mac in a usable state.
1639  *  @dev : pointer to the device structure.
1640  *  Description:
1641  *  this is the main function to setup the HW in a usable state because the
1642  *  dma engine is reset, the core registers are configured (e.g. AXI,
1643  *  Checksum features, timers). The DMA is ready to start receiving and
1644  *  transmitting.
1645  *  Return value:
1646  *  0 on success and an appropriate (-)ve integer as defined in errno.h
1647  *  file on failure.
1648  */
1649 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
1650 {
1651 	struct stmmac_priv *priv = netdev_priv(dev);
1652 	int ret;
1653 
1654 	/* DMA initialization and SW reset */
1655 	ret = stmmac_init_dma_engine(priv);
1656 	if (ret < 0) {
1657 		pr_err("%s: DMA engine initialization failed\n", __func__);
1658 		return ret;
1659 	}
1660 
1661 	/* Copy the MAC addr into the HW  */
1662 	priv->hw->mac->set_umac_addr(priv->hw, dev->dev_addr, 0);
1663 
1664 	/* If required, perform hw setup of the bus. */
1665 	if (priv->plat->bus_setup)
1666 		priv->plat->bus_setup(priv->ioaddr);
1667 
1668 	/* Initialize the MAC Core */
1669 	priv->hw->mac->core_init(priv->hw, dev->mtu);
1670 
1671 	ret = priv->hw->mac->rx_ipc(priv->hw);
1672 	if (!ret) {
1673 		pr_warn(" RX IPC Checksum Offload disabled\n");
1674 		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
1675 		priv->hw->rx_csum = 0;
1676 	}
1677 
1678 	/* Enable the MAC Rx/Tx */
1679 	if (priv->synopsys_id >= DWMAC_CORE_4_00)
1680 		stmmac_dwmac4_set_mac(priv->ioaddr, true);
1681 	else
1682 		stmmac_set_mac(priv->ioaddr, true);
1683 
1684 	/* Set the HW DMA mode and the COE */
1685 	stmmac_dma_operation_mode(priv);
1686 
1687 	stmmac_mmc_setup(priv);
1688 
1689 	if (init_ptp) {
1690 		ret = stmmac_init_ptp(priv);
1691 		if (ret && ret != -EOPNOTSUPP)
1692 			pr_warn("%s: failed PTP initialisation\n", __func__);
1693 	}
1694 
1695 #ifdef CONFIG_DEBUG_FS
1696 	ret = stmmac_init_fs(dev);
1697 	if (ret < 0)
1698 		pr_warn("%s: failed debugFS registration\n", __func__);
1699 #endif
1700 	/* Start the ball rolling... */
1701 	pr_debug("%s: DMA RX/TX processes started...\n", dev->name);
1702 	priv->hw->dma->start_tx(priv->ioaddr);
1703 	priv->hw->dma->start_rx(priv->ioaddr);
1704 
1705 	/* Dump DMA/MAC registers */
1706 	if (netif_msg_hw(priv)) {
1707 		priv->hw->mac->dump_regs(priv->hw);
1708 		priv->hw->dma->dump_regs(priv->ioaddr);
1709 	}
1710 	priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
1711 
1712 	if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) {
1713 		priv->rx_riwt = MAX_DMA_RIWT;
1714 		priv->hw->dma->rx_watchdog(priv->ioaddr, MAX_DMA_RIWT);
1715 	}
1716 
1717 	if (priv->pcs && priv->hw->mac->ctrl_ane)
1718 		priv->hw->mac->ctrl_ane(priv->hw, 0);
1719 
1720 	/*  set TX ring length */
1721 	if (priv->hw->dma->set_tx_ring_len)
1722 		priv->hw->dma->set_tx_ring_len(priv->ioaddr,
1723 					       (DMA_TX_SIZE - 1));
1724 	/*  set RX ring length */
1725 	if (priv->hw->dma->set_rx_ring_len)
1726 		priv->hw->dma->set_rx_ring_len(priv->ioaddr,
1727 					       (DMA_RX_SIZE - 1));
1728 	/* Enable TSO */
1729 	if (priv->tso)
1730 		priv->hw->dma->enable_tso(priv->ioaddr, 1, STMMAC_CHAN0);
1731 
1732 	return 0;
1733 }
1734 
1735 /**
1736  *  stmmac_open - open entry point of the driver
1737  *  @dev : pointer to the device structure.
1738  *  Description:
1739  *  This function is the open entry point of the driver.
1740  *  Return value:
1741  *  0 on success and an appropriate (-)ve integer as defined in errno.h
1742  *  file on failure.
1743  */
1744 static int stmmac_open(struct net_device *dev)
1745 {
1746 	struct stmmac_priv *priv = netdev_priv(dev);
1747 	int ret;
1748 
1749 	stmmac_check_ether_addr(priv);
1750 
1751 	if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
1752 	    priv->pcs != STMMAC_PCS_RTBI) {
1753 		ret = stmmac_init_phy(dev);
1754 		if (ret) {
1755 			pr_err("%s: Cannot attach to PHY (error: %d)\n",
1756 			       __func__, ret);
1757 			return ret;
1758 		}
1759 	}
1760 
1761 	/* Extra statistics */
1762 	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
1763 	priv->xstats.threshold = tc;
1764 
1765 	priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
1766 	priv->rx_copybreak = STMMAC_RX_COPYBREAK;
1767 
1768 	ret = alloc_dma_desc_resources(priv);
1769 	if (ret < 0) {
1770 		pr_err("%s: DMA descriptors allocation failed\n", __func__);
1771 		goto dma_desc_error;
1772 	}
1773 
1774 	ret = init_dma_desc_rings(dev, GFP_KERNEL);
1775 	if (ret < 0) {
1776 		pr_err("%s: DMA descriptors initialization failed\n", __func__);
1777 		goto init_error;
1778 	}
1779 
1780 	ret = stmmac_hw_setup(dev, true);
1781 	if (ret < 0) {
1782 		pr_err("%s: Hw setup failed\n", __func__);
1783 		goto init_error;
1784 	}
1785 
1786 	stmmac_init_tx_coalesce(priv);
1787 
1788 	if (priv->phydev)
1789 		phy_start(priv->phydev);
1790 
1791 	/* Request the IRQ lines */
1792 	ret = request_irq(dev->irq, stmmac_interrupt,
1793 			  IRQF_SHARED, dev->name, dev);
1794 	if (unlikely(ret < 0)) {
1795 		pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
1796 		       __func__, dev->irq, ret);
1797 		goto init_error;
1798 	}
1799 
1800 	/* Request the Wake IRQ in case of another line is used for WoL */
1801 	if (priv->wol_irq != dev->irq) {
1802 		ret = request_irq(priv->wol_irq, stmmac_interrupt,
1803 				  IRQF_SHARED, dev->name, dev);
1804 		if (unlikely(ret < 0)) {
1805 			pr_err("%s: ERROR: allocating the WoL IRQ %d (%d)\n",
1806 			       __func__, priv->wol_irq, ret);
1807 			goto wolirq_error;
1808 		}
1809 	}
1810 
1811 	/* Request the IRQ lines */
1812 	if (priv->lpi_irq > 0) {
1813 		ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
1814 				  dev->name, dev);
1815 		if (unlikely(ret < 0)) {
1816 			pr_err("%s: ERROR: allocating the LPI IRQ %d (%d)\n",
1817 			       __func__, priv->lpi_irq, ret);
1818 			goto lpiirq_error;
1819 		}
1820 	}
1821 
1822 	napi_enable(&priv->napi);
1823 	netif_start_queue(dev);
1824 
1825 	return 0;
1826 
1827 lpiirq_error:
1828 	if (priv->wol_irq != dev->irq)
1829 		free_irq(priv->wol_irq, dev);
1830 wolirq_error:
1831 	free_irq(dev->irq, dev);
1832 
1833 init_error:
1834 	free_dma_desc_resources(priv);
1835 dma_desc_error:
1836 	if (priv->phydev)
1837 		phy_disconnect(priv->phydev);
1838 
1839 	return ret;
1840 }
1841 
1842 /**
1843  *  stmmac_release - close entry point of the driver
1844  *  @dev : device pointer.
1845  *  Description:
1846  *  This is the stop entry point of the driver.
1847  */
1848 static int stmmac_release(struct net_device *dev)
1849 {
1850 	struct stmmac_priv *priv = netdev_priv(dev);
1851 
1852 	if (priv->eee_enabled)
1853 		del_timer_sync(&priv->eee_ctrl_timer);
1854 
1855 	/* Stop and disconnect the PHY */
1856 	if (priv->phydev) {
1857 		phy_stop(priv->phydev);
1858 		phy_disconnect(priv->phydev);
1859 		priv->phydev = NULL;
1860 	}
1861 
1862 	netif_stop_queue(dev);
1863 
1864 	napi_disable(&priv->napi);
1865 
1866 	del_timer_sync(&priv->txtimer);
1867 
1868 	/* Free the IRQ lines */
1869 	free_irq(dev->irq, dev);
1870 	if (priv->wol_irq != dev->irq)
1871 		free_irq(priv->wol_irq, dev);
1872 	if (priv->lpi_irq > 0)
1873 		free_irq(priv->lpi_irq, dev);
1874 
1875 	/* Stop TX/RX DMA and clear the descriptors */
1876 	priv->hw->dma->stop_tx(priv->ioaddr);
1877 	priv->hw->dma->stop_rx(priv->ioaddr);
1878 
1879 	/* Release and free the Rx/Tx resources */
1880 	free_dma_desc_resources(priv);
1881 
1882 	/* Disable the MAC Rx/Tx */
1883 	stmmac_set_mac(priv->ioaddr, false);
1884 
1885 	netif_carrier_off(dev);
1886 
1887 #ifdef CONFIG_DEBUG_FS
1888 	stmmac_exit_fs(dev);
1889 #endif
1890 
1891 	stmmac_release_ptp(priv);
1892 
1893 	return 0;
1894 }
1895 
1896 /**
1897  *  stmmac_tso_allocator - close entry point of the driver
1898  *  @priv: driver private structure
1899  *  @des: buffer start address
1900  *  @total_len: total length to fill in descriptors
1901  *  @last_segmant: condition for the last descriptor
1902  *  Description:
1903  *  This function fills descriptor and request new descriptors according to
1904  *  buffer length to fill
1905  */
1906 static void stmmac_tso_allocator(struct stmmac_priv *priv, unsigned int des,
1907 				 int total_len, bool last_segment)
1908 {
1909 	struct dma_desc *desc;
1910 	int tmp_len;
1911 	u32 buff_size;
1912 
1913 	tmp_len = total_len;
1914 
1915 	while (tmp_len > 0) {
1916 		priv->cur_tx = STMMAC_GET_ENTRY(priv->cur_tx, DMA_TX_SIZE);
1917 		desc = priv->dma_tx + priv->cur_tx;
1918 
1919 		desc->des0 = des + (total_len - tmp_len);
1920 		buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
1921 			    TSO_MAX_BUFF_SIZE : tmp_len;
1922 
1923 		priv->hw->desc->prepare_tso_tx_desc(desc, 0, buff_size,
1924 			0, 1,
1925 			(last_segment) && (buff_size < TSO_MAX_BUFF_SIZE),
1926 			0, 0);
1927 
1928 		tmp_len -= TSO_MAX_BUFF_SIZE;
1929 	}
1930 }
1931 
1932 /**
1933  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
1934  *  @skb : the socket buffer
1935  *  @dev : device pointer
1936  *  Description: this is the transmit function that is called on TSO frames
1937  *  (support available on GMAC4 and newer chips).
1938  *  Diagram below show the ring programming in case of TSO frames:
1939  *
1940  *  First Descriptor
1941  *   --------
1942  *   | DES0 |---> buffer1 = L2/L3/L4 header
1943  *   | DES1 |---> TCP Payload (can continue on next descr...)
1944  *   | DES2 |---> buffer 1 and 2 len
1945  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
1946  *   --------
1947  *	|
1948  *     ...
1949  *	|
1950  *   --------
1951  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
1952  *   | DES1 | --|
1953  *   | DES2 | --> buffer 1 and 2 len
1954  *   | DES3 |
1955  *   --------
1956  *
1957  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
1958  */
1959 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
1960 {
1961 	u32 pay_len, mss;
1962 	int tmp_pay_len = 0;
1963 	struct stmmac_priv *priv = netdev_priv(dev);
1964 	int nfrags = skb_shinfo(skb)->nr_frags;
1965 	unsigned int first_entry, des;
1966 	struct dma_desc *desc, *first, *mss_desc = NULL;
1967 	u8 proto_hdr_len;
1968 	int i;
1969 
1970 	spin_lock(&priv->tx_lock);
1971 
1972 	/* Compute header lengths */
1973 	proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1974 
1975 	/* Desc availability based on threshold should be enough safe */
1976 	if (unlikely(stmmac_tx_avail(priv) <
1977 		(((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
1978 		if (!netif_queue_stopped(dev)) {
1979 			netif_stop_queue(dev);
1980 			/* This is a hard error, log it. */
1981 			pr_err("%s: Tx Ring full when queue awake\n", __func__);
1982 		}
1983 		spin_unlock(&priv->tx_lock);
1984 		return NETDEV_TX_BUSY;
1985 	}
1986 
1987 	pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
1988 
1989 	mss = skb_shinfo(skb)->gso_size;
1990 
1991 	/* set new MSS value if needed */
1992 	if (mss != priv->mss) {
1993 		mss_desc = priv->dma_tx + priv->cur_tx;
1994 		priv->hw->desc->set_mss(mss_desc, mss);
1995 		priv->mss = mss;
1996 		priv->cur_tx = STMMAC_GET_ENTRY(priv->cur_tx, DMA_TX_SIZE);
1997 	}
1998 
1999 	if (netif_msg_tx_queued(priv)) {
2000 		pr_info("%s: tcphdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
2001 			__func__, tcp_hdrlen(skb), proto_hdr_len, pay_len, mss);
2002 		pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
2003 			skb->data_len);
2004 	}
2005 
2006 	first_entry = priv->cur_tx;
2007 
2008 	desc = priv->dma_tx + first_entry;
2009 	first = desc;
2010 
2011 	/* first descriptor: fill Headers on Buf1 */
2012 	des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
2013 			     DMA_TO_DEVICE);
2014 	if (dma_mapping_error(priv->device, des))
2015 		goto dma_map_err;
2016 
2017 	priv->tx_skbuff_dma[first_entry].buf = des;
2018 	priv->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
2019 	priv->tx_skbuff[first_entry] = skb;
2020 
2021 	first->des0 = des;
2022 
2023 	/* Fill start of payload in buff2 of first descriptor */
2024 	if (pay_len)
2025 		first->des1 =  des + proto_hdr_len;
2026 
2027 	/* If needed take extra descriptors to fill the remaining payload */
2028 	tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
2029 
2030 	stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0));
2031 
2032 	/* Prepare fragments */
2033 	for (i = 0; i < nfrags; i++) {
2034 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2035 
2036 		des = skb_frag_dma_map(priv->device, frag, 0,
2037 				       skb_frag_size(frag),
2038 				       DMA_TO_DEVICE);
2039 
2040 		stmmac_tso_allocator(priv, des, skb_frag_size(frag),
2041 				     (i == nfrags - 1));
2042 
2043 		priv->tx_skbuff_dma[priv->cur_tx].buf = des;
2044 		priv->tx_skbuff_dma[priv->cur_tx].len = skb_frag_size(frag);
2045 		priv->tx_skbuff[priv->cur_tx] = NULL;
2046 		priv->tx_skbuff_dma[priv->cur_tx].map_as_page = true;
2047 	}
2048 
2049 	priv->tx_skbuff_dma[priv->cur_tx].last_segment = true;
2050 
2051 	priv->cur_tx = STMMAC_GET_ENTRY(priv->cur_tx, DMA_TX_SIZE);
2052 
2053 	if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
2054 		if (netif_msg_hw(priv))
2055 			pr_debug("%s: stop transmitted packets\n", __func__);
2056 		netif_stop_queue(dev);
2057 	}
2058 
2059 	dev->stats.tx_bytes += skb->len;
2060 	priv->xstats.tx_tso_frames++;
2061 	priv->xstats.tx_tso_nfrags += nfrags;
2062 
2063 	/* Manage tx mitigation */
2064 	priv->tx_count_frames += nfrags + 1;
2065 	if (likely(priv->tx_coal_frames > priv->tx_count_frames)) {
2066 		mod_timer(&priv->txtimer,
2067 			  STMMAC_COAL_TIMER(priv->tx_coal_timer));
2068 	} else {
2069 		priv->tx_count_frames = 0;
2070 		priv->hw->desc->set_tx_ic(desc);
2071 		priv->xstats.tx_set_ic_bit++;
2072 	}
2073 
2074 	if (!priv->hwts_tx_en)
2075 		skb_tx_timestamp(skb);
2076 
2077 	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2078 		     priv->hwts_tx_en)) {
2079 		/* declare that device is doing timestamping */
2080 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2081 		priv->hw->desc->enable_tx_timestamp(first);
2082 	}
2083 
2084 	/* Complete the first descriptor before granting the DMA */
2085 	priv->hw->desc->prepare_tso_tx_desc(first, 1,
2086 			proto_hdr_len,
2087 			pay_len,
2088 			1, priv->tx_skbuff_dma[first_entry].last_segment,
2089 			tcp_hdrlen(skb) / 4, (skb->len - proto_hdr_len));
2090 
2091 	/* If context desc is used to change MSS */
2092 	if (mss_desc)
2093 		priv->hw->desc->set_tx_owner(mss_desc);
2094 
2095 	/* The own bit must be the latest setting done when prepare the
2096 	 * descriptor and then barrier is needed to make sure that
2097 	 * all is coherent before granting the DMA engine.
2098 	 */
2099 	smp_wmb();
2100 
2101 	if (netif_msg_pktdata(priv)) {
2102 		pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
2103 			__func__, priv->cur_tx, priv->dirty_tx, first_entry,
2104 			priv->cur_tx, first, nfrags);
2105 
2106 		priv->hw->desc->display_ring((void *)priv->dma_tx, DMA_TX_SIZE,
2107 					     0);
2108 
2109 		pr_info(">>> frame to be transmitted: ");
2110 		print_pkt(skb->data, skb_headlen(skb));
2111 	}
2112 
2113 	netdev_sent_queue(dev, skb->len);
2114 
2115 	priv->hw->dma->set_tx_tail_ptr(priv->ioaddr, priv->tx_tail_addr,
2116 				       STMMAC_CHAN0);
2117 
2118 	spin_unlock(&priv->tx_lock);
2119 	return NETDEV_TX_OK;
2120 
2121 dma_map_err:
2122 	spin_unlock(&priv->tx_lock);
2123 	dev_err(priv->device, "Tx dma map failed\n");
2124 	dev_kfree_skb(skb);
2125 	priv->dev->stats.tx_dropped++;
2126 	return NETDEV_TX_OK;
2127 }
2128 
2129 /**
2130  *  stmmac_xmit - Tx entry point of the driver
2131  *  @skb : the socket buffer
2132  *  @dev : device pointer
2133  *  Description : this is the tx entry point of the driver.
2134  *  It programs the chain or the ring and supports oversized frames
2135  *  and SG feature.
2136  */
2137 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
2138 {
2139 	struct stmmac_priv *priv = netdev_priv(dev);
2140 	unsigned int nopaged_len = skb_headlen(skb);
2141 	int i, csum_insertion = 0, is_jumbo = 0;
2142 	int nfrags = skb_shinfo(skb)->nr_frags;
2143 	unsigned int entry, first_entry;
2144 	struct dma_desc *desc, *first;
2145 	unsigned int enh_desc;
2146 	unsigned int des;
2147 
2148 	/* Manage oversized TCP frames for GMAC4 device */
2149 	if (skb_is_gso(skb) && priv->tso) {
2150 		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2151 			return stmmac_tso_xmit(skb, dev);
2152 	}
2153 
2154 	spin_lock(&priv->tx_lock);
2155 
2156 	if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
2157 		spin_unlock(&priv->tx_lock);
2158 		if (!netif_queue_stopped(dev)) {
2159 			netif_stop_queue(dev);
2160 			/* This is a hard error, log it. */
2161 			pr_err("%s: Tx Ring full when queue awake\n", __func__);
2162 		}
2163 		return NETDEV_TX_BUSY;
2164 	}
2165 
2166 	if (priv->tx_path_in_lpi_mode)
2167 		stmmac_disable_eee_mode(priv);
2168 
2169 	entry = priv->cur_tx;
2170 	first_entry = entry;
2171 
2172 	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
2173 
2174 	if (likely(priv->extend_desc))
2175 		desc = (struct dma_desc *)(priv->dma_etx + entry);
2176 	else
2177 		desc = priv->dma_tx + entry;
2178 
2179 	first = desc;
2180 
2181 	priv->tx_skbuff[first_entry] = skb;
2182 
2183 	enh_desc = priv->plat->enh_desc;
2184 	/* To program the descriptors according to the size of the frame */
2185 	if (enh_desc)
2186 		is_jumbo = priv->hw->mode->is_jumbo_frm(skb->len, enh_desc);
2187 
2188 	if (unlikely(is_jumbo) && likely(priv->synopsys_id <
2189 					 DWMAC_CORE_4_00)) {
2190 		entry = priv->hw->mode->jumbo_frm(priv, skb, csum_insertion);
2191 		if (unlikely(entry < 0))
2192 			goto dma_map_err;
2193 	}
2194 
2195 	for (i = 0; i < nfrags; i++) {
2196 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2197 		int len = skb_frag_size(frag);
2198 		bool last_segment = (i == (nfrags - 1));
2199 
2200 		entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
2201 
2202 		if (likely(priv->extend_desc))
2203 			desc = (struct dma_desc *)(priv->dma_etx + entry);
2204 		else
2205 			desc = priv->dma_tx + entry;
2206 
2207 		des = skb_frag_dma_map(priv->device, frag, 0, len,
2208 				       DMA_TO_DEVICE);
2209 		if (dma_mapping_error(priv->device, des))
2210 			goto dma_map_err; /* should reuse desc w/o issues */
2211 
2212 		priv->tx_skbuff[entry] = NULL;
2213 
2214 		if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00)) {
2215 			desc->des0 = des;
2216 			priv->tx_skbuff_dma[entry].buf = desc->des0;
2217 		} else {
2218 			desc->des2 = des;
2219 			priv->tx_skbuff_dma[entry].buf = desc->des2;
2220 		}
2221 
2222 		priv->tx_skbuff_dma[entry].map_as_page = true;
2223 		priv->tx_skbuff_dma[entry].len = len;
2224 		priv->tx_skbuff_dma[entry].last_segment = last_segment;
2225 
2226 		/* Prepare the descriptor and set the own bit too */
2227 		priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion,
2228 						priv->mode, 1, last_segment);
2229 	}
2230 
2231 	entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
2232 
2233 	priv->cur_tx = entry;
2234 
2235 	if (netif_msg_pktdata(priv)) {
2236 		void *tx_head;
2237 
2238 		pr_debug("%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
2239 			 __func__, priv->cur_tx, priv->dirty_tx, first_entry,
2240 			 entry, first, nfrags);
2241 
2242 		if (priv->extend_desc)
2243 			tx_head = (void *)priv->dma_etx;
2244 		else
2245 			tx_head = (void *)priv->dma_tx;
2246 
2247 		priv->hw->desc->display_ring(tx_head, DMA_TX_SIZE, false);
2248 
2249 		pr_debug(">>> frame to be transmitted: ");
2250 		print_pkt(skb->data, skb->len);
2251 	}
2252 
2253 	if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
2254 		if (netif_msg_hw(priv))
2255 			pr_debug("%s: stop transmitted packets\n", __func__);
2256 		netif_stop_queue(dev);
2257 	}
2258 
2259 	dev->stats.tx_bytes += skb->len;
2260 
2261 	/* According to the coalesce parameter the IC bit for the latest
2262 	 * segment is reset and the timer re-started to clean the tx status.
2263 	 * This approach takes care about the fragments: desc is the first
2264 	 * element in case of no SG.
2265 	 */
2266 	priv->tx_count_frames += nfrags + 1;
2267 	if (likely(priv->tx_coal_frames > priv->tx_count_frames)) {
2268 		mod_timer(&priv->txtimer,
2269 			  STMMAC_COAL_TIMER(priv->tx_coal_timer));
2270 	} else {
2271 		priv->tx_count_frames = 0;
2272 		priv->hw->desc->set_tx_ic(desc);
2273 		priv->xstats.tx_set_ic_bit++;
2274 	}
2275 
2276 	if (!priv->hwts_tx_en)
2277 		skb_tx_timestamp(skb);
2278 
2279 	/* Ready to fill the first descriptor and set the OWN bit w/o any
2280 	 * problems because all the descriptors are actually ready to be
2281 	 * passed to the DMA engine.
2282 	 */
2283 	if (likely(!is_jumbo)) {
2284 		bool last_segment = (nfrags == 0);
2285 
2286 		des = dma_map_single(priv->device, skb->data,
2287 				     nopaged_len, DMA_TO_DEVICE);
2288 		if (dma_mapping_error(priv->device, des))
2289 			goto dma_map_err;
2290 
2291 		if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00)) {
2292 			first->des0 = des;
2293 			priv->tx_skbuff_dma[first_entry].buf = first->des0;
2294 		} else {
2295 			first->des2 = des;
2296 			priv->tx_skbuff_dma[first_entry].buf = first->des2;
2297 		}
2298 
2299 		priv->tx_skbuff_dma[first_entry].len = nopaged_len;
2300 		priv->tx_skbuff_dma[first_entry].last_segment = last_segment;
2301 
2302 		if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2303 			     priv->hwts_tx_en)) {
2304 			/* declare that device is doing timestamping */
2305 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2306 			priv->hw->desc->enable_tx_timestamp(first);
2307 		}
2308 
2309 		/* Prepare the first descriptor setting the OWN bit too */
2310 		priv->hw->desc->prepare_tx_desc(first, 1, nopaged_len,
2311 						csum_insertion, priv->mode, 1,
2312 						last_segment);
2313 
2314 		/* The own bit must be the latest setting done when prepare the
2315 		 * descriptor and then barrier is needed to make sure that
2316 		 * all is coherent before granting the DMA engine.
2317 		 */
2318 		smp_wmb();
2319 	}
2320 
2321 	netdev_sent_queue(dev, skb->len);
2322 
2323 	if (priv->synopsys_id < DWMAC_CORE_4_00)
2324 		priv->hw->dma->enable_dma_transmission(priv->ioaddr);
2325 	else
2326 		priv->hw->dma->set_tx_tail_ptr(priv->ioaddr, priv->tx_tail_addr,
2327 					       STMMAC_CHAN0);
2328 
2329 	spin_unlock(&priv->tx_lock);
2330 	return NETDEV_TX_OK;
2331 
2332 dma_map_err:
2333 	spin_unlock(&priv->tx_lock);
2334 	dev_err(priv->device, "Tx dma map failed\n");
2335 	dev_kfree_skb(skb);
2336 	priv->dev->stats.tx_dropped++;
2337 	return NETDEV_TX_OK;
2338 }
2339 
2340 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
2341 {
2342 	struct ethhdr *ehdr;
2343 	u16 vlanid;
2344 
2345 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) ==
2346 	    NETIF_F_HW_VLAN_CTAG_RX &&
2347 	    !__vlan_get_tag(skb, &vlanid)) {
2348 		/* pop the vlan tag */
2349 		ehdr = (struct ethhdr *)skb->data;
2350 		memmove(skb->data + VLAN_HLEN, ehdr, ETH_ALEN * 2);
2351 		skb_pull(skb, VLAN_HLEN);
2352 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlanid);
2353 	}
2354 }
2355 
2356 
2357 static inline int stmmac_rx_threshold_count(struct stmmac_priv *priv)
2358 {
2359 	if (priv->rx_zeroc_thresh < STMMAC_RX_THRESH)
2360 		return 0;
2361 
2362 	return 1;
2363 }
2364 
2365 /**
2366  * stmmac_rx_refill - refill used skb preallocated buffers
2367  * @priv: driver private structure
2368  * Description : this is to reallocate the skb for the reception process
2369  * that is based on zero-copy.
2370  */
2371 static inline void stmmac_rx_refill(struct stmmac_priv *priv)
2372 {
2373 	int bfsize = priv->dma_buf_sz;
2374 	unsigned int entry = priv->dirty_rx;
2375 	int dirty = stmmac_rx_dirty(priv);
2376 
2377 	while (dirty-- > 0) {
2378 		struct dma_desc *p;
2379 
2380 		if (priv->extend_desc)
2381 			p = (struct dma_desc *)(priv->dma_erx + entry);
2382 		else
2383 			p = priv->dma_rx + entry;
2384 
2385 		if (likely(priv->rx_skbuff[entry] == NULL)) {
2386 			struct sk_buff *skb;
2387 
2388 			skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
2389 			if (unlikely(!skb)) {
2390 				/* so for a while no zero-copy! */
2391 				priv->rx_zeroc_thresh = STMMAC_RX_THRESH;
2392 				if (unlikely(net_ratelimit()))
2393 					dev_err(priv->device,
2394 						"fail to alloc skb entry %d\n",
2395 						entry);
2396 				break;
2397 			}
2398 
2399 			priv->rx_skbuff[entry] = skb;
2400 			priv->rx_skbuff_dma[entry] =
2401 			    dma_map_single(priv->device, skb->data, bfsize,
2402 					   DMA_FROM_DEVICE);
2403 			if (dma_mapping_error(priv->device,
2404 					      priv->rx_skbuff_dma[entry])) {
2405 				dev_err(priv->device, "Rx dma map failed\n");
2406 				dev_kfree_skb(skb);
2407 				break;
2408 			}
2409 
2410 			if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00)) {
2411 				p->des0 = priv->rx_skbuff_dma[entry];
2412 				p->des1 = 0;
2413 			} else {
2414 				p->des2 = priv->rx_skbuff_dma[entry];
2415 			}
2416 			if (priv->hw->mode->refill_desc3)
2417 				priv->hw->mode->refill_desc3(priv, p);
2418 
2419 			if (priv->rx_zeroc_thresh > 0)
2420 				priv->rx_zeroc_thresh--;
2421 
2422 			if (netif_msg_rx_status(priv))
2423 				pr_debug("\trefill entry #%d\n", entry);
2424 		}
2425 		wmb();
2426 
2427 		if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00))
2428 			priv->hw->desc->init_rx_desc(p, priv->use_riwt, 0, 0);
2429 		else
2430 			priv->hw->desc->set_rx_owner(p);
2431 
2432 		wmb();
2433 
2434 		entry = STMMAC_GET_ENTRY(entry, DMA_RX_SIZE);
2435 	}
2436 	priv->dirty_rx = entry;
2437 }
2438 
2439 /**
2440  * stmmac_rx - manage the receive process
2441  * @priv: driver private structure
2442  * @limit: napi bugget.
2443  * Description :  this the function called by the napi poll method.
2444  * It gets all the frames inside the ring.
2445  */
2446 static int stmmac_rx(struct stmmac_priv *priv, int limit)
2447 {
2448 	unsigned int entry = priv->cur_rx;
2449 	unsigned int next_entry;
2450 	unsigned int count = 0;
2451 	int coe = priv->hw->rx_csum;
2452 
2453 	if (netif_msg_rx_status(priv)) {
2454 		void *rx_head;
2455 
2456 		pr_debug("%s: descriptor ring:\n", __func__);
2457 		if (priv->extend_desc)
2458 			rx_head = (void *)priv->dma_erx;
2459 		else
2460 			rx_head = (void *)priv->dma_rx;
2461 
2462 		priv->hw->desc->display_ring(rx_head, DMA_RX_SIZE, true);
2463 	}
2464 	while (count < limit) {
2465 		int status;
2466 		struct dma_desc *p;
2467 
2468 		if (priv->extend_desc)
2469 			p = (struct dma_desc *)(priv->dma_erx + entry);
2470 		else
2471 			p = priv->dma_rx + entry;
2472 
2473 		/* read the status of the incoming frame */
2474 		status = priv->hw->desc->rx_status(&priv->dev->stats,
2475 						   &priv->xstats, p);
2476 		/* check if managed by the DMA otherwise go ahead */
2477 		if (unlikely(status & dma_own))
2478 			break;
2479 
2480 		count++;
2481 
2482 		priv->cur_rx = STMMAC_GET_ENTRY(priv->cur_rx, DMA_RX_SIZE);
2483 		next_entry = priv->cur_rx;
2484 
2485 		if (priv->extend_desc)
2486 			prefetch(priv->dma_erx + next_entry);
2487 		else
2488 			prefetch(priv->dma_rx + next_entry);
2489 
2490 		if ((priv->extend_desc) && (priv->hw->desc->rx_extended_status))
2491 			priv->hw->desc->rx_extended_status(&priv->dev->stats,
2492 							   &priv->xstats,
2493 							   priv->dma_erx +
2494 							   entry);
2495 		if (unlikely(status == discard_frame)) {
2496 			priv->dev->stats.rx_errors++;
2497 			if (priv->hwts_rx_en && !priv->extend_desc) {
2498 				/* DESC2 & DESC3 will be overwitten by device
2499 				 * with timestamp value, hence reinitialize
2500 				 * them in stmmac_rx_refill() function so that
2501 				 * device can reuse it.
2502 				 */
2503 				priv->rx_skbuff[entry] = NULL;
2504 				dma_unmap_single(priv->device,
2505 						 priv->rx_skbuff_dma[entry],
2506 						 priv->dma_buf_sz,
2507 						 DMA_FROM_DEVICE);
2508 			}
2509 		} else {
2510 			struct sk_buff *skb;
2511 			int frame_len;
2512 			unsigned int des;
2513 
2514 			if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00))
2515 				des = p->des0;
2516 			else
2517 				des = p->des2;
2518 
2519 			frame_len = priv->hw->desc->get_rx_frame_len(p, coe);
2520 
2521 			/*  If frame length is greather than skb buffer size
2522 			 *  (preallocated during init) then the packet is
2523 			 *  ignored
2524 			 */
2525 			if (frame_len > priv->dma_buf_sz) {
2526 				pr_err("%s: len %d larger than size (%d)\n",
2527 				       priv->dev->name, frame_len,
2528 				       priv->dma_buf_sz);
2529 				priv->dev->stats.rx_length_errors++;
2530 				break;
2531 			}
2532 
2533 			/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
2534 			 * Type frames (LLC/LLC-SNAP)
2535 			 */
2536 			if (unlikely(status != llc_snap))
2537 				frame_len -= ETH_FCS_LEN;
2538 
2539 			if (netif_msg_rx_status(priv)) {
2540 				pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
2541 					p, entry, des);
2542 				if (frame_len > ETH_FRAME_LEN)
2543 					pr_debug("\tframe size %d, COE: %d\n",
2544 						 frame_len, status);
2545 			}
2546 
2547 			/* The zero-copy is always used for all the sizes
2548 			 * in case of GMAC4 because it needs
2549 			 * to refill the used descriptors, always.
2550 			 */
2551 			if (unlikely(!priv->plat->has_gmac4 &&
2552 				     ((frame_len < priv->rx_copybreak) ||
2553 				     stmmac_rx_threshold_count(priv)))) {
2554 				skb = netdev_alloc_skb_ip_align(priv->dev,
2555 								frame_len);
2556 				if (unlikely(!skb)) {
2557 					if (net_ratelimit())
2558 						dev_warn(priv->device,
2559 							 "packet dropped\n");
2560 					priv->dev->stats.rx_dropped++;
2561 					break;
2562 				}
2563 
2564 				dma_sync_single_for_cpu(priv->device,
2565 							priv->rx_skbuff_dma
2566 							[entry], frame_len,
2567 							DMA_FROM_DEVICE);
2568 				skb_copy_to_linear_data(skb,
2569 							priv->
2570 							rx_skbuff[entry]->data,
2571 							frame_len);
2572 
2573 				skb_put(skb, frame_len);
2574 				dma_sync_single_for_device(priv->device,
2575 							   priv->rx_skbuff_dma
2576 							   [entry], frame_len,
2577 							   DMA_FROM_DEVICE);
2578 			} else {
2579 				skb = priv->rx_skbuff[entry];
2580 				if (unlikely(!skb)) {
2581 					pr_err("%s: Inconsistent Rx chain\n",
2582 					       priv->dev->name);
2583 					priv->dev->stats.rx_dropped++;
2584 					break;
2585 				}
2586 				prefetch(skb->data - NET_IP_ALIGN);
2587 				priv->rx_skbuff[entry] = NULL;
2588 				priv->rx_zeroc_thresh++;
2589 
2590 				skb_put(skb, frame_len);
2591 				dma_unmap_single(priv->device,
2592 						 priv->rx_skbuff_dma[entry],
2593 						 priv->dma_buf_sz,
2594 						 DMA_FROM_DEVICE);
2595 			}
2596 
2597 			stmmac_get_rx_hwtstamp(priv, entry, skb);
2598 
2599 			if (netif_msg_pktdata(priv)) {
2600 				pr_debug("frame received (%dbytes)", frame_len);
2601 				print_pkt(skb->data, frame_len);
2602 			}
2603 
2604 			stmmac_rx_vlan(priv->dev, skb);
2605 
2606 			skb->protocol = eth_type_trans(skb, priv->dev);
2607 
2608 			if (unlikely(!coe))
2609 				skb_checksum_none_assert(skb);
2610 			else
2611 				skb->ip_summed = CHECKSUM_UNNECESSARY;
2612 
2613 			napi_gro_receive(&priv->napi, skb);
2614 
2615 			priv->dev->stats.rx_packets++;
2616 			priv->dev->stats.rx_bytes += frame_len;
2617 		}
2618 		entry = next_entry;
2619 	}
2620 
2621 	stmmac_rx_refill(priv);
2622 
2623 	priv->xstats.rx_pkt_n += count;
2624 
2625 	return count;
2626 }
2627 
2628 /**
2629  *  stmmac_poll - stmmac poll method (NAPI)
2630  *  @napi : pointer to the napi structure.
2631  *  @budget : maximum number of packets that the current CPU can receive from
2632  *	      all interfaces.
2633  *  Description :
2634  *  To look at the incoming frames and clear the tx resources.
2635  */
2636 static int stmmac_poll(struct napi_struct *napi, int budget)
2637 {
2638 	struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
2639 	int work_done = 0;
2640 
2641 	priv->xstats.napi_poll++;
2642 	stmmac_tx_clean(priv);
2643 
2644 	work_done = stmmac_rx(priv, budget);
2645 	if (work_done < budget) {
2646 		napi_complete(napi);
2647 		stmmac_enable_dma_irq(priv);
2648 	}
2649 	return work_done;
2650 }
2651 
2652 /**
2653  *  stmmac_tx_timeout
2654  *  @dev : Pointer to net device structure
2655  *  Description: this function is called when a packet transmission fails to
2656  *   complete within a reasonable time. The driver will mark the error in the
2657  *   netdev structure and arrange for the device to be reset to a sane state
2658  *   in order to transmit a new packet.
2659  */
2660 static void stmmac_tx_timeout(struct net_device *dev)
2661 {
2662 	struct stmmac_priv *priv = netdev_priv(dev);
2663 
2664 	/* Clear Tx resources and restart transmitting again */
2665 	stmmac_tx_err(priv);
2666 }
2667 
2668 /**
2669  *  stmmac_set_rx_mode - entry point for multicast addressing
2670  *  @dev : pointer to the device structure
2671  *  Description:
2672  *  This function is a driver entry point which gets called by the kernel
2673  *  whenever multicast addresses must be enabled/disabled.
2674  *  Return value:
2675  *  void.
2676  */
2677 static void stmmac_set_rx_mode(struct net_device *dev)
2678 {
2679 	struct stmmac_priv *priv = netdev_priv(dev);
2680 
2681 	priv->hw->mac->set_filter(priv->hw, dev);
2682 }
2683 
2684 /**
2685  *  stmmac_change_mtu - entry point to change MTU size for the device.
2686  *  @dev : device pointer.
2687  *  @new_mtu : the new MTU size for the device.
2688  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
2689  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
2690  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
2691  *  Return value:
2692  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2693  *  file on failure.
2694  */
2695 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
2696 {
2697 	struct stmmac_priv *priv = netdev_priv(dev);
2698 	int max_mtu;
2699 
2700 	if (netif_running(dev)) {
2701 		pr_err("%s: must be stopped to change its MTU\n", dev->name);
2702 		return -EBUSY;
2703 	}
2704 
2705 	if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
2706 		max_mtu = JUMBO_LEN;
2707 	else
2708 		max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
2709 
2710 	if (priv->plat->maxmtu < max_mtu)
2711 		max_mtu = priv->plat->maxmtu;
2712 
2713 	if ((new_mtu < 46) || (new_mtu > max_mtu)) {
2714 		pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
2715 		return -EINVAL;
2716 	}
2717 
2718 	dev->mtu = new_mtu;
2719 
2720 	netdev_update_features(dev);
2721 
2722 	return 0;
2723 }
2724 
2725 static netdev_features_t stmmac_fix_features(struct net_device *dev,
2726 					     netdev_features_t features)
2727 {
2728 	struct stmmac_priv *priv = netdev_priv(dev);
2729 
2730 	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
2731 		features &= ~NETIF_F_RXCSUM;
2732 
2733 	if (!priv->plat->tx_coe)
2734 		features &= ~NETIF_F_CSUM_MASK;
2735 
2736 	/* Some GMAC devices have a bugged Jumbo frame support that
2737 	 * needs to have the Tx COE disabled for oversized frames
2738 	 * (due to limited buffer sizes). In this case we disable
2739 	 * the TX csum insertionin the TDES and not use SF.
2740 	 */
2741 	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
2742 		features &= ~NETIF_F_CSUM_MASK;
2743 
2744 	/* Disable tso if asked by ethtool */
2745 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
2746 		if (features & NETIF_F_TSO)
2747 			priv->tso = true;
2748 		else
2749 			priv->tso = false;
2750 	}
2751 
2752 	return features;
2753 }
2754 
2755 static int stmmac_set_features(struct net_device *netdev,
2756 			       netdev_features_t features)
2757 {
2758 	struct stmmac_priv *priv = netdev_priv(netdev);
2759 
2760 	/* Keep the COE Type in case of csum is supporting */
2761 	if (features & NETIF_F_RXCSUM)
2762 		priv->hw->rx_csum = priv->plat->rx_coe;
2763 	else
2764 		priv->hw->rx_csum = 0;
2765 	/* No check needed because rx_coe has been set before and it will be
2766 	 * fixed in case of issue.
2767 	 */
2768 	priv->hw->mac->rx_ipc(priv->hw);
2769 
2770 	return 0;
2771 }
2772 
2773 /**
2774  *  stmmac_interrupt - main ISR
2775  *  @irq: interrupt number.
2776  *  @dev_id: to pass the net device pointer.
2777  *  Description: this is the main driver interrupt service routine.
2778  *  It can call:
2779  *  o DMA service routine (to manage incoming frame reception and transmission
2780  *    status)
2781  *  o Core interrupts to manage: remote wake-up, management counter, LPI
2782  *    interrupts.
2783  */
2784 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
2785 {
2786 	struct net_device *dev = (struct net_device *)dev_id;
2787 	struct stmmac_priv *priv = netdev_priv(dev);
2788 
2789 	if (priv->irq_wake)
2790 		pm_wakeup_event(priv->device, 0);
2791 
2792 	if (unlikely(!dev)) {
2793 		pr_err("%s: invalid dev pointer\n", __func__);
2794 		return IRQ_NONE;
2795 	}
2796 
2797 	/* To handle GMAC own interrupts */
2798 	if ((priv->plat->has_gmac) || (priv->plat->has_gmac4)) {
2799 		int status = priv->hw->mac->host_irq_status(priv->hw,
2800 							    &priv->xstats);
2801 		if (unlikely(status)) {
2802 			/* For LPI we need to save the tx status */
2803 			if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
2804 				priv->tx_path_in_lpi_mode = true;
2805 			if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
2806 				priv->tx_path_in_lpi_mode = false;
2807 			if (status & CORE_IRQ_MTL_RX_OVERFLOW)
2808 				priv->hw->dma->set_rx_tail_ptr(priv->ioaddr,
2809 							priv->rx_tail_addr,
2810 							STMMAC_CHAN0);
2811 		}
2812 	}
2813 
2814 	/* To handle DMA interrupts */
2815 	stmmac_dma_interrupt(priv);
2816 
2817 	return IRQ_HANDLED;
2818 }
2819 
2820 #ifdef CONFIG_NET_POLL_CONTROLLER
2821 /* Polling receive - used by NETCONSOLE and other diagnostic tools
2822  * to allow network I/O with interrupts disabled.
2823  */
2824 static void stmmac_poll_controller(struct net_device *dev)
2825 {
2826 	disable_irq(dev->irq);
2827 	stmmac_interrupt(dev->irq, dev);
2828 	enable_irq(dev->irq);
2829 }
2830 #endif
2831 
2832 /**
2833  *  stmmac_ioctl - Entry point for the Ioctl
2834  *  @dev: Device pointer.
2835  *  @rq: An IOCTL specefic structure, that can contain a pointer to
2836  *  a proprietary structure used to pass information to the driver.
2837  *  @cmd: IOCTL command
2838  *  Description:
2839  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
2840  */
2841 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2842 {
2843 	struct stmmac_priv *priv = netdev_priv(dev);
2844 	int ret = -EOPNOTSUPP;
2845 
2846 	if (!netif_running(dev))
2847 		return -EINVAL;
2848 
2849 	switch (cmd) {
2850 	case SIOCGMIIPHY:
2851 	case SIOCGMIIREG:
2852 	case SIOCSMIIREG:
2853 		if (!priv->phydev)
2854 			return -EINVAL;
2855 		ret = phy_mii_ioctl(priv->phydev, rq, cmd);
2856 		break;
2857 	case SIOCSHWTSTAMP:
2858 		ret = stmmac_hwtstamp_ioctl(dev, rq);
2859 		break;
2860 	default:
2861 		break;
2862 	}
2863 
2864 	return ret;
2865 }
2866 
2867 #ifdef CONFIG_DEBUG_FS
2868 static struct dentry *stmmac_fs_dir;
2869 
2870 static void sysfs_display_ring(void *head, int size, int extend_desc,
2871 			       struct seq_file *seq)
2872 {
2873 	int i;
2874 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
2875 	struct dma_desc *p = (struct dma_desc *)head;
2876 
2877 	for (i = 0; i < size; i++) {
2878 		u64 x;
2879 		if (extend_desc) {
2880 			x = *(u64 *) ep;
2881 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2882 				   i, (unsigned int)virt_to_phys(ep),
2883 				   ep->basic.des0, ep->basic.des1,
2884 				   ep->basic.des2, ep->basic.des3);
2885 			ep++;
2886 		} else {
2887 			x = *(u64 *) p;
2888 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2889 				   i, (unsigned int)virt_to_phys(ep),
2890 				   p->des0, p->des1, p->des2, p->des3);
2891 			p++;
2892 		}
2893 		seq_printf(seq, "\n");
2894 	}
2895 }
2896 
2897 static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
2898 {
2899 	struct net_device *dev = seq->private;
2900 	struct stmmac_priv *priv = netdev_priv(dev);
2901 
2902 	if (priv->extend_desc) {
2903 		seq_printf(seq, "Extended RX descriptor ring:\n");
2904 		sysfs_display_ring((void *)priv->dma_erx, DMA_RX_SIZE, 1, seq);
2905 		seq_printf(seq, "Extended TX descriptor ring:\n");
2906 		sysfs_display_ring((void *)priv->dma_etx, DMA_TX_SIZE, 1, seq);
2907 	} else {
2908 		seq_printf(seq, "RX descriptor ring:\n");
2909 		sysfs_display_ring((void *)priv->dma_rx, DMA_RX_SIZE, 0, seq);
2910 		seq_printf(seq, "TX descriptor ring:\n");
2911 		sysfs_display_ring((void *)priv->dma_tx, DMA_TX_SIZE, 0, seq);
2912 	}
2913 
2914 	return 0;
2915 }
2916 
2917 static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
2918 {
2919 	return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
2920 }
2921 
2922 static const struct file_operations stmmac_rings_status_fops = {
2923 	.owner = THIS_MODULE,
2924 	.open = stmmac_sysfs_ring_open,
2925 	.read = seq_read,
2926 	.llseek = seq_lseek,
2927 	.release = single_release,
2928 };
2929 
2930 static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
2931 {
2932 	struct net_device *dev = seq->private;
2933 	struct stmmac_priv *priv = netdev_priv(dev);
2934 
2935 	if (!priv->hw_cap_support) {
2936 		seq_printf(seq, "DMA HW features not supported\n");
2937 		return 0;
2938 	}
2939 
2940 	seq_printf(seq, "==============================\n");
2941 	seq_printf(seq, "\tDMA HW features\n");
2942 	seq_printf(seq, "==============================\n");
2943 
2944 	seq_printf(seq, "\t10/100 Mbps %s\n",
2945 		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
2946 	seq_printf(seq, "\t1000 Mbps %s\n",
2947 		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
2948 	seq_printf(seq, "\tHalf duple %s\n",
2949 		   (priv->dma_cap.half_duplex) ? "Y" : "N");
2950 	seq_printf(seq, "\tHash Filter: %s\n",
2951 		   (priv->dma_cap.hash_filter) ? "Y" : "N");
2952 	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
2953 		   (priv->dma_cap.multi_addr) ? "Y" : "N");
2954 	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
2955 		   (priv->dma_cap.pcs) ? "Y" : "N");
2956 	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
2957 		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
2958 	seq_printf(seq, "\tPMT Remote wake up: %s\n",
2959 		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
2960 	seq_printf(seq, "\tPMT Magic Frame: %s\n",
2961 		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
2962 	seq_printf(seq, "\tRMON module: %s\n",
2963 		   (priv->dma_cap.rmon) ? "Y" : "N");
2964 	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
2965 		   (priv->dma_cap.time_stamp) ? "Y" : "N");
2966 	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n",
2967 		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
2968 	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n",
2969 		   (priv->dma_cap.eee) ? "Y" : "N");
2970 	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
2971 	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
2972 		   (priv->dma_cap.tx_coe) ? "Y" : "N");
2973 	if (priv->synopsys_id >= DWMAC_CORE_4_00) {
2974 		seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
2975 			   (priv->dma_cap.rx_coe) ? "Y" : "N");
2976 	} else {
2977 		seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
2978 			   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
2979 		seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
2980 			   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
2981 	}
2982 	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
2983 		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
2984 	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
2985 		   priv->dma_cap.number_rx_channel);
2986 	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
2987 		   priv->dma_cap.number_tx_channel);
2988 	seq_printf(seq, "\tEnhanced descriptors: %s\n",
2989 		   (priv->dma_cap.enh_desc) ? "Y" : "N");
2990 
2991 	return 0;
2992 }
2993 
2994 static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
2995 {
2996 	return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
2997 }
2998 
2999 static const struct file_operations stmmac_dma_cap_fops = {
3000 	.owner = THIS_MODULE,
3001 	.open = stmmac_sysfs_dma_cap_open,
3002 	.read = seq_read,
3003 	.llseek = seq_lseek,
3004 	.release = single_release,
3005 };
3006 
3007 static int stmmac_init_fs(struct net_device *dev)
3008 {
3009 	struct stmmac_priv *priv = netdev_priv(dev);
3010 
3011 	/* Create per netdev entries */
3012 	priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
3013 
3014 	if (!priv->dbgfs_dir || IS_ERR(priv->dbgfs_dir)) {
3015 		pr_err("ERROR %s/%s, debugfs create directory failed\n",
3016 		       STMMAC_RESOURCE_NAME, dev->name);
3017 
3018 		return -ENOMEM;
3019 	}
3020 
3021 	/* Entry to report DMA RX/TX rings */
3022 	priv->dbgfs_rings_status =
3023 		debugfs_create_file("descriptors_status", S_IRUGO,
3024 				    priv->dbgfs_dir, dev,
3025 				    &stmmac_rings_status_fops);
3026 
3027 	if (!priv->dbgfs_rings_status || IS_ERR(priv->dbgfs_rings_status)) {
3028 		pr_info("ERROR creating stmmac ring debugfs file\n");
3029 		debugfs_remove_recursive(priv->dbgfs_dir);
3030 
3031 		return -ENOMEM;
3032 	}
3033 
3034 	/* Entry to report the DMA HW features */
3035 	priv->dbgfs_dma_cap = debugfs_create_file("dma_cap", S_IRUGO,
3036 					    priv->dbgfs_dir,
3037 					    dev, &stmmac_dma_cap_fops);
3038 
3039 	if (!priv->dbgfs_dma_cap || IS_ERR(priv->dbgfs_dma_cap)) {
3040 		pr_info("ERROR creating stmmac MMC debugfs file\n");
3041 		debugfs_remove_recursive(priv->dbgfs_dir);
3042 
3043 		return -ENOMEM;
3044 	}
3045 
3046 	return 0;
3047 }
3048 
3049 static void stmmac_exit_fs(struct net_device *dev)
3050 {
3051 	struct stmmac_priv *priv = netdev_priv(dev);
3052 
3053 	debugfs_remove_recursive(priv->dbgfs_dir);
3054 }
3055 #endif /* CONFIG_DEBUG_FS */
3056 
3057 static const struct net_device_ops stmmac_netdev_ops = {
3058 	.ndo_open = stmmac_open,
3059 	.ndo_start_xmit = stmmac_xmit,
3060 	.ndo_stop = stmmac_release,
3061 	.ndo_change_mtu = stmmac_change_mtu,
3062 	.ndo_fix_features = stmmac_fix_features,
3063 	.ndo_set_features = stmmac_set_features,
3064 	.ndo_set_rx_mode = stmmac_set_rx_mode,
3065 	.ndo_tx_timeout = stmmac_tx_timeout,
3066 	.ndo_do_ioctl = stmmac_ioctl,
3067 #ifdef CONFIG_NET_POLL_CONTROLLER
3068 	.ndo_poll_controller = stmmac_poll_controller,
3069 #endif
3070 	.ndo_set_mac_address = eth_mac_addr,
3071 };
3072 
3073 /**
3074  *  stmmac_hw_init - Init the MAC device
3075  *  @priv: driver private structure
3076  *  Description: this function is to configure the MAC device according to
3077  *  some platform parameters or the HW capability register. It prepares the
3078  *  driver to use either ring or chain modes and to setup either enhanced or
3079  *  normal descriptors.
3080  */
3081 static int stmmac_hw_init(struct stmmac_priv *priv)
3082 {
3083 	struct mac_device_info *mac;
3084 
3085 	/* Identify the MAC HW device */
3086 	if (priv->plat->has_gmac) {
3087 		priv->dev->priv_flags |= IFF_UNICAST_FLT;
3088 		mac = dwmac1000_setup(priv->ioaddr,
3089 				      priv->plat->multicast_filter_bins,
3090 				      priv->plat->unicast_filter_entries,
3091 				      &priv->synopsys_id);
3092 	} else if (priv->plat->has_gmac4) {
3093 		priv->dev->priv_flags |= IFF_UNICAST_FLT;
3094 		mac = dwmac4_setup(priv->ioaddr,
3095 				   priv->plat->multicast_filter_bins,
3096 				   priv->plat->unicast_filter_entries,
3097 				   &priv->synopsys_id);
3098 	} else {
3099 		mac = dwmac100_setup(priv->ioaddr, &priv->synopsys_id);
3100 	}
3101 	if (!mac)
3102 		return -ENOMEM;
3103 
3104 	priv->hw = mac;
3105 
3106 	/* To use the chained or ring mode */
3107 	if (priv->synopsys_id >= DWMAC_CORE_4_00) {
3108 		priv->hw->mode = &dwmac4_ring_mode_ops;
3109 	} else {
3110 		if (chain_mode) {
3111 			priv->hw->mode = &chain_mode_ops;
3112 			pr_info(" Chain mode enabled\n");
3113 			priv->mode = STMMAC_CHAIN_MODE;
3114 		} else {
3115 			priv->hw->mode = &ring_mode_ops;
3116 			pr_info(" Ring mode enabled\n");
3117 			priv->mode = STMMAC_RING_MODE;
3118 		}
3119 	}
3120 
3121 	/* Get the HW capability (new GMAC newer than 3.50a) */
3122 	priv->hw_cap_support = stmmac_get_hw_features(priv);
3123 	if (priv->hw_cap_support) {
3124 		pr_info(" DMA HW capability register supported");
3125 
3126 		/* We can override some gmac/dma configuration fields: e.g.
3127 		 * enh_desc, tx_coe (e.g. that are passed through the
3128 		 * platform) with the values from the HW capability
3129 		 * register (if supported).
3130 		 */
3131 		priv->plat->enh_desc = priv->dma_cap.enh_desc;
3132 		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
3133 
3134 		/* TXCOE doesn't work in thresh DMA mode */
3135 		if (priv->plat->force_thresh_dma_mode)
3136 			priv->plat->tx_coe = 0;
3137 		else
3138 			priv->plat->tx_coe = priv->dma_cap.tx_coe;
3139 
3140 		/* In case of GMAC4 rx_coe is from HW cap register. */
3141 		priv->plat->rx_coe = priv->dma_cap.rx_coe;
3142 
3143 		if (priv->dma_cap.rx_coe_type2)
3144 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
3145 		else if (priv->dma_cap.rx_coe_type1)
3146 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
3147 
3148 	} else
3149 		pr_info(" No HW DMA feature register supported");
3150 
3151 	/* To use alternate (extended), normal or GMAC4 descriptor structures */
3152 	if (priv->synopsys_id >= DWMAC_CORE_4_00)
3153 		priv->hw->desc = &dwmac4_desc_ops;
3154 	else
3155 		stmmac_selec_desc_mode(priv);
3156 
3157 	if (priv->plat->rx_coe) {
3158 		priv->hw->rx_csum = priv->plat->rx_coe;
3159 		pr_info(" RX Checksum Offload Engine supported\n");
3160 		if (priv->synopsys_id < DWMAC_CORE_4_00)
3161 			pr_info("\tCOE Type %d\n", priv->hw->rx_csum);
3162 	}
3163 	if (priv->plat->tx_coe)
3164 		pr_info(" TX Checksum insertion supported\n");
3165 
3166 	if (priv->plat->pmt) {
3167 		pr_info(" Wake-Up On Lan supported\n");
3168 		device_set_wakeup_capable(priv->device, 1);
3169 	}
3170 
3171 	if (priv->dma_cap.tsoen)
3172 		pr_info(" TSO supported\n");
3173 
3174 	return 0;
3175 }
3176 
3177 /**
3178  * stmmac_dvr_probe
3179  * @device: device pointer
3180  * @plat_dat: platform data pointer
3181  * @res: stmmac resource pointer
3182  * Description: this is the main probe function used to
3183  * call the alloc_etherdev, allocate the priv structure.
3184  * Return:
3185  * returns 0 on success, otherwise errno.
3186  */
3187 int stmmac_dvr_probe(struct device *device,
3188 		     struct plat_stmmacenet_data *plat_dat,
3189 		     struct stmmac_resources *res)
3190 {
3191 	int ret = 0;
3192 	struct net_device *ndev = NULL;
3193 	struct stmmac_priv *priv;
3194 
3195 	ndev = alloc_etherdev(sizeof(struct stmmac_priv));
3196 	if (!ndev)
3197 		return -ENOMEM;
3198 
3199 	SET_NETDEV_DEV(ndev, device);
3200 
3201 	priv = netdev_priv(ndev);
3202 	priv->device = device;
3203 	priv->dev = ndev;
3204 
3205 	stmmac_set_ethtool_ops(ndev);
3206 	priv->pause = pause;
3207 	priv->plat = plat_dat;
3208 	priv->ioaddr = res->addr;
3209 	priv->dev->base_addr = (unsigned long)res->addr;
3210 
3211 	priv->dev->irq = res->irq;
3212 	priv->wol_irq = res->wol_irq;
3213 	priv->lpi_irq = res->lpi_irq;
3214 
3215 	if (res->mac)
3216 		memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
3217 
3218 	dev_set_drvdata(device, priv->dev);
3219 
3220 	/* Verify driver arguments */
3221 	stmmac_verify_args();
3222 
3223 	/* Override with kernel parameters if supplied XXX CRS XXX
3224 	 * this needs to have multiple instances
3225 	 */
3226 	if ((phyaddr >= 0) && (phyaddr <= 31))
3227 		priv->plat->phy_addr = phyaddr;
3228 
3229 	priv->stmmac_clk = devm_clk_get(priv->device, STMMAC_RESOURCE_NAME);
3230 	if (IS_ERR(priv->stmmac_clk)) {
3231 		dev_warn(priv->device, "%s: warning: cannot get CSR clock\n",
3232 			 __func__);
3233 		/* If failed to obtain stmmac_clk and specific clk_csr value
3234 		 * is NOT passed from the platform, probe fail.
3235 		 */
3236 		if (!priv->plat->clk_csr) {
3237 			ret = PTR_ERR(priv->stmmac_clk);
3238 			goto error_clk_get;
3239 		} else {
3240 			priv->stmmac_clk = NULL;
3241 		}
3242 	}
3243 	clk_prepare_enable(priv->stmmac_clk);
3244 
3245 	priv->pclk = devm_clk_get(priv->device, "pclk");
3246 	if (IS_ERR(priv->pclk)) {
3247 		if (PTR_ERR(priv->pclk) == -EPROBE_DEFER) {
3248 			ret = -EPROBE_DEFER;
3249 			goto error_pclk_get;
3250 		}
3251 		priv->pclk = NULL;
3252 	}
3253 	clk_prepare_enable(priv->pclk);
3254 
3255 	priv->stmmac_rst = devm_reset_control_get(priv->device,
3256 						  STMMAC_RESOURCE_NAME);
3257 	if (IS_ERR(priv->stmmac_rst)) {
3258 		if (PTR_ERR(priv->stmmac_rst) == -EPROBE_DEFER) {
3259 			ret = -EPROBE_DEFER;
3260 			goto error_hw_init;
3261 		}
3262 		dev_info(priv->device, "no reset control found\n");
3263 		priv->stmmac_rst = NULL;
3264 	}
3265 	if (priv->stmmac_rst)
3266 		reset_control_deassert(priv->stmmac_rst);
3267 
3268 	/* Init MAC and get the capabilities */
3269 	ret = stmmac_hw_init(priv);
3270 	if (ret)
3271 		goto error_hw_init;
3272 
3273 	ndev->netdev_ops = &stmmac_netdev_ops;
3274 
3275 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3276 			    NETIF_F_RXCSUM;
3277 
3278 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
3279 		ndev->hw_features |= NETIF_F_TSO;
3280 		priv->tso = true;
3281 		pr_info(" TSO feature enabled\n");
3282 	}
3283 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
3284 	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
3285 #ifdef STMMAC_VLAN_TAG_USED
3286 	/* Both mac100 and gmac support receive VLAN tag detection */
3287 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3288 #endif
3289 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
3290 
3291 	if (flow_ctrl)
3292 		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
3293 
3294 	/* Rx Watchdog is available in the COREs newer than the 3.40.
3295 	 * In some case, for example on bugged HW this feature
3296 	 * has to be disable and this can be done by passing the
3297 	 * riwt_off field from the platform.
3298 	 */
3299 	if ((priv->synopsys_id >= DWMAC_CORE_3_50) && (!priv->plat->riwt_off)) {
3300 		priv->use_riwt = 1;
3301 		pr_info(" Enable RX Mitigation via HW Watchdog Timer\n");
3302 	}
3303 
3304 	netif_napi_add(ndev, &priv->napi, stmmac_poll, 64);
3305 
3306 	spin_lock_init(&priv->lock);
3307 	spin_lock_init(&priv->tx_lock);
3308 
3309 	ret = register_netdev(ndev);
3310 	if (ret) {
3311 		pr_err("%s: ERROR %i registering the device\n", __func__, ret);
3312 		goto error_netdev_register;
3313 	}
3314 
3315 	/* If a specific clk_csr value is passed from the platform
3316 	 * this means that the CSR Clock Range selection cannot be
3317 	 * changed at run-time and it is fixed. Viceversa the driver'll try to
3318 	 * set the MDC clock dynamically according to the csr actual
3319 	 * clock input.
3320 	 */
3321 	if (!priv->plat->clk_csr)
3322 		stmmac_clk_csr_set(priv);
3323 	else
3324 		priv->clk_csr = priv->plat->clk_csr;
3325 
3326 	stmmac_check_pcs_mode(priv);
3327 
3328 	if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
3329 	    priv->pcs != STMMAC_PCS_RTBI) {
3330 		/* MDIO bus Registration */
3331 		ret = stmmac_mdio_register(ndev);
3332 		if (ret < 0) {
3333 			pr_debug("%s: MDIO bus (id: %d) registration failed",
3334 				 __func__, priv->plat->bus_id);
3335 			goto error_mdio_register;
3336 		}
3337 	}
3338 
3339 	return 0;
3340 
3341 error_mdio_register:
3342 	unregister_netdev(ndev);
3343 error_netdev_register:
3344 	netif_napi_del(&priv->napi);
3345 error_hw_init:
3346 	clk_disable_unprepare(priv->pclk);
3347 error_pclk_get:
3348 	clk_disable_unprepare(priv->stmmac_clk);
3349 error_clk_get:
3350 	free_netdev(ndev);
3351 
3352 	return ret;
3353 }
3354 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
3355 
3356 /**
3357  * stmmac_dvr_remove
3358  * @dev: device pointer
3359  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
3360  * changes the link status, releases the DMA descriptor rings.
3361  */
3362 int stmmac_dvr_remove(struct device *dev)
3363 {
3364 	struct net_device *ndev = dev_get_drvdata(dev);
3365 	struct stmmac_priv *priv = netdev_priv(ndev);
3366 
3367 	pr_info("%s:\n\tremoving driver", __func__);
3368 
3369 	priv->hw->dma->stop_rx(priv->ioaddr);
3370 	priv->hw->dma->stop_tx(priv->ioaddr);
3371 
3372 	stmmac_set_mac(priv->ioaddr, false);
3373 	netif_carrier_off(ndev);
3374 	unregister_netdev(ndev);
3375 	if (priv->stmmac_rst)
3376 		reset_control_assert(priv->stmmac_rst);
3377 	clk_disable_unprepare(priv->pclk);
3378 	clk_disable_unprepare(priv->stmmac_clk);
3379 	if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
3380 	    priv->pcs != STMMAC_PCS_RTBI)
3381 		stmmac_mdio_unregister(ndev);
3382 	free_netdev(ndev);
3383 
3384 	return 0;
3385 }
3386 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
3387 
3388 /**
3389  * stmmac_suspend - suspend callback
3390  * @dev: device pointer
3391  * Description: this is the function to suspend the device and it is called
3392  * by the platform driver to stop the network queue, release the resources,
3393  * program the PMT register (for WoL), clean and release driver resources.
3394  */
3395 int stmmac_suspend(struct device *dev)
3396 {
3397 	struct net_device *ndev = dev_get_drvdata(dev);
3398 	struct stmmac_priv *priv = netdev_priv(ndev);
3399 	unsigned long flags;
3400 
3401 	if (!ndev || !netif_running(ndev))
3402 		return 0;
3403 
3404 	if (priv->phydev)
3405 		phy_stop(priv->phydev);
3406 
3407 	spin_lock_irqsave(&priv->lock, flags);
3408 
3409 	netif_device_detach(ndev);
3410 	netif_stop_queue(ndev);
3411 
3412 	napi_disable(&priv->napi);
3413 
3414 	/* Stop TX/RX DMA */
3415 	priv->hw->dma->stop_tx(priv->ioaddr);
3416 	priv->hw->dma->stop_rx(priv->ioaddr);
3417 
3418 	/* Enable Power down mode by programming the PMT regs */
3419 	if (device_may_wakeup(priv->device)) {
3420 		priv->hw->mac->pmt(priv->hw, priv->wolopts);
3421 		priv->irq_wake = 1;
3422 	} else {
3423 		stmmac_set_mac(priv->ioaddr, false);
3424 		pinctrl_pm_select_sleep_state(priv->device);
3425 		/* Disable clock in case of PWM is off */
3426 		clk_disable(priv->pclk);
3427 		clk_disable(priv->stmmac_clk);
3428 	}
3429 	spin_unlock_irqrestore(&priv->lock, flags);
3430 
3431 	priv->oldlink = 0;
3432 	priv->speed = 0;
3433 	priv->oldduplex = -1;
3434 	return 0;
3435 }
3436 EXPORT_SYMBOL_GPL(stmmac_suspend);
3437 
3438 /**
3439  * stmmac_resume - resume callback
3440  * @dev: device pointer
3441  * Description: when resume this function is invoked to setup the DMA and CORE
3442  * in a usable state.
3443  */
3444 int stmmac_resume(struct device *dev)
3445 {
3446 	struct net_device *ndev = dev_get_drvdata(dev);
3447 	struct stmmac_priv *priv = netdev_priv(ndev);
3448 	unsigned long flags;
3449 
3450 	if (!netif_running(ndev))
3451 		return 0;
3452 
3453 	/* Power Down bit, into the PM register, is cleared
3454 	 * automatically as soon as a magic packet or a Wake-up frame
3455 	 * is received. Anyway, it's better to manually clear
3456 	 * this bit because it can generate problems while resuming
3457 	 * from another devices (e.g. serial console).
3458 	 */
3459 	if (device_may_wakeup(priv->device)) {
3460 		spin_lock_irqsave(&priv->lock, flags);
3461 		priv->hw->mac->pmt(priv->hw, 0);
3462 		spin_unlock_irqrestore(&priv->lock, flags);
3463 		priv->irq_wake = 0;
3464 	} else {
3465 		pinctrl_pm_select_default_state(priv->device);
3466 		/* enable the clk prevously disabled */
3467 		clk_enable(priv->stmmac_clk);
3468 		clk_enable(priv->pclk);
3469 		/* reset the phy so that it's ready */
3470 		if (priv->mii)
3471 			stmmac_mdio_reset(priv->mii);
3472 	}
3473 
3474 	netif_device_attach(ndev);
3475 
3476 	spin_lock_irqsave(&priv->lock, flags);
3477 
3478 	priv->cur_rx = 0;
3479 	priv->dirty_rx = 0;
3480 	priv->dirty_tx = 0;
3481 	priv->cur_tx = 0;
3482 	/* reset private mss value to force mss context settings at
3483 	 * next tso xmit (only used for gmac4).
3484 	 */
3485 	priv->mss = 0;
3486 
3487 	stmmac_clear_descriptors(priv);
3488 
3489 	stmmac_hw_setup(ndev, false);
3490 	stmmac_init_tx_coalesce(priv);
3491 	stmmac_set_rx_mode(ndev);
3492 
3493 	napi_enable(&priv->napi);
3494 
3495 	netif_start_queue(ndev);
3496 
3497 	spin_unlock_irqrestore(&priv->lock, flags);
3498 
3499 	if (priv->phydev)
3500 		phy_start(priv->phydev);
3501 
3502 	return 0;
3503 }
3504 EXPORT_SYMBOL_GPL(stmmac_resume);
3505 
3506 #ifndef MODULE
3507 static int __init stmmac_cmdline_opt(char *str)
3508 {
3509 	char *opt;
3510 
3511 	if (!str || !*str)
3512 		return -EINVAL;
3513 	while ((opt = strsep(&str, ",")) != NULL) {
3514 		if (!strncmp(opt, "debug:", 6)) {
3515 			if (kstrtoint(opt + 6, 0, &debug))
3516 				goto err;
3517 		} else if (!strncmp(opt, "phyaddr:", 8)) {
3518 			if (kstrtoint(opt + 8, 0, &phyaddr))
3519 				goto err;
3520 		} else if (!strncmp(opt, "buf_sz:", 7)) {
3521 			if (kstrtoint(opt + 7, 0, &buf_sz))
3522 				goto err;
3523 		} else if (!strncmp(opt, "tc:", 3)) {
3524 			if (kstrtoint(opt + 3, 0, &tc))
3525 				goto err;
3526 		} else if (!strncmp(opt, "watchdog:", 9)) {
3527 			if (kstrtoint(opt + 9, 0, &watchdog))
3528 				goto err;
3529 		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
3530 			if (kstrtoint(opt + 10, 0, &flow_ctrl))
3531 				goto err;
3532 		} else if (!strncmp(opt, "pause:", 6)) {
3533 			if (kstrtoint(opt + 6, 0, &pause))
3534 				goto err;
3535 		} else if (!strncmp(opt, "eee_timer:", 10)) {
3536 			if (kstrtoint(opt + 10, 0, &eee_timer))
3537 				goto err;
3538 		} else if (!strncmp(opt, "chain_mode:", 11)) {
3539 			if (kstrtoint(opt + 11, 0, &chain_mode))
3540 				goto err;
3541 		}
3542 	}
3543 	return 0;
3544 
3545 err:
3546 	pr_err("%s: ERROR broken module parameter conversion", __func__);
3547 	return -EINVAL;
3548 }
3549 
3550 __setup("stmmaceth=", stmmac_cmdline_opt);
3551 #endif /* MODULE */
3552 
3553 static int __init stmmac_init(void)
3554 {
3555 #ifdef CONFIG_DEBUG_FS
3556 	/* Create debugfs main directory if it doesn't exist yet */
3557 	if (!stmmac_fs_dir) {
3558 		stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
3559 
3560 		if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
3561 			pr_err("ERROR %s, debugfs create directory failed\n",
3562 			       STMMAC_RESOURCE_NAME);
3563 
3564 			return -ENOMEM;
3565 		}
3566 	}
3567 #endif
3568 
3569 	return 0;
3570 }
3571 
3572 static void __exit stmmac_exit(void)
3573 {
3574 #ifdef CONFIG_DEBUG_FS
3575 	debugfs_remove_recursive(stmmac_fs_dir);
3576 #endif
3577 }
3578 
3579 module_init(stmmac_init)
3580 module_exit(stmmac_exit)
3581 
3582 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
3583 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
3584 MODULE_LICENSE("GPL");
3585