xref: /linux/drivers/net/ethernet/stmicro/stmmac/norm_desc.c (revision 48dea9a700c8728cc31a1dd44588b97578de86ee)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*******************************************************************************
3   This contains the functions to handle the normal descriptors.
4 
5   Copyright (C) 2007-2009  STMicroelectronics Ltd
6 
7 
8   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
9 *******************************************************************************/
10 
11 #include <linux/stmmac.h>
12 #include "common.h"
13 #include "descs_com.h"
14 
15 static int ndesc_get_tx_status(void *data, struct stmmac_extra_stats *x,
16 			       struct dma_desc *p, void __iomem *ioaddr)
17 {
18 	struct net_device_stats *stats = (struct net_device_stats *)data;
19 	unsigned int tdes0 = le32_to_cpu(p->des0);
20 	unsigned int tdes1 = le32_to_cpu(p->des1);
21 	int ret = tx_done;
22 
23 	/* Get tx owner first */
24 	if (unlikely(tdes0 & TDES0_OWN))
25 		return tx_dma_own;
26 
27 	/* Verify tx error by looking at the last segment. */
28 	if (likely(!(tdes1 & TDES1_LAST_SEGMENT)))
29 		return tx_not_ls;
30 
31 	if (unlikely(tdes0 & TDES0_ERROR_SUMMARY)) {
32 		if (unlikely(tdes0 & TDES0_UNDERFLOW_ERROR)) {
33 			x->tx_underflow++;
34 			stats->tx_fifo_errors++;
35 		}
36 		if (unlikely(tdes0 & TDES0_NO_CARRIER)) {
37 			x->tx_carrier++;
38 			stats->tx_carrier_errors++;
39 		}
40 		if (unlikely(tdes0 & TDES0_LOSS_CARRIER)) {
41 			x->tx_losscarrier++;
42 			stats->tx_carrier_errors++;
43 		}
44 		if (unlikely((tdes0 & TDES0_EXCESSIVE_DEFERRAL) ||
45 			     (tdes0 & TDES0_EXCESSIVE_COLLISIONS) ||
46 			     (tdes0 & TDES0_LATE_COLLISION))) {
47 			unsigned int collisions;
48 
49 			collisions = (tdes0 & TDES0_COLLISION_COUNT_MASK) >> 3;
50 			stats->collisions += collisions;
51 		}
52 		ret = tx_err;
53 	}
54 
55 	if (tdes0 & TDES0_VLAN_FRAME)
56 		x->tx_vlan++;
57 
58 	if (unlikely(tdes0 & TDES0_DEFERRED))
59 		x->tx_deferred++;
60 
61 	return ret;
62 }
63 
64 static int ndesc_get_tx_len(struct dma_desc *p)
65 {
66 	return (le32_to_cpu(p->des1) & RDES1_BUFFER1_SIZE_MASK);
67 }
68 
69 /* This function verifies if each incoming frame has some errors
70  * and, if required, updates the multicast statistics.
71  * In case of success, it returns good_frame because the GMAC device
72  * is supposed to be able to compute the csum in HW. */
73 static int ndesc_get_rx_status(void *data, struct stmmac_extra_stats *x,
74 			       struct dma_desc *p)
75 {
76 	int ret = good_frame;
77 	unsigned int rdes0 = le32_to_cpu(p->des0);
78 	struct net_device_stats *stats = (struct net_device_stats *)data;
79 
80 	if (unlikely(rdes0 & RDES0_OWN))
81 		return dma_own;
82 
83 	if (unlikely(!(rdes0 & RDES0_LAST_DESCRIPTOR))) {
84 		stats->rx_length_errors++;
85 		return discard_frame;
86 	}
87 
88 	if (unlikely(rdes0 & RDES0_ERROR_SUMMARY)) {
89 		if (unlikely(rdes0 & RDES0_DESCRIPTOR_ERROR))
90 			x->rx_desc++;
91 		if (unlikely(rdes0 & RDES0_SA_FILTER_FAIL))
92 			x->sa_filter_fail++;
93 		if (unlikely(rdes0 & RDES0_OVERFLOW_ERROR))
94 			x->overflow_error++;
95 		if (unlikely(rdes0 & RDES0_IPC_CSUM_ERROR))
96 			x->ipc_csum_error++;
97 		if (unlikely(rdes0 & RDES0_COLLISION)) {
98 			x->rx_collision++;
99 			stats->collisions++;
100 		}
101 		if (unlikely(rdes0 & RDES0_CRC_ERROR)) {
102 			x->rx_crc_errors++;
103 			stats->rx_crc_errors++;
104 		}
105 		ret = discard_frame;
106 	}
107 	if (unlikely(rdes0 & RDES0_DRIBBLING))
108 		x->dribbling_bit++;
109 
110 	if (unlikely(rdes0 & RDES0_LENGTH_ERROR)) {
111 		x->rx_length++;
112 		ret = discard_frame;
113 	}
114 	if (unlikely(rdes0 & RDES0_MII_ERROR)) {
115 		x->rx_mii++;
116 		ret = discard_frame;
117 	}
118 #ifdef STMMAC_VLAN_TAG_USED
119 	if (rdes0 & RDES0_VLAN_TAG)
120 		x->vlan_tag++;
121 #endif
122 	return ret;
123 }
124 
125 static void ndesc_init_rx_desc(struct dma_desc *p, int disable_rx_ic, int mode,
126 			       int end, int bfsize)
127 {
128 	int bfsize1;
129 
130 	p->des0 |= cpu_to_le32(RDES0_OWN);
131 
132 	bfsize1 = min(bfsize, BUF_SIZE_2KiB - 1);
133 	p->des1 |= cpu_to_le32(bfsize1 & RDES1_BUFFER1_SIZE_MASK);
134 
135 	if (mode == STMMAC_CHAIN_MODE)
136 		ndesc_rx_set_on_chain(p, end);
137 	else
138 		ndesc_rx_set_on_ring(p, end, bfsize);
139 
140 	if (disable_rx_ic)
141 		p->des1 |= cpu_to_le32(RDES1_DISABLE_IC);
142 }
143 
144 static void ndesc_init_tx_desc(struct dma_desc *p, int mode, int end)
145 {
146 	p->des0 &= cpu_to_le32(~TDES0_OWN);
147 	if (mode == STMMAC_CHAIN_MODE)
148 		ndesc_tx_set_on_chain(p);
149 	else
150 		ndesc_end_tx_desc_on_ring(p, end);
151 }
152 
153 static int ndesc_get_tx_owner(struct dma_desc *p)
154 {
155 	return (le32_to_cpu(p->des0) & TDES0_OWN) >> 31;
156 }
157 
158 static void ndesc_set_tx_owner(struct dma_desc *p)
159 {
160 	p->des0 |= cpu_to_le32(TDES0_OWN);
161 }
162 
163 static void ndesc_set_rx_owner(struct dma_desc *p, int disable_rx_ic)
164 {
165 	p->des0 |= cpu_to_le32(RDES0_OWN);
166 }
167 
168 static int ndesc_get_tx_ls(struct dma_desc *p)
169 {
170 	return (le32_to_cpu(p->des1) & TDES1_LAST_SEGMENT) >> 30;
171 }
172 
173 static void ndesc_release_tx_desc(struct dma_desc *p, int mode)
174 {
175 	int ter = (le32_to_cpu(p->des1) & TDES1_END_RING) >> 25;
176 
177 	memset(p, 0, offsetof(struct dma_desc, des2));
178 	if (mode == STMMAC_CHAIN_MODE)
179 		ndesc_tx_set_on_chain(p);
180 	else
181 		ndesc_end_tx_desc_on_ring(p, ter);
182 }
183 
184 static void ndesc_prepare_tx_desc(struct dma_desc *p, int is_fs, int len,
185 				  bool csum_flag, int mode, bool tx_own,
186 				  bool ls, unsigned int tot_pkt_len)
187 {
188 	unsigned int tdes1 = le32_to_cpu(p->des1);
189 
190 	if (is_fs)
191 		tdes1 |= TDES1_FIRST_SEGMENT;
192 	else
193 		tdes1 &= ~TDES1_FIRST_SEGMENT;
194 
195 	if (likely(csum_flag))
196 		tdes1 |= (TX_CIC_FULL) << TDES1_CHECKSUM_INSERTION_SHIFT;
197 	else
198 		tdes1 &= ~(TX_CIC_FULL << TDES1_CHECKSUM_INSERTION_SHIFT);
199 
200 	if (ls)
201 		tdes1 |= TDES1_LAST_SEGMENT;
202 
203 	p->des1 = cpu_to_le32(tdes1);
204 
205 	if (mode == STMMAC_CHAIN_MODE)
206 		norm_set_tx_desc_len_on_chain(p, len);
207 	else
208 		norm_set_tx_desc_len_on_ring(p, len);
209 
210 	if (tx_own)
211 		p->des0 |= cpu_to_le32(TDES0_OWN);
212 }
213 
214 static void ndesc_set_tx_ic(struct dma_desc *p)
215 {
216 	p->des1 |= cpu_to_le32(TDES1_INTERRUPT);
217 }
218 
219 static int ndesc_get_rx_frame_len(struct dma_desc *p, int rx_coe_type)
220 {
221 	unsigned int csum = 0;
222 
223 	/* The type-1 checksum offload engines append the checksum at
224 	 * the end of frame and the two bytes of checksum are added in
225 	 * the length.
226 	 * Adjust for that in the framelen for type-1 checksum offload
227 	 * engines
228 	 */
229 	if (rx_coe_type == STMMAC_RX_COE_TYPE1)
230 		csum = 2;
231 
232 	return (((le32_to_cpu(p->des0) & RDES0_FRAME_LEN_MASK)
233 				>> RDES0_FRAME_LEN_SHIFT) -
234 		csum);
235 
236 }
237 
238 static void ndesc_enable_tx_timestamp(struct dma_desc *p)
239 {
240 	p->des1 |= cpu_to_le32(TDES1_TIME_STAMP_ENABLE);
241 }
242 
243 static int ndesc_get_tx_timestamp_status(struct dma_desc *p)
244 {
245 	return (le32_to_cpu(p->des0) & TDES0_TIME_STAMP_STATUS) >> 17;
246 }
247 
248 static void ndesc_get_timestamp(void *desc, u32 ats, u64 *ts)
249 {
250 	struct dma_desc *p = (struct dma_desc *)desc;
251 	u64 ns;
252 
253 	ns = le32_to_cpu(p->des2);
254 	/* convert high/sec time stamp value to nanosecond */
255 	ns += le32_to_cpu(p->des3) * 1000000000ULL;
256 
257 	*ts = ns;
258 }
259 
260 static int ndesc_get_rx_timestamp_status(void *desc, void *next_desc, u32 ats)
261 {
262 	struct dma_desc *p = (struct dma_desc *)desc;
263 
264 	if ((le32_to_cpu(p->des2) == 0xffffffff) &&
265 	    (le32_to_cpu(p->des3) == 0xffffffff))
266 		/* timestamp is corrupted, hence don't store it */
267 		return 0;
268 	else
269 		return 1;
270 }
271 
272 static void ndesc_display_ring(void *head, unsigned int size, bool rx)
273 {
274 	struct dma_desc *p = (struct dma_desc *)head;
275 	int i;
276 
277 	pr_info("%s descriptor ring:\n", rx ? "RX" : "TX");
278 
279 	for (i = 0; i < size; i++) {
280 		u64 x;
281 
282 		x = *(u64 *)p;
283 		pr_info("%03d [0x%x]: 0x%x 0x%x 0x%x 0x%x",
284 			i, (unsigned int)virt_to_phys(p),
285 			(unsigned int)x, (unsigned int)(x >> 32),
286 			p->des2, p->des3);
287 		p++;
288 	}
289 	pr_info("\n");
290 }
291 
292 static void ndesc_get_addr(struct dma_desc *p, unsigned int *addr)
293 {
294 	*addr = le32_to_cpu(p->des2);
295 }
296 
297 static void ndesc_set_addr(struct dma_desc *p, dma_addr_t addr)
298 {
299 	p->des2 = cpu_to_le32(addr);
300 }
301 
302 static void ndesc_clear(struct dma_desc *p)
303 {
304 	p->des2 = 0;
305 }
306 
307 const struct stmmac_desc_ops ndesc_ops = {
308 	.tx_status = ndesc_get_tx_status,
309 	.rx_status = ndesc_get_rx_status,
310 	.get_tx_len = ndesc_get_tx_len,
311 	.init_rx_desc = ndesc_init_rx_desc,
312 	.init_tx_desc = ndesc_init_tx_desc,
313 	.get_tx_owner = ndesc_get_tx_owner,
314 	.release_tx_desc = ndesc_release_tx_desc,
315 	.prepare_tx_desc = ndesc_prepare_tx_desc,
316 	.set_tx_ic = ndesc_set_tx_ic,
317 	.get_tx_ls = ndesc_get_tx_ls,
318 	.set_tx_owner = ndesc_set_tx_owner,
319 	.set_rx_owner = ndesc_set_rx_owner,
320 	.get_rx_frame_len = ndesc_get_rx_frame_len,
321 	.enable_tx_timestamp = ndesc_enable_tx_timestamp,
322 	.get_tx_timestamp_status = ndesc_get_tx_timestamp_status,
323 	.get_timestamp = ndesc_get_timestamp,
324 	.get_rx_timestamp_status = ndesc_get_rx_timestamp_status,
325 	.display_ring = ndesc_display_ring,
326 	.get_addr = ndesc_get_addr,
327 	.set_addr = ndesc_set_addr,
328 	.clear = ndesc_clear,
329 };
330