1 // SPDX-License-Identifier: GPL-2.0-only 2 /******************************************************************************* 3 This is the driver for the GMAC on-chip Ethernet controller for ST SoCs. 4 DWC Ether MAC 10/100/1000 Universal version 3.41a has been used for 5 developing this code. 6 7 This contains the functions to handle the dma. 8 9 Copyright (C) 2007-2009 STMicroelectronics Ltd 10 11 12 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com> 13 *******************************************************************************/ 14 15 #include <linux/io.h> 16 #include "dwmac1000.h" 17 #include "dwmac_dma.h" 18 19 static void dwmac1000_dma_axi(void __iomem *ioaddr, struct stmmac_axi *axi) 20 { 21 u32 value = readl(ioaddr + DMA_AXI_BUS_MODE); 22 int i; 23 24 pr_info("dwmac1000: Master AXI performs %s burst length\n", 25 !(value & DMA_AXI_UNDEF) ? "fixed" : "any"); 26 27 if (axi->axi_lpi_en) 28 value |= DMA_AXI_EN_LPI; 29 if (axi->axi_xit_frm) 30 value |= DMA_AXI_LPI_XIT_FRM; 31 32 value &= ~DMA_AXI_WR_OSR_LMT; 33 value |= (axi->axi_wr_osr_lmt & DMA_AXI_WR_OSR_LMT_MASK) << 34 DMA_AXI_WR_OSR_LMT_SHIFT; 35 36 value &= ~DMA_AXI_RD_OSR_LMT; 37 value |= (axi->axi_rd_osr_lmt & DMA_AXI_RD_OSR_LMT_MASK) << 38 DMA_AXI_RD_OSR_LMT_SHIFT; 39 40 /* Depending on the UNDEF bit the Master AXI will perform any burst 41 * length according to the BLEN programmed (by default all BLEN are 42 * set). 43 */ 44 for (i = 0; i < AXI_BLEN; i++) { 45 switch (axi->axi_blen[i]) { 46 case 256: 47 value |= DMA_AXI_BLEN256; 48 break; 49 case 128: 50 value |= DMA_AXI_BLEN128; 51 break; 52 case 64: 53 value |= DMA_AXI_BLEN64; 54 break; 55 case 32: 56 value |= DMA_AXI_BLEN32; 57 break; 58 case 16: 59 value |= DMA_AXI_BLEN16; 60 break; 61 case 8: 62 value |= DMA_AXI_BLEN8; 63 break; 64 case 4: 65 value |= DMA_AXI_BLEN4; 66 break; 67 } 68 } 69 70 writel(value, ioaddr + DMA_AXI_BUS_MODE); 71 } 72 73 static void dwmac1000_dma_init_channel(struct stmmac_priv *priv, 74 void __iomem *ioaddr, 75 struct stmmac_dma_cfg *dma_cfg, u32 chan) 76 { 77 int txpbl = dma_cfg->txpbl ?: dma_cfg->pbl; 78 int rxpbl = dma_cfg->rxpbl ?: dma_cfg->pbl; 79 u32 value; 80 81 value = readl(ioaddr + DMA_CHAN_BUS_MODE(chan)); 82 83 /* Set the DMA PBL (Programmable Burst Length) mode. 84 * 85 * Note: before stmmac core 3.50 this mode bit was 4xPBL, and 86 * post 3.5 mode bit acts as 8*PBL. 87 */ 88 if (dma_cfg->pblx8) 89 value |= DMA_BUS_MODE_MAXPBL; 90 value |= DMA_BUS_MODE_USP; 91 value &= ~(DMA_BUS_MODE_PBL_MASK | DMA_BUS_MODE_RPBL_MASK); 92 value |= (txpbl << DMA_BUS_MODE_PBL_SHIFT); 93 value |= (rxpbl << DMA_BUS_MODE_RPBL_SHIFT); 94 95 /* Set the Fixed burst mode */ 96 if (dma_cfg->fixed_burst) 97 value |= DMA_BUS_MODE_FB; 98 99 /* Mixed Burst has no effect when fb is set */ 100 if (dma_cfg->mixed_burst) 101 value |= DMA_BUS_MODE_MB; 102 103 if (dma_cfg->atds) 104 value |= DMA_BUS_MODE_ATDS; 105 106 if (dma_cfg->aal) 107 value |= DMA_BUS_MODE_AAL; 108 109 writel(value, ioaddr + DMA_CHAN_BUS_MODE(chan)); 110 111 /* Mask interrupts by writing to CSR7 */ 112 writel(DMA_INTR_DEFAULT_MASK, ioaddr + DMA_CHAN_INTR_ENA(chan)); 113 } 114 115 static void dwmac1000_dma_init_rx(struct stmmac_priv *priv, 116 void __iomem *ioaddr, 117 struct stmmac_dma_cfg *dma_cfg, 118 dma_addr_t dma_rx_phy, u32 chan) 119 { 120 /* RX descriptor base address list must be written into DMA CSR3 */ 121 writel(lower_32_bits(dma_rx_phy), ioaddr + DMA_CHAN_RCV_BASE_ADDR(chan)); 122 } 123 124 static void dwmac1000_dma_init_tx(struct stmmac_priv *priv, 125 void __iomem *ioaddr, 126 struct stmmac_dma_cfg *dma_cfg, 127 dma_addr_t dma_tx_phy, u32 chan) 128 { 129 /* TX descriptor base address list must be written into DMA CSR4 */ 130 writel(lower_32_bits(dma_tx_phy), ioaddr + DMA_CHAN_TX_BASE_ADDR(chan)); 131 } 132 133 static u32 dwmac1000_configure_fc(u32 csr6, int rxfifosz) 134 { 135 csr6 &= ~DMA_CONTROL_RFA_MASK; 136 csr6 &= ~DMA_CONTROL_RFD_MASK; 137 138 /* Leave flow control disabled if receive fifo size is less than 139 * 4K or 0. Otherwise, send XOFF when fifo is 1K less than full, 140 * and send XON when 2K less than full. 141 */ 142 if (rxfifosz < 4096) { 143 csr6 &= ~DMA_CONTROL_EFC; 144 pr_debug("GMAC: disabling flow control, rxfifo too small(%d)\n", 145 rxfifosz); 146 } else { 147 csr6 |= DMA_CONTROL_EFC; 148 csr6 |= RFA_FULL_MINUS_1K; 149 csr6 |= RFD_FULL_MINUS_2K; 150 } 151 return csr6; 152 } 153 154 static void dwmac1000_dma_operation_mode_rx(struct stmmac_priv *priv, 155 void __iomem *ioaddr, int mode, 156 u32 channel, int fifosz, u8 qmode) 157 { 158 u32 csr6 = readl(ioaddr + DMA_CHAN_CONTROL(channel)); 159 160 if (mode == SF_DMA_MODE) { 161 pr_debug("GMAC: enable RX store and forward mode\n"); 162 csr6 |= DMA_CONTROL_RSF; 163 } else { 164 pr_debug("GMAC: disable RX SF mode (threshold %d)\n", mode); 165 csr6 &= ~DMA_CONTROL_RSF; 166 csr6 &= DMA_CONTROL_TC_RX_MASK; 167 if (mode <= 32) 168 csr6 |= DMA_CONTROL_RTC_32; 169 else if (mode <= 64) 170 csr6 |= DMA_CONTROL_RTC_64; 171 else if (mode <= 96) 172 csr6 |= DMA_CONTROL_RTC_96; 173 else 174 csr6 |= DMA_CONTROL_RTC_128; 175 } 176 177 /* Configure flow control based on rx fifo size */ 178 csr6 = dwmac1000_configure_fc(csr6, fifosz); 179 180 writel(csr6, ioaddr + DMA_CHAN_CONTROL(channel)); 181 } 182 183 static void dwmac1000_dma_operation_mode_tx(struct stmmac_priv *priv, 184 void __iomem *ioaddr, int mode, 185 u32 channel, int fifosz, u8 qmode) 186 { 187 u32 csr6 = readl(ioaddr + DMA_CHAN_CONTROL(channel)); 188 189 if (mode == SF_DMA_MODE) { 190 pr_debug("GMAC: enable TX store and forward mode\n"); 191 /* Transmit COE type 2 cannot be done in cut-through mode. */ 192 csr6 |= DMA_CONTROL_TSF; 193 /* Operating on second frame increase the performance 194 * especially when transmit store-and-forward is used. 195 */ 196 csr6 |= DMA_CONTROL_OSF; 197 } else { 198 pr_debug("GMAC: disabling TX SF (threshold %d)\n", mode); 199 csr6 &= ~DMA_CONTROL_TSF; 200 csr6 &= DMA_CONTROL_TC_TX_MASK; 201 /* Set the transmit threshold */ 202 if (mode <= 32) 203 csr6 |= DMA_CONTROL_TTC_32; 204 else if (mode <= 64) 205 csr6 |= DMA_CONTROL_TTC_64; 206 else if (mode <= 128) 207 csr6 |= DMA_CONTROL_TTC_128; 208 else if (mode <= 192) 209 csr6 |= DMA_CONTROL_TTC_192; 210 else 211 csr6 |= DMA_CONTROL_TTC_256; 212 } 213 214 writel(csr6, ioaddr + DMA_CHAN_CONTROL(channel)); 215 } 216 217 static void dwmac1000_dump_dma_regs(struct stmmac_priv *priv, 218 void __iomem *ioaddr, u32 *reg_space) 219 { 220 int i; 221 222 for (i = 0; i < NUM_DWMAC1000_DMA_REGS; i++) 223 if ((i < 12) || (i > 17)) 224 reg_space[DMA_BUS_MODE / 4 + i] = 225 readl(ioaddr + DMA_BUS_MODE + i * 4); 226 } 227 228 static int dwmac1000_get_hw_feature(void __iomem *ioaddr, 229 struct dma_features *dma_cap) 230 { 231 u32 hw_cap = readl(ioaddr + DMA_HW_FEATURE); 232 233 if (!hw_cap) { 234 /* 0x00000000 is the value read on old hardware that does not 235 * implement this register 236 */ 237 return -EOPNOTSUPP; 238 } 239 240 dma_cap->mbps_10_100 = (hw_cap & DMA_HW_FEAT_MIISEL); 241 dma_cap->mbps_1000 = (hw_cap & DMA_HW_FEAT_GMIISEL) >> 1; 242 dma_cap->half_duplex = (hw_cap & DMA_HW_FEAT_HDSEL) >> 2; 243 dma_cap->hash_filter = (hw_cap & DMA_HW_FEAT_HASHSEL) >> 4; 244 dma_cap->multi_addr = (hw_cap & DMA_HW_FEAT_ADDMAC) >> 5; 245 dma_cap->pcs = (hw_cap & DMA_HW_FEAT_PCSSEL) >> 6; 246 dma_cap->sma_mdio = (hw_cap & DMA_HW_FEAT_SMASEL) >> 8; 247 dma_cap->pmt_remote_wake_up = (hw_cap & DMA_HW_FEAT_RWKSEL) >> 9; 248 dma_cap->pmt_magic_frame = (hw_cap & DMA_HW_FEAT_MGKSEL) >> 10; 249 /* MMC */ 250 dma_cap->rmon = (hw_cap & DMA_HW_FEAT_MMCSEL) >> 11; 251 /* IEEE 1588-2002 */ 252 dma_cap->time_stamp = 253 (hw_cap & DMA_HW_FEAT_TSVER1SEL) >> 12; 254 /* IEEE 1588-2008 */ 255 dma_cap->atime_stamp = (hw_cap & DMA_HW_FEAT_TSVER2SEL) >> 13; 256 /* 802.3az - Energy-Efficient Ethernet (EEE) */ 257 dma_cap->eee = (hw_cap & DMA_HW_FEAT_EEESEL) >> 14; 258 dma_cap->av = (hw_cap & DMA_HW_FEAT_AVSEL) >> 15; 259 /* TX and RX csum */ 260 dma_cap->tx_coe = (hw_cap & DMA_HW_FEAT_TXCOESEL) >> 16; 261 dma_cap->rx_coe_type1 = (hw_cap & DMA_HW_FEAT_RXTYP1COE) >> 17; 262 dma_cap->rx_coe_type2 = (hw_cap & DMA_HW_FEAT_RXTYP2COE) >> 18; 263 dma_cap->rxfifo_over_2048 = (hw_cap & DMA_HW_FEAT_RXFIFOSIZE) >> 19; 264 /* TX and RX number of channels */ 265 dma_cap->number_rx_channel = (hw_cap & DMA_HW_FEAT_RXCHCNT) >> 20; 266 dma_cap->number_tx_channel = (hw_cap & DMA_HW_FEAT_TXCHCNT) >> 22; 267 /* Alternate (enhanced) DESC mode */ 268 dma_cap->enh_desc = (hw_cap & DMA_HW_FEAT_ENHDESSEL) >> 24; 269 270 return 0; 271 } 272 273 static void dwmac1000_rx_watchdog(struct stmmac_priv *priv, 274 void __iomem *ioaddr, u32 riwt, u32 queue) 275 { 276 writel(riwt, ioaddr + DMA_CHAN_RX_WATCHDOG(queue)); 277 } 278 279 const struct stmmac_dma_ops dwmac1000_dma_ops = { 280 .reset = dwmac_dma_reset, 281 .init_chan = dwmac1000_dma_init_channel, 282 .init_rx_chan = dwmac1000_dma_init_rx, 283 .init_tx_chan = dwmac1000_dma_init_tx, 284 .axi = dwmac1000_dma_axi, 285 .dump_regs = dwmac1000_dump_dma_regs, 286 .dma_rx_mode = dwmac1000_dma_operation_mode_rx, 287 .dma_tx_mode = dwmac1000_dma_operation_mode_tx, 288 .enable_dma_transmission = dwmac_enable_dma_transmission, 289 .enable_dma_irq = dwmac_enable_dma_irq, 290 .disable_dma_irq = dwmac_disable_dma_irq, 291 .start_tx = dwmac_dma_start_tx, 292 .stop_tx = dwmac_dma_stop_tx, 293 .start_rx = dwmac_dma_start_rx, 294 .stop_rx = dwmac_dma_stop_rx, 295 .dma_interrupt = dwmac_dma_interrupt, 296 .get_hw_feature = dwmac1000_get_hw_feature, 297 .rx_watchdog = dwmac1000_rx_watchdog, 298 }; 299 EXPORT_SYMBOL_GPL(dwmac1000_dma_ops); 300