1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2020, Intel Corporation 3 */ 4 5 #include <linux/clk-provider.h> 6 #include <linux/pci.h> 7 #include <linux/dmi.h> 8 #include "dwmac-intel.h" 9 #include "dwmac4.h" 10 #include "stmmac.h" 11 #include "stmmac_ptp.h" 12 13 struct intel_priv_data { 14 int mdio_adhoc_addr; /* mdio address for serdes & etc */ 15 unsigned long crossts_adj; 16 bool is_pse; 17 }; 18 19 /* This struct is used to associate PCI Function of MAC controller on a board, 20 * discovered via DMI, with the address of PHY connected to the MAC. The 21 * negative value of the address means that MAC controller is not connected 22 * with PHY. 23 */ 24 struct stmmac_pci_func_data { 25 unsigned int func; 26 int phy_addr; 27 }; 28 29 struct stmmac_pci_dmi_data { 30 const struct stmmac_pci_func_data *func; 31 size_t nfuncs; 32 }; 33 34 struct stmmac_pci_info { 35 int (*setup)(struct pci_dev *pdev, struct plat_stmmacenet_data *plat); 36 }; 37 38 static int stmmac_pci_find_phy_addr(struct pci_dev *pdev, 39 const struct dmi_system_id *dmi_list) 40 { 41 const struct stmmac_pci_func_data *func_data; 42 const struct stmmac_pci_dmi_data *dmi_data; 43 const struct dmi_system_id *dmi_id; 44 int func = PCI_FUNC(pdev->devfn); 45 size_t n; 46 47 dmi_id = dmi_first_match(dmi_list); 48 if (!dmi_id) 49 return -ENODEV; 50 51 dmi_data = dmi_id->driver_data; 52 func_data = dmi_data->func; 53 54 for (n = 0; n < dmi_data->nfuncs; n++, func_data++) 55 if (func_data->func == func) 56 return func_data->phy_addr; 57 58 return -ENODEV; 59 } 60 61 static int serdes_status_poll(struct stmmac_priv *priv, int phyaddr, 62 int phyreg, u32 mask, u32 val) 63 { 64 unsigned int retries = 10; 65 int val_rd; 66 67 do { 68 val_rd = mdiobus_read(priv->mii, phyaddr, phyreg); 69 if ((val_rd & mask) == (val & mask)) 70 return 0; 71 udelay(POLL_DELAY_US); 72 } while (--retries); 73 74 return -ETIMEDOUT; 75 } 76 77 static int intel_serdes_powerup(struct net_device *ndev, void *priv_data) 78 { 79 struct intel_priv_data *intel_priv = priv_data; 80 struct stmmac_priv *priv = netdev_priv(ndev); 81 int serdes_phy_addr = 0; 82 u32 data = 0; 83 84 if (!intel_priv->mdio_adhoc_addr) 85 return 0; 86 87 serdes_phy_addr = intel_priv->mdio_adhoc_addr; 88 89 /* Set the serdes rate and the PCLK rate */ 90 data = mdiobus_read(priv->mii, serdes_phy_addr, 91 SERDES_GCR0); 92 93 data &= ~SERDES_RATE_MASK; 94 data &= ~SERDES_PCLK_MASK; 95 96 if (priv->plat->max_speed == 2500) 97 data |= SERDES_RATE_PCIE_GEN2 << SERDES_RATE_PCIE_SHIFT | 98 SERDES_PCLK_37p5MHZ << SERDES_PCLK_SHIFT; 99 else 100 data |= SERDES_RATE_PCIE_GEN1 << SERDES_RATE_PCIE_SHIFT | 101 SERDES_PCLK_70MHZ << SERDES_PCLK_SHIFT; 102 103 mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data); 104 105 /* assert clk_req */ 106 data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0); 107 data |= SERDES_PLL_CLK; 108 mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data); 109 110 /* check for clk_ack assertion */ 111 data = serdes_status_poll(priv, serdes_phy_addr, 112 SERDES_GSR0, 113 SERDES_PLL_CLK, 114 SERDES_PLL_CLK); 115 116 if (data) { 117 dev_err(priv->device, "Serdes PLL clk request timeout\n"); 118 return data; 119 } 120 121 /* assert lane reset */ 122 data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0); 123 data |= SERDES_RST; 124 mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data); 125 126 /* check for assert lane reset reflection */ 127 data = serdes_status_poll(priv, serdes_phy_addr, 128 SERDES_GSR0, 129 SERDES_RST, 130 SERDES_RST); 131 132 if (data) { 133 dev_err(priv->device, "Serdes assert lane reset timeout\n"); 134 return data; 135 } 136 137 /* move power state to P0 */ 138 data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0); 139 140 data &= ~SERDES_PWR_ST_MASK; 141 data |= SERDES_PWR_ST_P0 << SERDES_PWR_ST_SHIFT; 142 143 mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data); 144 145 /* Check for P0 state */ 146 data = serdes_status_poll(priv, serdes_phy_addr, 147 SERDES_GSR0, 148 SERDES_PWR_ST_MASK, 149 SERDES_PWR_ST_P0 << SERDES_PWR_ST_SHIFT); 150 151 if (data) { 152 dev_err(priv->device, "Serdes power state P0 timeout.\n"); 153 return data; 154 } 155 156 /* PSE only - ungate SGMII PHY Rx Clock */ 157 if (intel_priv->is_pse) 158 mdiobus_modify(priv->mii, serdes_phy_addr, SERDES_GCR0, 159 0, SERDES_PHY_RX_CLK); 160 161 return 0; 162 } 163 164 static void intel_serdes_powerdown(struct net_device *ndev, void *intel_data) 165 { 166 struct intel_priv_data *intel_priv = intel_data; 167 struct stmmac_priv *priv = netdev_priv(ndev); 168 int serdes_phy_addr = 0; 169 u32 data = 0; 170 171 if (!intel_priv->mdio_adhoc_addr) 172 return; 173 174 serdes_phy_addr = intel_priv->mdio_adhoc_addr; 175 176 /* PSE only - gate SGMII PHY Rx Clock */ 177 if (intel_priv->is_pse) 178 mdiobus_modify(priv->mii, serdes_phy_addr, SERDES_GCR0, 179 SERDES_PHY_RX_CLK, 0); 180 181 /* move power state to P3 */ 182 data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0); 183 184 data &= ~SERDES_PWR_ST_MASK; 185 data |= SERDES_PWR_ST_P3 << SERDES_PWR_ST_SHIFT; 186 187 mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data); 188 189 /* Check for P3 state */ 190 data = serdes_status_poll(priv, serdes_phy_addr, 191 SERDES_GSR0, 192 SERDES_PWR_ST_MASK, 193 SERDES_PWR_ST_P3 << SERDES_PWR_ST_SHIFT); 194 195 if (data) { 196 dev_err(priv->device, "Serdes power state P3 timeout\n"); 197 return; 198 } 199 200 /* de-assert clk_req */ 201 data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0); 202 data &= ~SERDES_PLL_CLK; 203 mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data); 204 205 /* check for clk_ack de-assert */ 206 data = serdes_status_poll(priv, serdes_phy_addr, 207 SERDES_GSR0, 208 SERDES_PLL_CLK, 209 (u32)~SERDES_PLL_CLK); 210 211 if (data) { 212 dev_err(priv->device, "Serdes PLL clk de-assert timeout\n"); 213 return; 214 } 215 216 /* de-assert lane reset */ 217 data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0); 218 data &= ~SERDES_RST; 219 mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data); 220 221 /* check for de-assert lane reset reflection */ 222 data = serdes_status_poll(priv, serdes_phy_addr, 223 SERDES_GSR0, 224 SERDES_RST, 225 (u32)~SERDES_RST); 226 227 if (data) { 228 dev_err(priv->device, "Serdes de-assert lane reset timeout\n"); 229 return; 230 } 231 } 232 233 static void intel_speed_mode_2500(struct net_device *ndev, void *intel_data) 234 { 235 struct intel_priv_data *intel_priv = intel_data; 236 struct stmmac_priv *priv = netdev_priv(ndev); 237 int serdes_phy_addr = 0; 238 u32 data = 0; 239 240 serdes_phy_addr = intel_priv->mdio_adhoc_addr; 241 242 /* Determine the link speed mode: 2.5Gbps/1Gbps */ 243 data = mdiobus_read(priv->mii, serdes_phy_addr, 244 SERDES_GCR); 245 246 if (((data & SERDES_LINK_MODE_MASK) >> SERDES_LINK_MODE_SHIFT) == 247 SERDES_LINK_MODE_2G5) { 248 dev_info(priv->device, "Link Speed Mode: 2.5Gbps\n"); 249 priv->plat->max_speed = 2500; 250 priv->plat->phy_interface = PHY_INTERFACE_MODE_2500BASEX; 251 priv->plat->mdio_bus_data->default_an_inband = false; 252 } else { 253 priv->plat->max_speed = 1000; 254 } 255 } 256 257 /* Program PTP Clock Frequency for different variant of 258 * Intel mGBE that has slightly different GPO mapping 259 */ 260 static void intel_mgbe_ptp_clk_freq_config(struct stmmac_priv *priv) 261 { 262 struct intel_priv_data *intel_priv; 263 u32 gpio_value; 264 265 intel_priv = (struct intel_priv_data *)priv->plat->bsp_priv; 266 267 gpio_value = readl(priv->ioaddr + GMAC_GPIO_STATUS); 268 269 if (intel_priv->is_pse) { 270 /* For PSE GbE, use 200MHz */ 271 gpio_value &= ~PSE_PTP_CLK_FREQ_MASK; 272 gpio_value |= PSE_PTP_CLK_FREQ_200MHZ; 273 } else { 274 /* For PCH GbE, use 200MHz */ 275 gpio_value &= ~PCH_PTP_CLK_FREQ_MASK; 276 gpio_value |= PCH_PTP_CLK_FREQ_200MHZ; 277 } 278 279 writel(gpio_value, priv->ioaddr + GMAC_GPIO_STATUS); 280 } 281 282 static void get_arttime(struct mii_bus *mii, int intel_adhoc_addr, 283 u64 *art_time) 284 { 285 u64 ns; 286 287 ns = mdiobus_read(mii, intel_adhoc_addr, PMC_ART_VALUE3); 288 ns <<= GMAC4_ART_TIME_SHIFT; 289 ns |= mdiobus_read(mii, intel_adhoc_addr, PMC_ART_VALUE2); 290 ns <<= GMAC4_ART_TIME_SHIFT; 291 ns |= mdiobus_read(mii, intel_adhoc_addr, PMC_ART_VALUE1); 292 ns <<= GMAC4_ART_TIME_SHIFT; 293 ns |= mdiobus_read(mii, intel_adhoc_addr, PMC_ART_VALUE0); 294 295 *art_time = ns; 296 } 297 298 static int stmmac_cross_ts_isr(struct stmmac_priv *priv) 299 { 300 return (readl(priv->ioaddr + GMAC_INT_STATUS) & GMAC_INT_TSIE); 301 } 302 303 static int intel_crosststamp(ktime_t *device, 304 struct system_counterval_t *system, 305 void *ctx) 306 { 307 struct intel_priv_data *intel_priv; 308 309 struct stmmac_priv *priv = (struct stmmac_priv *)ctx; 310 void __iomem *ptpaddr = priv->ptpaddr; 311 void __iomem *ioaddr = priv->hw->pcsr; 312 unsigned long flags; 313 u64 art_time = 0; 314 u64 ptp_time = 0; 315 u32 num_snapshot; 316 u32 gpio_value; 317 u32 acr_value; 318 int i; 319 320 if (!boot_cpu_has(X86_FEATURE_ART)) 321 return -EOPNOTSUPP; 322 323 intel_priv = priv->plat->bsp_priv; 324 325 /* Both internal crosstimestamping and external triggered event 326 * timestamping cannot be run concurrently. 327 */ 328 if (priv->plat->flags & STMMAC_FLAG_EXT_SNAPSHOT_EN) 329 return -EBUSY; 330 331 priv->plat->flags |= STMMAC_FLAG_INT_SNAPSHOT_EN; 332 333 mutex_lock(&priv->aux_ts_lock); 334 /* Enable Internal snapshot trigger */ 335 acr_value = readl(ptpaddr + PTP_ACR); 336 acr_value &= ~PTP_ACR_MASK; 337 switch (priv->plat->int_snapshot_num) { 338 case AUX_SNAPSHOT0: 339 acr_value |= PTP_ACR_ATSEN0; 340 break; 341 case AUX_SNAPSHOT1: 342 acr_value |= PTP_ACR_ATSEN1; 343 break; 344 case AUX_SNAPSHOT2: 345 acr_value |= PTP_ACR_ATSEN2; 346 break; 347 case AUX_SNAPSHOT3: 348 acr_value |= PTP_ACR_ATSEN3; 349 break; 350 default: 351 mutex_unlock(&priv->aux_ts_lock); 352 priv->plat->flags &= ~STMMAC_FLAG_INT_SNAPSHOT_EN; 353 return -EINVAL; 354 } 355 writel(acr_value, ptpaddr + PTP_ACR); 356 357 /* Clear FIFO */ 358 acr_value = readl(ptpaddr + PTP_ACR); 359 acr_value |= PTP_ACR_ATSFC; 360 writel(acr_value, ptpaddr + PTP_ACR); 361 /* Release the mutex */ 362 mutex_unlock(&priv->aux_ts_lock); 363 364 /* Trigger Internal snapshot signal 365 * Create a rising edge by just toggle the GPO1 to low 366 * and back to high. 367 */ 368 gpio_value = readl(ioaddr + GMAC_GPIO_STATUS); 369 gpio_value &= ~GMAC_GPO1; 370 writel(gpio_value, ioaddr + GMAC_GPIO_STATUS); 371 gpio_value |= GMAC_GPO1; 372 writel(gpio_value, ioaddr + GMAC_GPIO_STATUS); 373 374 /* Time sync done Indication - Interrupt method */ 375 if (!wait_event_interruptible_timeout(priv->tstamp_busy_wait, 376 stmmac_cross_ts_isr(priv), 377 HZ / 100)) { 378 priv->plat->flags &= ~STMMAC_FLAG_INT_SNAPSHOT_EN; 379 return -ETIMEDOUT; 380 } 381 382 num_snapshot = (readl(ioaddr + GMAC_TIMESTAMP_STATUS) & 383 GMAC_TIMESTAMP_ATSNS_MASK) >> 384 GMAC_TIMESTAMP_ATSNS_SHIFT; 385 386 /* Repeat until the timestamps are from the FIFO last segment */ 387 for (i = 0; i < num_snapshot; i++) { 388 read_lock_irqsave(&priv->ptp_lock, flags); 389 stmmac_get_ptptime(priv, ptpaddr, &ptp_time); 390 *device = ns_to_ktime(ptp_time); 391 read_unlock_irqrestore(&priv->ptp_lock, flags); 392 get_arttime(priv->mii, intel_priv->mdio_adhoc_addr, &art_time); 393 system->cycles = art_time; 394 } 395 396 system->cycles *= intel_priv->crossts_adj; 397 system->cs_id = CSID_X86_ART; 398 priv->plat->flags &= ~STMMAC_FLAG_INT_SNAPSHOT_EN; 399 400 return 0; 401 } 402 403 static void intel_mgbe_pse_crossts_adj(struct intel_priv_data *intel_priv, 404 int base) 405 { 406 if (boot_cpu_has(X86_FEATURE_ART)) { 407 unsigned int art_freq; 408 409 /* On systems that support ART, ART frequency can be obtained 410 * from ECX register of CPUID leaf (0x15). 411 */ 412 art_freq = cpuid_ecx(ART_CPUID_LEAF); 413 do_div(art_freq, base); 414 intel_priv->crossts_adj = art_freq; 415 } 416 } 417 418 static void common_default_data(struct plat_stmmacenet_data *plat) 419 { 420 plat->clk_csr = 2; /* clk_csr_i = 20-35MHz & MDC = clk_csr_i/16 */ 421 plat->has_gmac = 1; 422 plat->force_sf_dma_mode = 1; 423 424 plat->mdio_bus_data->needs_reset = true; 425 426 /* Set default value for multicast hash bins */ 427 plat->multicast_filter_bins = HASH_TABLE_SIZE; 428 429 /* Set default value for unicast filter entries */ 430 plat->unicast_filter_entries = 1; 431 432 /* Set the maxmtu to a default of JUMBO_LEN */ 433 plat->maxmtu = JUMBO_LEN; 434 435 /* Set default number of RX and TX queues to use */ 436 plat->tx_queues_to_use = 1; 437 plat->rx_queues_to_use = 1; 438 439 /* Disable Priority config by default */ 440 plat->tx_queues_cfg[0].use_prio = false; 441 plat->rx_queues_cfg[0].use_prio = false; 442 443 /* Disable RX queues routing by default */ 444 plat->rx_queues_cfg[0].pkt_route = 0x0; 445 } 446 447 static struct phylink_pcs *intel_mgbe_select_pcs(struct stmmac_priv *priv, 448 phy_interface_t interface) 449 { 450 /* plat->mdio_bus_data->has_xpcs has been set true, so there 451 * should always be an XPCS. The original code would always 452 * return this if present. 453 */ 454 return &priv->hw->xpcs->pcs; 455 } 456 457 static int intel_mgbe_common_data(struct pci_dev *pdev, 458 struct plat_stmmacenet_data *plat) 459 { 460 struct fwnode_handle *fwnode; 461 char clk_name[20]; 462 int ret; 463 int i; 464 465 plat->pdev = pdev; 466 plat->phy_addr = -1; 467 plat->clk_csr = 5; 468 plat->has_gmac = 0; 469 plat->has_gmac4 = 1; 470 plat->force_sf_dma_mode = 0; 471 plat->flags |= (STMMAC_FLAG_TSO_EN | STMMAC_FLAG_SPH_DISABLE); 472 473 /* Multiplying factor to the clk_eee_i clock time 474 * period to make it closer to 100 ns. This value 475 * should be programmed such that the clk_eee_time_period * 476 * (MULT_FACT_100NS + 1) should be within 80 ns to 120 ns 477 * clk_eee frequency is 19.2Mhz 478 * clk_eee_time_period is 52ns 479 * 52ns * (1 + 1) = 104ns 480 * MULT_FACT_100NS = 1 481 */ 482 plat->mult_fact_100ns = 1; 483 484 plat->rx_sched_algorithm = MTL_RX_ALGORITHM_SP; 485 486 for (i = 0; i < plat->rx_queues_to_use; i++) { 487 plat->rx_queues_cfg[i].mode_to_use = MTL_QUEUE_DCB; 488 plat->rx_queues_cfg[i].chan = i; 489 490 /* Disable Priority config by default */ 491 plat->rx_queues_cfg[i].use_prio = false; 492 493 /* Disable RX queues routing by default */ 494 plat->rx_queues_cfg[i].pkt_route = 0x0; 495 } 496 497 for (i = 0; i < plat->tx_queues_to_use; i++) { 498 plat->tx_queues_cfg[i].mode_to_use = MTL_QUEUE_DCB; 499 500 /* Disable Priority config by default */ 501 plat->tx_queues_cfg[i].use_prio = false; 502 /* Default TX Q0 to use TSO and rest TXQ for TBS */ 503 if (i > 0) 504 plat->tx_queues_cfg[i].tbs_en = 1; 505 } 506 507 /* FIFO size is 4096 bytes for 1 tx/rx queue */ 508 plat->tx_fifo_size = plat->tx_queues_to_use * 4096; 509 plat->rx_fifo_size = plat->rx_queues_to_use * 4096; 510 511 plat->tx_sched_algorithm = MTL_TX_ALGORITHM_WRR; 512 plat->tx_queues_cfg[0].weight = 0x09; 513 plat->tx_queues_cfg[1].weight = 0x0A; 514 plat->tx_queues_cfg[2].weight = 0x0B; 515 plat->tx_queues_cfg[3].weight = 0x0C; 516 plat->tx_queues_cfg[4].weight = 0x0D; 517 plat->tx_queues_cfg[5].weight = 0x0E; 518 plat->tx_queues_cfg[6].weight = 0x0F; 519 plat->tx_queues_cfg[7].weight = 0x10; 520 521 plat->dma_cfg->pbl = 32; 522 plat->dma_cfg->pblx8 = true; 523 plat->dma_cfg->fixed_burst = 0; 524 plat->dma_cfg->mixed_burst = 0; 525 plat->dma_cfg->aal = 0; 526 plat->dma_cfg->dche = true; 527 528 plat->axi = devm_kzalloc(&pdev->dev, sizeof(*plat->axi), 529 GFP_KERNEL); 530 if (!plat->axi) 531 return -ENOMEM; 532 533 plat->axi->axi_lpi_en = 0; 534 plat->axi->axi_xit_frm = 0; 535 plat->axi->axi_wr_osr_lmt = 1; 536 plat->axi->axi_rd_osr_lmt = 1; 537 plat->axi->axi_blen[0] = 4; 538 plat->axi->axi_blen[1] = 8; 539 plat->axi->axi_blen[2] = 16; 540 541 plat->ptp_max_adj = plat->clk_ptp_rate; 542 plat->eee_usecs_rate = plat->clk_ptp_rate; 543 544 /* Set system clock */ 545 sprintf(clk_name, "%s-%s", "stmmac", pci_name(pdev)); 546 547 plat->stmmac_clk = clk_register_fixed_rate(&pdev->dev, 548 clk_name, NULL, 0, 549 plat->clk_ptp_rate); 550 551 if (IS_ERR(plat->stmmac_clk)) { 552 dev_warn(&pdev->dev, "Fail to register stmmac-clk\n"); 553 plat->stmmac_clk = NULL; 554 } 555 556 ret = clk_prepare_enable(plat->stmmac_clk); 557 if (ret) { 558 clk_unregister_fixed_rate(plat->stmmac_clk); 559 return ret; 560 } 561 562 plat->ptp_clk_freq_config = intel_mgbe_ptp_clk_freq_config; 563 564 /* Set default value for multicast hash bins */ 565 plat->multicast_filter_bins = HASH_TABLE_SIZE; 566 567 /* Set default value for unicast filter entries */ 568 plat->unicast_filter_entries = 1; 569 570 /* Set the maxmtu to a default of JUMBO_LEN */ 571 plat->maxmtu = JUMBO_LEN; 572 573 plat->flags |= STMMAC_FLAG_VLAN_FAIL_Q_EN; 574 575 /* Use the last Rx queue */ 576 plat->vlan_fail_q = plat->rx_queues_to_use - 1; 577 578 /* For fixed-link setup, we allow phy-mode setting */ 579 fwnode = dev_fwnode(&pdev->dev); 580 if (fwnode) { 581 int phy_mode; 582 583 /* "phy-mode" setting is optional. If it is set, 584 * we allow either sgmii or 1000base-x for now. 585 */ 586 phy_mode = fwnode_get_phy_mode(fwnode); 587 if (phy_mode >= 0) { 588 if (phy_mode == PHY_INTERFACE_MODE_SGMII || 589 phy_mode == PHY_INTERFACE_MODE_1000BASEX) 590 plat->phy_interface = phy_mode; 591 else 592 dev_warn(&pdev->dev, "Invalid phy-mode\n"); 593 } 594 } 595 596 /* Intel mgbe SGMII interface uses pcs-xcps */ 597 if (plat->phy_interface == PHY_INTERFACE_MODE_SGMII || 598 plat->phy_interface == PHY_INTERFACE_MODE_1000BASEX) { 599 plat->mdio_bus_data->pcs_mask = BIT(INTEL_MGBE_XPCS_ADDR); 600 plat->mdio_bus_data->default_an_inband = true; 601 plat->select_pcs = intel_mgbe_select_pcs; 602 } 603 604 /* Ensure mdio bus scan skips intel serdes and pcs-xpcs */ 605 plat->mdio_bus_data->phy_mask = 1 << INTEL_MGBE_ADHOC_ADDR; 606 plat->mdio_bus_data->phy_mask |= 1 << INTEL_MGBE_XPCS_ADDR; 607 608 plat->int_snapshot_num = AUX_SNAPSHOT1; 609 610 plat->crosststamp = intel_crosststamp; 611 plat->flags &= ~STMMAC_FLAG_INT_SNAPSHOT_EN; 612 613 /* Setup MSI vector offset specific to Intel mGbE controller */ 614 plat->msi_mac_vec = 29; 615 plat->msi_lpi_vec = 28; 616 plat->msi_sfty_ce_vec = 27; 617 plat->msi_sfty_ue_vec = 26; 618 plat->msi_rx_base_vec = 0; 619 plat->msi_tx_base_vec = 1; 620 621 return 0; 622 } 623 624 static int ehl_common_data(struct pci_dev *pdev, 625 struct plat_stmmacenet_data *plat) 626 { 627 plat->rx_queues_to_use = 8; 628 plat->tx_queues_to_use = 8; 629 plat->flags |= STMMAC_FLAG_USE_PHY_WOL; 630 plat->flags |= STMMAC_FLAG_HWTSTAMP_CORRECT_LATENCY; 631 632 plat->safety_feat_cfg->tsoee = 1; 633 plat->safety_feat_cfg->mrxpee = 1; 634 plat->safety_feat_cfg->mestee = 1; 635 plat->safety_feat_cfg->mrxee = 1; 636 plat->safety_feat_cfg->mtxee = 1; 637 plat->safety_feat_cfg->epsi = 0; 638 plat->safety_feat_cfg->edpp = 0; 639 plat->safety_feat_cfg->prtyen = 0; 640 plat->safety_feat_cfg->tmouten = 0; 641 642 return intel_mgbe_common_data(pdev, plat); 643 } 644 645 static int ehl_sgmii_data(struct pci_dev *pdev, 646 struct plat_stmmacenet_data *plat) 647 { 648 plat->bus_id = 1; 649 plat->phy_interface = PHY_INTERFACE_MODE_SGMII; 650 plat->speed_mode_2500 = intel_speed_mode_2500; 651 plat->serdes_powerup = intel_serdes_powerup; 652 plat->serdes_powerdown = intel_serdes_powerdown; 653 654 plat->clk_ptp_rate = 204800000; 655 656 return ehl_common_data(pdev, plat); 657 } 658 659 static struct stmmac_pci_info ehl_sgmii1g_info = { 660 .setup = ehl_sgmii_data, 661 }; 662 663 static int ehl_rgmii_data(struct pci_dev *pdev, 664 struct plat_stmmacenet_data *plat) 665 { 666 plat->bus_id = 1; 667 plat->phy_interface = PHY_INTERFACE_MODE_RGMII; 668 669 plat->clk_ptp_rate = 204800000; 670 671 return ehl_common_data(pdev, plat); 672 } 673 674 static struct stmmac_pci_info ehl_rgmii1g_info = { 675 .setup = ehl_rgmii_data, 676 }; 677 678 static int ehl_pse0_common_data(struct pci_dev *pdev, 679 struct plat_stmmacenet_data *plat) 680 { 681 struct intel_priv_data *intel_priv = plat->bsp_priv; 682 683 intel_priv->is_pse = true; 684 plat->bus_id = 2; 685 plat->host_dma_width = 32; 686 687 plat->clk_ptp_rate = 200000000; 688 689 intel_mgbe_pse_crossts_adj(intel_priv, EHL_PSE_ART_MHZ); 690 691 return ehl_common_data(pdev, plat); 692 } 693 694 static int ehl_pse0_rgmii1g_data(struct pci_dev *pdev, 695 struct plat_stmmacenet_data *plat) 696 { 697 plat->phy_interface = PHY_INTERFACE_MODE_RGMII_ID; 698 return ehl_pse0_common_data(pdev, plat); 699 } 700 701 static struct stmmac_pci_info ehl_pse0_rgmii1g_info = { 702 .setup = ehl_pse0_rgmii1g_data, 703 }; 704 705 static int ehl_pse0_sgmii1g_data(struct pci_dev *pdev, 706 struct plat_stmmacenet_data *plat) 707 { 708 plat->phy_interface = PHY_INTERFACE_MODE_SGMII; 709 plat->speed_mode_2500 = intel_speed_mode_2500; 710 plat->serdes_powerup = intel_serdes_powerup; 711 plat->serdes_powerdown = intel_serdes_powerdown; 712 return ehl_pse0_common_data(pdev, plat); 713 } 714 715 static struct stmmac_pci_info ehl_pse0_sgmii1g_info = { 716 .setup = ehl_pse0_sgmii1g_data, 717 }; 718 719 static int ehl_pse1_common_data(struct pci_dev *pdev, 720 struct plat_stmmacenet_data *plat) 721 { 722 struct intel_priv_data *intel_priv = plat->bsp_priv; 723 724 intel_priv->is_pse = true; 725 plat->bus_id = 3; 726 plat->host_dma_width = 32; 727 728 plat->clk_ptp_rate = 200000000; 729 730 intel_mgbe_pse_crossts_adj(intel_priv, EHL_PSE_ART_MHZ); 731 732 return ehl_common_data(pdev, plat); 733 } 734 735 static int ehl_pse1_rgmii1g_data(struct pci_dev *pdev, 736 struct plat_stmmacenet_data *plat) 737 { 738 plat->phy_interface = PHY_INTERFACE_MODE_RGMII_ID; 739 return ehl_pse1_common_data(pdev, plat); 740 } 741 742 static struct stmmac_pci_info ehl_pse1_rgmii1g_info = { 743 .setup = ehl_pse1_rgmii1g_data, 744 }; 745 746 static int ehl_pse1_sgmii1g_data(struct pci_dev *pdev, 747 struct plat_stmmacenet_data *plat) 748 { 749 plat->phy_interface = PHY_INTERFACE_MODE_SGMII; 750 plat->speed_mode_2500 = intel_speed_mode_2500; 751 plat->serdes_powerup = intel_serdes_powerup; 752 plat->serdes_powerdown = intel_serdes_powerdown; 753 return ehl_pse1_common_data(pdev, plat); 754 } 755 756 static struct stmmac_pci_info ehl_pse1_sgmii1g_info = { 757 .setup = ehl_pse1_sgmii1g_data, 758 }; 759 760 static int tgl_common_data(struct pci_dev *pdev, 761 struct plat_stmmacenet_data *plat) 762 { 763 plat->rx_queues_to_use = 6; 764 plat->tx_queues_to_use = 4; 765 plat->clk_ptp_rate = 204800000; 766 plat->speed_mode_2500 = intel_speed_mode_2500; 767 768 plat->safety_feat_cfg->tsoee = 1; 769 plat->safety_feat_cfg->mrxpee = 0; 770 plat->safety_feat_cfg->mestee = 1; 771 plat->safety_feat_cfg->mrxee = 1; 772 plat->safety_feat_cfg->mtxee = 1; 773 plat->safety_feat_cfg->epsi = 0; 774 plat->safety_feat_cfg->edpp = 0; 775 plat->safety_feat_cfg->prtyen = 0; 776 plat->safety_feat_cfg->tmouten = 0; 777 778 return intel_mgbe_common_data(pdev, plat); 779 } 780 781 static int tgl_sgmii_phy0_data(struct pci_dev *pdev, 782 struct plat_stmmacenet_data *plat) 783 { 784 plat->bus_id = 1; 785 plat->phy_interface = PHY_INTERFACE_MODE_SGMII; 786 plat->serdes_powerup = intel_serdes_powerup; 787 plat->serdes_powerdown = intel_serdes_powerdown; 788 return tgl_common_data(pdev, plat); 789 } 790 791 static struct stmmac_pci_info tgl_sgmii1g_phy0_info = { 792 .setup = tgl_sgmii_phy0_data, 793 }; 794 795 static int tgl_sgmii_phy1_data(struct pci_dev *pdev, 796 struct plat_stmmacenet_data *plat) 797 { 798 plat->bus_id = 2; 799 plat->phy_interface = PHY_INTERFACE_MODE_SGMII; 800 plat->serdes_powerup = intel_serdes_powerup; 801 plat->serdes_powerdown = intel_serdes_powerdown; 802 return tgl_common_data(pdev, plat); 803 } 804 805 static struct stmmac_pci_info tgl_sgmii1g_phy1_info = { 806 .setup = tgl_sgmii_phy1_data, 807 }; 808 809 static int adls_sgmii_phy0_data(struct pci_dev *pdev, 810 struct plat_stmmacenet_data *plat) 811 { 812 plat->bus_id = 1; 813 plat->phy_interface = PHY_INTERFACE_MODE_SGMII; 814 815 /* SerDes power up and power down are done in BIOS for ADL */ 816 817 return tgl_common_data(pdev, plat); 818 } 819 820 static struct stmmac_pci_info adls_sgmii1g_phy0_info = { 821 .setup = adls_sgmii_phy0_data, 822 }; 823 824 static int adls_sgmii_phy1_data(struct pci_dev *pdev, 825 struct plat_stmmacenet_data *plat) 826 { 827 plat->bus_id = 2; 828 plat->phy_interface = PHY_INTERFACE_MODE_SGMII; 829 830 /* SerDes power up and power down are done in BIOS for ADL */ 831 832 return tgl_common_data(pdev, plat); 833 } 834 835 static struct stmmac_pci_info adls_sgmii1g_phy1_info = { 836 .setup = adls_sgmii_phy1_data, 837 }; 838 static const struct stmmac_pci_func_data galileo_stmmac_func_data[] = { 839 { 840 .func = 6, 841 .phy_addr = 1, 842 }, 843 }; 844 845 static const struct stmmac_pci_dmi_data galileo_stmmac_dmi_data = { 846 .func = galileo_stmmac_func_data, 847 .nfuncs = ARRAY_SIZE(galileo_stmmac_func_data), 848 }; 849 850 static const struct stmmac_pci_func_data iot2040_stmmac_func_data[] = { 851 { 852 .func = 6, 853 .phy_addr = 1, 854 }, 855 { 856 .func = 7, 857 .phy_addr = 1, 858 }, 859 }; 860 861 static const struct stmmac_pci_dmi_data iot2040_stmmac_dmi_data = { 862 .func = iot2040_stmmac_func_data, 863 .nfuncs = ARRAY_SIZE(iot2040_stmmac_func_data), 864 }; 865 866 static const struct dmi_system_id quark_pci_dmi[] = { 867 { 868 .matches = { 869 DMI_EXACT_MATCH(DMI_BOARD_NAME, "Galileo"), 870 }, 871 .driver_data = (void *)&galileo_stmmac_dmi_data, 872 }, 873 { 874 .matches = { 875 DMI_EXACT_MATCH(DMI_BOARD_NAME, "GalileoGen2"), 876 }, 877 .driver_data = (void *)&galileo_stmmac_dmi_data, 878 }, 879 /* There are 2 types of SIMATIC IOT2000: IOT2020 and IOT2040. 880 * The asset tag "6ES7647-0AA00-0YA2" is only for IOT2020 which 881 * has only one pci network device while other asset tags are 882 * for IOT2040 which has two. 883 */ 884 { 885 .matches = { 886 DMI_EXACT_MATCH(DMI_BOARD_NAME, "SIMATIC IOT2000"), 887 DMI_EXACT_MATCH(DMI_BOARD_ASSET_TAG, 888 "6ES7647-0AA00-0YA2"), 889 }, 890 .driver_data = (void *)&galileo_stmmac_dmi_data, 891 }, 892 { 893 .matches = { 894 DMI_EXACT_MATCH(DMI_BOARD_NAME, "SIMATIC IOT2000"), 895 }, 896 .driver_data = (void *)&iot2040_stmmac_dmi_data, 897 }, 898 {} 899 }; 900 901 static int quark_default_data(struct pci_dev *pdev, 902 struct plat_stmmacenet_data *plat) 903 { 904 int ret; 905 906 /* Set common default data first */ 907 common_default_data(plat); 908 909 /* Refuse to load the driver and register net device if MAC controller 910 * does not connect to any PHY interface. 911 */ 912 ret = stmmac_pci_find_phy_addr(pdev, quark_pci_dmi); 913 if (ret < 0) { 914 /* Return error to the caller on DMI enabled boards. */ 915 if (dmi_get_system_info(DMI_BOARD_NAME)) 916 return ret; 917 918 /* Galileo boards with old firmware don't support DMI. We always 919 * use 1 here as PHY address, so at least the first found MAC 920 * controller would be probed. 921 */ 922 ret = 1; 923 } 924 925 plat->bus_id = pci_dev_id(pdev); 926 plat->phy_addr = ret; 927 plat->phy_interface = PHY_INTERFACE_MODE_RMII; 928 929 plat->dma_cfg->pbl = 16; 930 plat->dma_cfg->pblx8 = true; 931 plat->dma_cfg->fixed_burst = 1; 932 /* AXI (TODO) */ 933 934 return 0; 935 } 936 937 static const struct stmmac_pci_info quark_info = { 938 .setup = quark_default_data, 939 }; 940 941 static int stmmac_config_single_msi(struct pci_dev *pdev, 942 struct plat_stmmacenet_data *plat, 943 struct stmmac_resources *res) 944 { 945 int ret; 946 947 ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES); 948 if (ret < 0) { 949 dev_info(&pdev->dev, "%s: Single IRQ enablement failed\n", 950 __func__); 951 return ret; 952 } 953 954 res->irq = pci_irq_vector(pdev, 0); 955 res->wol_irq = res->irq; 956 plat->flags &= ~STMMAC_FLAG_MULTI_MSI_EN; 957 dev_info(&pdev->dev, "%s: Single IRQ enablement successful\n", 958 __func__); 959 960 return 0; 961 } 962 963 static int stmmac_config_multi_msi(struct pci_dev *pdev, 964 struct plat_stmmacenet_data *plat, 965 struct stmmac_resources *res) 966 { 967 int ret; 968 int i; 969 970 if (plat->msi_rx_base_vec >= STMMAC_MSI_VEC_MAX || 971 plat->msi_tx_base_vec >= STMMAC_MSI_VEC_MAX) { 972 dev_info(&pdev->dev, "%s: Invalid RX & TX vector defined\n", 973 __func__); 974 return -1; 975 } 976 977 ret = pci_alloc_irq_vectors(pdev, 2, STMMAC_MSI_VEC_MAX, 978 PCI_IRQ_MSI | PCI_IRQ_MSIX); 979 if (ret < 0) { 980 dev_info(&pdev->dev, "%s: multi MSI enablement failed\n", 981 __func__); 982 return ret; 983 } 984 985 /* For RX MSI */ 986 for (i = 0; i < plat->rx_queues_to_use; i++) { 987 res->rx_irq[i] = pci_irq_vector(pdev, 988 plat->msi_rx_base_vec + i * 2); 989 } 990 991 /* For TX MSI */ 992 for (i = 0; i < plat->tx_queues_to_use; i++) { 993 res->tx_irq[i] = pci_irq_vector(pdev, 994 plat->msi_tx_base_vec + i * 2); 995 } 996 997 if (plat->msi_mac_vec < STMMAC_MSI_VEC_MAX) 998 res->irq = pci_irq_vector(pdev, plat->msi_mac_vec); 999 if (plat->msi_wol_vec < STMMAC_MSI_VEC_MAX) 1000 res->wol_irq = pci_irq_vector(pdev, plat->msi_wol_vec); 1001 if (plat->msi_lpi_vec < STMMAC_MSI_VEC_MAX) 1002 res->lpi_irq = pci_irq_vector(pdev, plat->msi_lpi_vec); 1003 if (plat->msi_sfty_ce_vec < STMMAC_MSI_VEC_MAX) 1004 res->sfty_ce_irq = pci_irq_vector(pdev, plat->msi_sfty_ce_vec); 1005 if (plat->msi_sfty_ue_vec < STMMAC_MSI_VEC_MAX) 1006 res->sfty_ue_irq = pci_irq_vector(pdev, plat->msi_sfty_ue_vec); 1007 1008 plat->flags |= STMMAC_FLAG_MULTI_MSI_EN; 1009 dev_info(&pdev->dev, "%s: multi MSI enablement successful\n", __func__); 1010 1011 return 0; 1012 } 1013 1014 /** 1015 * intel_eth_pci_probe 1016 * 1017 * @pdev: pci device pointer 1018 * @id: pointer to table of device id/id's. 1019 * 1020 * Description: This probing function gets called for all PCI devices which 1021 * match the ID table and are not "owned" by other driver yet. This function 1022 * gets passed a "struct pci_dev *" for each device whose entry in the ID table 1023 * matches the device. The probe functions returns zero when the driver choose 1024 * to take "ownership" of the device or an error code(-ve no) otherwise. 1025 */ 1026 static int intel_eth_pci_probe(struct pci_dev *pdev, 1027 const struct pci_device_id *id) 1028 { 1029 struct stmmac_pci_info *info = (struct stmmac_pci_info *)id->driver_data; 1030 struct intel_priv_data *intel_priv; 1031 struct plat_stmmacenet_data *plat; 1032 struct stmmac_resources res; 1033 int ret; 1034 1035 intel_priv = devm_kzalloc(&pdev->dev, sizeof(*intel_priv), GFP_KERNEL); 1036 if (!intel_priv) 1037 return -ENOMEM; 1038 1039 plat = devm_kzalloc(&pdev->dev, sizeof(*plat), GFP_KERNEL); 1040 if (!plat) 1041 return -ENOMEM; 1042 1043 plat->mdio_bus_data = devm_kzalloc(&pdev->dev, 1044 sizeof(*plat->mdio_bus_data), 1045 GFP_KERNEL); 1046 if (!plat->mdio_bus_data) 1047 return -ENOMEM; 1048 1049 plat->dma_cfg = devm_kzalloc(&pdev->dev, sizeof(*plat->dma_cfg), 1050 GFP_KERNEL); 1051 if (!plat->dma_cfg) 1052 return -ENOMEM; 1053 1054 plat->safety_feat_cfg = devm_kzalloc(&pdev->dev, 1055 sizeof(*plat->safety_feat_cfg), 1056 GFP_KERNEL); 1057 if (!plat->safety_feat_cfg) 1058 return -ENOMEM; 1059 1060 /* Enable pci device */ 1061 ret = pcim_enable_device(pdev); 1062 if (ret) { 1063 dev_err(&pdev->dev, "%s: ERROR: failed to enable device\n", 1064 __func__); 1065 return ret; 1066 } 1067 1068 ret = pcim_iomap_regions(pdev, BIT(0), pci_name(pdev)); 1069 if (ret) 1070 return ret; 1071 1072 pci_set_master(pdev); 1073 1074 plat->bsp_priv = intel_priv; 1075 intel_priv->mdio_adhoc_addr = INTEL_MGBE_ADHOC_ADDR; 1076 intel_priv->crossts_adj = 1; 1077 1078 /* Initialize all MSI vectors to invalid so that it can be set 1079 * according to platform data settings below. 1080 * Note: MSI vector takes value from 0 upto 31 (STMMAC_MSI_VEC_MAX) 1081 */ 1082 plat->msi_mac_vec = STMMAC_MSI_VEC_MAX; 1083 plat->msi_wol_vec = STMMAC_MSI_VEC_MAX; 1084 plat->msi_lpi_vec = STMMAC_MSI_VEC_MAX; 1085 plat->msi_sfty_ce_vec = STMMAC_MSI_VEC_MAX; 1086 plat->msi_sfty_ue_vec = STMMAC_MSI_VEC_MAX; 1087 plat->msi_rx_base_vec = STMMAC_MSI_VEC_MAX; 1088 plat->msi_tx_base_vec = STMMAC_MSI_VEC_MAX; 1089 1090 ret = info->setup(pdev, plat); 1091 if (ret) 1092 return ret; 1093 1094 memset(&res, 0, sizeof(res)); 1095 res.addr = pcim_iomap_table(pdev)[0]; 1096 1097 if (plat->eee_usecs_rate > 0) { 1098 u32 tx_lpi_usec; 1099 1100 tx_lpi_usec = (plat->eee_usecs_rate / 1000000) - 1; 1101 writel(tx_lpi_usec, res.addr + GMAC_1US_TIC_COUNTER); 1102 } 1103 1104 ret = stmmac_config_multi_msi(pdev, plat, &res); 1105 if (ret) { 1106 ret = stmmac_config_single_msi(pdev, plat, &res); 1107 if (ret) { 1108 dev_err(&pdev->dev, "%s: ERROR: failed to enable IRQ\n", 1109 __func__); 1110 goto err_alloc_irq; 1111 } 1112 } 1113 1114 ret = stmmac_dvr_probe(&pdev->dev, plat, &res); 1115 if (ret) { 1116 goto err_alloc_irq; 1117 } 1118 1119 return 0; 1120 1121 err_alloc_irq: 1122 clk_disable_unprepare(plat->stmmac_clk); 1123 clk_unregister_fixed_rate(plat->stmmac_clk); 1124 return ret; 1125 } 1126 1127 /** 1128 * intel_eth_pci_remove 1129 * 1130 * @pdev: pci device pointer 1131 * Description: this function calls the main to free the net resources 1132 * and releases the PCI resources. 1133 */ 1134 static void intel_eth_pci_remove(struct pci_dev *pdev) 1135 { 1136 struct net_device *ndev = dev_get_drvdata(&pdev->dev); 1137 struct stmmac_priv *priv = netdev_priv(ndev); 1138 1139 stmmac_dvr_remove(&pdev->dev); 1140 1141 clk_disable_unprepare(priv->plat->stmmac_clk); 1142 clk_unregister_fixed_rate(priv->plat->stmmac_clk); 1143 } 1144 1145 static int __maybe_unused intel_eth_pci_suspend(struct device *dev) 1146 { 1147 struct pci_dev *pdev = to_pci_dev(dev); 1148 int ret; 1149 1150 ret = stmmac_suspend(dev); 1151 if (ret) 1152 return ret; 1153 1154 ret = pci_save_state(pdev); 1155 if (ret) 1156 return ret; 1157 1158 pci_wake_from_d3(pdev, true); 1159 pci_set_power_state(pdev, PCI_D3hot); 1160 return 0; 1161 } 1162 1163 static int __maybe_unused intel_eth_pci_resume(struct device *dev) 1164 { 1165 struct pci_dev *pdev = to_pci_dev(dev); 1166 int ret; 1167 1168 pci_restore_state(pdev); 1169 pci_set_power_state(pdev, PCI_D0); 1170 1171 ret = pcim_enable_device(pdev); 1172 if (ret) 1173 return ret; 1174 1175 pci_set_master(pdev); 1176 1177 return stmmac_resume(dev); 1178 } 1179 1180 static SIMPLE_DEV_PM_OPS(intel_eth_pm_ops, intel_eth_pci_suspend, 1181 intel_eth_pci_resume); 1182 1183 #define PCI_DEVICE_ID_INTEL_QUARK 0x0937 1184 #define PCI_DEVICE_ID_INTEL_EHL_RGMII1G 0x4b30 1185 #define PCI_DEVICE_ID_INTEL_EHL_SGMII1G 0x4b31 1186 #define PCI_DEVICE_ID_INTEL_EHL_SGMII2G5 0x4b32 1187 /* Intel(R) Programmable Services Engine (Intel(R) PSE) consist of 2 MAC 1188 * which are named PSE0 and PSE1 1189 */ 1190 #define PCI_DEVICE_ID_INTEL_EHL_PSE0_RGMII1G 0x4ba0 1191 #define PCI_DEVICE_ID_INTEL_EHL_PSE0_SGMII1G 0x4ba1 1192 #define PCI_DEVICE_ID_INTEL_EHL_PSE0_SGMII2G5 0x4ba2 1193 #define PCI_DEVICE_ID_INTEL_EHL_PSE1_RGMII1G 0x4bb0 1194 #define PCI_DEVICE_ID_INTEL_EHL_PSE1_SGMII1G 0x4bb1 1195 #define PCI_DEVICE_ID_INTEL_EHL_PSE1_SGMII2G5 0x4bb2 1196 #define PCI_DEVICE_ID_INTEL_TGLH_SGMII1G_0 0x43ac 1197 #define PCI_DEVICE_ID_INTEL_TGLH_SGMII1G_1 0x43a2 1198 #define PCI_DEVICE_ID_INTEL_TGL_SGMII1G 0xa0ac 1199 #define PCI_DEVICE_ID_INTEL_ADLS_SGMII1G_0 0x7aac 1200 #define PCI_DEVICE_ID_INTEL_ADLS_SGMII1G_1 0x7aad 1201 #define PCI_DEVICE_ID_INTEL_ADLN_SGMII1G 0x54ac 1202 #define PCI_DEVICE_ID_INTEL_RPLP_SGMII1G 0x51ac 1203 1204 static const struct pci_device_id intel_eth_pci_id_table[] = { 1205 { PCI_DEVICE_DATA(INTEL, QUARK, &quark_info) }, 1206 { PCI_DEVICE_DATA(INTEL, EHL_RGMII1G, &ehl_rgmii1g_info) }, 1207 { PCI_DEVICE_DATA(INTEL, EHL_SGMII1G, &ehl_sgmii1g_info) }, 1208 { PCI_DEVICE_DATA(INTEL, EHL_SGMII2G5, &ehl_sgmii1g_info) }, 1209 { PCI_DEVICE_DATA(INTEL, EHL_PSE0_RGMII1G, &ehl_pse0_rgmii1g_info) }, 1210 { PCI_DEVICE_DATA(INTEL, EHL_PSE0_SGMII1G, &ehl_pse0_sgmii1g_info) }, 1211 { PCI_DEVICE_DATA(INTEL, EHL_PSE0_SGMII2G5, &ehl_pse0_sgmii1g_info) }, 1212 { PCI_DEVICE_DATA(INTEL, EHL_PSE1_RGMII1G, &ehl_pse1_rgmii1g_info) }, 1213 { PCI_DEVICE_DATA(INTEL, EHL_PSE1_SGMII1G, &ehl_pse1_sgmii1g_info) }, 1214 { PCI_DEVICE_DATA(INTEL, EHL_PSE1_SGMII2G5, &ehl_pse1_sgmii1g_info) }, 1215 { PCI_DEVICE_DATA(INTEL, TGL_SGMII1G, &tgl_sgmii1g_phy0_info) }, 1216 { PCI_DEVICE_DATA(INTEL, TGLH_SGMII1G_0, &tgl_sgmii1g_phy0_info) }, 1217 { PCI_DEVICE_DATA(INTEL, TGLH_SGMII1G_1, &tgl_sgmii1g_phy1_info) }, 1218 { PCI_DEVICE_DATA(INTEL, ADLS_SGMII1G_0, &adls_sgmii1g_phy0_info) }, 1219 { PCI_DEVICE_DATA(INTEL, ADLS_SGMII1G_1, &adls_sgmii1g_phy1_info) }, 1220 { PCI_DEVICE_DATA(INTEL, ADLN_SGMII1G, &tgl_sgmii1g_phy0_info) }, 1221 { PCI_DEVICE_DATA(INTEL, RPLP_SGMII1G, &tgl_sgmii1g_phy0_info) }, 1222 {} 1223 }; 1224 MODULE_DEVICE_TABLE(pci, intel_eth_pci_id_table); 1225 1226 static struct pci_driver intel_eth_pci_driver = { 1227 .name = "intel-eth-pci", 1228 .id_table = intel_eth_pci_id_table, 1229 .probe = intel_eth_pci_probe, 1230 .remove = intel_eth_pci_remove, 1231 .driver = { 1232 .pm = &intel_eth_pm_ops, 1233 }, 1234 }; 1235 1236 module_pci_driver(intel_eth_pci_driver); 1237 1238 MODULE_DESCRIPTION("INTEL 10/100/1000 Ethernet PCI driver"); 1239 MODULE_AUTHOR("Voon Weifeng <weifeng.voon@intel.com>"); 1240 MODULE_LICENSE("GPL v2"); 1241