xref: /linux/drivers/net/ethernet/stmicro/stmmac/dwmac-intel.c (revision 50f2944009a25bb39a09f2f7bab64a73ce928bef)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2020, Intel Corporation
3  */
4 
5 #include <linux/clk-provider.h>
6 #include <linux/pci.h>
7 #include <linux/dmi.h>
8 #include "dwmac-intel.h"
9 #include "dwmac4.h"
10 #include "stmmac.h"
11 #include "stmmac_ptp.h"
12 
13 struct intel_priv_data {
14 	int mdio_adhoc_addr;	/* mdio address for serdes & etc */
15 	unsigned long crossts_adj;
16 	bool is_pse;
17 };
18 
19 /* This struct is used to associate PCI Function of MAC controller on a board,
20  * discovered via DMI, with the address of PHY connected to the MAC. The
21  * negative value of the address means that MAC controller is not connected
22  * with PHY.
23  */
24 struct stmmac_pci_func_data {
25 	unsigned int func;
26 	int phy_addr;
27 };
28 
29 struct stmmac_pci_dmi_data {
30 	const struct stmmac_pci_func_data *func;
31 	size_t nfuncs;
32 };
33 
34 struct stmmac_pci_info {
35 	int (*setup)(struct pci_dev *pdev, struct plat_stmmacenet_data *plat);
36 };
37 
38 static int stmmac_pci_find_phy_addr(struct pci_dev *pdev,
39 				    const struct dmi_system_id *dmi_list)
40 {
41 	const struct stmmac_pci_func_data *func_data;
42 	const struct stmmac_pci_dmi_data *dmi_data;
43 	const struct dmi_system_id *dmi_id;
44 	int func = PCI_FUNC(pdev->devfn);
45 	size_t n;
46 
47 	dmi_id = dmi_first_match(dmi_list);
48 	if (!dmi_id)
49 		return -ENODEV;
50 
51 	dmi_data = dmi_id->driver_data;
52 	func_data = dmi_data->func;
53 
54 	for (n = 0; n < dmi_data->nfuncs; n++, func_data++)
55 		if (func_data->func == func)
56 			return func_data->phy_addr;
57 
58 	return -ENODEV;
59 }
60 
61 static int serdes_status_poll(struct stmmac_priv *priv, int phyaddr,
62 			      int phyreg, u32 mask, u32 val)
63 {
64 	unsigned int retries = 10;
65 	int val_rd;
66 
67 	do {
68 		val_rd = mdiobus_read(priv->mii, phyaddr, phyreg);
69 		if ((val_rd & mask) == (val & mask))
70 			return 0;
71 		udelay(POLL_DELAY_US);
72 	} while (--retries);
73 
74 	return -ETIMEDOUT;
75 }
76 
77 static int intel_serdes_powerup(struct net_device *ndev, void *priv_data)
78 {
79 	struct intel_priv_data *intel_priv = priv_data;
80 	struct stmmac_priv *priv = netdev_priv(ndev);
81 	int serdes_phy_addr = 0;
82 	u32 data = 0;
83 
84 	if (!intel_priv->mdio_adhoc_addr)
85 		return 0;
86 
87 	serdes_phy_addr = intel_priv->mdio_adhoc_addr;
88 
89 	/* Set the serdes rate and the PCLK rate */
90 	data = mdiobus_read(priv->mii, serdes_phy_addr,
91 			    SERDES_GCR0);
92 
93 	data &= ~SERDES_RATE_MASK;
94 	data &= ~SERDES_PCLK_MASK;
95 
96 	if (priv->plat->max_speed == 2500)
97 		data |= SERDES_RATE_PCIE_GEN2 << SERDES_RATE_PCIE_SHIFT |
98 			SERDES_PCLK_37p5MHZ << SERDES_PCLK_SHIFT;
99 	else
100 		data |= SERDES_RATE_PCIE_GEN1 << SERDES_RATE_PCIE_SHIFT |
101 			SERDES_PCLK_70MHZ << SERDES_PCLK_SHIFT;
102 
103 	mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
104 
105 	/* assert clk_req */
106 	data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0);
107 	data |= SERDES_PLL_CLK;
108 	mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
109 
110 	/* check for clk_ack assertion */
111 	data = serdes_status_poll(priv, serdes_phy_addr,
112 				  SERDES_GSR0,
113 				  SERDES_PLL_CLK,
114 				  SERDES_PLL_CLK);
115 
116 	if (data) {
117 		dev_err(priv->device, "Serdes PLL clk request timeout\n");
118 		return data;
119 	}
120 
121 	/* assert lane reset */
122 	data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0);
123 	data |= SERDES_RST;
124 	mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
125 
126 	/* check for assert lane reset reflection */
127 	data = serdes_status_poll(priv, serdes_phy_addr,
128 				  SERDES_GSR0,
129 				  SERDES_RST,
130 				  SERDES_RST);
131 
132 	if (data) {
133 		dev_err(priv->device, "Serdes assert lane reset timeout\n");
134 		return data;
135 	}
136 
137 	/*  move power state to P0 */
138 	data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0);
139 
140 	data &= ~SERDES_PWR_ST_MASK;
141 	data |= SERDES_PWR_ST_P0 << SERDES_PWR_ST_SHIFT;
142 
143 	mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
144 
145 	/* Check for P0 state */
146 	data = serdes_status_poll(priv, serdes_phy_addr,
147 				  SERDES_GSR0,
148 				  SERDES_PWR_ST_MASK,
149 				  SERDES_PWR_ST_P0 << SERDES_PWR_ST_SHIFT);
150 
151 	if (data) {
152 		dev_err(priv->device, "Serdes power state P0 timeout.\n");
153 		return data;
154 	}
155 
156 	/* PSE only - ungate SGMII PHY Rx Clock */
157 	if (intel_priv->is_pse)
158 		mdiobus_modify(priv->mii, serdes_phy_addr, SERDES_GCR0,
159 			       0, SERDES_PHY_RX_CLK);
160 
161 	return 0;
162 }
163 
164 static void intel_serdes_powerdown(struct net_device *ndev, void *intel_data)
165 {
166 	struct intel_priv_data *intel_priv = intel_data;
167 	struct stmmac_priv *priv = netdev_priv(ndev);
168 	int serdes_phy_addr = 0;
169 	u32 data = 0;
170 
171 	if (!intel_priv->mdio_adhoc_addr)
172 		return;
173 
174 	serdes_phy_addr = intel_priv->mdio_adhoc_addr;
175 
176 	/* PSE only - gate SGMII PHY Rx Clock */
177 	if (intel_priv->is_pse)
178 		mdiobus_modify(priv->mii, serdes_phy_addr, SERDES_GCR0,
179 			       SERDES_PHY_RX_CLK, 0);
180 
181 	/*  move power state to P3 */
182 	data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0);
183 
184 	data &= ~SERDES_PWR_ST_MASK;
185 	data |= SERDES_PWR_ST_P3 << SERDES_PWR_ST_SHIFT;
186 
187 	mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
188 
189 	/* Check for P3 state */
190 	data = serdes_status_poll(priv, serdes_phy_addr,
191 				  SERDES_GSR0,
192 				  SERDES_PWR_ST_MASK,
193 				  SERDES_PWR_ST_P3 << SERDES_PWR_ST_SHIFT);
194 
195 	if (data) {
196 		dev_err(priv->device, "Serdes power state P3 timeout\n");
197 		return;
198 	}
199 
200 	/* de-assert clk_req */
201 	data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0);
202 	data &= ~SERDES_PLL_CLK;
203 	mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
204 
205 	/* check for clk_ack de-assert */
206 	data = serdes_status_poll(priv, serdes_phy_addr,
207 				  SERDES_GSR0,
208 				  SERDES_PLL_CLK,
209 				  (u32)~SERDES_PLL_CLK);
210 
211 	if (data) {
212 		dev_err(priv->device, "Serdes PLL clk de-assert timeout\n");
213 		return;
214 	}
215 
216 	/* de-assert lane reset */
217 	data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0);
218 	data &= ~SERDES_RST;
219 	mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
220 
221 	/* check for de-assert lane reset reflection */
222 	data = serdes_status_poll(priv, serdes_phy_addr,
223 				  SERDES_GSR0,
224 				  SERDES_RST,
225 				  (u32)~SERDES_RST);
226 
227 	if (data) {
228 		dev_err(priv->device, "Serdes de-assert lane reset timeout\n");
229 		return;
230 	}
231 }
232 
233 static void intel_speed_mode_2500(struct net_device *ndev, void *intel_data)
234 {
235 	struct intel_priv_data *intel_priv = intel_data;
236 	struct stmmac_priv *priv = netdev_priv(ndev);
237 	int serdes_phy_addr = 0;
238 	u32 data = 0;
239 
240 	serdes_phy_addr = intel_priv->mdio_adhoc_addr;
241 
242 	/* Determine the link speed mode: 2.5Gbps/1Gbps */
243 	data = mdiobus_read(priv->mii, serdes_phy_addr,
244 			    SERDES_GCR);
245 
246 	if (((data & SERDES_LINK_MODE_MASK) >> SERDES_LINK_MODE_SHIFT) ==
247 	    SERDES_LINK_MODE_2G5) {
248 		dev_info(priv->device, "Link Speed Mode: 2.5Gbps\n");
249 		priv->plat->max_speed = 2500;
250 		priv->plat->phy_interface = PHY_INTERFACE_MODE_2500BASEX;
251 		priv->plat->mdio_bus_data->xpcs_an_inband = false;
252 	} else {
253 		priv->plat->max_speed = 1000;
254 		priv->plat->mdio_bus_data->xpcs_an_inband = true;
255 	}
256 }
257 
258 /* Program PTP Clock Frequency for different variant of
259  * Intel mGBE that has slightly different GPO mapping
260  */
261 static void intel_mgbe_ptp_clk_freq_config(void *npriv)
262 {
263 	struct stmmac_priv *priv = (struct stmmac_priv *)npriv;
264 	struct intel_priv_data *intel_priv;
265 	u32 gpio_value;
266 
267 	intel_priv = (struct intel_priv_data *)priv->plat->bsp_priv;
268 
269 	gpio_value = readl(priv->ioaddr + GMAC_GPIO_STATUS);
270 
271 	if (intel_priv->is_pse) {
272 		/* For PSE GbE, use 200MHz */
273 		gpio_value &= ~PSE_PTP_CLK_FREQ_MASK;
274 		gpio_value |= PSE_PTP_CLK_FREQ_200MHZ;
275 	} else {
276 		/* For PCH GbE, use 200MHz */
277 		gpio_value &= ~PCH_PTP_CLK_FREQ_MASK;
278 		gpio_value |= PCH_PTP_CLK_FREQ_200MHZ;
279 	}
280 
281 	writel(gpio_value, priv->ioaddr + GMAC_GPIO_STATUS);
282 }
283 
284 static void get_arttime(struct mii_bus *mii, int intel_adhoc_addr,
285 			u64 *art_time)
286 {
287 	u64 ns;
288 
289 	ns = mdiobus_read(mii, intel_adhoc_addr, PMC_ART_VALUE3);
290 	ns <<= GMAC4_ART_TIME_SHIFT;
291 	ns |= mdiobus_read(mii, intel_adhoc_addr, PMC_ART_VALUE2);
292 	ns <<= GMAC4_ART_TIME_SHIFT;
293 	ns |= mdiobus_read(mii, intel_adhoc_addr, PMC_ART_VALUE1);
294 	ns <<= GMAC4_ART_TIME_SHIFT;
295 	ns |= mdiobus_read(mii, intel_adhoc_addr, PMC_ART_VALUE0);
296 
297 	*art_time = ns;
298 }
299 
300 static int intel_crosststamp(ktime_t *device,
301 			     struct system_counterval_t *system,
302 			     void *ctx)
303 {
304 	struct intel_priv_data *intel_priv;
305 
306 	struct stmmac_priv *priv = (struct stmmac_priv *)ctx;
307 	void __iomem *ptpaddr = priv->ptpaddr;
308 	void __iomem *ioaddr = priv->hw->pcsr;
309 	unsigned long flags;
310 	u64 art_time = 0;
311 	u64 ptp_time = 0;
312 	u32 num_snapshot;
313 	u32 gpio_value;
314 	u32 acr_value;
315 	int ret;
316 	u32 v;
317 	int i;
318 
319 	if (!boot_cpu_has(X86_FEATURE_ART))
320 		return -EOPNOTSUPP;
321 
322 	intel_priv = priv->plat->bsp_priv;
323 
324 	/* Both internal crosstimestamping and external triggered event
325 	 * timestamping cannot be run concurrently.
326 	 */
327 	if (priv->plat->ext_snapshot_en)
328 		return -EBUSY;
329 
330 	mutex_lock(&priv->aux_ts_lock);
331 	/* Enable Internal snapshot trigger */
332 	acr_value = readl(ptpaddr + PTP_ACR);
333 	acr_value &= ~PTP_ACR_MASK;
334 	switch (priv->plat->int_snapshot_num) {
335 	case AUX_SNAPSHOT0:
336 		acr_value |= PTP_ACR_ATSEN0;
337 		break;
338 	case AUX_SNAPSHOT1:
339 		acr_value |= PTP_ACR_ATSEN1;
340 		break;
341 	case AUX_SNAPSHOT2:
342 		acr_value |= PTP_ACR_ATSEN2;
343 		break;
344 	case AUX_SNAPSHOT3:
345 		acr_value |= PTP_ACR_ATSEN3;
346 		break;
347 	default:
348 		mutex_unlock(&priv->aux_ts_lock);
349 		return -EINVAL;
350 	}
351 	writel(acr_value, ptpaddr + PTP_ACR);
352 
353 	/* Clear FIFO */
354 	acr_value = readl(ptpaddr + PTP_ACR);
355 	acr_value |= PTP_ACR_ATSFC;
356 	writel(acr_value, ptpaddr + PTP_ACR);
357 	/* Release the mutex */
358 	mutex_unlock(&priv->aux_ts_lock);
359 
360 	/* Trigger Internal snapshot signal
361 	 * Create a rising edge by just toggle the GPO1 to low
362 	 * and back to high.
363 	 */
364 	gpio_value = readl(ioaddr + GMAC_GPIO_STATUS);
365 	gpio_value &= ~GMAC_GPO1;
366 	writel(gpio_value, ioaddr + GMAC_GPIO_STATUS);
367 	gpio_value |= GMAC_GPO1;
368 	writel(gpio_value, ioaddr + GMAC_GPIO_STATUS);
369 
370 	/* Poll for time sync operation done */
371 	ret = readl_poll_timeout(priv->ioaddr + GMAC_INT_STATUS, v,
372 				 (v & GMAC_INT_TSIE), 100, 10000);
373 
374 	if (ret == -ETIMEDOUT) {
375 		pr_err("%s: Wait for time sync operation timeout\n", __func__);
376 		return ret;
377 	}
378 
379 	num_snapshot = (readl(ioaddr + GMAC_TIMESTAMP_STATUS) &
380 			GMAC_TIMESTAMP_ATSNS_MASK) >>
381 			GMAC_TIMESTAMP_ATSNS_SHIFT;
382 
383 	/* Repeat until the timestamps are from the FIFO last segment */
384 	for (i = 0; i < num_snapshot; i++) {
385 		read_lock_irqsave(&priv->ptp_lock, flags);
386 		stmmac_get_ptptime(priv, ptpaddr, &ptp_time);
387 		*device = ns_to_ktime(ptp_time);
388 		read_unlock_irqrestore(&priv->ptp_lock, flags);
389 		get_arttime(priv->mii, intel_priv->mdio_adhoc_addr, &art_time);
390 		*system = convert_art_to_tsc(art_time);
391 	}
392 
393 	system->cycles *= intel_priv->crossts_adj;
394 
395 	return 0;
396 }
397 
398 static void intel_mgbe_pse_crossts_adj(struct intel_priv_data *intel_priv,
399 				       int base)
400 {
401 	if (boot_cpu_has(X86_FEATURE_ART)) {
402 		unsigned int art_freq;
403 
404 		/* On systems that support ART, ART frequency can be obtained
405 		 * from ECX register of CPUID leaf (0x15).
406 		 */
407 		art_freq = cpuid_ecx(ART_CPUID_LEAF);
408 		do_div(art_freq, base);
409 		intel_priv->crossts_adj = art_freq;
410 	}
411 }
412 
413 static void common_default_data(struct plat_stmmacenet_data *plat)
414 {
415 	plat->clk_csr = 2;	/* clk_csr_i = 20-35MHz & MDC = clk_csr_i/16 */
416 	plat->has_gmac = 1;
417 	plat->force_sf_dma_mode = 1;
418 
419 	plat->mdio_bus_data->needs_reset = true;
420 
421 	/* Set default value for multicast hash bins */
422 	plat->multicast_filter_bins = HASH_TABLE_SIZE;
423 
424 	/* Set default value for unicast filter entries */
425 	plat->unicast_filter_entries = 1;
426 
427 	/* Set the maxmtu to a default of JUMBO_LEN */
428 	plat->maxmtu = JUMBO_LEN;
429 
430 	/* Set default number of RX and TX queues to use */
431 	plat->tx_queues_to_use = 1;
432 	plat->rx_queues_to_use = 1;
433 
434 	/* Disable Priority config by default */
435 	plat->tx_queues_cfg[0].use_prio = false;
436 	plat->rx_queues_cfg[0].use_prio = false;
437 
438 	/* Disable RX queues routing by default */
439 	plat->rx_queues_cfg[0].pkt_route = 0x0;
440 }
441 
442 static int intel_mgbe_common_data(struct pci_dev *pdev,
443 				  struct plat_stmmacenet_data *plat)
444 {
445 	struct fwnode_handle *fwnode;
446 	char clk_name[20];
447 	int ret;
448 	int i;
449 
450 	plat->pdev = pdev;
451 	plat->phy_addr = -1;
452 	plat->clk_csr = 5;
453 	plat->has_gmac = 0;
454 	plat->has_gmac4 = 1;
455 	plat->force_sf_dma_mode = 0;
456 	plat->tso_en = 1;
457 	plat->sph_disable = 1;
458 
459 	/* Multiplying factor to the clk_eee_i clock time
460 	 * period to make it closer to 100 ns. This value
461 	 * should be programmed such that the clk_eee_time_period *
462 	 * (MULT_FACT_100NS + 1) should be within 80 ns to 120 ns
463 	 * clk_eee frequency is 19.2Mhz
464 	 * clk_eee_time_period is 52ns
465 	 * 52ns * (1 + 1) = 104ns
466 	 * MULT_FACT_100NS = 1
467 	 */
468 	plat->mult_fact_100ns = 1;
469 
470 	plat->rx_sched_algorithm = MTL_RX_ALGORITHM_SP;
471 
472 	for (i = 0; i < plat->rx_queues_to_use; i++) {
473 		plat->rx_queues_cfg[i].mode_to_use = MTL_QUEUE_DCB;
474 		plat->rx_queues_cfg[i].chan = i;
475 
476 		/* Disable Priority config by default */
477 		plat->rx_queues_cfg[i].use_prio = false;
478 
479 		/* Disable RX queues routing by default */
480 		plat->rx_queues_cfg[i].pkt_route = 0x0;
481 	}
482 
483 	for (i = 0; i < plat->tx_queues_to_use; i++) {
484 		plat->tx_queues_cfg[i].mode_to_use = MTL_QUEUE_DCB;
485 
486 		/* Disable Priority config by default */
487 		plat->tx_queues_cfg[i].use_prio = false;
488 		/* Default TX Q0 to use TSO and rest TXQ for TBS */
489 		if (i > 0)
490 			plat->tx_queues_cfg[i].tbs_en = 1;
491 	}
492 
493 	/* FIFO size is 4096 bytes for 1 tx/rx queue */
494 	plat->tx_fifo_size = plat->tx_queues_to_use * 4096;
495 	plat->rx_fifo_size = plat->rx_queues_to_use * 4096;
496 
497 	plat->tx_sched_algorithm = MTL_TX_ALGORITHM_WRR;
498 	plat->tx_queues_cfg[0].weight = 0x09;
499 	plat->tx_queues_cfg[1].weight = 0x0A;
500 	plat->tx_queues_cfg[2].weight = 0x0B;
501 	plat->tx_queues_cfg[3].weight = 0x0C;
502 	plat->tx_queues_cfg[4].weight = 0x0D;
503 	plat->tx_queues_cfg[5].weight = 0x0E;
504 	plat->tx_queues_cfg[6].weight = 0x0F;
505 	plat->tx_queues_cfg[7].weight = 0x10;
506 
507 	plat->dma_cfg->pbl = 32;
508 	plat->dma_cfg->pblx8 = true;
509 	plat->dma_cfg->fixed_burst = 0;
510 	plat->dma_cfg->mixed_burst = 0;
511 	plat->dma_cfg->aal = 0;
512 	plat->dma_cfg->dche = true;
513 
514 	plat->axi = devm_kzalloc(&pdev->dev, sizeof(*plat->axi),
515 				 GFP_KERNEL);
516 	if (!plat->axi)
517 		return -ENOMEM;
518 
519 	plat->axi->axi_lpi_en = 0;
520 	plat->axi->axi_xit_frm = 0;
521 	plat->axi->axi_wr_osr_lmt = 1;
522 	plat->axi->axi_rd_osr_lmt = 1;
523 	plat->axi->axi_blen[0] = 4;
524 	plat->axi->axi_blen[1] = 8;
525 	plat->axi->axi_blen[2] = 16;
526 
527 	plat->ptp_max_adj = plat->clk_ptp_rate;
528 	plat->eee_usecs_rate = plat->clk_ptp_rate;
529 
530 	/* Set system clock */
531 	sprintf(clk_name, "%s-%s", "stmmac", pci_name(pdev));
532 
533 	plat->stmmac_clk = clk_register_fixed_rate(&pdev->dev,
534 						   clk_name, NULL, 0,
535 						   plat->clk_ptp_rate);
536 
537 	if (IS_ERR(plat->stmmac_clk)) {
538 		dev_warn(&pdev->dev, "Fail to register stmmac-clk\n");
539 		plat->stmmac_clk = NULL;
540 	}
541 
542 	ret = clk_prepare_enable(plat->stmmac_clk);
543 	if (ret) {
544 		clk_unregister_fixed_rate(plat->stmmac_clk);
545 		return ret;
546 	}
547 
548 	plat->ptp_clk_freq_config = intel_mgbe_ptp_clk_freq_config;
549 
550 	/* Set default value for multicast hash bins */
551 	plat->multicast_filter_bins = HASH_TABLE_SIZE;
552 
553 	/* Set default value for unicast filter entries */
554 	plat->unicast_filter_entries = 1;
555 
556 	/* Set the maxmtu to a default of JUMBO_LEN */
557 	plat->maxmtu = JUMBO_LEN;
558 
559 	plat->vlan_fail_q_en = true;
560 
561 	/* Use the last Rx queue */
562 	plat->vlan_fail_q = plat->rx_queues_to_use - 1;
563 
564 	/* For fixed-link setup, we allow phy-mode setting */
565 	fwnode = dev_fwnode(&pdev->dev);
566 	if (fwnode) {
567 		int phy_mode;
568 
569 		/* "phy-mode" setting is optional. If it is set,
570 		 *  we allow either sgmii or 1000base-x for now.
571 		 */
572 		phy_mode = fwnode_get_phy_mode(fwnode);
573 		if (phy_mode >= 0) {
574 			if (phy_mode == PHY_INTERFACE_MODE_SGMII ||
575 			    phy_mode == PHY_INTERFACE_MODE_1000BASEX)
576 				plat->phy_interface = phy_mode;
577 			else
578 				dev_warn(&pdev->dev, "Invalid phy-mode\n");
579 		}
580 	}
581 
582 	/* Intel mgbe SGMII interface uses pcs-xcps */
583 	if (plat->phy_interface == PHY_INTERFACE_MODE_SGMII ||
584 	    plat->phy_interface == PHY_INTERFACE_MODE_1000BASEX) {
585 		plat->mdio_bus_data->has_xpcs = true;
586 		plat->mdio_bus_data->xpcs_an_inband = true;
587 	}
588 
589 	/* For fixed-link setup, we clear xpcs_an_inband */
590 	if (fwnode) {
591 		struct fwnode_handle *fixed_node;
592 
593 		fixed_node = fwnode_get_named_child_node(fwnode, "fixed-link");
594 		if (fixed_node)
595 			plat->mdio_bus_data->xpcs_an_inband = false;
596 
597 		fwnode_handle_put(fixed_node);
598 	}
599 
600 	/* Ensure mdio bus scan skips intel serdes and pcs-xpcs */
601 	plat->mdio_bus_data->phy_mask = 1 << INTEL_MGBE_ADHOC_ADDR;
602 	plat->mdio_bus_data->phy_mask |= 1 << INTEL_MGBE_XPCS_ADDR;
603 
604 	plat->int_snapshot_num = AUX_SNAPSHOT1;
605 	plat->ext_snapshot_num = AUX_SNAPSHOT0;
606 
607 	plat->has_crossts = true;
608 	plat->crosststamp = intel_crosststamp;
609 
610 	/* Setup MSI vector offset specific to Intel mGbE controller */
611 	plat->msi_mac_vec = 29;
612 	plat->msi_lpi_vec = 28;
613 	plat->msi_sfty_ce_vec = 27;
614 	plat->msi_sfty_ue_vec = 26;
615 	plat->msi_rx_base_vec = 0;
616 	plat->msi_tx_base_vec = 1;
617 
618 	return 0;
619 }
620 
621 static int ehl_common_data(struct pci_dev *pdev,
622 			   struct plat_stmmacenet_data *plat)
623 {
624 	plat->rx_queues_to_use = 8;
625 	plat->tx_queues_to_use = 8;
626 	plat->clk_ptp_rate = 200000000;
627 	plat->use_phy_wol = 1;
628 
629 	plat->safety_feat_cfg->tsoee = 1;
630 	plat->safety_feat_cfg->mrxpee = 1;
631 	plat->safety_feat_cfg->mestee = 1;
632 	plat->safety_feat_cfg->mrxee = 1;
633 	plat->safety_feat_cfg->mtxee = 1;
634 	plat->safety_feat_cfg->epsi = 0;
635 	plat->safety_feat_cfg->edpp = 0;
636 	plat->safety_feat_cfg->prtyen = 0;
637 	plat->safety_feat_cfg->tmouten = 0;
638 
639 	return intel_mgbe_common_data(pdev, plat);
640 }
641 
642 static int ehl_sgmii_data(struct pci_dev *pdev,
643 			  struct plat_stmmacenet_data *plat)
644 {
645 	plat->bus_id = 1;
646 	plat->phy_interface = PHY_INTERFACE_MODE_SGMII;
647 	plat->speed_mode_2500 = intel_speed_mode_2500;
648 	plat->serdes_powerup = intel_serdes_powerup;
649 	plat->serdes_powerdown = intel_serdes_powerdown;
650 
651 	return ehl_common_data(pdev, plat);
652 }
653 
654 static struct stmmac_pci_info ehl_sgmii1g_info = {
655 	.setup = ehl_sgmii_data,
656 };
657 
658 static int ehl_rgmii_data(struct pci_dev *pdev,
659 			  struct plat_stmmacenet_data *plat)
660 {
661 	plat->bus_id = 1;
662 	plat->phy_interface = PHY_INTERFACE_MODE_RGMII;
663 
664 	return ehl_common_data(pdev, plat);
665 }
666 
667 static struct stmmac_pci_info ehl_rgmii1g_info = {
668 	.setup = ehl_rgmii_data,
669 };
670 
671 static int ehl_pse0_common_data(struct pci_dev *pdev,
672 				struct plat_stmmacenet_data *plat)
673 {
674 	struct intel_priv_data *intel_priv = plat->bsp_priv;
675 
676 	intel_priv->is_pse = true;
677 	plat->bus_id = 2;
678 	plat->addr64 = 32;
679 
680 	intel_mgbe_pse_crossts_adj(intel_priv, EHL_PSE_ART_MHZ);
681 
682 	return ehl_common_data(pdev, plat);
683 }
684 
685 static int ehl_pse0_rgmii1g_data(struct pci_dev *pdev,
686 				 struct plat_stmmacenet_data *plat)
687 {
688 	plat->phy_interface = PHY_INTERFACE_MODE_RGMII_ID;
689 	return ehl_pse0_common_data(pdev, plat);
690 }
691 
692 static struct stmmac_pci_info ehl_pse0_rgmii1g_info = {
693 	.setup = ehl_pse0_rgmii1g_data,
694 };
695 
696 static int ehl_pse0_sgmii1g_data(struct pci_dev *pdev,
697 				 struct plat_stmmacenet_data *plat)
698 {
699 	plat->phy_interface = PHY_INTERFACE_MODE_SGMII;
700 	plat->speed_mode_2500 = intel_speed_mode_2500;
701 	plat->serdes_powerup = intel_serdes_powerup;
702 	plat->serdes_powerdown = intel_serdes_powerdown;
703 	return ehl_pse0_common_data(pdev, plat);
704 }
705 
706 static struct stmmac_pci_info ehl_pse0_sgmii1g_info = {
707 	.setup = ehl_pse0_sgmii1g_data,
708 };
709 
710 static int ehl_pse1_common_data(struct pci_dev *pdev,
711 				struct plat_stmmacenet_data *plat)
712 {
713 	struct intel_priv_data *intel_priv = plat->bsp_priv;
714 
715 	intel_priv->is_pse = true;
716 	plat->bus_id = 3;
717 	plat->addr64 = 32;
718 
719 	intel_mgbe_pse_crossts_adj(intel_priv, EHL_PSE_ART_MHZ);
720 
721 	return ehl_common_data(pdev, plat);
722 }
723 
724 static int ehl_pse1_rgmii1g_data(struct pci_dev *pdev,
725 				 struct plat_stmmacenet_data *plat)
726 {
727 	plat->phy_interface = PHY_INTERFACE_MODE_RGMII_ID;
728 	return ehl_pse1_common_data(pdev, plat);
729 }
730 
731 static struct stmmac_pci_info ehl_pse1_rgmii1g_info = {
732 	.setup = ehl_pse1_rgmii1g_data,
733 };
734 
735 static int ehl_pse1_sgmii1g_data(struct pci_dev *pdev,
736 				 struct plat_stmmacenet_data *plat)
737 {
738 	plat->phy_interface = PHY_INTERFACE_MODE_SGMII;
739 	plat->speed_mode_2500 = intel_speed_mode_2500;
740 	plat->serdes_powerup = intel_serdes_powerup;
741 	plat->serdes_powerdown = intel_serdes_powerdown;
742 	return ehl_pse1_common_data(pdev, plat);
743 }
744 
745 static struct stmmac_pci_info ehl_pse1_sgmii1g_info = {
746 	.setup = ehl_pse1_sgmii1g_data,
747 };
748 
749 static int tgl_common_data(struct pci_dev *pdev,
750 			   struct plat_stmmacenet_data *plat)
751 {
752 	plat->rx_queues_to_use = 6;
753 	plat->tx_queues_to_use = 4;
754 	plat->clk_ptp_rate = 200000000;
755 	plat->speed_mode_2500 = intel_speed_mode_2500;
756 
757 	plat->safety_feat_cfg->tsoee = 1;
758 	plat->safety_feat_cfg->mrxpee = 0;
759 	plat->safety_feat_cfg->mestee = 1;
760 	plat->safety_feat_cfg->mrxee = 1;
761 	plat->safety_feat_cfg->mtxee = 1;
762 	plat->safety_feat_cfg->epsi = 0;
763 	plat->safety_feat_cfg->edpp = 0;
764 	plat->safety_feat_cfg->prtyen = 0;
765 	plat->safety_feat_cfg->tmouten = 0;
766 
767 	return intel_mgbe_common_data(pdev, plat);
768 }
769 
770 static int tgl_sgmii_phy0_data(struct pci_dev *pdev,
771 			       struct plat_stmmacenet_data *plat)
772 {
773 	plat->bus_id = 1;
774 	plat->phy_interface = PHY_INTERFACE_MODE_SGMII;
775 	plat->serdes_powerup = intel_serdes_powerup;
776 	plat->serdes_powerdown = intel_serdes_powerdown;
777 	return tgl_common_data(pdev, plat);
778 }
779 
780 static struct stmmac_pci_info tgl_sgmii1g_phy0_info = {
781 	.setup = tgl_sgmii_phy0_data,
782 };
783 
784 static int tgl_sgmii_phy1_data(struct pci_dev *pdev,
785 			       struct plat_stmmacenet_data *plat)
786 {
787 	plat->bus_id = 2;
788 	plat->phy_interface = PHY_INTERFACE_MODE_SGMII;
789 	plat->serdes_powerup = intel_serdes_powerup;
790 	plat->serdes_powerdown = intel_serdes_powerdown;
791 	return tgl_common_data(pdev, plat);
792 }
793 
794 static struct stmmac_pci_info tgl_sgmii1g_phy1_info = {
795 	.setup = tgl_sgmii_phy1_data,
796 };
797 
798 static int adls_sgmii_phy0_data(struct pci_dev *pdev,
799 				struct plat_stmmacenet_data *plat)
800 {
801 	plat->bus_id = 1;
802 	plat->phy_interface = PHY_INTERFACE_MODE_SGMII;
803 
804 	/* SerDes power up and power down are done in BIOS for ADL */
805 
806 	return tgl_common_data(pdev, plat);
807 }
808 
809 static struct stmmac_pci_info adls_sgmii1g_phy0_info = {
810 	.setup = adls_sgmii_phy0_data,
811 };
812 
813 static int adls_sgmii_phy1_data(struct pci_dev *pdev,
814 				struct plat_stmmacenet_data *plat)
815 {
816 	plat->bus_id = 2;
817 	plat->phy_interface = PHY_INTERFACE_MODE_SGMII;
818 
819 	/* SerDes power up and power down are done in BIOS for ADL */
820 
821 	return tgl_common_data(pdev, plat);
822 }
823 
824 static struct stmmac_pci_info adls_sgmii1g_phy1_info = {
825 	.setup = adls_sgmii_phy1_data,
826 };
827 static const struct stmmac_pci_func_data galileo_stmmac_func_data[] = {
828 	{
829 		.func = 6,
830 		.phy_addr = 1,
831 	},
832 };
833 
834 static const struct stmmac_pci_dmi_data galileo_stmmac_dmi_data = {
835 	.func = galileo_stmmac_func_data,
836 	.nfuncs = ARRAY_SIZE(galileo_stmmac_func_data),
837 };
838 
839 static const struct stmmac_pci_func_data iot2040_stmmac_func_data[] = {
840 	{
841 		.func = 6,
842 		.phy_addr = 1,
843 	},
844 	{
845 		.func = 7,
846 		.phy_addr = 1,
847 	},
848 };
849 
850 static const struct stmmac_pci_dmi_data iot2040_stmmac_dmi_data = {
851 	.func = iot2040_stmmac_func_data,
852 	.nfuncs = ARRAY_SIZE(iot2040_stmmac_func_data),
853 };
854 
855 static const struct dmi_system_id quark_pci_dmi[] = {
856 	{
857 		.matches = {
858 			DMI_EXACT_MATCH(DMI_BOARD_NAME, "Galileo"),
859 		},
860 		.driver_data = (void *)&galileo_stmmac_dmi_data,
861 	},
862 	{
863 		.matches = {
864 			DMI_EXACT_MATCH(DMI_BOARD_NAME, "GalileoGen2"),
865 		},
866 		.driver_data = (void *)&galileo_stmmac_dmi_data,
867 	},
868 	/* There are 2 types of SIMATIC IOT2000: IOT2020 and IOT2040.
869 	 * The asset tag "6ES7647-0AA00-0YA2" is only for IOT2020 which
870 	 * has only one pci network device while other asset tags are
871 	 * for IOT2040 which has two.
872 	 */
873 	{
874 		.matches = {
875 			DMI_EXACT_MATCH(DMI_BOARD_NAME, "SIMATIC IOT2000"),
876 			DMI_EXACT_MATCH(DMI_BOARD_ASSET_TAG,
877 					"6ES7647-0AA00-0YA2"),
878 		},
879 		.driver_data = (void *)&galileo_stmmac_dmi_data,
880 	},
881 	{
882 		.matches = {
883 			DMI_EXACT_MATCH(DMI_BOARD_NAME, "SIMATIC IOT2000"),
884 		},
885 		.driver_data = (void *)&iot2040_stmmac_dmi_data,
886 	},
887 	{}
888 };
889 
890 static int quark_default_data(struct pci_dev *pdev,
891 			      struct plat_stmmacenet_data *plat)
892 {
893 	int ret;
894 
895 	/* Set common default data first */
896 	common_default_data(plat);
897 
898 	/* Refuse to load the driver and register net device if MAC controller
899 	 * does not connect to any PHY interface.
900 	 */
901 	ret = stmmac_pci_find_phy_addr(pdev, quark_pci_dmi);
902 	if (ret < 0) {
903 		/* Return error to the caller on DMI enabled boards. */
904 		if (dmi_get_system_info(DMI_BOARD_NAME))
905 			return ret;
906 
907 		/* Galileo boards with old firmware don't support DMI. We always
908 		 * use 1 here as PHY address, so at least the first found MAC
909 		 * controller would be probed.
910 		 */
911 		ret = 1;
912 	}
913 
914 	plat->bus_id = pci_dev_id(pdev);
915 	plat->phy_addr = ret;
916 	plat->phy_interface = PHY_INTERFACE_MODE_RMII;
917 
918 	plat->dma_cfg->pbl = 16;
919 	plat->dma_cfg->pblx8 = true;
920 	plat->dma_cfg->fixed_burst = 1;
921 	/* AXI (TODO) */
922 
923 	return 0;
924 }
925 
926 static const struct stmmac_pci_info quark_info = {
927 	.setup = quark_default_data,
928 };
929 
930 static int stmmac_config_single_msi(struct pci_dev *pdev,
931 				    struct plat_stmmacenet_data *plat,
932 				    struct stmmac_resources *res)
933 {
934 	int ret;
935 
936 	ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
937 	if (ret < 0) {
938 		dev_info(&pdev->dev, "%s: Single IRQ enablement failed\n",
939 			 __func__);
940 		return ret;
941 	}
942 
943 	res->irq = pci_irq_vector(pdev, 0);
944 	res->wol_irq = res->irq;
945 	plat->multi_msi_en = 0;
946 	dev_info(&pdev->dev, "%s: Single IRQ enablement successful\n",
947 		 __func__);
948 
949 	return 0;
950 }
951 
952 static int stmmac_config_multi_msi(struct pci_dev *pdev,
953 				   struct plat_stmmacenet_data *plat,
954 				   struct stmmac_resources *res)
955 {
956 	int ret;
957 	int i;
958 
959 	if (plat->msi_rx_base_vec >= STMMAC_MSI_VEC_MAX ||
960 	    plat->msi_tx_base_vec >= STMMAC_MSI_VEC_MAX) {
961 		dev_info(&pdev->dev, "%s: Invalid RX & TX vector defined\n",
962 			 __func__);
963 		return -1;
964 	}
965 
966 	ret = pci_alloc_irq_vectors(pdev, 2, STMMAC_MSI_VEC_MAX,
967 				    PCI_IRQ_MSI | PCI_IRQ_MSIX);
968 	if (ret < 0) {
969 		dev_info(&pdev->dev, "%s: multi MSI enablement failed\n",
970 			 __func__);
971 		return ret;
972 	}
973 
974 	/* For RX MSI */
975 	for (i = 0; i < plat->rx_queues_to_use; i++) {
976 		res->rx_irq[i] = pci_irq_vector(pdev,
977 						plat->msi_rx_base_vec + i * 2);
978 	}
979 
980 	/* For TX MSI */
981 	for (i = 0; i < plat->tx_queues_to_use; i++) {
982 		res->tx_irq[i] = pci_irq_vector(pdev,
983 						plat->msi_tx_base_vec + i * 2);
984 	}
985 
986 	if (plat->msi_mac_vec < STMMAC_MSI_VEC_MAX)
987 		res->irq = pci_irq_vector(pdev, plat->msi_mac_vec);
988 	if (plat->msi_wol_vec < STMMAC_MSI_VEC_MAX)
989 		res->wol_irq = pci_irq_vector(pdev, plat->msi_wol_vec);
990 	if (plat->msi_lpi_vec < STMMAC_MSI_VEC_MAX)
991 		res->lpi_irq = pci_irq_vector(pdev, plat->msi_lpi_vec);
992 	if (plat->msi_sfty_ce_vec < STMMAC_MSI_VEC_MAX)
993 		res->sfty_ce_irq = pci_irq_vector(pdev, plat->msi_sfty_ce_vec);
994 	if (plat->msi_sfty_ue_vec < STMMAC_MSI_VEC_MAX)
995 		res->sfty_ue_irq = pci_irq_vector(pdev, plat->msi_sfty_ue_vec);
996 
997 	plat->multi_msi_en = 1;
998 	dev_info(&pdev->dev, "%s: multi MSI enablement successful\n", __func__);
999 
1000 	return 0;
1001 }
1002 
1003 /**
1004  * intel_eth_pci_probe
1005  *
1006  * @pdev: pci device pointer
1007  * @id: pointer to table of device id/id's.
1008  *
1009  * Description: This probing function gets called for all PCI devices which
1010  * match the ID table and are not "owned" by other driver yet. This function
1011  * gets passed a "struct pci_dev *" for each device whose entry in the ID table
1012  * matches the device. The probe functions returns zero when the driver choose
1013  * to take "ownership" of the device or an error code(-ve no) otherwise.
1014  */
1015 static int intel_eth_pci_probe(struct pci_dev *pdev,
1016 			       const struct pci_device_id *id)
1017 {
1018 	struct stmmac_pci_info *info = (struct stmmac_pci_info *)id->driver_data;
1019 	struct intel_priv_data *intel_priv;
1020 	struct plat_stmmacenet_data *plat;
1021 	struct stmmac_resources res;
1022 	int ret;
1023 
1024 	intel_priv = devm_kzalloc(&pdev->dev, sizeof(*intel_priv), GFP_KERNEL);
1025 	if (!intel_priv)
1026 		return -ENOMEM;
1027 
1028 	plat = devm_kzalloc(&pdev->dev, sizeof(*plat), GFP_KERNEL);
1029 	if (!plat)
1030 		return -ENOMEM;
1031 
1032 	plat->mdio_bus_data = devm_kzalloc(&pdev->dev,
1033 					   sizeof(*plat->mdio_bus_data),
1034 					   GFP_KERNEL);
1035 	if (!plat->mdio_bus_data)
1036 		return -ENOMEM;
1037 
1038 	plat->dma_cfg = devm_kzalloc(&pdev->dev, sizeof(*plat->dma_cfg),
1039 				     GFP_KERNEL);
1040 	if (!plat->dma_cfg)
1041 		return -ENOMEM;
1042 
1043 	plat->safety_feat_cfg = devm_kzalloc(&pdev->dev,
1044 					     sizeof(*plat->safety_feat_cfg),
1045 					     GFP_KERNEL);
1046 	if (!plat->safety_feat_cfg)
1047 		return -ENOMEM;
1048 
1049 	/* Enable pci device */
1050 	ret = pcim_enable_device(pdev);
1051 	if (ret) {
1052 		dev_err(&pdev->dev, "%s: ERROR: failed to enable device\n",
1053 			__func__);
1054 		return ret;
1055 	}
1056 
1057 	ret = pcim_iomap_regions(pdev, BIT(0), pci_name(pdev));
1058 	if (ret)
1059 		return ret;
1060 
1061 	pci_set_master(pdev);
1062 
1063 	plat->bsp_priv = intel_priv;
1064 	intel_priv->mdio_adhoc_addr = INTEL_MGBE_ADHOC_ADDR;
1065 	intel_priv->crossts_adj = 1;
1066 
1067 	/* Initialize all MSI vectors to invalid so that it can be set
1068 	 * according to platform data settings below.
1069 	 * Note: MSI vector takes value from 0 upto 31 (STMMAC_MSI_VEC_MAX)
1070 	 */
1071 	plat->msi_mac_vec = STMMAC_MSI_VEC_MAX;
1072 	plat->msi_wol_vec = STMMAC_MSI_VEC_MAX;
1073 	plat->msi_lpi_vec = STMMAC_MSI_VEC_MAX;
1074 	plat->msi_sfty_ce_vec = STMMAC_MSI_VEC_MAX;
1075 	plat->msi_sfty_ue_vec = STMMAC_MSI_VEC_MAX;
1076 	plat->msi_rx_base_vec = STMMAC_MSI_VEC_MAX;
1077 	plat->msi_tx_base_vec = STMMAC_MSI_VEC_MAX;
1078 
1079 	ret = info->setup(pdev, plat);
1080 	if (ret)
1081 		return ret;
1082 
1083 	memset(&res, 0, sizeof(res));
1084 	res.addr = pcim_iomap_table(pdev)[0];
1085 
1086 	if (plat->eee_usecs_rate > 0) {
1087 		u32 tx_lpi_usec;
1088 
1089 		tx_lpi_usec = (plat->eee_usecs_rate / 1000000) - 1;
1090 		writel(tx_lpi_usec, res.addr + GMAC_1US_TIC_COUNTER);
1091 	}
1092 
1093 	ret = stmmac_config_multi_msi(pdev, plat, &res);
1094 	if (ret) {
1095 		ret = stmmac_config_single_msi(pdev, plat, &res);
1096 		if (ret) {
1097 			dev_err(&pdev->dev, "%s: ERROR: failed to enable IRQ\n",
1098 				__func__);
1099 			goto err_alloc_irq;
1100 		}
1101 	}
1102 
1103 	ret = stmmac_dvr_probe(&pdev->dev, plat, &res);
1104 	if (ret) {
1105 		goto err_alloc_irq;
1106 	}
1107 
1108 	return 0;
1109 
1110 err_alloc_irq:
1111 	clk_disable_unprepare(plat->stmmac_clk);
1112 	clk_unregister_fixed_rate(plat->stmmac_clk);
1113 	return ret;
1114 }
1115 
1116 /**
1117  * intel_eth_pci_remove
1118  *
1119  * @pdev: pci device pointer
1120  * Description: this function calls the main to free the net resources
1121  * and releases the PCI resources.
1122  */
1123 static void intel_eth_pci_remove(struct pci_dev *pdev)
1124 {
1125 	struct net_device *ndev = dev_get_drvdata(&pdev->dev);
1126 	struct stmmac_priv *priv = netdev_priv(ndev);
1127 
1128 	stmmac_dvr_remove(&pdev->dev);
1129 
1130 	clk_unregister_fixed_rate(priv->plat->stmmac_clk);
1131 
1132 	pcim_iounmap_regions(pdev, BIT(0));
1133 }
1134 
1135 static int __maybe_unused intel_eth_pci_suspend(struct device *dev)
1136 {
1137 	struct pci_dev *pdev = to_pci_dev(dev);
1138 	int ret;
1139 
1140 	ret = stmmac_suspend(dev);
1141 	if (ret)
1142 		return ret;
1143 
1144 	ret = pci_save_state(pdev);
1145 	if (ret)
1146 		return ret;
1147 
1148 	pci_wake_from_d3(pdev, true);
1149 	pci_set_power_state(pdev, PCI_D3hot);
1150 	return 0;
1151 }
1152 
1153 static int __maybe_unused intel_eth_pci_resume(struct device *dev)
1154 {
1155 	struct pci_dev *pdev = to_pci_dev(dev);
1156 	int ret;
1157 
1158 	pci_restore_state(pdev);
1159 	pci_set_power_state(pdev, PCI_D0);
1160 
1161 	ret = pcim_enable_device(pdev);
1162 	if (ret)
1163 		return ret;
1164 
1165 	pci_set_master(pdev);
1166 
1167 	return stmmac_resume(dev);
1168 }
1169 
1170 static SIMPLE_DEV_PM_OPS(intel_eth_pm_ops, intel_eth_pci_suspend,
1171 			 intel_eth_pci_resume);
1172 
1173 #define PCI_DEVICE_ID_INTEL_QUARK		0x0937
1174 #define PCI_DEVICE_ID_INTEL_EHL_RGMII1G		0x4b30
1175 #define PCI_DEVICE_ID_INTEL_EHL_SGMII1G		0x4b31
1176 #define PCI_DEVICE_ID_INTEL_EHL_SGMII2G5	0x4b32
1177 /* Intel(R) Programmable Services Engine (Intel(R) PSE) consist of 2 MAC
1178  * which are named PSE0 and PSE1
1179  */
1180 #define PCI_DEVICE_ID_INTEL_EHL_PSE0_RGMII1G	0x4ba0
1181 #define PCI_DEVICE_ID_INTEL_EHL_PSE0_SGMII1G	0x4ba1
1182 #define PCI_DEVICE_ID_INTEL_EHL_PSE0_SGMII2G5	0x4ba2
1183 #define PCI_DEVICE_ID_INTEL_EHL_PSE1_RGMII1G	0x4bb0
1184 #define PCI_DEVICE_ID_INTEL_EHL_PSE1_SGMII1G	0x4bb1
1185 #define PCI_DEVICE_ID_INTEL_EHL_PSE1_SGMII2G5	0x4bb2
1186 #define PCI_DEVICE_ID_INTEL_TGLH_SGMII1G_0	0x43ac
1187 #define PCI_DEVICE_ID_INTEL_TGLH_SGMII1G_1	0x43a2
1188 #define PCI_DEVICE_ID_INTEL_TGL_SGMII1G		0xa0ac
1189 #define PCI_DEVICE_ID_INTEL_ADLS_SGMII1G_0	0x7aac
1190 #define PCI_DEVICE_ID_INTEL_ADLS_SGMII1G_1	0x7aad
1191 #define PCI_DEVICE_ID_INTEL_ADLN_SGMII1G	0x54ac
1192 #define PCI_DEVICE_ID_INTEL_RPLP_SGMII1G	0x51ac
1193 
1194 static const struct pci_device_id intel_eth_pci_id_table[] = {
1195 	{ PCI_DEVICE_DATA(INTEL, QUARK, &quark_info) },
1196 	{ PCI_DEVICE_DATA(INTEL, EHL_RGMII1G, &ehl_rgmii1g_info) },
1197 	{ PCI_DEVICE_DATA(INTEL, EHL_SGMII1G, &ehl_sgmii1g_info) },
1198 	{ PCI_DEVICE_DATA(INTEL, EHL_SGMII2G5, &ehl_sgmii1g_info) },
1199 	{ PCI_DEVICE_DATA(INTEL, EHL_PSE0_RGMII1G, &ehl_pse0_rgmii1g_info) },
1200 	{ PCI_DEVICE_DATA(INTEL, EHL_PSE0_SGMII1G, &ehl_pse0_sgmii1g_info) },
1201 	{ PCI_DEVICE_DATA(INTEL, EHL_PSE0_SGMII2G5, &ehl_pse0_sgmii1g_info) },
1202 	{ PCI_DEVICE_DATA(INTEL, EHL_PSE1_RGMII1G, &ehl_pse1_rgmii1g_info) },
1203 	{ PCI_DEVICE_DATA(INTEL, EHL_PSE1_SGMII1G, &ehl_pse1_sgmii1g_info) },
1204 	{ PCI_DEVICE_DATA(INTEL, EHL_PSE1_SGMII2G5, &ehl_pse1_sgmii1g_info) },
1205 	{ PCI_DEVICE_DATA(INTEL, TGL_SGMII1G, &tgl_sgmii1g_phy0_info) },
1206 	{ PCI_DEVICE_DATA(INTEL, TGLH_SGMII1G_0, &tgl_sgmii1g_phy0_info) },
1207 	{ PCI_DEVICE_DATA(INTEL, TGLH_SGMII1G_1, &tgl_sgmii1g_phy1_info) },
1208 	{ PCI_DEVICE_DATA(INTEL, ADLS_SGMII1G_0, &adls_sgmii1g_phy0_info) },
1209 	{ PCI_DEVICE_DATA(INTEL, ADLS_SGMII1G_1, &adls_sgmii1g_phy1_info) },
1210 	{ PCI_DEVICE_DATA(INTEL, ADLN_SGMII1G, &tgl_sgmii1g_phy0_info) },
1211 	{ PCI_DEVICE_DATA(INTEL, RPLP_SGMII1G, &tgl_sgmii1g_phy0_info) },
1212 	{}
1213 };
1214 MODULE_DEVICE_TABLE(pci, intel_eth_pci_id_table);
1215 
1216 static struct pci_driver intel_eth_pci_driver = {
1217 	.name = "intel-eth-pci",
1218 	.id_table = intel_eth_pci_id_table,
1219 	.probe = intel_eth_pci_probe,
1220 	.remove = intel_eth_pci_remove,
1221 	.driver         = {
1222 		.pm     = &intel_eth_pm_ops,
1223 	},
1224 };
1225 
1226 module_pci_driver(intel_eth_pci_driver);
1227 
1228 MODULE_DESCRIPTION("INTEL 10/100/1000 Ethernet PCI driver");
1229 MODULE_AUTHOR("Voon Weifeng <weifeng.voon@intel.com>");
1230 MODULE_LICENSE("GPL v2");
1231