xref: /linux/drivers/net/ethernet/smsc/smc91x.h (revision 712676ea2bb3882a852bcf49862c4247317fc9b2)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*------------------------------------------------------------------------
3  . smc91x.h - macros for SMSC's 91C9x/91C1xx single-chip Ethernet device.
4  .
5  . Copyright (C) 1996 by Erik Stahlman
6  . Copyright (C) 2001 Standard Microsystems Corporation
7  .	Developed by Simple Network Magic Corporation
8  . Copyright (C) 2003 Monta Vista Software, Inc.
9  .	Unified SMC91x driver by Nicolas Pitre
10  .
11  .
12  . Information contained in this file was obtained from the LAN91C111
13  . manual from SMC.  To get a copy, if you really want one, you can find
14  . information under www.smsc.com.
15  .
16  . Authors
17  .	Erik Stahlman		<erik@vt.edu>
18  .	Daris A Nevil		<dnevil@snmc.com>
19  .	Nicolas Pitre 		<nico@fluxnic.net>
20  .
21  ---------------------------------------------------------------------------*/
22 #ifndef _SMC91X_H_
23 #define _SMC91X_H_
24 
25 #include <linux/dmaengine.h>
26 #include <linux/smc91x.h>
27 
28 /*
29  * Any 16-bit access is performed with two 8-bit accesses if the hardware
30  * can't do it directly. Most registers are 16-bit so those are mandatory.
31  */
32 #define SMC_outw_b(x, a, r)						\
33 	do {								\
34 		unsigned int __val16 = (x);				\
35 		unsigned int __reg = (r);				\
36 		SMC_outb(__val16, a, __reg);				\
37 		SMC_outb(__val16 >> 8, a, __reg + (1 << SMC_IO_SHIFT));	\
38 	} while (0)
39 
40 #define SMC_inw_b(a, r)							\
41 	({								\
42 		unsigned int __val16;					\
43 		unsigned int __reg = r;					\
44 		__val16  = SMC_inb(a, __reg);				\
45 		__val16 |= SMC_inb(a, __reg + (1 << SMC_IO_SHIFT)) << 8; \
46 		__val16;						\
47 	})
48 
49 /*
50  * Define your architecture specific bus configuration parameters here.
51  */
52 
53 #if defined(CONFIG_ARM)
54 
55 #include <asm/mach-types.h>
56 
57 /* Now the bus width is specified in the platform data
58  * pretend here to support all I/O access types
59  */
60 #define SMC_CAN_USE_8BIT	1
61 #define SMC_CAN_USE_16BIT	1
62 #define SMC_CAN_USE_32BIT	1
63 #define SMC_NOWAIT		1
64 
65 #define SMC_IO_SHIFT		(lp->io_shift)
66 
67 #define SMC_inb(a, r)		readb((a) + (r))
68 #define SMC_inw(a, r)							\
69 	({								\
70 		unsigned int __smc_r = r;				\
71 		SMC_16BIT(lp) ? readw((a) + __smc_r) :			\
72 		SMC_8BIT(lp) ? SMC_inw_b(a, __smc_r) :			\
73 		({ BUG(); 0; });					\
74 	})
75 
76 #define SMC_inl(a, r)		readl((a) + (r))
77 #define SMC_outb(v, a, r)	writeb(v, (a) + (r))
78 #define SMC_outw(lp, v, a, r)						\
79 	do {								\
80 		unsigned int __v = v, __smc_r = r;			\
81 		if (SMC_16BIT(lp))					\
82 			__SMC_outw(lp, __v, a, __smc_r);		\
83 		else if (SMC_8BIT(lp))					\
84 			SMC_outw_b(__v, a, __smc_r);			\
85 		else							\
86 			BUG();						\
87 	} while (0)
88 
89 #define SMC_outl(v, a, r)	writel(v, (a) + (r))
90 #define SMC_insb(a, r, p, l)	readsb((a) + (r), p, l)
91 #define SMC_outsb(a, r, p, l)	writesb((a) + (r), p, l)
92 #define SMC_insw(a, r, p, l)	readsw((a) + (r), p, l)
93 #define SMC_outsw(a, r, p, l)	writesw((a) + (r), p, l)
94 #define SMC_insl(a, r, p, l)	readsl((a) + (r), p, l)
95 #define SMC_outsl(a, r, p, l)	writesl((a) + (r), p, l)
96 #define SMC_IRQ_FLAGS		(-1)	/* from resource */
97 
98 /* We actually can't write halfwords properly if not word aligned */
99 static inline void _SMC_outw_align4(u16 val, void __iomem *ioaddr, int reg,
100 				    bool use_align4_workaround)
101 {
102 	if (use_align4_workaround) {
103 		unsigned int v = val << 16;
104 		v |= readl(ioaddr + (reg & ~2)) & 0xffff;
105 		writel(v, ioaddr + (reg & ~2));
106 	} else {
107 		writew(val, ioaddr + reg);
108 	}
109 }
110 
111 #define __SMC_outw(lp, v, a, r)						\
112 	_SMC_outw_align4((v), (a), (r),					\
113 			 IS_BUILTIN(CONFIG_ARCH_PXA) && ((r) & 2) &&	\
114 			 (lp)->cfg.pxa_u16_align4)
115 
116 
117 #elif defined(CONFIG_ATARI)
118 
119 #define SMC_CAN_USE_8BIT        1
120 #define SMC_CAN_USE_16BIT       1
121 #define SMC_CAN_USE_32BIT       1
122 #define SMC_NOWAIT              1
123 
124 #define SMC_inb(a, r)           readb((a) + (r))
125 #define SMC_inw(a, r)           readw((a) + (r))
126 #define SMC_inl(a, r)           readl((a) + (r))
127 #define SMC_outb(v, a, r)       writeb(v, (a) + (r))
128 #define SMC_outw(lp, v, a, r)   writew(v, (a) + (r))
129 #define SMC_outl(v, a, r)       writel(v, (a) + (r))
130 #define SMC_insw(a, r, p, l)    readsw((a) + (r), p, l)
131 #define SMC_outsw(a, r, p, l)   writesw((a) + (r), p, l)
132 #define SMC_insl(a, r, p, l)    readsl((a) + (r), p, l)
133 #define SMC_outsl(a, r, p, l)   writesl((a) + (r), p, l)
134 
135 #define RPC_LSA_DEFAULT         RPC_LED_100_10
136 #define RPC_LSB_DEFAULT         RPC_LED_TX_RX
137 
138 #elif defined(CONFIG_COLDFIRE)
139 
140 #define SMC_CAN_USE_8BIT	0
141 #define SMC_CAN_USE_16BIT	1
142 #define SMC_CAN_USE_32BIT	0
143 #define SMC_NOWAIT		1
144 
145 static inline void mcf_insw(void __iomem *a, unsigned char *p, int l)
146 {
147 	u16 *wp = (u16 *) p;
148 	while (l-- > 0)
149 		*wp++ = readw(a);
150 }
151 
152 static inline void mcf_outsw(void __iomem *a, unsigned char *p, int l)
153 {
154 	u16 *wp = (u16 *) p;
155 	while (l-- > 0)
156 		writew(*wp++, a);
157 }
158 
159 #define SMC_inw(a, r)		ioread16be((a) + (r))
160 #define SMC_outw(lp, v, a, r)	iowrite16be(v, (a) + (r))
161 #define SMC_insw(a, r, p, l)	mcf_insw(a + r, p, l)
162 #define SMC_outsw(a, r, p, l)	mcf_outsw(a + r, p, l)
163 
164 #define SMC_IRQ_FLAGS		0
165 
166 #else
167 
168 /*
169  * Default configuration
170  */
171 
172 #define SMC_CAN_USE_8BIT	1
173 #define SMC_CAN_USE_16BIT	1
174 #define SMC_CAN_USE_32BIT	1
175 #define SMC_NOWAIT		1
176 
177 #define SMC_IO_SHIFT		(lp->io_shift)
178 
179 #define SMC_inb(a, r)		ioread8((a) + (r))
180 #define SMC_inw(a, r)		ioread16((a) + (r))
181 #define SMC_inl(a, r)		ioread32((a) + (r))
182 #define SMC_outb(v, a, r)	iowrite8(v, (a) + (r))
183 #define SMC_outw(lp, v, a, r)	iowrite16(v, (a) + (r))
184 #define SMC_outl(v, a, r)	iowrite32(v, (a) + (r))
185 #define SMC_insw(a, r, p, l)	ioread16_rep((a) + (r), p, l)
186 #define SMC_outsw(a, r, p, l)	iowrite16_rep((a) + (r), p, l)
187 #define SMC_insl(a, r, p, l)	ioread32_rep((a) + (r), p, l)
188 #define SMC_outsl(a, r, p, l)	iowrite32_rep((a) + (r), p, l)
189 
190 #define RPC_LSA_DEFAULT		RPC_LED_100_10
191 #define RPC_LSB_DEFAULT		RPC_LED_TX_RX
192 
193 #endif
194 
195 
196 /* store this information for the driver.. */
197 struct smc_local {
198 	/*
199 	 * If I have to wait until memory is available to send a
200 	 * packet, I will store the skbuff here, until I get the
201 	 * desired memory.  Then, I'll send it out and free it.
202 	 */
203 	struct sk_buff *pending_tx_skb;
204 	struct tasklet_struct tx_task;
205 
206 	struct gpio_desc *power_gpio;
207 	struct gpio_desc *reset_gpio;
208 
209 	/* version/revision of the SMC91x chip */
210 	int	version;
211 
212 	/* Contains the current active transmission mode */
213 	int	tcr_cur_mode;
214 
215 	/* Contains the current active receive mode */
216 	int	rcr_cur_mode;
217 
218 	/* Contains the current active receive/phy mode */
219 	int	rpc_cur_mode;
220 	int	ctl_rfduplx;
221 	int	ctl_rspeed;
222 
223 	u32	msg_enable;
224 	u32	phy_type;
225 	struct mii_if_info mii;
226 
227 	/* work queue */
228 	struct work_struct phy_configure;
229 	struct net_device *dev;
230 	int	work_pending;
231 
232 	spinlock_t lock;
233 
234 #ifdef CONFIG_ARCH_PXA
235 	/* DMA needs the physical address of the chip */
236 	u_long physaddr;
237 	struct device *device;
238 #endif
239 	struct dma_chan *dma_chan;
240 	void __iomem *base;
241 	void __iomem *datacs;
242 
243 	/* the low address lines on some platforms aren't connected... */
244 	int	io_shift;
245 	/* on some platforms a u16 write must be 4-bytes aligned */
246 	bool	half_word_align4;
247 
248 	struct smc91x_platdata cfg;
249 };
250 
251 #define SMC_8BIT(p)	((p)->cfg.flags & SMC91X_USE_8BIT)
252 #define SMC_16BIT(p)	((p)->cfg.flags & SMC91X_USE_16BIT)
253 #define SMC_32BIT(p)	((p)->cfg.flags & SMC91X_USE_32BIT)
254 
255 #ifdef CONFIG_ARCH_PXA
256 /*
257  * Let's use the DMA engine on the XScale PXA2xx for RX packets. This is
258  * always happening in irq context so no need to worry about races.  TX is
259  * different and probably not worth it for that reason, and not as critical
260  * as RX which can overrun memory and lose packets.
261  */
262 #include <linux/dma-mapping.h>
263 
264 #ifdef SMC_insl
265 #undef SMC_insl
266 #define SMC_insl(a, r, p, l) \
267 	smc_pxa_dma_insl(a, lp, r, dev->dma, p, l)
268 static inline void
269 smc_pxa_dma_inpump(struct smc_local *lp, u_char *buf, int len)
270 {
271 	dma_addr_t dmabuf;
272 	struct dma_async_tx_descriptor *tx;
273 	dma_cookie_t cookie;
274 	enum dma_status status;
275 	struct dma_tx_state state;
276 
277 	dmabuf = dma_map_single(lp->device, buf, len, DMA_FROM_DEVICE);
278 	tx = dmaengine_prep_slave_single(lp->dma_chan, dmabuf, len,
279 					 DMA_DEV_TO_MEM, 0);
280 	if (tx) {
281 		cookie = dmaengine_submit(tx);
282 		dma_async_issue_pending(lp->dma_chan);
283 		do {
284 			status = dmaengine_tx_status(lp->dma_chan, cookie,
285 						     &state);
286 			cpu_relax();
287 		} while (status != DMA_COMPLETE && status != DMA_ERROR &&
288 			 state.residue);
289 		dmaengine_terminate_all(lp->dma_chan);
290 	}
291 	dma_unmap_single(lp->device, dmabuf, len, DMA_FROM_DEVICE);
292 }
293 
294 static inline void
295 smc_pxa_dma_insl(void __iomem *ioaddr, struct smc_local *lp, int reg, int dma,
296 		 u_char *buf, int len)
297 {
298 	struct dma_slave_config	config;
299 	int ret;
300 
301 	/* fallback if no DMA available */
302 	if (!lp->dma_chan) {
303 		readsl(ioaddr + reg, buf, len);
304 		return;
305 	}
306 
307 	/* 64 bit alignment is required for memory to memory DMA */
308 	if ((long)buf & 4) {
309 		*((u32 *)buf) = SMC_inl(ioaddr, reg);
310 		buf += 4;
311 		len--;
312 	}
313 
314 	memset(&config, 0, sizeof(config));
315 	config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
316 	config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
317 	config.src_addr = lp->physaddr + reg;
318 	config.dst_addr = lp->physaddr + reg;
319 	config.src_maxburst = 32;
320 	config.dst_maxburst = 32;
321 	ret = dmaengine_slave_config(lp->dma_chan, &config);
322 	if (ret) {
323 		dev_err(lp->device, "dma channel configuration failed: %d\n",
324 			ret);
325 		return;
326 	}
327 
328 	len *= 4;
329 	smc_pxa_dma_inpump(lp, buf, len);
330 }
331 #endif
332 
333 #ifdef SMC_insw
334 #undef SMC_insw
335 #define SMC_insw(a, r, p, l) \
336 	smc_pxa_dma_insw(a, lp, r, dev->dma, p, l)
337 static inline void
338 smc_pxa_dma_insw(void __iomem *ioaddr, struct smc_local *lp, int reg, int dma,
339 		 u_char *buf, int len)
340 {
341 	struct dma_slave_config	config;
342 	int ret;
343 
344 	/* fallback if no DMA available */
345 	if (!lp->dma_chan) {
346 		readsw(ioaddr + reg, buf, len);
347 		return;
348 	}
349 
350 	/* 64 bit alignment is required for memory to memory DMA */
351 	while ((long)buf & 6) {
352 		*((u16 *)buf) = SMC_inw(ioaddr, reg);
353 		buf += 2;
354 		len--;
355 	}
356 
357 	memset(&config, 0, sizeof(config));
358 	config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
359 	config.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
360 	config.src_addr = lp->physaddr + reg;
361 	config.dst_addr = lp->physaddr + reg;
362 	config.src_maxburst = 32;
363 	config.dst_maxburst = 32;
364 	ret = dmaengine_slave_config(lp->dma_chan, &config);
365 	if (ret) {
366 		dev_err(lp->device, "dma channel configuration failed: %d\n",
367 			ret);
368 		return;
369 	}
370 
371 	len *= 2;
372 	smc_pxa_dma_inpump(lp, buf, len);
373 }
374 #endif
375 
376 #endif  /* CONFIG_ARCH_PXA */
377 
378 
379 /*
380  * Everything a particular hardware setup needs should have been defined
381  * at this point.  Add stubs for the undefined cases, mainly to avoid
382  * compilation warnings since they'll be optimized away, or to prevent buggy
383  * use of them.
384  */
385 
386 #if ! SMC_CAN_USE_32BIT
387 #define SMC_inl(ioaddr, reg)		({ BUG(); 0; })
388 #define SMC_outl(x, ioaddr, reg)	BUG()
389 #define SMC_insl(a, r, p, l)		BUG()
390 #define SMC_outsl(a, r, p, l)		BUG()
391 #endif
392 
393 #if !defined(SMC_insl) || !defined(SMC_outsl)
394 #define SMC_insl(a, r, p, l)		BUG()
395 #define SMC_outsl(a, r, p, l)		BUG()
396 #endif
397 
398 #if ! SMC_CAN_USE_16BIT
399 
400 #define SMC_outw(lp, x, ioaddr, reg)	SMC_outw_b(x, ioaddr, reg)
401 #define SMC_inw(ioaddr, reg)		SMC_inw_b(ioaddr, reg)
402 #define SMC_insw(a, r, p, l)		BUG()
403 #define SMC_outsw(a, r, p, l)		BUG()
404 
405 #endif
406 
407 #if !defined(SMC_insw) || !defined(SMC_outsw)
408 #define SMC_insw(a, r, p, l)		BUG()
409 #define SMC_outsw(a, r, p, l)		BUG()
410 #endif
411 
412 #if ! SMC_CAN_USE_8BIT
413 #undef SMC_inb
414 #define SMC_inb(ioaddr, reg)		({ BUG(); 0; })
415 #undef SMC_outb
416 #define SMC_outb(x, ioaddr, reg)	BUG()
417 #define SMC_insb(a, r, p, l)		BUG()
418 #define SMC_outsb(a, r, p, l)		BUG()
419 #endif
420 
421 #if !defined(SMC_insb) || !defined(SMC_outsb)
422 #define SMC_insb(a, r, p, l)		BUG()
423 #define SMC_outsb(a, r, p, l)		BUG()
424 #endif
425 
426 #ifndef SMC_CAN_USE_DATACS
427 #define SMC_CAN_USE_DATACS	0
428 #endif
429 
430 #ifndef SMC_IO_SHIFT
431 #define SMC_IO_SHIFT	0
432 #endif
433 
434 #ifndef	SMC_IRQ_FLAGS
435 #define	SMC_IRQ_FLAGS		IRQF_TRIGGER_RISING
436 #endif
437 
438 #ifndef SMC_INTERRUPT_PREAMBLE
439 #define SMC_INTERRUPT_PREAMBLE
440 #endif
441 
442 
443 /* Because of bank switching, the LAN91x uses only 16 I/O ports */
444 #define SMC_IO_EXTENT	(16 << SMC_IO_SHIFT)
445 #define SMC_DATA_EXTENT (4)
446 
447 /*
448  . Bank Select Register:
449  .
450  .		yyyy yyyy 0000 00xx
451  .		xx 		= bank number
452  .		yyyy yyyy	= 0x33, for identification purposes.
453 */
454 #define BANK_SELECT		(14 << SMC_IO_SHIFT)
455 
456 
457 // Transmit Control Register
458 /* BANK 0  */
459 #define TCR_REG(lp) 	SMC_REG(lp, 0x0000, 0)
460 #define TCR_ENABLE	0x0001	// When 1 we can transmit
461 #define TCR_LOOP	0x0002	// Controls output pin LBK
462 #define TCR_FORCOL	0x0004	// When 1 will force a collision
463 #define TCR_PAD_EN	0x0080	// When 1 will pad tx frames < 64 bytes w/0
464 #define TCR_NOCRC	0x0100	// When 1 will not append CRC to tx frames
465 #define TCR_MON_CSN	0x0400	// When 1 tx monitors carrier
466 #define TCR_FDUPLX    	0x0800  // When 1 enables full duplex operation
467 #define TCR_STP_SQET	0x1000	// When 1 stops tx if Signal Quality Error
468 #define TCR_EPH_LOOP	0x2000	// When 1 enables EPH block loopback
469 #define TCR_SWFDUP	0x8000	// When 1 enables Switched Full Duplex mode
470 
471 #define TCR_CLEAR	0	/* do NOTHING */
472 /* the default settings for the TCR register : */
473 #define TCR_DEFAULT	(TCR_ENABLE | TCR_PAD_EN)
474 
475 
476 // EPH Status Register
477 /* BANK 0  */
478 #define EPH_STATUS_REG(lp)	SMC_REG(lp, 0x0002, 0)
479 #define ES_TX_SUC	0x0001	// Last TX was successful
480 #define ES_SNGL_COL	0x0002	// Single collision detected for last tx
481 #define ES_MUL_COL	0x0004	// Multiple collisions detected for last tx
482 #define ES_LTX_MULT	0x0008	// Last tx was a multicast
483 #define ES_16COL	0x0010	// 16 Collisions Reached
484 #define ES_SQET		0x0020	// Signal Quality Error Test
485 #define ES_LTXBRD	0x0040	// Last tx was a broadcast
486 #define ES_TXDEFR	0x0080	// Transmit Deferred
487 #define ES_LATCOL	0x0200	// Late collision detected on last tx
488 #define ES_LOSTCARR	0x0400	// Lost Carrier Sense
489 #define ES_EXC_DEF	0x0800	// Excessive Deferral
490 #define ES_CTR_ROL	0x1000	// Counter Roll Over indication
491 #define ES_LINK_OK	0x4000	// Driven by inverted value of nLNK pin
492 #define ES_TXUNRN	0x8000	// Tx Underrun
493 
494 
495 // Receive Control Register
496 /* BANK 0  */
497 #define RCR_REG(lp)		SMC_REG(lp, 0x0004, 0)
498 #define RCR_RX_ABORT	0x0001	// Set if a rx frame was aborted
499 #define RCR_PRMS	0x0002	// Enable promiscuous mode
500 #define RCR_ALMUL	0x0004	// When set accepts all multicast frames
501 #define RCR_RXEN	0x0100	// IFF this is set, we can receive packets
502 #define RCR_STRIP_CRC	0x0200	// When set strips CRC from rx packets
503 #define RCR_ABORT_ENB	0x0200	// When set will abort rx on collision
504 #define RCR_FILT_CAR	0x0400	// When set filters leading 12 bit s of carrier
505 #define RCR_SOFTRST	0x8000 	// resets the chip
506 
507 /* the normal settings for the RCR register : */
508 #define RCR_DEFAULT	(RCR_STRIP_CRC | RCR_RXEN)
509 #define RCR_CLEAR	0x0	// set it to a base state
510 
511 
512 // Counter Register
513 /* BANK 0  */
514 #define COUNTER_REG(lp)	SMC_REG(lp, 0x0006, 0)
515 
516 
517 // Memory Information Register
518 /* BANK 0  */
519 #define MIR_REG(lp)		SMC_REG(lp, 0x0008, 0)
520 
521 
522 // Receive/Phy Control Register
523 /* BANK 0  */
524 #define RPC_REG(lp)		SMC_REG(lp, 0x000A, 0)
525 #define RPC_SPEED	0x2000	// When 1 PHY is in 100Mbps mode.
526 #define RPC_DPLX	0x1000	// When 1 PHY is in Full-Duplex Mode
527 #define RPC_ANEG	0x0800	// When 1 PHY is in Auto-Negotiate Mode
528 #define RPC_LSXA_SHFT	5	// Bits to shift LS2A,LS1A,LS0A to lsb
529 #define RPC_LSXB_SHFT	2	// Bits to get LS2B,LS1B,LS0B to lsb
530 
531 #ifndef RPC_LSA_DEFAULT
532 #define RPC_LSA_DEFAULT	RPC_LED_100
533 #endif
534 #ifndef RPC_LSB_DEFAULT
535 #define RPC_LSB_DEFAULT RPC_LED_FD
536 #endif
537 
538 #define RPC_DEFAULT (RPC_ANEG | RPC_SPEED | RPC_DPLX)
539 
540 
541 /* Bank 0 0x0C is reserved */
542 
543 // Bank Select Register
544 /* All Banks */
545 #define BSR_REG		0x000E
546 
547 
548 // Configuration Reg
549 /* BANK 1 */
550 #define CONFIG_REG(lp)	SMC_REG(lp, 0x0000,	1)
551 #define CONFIG_EXT_PHY	0x0200	// 1=external MII, 0=internal Phy
552 #define CONFIG_GPCNTRL	0x0400	// Inverse value drives pin nCNTRL
553 #define CONFIG_NO_WAIT	0x1000	// When 1 no extra wait states on ISA bus
554 #define CONFIG_EPH_POWER_EN 0x8000 // When 0 EPH is placed into low power mode.
555 
556 // Default is powered-up, Internal Phy, Wait States, and pin nCNTRL=low
557 #define CONFIG_DEFAULT	(CONFIG_EPH_POWER_EN)
558 
559 
560 // Base Address Register
561 /* BANK 1 */
562 #define BASE_REG(lp)	SMC_REG(lp, 0x0002, 1)
563 
564 
565 // Individual Address Registers
566 /* BANK 1 */
567 #define ADDR0_REG(lp)	SMC_REG(lp, 0x0004, 1)
568 #define ADDR1_REG(lp)	SMC_REG(lp, 0x0006, 1)
569 #define ADDR2_REG(lp)	SMC_REG(lp, 0x0008, 1)
570 
571 
572 // General Purpose Register
573 /* BANK 1 */
574 #define GP_REG(lp)		SMC_REG(lp, 0x000A, 1)
575 
576 
577 // Control Register
578 /* BANK 1 */
579 #define CTL_REG(lp)		SMC_REG(lp, 0x000C, 1)
580 #define CTL_RCV_BAD	0x4000 // When 1 bad CRC packets are received
581 #define CTL_AUTO_RELEASE 0x0800 // When 1 tx pages are released automatically
582 #define CTL_LE_ENABLE	0x0080 // When 1 enables Link Error interrupt
583 #define CTL_CR_ENABLE	0x0040 // When 1 enables Counter Rollover interrupt
584 #define CTL_TE_ENABLE	0x0020 // When 1 enables Transmit Error interrupt
585 #define CTL_EEPROM_SELECT 0x0004 // Controls EEPROM reload & store
586 #define CTL_RELOAD	0x0002 // When set reads EEPROM into registers
587 #define CTL_STORE	0x0001 // When set stores registers into EEPROM
588 
589 
590 // MMU Command Register
591 /* BANK 2 */
592 #define MMU_CMD_REG(lp)	SMC_REG(lp, 0x0000, 2)
593 #define MC_BUSY		1	// When 1 the last release has not completed
594 #define MC_NOP		(0<<5)	// No Op
595 #define MC_ALLOC	(1<<5) 	// OR with number of 256 byte packets
596 #define MC_RESET	(2<<5)	// Reset MMU to initial state
597 #define MC_REMOVE	(3<<5) 	// Remove the current rx packet
598 #define MC_RELEASE  	(4<<5) 	// Remove and release the current rx packet
599 #define MC_FREEPKT  	(5<<5) 	// Release packet in PNR register
600 #define MC_ENQUEUE	(6<<5)	// Enqueue the packet for transmit
601 #define MC_RSTTXFIFO	(7<<5)	// Reset the TX FIFOs
602 
603 
604 // Packet Number Register
605 /* BANK 2 */
606 #define PN_REG(lp)		SMC_REG(lp, 0x0002, 2)
607 
608 
609 // Allocation Result Register
610 /* BANK 2 */
611 #define AR_REG(lp)		SMC_REG(lp, 0x0003, 2)
612 #define AR_FAILED	0x80	// Alocation Failed
613 
614 
615 // TX FIFO Ports Register
616 /* BANK 2 */
617 #define TXFIFO_REG(lp)	SMC_REG(lp, 0x0004, 2)
618 #define TXFIFO_TEMPTY	0x80	// TX FIFO Empty
619 
620 // RX FIFO Ports Register
621 /* BANK 2 */
622 #define RXFIFO_REG(lp)	SMC_REG(lp, 0x0005, 2)
623 #define RXFIFO_REMPTY	0x80	// RX FIFO Empty
624 
625 #define FIFO_REG(lp)	SMC_REG(lp, 0x0004, 2)
626 
627 // Pointer Register
628 /* BANK 2 */
629 #define PTR_REG(lp)		SMC_REG(lp, 0x0006, 2)
630 #define PTR_RCV		0x8000 // 1=Receive area, 0=Transmit area
631 #define PTR_AUTOINC 	0x4000 // Auto increment the pointer on each access
632 #define PTR_READ	0x2000 // When 1 the operation is a read
633 
634 
635 // Data Register
636 /* BANK 2 */
637 #define DATA_REG(lp)	SMC_REG(lp, 0x0008, 2)
638 
639 
640 // Interrupt Status/Acknowledge Register
641 /* BANK 2 */
642 #define INT_REG(lp)		SMC_REG(lp, 0x000C, 2)
643 
644 
645 // Interrupt Mask Register
646 /* BANK 2 */
647 #define IM_REG(lp)		SMC_REG(lp, 0x000D, 2)
648 #define IM_MDINT	0x80 // PHY MI Register 18 Interrupt
649 #define IM_ERCV_INT	0x40 // Early Receive Interrupt
650 #define IM_EPH_INT	0x20 // Set by Ethernet Protocol Handler section
651 #define IM_RX_OVRN_INT	0x10 // Set by Receiver Overruns
652 #define IM_ALLOC_INT	0x08 // Set when allocation request is completed
653 #define IM_TX_EMPTY_INT	0x04 // Set if the TX FIFO goes empty
654 #define IM_TX_INT	0x02 // Transmit Interrupt
655 #define IM_RCV_INT	0x01 // Receive Interrupt
656 
657 
658 // Multicast Table Registers
659 /* BANK 3 */
660 #define MCAST_REG1(lp)	SMC_REG(lp, 0x0000, 3)
661 #define MCAST_REG2(lp)	SMC_REG(lp, 0x0002, 3)
662 #define MCAST_REG3(lp)	SMC_REG(lp, 0x0004, 3)
663 #define MCAST_REG4(lp)	SMC_REG(lp, 0x0006, 3)
664 
665 
666 // Management Interface Register (MII)
667 /* BANK 3 */
668 #define MII_REG(lp)		SMC_REG(lp, 0x0008, 3)
669 #define MII_MSK_CRS100	0x4000 // Disables CRS100 detection during tx half dup
670 #define MII_MDOE	0x0008 // MII Output Enable
671 #define MII_MCLK	0x0004 // MII Clock, pin MDCLK
672 #define MII_MDI		0x0002 // MII Input, pin MDI
673 #define MII_MDO		0x0001 // MII Output, pin MDO
674 
675 
676 // Revision Register
677 /* BANK 3 */
678 /* ( hi: chip id   low: rev # ) */
679 #define REV_REG(lp)		SMC_REG(lp, 0x000A, 3)
680 
681 
682 // Early RCV Register
683 /* BANK 3 */
684 /* this is NOT on SMC9192 */
685 #define ERCV_REG(lp)	SMC_REG(lp, 0x000C, 3)
686 #define ERCV_RCV_DISCRD	0x0080 // When 1 discards a packet being received
687 #define ERCV_THRESHOLD	0x001F // ERCV Threshold Mask
688 
689 
690 // External Register
691 /* BANK 7 */
692 #define EXT_REG(lp)		SMC_REG(lp, 0x0000, 7)
693 
694 
695 #define CHIP_9192	3
696 #define CHIP_9194	4
697 #define CHIP_9195	5
698 #define CHIP_9196	6
699 #define CHIP_91100	7
700 #define CHIP_91100FD	8
701 #define CHIP_91111FD	9
702 
703 static const char * chip_ids[ 16 ] =  {
704 	NULL, NULL, NULL,
705 	/* 3 */ "SMC91C90/91C92",
706 	/* 4 */ "SMC91C94",
707 	/* 5 */ "SMC91C95",
708 	/* 6 */ "SMC91C96",
709 	/* 7 */ "SMC91C100",
710 	/* 8 */ "SMC91C100FD",
711 	/* 9 */ "SMC91C11xFD",
712 	NULL, NULL, NULL,
713 	NULL, NULL, NULL};
714 
715 
716 /*
717  . Receive status bits
718 */
719 #define RS_ALGNERR	0x8000
720 #define RS_BRODCAST	0x4000
721 #define RS_BADCRC	0x2000
722 #define RS_ODDFRAME	0x1000
723 #define RS_TOOLONG	0x0800
724 #define RS_TOOSHORT	0x0400
725 #define RS_MULTICAST	0x0001
726 #define RS_ERRORS	(RS_ALGNERR | RS_BADCRC | RS_TOOLONG | RS_TOOSHORT)
727 
728 
729 /*
730  * PHY IDs
731  *  LAN83C183 == LAN91C111 Internal PHY
732  */
733 #define PHY_LAN83C183	0x0016f840
734 #define PHY_LAN83C180	0x02821c50
735 
736 /*
737  * PHY Register Addresses (LAN91C111 Internal PHY)
738  *
739  * Generic PHY registers can be found in <linux/mii.h>
740  *
741  * These phy registers are specific to our on-board phy.
742  */
743 
744 // PHY Configuration Register 1
745 #define PHY_CFG1_REG		0x10
746 #define PHY_CFG1_LNKDIS		0x8000	// 1=Rx Link Detect Function disabled
747 #define PHY_CFG1_XMTDIS		0x4000	// 1=TP Transmitter Disabled
748 #define PHY_CFG1_XMTPDN		0x2000	// 1=TP Transmitter Powered Down
749 #define PHY_CFG1_BYPSCR		0x0400	// 1=Bypass scrambler/descrambler
750 #define PHY_CFG1_UNSCDS		0x0200	// 1=Unscramble Idle Reception Disable
751 #define PHY_CFG1_EQLZR		0x0100	// 1=Rx Equalizer Disabled
752 #define PHY_CFG1_CABLE		0x0080	// 1=STP(150ohm), 0=UTP(100ohm)
753 #define PHY_CFG1_RLVL0		0x0040	// 1=Rx Squelch level reduced by 4.5db
754 #define PHY_CFG1_TLVL_SHIFT	2	// Transmit Output Level Adjust
755 #define PHY_CFG1_TLVL_MASK	0x003C
756 #define PHY_CFG1_TRF_MASK	0x0003	// Transmitter Rise/Fall time
757 
758 
759 // PHY Configuration Register 2
760 #define PHY_CFG2_REG		0x11
761 #define PHY_CFG2_APOLDIS	0x0020	// 1=Auto Polarity Correction disabled
762 #define PHY_CFG2_JABDIS		0x0010	// 1=Jabber disabled
763 #define PHY_CFG2_MREG		0x0008	// 1=Multiple register access (MII mgt)
764 #define PHY_CFG2_INTMDIO	0x0004	// 1=Interrupt signaled with MDIO pulseo
765 
766 // PHY Status Output (and Interrupt status) Register
767 #define PHY_INT_REG		0x12	// Status Output (Interrupt Status)
768 #define PHY_INT_INT		0x8000	// 1=bits have changed since last read
769 #define PHY_INT_LNKFAIL		0x4000	// 1=Link Not detected
770 #define PHY_INT_LOSSSYNC	0x2000	// 1=Descrambler has lost sync
771 #define PHY_INT_CWRD		0x1000	// 1=Invalid 4B5B code detected on rx
772 #define PHY_INT_SSD		0x0800	// 1=No Start Of Stream detected on rx
773 #define PHY_INT_ESD		0x0400	// 1=No End Of Stream detected on rx
774 #define PHY_INT_RPOL		0x0200	// 1=Reverse Polarity detected
775 #define PHY_INT_JAB		0x0100	// 1=Jabber detected
776 #define PHY_INT_SPDDET		0x0080	// 1=100Base-TX mode, 0=10Base-T mode
777 #define PHY_INT_DPLXDET		0x0040	// 1=Device in Full Duplex
778 
779 // PHY Interrupt/Status Mask Register
780 #define PHY_MASK_REG		0x13	// Interrupt Mask
781 // Uses the same bit definitions as PHY_INT_REG
782 
783 
784 /*
785  * SMC91C96 ethernet config and status registers.
786  * These are in the "attribute" space.
787  */
788 #define ECOR			0x8000
789 #define ECOR_RESET		0x80
790 #define ECOR_LEVEL_IRQ		0x40
791 #define ECOR_WR_ATTRIB		0x04
792 #define ECOR_ENABLE		0x01
793 
794 #define ECSR			0x8002
795 #define ECSR_IOIS8		0x20
796 #define ECSR_PWRDWN		0x04
797 #define ECSR_INT		0x02
798 
799 #define ATTRIB_SIZE		((64*1024) << SMC_IO_SHIFT)
800 
801 
802 /*
803  * Macros to abstract register access according to the data bus
804  * capabilities.  Please use those and not the in/out primitives.
805  * Note: the following macros do *not* select the bank -- this must
806  * be done separately as needed in the main code.  The SMC_REG() macro
807  * only uses the bank argument for debugging purposes (when enabled).
808  *
809  * Note: despite inline functions being safer, everything leading to this
810  * should preferably be macros to let BUG() display the line number in
811  * the core source code since we're interested in the top call site
812  * not in any inline function location.
813  */
814 
815 #if SMC_DEBUG > 0
816 #define SMC_REG(lp, reg, bank)					\
817 	({								\
818 		int __b = SMC_CURRENT_BANK(lp);			\
819 		if (unlikely((__b & ~0xf0) != (0x3300 | bank))) {	\
820 			pr_err("%s: bank reg screwed (0x%04x)\n",	\
821 			       CARDNAME, __b);				\
822 			BUG();						\
823 		}							\
824 		reg<<SMC_IO_SHIFT;					\
825 	})
826 #else
827 #define SMC_REG(lp, reg, bank)	(reg<<SMC_IO_SHIFT)
828 #endif
829 
830 /*
831  * Hack Alert: Some setups just can't write 8 or 16 bits reliably when not
832  * aligned to a 32 bit boundary.  I tell you that does exist!
833  * Fortunately the affected register accesses can be easily worked around
834  * since we can write zeroes to the preceding 16 bits without adverse
835  * effects and use a 32-bit access.
836  *
837  * Enforce it on any 32-bit capable setup for now.
838  */
839 #define SMC_MUST_ALIGN_WRITE(lp)	SMC_32BIT(lp)
840 
841 #define SMC_GET_PN(lp)						\
842 	(SMC_8BIT(lp)	? (SMC_inb(ioaddr, PN_REG(lp)))	\
843 				: (SMC_inw(ioaddr, PN_REG(lp)) & 0xFF))
844 
845 #define SMC_SET_PN(lp, x)						\
846 	do {								\
847 		if (SMC_MUST_ALIGN_WRITE(lp))				\
848 			SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 0, 2));	\
849 		else if (SMC_8BIT(lp))				\
850 			SMC_outb(x, ioaddr, PN_REG(lp));		\
851 		else							\
852 			SMC_outw(lp, x, ioaddr, PN_REG(lp));		\
853 	} while (0)
854 
855 #define SMC_GET_AR(lp)						\
856 	(SMC_8BIT(lp)	? (SMC_inb(ioaddr, AR_REG(lp)))	\
857 				: (SMC_inw(ioaddr, PN_REG(lp)) >> 8))
858 
859 #define SMC_GET_TXFIFO(lp)						\
860 	(SMC_8BIT(lp)	? (SMC_inb(ioaddr, TXFIFO_REG(lp)))	\
861 				: (SMC_inw(ioaddr, TXFIFO_REG(lp)) & 0xFF))
862 
863 #define SMC_GET_RXFIFO(lp)						\
864 	(SMC_8BIT(lp)	? (SMC_inb(ioaddr, RXFIFO_REG(lp)))	\
865 				: (SMC_inw(ioaddr, TXFIFO_REG(lp)) >> 8))
866 
867 #define SMC_GET_INT(lp)						\
868 	(SMC_8BIT(lp)	? (SMC_inb(ioaddr, INT_REG(lp)))	\
869 				: (SMC_inw(ioaddr, INT_REG(lp)) & 0xFF))
870 
871 #define SMC_ACK_INT(lp, x)						\
872 	do {								\
873 		if (SMC_8BIT(lp))					\
874 			SMC_outb(x, ioaddr, INT_REG(lp));		\
875 		else {							\
876 			unsigned long __flags;				\
877 			int __mask;					\
878 			local_irq_save(__flags);			\
879 			__mask = SMC_inw(ioaddr, INT_REG(lp)) & ~0xff; \
880 			SMC_outw(lp, __mask | (x), ioaddr, INT_REG(lp)); \
881 			local_irq_restore(__flags);			\
882 		}							\
883 	} while (0)
884 
885 #define SMC_GET_INT_MASK(lp)						\
886 	(SMC_8BIT(lp)	? (SMC_inb(ioaddr, IM_REG(lp)))	\
887 				: (SMC_inw(ioaddr, INT_REG(lp)) >> 8))
888 
889 #define SMC_SET_INT_MASK(lp, x)					\
890 	do {								\
891 		if (SMC_8BIT(lp))					\
892 			SMC_outb(x, ioaddr, IM_REG(lp));		\
893 		else							\
894 			SMC_outw(lp, (x) << 8, ioaddr, INT_REG(lp));	\
895 	} while (0)
896 
897 #define SMC_CURRENT_BANK(lp)	SMC_inw(ioaddr, BANK_SELECT)
898 
899 #define SMC_SELECT_BANK(lp, x)					\
900 	do {								\
901 		if (SMC_MUST_ALIGN_WRITE(lp))				\
902 			SMC_outl((x)<<16, ioaddr, 12<<SMC_IO_SHIFT);	\
903 		else							\
904 			SMC_outw(lp, x, ioaddr, BANK_SELECT);		\
905 	} while (0)
906 
907 #define SMC_GET_BASE(lp)		SMC_inw(ioaddr, BASE_REG(lp))
908 
909 #define SMC_SET_BASE(lp, x)	SMC_outw(lp, x, ioaddr, BASE_REG(lp))
910 
911 #define SMC_GET_CONFIG(lp)	SMC_inw(ioaddr, CONFIG_REG(lp))
912 
913 #define SMC_SET_CONFIG(lp, x)	SMC_outw(lp, x, ioaddr, CONFIG_REG(lp))
914 
915 #define SMC_GET_COUNTER(lp)	SMC_inw(ioaddr, COUNTER_REG(lp))
916 
917 #define SMC_GET_CTL(lp)		SMC_inw(ioaddr, CTL_REG(lp))
918 
919 #define SMC_SET_CTL(lp, x)	SMC_outw(lp, x, ioaddr, CTL_REG(lp))
920 
921 #define SMC_GET_MII(lp)		SMC_inw(ioaddr, MII_REG(lp))
922 
923 #define SMC_GET_GP(lp)		SMC_inw(ioaddr, GP_REG(lp))
924 
925 #define SMC_SET_GP(lp, x)						\
926 	do {								\
927 		if (SMC_MUST_ALIGN_WRITE(lp))				\
928 			SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 8, 1));	\
929 		else							\
930 			SMC_outw(lp, x, ioaddr, GP_REG(lp));		\
931 	} while (0)
932 
933 #define SMC_SET_MII(lp, x)	SMC_outw(lp, x, ioaddr, MII_REG(lp))
934 
935 #define SMC_GET_MIR(lp)		SMC_inw(ioaddr, MIR_REG(lp))
936 
937 #define SMC_SET_MIR(lp, x)	SMC_outw(lp, x, ioaddr, MIR_REG(lp))
938 
939 #define SMC_GET_MMU_CMD(lp)	SMC_inw(ioaddr, MMU_CMD_REG(lp))
940 
941 #define SMC_SET_MMU_CMD(lp, x)	SMC_outw(lp, x, ioaddr, MMU_CMD_REG(lp))
942 
943 #define SMC_GET_FIFO(lp)	SMC_inw(ioaddr, FIFO_REG(lp))
944 
945 #define SMC_GET_PTR(lp)		SMC_inw(ioaddr, PTR_REG(lp))
946 
947 #define SMC_SET_PTR(lp, x)						\
948 	do {								\
949 		if (SMC_MUST_ALIGN_WRITE(lp))				\
950 			SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 4, 2));	\
951 		else							\
952 			SMC_outw(lp, x, ioaddr, PTR_REG(lp));		\
953 	} while (0)
954 
955 #define SMC_GET_EPH_STATUS(lp)	SMC_inw(ioaddr, EPH_STATUS_REG(lp))
956 
957 #define SMC_GET_RCR(lp)		SMC_inw(ioaddr, RCR_REG(lp))
958 
959 #define SMC_SET_RCR(lp, x)		SMC_outw(lp, x, ioaddr, RCR_REG(lp))
960 
961 #define SMC_GET_REV(lp)		SMC_inw(ioaddr, REV_REG(lp))
962 
963 #define SMC_GET_RPC(lp)		SMC_inw(ioaddr, RPC_REG(lp))
964 
965 #define SMC_SET_RPC(lp, x)						\
966 	do {								\
967 		if (SMC_MUST_ALIGN_WRITE(lp))				\
968 			SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 8, 0));	\
969 		else							\
970 			SMC_outw(lp, x, ioaddr, RPC_REG(lp));		\
971 	} while (0)
972 
973 #define SMC_GET_TCR(lp)		SMC_inw(ioaddr, TCR_REG(lp))
974 
975 #define SMC_SET_TCR(lp, x)	SMC_outw(lp, x, ioaddr, TCR_REG(lp))
976 
977 #ifndef SMC_GET_MAC_ADDR
978 #define SMC_GET_MAC_ADDR(lp, addr)					\
979 	do {								\
980 		unsigned int __v;					\
981 		__v = SMC_inw(ioaddr, ADDR0_REG(lp));			\
982 		addr[0] = __v; addr[1] = __v >> 8;			\
983 		__v = SMC_inw(ioaddr, ADDR1_REG(lp));			\
984 		addr[2] = __v; addr[3] = __v >> 8;			\
985 		__v = SMC_inw(ioaddr, ADDR2_REG(lp));			\
986 		addr[4] = __v; addr[5] = __v >> 8;			\
987 	} while (0)
988 #endif
989 
990 #define SMC_SET_MAC_ADDR(lp, addr)					\
991 	do {								\
992 		SMC_outw(lp, addr[0] | (addr[1] << 8), ioaddr, ADDR0_REG(lp)); \
993 		SMC_outw(lp, addr[2] | (addr[3] << 8), ioaddr, ADDR1_REG(lp)); \
994 		SMC_outw(lp, addr[4] | (addr[5] << 8), ioaddr, ADDR2_REG(lp)); \
995 	} while (0)
996 
997 #define SMC_SET_MCAST(lp, x)						\
998 	do {								\
999 		const unsigned char *mt = (x);				\
1000 		SMC_outw(lp, mt[0] | (mt[1] << 8), ioaddr, MCAST_REG1(lp)); \
1001 		SMC_outw(lp, mt[2] | (mt[3] << 8), ioaddr, MCAST_REG2(lp)); \
1002 		SMC_outw(lp, mt[4] | (mt[5] << 8), ioaddr, MCAST_REG3(lp)); \
1003 		SMC_outw(lp, mt[6] | (mt[7] << 8), ioaddr, MCAST_REG4(lp)); \
1004 	} while (0)
1005 
1006 #define SMC_PUT_PKT_HDR(lp, status, length)				\
1007 	do {								\
1008 		if (SMC_32BIT(lp))					\
1009 			SMC_outl((status) | (length)<<16, ioaddr,	\
1010 				 DATA_REG(lp));			\
1011 		else {							\
1012 			SMC_outw(lp, status, ioaddr, DATA_REG(lp));	\
1013 			SMC_outw(lp, length, ioaddr, DATA_REG(lp));	\
1014 		}							\
1015 	} while (0)
1016 
1017 #define SMC_GET_PKT_HDR(lp, status, length)				\
1018 	do {								\
1019 		if (SMC_32BIT(lp)) {				\
1020 			unsigned int __val = SMC_inl(ioaddr, DATA_REG(lp)); \
1021 			(status) = __val & 0xffff;			\
1022 			(length) = __val >> 16;				\
1023 		} else {						\
1024 			(status) = SMC_inw(ioaddr, DATA_REG(lp));	\
1025 			(length) = SMC_inw(ioaddr, DATA_REG(lp));	\
1026 		}							\
1027 	} while (0)
1028 
1029 #define SMC_PUSH_DATA(lp, p, l)					\
1030 	do {								\
1031 		if (SMC_32BIT(lp)) {				\
1032 			void *__ptr = (p);				\
1033 			int __len = (l);				\
1034 			void __iomem *__ioaddr = ioaddr;		\
1035 			if (__len >= 2 && (unsigned long)__ptr & 2) {	\
1036 				__len -= 2;				\
1037 				SMC_outsw(ioaddr, DATA_REG(lp), __ptr, 1); \
1038 				__ptr += 2;				\
1039 			}						\
1040 			if (SMC_CAN_USE_DATACS && lp->datacs)		\
1041 				__ioaddr = lp->datacs;			\
1042 			SMC_outsl(__ioaddr, DATA_REG(lp), __ptr, __len>>2); \
1043 			if (__len & 2) {				\
1044 				__ptr += (__len & ~3);			\
1045 				SMC_outsw(ioaddr, DATA_REG(lp), __ptr, 1); \
1046 			}						\
1047 		} else if (SMC_16BIT(lp))				\
1048 			SMC_outsw(ioaddr, DATA_REG(lp), p, (l) >> 1);	\
1049 		else if (SMC_8BIT(lp))				\
1050 			SMC_outsb(ioaddr, DATA_REG(lp), p, l);	\
1051 	} while (0)
1052 
1053 #define SMC_PULL_DATA(lp, p, l)					\
1054 	do {								\
1055 		if (SMC_32BIT(lp)) {				\
1056 			void *__ptr = (p);				\
1057 			int __len = (l);				\
1058 			void __iomem *__ioaddr = ioaddr;		\
1059 			if ((unsigned long)__ptr & 2) {			\
1060 				/*					\
1061 				 * We want 32bit alignment here.	\
1062 				 * Since some buses perform a full	\
1063 				 * 32bit fetch even for 16bit data	\
1064 				 * we can't use SMC_inw() here.		\
1065 				 * Back both source (on-chip) and	\
1066 				 * destination pointers of 2 bytes.	\
1067 				 * This is possible since the call to	\
1068 				 * SMC_GET_PKT_HDR() already advanced	\
1069 				 * the source pointer of 4 bytes, and	\
1070 				 * the skb_reserve(skb, 2) advanced	\
1071 				 * the destination pointer of 2 bytes.	\
1072 				 */					\
1073 				__ptr -= 2;				\
1074 				__len += 2;				\
1075 				SMC_SET_PTR(lp,			\
1076 					2|PTR_READ|PTR_RCV|PTR_AUTOINC); \
1077 			}						\
1078 			if (SMC_CAN_USE_DATACS && lp->datacs)		\
1079 				__ioaddr = lp->datacs;			\
1080 			__len += 2;					\
1081 			SMC_insl(__ioaddr, DATA_REG(lp), __ptr, __len>>2); \
1082 		} else if (SMC_16BIT(lp))				\
1083 			SMC_insw(ioaddr, DATA_REG(lp), p, (l) >> 1);	\
1084 		else if (SMC_8BIT(lp))				\
1085 			SMC_insb(ioaddr, DATA_REG(lp), p, l);		\
1086 	} while (0)
1087 
1088 #endif  /* _SMC91X_H_ */
1089