xref: /linux/drivers/net/ethernet/smsc/smc91x.h (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*------------------------------------------------------------------------
2  . smc91x.h - macros for SMSC's 91C9x/91C1xx single-chip Ethernet device.
3  .
4  . Copyright (C) 1996 by Erik Stahlman
5  . Copyright (C) 2001 Standard Microsystems Corporation
6  .	Developed by Simple Network Magic Corporation
7  . Copyright (C) 2003 Monta Vista Software, Inc.
8  .	Unified SMC91x driver by Nicolas Pitre
9  .
10  . This program is free software; you can redistribute it and/or modify
11  . it under the terms of the GNU General Public License as published by
12  . the Free Software Foundation; either version 2 of the License, or
13  . (at your option) any later version.
14  .
15  . This program is distributed in the hope that it will be useful,
16  . but WITHOUT ANY WARRANTY; without even the implied warranty of
17  . MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  . GNU General Public License for more details.
19  .
20  . You should have received a copy of the GNU General Public License
21  . along with this program; if not, see <http://www.gnu.org/licenses/>.
22  .
23  . Information contained in this file was obtained from the LAN91C111
24  . manual from SMC.  To get a copy, if you really want one, you can find
25  . information under www.smsc.com.
26  .
27  . Authors
28  .	Erik Stahlman		<erik@vt.edu>
29  .	Daris A Nevil		<dnevil@snmc.com>
30  .	Nicolas Pitre 		<nico@fluxnic.net>
31  .
32  ---------------------------------------------------------------------------*/
33 #ifndef _SMC91X_H_
34 #define _SMC91X_H_
35 
36 #include <linux/dmaengine.h>
37 #include <linux/smc91x.h>
38 
39 /*
40  * Define your architecture specific bus configuration parameters here.
41  */
42 
43 #if defined(CONFIG_ARM)
44 
45 #include <asm/mach-types.h>
46 
47 /* Now the bus width is specified in the platform data
48  * pretend here to support all I/O access types
49  */
50 #define SMC_CAN_USE_8BIT	1
51 #define SMC_CAN_USE_16BIT	1
52 #define SMC_CAN_USE_32BIT	1
53 #define SMC_NOWAIT		1
54 
55 #define SMC_IO_SHIFT		(lp->io_shift)
56 
57 #define SMC_inb(a, r)		readb((a) + (r))
58 #define SMC_inw(a, r)		readw((a) + (r))
59 #define SMC_inl(a, r)		readl((a) + (r))
60 #define SMC_outb(v, a, r)	writeb(v, (a) + (r))
61 #define SMC_outl(v, a, r)	writel(v, (a) + (r))
62 #define SMC_insw(a, r, p, l)	readsw((a) + (r), p, l)
63 #define SMC_outsw(a, r, p, l)	writesw((a) + (r), p, l)
64 #define SMC_insl(a, r, p, l)	readsl((a) + (r), p, l)
65 #define SMC_outsl(a, r, p, l)	writesl((a) + (r), p, l)
66 #define SMC_IRQ_FLAGS		(-1)	/* from resource */
67 
68 /* We actually can't write halfwords properly if not word aligned */
69 static inline void SMC_outw(u16 val, void __iomem *ioaddr, int reg)
70 {
71 	if ((machine_is_mainstone() || machine_is_stargate2() ||
72 	     machine_is_pxa_idp()) && reg & 2) {
73 		unsigned int v = val << 16;
74 		v |= readl(ioaddr + (reg & ~2)) & 0xffff;
75 		writel(v, ioaddr + (reg & ~2));
76 	} else {
77 		writew(val, ioaddr + reg);
78 	}
79 }
80 
81 #elif	defined(CONFIG_SH_SH4202_MICRODEV)
82 
83 #define SMC_CAN_USE_8BIT	0
84 #define SMC_CAN_USE_16BIT	1
85 #define SMC_CAN_USE_32BIT	0
86 
87 #define SMC_inb(a, r)		inb((a) + (r) - 0xa0000000)
88 #define SMC_inw(a, r)		inw((a) + (r) - 0xa0000000)
89 #define SMC_inl(a, r)		inl((a) + (r) - 0xa0000000)
90 #define SMC_outb(v, a, r)	outb(v, (a) + (r) - 0xa0000000)
91 #define SMC_outw(v, a, r)	outw(v, (a) + (r) - 0xa0000000)
92 #define SMC_outl(v, a, r)	outl(v, (a) + (r) - 0xa0000000)
93 #define SMC_insl(a, r, p, l)	insl((a) + (r) - 0xa0000000, p, l)
94 #define SMC_outsl(a, r, p, l)	outsl((a) + (r) - 0xa0000000, p, l)
95 #define SMC_insw(a, r, p, l)	insw((a) + (r) - 0xa0000000, p, l)
96 #define SMC_outsw(a, r, p, l)	outsw((a) + (r) - 0xa0000000, p, l)
97 
98 #define SMC_IRQ_FLAGS		(0)
99 
100 #elif   defined(CONFIG_M32R)
101 
102 #define SMC_CAN_USE_8BIT	0
103 #define SMC_CAN_USE_16BIT	1
104 #define SMC_CAN_USE_32BIT	0
105 
106 #define SMC_inb(a, r)		inb(((u32)a) + (r))
107 #define SMC_inw(a, r)		inw(((u32)a) + (r))
108 #define SMC_outb(v, a, r)	outb(v, ((u32)a) + (r))
109 #define SMC_outw(v, a, r)	outw(v, ((u32)a) + (r))
110 #define SMC_insw(a, r, p, l)	insw(((u32)a) + (r), p, l)
111 #define SMC_outsw(a, r, p, l)	outsw(((u32)a) + (r), p, l)
112 
113 #define SMC_IRQ_FLAGS		(0)
114 
115 #define RPC_LSA_DEFAULT		RPC_LED_TX_RX
116 #define RPC_LSB_DEFAULT		RPC_LED_100_10
117 
118 #elif defined(CONFIG_MN10300)
119 
120 /*
121  * MN10300/AM33 configuration
122  */
123 
124 #include <unit/smc91111.h>
125 
126 #elif defined(CONFIG_ATARI)
127 
128 #define SMC_CAN_USE_8BIT        1
129 #define SMC_CAN_USE_16BIT       1
130 #define SMC_CAN_USE_32BIT       1
131 #define SMC_NOWAIT              1
132 
133 #define SMC_inb(a, r)           readb((a) + (r))
134 #define SMC_inw(a, r)           readw((a) + (r))
135 #define SMC_inl(a, r)           readl((a) + (r))
136 #define SMC_outb(v, a, r)       writeb(v, (a) + (r))
137 #define SMC_outw(v, a, r)       writew(v, (a) + (r))
138 #define SMC_outl(v, a, r)       writel(v, (a) + (r))
139 #define SMC_insw(a, r, p, l)    readsw((a) + (r), p, l)
140 #define SMC_outsw(a, r, p, l)   writesw((a) + (r), p, l)
141 #define SMC_insl(a, r, p, l)    readsl((a) + (r), p, l)
142 #define SMC_outsl(a, r, p, l)   writesl((a) + (r), p, l)
143 
144 #define RPC_LSA_DEFAULT         RPC_LED_100_10
145 #define RPC_LSB_DEFAULT         RPC_LED_TX_RX
146 
147 #elif defined(CONFIG_COLDFIRE)
148 
149 #define SMC_CAN_USE_8BIT	0
150 #define SMC_CAN_USE_16BIT	1
151 #define SMC_CAN_USE_32BIT	0
152 #define SMC_NOWAIT		1
153 
154 static inline void mcf_insw(void *a, unsigned char *p, int l)
155 {
156 	u16 *wp = (u16 *) p;
157 	while (l-- > 0)
158 		*wp++ = readw(a);
159 }
160 
161 static inline void mcf_outsw(void *a, unsigned char *p, int l)
162 {
163 	u16 *wp = (u16 *) p;
164 	while (l-- > 0)
165 		writew(*wp++, a);
166 }
167 
168 #define SMC_inw(a, r)		_swapw(readw((a) + (r)))
169 #define SMC_outw(v, a, r)	writew(_swapw(v), (a) + (r))
170 #define SMC_insw(a, r, p, l)	mcf_insw(a + r, p, l)
171 #define SMC_outsw(a, r, p, l)	mcf_outsw(a + r, p, l)
172 
173 #define SMC_IRQ_FLAGS		0
174 
175 #elif defined(CONFIG_H8300)
176 #define SMC_CAN_USE_8BIT	1
177 #define SMC_CAN_USE_16BIT	0
178 #define SMC_CAN_USE_32BIT	0
179 #define SMC_NOWAIT		0
180 
181 #define SMC_inb(a, r)		ioread8((a) + (r))
182 #define SMC_outb(v, a, r)	iowrite8(v, (a) + (r))
183 #define SMC_insb(a, r, p, l)	ioread8_rep((a) + (r), p, l)
184 #define SMC_outsb(a, r, p, l)	iowrite8_rep((a) + (r), p, l)
185 
186 #else
187 
188 /*
189  * Default configuration
190  */
191 
192 #define SMC_CAN_USE_8BIT	1
193 #define SMC_CAN_USE_16BIT	1
194 #define SMC_CAN_USE_32BIT	1
195 #define SMC_NOWAIT		1
196 
197 #define SMC_IO_SHIFT		(lp->io_shift)
198 
199 #define SMC_inb(a, r)		ioread8((a) + (r))
200 #define SMC_inw(a, r)		ioread16((a) + (r))
201 #define SMC_inl(a, r)		ioread32((a) + (r))
202 #define SMC_outb(v, a, r)	iowrite8(v, (a) + (r))
203 #define SMC_outw(v, a, r)	iowrite16(v, (a) + (r))
204 #define SMC_outl(v, a, r)	iowrite32(v, (a) + (r))
205 #define SMC_insw(a, r, p, l)	ioread16_rep((a) + (r), p, l)
206 #define SMC_outsw(a, r, p, l)	iowrite16_rep((a) + (r), p, l)
207 #define SMC_insl(a, r, p, l)	ioread32_rep((a) + (r), p, l)
208 #define SMC_outsl(a, r, p, l)	iowrite32_rep((a) + (r), p, l)
209 
210 #define RPC_LSA_DEFAULT		RPC_LED_100_10
211 #define RPC_LSB_DEFAULT		RPC_LED_TX_RX
212 
213 #endif
214 
215 
216 /* store this information for the driver.. */
217 struct smc_local {
218 	/*
219 	 * If I have to wait until memory is available to send a
220 	 * packet, I will store the skbuff here, until I get the
221 	 * desired memory.  Then, I'll send it out and free it.
222 	 */
223 	struct sk_buff *pending_tx_skb;
224 	struct tasklet_struct tx_task;
225 
226 	struct gpio_desc *power_gpio;
227 	struct gpio_desc *reset_gpio;
228 
229 	/* version/revision of the SMC91x chip */
230 	int	version;
231 
232 	/* Contains the current active transmission mode */
233 	int	tcr_cur_mode;
234 
235 	/* Contains the current active receive mode */
236 	int	rcr_cur_mode;
237 
238 	/* Contains the current active receive/phy mode */
239 	int	rpc_cur_mode;
240 	int	ctl_rfduplx;
241 	int	ctl_rspeed;
242 
243 	u32	msg_enable;
244 	u32	phy_type;
245 	struct mii_if_info mii;
246 
247 	/* work queue */
248 	struct work_struct phy_configure;
249 	struct net_device *dev;
250 	int	work_pending;
251 
252 	spinlock_t lock;
253 
254 #ifdef CONFIG_ARCH_PXA
255 	/* DMA needs the physical address of the chip */
256 	u_long physaddr;
257 	struct device *device;
258 #endif
259 	struct dma_chan *dma_chan;
260 	void __iomem *base;
261 	void __iomem *datacs;
262 
263 	/* the low address lines on some platforms aren't connected... */
264 	int	io_shift;
265 
266 	struct smc91x_platdata cfg;
267 };
268 
269 #define SMC_8BIT(p)	((p)->cfg.flags & SMC91X_USE_8BIT)
270 #define SMC_16BIT(p)	((p)->cfg.flags & SMC91X_USE_16BIT)
271 #define SMC_32BIT(p)	((p)->cfg.flags & SMC91X_USE_32BIT)
272 
273 #ifdef CONFIG_ARCH_PXA
274 /*
275  * Let's use the DMA engine on the XScale PXA2xx for RX packets. This is
276  * always happening in irq context so no need to worry about races.  TX is
277  * different and probably not worth it for that reason, and not as critical
278  * as RX which can overrun memory and lose packets.
279  */
280 #include <linux/dma-mapping.h>
281 #include <linux/dma/pxa-dma.h>
282 
283 #ifdef SMC_insl
284 #undef SMC_insl
285 #define SMC_insl(a, r, p, l) \
286 	smc_pxa_dma_insl(a, lp, r, dev->dma, p, l)
287 static inline void
288 smc_pxa_dma_inpump(struct smc_local *lp, u_char *buf, int len)
289 {
290 	dma_addr_t dmabuf;
291 	struct dma_async_tx_descriptor *tx;
292 	dma_cookie_t cookie;
293 	enum dma_status status;
294 	struct dma_tx_state state;
295 
296 	dmabuf = dma_map_single(lp->device, buf, len, DMA_FROM_DEVICE);
297 	tx = dmaengine_prep_slave_single(lp->dma_chan, dmabuf, len,
298 					 DMA_DEV_TO_MEM, 0);
299 	if (tx) {
300 		cookie = dmaengine_submit(tx);
301 		dma_async_issue_pending(lp->dma_chan);
302 		do {
303 			status = dmaengine_tx_status(lp->dma_chan, cookie,
304 						     &state);
305 			cpu_relax();
306 		} while (status != DMA_COMPLETE && status != DMA_ERROR &&
307 			 state.residue);
308 		dmaengine_terminate_all(lp->dma_chan);
309 	}
310 	dma_unmap_single(lp->device, dmabuf, len, DMA_FROM_DEVICE);
311 }
312 
313 static inline void
314 smc_pxa_dma_insl(void __iomem *ioaddr, struct smc_local *lp, int reg, int dma,
315 		 u_char *buf, int len)
316 {
317 	struct dma_slave_config	config;
318 	int ret;
319 
320 	/* fallback if no DMA available */
321 	if (!lp->dma_chan) {
322 		readsl(ioaddr + reg, buf, len);
323 		return;
324 	}
325 
326 	/* 64 bit alignment is required for memory to memory DMA */
327 	if ((long)buf & 4) {
328 		*((u32 *)buf) = SMC_inl(ioaddr, reg);
329 		buf += 4;
330 		len--;
331 	}
332 
333 	memset(&config, 0, sizeof(config));
334 	config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
335 	config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
336 	config.src_addr = lp->physaddr + reg;
337 	config.dst_addr = lp->physaddr + reg;
338 	config.src_maxburst = 32;
339 	config.dst_maxburst = 32;
340 	ret = dmaengine_slave_config(lp->dma_chan, &config);
341 	if (ret) {
342 		dev_err(lp->device, "dma channel configuration failed: %d\n",
343 			ret);
344 		return;
345 	}
346 
347 	len *= 4;
348 	smc_pxa_dma_inpump(lp, buf, len);
349 }
350 #endif
351 
352 #ifdef SMC_insw
353 #undef SMC_insw
354 #define SMC_insw(a, r, p, l) \
355 	smc_pxa_dma_insw(a, lp, r, dev->dma, p, l)
356 static inline void
357 smc_pxa_dma_insw(void __iomem *ioaddr, struct smc_local *lp, int reg, int dma,
358 		 u_char *buf, int len)
359 {
360 	struct dma_slave_config	config;
361 	int ret;
362 
363 	/* fallback if no DMA available */
364 	if (!lp->dma_chan) {
365 		readsw(ioaddr + reg, buf, len);
366 		return;
367 	}
368 
369 	/* 64 bit alignment is required for memory to memory DMA */
370 	while ((long)buf & 6) {
371 		*((u16 *)buf) = SMC_inw(ioaddr, reg);
372 		buf += 2;
373 		len--;
374 	}
375 
376 	memset(&config, 0, sizeof(config));
377 	config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
378 	config.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
379 	config.src_addr = lp->physaddr + reg;
380 	config.dst_addr = lp->physaddr + reg;
381 	config.src_maxburst = 32;
382 	config.dst_maxburst = 32;
383 	ret = dmaengine_slave_config(lp->dma_chan, &config);
384 	if (ret) {
385 		dev_err(lp->device, "dma channel configuration failed: %d\n",
386 			ret);
387 		return;
388 	}
389 
390 	len *= 2;
391 	smc_pxa_dma_inpump(lp, buf, len);
392 }
393 #endif
394 
395 #endif  /* CONFIG_ARCH_PXA */
396 
397 
398 /*
399  * Everything a particular hardware setup needs should have been defined
400  * at this point.  Add stubs for the undefined cases, mainly to avoid
401  * compilation warnings since they'll be optimized away, or to prevent buggy
402  * use of them.
403  */
404 
405 #if ! SMC_CAN_USE_32BIT
406 #define SMC_inl(ioaddr, reg)		({ BUG(); 0; })
407 #define SMC_outl(x, ioaddr, reg)	BUG()
408 #define SMC_insl(a, r, p, l)		BUG()
409 #define SMC_outsl(a, r, p, l)		BUG()
410 #endif
411 
412 #if !defined(SMC_insl) || !defined(SMC_outsl)
413 #define SMC_insl(a, r, p, l)		BUG()
414 #define SMC_outsl(a, r, p, l)		BUG()
415 #endif
416 
417 #if ! SMC_CAN_USE_16BIT
418 
419 /*
420  * Any 16-bit access is performed with two 8-bit accesses if the hardware
421  * can't do it directly. Most registers are 16-bit so those are mandatory.
422  */
423 #define SMC_outw(x, ioaddr, reg)					\
424 	do {								\
425 		unsigned int __val16 = (x);				\
426 		SMC_outb( __val16, ioaddr, reg );			\
427 		SMC_outb( __val16 >> 8, ioaddr, reg + (1 << SMC_IO_SHIFT));\
428 	} while (0)
429 #define SMC_inw(ioaddr, reg)						\
430 	({								\
431 		unsigned int __val16;					\
432 		__val16 =  SMC_inb( ioaddr, reg );			\
433 		__val16 |= SMC_inb( ioaddr, reg + (1 << SMC_IO_SHIFT)) << 8; \
434 		__val16;						\
435 	})
436 
437 #define SMC_insw(a, r, p, l)		BUG()
438 #define SMC_outsw(a, r, p, l)		BUG()
439 
440 #endif
441 
442 #if !defined(SMC_insw) || !defined(SMC_outsw)
443 #define SMC_insw(a, r, p, l)		BUG()
444 #define SMC_outsw(a, r, p, l)		BUG()
445 #endif
446 
447 #if ! SMC_CAN_USE_8BIT
448 #define SMC_inb(ioaddr, reg)		({ BUG(); 0; })
449 #define SMC_outb(x, ioaddr, reg)	BUG()
450 #define SMC_insb(a, r, p, l)		BUG()
451 #define SMC_outsb(a, r, p, l)		BUG()
452 #endif
453 
454 #if !defined(SMC_insb) || !defined(SMC_outsb)
455 #define SMC_insb(a, r, p, l)		BUG()
456 #define SMC_outsb(a, r, p, l)		BUG()
457 #endif
458 
459 #ifndef SMC_CAN_USE_DATACS
460 #define SMC_CAN_USE_DATACS	0
461 #endif
462 
463 #ifndef SMC_IO_SHIFT
464 #define SMC_IO_SHIFT	0
465 #endif
466 
467 #ifndef	SMC_IRQ_FLAGS
468 #define	SMC_IRQ_FLAGS		IRQF_TRIGGER_RISING
469 #endif
470 
471 #ifndef SMC_INTERRUPT_PREAMBLE
472 #define SMC_INTERRUPT_PREAMBLE
473 #endif
474 
475 
476 /* Because of bank switching, the LAN91x uses only 16 I/O ports */
477 #define SMC_IO_EXTENT	(16 << SMC_IO_SHIFT)
478 #define SMC_DATA_EXTENT (4)
479 
480 /*
481  . Bank Select Register:
482  .
483  .		yyyy yyyy 0000 00xx
484  .		xx 		= bank number
485  .		yyyy yyyy	= 0x33, for identification purposes.
486 */
487 #define BANK_SELECT		(14 << SMC_IO_SHIFT)
488 
489 
490 // Transmit Control Register
491 /* BANK 0  */
492 #define TCR_REG(lp) 	SMC_REG(lp, 0x0000, 0)
493 #define TCR_ENABLE	0x0001	// When 1 we can transmit
494 #define TCR_LOOP	0x0002	// Controls output pin LBK
495 #define TCR_FORCOL	0x0004	// When 1 will force a collision
496 #define TCR_PAD_EN	0x0080	// When 1 will pad tx frames < 64 bytes w/0
497 #define TCR_NOCRC	0x0100	// When 1 will not append CRC to tx frames
498 #define TCR_MON_CSN	0x0400	// When 1 tx monitors carrier
499 #define TCR_FDUPLX    	0x0800  // When 1 enables full duplex operation
500 #define TCR_STP_SQET	0x1000	// When 1 stops tx if Signal Quality Error
501 #define TCR_EPH_LOOP	0x2000	// When 1 enables EPH block loopback
502 #define TCR_SWFDUP	0x8000	// When 1 enables Switched Full Duplex mode
503 
504 #define TCR_CLEAR	0	/* do NOTHING */
505 /* the default settings for the TCR register : */
506 #define TCR_DEFAULT	(TCR_ENABLE | TCR_PAD_EN)
507 
508 
509 // EPH Status Register
510 /* BANK 0  */
511 #define EPH_STATUS_REG(lp)	SMC_REG(lp, 0x0002, 0)
512 #define ES_TX_SUC	0x0001	// Last TX was successful
513 #define ES_SNGL_COL	0x0002	// Single collision detected for last tx
514 #define ES_MUL_COL	0x0004	// Multiple collisions detected for last tx
515 #define ES_LTX_MULT	0x0008	// Last tx was a multicast
516 #define ES_16COL	0x0010	// 16 Collisions Reached
517 #define ES_SQET		0x0020	// Signal Quality Error Test
518 #define ES_LTXBRD	0x0040	// Last tx was a broadcast
519 #define ES_TXDEFR	0x0080	// Transmit Deferred
520 #define ES_LATCOL	0x0200	// Late collision detected on last tx
521 #define ES_LOSTCARR	0x0400	// Lost Carrier Sense
522 #define ES_EXC_DEF	0x0800	// Excessive Deferral
523 #define ES_CTR_ROL	0x1000	// Counter Roll Over indication
524 #define ES_LINK_OK	0x4000	// Driven by inverted value of nLNK pin
525 #define ES_TXUNRN	0x8000	// Tx Underrun
526 
527 
528 // Receive Control Register
529 /* BANK 0  */
530 #define RCR_REG(lp)		SMC_REG(lp, 0x0004, 0)
531 #define RCR_RX_ABORT	0x0001	// Set if a rx frame was aborted
532 #define RCR_PRMS	0x0002	// Enable promiscuous mode
533 #define RCR_ALMUL	0x0004	// When set accepts all multicast frames
534 #define RCR_RXEN	0x0100	// IFF this is set, we can receive packets
535 #define RCR_STRIP_CRC	0x0200	// When set strips CRC from rx packets
536 #define RCR_ABORT_ENB	0x0200	// When set will abort rx on collision
537 #define RCR_FILT_CAR	0x0400	// When set filters leading 12 bit s of carrier
538 #define RCR_SOFTRST	0x8000 	// resets the chip
539 
540 /* the normal settings for the RCR register : */
541 #define RCR_DEFAULT	(RCR_STRIP_CRC | RCR_RXEN)
542 #define RCR_CLEAR	0x0	// set it to a base state
543 
544 
545 // Counter Register
546 /* BANK 0  */
547 #define COUNTER_REG(lp)	SMC_REG(lp, 0x0006, 0)
548 
549 
550 // Memory Information Register
551 /* BANK 0  */
552 #define MIR_REG(lp)		SMC_REG(lp, 0x0008, 0)
553 
554 
555 // Receive/Phy Control Register
556 /* BANK 0  */
557 #define RPC_REG(lp)		SMC_REG(lp, 0x000A, 0)
558 #define RPC_SPEED	0x2000	// When 1 PHY is in 100Mbps mode.
559 #define RPC_DPLX	0x1000	// When 1 PHY is in Full-Duplex Mode
560 #define RPC_ANEG	0x0800	// When 1 PHY is in Auto-Negotiate Mode
561 #define RPC_LSXA_SHFT	5	// Bits to shift LS2A,LS1A,LS0A to lsb
562 #define RPC_LSXB_SHFT	2	// Bits to get LS2B,LS1B,LS0B to lsb
563 
564 #ifndef RPC_LSA_DEFAULT
565 #define RPC_LSA_DEFAULT	RPC_LED_100
566 #endif
567 #ifndef RPC_LSB_DEFAULT
568 #define RPC_LSB_DEFAULT RPC_LED_FD
569 #endif
570 
571 #define RPC_DEFAULT (RPC_ANEG | RPC_SPEED | RPC_DPLX)
572 
573 
574 /* Bank 0 0x0C is reserved */
575 
576 // Bank Select Register
577 /* All Banks */
578 #define BSR_REG		0x000E
579 
580 
581 // Configuration Reg
582 /* BANK 1 */
583 #define CONFIG_REG(lp)	SMC_REG(lp, 0x0000,	1)
584 #define CONFIG_EXT_PHY	0x0200	// 1=external MII, 0=internal Phy
585 #define CONFIG_GPCNTRL	0x0400	// Inverse value drives pin nCNTRL
586 #define CONFIG_NO_WAIT	0x1000	// When 1 no extra wait states on ISA bus
587 #define CONFIG_EPH_POWER_EN 0x8000 // When 0 EPH is placed into low power mode.
588 
589 // Default is powered-up, Internal Phy, Wait States, and pin nCNTRL=low
590 #define CONFIG_DEFAULT	(CONFIG_EPH_POWER_EN)
591 
592 
593 // Base Address Register
594 /* BANK 1 */
595 #define BASE_REG(lp)	SMC_REG(lp, 0x0002, 1)
596 
597 
598 // Individual Address Registers
599 /* BANK 1 */
600 #define ADDR0_REG(lp)	SMC_REG(lp, 0x0004, 1)
601 #define ADDR1_REG(lp)	SMC_REG(lp, 0x0006, 1)
602 #define ADDR2_REG(lp)	SMC_REG(lp, 0x0008, 1)
603 
604 
605 // General Purpose Register
606 /* BANK 1 */
607 #define GP_REG(lp)		SMC_REG(lp, 0x000A, 1)
608 
609 
610 // Control Register
611 /* BANK 1 */
612 #define CTL_REG(lp)		SMC_REG(lp, 0x000C, 1)
613 #define CTL_RCV_BAD	0x4000 // When 1 bad CRC packets are received
614 #define CTL_AUTO_RELEASE 0x0800 // When 1 tx pages are released automatically
615 #define CTL_LE_ENABLE	0x0080 // When 1 enables Link Error interrupt
616 #define CTL_CR_ENABLE	0x0040 // When 1 enables Counter Rollover interrupt
617 #define CTL_TE_ENABLE	0x0020 // When 1 enables Transmit Error interrupt
618 #define CTL_EEPROM_SELECT 0x0004 // Controls EEPROM reload & store
619 #define CTL_RELOAD	0x0002 // When set reads EEPROM into registers
620 #define CTL_STORE	0x0001 // When set stores registers into EEPROM
621 
622 
623 // MMU Command Register
624 /* BANK 2 */
625 #define MMU_CMD_REG(lp)	SMC_REG(lp, 0x0000, 2)
626 #define MC_BUSY		1	// When 1 the last release has not completed
627 #define MC_NOP		(0<<5)	// No Op
628 #define MC_ALLOC	(1<<5) 	// OR with number of 256 byte packets
629 #define MC_RESET	(2<<5)	// Reset MMU to initial state
630 #define MC_REMOVE	(3<<5) 	// Remove the current rx packet
631 #define MC_RELEASE  	(4<<5) 	// Remove and release the current rx packet
632 #define MC_FREEPKT  	(5<<5) 	// Release packet in PNR register
633 #define MC_ENQUEUE	(6<<5)	// Enqueue the packet for transmit
634 #define MC_RSTTXFIFO	(7<<5)	// Reset the TX FIFOs
635 
636 
637 // Packet Number Register
638 /* BANK 2 */
639 #define PN_REG(lp)		SMC_REG(lp, 0x0002, 2)
640 
641 
642 // Allocation Result Register
643 /* BANK 2 */
644 #define AR_REG(lp)		SMC_REG(lp, 0x0003, 2)
645 #define AR_FAILED	0x80	// Alocation Failed
646 
647 
648 // TX FIFO Ports Register
649 /* BANK 2 */
650 #define TXFIFO_REG(lp)	SMC_REG(lp, 0x0004, 2)
651 #define TXFIFO_TEMPTY	0x80	// TX FIFO Empty
652 
653 // RX FIFO Ports Register
654 /* BANK 2 */
655 #define RXFIFO_REG(lp)	SMC_REG(lp, 0x0005, 2)
656 #define RXFIFO_REMPTY	0x80	// RX FIFO Empty
657 
658 #define FIFO_REG(lp)	SMC_REG(lp, 0x0004, 2)
659 
660 // Pointer Register
661 /* BANK 2 */
662 #define PTR_REG(lp)		SMC_REG(lp, 0x0006, 2)
663 #define PTR_RCV		0x8000 // 1=Receive area, 0=Transmit area
664 #define PTR_AUTOINC 	0x4000 // Auto increment the pointer on each access
665 #define PTR_READ	0x2000 // When 1 the operation is a read
666 
667 
668 // Data Register
669 /* BANK 2 */
670 #define DATA_REG(lp)	SMC_REG(lp, 0x0008, 2)
671 
672 
673 // Interrupt Status/Acknowledge Register
674 /* BANK 2 */
675 #define INT_REG(lp)		SMC_REG(lp, 0x000C, 2)
676 
677 
678 // Interrupt Mask Register
679 /* BANK 2 */
680 #define IM_REG(lp)		SMC_REG(lp, 0x000D, 2)
681 #define IM_MDINT	0x80 // PHY MI Register 18 Interrupt
682 #define IM_ERCV_INT	0x40 // Early Receive Interrupt
683 #define IM_EPH_INT	0x20 // Set by Ethernet Protocol Handler section
684 #define IM_RX_OVRN_INT	0x10 // Set by Receiver Overruns
685 #define IM_ALLOC_INT	0x08 // Set when allocation request is completed
686 #define IM_TX_EMPTY_INT	0x04 // Set if the TX FIFO goes empty
687 #define IM_TX_INT	0x02 // Transmit Interrupt
688 #define IM_RCV_INT	0x01 // Receive Interrupt
689 
690 
691 // Multicast Table Registers
692 /* BANK 3 */
693 #define MCAST_REG1(lp)	SMC_REG(lp, 0x0000, 3)
694 #define MCAST_REG2(lp)	SMC_REG(lp, 0x0002, 3)
695 #define MCAST_REG3(lp)	SMC_REG(lp, 0x0004, 3)
696 #define MCAST_REG4(lp)	SMC_REG(lp, 0x0006, 3)
697 
698 
699 // Management Interface Register (MII)
700 /* BANK 3 */
701 #define MII_REG(lp)		SMC_REG(lp, 0x0008, 3)
702 #define MII_MSK_CRS100	0x4000 // Disables CRS100 detection during tx half dup
703 #define MII_MDOE	0x0008 // MII Output Enable
704 #define MII_MCLK	0x0004 // MII Clock, pin MDCLK
705 #define MII_MDI		0x0002 // MII Input, pin MDI
706 #define MII_MDO		0x0001 // MII Output, pin MDO
707 
708 
709 // Revision Register
710 /* BANK 3 */
711 /* ( hi: chip id   low: rev # ) */
712 #define REV_REG(lp)		SMC_REG(lp, 0x000A, 3)
713 
714 
715 // Early RCV Register
716 /* BANK 3 */
717 /* this is NOT on SMC9192 */
718 #define ERCV_REG(lp)	SMC_REG(lp, 0x000C, 3)
719 #define ERCV_RCV_DISCRD	0x0080 // When 1 discards a packet being received
720 #define ERCV_THRESHOLD	0x001F // ERCV Threshold Mask
721 
722 
723 // External Register
724 /* BANK 7 */
725 #define EXT_REG(lp)		SMC_REG(lp, 0x0000, 7)
726 
727 
728 #define CHIP_9192	3
729 #define CHIP_9194	4
730 #define CHIP_9195	5
731 #define CHIP_9196	6
732 #define CHIP_91100	7
733 #define CHIP_91100FD	8
734 #define CHIP_91111FD	9
735 
736 static const char * chip_ids[ 16 ] =  {
737 	NULL, NULL, NULL,
738 	/* 3 */ "SMC91C90/91C92",
739 	/* 4 */ "SMC91C94",
740 	/* 5 */ "SMC91C95",
741 	/* 6 */ "SMC91C96",
742 	/* 7 */ "SMC91C100",
743 	/* 8 */ "SMC91C100FD",
744 	/* 9 */ "SMC91C11xFD",
745 	NULL, NULL, NULL,
746 	NULL, NULL, NULL};
747 
748 
749 /*
750  . Receive status bits
751 */
752 #define RS_ALGNERR	0x8000
753 #define RS_BRODCAST	0x4000
754 #define RS_BADCRC	0x2000
755 #define RS_ODDFRAME	0x1000
756 #define RS_TOOLONG	0x0800
757 #define RS_TOOSHORT	0x0400
758 #define RS_MULTICAST	0x0001
759 #define RS_ERRORS	(RS_ALGNERR | RS_BADCRC | RS_TOOLONG | RS_TOOSHORT)
760 
761 
762 /*
763  * PHY IDs
764  *  LAN83C183 == LAN91C111 Internal PHY
765  */
766 #define PHY_LAN83C183	0x0016f840
767 #define PHY_LAN83C180	0x02821c50
768 
769 /*
770  * PHY Register Addresses (LAN91C111 Internal PHY)
771  *
772  * Generic PHY registers can be found in <linux/mii.h>
773  *
774  * These phy registers are specific to our on-board phy.
775  */
776 
777 // PHY Configuration Register 1
778 #define PHY_CFG1_REG		0x10
779 #define PHY_CFG1_LNKDIS		0x8000	// 1=Rx Link Detect Function disabled
780 #define PHY_CFG1_XMTDIS		0x4000	// 1=TP Transmitter Disabled
781 #define PHY_CFG1_XMTPDN		0x2000	// 1=TP Transmitter Powered Down
782 #define PHY_CFG1_BYPSCR		0x0400	// 1=Bypass scrambler/descrambler
783 #define PHY_CFG1_UNSCDS		0x0200	// 1=Unscramble Idle Reception Disable
784 #define PHY_CFG1_EQLZR		0x0100	// 1=Rx Equalizer Disabled
785 #define PHY_CFG1_CABLE		0x0080	// 1=STP(150ohm), 0=UTP(100ohm)
786 #define PHY_CFG1_RLVL0		0x0040	// 1=Rx Squelch level reduced by 4.5db
787 #define PHY_CFG1_TLVL_SHIFT	2	// Transmit Output Level Adjust
788 #define PHY_CFG1_TLVL_MASK	0x003C
789 #define PHY_CFG1_TRF_MASK	0x0003	// Transmitter Rise/Fall time
790 
791 
792 // PHY Configuration Register 2
793 #define PHY_CFG2_REG		0x11
794 #define PHY_CFG2_APOLDIS	0x0020	// 1=Auto Polarity Correction disabled
795 #define PHY_CFG2_JABDIS		0x0010	// 1=Jabber disabled
796 #define PHY_CFG2_MREG		0x0008	// 1=Multiple register access (MII mgt)
797 #define PHY_CFG2_INTMDIO	0x0004	// 1=Interrupt signaled with MDIO pulseo
798 
799 // PHY Status Output (and Interrupt status) Register
800 #define PHY_INT_REG		0x12	// Status Output (Interrupt Status)
801 #define PHY_INT_INT		0x8000	// 1=bits have changed since last read
802 #define PHY_INT_LNKFAIL		0x4000	// 1=Link Not detected
803 #define PHY_INT_LOSSSYNC	0x2000	// 1=Descrambler has lost sync
804 #define PHY_INT_CWRD		0x1000	// 1=Invalid 4B5B code detected on rx
805 #define PHY_INT_SSD		0x0800	// 1=No Start Of Stream detected on rx
806 #define PHY_INT_ESD		0x0400	// 1=No End Of Stream detected on rx
807 #define PHY_INT_RPOL		0x0200	// 1=Reverse Polarity detected
808 #define PHY_INT_JAB		0x0100	// 1=Jabber detected
809 #define PHY_INT_SPDDET		0x0080	// 1=100Base-TX mode, 0=10Base-T mode
810 #define PHY_INT_DPLXDET		0x0040	// 1=Device in Full Duplex
811 
812 // PHY Interrupt/Status Mask Register
813 #define PHY_MASK_REG		0x13	// Interrupt Mask
814 // Uses the same bit definitions as PHY_INT_REG
815 
816 
817 /*
818  * SMC91C96 ethernet config and status registers.
819  * These are in the "attribute" space.
820  */
821 #define ECOR			0x8000
822 #define ECOR_RESET		0x80
823 #define ECOR_LEVEL_IRQ		0x40
824 #define ECOR_WR_ATTRIB		0x04
825 #define ECOR_ENABLE		0x01
826 
827 #define ECSR			0x8002
828 #define ECSR_IOIS8		0x20
829 #define ECSR_PWRDWN		0x04
830 #define ECSR_INT		0x02
831 
832 #define ATTRIB_SIZE		((64*1024) << SMC_IO_SHIFT)
833 
834 
835 /*
836  * Macros to abstract register access according to the data bus
837  * capabilities.  Please use those and not the in/out primitives.
838  * Note: the following macros do *not* select the bank -- this must
839  * be done separately as needed in the main code.  The SMC_REG() macro
840  * only uses the bank argument for debugging purposes (when enabled).
841  *
842  * Note: despite inline functions being safer, everything leading to this
843  * should preferably be macros to let BUG() display the line number in
844  * the core source code since we're interested in the top call site
845  * not in any inline function location.
846  */
847 
848 #if SMC_DEBUG > 0
849 #define SMC_REG(lp, reg, bank)					\
850 	({								\
851 		int __b = SMC_CURRENT_BANK(lp);			\
852 		if (unlikely((__b & ~0xf0) != (0x3300 | bank))) {	\
853 			pr_err("%s: bank reg screwed (0x%04x)\n",	\
854 			       CARDNAME, __b);				\
855 			BUG();						\
856 		}							\
857 		reg<<SMC_IO_SHIFT;					\
858 	})
859 #else
860 #define SMC_REG(lp, reg, bank)	(reg<<SMC_IO_SHIFT)
861 #endif
862 
863 /*
864  * Hack Alert: Some setups just can't write 8 or 16 bits reliably when not
865  * aligned to a 32 bit boundary.  I tell you that does exist!
866  * Fortunately the affected register accesses can be easily worked around
867  * since we can write zeroes to the preceding 16 bits without adverse
868  * effects and use a 32-bit access.
869  *
870  * Enforce it on any 32-bit capable setup for now.
871  */
872 #define SMC_MUST_ALIGN_WRITE(lp)	SMC_32BIT(lp)
873 
874 #define SMC_GET_PN(lp)						\
875 	(SMC_8BIT(lp)	? (SMC_inb(ioaddr, PN_REG(lp)))	\
876 				: (SMC_inw(ioaddr, PN_REG(lp)) & 0xFF))
877 
878 #define SMC_SET_PN(lp, x)						\
879 	do {								\
880 		if (SMC_MUST_ALIGN_WRITE(lp))				\
881 			SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 0, 2));	\
882 		else if (SMC_8BIT(lp))				\
883 			SMC_outb(x, ioaddr, PN_REG(lp));		\
884 		else							\
885 			SMC_outw(x, ioaddr, PN_REG(lp));		\
886 	} while (0)
887 
888 #define SMC_GET_AR(lp)						\
889 	(SMC_8BIT(lp)	? (SMC_inb(ioaddr, AR_REG(lp)))	\
890 				: (SMC_inw(ioaddr, PN_REG(lp)) >> 8))
891 
892 #define SMC_GET_TXFIFO(lp)						\
893 	(SMC_8BIT(lp)	? (SMC_inb(ioaddr, TXFIFO_REG(lp)))	\
894 				: (SMC_inw(ioaddr, TXFIFO_REG(lp)) & 0xFF))
895 
896 #define SMC_GET_RXFIFO(lp)						\
897 	(SMC_8BIT(lp)	? (SMC_inb(ioaddr, RXFIFO_REG(lp)))	\
898 				: (SMC_inw(ioaddr, TXFIFO_REG(lp)) >> 8))
899 
900 #define SMC_GET_INT(lp)						\
901 	(SMC_8BIT(lp)	? (SMC_inb(ioaddr, INT_REG(lp)))	\
902 				: (SMC_inw(ioaddr, INT_REG(lp)) & 0xFF))
903 
904 #define SMC_ACK_INT(lp, x)						\
905 	do {								\
906 		if (SMC_8BIT(lp))					\
907 			SMC_outb(x, ioaddr, INT_REG(lp));		\
908 		else {							\
909 			unsigned long __flags;				\
910 			int __mask;					\
911 			local_irq_save(__flags);			\
912 			__mask = SMC_inw(ioaddr, INT_REG(lp)) & ~0xff; \
913 			SMC_outw(__mask | (x), ioaddr, INT_REG(lp));	\
914 			local_irq_restore(__flags);			\
915 		}							\
916 	} while (0)
917 
918 #define SMC_GET_INT_MASK(lp)						\
919 	(SMC_8BIT(lp)	? (SMC_inb(ioaddr, IM_REG(lp)))	\
920 				: (SMC_inw(ioaddr, INT_REG(lp)) >> 8))
921 
922 #define SMC_SET_INT_MASK(lp, x)					\
923 	do {								\
924 		if (SMC_8BIT(lp))					\
925 			SMC_outb(x, ioaddr, IM_REG(lp));		\
926 		else							\
927 			SMC_outw((x) << 8, ioaddr, INT_REG(lp));	\
928 	} while (0)
929 
930 #define SMC_CURRENT_BANK(lp)	SMC_inw(ioaddr, BANK_SELECT)
931 
932 #define SMC_SELECT_BANK(lp, x)					\
933 	do {								\
934 		if (SMC_MUST_ALIGN_WRITE(lp))				\
935 			SMC_outl((x)<<16, ioaddr, 12<<SMC_IO_SHIFT);	\
936 		else							\
937 			SMC_outw(x, ioaddr, BANK_SELECT);		\
938 	} while (0)
939 
940 #define SMC_GET_BASE(lp)		SMC_inw(ioaddr, BASE_REG(lp))
941 
942 #define SMC_SET_BASE(lp, x)		SMC_outw(x, ioaddr, BASE_REG(lp))
943 
944 #define SMC_GET_CONFIG(lp)	SMC_inw(ioaddr, CONFIG_REG(lp))
945 
946 #define SMC_SET_CONFIG(lp, x)	SMC_outw(x, ioaddr, CONFIG_REG(lp))
947 
948 #define SMC_GET_COUNTER(lp)	SMC_inw(ioaddr, COUNTER_REG(lp))
949 
950 #define SMC_GET_CTL(lp)		SMC_inw(ioaddr, CTL_REG(lp))
951 
952 #define SMC_SET_CTL(lp, x)		SMC_outw(x, ioaddr, CTL_REG(lp))
953 
954 #define SMC_GET_MII(lp)		SMC_inw(ioaddr, MII_REG(lp))
955 
956 #define SMC_GET_GP(lp)		SMC_inw(ioaddr, GP_REG(lp))
957 
958 #define SMC_SET_GP(lp, x)						\
959 	do {								\
960 		if (SMC_MUST_ALIGN_WRITE(lp))				\
961 			SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 8, 1));	\
962 		else							\
963 			SMC_outw(x, ioaddr, GP_REG(lp));		\
964 	} while (0)
965 
966 #define SMC_SET_MII(lp, x)		SMC_outw(x, ioaddr, MII_REG(lp))
967 
968 #define SMC_GET_MIR(lp)		SMC_inw(ioaddr, MIR_REG(lp))
969 
970 #define SMC_SET_MIR(lp, x)		SMC_outw(x, ioaddr, MIR_REG(lp))
971 
972 #define SMC_GET_MMU_CMD(lp)	SMC_inw(ioaddr, MMU_CMD_REG(lp))
973 
974 #define SMC_SET_MMU_CMD(lp, x)	SMC_outw(x, ioaddr, MMU_CMD_REG(lp))
975 
976 #define SMC_GET_FIFO(lp)		SMC_inw(ioaddr, FIFO_REG(lp))
977 
978 #define SMC_GET_PTR(lp)		SMC_inw(ioaddr, PTR_REG(lp))
979 
980 #define SMC_SET_PTR(lp, x)						\
981 	do {								\
982 		if (SMC_MUST_ALIGN_WRITE(lp))				\
983 			SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 4, 2));	\
984 		else							\
985 			SMC_outw(x, ioaddr, PTR_REG(lp));		\
986 	} while (0)
987 
988 #define SMC_GET_EPH_STATUS(lp)	SMC_inw(ioaddr, EPH_STATUS_REG(lp))
989 
990 #define SMC_GET_RCR(lp)		SMC_inw(ioaddr, RCR_REG(lp))
991 
992 #define SMC_SET_RCR(lp, x)		SMC_outw(x, ioaddr, RCR_REG(lp))
993 
994 #define SMC_GET_REV(lp)		SMC_inw(ioaddr, REV_REG(lp))
995 
996 #define SMC_GET_RPC(lp)		SMC_inw(ioaddr, RPC_REG(lp))
997 
998 #define SMC_SET_RPC(lp, x)						\
999 	do {								\
1000 		if (SMC_MUST_ALIGN_WRITE(lp))				\
1001 			SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 8, 0));	\
1002 		else							\
1003 			SMC_outw(x, ioaddr, RPC_REG(lp));		\
1004 	} while (0)
1005 
1006 #define SMC_GET_TCR(lp)		SMC_inw(ioaddr, TCR_REG(lp))
1007 
1008 #define SMC_SET_TCR(lp, x)		SMC_outw(x, ioaddr, TCR_REG(lp))
1009 
1010 #ifndef SMC_GET_MAC_ADDR
1011 #define SMC_GET_MAC_ADDR(lp, addr)					\
1012 	do {								\
1013 		unsigned int __v;					\
1014 		__v = SMC_inw(ioaddr, ADDR0_REG(lp));			\
1015 		addr[0] = __v; addr[1] = __v >> 8;			\
1016 		__v = SMC_inw(ioaddr, ADDR1_REG(lp));			\
1017 		addr[2] = __v; addr[3] = __v >> 8;			\
1018 		__v = SMC_inw(ioaddr, ADDR2_REG(lp));			\
1019 		addr[4] = __v; addr[5] = __v >> 8;			\
1020 	} while (0)
1021 #endif
1022 
1023 #define SMC_SET_MAC_ADDR(lp, addr)					\
1024 	do {								\
1025 		SMC_outw(addr[0]|(addr[1] << 8), ioaddr, ADDR0_REG(lp)); \
1026 		SMC_outw(addr[2]|(addr[3] << 8), ioaddr, ADDR1_REG(lp)); \
1027 		SMC_outw(addr[4]|(addr[5] << 8), ioaddr, ADDR2_REG(lp)); \
1028 	} while (0)
1029 
1030 #define SMC_SET_MCAST(lp, x)						\
1031 	do {								\
1032 		const unsigned char *mt = (x);				\
1033 		SMC_outw(mt[0] | (mt[1] << 8), ioaddr, MCAST_REG1(lp)); \
1034 		SMC_outw(mt[2] | (mt[3] << 8), ioaddr, MCAST_REG2(lp)); \
1035 		SMC_outw(mt[4] | (mt[5] << 8), ioaddr, MCAST_REG3(lp)); \
1036 		SMC_outw(mt[6] | (mt[7] << 8), ioaddr, MCAST_REG4(lp)); \
1037 	} while (0)
1038 
1039 #define SMC_PUT_PKT_HDR(lp, status, length)				\
1040 	do {								\
1041 		if (SMC_32BIT(lp))					\
1042 			SMC_outl((status) | (length)<<16, ioaddr,	\
1043 				 DATA_REG(lp));			\
1044 		else {							\
1045 			SMC_outw(status, ioaddr, DATA_REG(lp));	\
1046 			SMC_outw(length, ioaddr, DATA_REG(lp));	\
1047 		}							\
1048 	} while (0)
1049 
1050 #define SMC_GET_PKT_HDR(lp, status, length)				\
1051 	do {								\
1052 		if (SMC_32BIT(lp)) {				\
1053 			unsigned int __val = SMC_inl(ioaddr, DATA_REG(lp)); \
1054 			(status) = __val & 0xffff;			\
1055 			(length) = __val >> 16;				\
1056 		} else {						\
1057 			(status) = SMC_inw(ioaddr, DATA_REG(lp));	\
1058 			(length) = SMC_inw(ioaddr, DATA_REG(lp));	\
1059 		}							\
1060 	} while (0)
1061 
1062 #define SMC_PUSH_DATA(lp, p, l)					\
1063 	do {								\
1064 		if (SMC_32BIT(lp)) {				\
1065 			void *__ptr = (p);				\
1066 			int __len = (l);				\
1067 			void __iomem *__ioaddr = ioaddr;		\
1068 			if (__len >= 2 && (unsigned long)__ptr & 2) {	\
1069 				__len -= 2;				\
1070 				SMC_outsw(ioaddr, DATA_REG(lp), __ptr, 1); \
1071 				__ptr += 2;				\
1072 			}						\
1073 			if (SMC_CAN_USE_DATACS && lp->datacs)		\
1074 				__ioaddr = lp->datacs;			\
1075 			SMC_outsl(__ioaddr, DATA_REG(lp), __ptr, __len>>2); \
1076 			if (__len & 2) {				\
1077 				__ptr += (__len & ~3);			\
1078 				SMC_outsw(ioaddr, DATA_REG(lp), __ptr, 1); \
1079 			}						\
1080 		} else if (SMC_16BIT(lp))				\
1081 			SMC_outsw(ioaddr, DATA_REG(lp), p, (l) >> 1);	\
1082 		else if (SMC_8BIT(lp))				\
1083 			SMC_outsb(ioaddr, DATA_REG(lp), p, l);	\
1084 	} while (0)
1085 
1086 #define SMC_PULL_DATA(lp, p, l)					\
1087 	do {								\
1088 		if (SMC_32BIT(lp)) {				\
1089 			void *__ptr = (p);				\
1090 			int __len = (l);				\
1091 			void __iomem *__ioaddr = ioaddr;		\
1092 			if ((unsigned long)__ptr & 2) {			\
1093 				/*					\
1094 				 * We want 32bit alignment here.	\
1095 				 * Since some buses perform a full	\
1096 				 * 32bit fetch even for 16bit data	\
1097 				 * we can't use SMC_inw() here.		\
1098 				 * Back both source (on-chip) and	\
1099 				 * destination pointers of 2 bytes.	\
1100 				 * This is possible since the call to	\
1101 				 * SMC_GET_PKT_HDR() already advanced	\
1102 				 * the source pointer of 4 bytes, and	\
1103 				 * the skb_reserve(skb, 2) advanced	\
1104 				 * the destination pointer of 2 bytes.	\
1105 				 */					\
1106 				__ptr -= 2;				\
1107 				__len += 2;				\
1108 				SMC_SET_PTR(lp,			\
1109 					2|PTR_READ|PTR_RCV|PTR_AUTOINC); \
1110 			}						\
1111 			if (SMC_CAN_USE_DATACS && lp->datacs)		\
1112 				__ioaddr = lp->datacs;			\
1113 			__len += 2;					\
1114 			SMC_insl(__ioaddr, DATA_REG(lp), __ptr, __len>>2); \
1115 		} else if (SMC_16BIT(lp))				\
1116 			SMC_insw(ioaddr, DATA_REG(lp), p, (l) >> 1);	\
1117 		else if (SMC_8BIT(lp))				\
1118 			SMC_insb(ioaddr, DATA_REG(lp), p, l);		\
1119 	} while (0)
1120 
1121 #endif  /* _SMC91X_H_ */
1122