1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * smc91x.c 4 * This is a driver for SMSC's 91C9x/91C1xx single-chip Ethernet devices. 5 * 6 * Copyright (C) 1996 by Erik Stahlman 7 * Copyright (C) 2001 Standard Microsystems Corporation 8 * Developed by Simple Network Magic Corporation 9 * Copyright (C) 2003 Monta Vista Software, Inc. 10 * Unified SMC91x driver by Nicolas Pitre 11 * 12 * Arguments: 13 * io = for the base address 14 * irq = for the IRQ 15 * nowait = 0 for normal wait states, 1 eliminates additional wait states 16 * 17 * original author: 18 * Erik Stahlman <erik@vt.edu> 19 * 20 * hardware multicast code: 21 * Peter Cammaert <pc@denkart.be> 22 * 23 * contributors: 24 * Daris A Nevil <dnevil@snmc.com> 25 * Nicolas Pitre <nico@fluxnic.net> 26 * Russell King <rmk@arm.linux.org.uk> 27 * 28 * History: 29 * 08/20/00 Arnaldo Melo fix kfree(skb) in smc_hardware_send_packet 30 * 12/15/00 Christian Jullien fix "Warning: kfree_skb on hard IRQ" 31 * 03/16/01 Daris A Nevil modified smc9194.c for use with LAN91C111 32 * 08/22/01 Scott Anderson merge changes from smc9194 to smc91111 33 * 08/21/01 Pramod B Bhardwaj added support for RevB of LAN91C111 34 * 12/20/01 Jeff Sutherland initial port to Xscale PXA with DMA support 35 * 04/07/03 Nicolas Pitre unified SMC91x driver, killed irq races, 36 * more bus abstraction, big cleanup, etc. 37 * 29/09/03 Russell King - add driver model support 38 * - ethtool support 39 * - convert to use generic MII interface 40 * - add link up/down notification 41 * - don't try to handle full negotiation in 42 * smc_phy_configure 43 * - clean up (and fix stack overrun) in PHY 44 * MII read/write functions 45 * 22/09/04 Nicolas Pitre big update (see commit log for details) 46 */ 47 static const char version[] = 48 "smc91x.c: v1.1, sep 22 2004 by Nicolas Pitre <nico@fluxnic.net>"; 49 50 /* Debugging level */ 51 #ifndef SMC_DEBUG 52 #define SMC_DEBUG 0 53 #endif 54 55 56 #include <linux/module.h> 57 #include <linux/kernel.h> 58 #include <linux/sched.h> 59 #include <linux/delay.h> 60 #include <linux/gpio/consumer.h> 61 #include <linux/interrupt.h> 62 #include <linux/irq.h> 63 #include <linux/errno.h> 64 #include <linux/ioport.h> 65 #include <linux/crc32.h> 66 #include <linux/platform_device.h> 67 #include <linux/spinlock.h> 68 #include <linux/ethtool.h> 69 #include <linux/mii.h> 70 #include <linux/workqueue.h> 71 #include <linux/of.h> 72 #include <linux/of_device.h> 73 74 #include <linux/netdevice.h> 75 #include <linux/etherdevice.h> 76 #include <linux/skbuff.h> 77 78 #include <asm/io.h> 79 80 #include "smc91x.h" 81 82 #if defined(CONFIG_ASSABET_NEPONSET) 83 #include <mach/assabet.h> 84 #include <mach/neponset.h> 85 #endif 86 87 #ifndef SMC_NOWAIT 88 # define SMC_NOWAIT 0 89 #endif 90 static int nowait = SMC_NOWAIT; 91 module_param(nowait, int, 0400); 92 MODULE_PARM_DESC(nowait, "set to 1 for no wait state"); 93 94 /* 95 * Transmit timeout, default 5 seconds. 96 */ 97 static int watchdog = 1000; 98 module_param(watchdog, int, 0400); 99 MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds"); 100 101 MODULE_LICENSE("GPL"); 102 MODULE_ALIAS("platform:smc91x"); 103 104 /* 105 * The internal workings of the driver. If you are changing anything 106 * here with the SMC stuff, you should have the datasheet and know 107 * what you are doing. 108 */ 109 #define CARDNAME "smc91x" 110 111 /* 112 * Use power-down feature of the chip 113 */ 114 #define POWER_DOWN 1 115 116 /* 117 * Wait time for memory to be free. This probably shouldn't be 118 * tuned that much, as waiting for this means nothing else happens 119 * in the system 120 */ 121 #define MEMORY_WAIT_TIME 16 122 123 /* 124 * The maximum number of processing loops allowed for each call to the 125 * IRQ handler. 126 */ 127 #define MAX_IRQ_LOOPS 8 128 129 /* 130 * This selects whether TX packets are sent one by one to the SMC91x internal 131 * memory and throttled until transmission completes. This may prevent 132 * RX overruns a litle by keeping much of the memory free for RX packets 133 * but to the expense of reduced TX throughput and increased IRQ overhead. 134 * Note this is not a cure for a too slow data bus or too high IRQ latency. 135 */ 136 #define THROTTLE_TX_PKTS 0 137 138 /* 139 * The MII clock high/low times. 2x this number gives the MII clock period 140 * in microseconds. (was 50, but this gives 6.4ms for each MII transaction!) 141 */ 142 #define MII_DELAY 1 143 144 #define DBG(n, dev, fmt, ...) \ 145 do { \ 146 if (SMC_DEBUG >= (n)) \ 147 netdev_dbg(dev, fmt, ##__VA_ARGS__); \ 148 } while (0) 149 150 #define PRINTK(dev, fmt, ...) \ 151 do { \ 152 if (SMC_DEBUG > 0) \ 153 netdev_info(dev, fmt, ##__VA_ARGS__); \ 154 else \ 155 netdev_dbg(dev, fmt, ##__VA_ARGS__); \ 156 } while (0) 157 158 #if SMC_DEBUG > 3 159 static void PRINT_PKT(u_char *buf, int length) 160 { 161 int i; 162 int remainder; 163 int lines; 164 165 lines = length / 16; 166 remainder = length % 16; 167 168 for (i = 0; i < lines ; i ++) { 169 int cur; 170 printk(KERN_DEBUG); 171 for (cur = 0; cur < 8; cur++) { 172 u_char a, b; 173 a = *buf++; 174 b = *buf++; 175 pr_cont("%02x%02x ", a, b); 176 } 177 pr_cont("\n"); 178 } 179 printk(KERN_DEBUG); 180 for (i = 0; i < remainder/2 ; i++) { 181 u_char a, b; 182 a = *buf++; 183 b = *buf++; 184 pr_cont("%02x%02x ", a, b); 185 } 186 pr_cont("\n"); 187 } 188 #else 189 static inline void PRINT_PKT(u_char *buf, int length) { } 190 #endif 191 192 193 /* this enables an interrupt in the interrupt mask register */ 194 #define SMC_ENABLE_INT(lp, x) do { \ 195 unsigned char mask; \ 196 unsigned long smc_enable_flags; \ 197 spin_lock_irqsave(&lp->lock, smc_enable_flags); \ 198 mask = SMC_GET_INT_MASK(lp); \ 199 mask |= (x); \ 200 SMC_SET_INT_MASK(lp, mask); \ 201 spin_unlock_irqrestore(&lp->lock, smc_enable_flags); \ 202 } while (0) 203 204 /* this disables an interrupt from the interrupt mask register */ 205 #define SMC_DISABLE_INT(lp, x) do { \ 206 unsigned char mask; \ 207 unsigned long smc_disable_flags; \ 208 spin_lock_irqsave(&lp->lock, smc_disable_flags); \ 209 mask = SMC_GET_INT_MASK(lp); \ 210 mask &= ~(x); \ 211 SMC_SET_INT_MASK(lp, mask); \ 212 spin_unlock_irqrestore(&lp->lock, smc_disable_flags); \ 213 } while (0) 214 215 /* 216 * Wait while MMU is busy. This is usually in the order of a few nanosecs 217 * if at all, but let's avoid deadlocking the system if the hardware 218 * decides to go south. 219 */ 220 #define SMC_WAIT_MMU_BUSY(lp) do { \ 221 if (unlikely(SMC_GET_MMU_CMD(lp) & MC_BUSY)) { \ 222 unsigned long timeout = jiffies + 2; \ 223 while (SMC_GET_MMU_CMD(lp) & MC_BUSY) { \ 224 if (time_after(jiffies, timeout)) { \ 225 netdev_dbg(dev, "timeout %s line %d\n", \ 226 __FILE__, __LINE__); \ 227 break; \ 228 } \ 229 cpu_relax(); \ 230 } \ 231 } \ 232 } while (0) 233 234 235 /* 236 * this does a soft reset on the device 237 */ 238 static void smc_reset(struct net_device *dev) 239 { 240 struct smc_local *lp = netdev_priv(dev); 241 void __iomem *ioaddr = lp->base; 242 unsigned int ctl, cfg; 243 struct sk_buff *pending_skb; 244 245 DBG(2, dev, "%s\n", __func__); 246 247 /* Disable all interrupts, block TX tasklet */ 248 spin_lock_irq(&lp->lock); 249 SMC_SELECT_BANK(lp, 2); 250 SMC_SET_INT_MASK(lp, 0); 251 pending_skb = lp->pending_tx_skb; 252 lp->pending_tx_skb = NULL; 253 spin_unlock_irq(&lp->lock); 254 255 /* free any pending tx skb */ 256 if (pending_skb) { 257 dev_kfree_skb(pending_skb); 258 dev->stats.tx_errors++; 259 dev->stats.tx_aborted_errors++; 260 } 261 262 /* 263 * This resets the registers mostly to defaults, but doesn't 264 * affect EEPROM. That seems unnecessary 265 */ 266 SMC_SELECT_BANK(lp, 0); 267 SMC_SET_RCR(lp, RCR_SOFTRST); 268 269 /* 270 * Setup the Configuration Register 271 * This is necessary because the CONFIG_REG is not affected 272 * by a soft reset 273 */ 274 SMC_SELECT_BANK(lp, 1); 275 276 cfg = CONFIG_DEFAULT; 277 278 /* 279 * Setup for fast accesses if requested. If the card/system 280 * can't handle it then there will be no recovery except for 281 * a hard reset or power cycle 282 */ 283 if (lp->cfg.flags & SMC91X_NOWAIT) 284 cfg |= CONFIG_NO_WAIT; 285 286 /* 287 * Release from possible power-down state 288 * Configuration register is not affected by Soft Reset 289 */ 290 cfg |= CONFIG_EPH_POWER_EN; 291 292 SMC_SET_CONFIG(lp, cfg); 293 294 /* this should pause enough for the chip to be happy */ 295 /* 296 * elaborate? What does the chip _need_? --jgarzik 297 * 298 * This seems to be undocumented, but something the original 299 * driver(s) have always done. Suspect undocumented timing 300 * info/determined empirically. --rmk 301 */ 302 udelay(1); 303 304 /* Disable transmit and receive functionality */ 305 SMC_SELECT_BANK(lp, 0); 306 SMC_SET_RCR(lp, RCR_CLEAR); 307 SMC_SET_TCR(lp, TCR_CLEAR); 308 309 SMC_SELECT_BANK(lp, 1); 310 ctl = SMC_GET_CTL(lp) | CTL_LE_ENABLE; 311 312 /* 313 * Set the control register to automatically release successfully 314 * transmitted packets, to make the best use out of our limited 315 * memory 316 */ 317 if(!THROTTLE_TX_PKTS) 318 ctl |= CTL_AUTO_RELEASE; 319 else 320 ctl &= ~CTL_AUTO_RELEASE; 321 SMC_SET_CTL(lp, ctl); 322 323 /* Reset the MMU */ 324 SMC_SELECT_BANK(lp, 2); 325 SMC_SET_MMU_CMD(lp, MC_RESET); 326 SMC_WAIT_MMU_BUSY(lp); 327 } 328 329 /* 330 * Enable Interrupts, Receive, and Transmit 331 */ 332 static void smc_enable(struct net_device *dev) 333 { 334 struct smc_local *lp = netdev_priv(dev); 335 void __iomem *ioaddr = lp->base; 336 int mask; 337 338 DBG(2, dev, "%s\n", __func__); 339 340 /* see the header file for options in TCR/RCR DEFAULT */ 341 SMC_SELECT_BANK(lp, 0); 342 SMC_SET_TCR(lp, lp->tcr_cur_mode); 343 SMC_SET_RCR(lp, lp->rcr_cur_mode); 344 345 SMC_SELECT_BANK(lp, 1); 346 SMC_SET_MAC_ADDR(lp, dev->dev_addr); 347 348 /* now, enable interrupts */ 349 mask = IM_EPH_INT|IM_RX_OVRN_INT|IM_RCV_INT; 350 if (lp->version >= (CHIP_91100 << 4)) 351 mask |= IM_MDINT; 352 SMC_SELECT_BANK(lp, 2); 353 SMC_SET_INT_MASK(lp, mask); 354 355 /* 356 * From this point the register bank must _NOT_ be switched away 357 * to something else than bank 2 without proper locking against 358 * races with any tasklet or interrupt handlers until smc_shutdown() 359 * or smc_reset() is called. 360 */ 361 } 362 363 /* 364 * this puts the device in an inactive state 365 */ 366 static void smc_shutdown(struct net_device *dev) 367 { 368 struct smc_local *lp = netdev_priv(dev); 369 void __iomem *ioaddr = lp->base; 370 struct sk_buff *pending_skb; 371 372 DBG(2, dev, "%s: %s\n", CARDNAME, __func__); 373 374 /* no more interrupts for me */ 375 spin_lock_irq(&lp->lock); 376 SMC_SELECT_BANK(lp, 2); 377 SMC_SET_INT_MASK(lp, 0); 378 pending_skb = lp->pending_tx_skb; 379 lp->pending_tx_skb = NULL; 380 spin_unlock_irq(&lp->lock); 381 dev_kfree_skb(pending_skb); 382 383 /* and tell the card to stay away from that nasty outside world */ 384 SMC_SELECT_BANK(lp, 0); 385 SMC_SET_RCR(lp, RCR_CLEAR); 386 SMC_SET_TCR(lp, TCR_CLEAR); 387 388 #ifdef POWER_DOWN 389 /* finally, shut the chip down */ 390 SMC_SELECT_BANK(lp, 1); 391 SMC_SET_CONFIG(lp, SMC_GET_CONFIG(lp) & ~CONFIG_EPH_POWER_EN); 392 #endif 393 } 394 395 /* 396 * This is the procedure to handle the receipt of a packet. 397 */ 398 static inline void smc_rcv(struct net_device *dev) 399 { 400 struct smc_local *lp = netdev_priv(dev); 401 void __iomem *ioaddr = lp->base; 402 unsigned int packet_number, status, packet_len; 403 404 DBG(3, dev, "%s\n", __func__); 405 406 packet_number = SMC_GET_RXFIFO(lp); 407 if (unlikely(packet_number & RXFIFO_REMPTY)) { 408 PRINTK(dev, "smc_rcv with nothing on FIFO.\n"); 409 return; 410 } 411 412 /* read from start of packet */ 413 SMC_SET_PTR(lp, PTR_READ | PTR_RCV | PTR_AUTOINC); 414 415 /* First two words are status and packet length */ 416 SMC_GET_PKT_HDR(lp, status, packet_len); 417 packet_len &= 0x07ff; /* mask off top bits */ 418 DBG(2, dev, "RX PNR 0x%x STATUS 0x%04x LENGTH 0x%04x (%d)\n", 419 packet_number, status, packet_len, packet_len); 420 421 back: 422 if (unlikely(packet_len < 6 || status & RS_ERRORS)) { 423 if (status & RS_TOOLONG && packet_len <= (1514 + 4 + 6)) { 424 /* accept VLAN packets */ 425 status &= ~RS_TOOLONG; 426 goto back; 427 } 428 if (packet_len < 6) { 429 /* bloody hardware */ 430 netdev_err(dev, "fubar (rxlen %u status %x\n", 431 packet_len, status); 432 status |= RS_TOOSHORT; 433 } 434 SMC_WAIT_MMU_BUSY(lp); 435 SMC_SET_MMU_CMD(lp, MC_RELEASE); 436 dev->stats.rx_errors++; 437 if (status & RS_ALGNERR) 438 dev->stats.rx_frame_errors++; 439 if (status & (RS_TOOSHORT | RS_TOOLONG)) 440 dev->stats.rx_length_errors++; 441 if (status & RS_BADCRC) 442 dev->stats.rx_crc_errors++; 443 } else { 444 struct sk_buff *skb; 445 unsigned char *data; 446 unsigned int data_len; 447 448 /* set multicast stats */ 449 if (status & RS_MULTICAST) 450 dev->stats.multicast++; 451 452 /* 453 * Actual payload is packet_len - 6 (or 5 if odd byte). 454 * We want skb_reserve(2) and the final ctrl word 455 * (2 bytes, possibly containing the payload odd byte). 456 * Furthermore, we add 2 bytes to allow rounding up to 457 * multiple of 4 bytes on 32 bit buses. 458 * Hence packet_len - 6 + 2 + 2 + 2. 459 */ 460 skb = netdev_alloc_skb(dev, packet_len); 461 if (unlikely(skb == NULL)) { 462 SMC_WAIT_MMU_BUSY(lp); 463 SMC_SET_MMU_CMD(lp, MC_RELEASE); 464 dev->stats.rx_dropped++; 465 return; 466 } 467 468 /* Align IP header to 32 bits */ 469 skb_reserve(skb, 2); 470 471 /* BUG: the LAN91C111 rev A never sets this bit. Force it. */ 472 if (lp->version == 0x90) 473 status |= RS_ODDFRAME; 474 475 /* 476 * If odd length: packet_len - 5, 477 * otherwise packet_len - 6. 478 * With the trailing ctrl byte it's packet_len - 4. 479 */ 480 data_len = packet_len - ((status & RS_ODDFRAME) ? 5 : 6); 481 data = skb_put(skb, data_len); 482 SMC_PULL_DATA(lp, data, packet_len - 4); 483 484 SMC_WAIT_MMU_BUSY(lp); 485 SMC_SET_MMU_CMD(lp, MC_RELEASE); 486 487 PRINT_PKT(data, packet_len - 4); 488 489 skb->protocol = eth_type_trans(skb, dev); 490 netif_rx(skb); 491 dev->stats.rx_packets++; 492 dev->stats.rx_bytes += data_len; 493 } 494 } 495 496 #ifdef CONFIG_SMP 497 /* 498 * On SMP we have the following problem: 499 * 500 * A = smc_hardware_send_pkt() 501 * B = smc_hard_start_xmit() 502 * C = smc_interrupt() 503 * 504 * A and B can never be executed simultaneously. However, at least on UP, 505 * it is possible (and even desirable) for C to interrupt execution of 506 * A or B in order to have better RX reliability and avoid overruns. 507 * C, just like A and B, must have exclusive access to the chip and 508 * each of them must lock against any other concurrent access. 509 * Unfortunately this is not possible to have C suspend execution of A or 510 * B taking place on another CPU. On UP this is no an issue since A and B 511 * are run from softirq context and C from hard IRQ context, and there is 512 * no other CPU where concurrent access can happen. 513 * If ever there is a way to force at least B and C to always be executed 514 * on the same CPU then we could use read/write locks to protect against 515 * any other concurrent access and C would always interrupt B. But life 516 * isn't that easy in a SMP world... 517 */ 518 #define smc_special_trylock(lock, flags) \ 519 ({ \ 520 int __ret; \ 521 local_irq_save(flags); \ 522 __ret = spin_trylock(lock); \ 523 if (!__ret) \ 524 local_irq_restore(flags); \ 525 __ret; \ 526 }) 527 #define smc_special_lock(lock, flags) spin_lock_irqsave(lock, flags) 528 #define smc_special_unlock(lock, flags) spin_unlock_irqrestore(lock, flags) 529 #else 530 #define smc_special_trylock(lock, flags) ((void)flags, true) 531 #define smc_special_lock(lock, flags) do { flags = 0; } while (0) 532 #define smc_special_unlock(lock, flags) do { flags = 0; } while (0) 533 #endif 534 535 /* 536 * This is called to actually send a packet to the chip. 537 */ 538 static void smc_hardware_send_pkt(struct tasklet_struct *t) 539 { 540 struct smc_local *lp = from_tasklet(lp, t, tx_task); 541 struct net_device *dev = lp->dev; 542 void __iomem *ioaddr = lp->base; 543 struct sk_buff *skb; 544 unsigned int packet_no, len; 545 unsigned char *buf; 546 unsigned long flags; 547 548 DBG(3, dev, "%s\n", __func__); 549 550 if (!smc_special_trylock(&lp->lock, flags)) { 551 netif_stop_queue(dev); 552 tasklet_schedule(&lp->tx_task); 553 return; 554 } 555 556 skb = lp->pending_tx_skb; 557 if (unlikely(!skb)) { 558 smc_special_unlock(&lp->lock, flags); 559 return; 560 } 561 lp->pending_tx_skb = NULL; 562 563 packet_no = SMC_GET_AR(lp); 564 if (unlikely(packet_no & AR_FAILED)) { 565 netdev_err(dev, "Memory allocation failed.\n"); 566 dev->stats.tx_errors++; 567 dev->stats.tx_fifo_errors++; 568 smc_special_unlock(&lp->lock, flags); 569 goto done; 570 } 571 572 /* point to the beginning of the packet */ 573 SMC_SET_PN(lp, packet_no); 574 SMC_SET_PTR(lp, PTR_AUTOINC); 575 576 buf = skb->data; 577 len = skb->len; 578 DBG(2, dev, "TX PNR 0x%x LENGTH 0x%04x (%d) BUF 0x%p\n", 579 packet_no, len, len, buf); 580 PRINT_PKT(buf, len); 581 582 /* 583 * Send the packet length (+6 for status words, length, and ctl. 584 * The card will pad to 64 bytes with zeroes if packet is too small. 585 */ 586 SMC_PUT_PKT_HDR(lp, 0, len + 6); 587 588 /* send the actual data */ 589 SMC_PUSH_DATA(lp, buf, len & ~1); 590 591 /* Send final ctl word with the last byte if there is one */ 592 SMC_outw(lp, ((len & 1) ? (0x2000 | buf[len - 1]) : 0), ioaddr, 593 DATA_REG(lp)); 594 595 /* 596 * If THROTTLE_TX_PKTS is set, we stop the queue here. This will 597 * have the effect of having at most one packet queued for TX 598 * in the chip's memory at all time. 599 * 600 * If THROTTLE_TX_PKTS is not set then the queue is stopped only 601 * when memory allocation (MC_ALLOC) does not succeed right away. 602 */ 603 if (THROTTLE_TX_PKTS) 604 netif_stop_queue(dev); 605 606 /* queue the packet for TX */ 607 SMC_SET_MMU_CMD(lp, MC_ENQUEUE); 608 smc_special_unlock(&lp->lock, flags); 609 610 netif_trans_update(dev); 611 dev->stats.tx_packets++; 612 dev->stats.tx_bytes += len; 613 614 SMC_ENABLE_INT(lp, IM_TX_INT | IM_TX_EMPTY_INT); 615 616 done: if (!THROTTLE_TX_PKTS) 617 netif_wake_queue(dev); 618 619 dev_consume_skb_any(skb); 620 } 621 622 /* 623 * Since I am not sure if I will have enough room in the chip's ram 624 * to store the packet, I call this routine which either sends it 625 * now, or set the card to generates an interrupt when ready 626 * for the packet. 627 */ 628 static netdev_tx_t 629 smc_hard_start_xmit(struct sk_buff *skb, struct net_device *dev) 630 { 631 struct smc_local *lp = netdev_priv(dev); 632 void __iomem *ioaddr = lp->base; 633 unsigned int numPages, poll_count, status; 634 unsigned long flags; 635 636 DBG(3, dev, "%s\n", __func__); 637 638 BUG_ON(lp->pending_tx_skb != NULL); 639 640 /* 641 * The MMU wants the number of pages to be the number of 256 bytes 642 * 'pages', minus 1 (since a packet can't ever have 0 pages :)) 643 * 644 * The 91C111 ignores the size bits, but earlier models don't. 645 * 646 * Pkt size for allocating is data length +6 (for additional status 647 * words, length and ctl) 648 * 649 * If odd size then last byte is included in ctl word. 650 */ 651 numPages = ((skb->len & ~1) + (6 - 1)) >> 8; 652 if (unlikely(numPages > 7)) { 653 netdev_warn(dev, "Far too big packet error.\n"); 654 dev->stats.tx_errors++; 655 dev->stats.tx_dropped++; 656 dev_kfree_skb_any(skb); 657 return NETDEV_TX_OK; 658 } 659 660 smc_special_lock(&lp->lock, flags); 661 662 /* now, try to allocate the memory */ 663 SMC_SET_MMU_CMD(lp, MC_ALLOC | numPages); 664 665 /* 666 * Poll the chip for a short amount of time in case the 667 * allocation succeeds quickly. 668 */ 669 poll_count = MEMORY_WAIT_TIME; 670 do { 671 status = SMC_GET_INT(lp); 672 if (status & IM_ALLOC_INT) { 673 SMC_ACK_INT(lp, IM_ALLOC_INT); 674 break; 675 } 676 } while (--poll_count); 677 678 smc_special_unlock(&lp->lock, flags); 679 680 lp->pending_tx_skb = skb; 681 if (!poll_count) { 682 /* oh well, wait until the chip finds memory later */ 683 netif_stop_queue(dev); 684 DBG(2, dev, "TX memory allocation deferred.\n"); 685 SMC_ENABLE_INT(lp, IM_ALLOC_INT); 686 } else { 687 /* 688 * Allocation succeeded: push packet to the chip's own memory 689 * immediately. 690 */ 691 smc_hardware_send_pkt(&lp->tx_task); 692 } 693 694 return NETDEV_TX_OK; 695 } 696 697 /* 698 * This handles a TX interrupt, which is only called when: 699 * - a TX error occurred, or 700 * - CTL_AUTO_RELEASE is not set and TX of a packet completed. 701 */ 702 static void smc_tx(struct net_device *dev) 703 { 704 struct smc_local *lp = netdev_priv(dev); 705 void __iomem *ioaddr = lp->base; 706 unsigned int saved_packet, packet_no, tx_status; 707 unsigned int pkt_len __always_unused; 708 709 DBG(3, dev, "%s\n", __func__); 710 711 /* If the TX FIFO is empty then nothing to do */ 712 packet_no = SMC_GET_TXFIFO(lp); 713 if (unlikely(packet_no & TXFIFO_TEMPTY)) { 714 PRINTK(dev, "smc_tx with nothing on FIFO.\n"); 715 return; 716 } 717 718 /* select packet to read from */ 719 saved_packet = SMC_GET_PN(lp); 720 SMC_SET_PN(lp, packet_no); 721 722 /* read the first word (status word) from this packet */ 723 SMC_SET_PTR(lp, PTR_AUTOINC | PTR_READ); 724 SMC_GET_PKT_HDR(lp, tx_status, pkt_len); 725 DBG(2, dev, "TX STATUS 0x%04x PNR 0x%02x\n", 726 tx_status, packet_no); 727 728 if (!(tx_status & ES_TX_SUC)) 729 dev->stats.tx_errors++; 730 731 if (tx_status & ES_LOSTCARR) 732 dev->stats.tx_carrier_errors++; 733 734 if (tx_status & (ES_LATCOL | ES_16COL)) { 735 PRINTK(dev, "%s occurred on last xmit\n", 736 (tx_status & ES_LATCOL) ? 737 "late collision" : "too many collisions"); 738 dev->stats.tx_window_errors++; 739 if (!(dev->stats.tx_window_errors & 63) && net_ratelimit()) { 740 netdev_info(dev, "unexpectedly large number of bad collisions. Please check duplex setting.\n"); 741 } 742 } 743 744 /* kill the packet */ 745 SMC_WAIT_MMU_BUSY(lp); 746 SMC_SET_MMU_CMD(lp, MC_FREEPKT); 747 748 /* Don't restore Packet Number Reg until busy bit is cleared */ 749 SMC_WAIT_MMU_BUSY(lp); 750 SMC_SET_PN(lp, saved_packet); 751 752 /* re-enable transmit */ 753 SMC_SELECT_BANK(lp, 0); 754 SMC_SET_TCR(lp, lp->tcr_cur_mode); 755 SMC_SELECT_BANK(lp, 2); 756 } 757 758 759 /*---PHY CONTROL AND CONFIGURATION-----------------------------------------*/ 760 761 static void smc_mii_out(struct net_device *dev, unsigned int val, int bits) 762 { 763 struct smc_local *lp = netdev_priv(dev); 764 void __iomem *ioaddr = lp->base; 765 unsigned int mii_reg, mask; 766 767 mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO); 768 mii_reg |= MII_MDOE; 769 770 for (mask = 1 << (bits - 1); mask; mask >>= 1) { 771 if (val & mask) 772 mii_reg |= MII_MDO; 773 else 774 mii_reg &= ~MII_MDO; 775 776 SMC_SET_MII(lp, mii_reg); 777 udelay(MII_DELAY); 778 SMC_SET_MII(lp, mii_reg | MII_MCLK); 779 udelay(MII_DELAY); 780 } 781 } 782 783 static unsigned int smc_mii_in(struct net_device *dev, int bits) 784 { 785 struct smc_local *lp = netdev_priv(dev); 786 void __iomem *ioaddr = lp->base; 787 unsigned int mii_reg, mask, val; 788 789 mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO); 790 SMC_SET_MII(lp, mii_reg); 791 792 for (mask = 1 << (bits - 1), val = 0; mask; mask >>= 1) { 793 if (SMC_GET_MII(lp) & MII_MDI) 794 val |= mask; 795 796 SMC_SET_MII(lp, mii_reg); 797 udelay(MII_DELAY); 798 SMC_SET_MII(lp, mii_reg | MII_MCLK); 799 udelay(MII_DELAY); 800 } 801 802 return val; 803 } 804 805 /* 806 * Reads a register from the MII Management serial interface 807 */ 808 static int smc_phy_read(struct net_device *dev, int phyaddr, int phyreg) 809 { 810 struct smc_local *lp = netdev_priv(dev); 811 void __iomem *ioaddr = lp->base; 812 unsigned int phydata; 813 814 SMC_SELECT_BANK(lp, 3); 815 816 /* Idle - 32 ones */ 817 smc_mii_out(dev, 0xffffffff, 32); 818 819 /* Start code (01) + read (10) + phyaddr + phyreg */ 820 smc_mii_out(dev, 6 << 10 | phyaddr << 5 | phyreg, 14); 821 822 /* Turnaround (2bits) + phydata */ 823 phydata = smc_mii_in(dev, 18); 824 825 /* Return to idle state */ 826 SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO)); 827 828 DBG(3, dev, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n", 829 __func__, phyaddr, phyreg, phydata); 830 831 SMC_SELECT_BANK(lp, 2); 832 return phydata; 833 } 834 835 /* 836 * Writes a register to the MII Management serial interface 837 */ 838 static void smc_phy_write(struct net_device *dev, int phyaddr, int phyreg, 839 int phydata) 840 { 841 struct smc_local *lp = netdev_priv(dev); 842 void __iomem *ioaddr = lp->base; 843 844 SMC_SELECT_BANK(lp, 3); 845 846 /* Idle - 32 ones */ 847 smc_mii_out(dev, 0xffffffff, 32); 848 849 /* Start code (01) + write (01) + phyaddr + phyreg + turnaround + phydata */ 850 smc_mii_out(dev, 5 << 28 | phyaddr << 23 | phyreg << 18 | 2 << 16 | phydata, 32); 851 852 /* Return to idle state */ 853 SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO)); 854 855 DBG(3, dev, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n", 856 __func__, phyaddr, phyreg, phydata); 857 858 SMC_SELECT_BANK(lp, 2); 859 } 860 861 /* 862 * Finds and reports the PHY address 863 */ 864 static void smc_phy_detect(struct net_device *dev) 865 { 866 struct smc_local *lp = netdev_priv(dev); 867 int phyaddr; 868 869 DBG(2, dev, "%s\n", __func__); 870 871 lp->phy_type = 0; 872 873 /* 874 * Scan all 32 PHY addresses if necessary, starting at 875 * PHY#1 to PHY#31, and then PHY#0 last. 876 */ 877 for (phyaddr = 1; phyaddr < 33; ++phyaddr) { 878 unsigned int id1, id2; 879 880 /* Read the PHY identifiers */ 881 id1 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID1); 882 id2 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID2); 883 884 DBG(3, dev, "phy_id1=0x%x, phy_id2=0x%x\n", 885 id1, id2); 886 887 /* Make sure it is a valid identifier */ 888 if (id1 != 0x0000 && id1 != 0xffff && id1 != 0x8000 && 889 id2 != 0x0000 && id2 != 0xffff && id2 != 0x8000) { 890 /* Save the PHY's address */ 891 lp->mii.phy_id = phyaddr & 31; 892 lp->phy_type = id1 << 16 | id2; 893 break; 894 } 895 } 896 } 897 898 /* 899 * Sets the PHY to a configuration as determined by the user 900 */ 901 static int smc_phy_fixed(struct net_device *dev) 902 { 903 struct smc_local *lp = netdev_priv(dev); 904 void __iomem *ioaddr = lp->base; 905 int phyaddr = lp->mii.phy_id; 906 int bmcr, cfg1; 907 908 DBG(3, dev, "%s\n", __func__); 909 910 /* Enter Link Disable state */ 911 cfg1 = smc_phy_read(dev, phyaddr, PHY_CFG1_REG); 912 cfg1 |= PHY_CFG1_LNKDIS; 913 smc_phy_write(dev, phyaddr, PHY_CFG1_REG, cfg1); 914 915 /* 916 * Set our fixed capabilities 917 * Disable auto-negotiation 918 */ 919 bmcr = 0; 920 921 if (lp->ctl_rfduplx) 922 bmcr |= BMCR_FULLDPLX; 923 924 if (lp->ctl_rspeed == 100) 925 bmcr |= BMCR_SPEED100; 926 927 /* Write our capabilities to the phy control register */ 928 smc_phy_write(dev, phyaddr, MII_BMCR, bmcr); 929 930 /* Re-Configure the Receive/Phy Control register */ 931 SMC_SELECT_BANK(lp, 0); 932 SMC_SET_RPC(lp, lp->rpc_cur_mode); 933 SMC_SELECT_BANK(lp, 2); 934 935 return 1; 936 } 937 938 /** 939 * smc_phy_reset - reset the phy 940 * @dev: net device 941 * @phy: phy address 942 * 943 * Issue a software reset for the specified PHY and 944 * wait up to 100ms for the reset to complete. We should 945 * not access the PHY for 50ms after issuing the reset. 946 * 947 * The time to wait appears to be dependent on the PHY. 948 * 949 * Must be called with lp->lock locked. 950 */ 951 static int smc_phy_reset(struct net_device *dev, int phy) 952 { 953 struct smc_local *lp = netdev_priv(dev); 954 unsigned int bmcr; 955 int timeout; 956 957 smc_phy_write(dev, phy, MII_BMCR, BMCR_RESET); 958 959 for (timeout = 2; timeout; timeout--) { 960 spin_unlock_irq(&lp->lock); 961 msleep(50); 962 spin_lock_irq(&lp->lock); 963 964 bmcr = smc_phy_read(dev, phy, MII_BMCR); 965 if (!(bmcr & BMCR_RESET)) 966 break; 967 } 968 969 return bmcr & BMCR_RESET; 970 } 971 972 /** 973 * smc_phy_powerdown - powerdown phy 974 * @dev: net device 975 * 976 * Power down the specified PHY 977 */ 978 static void smc_phy_powerdown(struct net_device *dev) 979 { 980 struct smc_local *lp = netdev_priv(dev); 981 unsigned int bmcr; 982 int phy = lp->mii.phy_id; 983 984 if (lp->phy_type == 0) 985 return; 986 987 /* We need to ensure that no calls to smc_phy_configure are 988 pending. 989 */ 990 cancel_work_sync(&lp->phy_configure); 991 992 bmcr = smc_phy_read(dev, phy, MII_BMCR); 993 smc_phy_write(dev, phy, MII_BMCR, bmcr | BMCR_PDOWN); 994 } 995 996 /** 997 * smc_phy_check_media - check the media status and adjust TCR 998 * @dev: net device 999 * @init: set true for initialisation 1000 * 1001 * Select duplex mode depending on negotiation state. This 1002 * also updates our carrier state. 1003 */ 1004 static void smc_phy_check_media(struct net_device *dev, int init) 1005 { 1006 struct smc_local *lp = netdev_priv(dev); 1007 void __iomem *ioaddr = lp->base; 1008 1009 if (mii_check_media(&lp->mii, netif_msg_link(lp), init)) { 1010 /* duplex state has changed */ 1011 if (lp->mii.full_duplex) { 1012 lp->tcr_cur_mode |= TCR_SWFDUP; 1013 } else { 1014 lp->tcr_cur_mode &= ~TCR_SWFDUP; 1015 } 1016 1017 SMC_SELECT_BANK(lp, 0); 1018 SMC_SET_TCR(lp, lp->tcr_cur_mode); 1019 } 1020 } 1021 1022 /* 1023 * Configures the specified PHY through the MII management interface 1024 * using Autonegotiation. 1025 * Calls smc_phy_fixed() if the user has requested a certain config. 1026 * If RPC ANEG bit is set, the media selection is dependent purely on 1027 * the selection by the MII (either in the MII BMCR reg or the result 1028 * of autonegotiation.) If the RPC ANEG bit is cleared, the selection 1029 * is controlled by the RPC SPEED and RPC DPLX bits. 1030 */ 1031 static void smc_phy_configure(struct work_struct *work) 1032 { 1033 struct smc_local *lp = 1034 container_of(work, struct smc_local, phy_configure); 1035 struct net_device *dev = lp->dev; 1036 void __iomem *ioaddr = lp->base; 1037 int phyaddr = lp->mii.phy_id; 1038 int my_phy_caps; /* My PHY capabilities */ 1039 int my_ad_caps; /* My Advertised capabilities */ 1040 1041 DBG(3, dev, "smc_program_phy()\n"); 1042 1043 spin_lock_irq(&lp->lock); 1044 1045 /* 1046 * We should not be called if phy_type is zero. 1047 */ 1048 if (lp->phy_type == 0) 1049 goto smc_phy_configure_exit; 1050 1051 if (smc_phy_reset(dev, phyaddr)) { 1052 netdev_info(dev, "PHY reset timed out\n"); 1053 goto smc_phy_configure_exit; 1054 } 1055 1056 /* 1057 * Enable PHY Interrupts (for register 18) 1058 * Interrupts listed here are disabled 1059 */ 1060 smc_phy_write(dev, phyaddr, PHY_MASK_REG, 1061 PHY_INT_LOSSSYNC | PHY_INT_CWRD | PHY_INT_SSD | 1062 PHY_INT_ESD | PHY_INT_RPOL | PHY_INT_JAB | 1063 PHY_INT_SPDDET | PHY_INT_DPLXDET); 1064 1065 /* Configure the Receive/Phy Control register */ 1066 SMC_SELECT_BANK(lp, 0); 1067 SMC_SET_RPC(lp, lp->rpc_cur_mode); 1068 1069 /* If the user requested no auto neg, then go set his request */ 1070 if (lp->mii.force_media) { 1071 smc_phy_fixed(dev); 1072 goto smc_phy_configure_exit; 1073 } 1074 1075 /* Copy our capabilities from MII_BMSR to MII_ADVERTISE */ 1076 my_phy_caps = smc_phy_read(dev, phyaddr, MII_BMSR); 1077 1078 if (!(my_phy_caps & BMSR_ANEGCAPABLE)) { 1079 netdev_info(dev, "Auto negotiation NOT supported\n"); 1080 smc_phy_fixed(dev); 1081 goto smc_phy_configure_exit; 1082 } 1083 1084 my_ad_caps = ADVERTISE_CSMA; /* I am CSMA capable */ 1085 1086 if (my_phy_caps & BMSR_100BASE4) 1087 my_ad_caps |= ADVERTISE_100BASE4; 1088 if (my_phy_caps & BMSR_100FULL) 1089 my_ad_caps |= ADVERTISE_100FULL; 1090 if (my_phy_caps & BMSR_100HALF) 1091 my_ad_caps |= ADVERTISE_100HALF; 1092 if (my_phy_caps & BMSR_10FULL) 1093 my_ad_caps |= ADVERTISE_10FULL; 1094 if (my_phy_caps & BMSR_10HALF) 1095 my_ad_caps |= ADVERTISE_10HALF; 1096 1097 /* Disable capabilities not selected by our user */ 1098 if (lp->ctl_rspeed != 100) 1099 my_ad_caps &= ~(ADVERTISE_100BASE4|ADVERTISE_100FULL|ADVERTISE_100HALF); 1100 1101 if (!lp->ctl_rfduplx) 1102 my_ad_caps &= ~(ADVERTISE_100FULL|ADVERTISE_10FULL); 1103 1104 /* Update our Auto-Neg Advertisement Register */ 1105 smc_phy_write(dev, phyaddr, MII_ADVERTISE, my_ad_caps); 1106 lp->mii.advertising = my_ad_caps; 1107 1108 /* 1109 * Read the register back. Without this, it appears that when 1110 * auto-negotiation is restarted, sometimes it isn't ready and 1111 * the link does not come up. 1112 */ 1113 smc_phy_read(dev, phyaddr, MII_ADVERTISE); 1114 1115 DBG(2, dev, "phy caps=%x\n", my_phy_caps); 1116 DBG(2, dev, "phy advertised caps=%x\n", my_ad_caps); 1117 1118 /* Restart auto-negotiation process in order to advertise my caps */ 1119 smc_phy_write(dev, phyaddr, MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART); 1120 1121 smc_phy_check_media(dev, 1); 1122 1123 smc_phy_configure_exit: 1124 SMC_SELECT_BANK(lp, 2); 1125 spin_unlock_irq(&lp->lock); 1126 } 1127 1128 /* 1129 * smc_phy_interrupt 1130 * 1131 * Purpose: Handle interrupts relating to PHY register 18. This is 1132 * called from the "hard" interrupt handler under our private spinlock. 1133 */ 1134 static void smc_phy_interrupt(struct net_device *dev) 1135 { 1136 struct smc_local *lp = netdev_priv(dev); 1137 int phyaddr = lp->mii.phy_id; 1138 int phy18; 1139 1140 DBG(2, dev, "%s\n", __func__); 1141 1142 if (lp->phy_type == 0) 1143 return; 1144 1145 for(;;) { 1146 smc_phy_check_media(dev, 0); 1147 1148 /* Read PHY Register 18, Status Output */ 1149 phy18 = smc_phy_read(dev, phyaddr, PHY_INT_REG); 1150 if ((phy18 & PHY_INT_INT) == 0) 1151 break; 1152 } 1153 } 1154 1155 /*--- END PHY CONTROL AND CONFIGURATION-------------------------------------*/ 1156 1157 static void smc_10bt_check_media(struct net_device *dev, int init) 1158 { 1159 struct smc_local *lp = netdev_priv(dev); 1160 void __iomem *ioaddr = lp->base; 1161 unsigned int old_carrier, new_carrier; 1162 1163 old_carrier = netif_carrier_ok(dev) ? 1 : 0; 1164 1165 SMC_SELECT_BANK(lp, 0); 1166 new_carrier = (SMC_GET_EPH_STATUS(lp) & ES_LINK_OK) ? 1 : 0; 1167 SMC_SELECT_BANK(lp, 2); 1168 1169 if (init || (old_carrier != new_carrier)) { 1170 if (!new_carrier) { 1171 netif_carrier_off(dev); 1172 } else { 1173 netif_carrier_on(dev); 1174 } 1175 if (netif_msg_link(lp)) 1176 netdev_info(dev, "link %s\n", 1177 new_carrier ? "up" : "down"); 1178 } 1179 } 1180 1181 static void smc_eph_interrupt(struct net_device *dev) 1182 { 1183 struct smc_local *lp = netdev_priv(dev); 1184 void __iomem *ioaddr = lp->base; 1185 unsigned int ctl; 1186 1187 smc_10bt_check_media(dev, 0); 1188 1189 SMC_SELECT_BANK(lp, 1); 1190 ctl = SMC_GET_CTL(lp); 1191 SMC_SET_CTL(lp, ctl & ~CTL_LE_ENABLE); 1192 SMC_SET_CTL(lp, ctl); 1193 SMC_SELECT_BANK(lp, 2); 1194 } 1195 1196 /* 1197 * This is the main routine of the driver, to handle the device when 1198 * it needs some attention. 1199 */ 1200 static irqreturn_t smc_interrupt(int irq, void *dev_id) 1201 { 1202 struct net_device *dev = dev_id; 1203 struct smc_local *lp = netdev_priv(dev); 1204 void __iomem *ioaddr = lp->base; 1205 int status, mask, timeout, card_stats; 1206 int saved_pointer; 1207 1208 DBG(3, dev, "%s\n", __func__); 1209 1210 spin_lock(&lp->lock); 1211 1212 /* A preamble may be used when there is a potential race 1213 * between the interruptible transmit functions and this 1214 * ISR. */ 1215 SMC_INTERRUPT_PREAMBLE; 1216 1217 saved_pointer = SMC_GET_PTR(lp); 1218 mask = SMC_GET_INT_MASK(lp); 1219 SMC_SET_INT_MASK(lp, 0); 1220 1221 /* set a timeout value, so I don't stay here forever */ 1222 timeout = MAX_IRQ_LOOPS; 1223 1224 do { 1225 status = SMC_GET_INT(lp); 1226 1227 DBG(2, dev, "INT 0x%02x MASK 0x%02x MEM 0x%04x FIFO 0x%04x\n", 1228 status, mask, 1229 ({ int meminfo; SMC_SELECT_BANK(lp, 0); 1230 meminfo = SMC_GET_MIR(lp); 1231 SMC_SELECT_BANK(lp, 2); meminfo; }), 1232 SMC_GET_FIFO(lp)); 1233 1234 status &= mask; 1235 if (!status) 1236 break; 1237 1238 if (status & IM_TX_INT) { 1239 /* do this before RX as it will free memory quickly */ 1240 DBG(3, dev, "TX int\n"); 1241 smc_tx(dev); 1242 SMC_ACK_INT(lp, IM_TX_INT); 1243 if (THROTTLE_TX_PKTS) 1244 netif_wake_queue(dev); 1245 } else if (status & IM_RCV_INT) { 1246 DBG(3, dev, "RX irq\n"); 1247 smc_rcv(dev); 1248 } else if (status & IM_ALLOC_INT) { 1249 DBG(3, dev, "Allocation irq\n"); 1250 tasklet_hi_schedule(&lp->tx_task); 1251 mask &= ~IM_ALLOC_INT; 1252 } else if (status & IM_TX_EMPTY_INT) { 1253 DBG(3, dev, "TX empty\n"); 1254 mask &= ~IM_TX_EMPTY_INT; 1255 1256 /* update stats */ 1257 SMC_SELECT_BANK(lp, 0); 1258 card_stats = SMC_GET_COUNTER(lp); 1259 SMC_SELECT_BANK(lp, 2); 1260 1261 /* single collisions */ 1262 dev->stats.collisions += card_stats & 0xF; 1263 card_stats >>= 4; 1264 1265 /* multiple collisions */ 1266 dev->stats.collisions += card_stats & 0xF; 1267 } else if (status & IM_RX_OVRN_INT) { 1268 DBG(1, dev, "RX overrun (EPH_ST 0x%04x)\n", 1269 ({ int eph_st; SMC_SELECT_BANK(lp, 0); 1270 eph_st = SMC_GET_EPH_STATUS(lp); 1271 SMC_SELECT_BANK(lp, 2); eph_st; })); 1272 SMC_ACK_INT(lp, IM_RX_OVRN_INT); 1273 dev->stats.rx_errors++; 1274 dev->stats.rx_fifo_errors++; 1275 } else if (status & IM_EPH_INT) { 1276 smc_eph_interrupt(dev); 1277 } else if (status & IM_MDINT) { 1278 SMC_ACK_INT(lp, IM_MDINT); 1279 smc_phy_interrupt(dev); 1280 } else if (status & IM_ERCV_INT) { 1281 SMC_ACK_INT(lp, IM_ERCV_INT); 1282 PRINTK(dev, "UNSUPPORTED: ERCV INTERRUPT\n"); 1283 } 1284 } while (--timeout); 1285 1286 /* restore register states */ 1287 SMC_SET_PTR(lp, saved_pointer); 1288 SMC_SET_INT_MASK(lp, mask); 1289 spin_unlock(&lp->lock); 1290 1291 #ifndef CONFIG_NET_POLL_CONTROLLER 1292 if (timeout == MAX_IRQ_LOOPS) 1293 PRINTK(dev, "spurious interrupt (mask = 0x%02x)\n", 1294 mask); 1295 #endif 1296 DBG(3, dev, "Interrupt done (%d loops)\n", 1297 MAX_IRQ_LOOPS - timeout); 1298 1299 /* 1300 * We return IRQ_HANDLED unconditionally here even if there was 1301 * nothing to do. There is a possibility that a packet might 1302 * get enqueued into the chip right after TX_EMPTY_INT is raised 1303 * but just before the CPU acknowledges the IRQ. 1304 * Better take an unneeded IRQ in some occasions than complexifying 1305 * the code for all cases. 1306 */ 1307 return IRQ_HANDLED; 1308 } 1309 1310 #ifdef CONFIG_NET_POLL_CONTROLLER 1311 /* 1312 * Polling receive - used by netconsole and other diagnostic tools 1313 * to allow network i/o with interrupts disabled. 1314 */ 1315 static void smc_poll_controller(struct net_device *dev) 1316 { 1317 disable_irq(dev->irq); 1318 smc_interrupt(dev->irq, dev); 1319 enable_irq(dev->irq); 1320 } 1321 #endif 1322 1323 /* Our watchdog timed out. Called by the networking layer */ 1324 static void smc_timeout(struct net_device *dev, unsigned int txqueue) 1325 { 1326 struct smc_local *lp = netdev_priv(dev); 1327 void __iomem *ioaddr = lp->base; 1328 int status, mask, eph_st, meminfo, fifo; 1329 1330 DBG(2, dev, "%s\n", __func__); 1331 1332 spin_lock_irq(&lp->lock); 1333 status = SMC_GET_INT(lp); 1334 mask = SMC_GET_INT_MASK(lp); 1335 fifo = SMC_GET_FIFO(lp); 1336 SMC_SELECT_BANK(lp, 0); 1337 eph_st = SMC_GET_EPH_STATUS(lp); 1338 meminfo = SMC_GET_MIR(lp); 1339 SMC_SELECT_BANK(lp, 2); 1340 spin_unlock_irq(&lp->lock); 1341 PRINTK(dev, "TX timeout (INT 0x%02x INTMASK 0x%02x MEM 0x%04x FIFO 0x%04x EPH_ST 0x%04x)\n", 1342 status, mask, meminfo, fifo, eph_st); 1343 1344 smc_reset(dev); 1345 smc_enable(dev); 1346 1347 /* 1348 * Reconfiguring the PHY doesn't seem like a bad idea here, but 1349 * smc_phy_configure() calls msleep() which calls schedule_timeout() 1350 * which calls schedule(). Hence we use a work queue. 1351 */ 1352 if (lp->phy_type != 0) 1353 schedule_work(&lp->phy_configure); 1354 1355 /* We can accept TX packets again */ 1356 netif_trans_update(dev); /* prevent tx timeout */ 1357 netif_wake_queue(dev); 1358 } 1359 1360 /* 1361 * This routine will, depending on the values passed to it, 1362 * either make it accept multicast packets, go into 1363 * promiscuous mode (for TCPDUMP and cousins) or accept 1364 * a select set of multicast packets 1365 */ 1366 static void smc_set_multicast_list(struct net_device *dev) 1367 { 1368 struct smc_local *lp = netdev_priv(dev); 1369 void __iomem *ioaddr = lp->base; 1370 unsigned char multicast_table[8]; 1371 int update_multicast = 0; 1372 1373 DBG(2, dev, "%s\n", __func__); 1374 1375 if (dev->flags & IFF_PROMISC) { 1376 DBG(2, dev, "RCR_PRMS\n"); 1377 lp->rcr_cur_mode |= RCR_PRMS; 1378 } 1379 1380 /* BUG? I never disable promiscuous mode if multicasting was turned on. 1381 Now, I turn off promiscuous mode, but I don't do anything to multicasting 1382 when promiscuous mode is turned on. 1383 */ 1384 1385 /* 1386 * Here, I am setting this to accept all multicast packets. 1387 * I don't need to zero the multicast table, because the flag is 1388 * checked before the table is 1389 */ 1390 else if (dev->flags & IFF_ALLMULTI || netdev_mc_count(dev) > 16) { 1391 DBG(2, dev, "RCR_ALMUL\n"); 1392 lp->rcr_cur_mode |= RCR_ALMUL; 1393 } 1394 1395 /* 1396 * This sets the internal hardware table to filter out unwanted 1397 * multicast packets before they take up memory. 1398 * 1399 * The SMC chip uses a hash table where the high 6 bits of the CRC of 1400 * address are the offset into the table. If that bit is 1, then the 1401 * multicast packet is accepted. Otherwise, it's dropped silently. 1402 * 1403 * To use the 6 bits as an offset into the table, the high 3 bits are 1404 * the number of the 8 bit register, while the low 3 bits are the bit 1405 * within that register. 1406 */ 1407 else if (!netdev_mc_empty(dev)) { 1408 struct netdev_hw_addr *ha; 1409 1410 /* table for flipping the order of 3 bits */ 1411 static const unsigned char invert3[] = {0, 4, 2, 6, 1, 5, 3, 7}; 1412 1413 /* start with a table of all zeros: reject all */ 1414 memset(multicast_table, 0, sizeof(multicast_table)); 1415 1416 netdev_for_each_mc_addr(ha, dev) { 1417 int position; 1418 1419 /* only use the low order bits */ 1420 position = crc32_le(~0, ha->addr, 6) & 0x3f; 1421 1422 /* do some messy swapping to put the bit in the right spot */ 1423 multicast_table[invert3[position&7]] |= 1424 (1<<invert3[(position>>3)&7]); 1425 } 1426 1427 /* be sure I get rid of flags I might have set */ 1428 lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL); 1429 1430 /* now, the table can be loaded into the chipset */ 1431 update_multicast = 1; 1432 } else { 1433 DBG(2, dev, "~(RCR_PRMS|RCR_ALMUL)\n"); 1434 lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL); 1435 1436 /* 1437 * since I'm disabling all multicast entirely, I need to 1438 * clear the multicast list 1439 */ 1440 memset(multicast_table, 0, sizeof(multicast_table)); 1441 update_multicast = 1; 1442 } 1443 1444 spin_lock_irq(&lp->lock); 1445 SMC_SELECT_BANK(lp, 0); 1446 SMC_SET_RCR(lp, lp->rcr_cur_mode); 1447 if (update_multicast) { 1448 SMC_SELECT_BANK(lp, 3); 1449 SMC_SET_MCAST(lp, multicast_table); 1450 } 1451 SMC_SELECT_BANK(lp, 2); 1452 spin_unlock_irq(&lp->lock); 1453 } 1454 1455 1456 /* 1457 * Open and Initialize the board 1458 * 1459 * Set up everything, reset the card, etc.. 1460 */ 1461 static int 1462 smc_open(struct net_device *dev) 1463 { 1464 struct smc_local *lp = netdev_priv(dev); 1465 1466 DBG(2, dev, "%s\n", __func__); 1467 1468 /* Setup the default Register Modes */ 1469 lp->tcr_cur_mode = TCR_DEFAULT; 1470 lp->rcr_cur_mode = RCR_DEFAULT; 1471 lp->rpc_cur_mode = RPC_DEFAULT | 1472 lp->cfg.leda << RPC_LSXA_SHFT | 1473 lp->cfg.ledb << RPC_LSXB_SHFT; 1474 1475 /* 1476 * If we are not using a MII interface, we need to 1477 * monitor our own carrier signal to detect faults. 1478 */ 1479 if (lp->phy_type == 0) 1480 lp->tcr_cur_mode |= TCR_MON_CSN; 1481 1482 /* reset the hardware */ 1483 smc_reset(dev); 1484 smc_enable(dev); 1485 1486 /* Configure the PHY, initialize the link state */ 1487 if (lp->phy_type != 0) 1488 smc_phy_configure(&lp->phy_configure); 1489 else { 1490 spin_lock_irq(&lp->lock); 1491 smc_10bt_check_media(dev, 1); 1492 spin_unlock_irq(&lp->lock); 1493 } 1494 1495 netif_start_queue(dev); 1496 return 0; 1497 } 1498 1499 /* 1500 * smc_close 1501 * 1502 * this makes the board clean up everything that it can 1503 * and not talk to the outside world. Caused by 1504 * an 'ifconfig ethX down' 1505 */ 1506 static int smc_close(struct net_device *dev) 1507 { 1508 struct smc_local *lp = netdev_priv(dev); 1509 1510 DBG(2, dev, "%s\n", __func__); 1511 1512 netif_stop_queue(dev); 1513 netif_carrier_off(dev); 1514 1515 /* clear everything */ 1516 smc_shutdown(dev); 1517 tasklet_kill(&lp->tx_task); 1518 smc_phy_powerdown(dev); 1519 return 0; 1520 } 1521 1522 /* 1523 * Ethtool support 1524 */ 1525 static int 1526 smc_ethtool_get_link_ksettings(struct net_device *dev, 1527 struct ethtool_link_ksettings *cmd) 1528 { 1529 struct smc_local *lp = netdev_priv(dev); 1530 1531 if (lp->phy_type != 0) { 1532 spin_lock_irq(&lp->lock); 1533 mii_ethtool_get_link_ksettings(&lp->mii, cmd); 1534 spin_unlock_irq(&lp->lock); 1535 } else { 1536 u32 supported = SUPPORTED_10baseT_Half | 1537 SUPPORTED_10baseT_Full | 1538 SUPPORTED_TP | SUPPORTED_AUI; 1539 1540 if (lp->ctl_rspeed == 10) 1541 cmd->base.speed = SPEED_10; 1542 else if (lp->ctl_rspeed == 100) 1543 cmd->base.speed = SPEED_100; 1544 1545 cmd->base.autoneg = AUTONEG_DISABLE; 1546 cmd->base.port = 0; 1547 cmd->base.duplex = lp->tcr_cur_mode & TCR_SWFDUP ? 1548 DUPLEX_FULL : DUPLEX_HALF; 1549 1550 ethtool_convert_legacy_u32_to_link_mode( 1551 cmd->link_modes.supported, supported); 1552 } 1553 1554 return 0; 1555 } 1556 1557 static int 1558 smc_ethtool_set_link_ksettings(struct net_device *dev, 1559 const struct ethtool_link_ksettings *cmd) 1560 { 1561 struct smc_local *lp = netdev_priv(dev); 1562 int ret; 1563 1564 if (lp->phy_type != 0) { 1565 spin_lock_irq(&lp->lock); 1566 ret = mii_ethtool_set_link_ksettings(&lp->mii, cmd); 1567 spin_unlock_irq(&lp->lock); 1568 } else { 1569 if (cmd->base.autoneg != AUTONEG_DISABLE || 1570 cmd->base.speed != SPEED_10 || 1571 (cmd->base.duplex != DUPLEX_HALF && 1572 cmd->base.duplex != DUPLEX_FULL) || 1573 (cmd->base.port != PORT_TP && cmd->base.port != PORT_AUI)) 1574 return -EINVAL; 1575 1576 // lp->port = cmd->base.port; 1577 lp->ctl_rfduplx = cmd->base.duplex == DUPLEX_FULL; 1578 1579 // if (netif_running(dev)) 1580 // smc_set_port(dev); 1581 1582 ret = 0; 1583 } 1584 1585 return ret; 1586 } 1587 1588 static void 1589 smc_ethtool_getdrvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 1590 { 1591 strscpy(info->driver, CARDNAME, sizeof(info->driver)); 1592 strscpy(info->version, version, sizeof(info->version)); 1593 strscpy(info->bus_info, dev_name(dev->dev.parent), 1594 sizeof(info->bus_info)); 1595 } 1596 1597 static int smc_ethtool_nwayreset(struct net_device *dev) 1598 { 1599 struct smc_local *lp = netdev_priv(dev); 1600 int ret = -EINVAL; 1601 1602 if (lp->phy_type != 0) { 1603 spin_lock_irq(&lp->lock); 1604 ret = mii_nway_restart(&lp->mii); 1605 spin_unlock_irq(&lp->lock); 1606 } 1607 1608 return ret; 1609 } 1610 1611 static u32 smc_ethtool_getmsglevel(struct net_device *dev) 1612 { 1613 struct smc_local *lp = netdev_priv(dev); 1614 return lp->msg_enable; 1615 } 1616 1617 static void smc_ethtool_setmsglevel(struct net_device *dev, u32 level) 1618 { 1619 struct smc_local *lp = netdev_priv(dev); 1620 lp->msg_enable = level; 1621 } 1622 1623 static int smc_write_eeprom_word(struct net_device *dev, u16 addr, u16 word) 1624 { 1625 u16 ctl; 1626 struct smc_local *lp = netdev_priv(dev); 1627 void __iomem *ioaddr = lp->base; 1628 1629 spin_lock_irq(&lp->lock); 1630 /* load word into GP register */ 1631 SMC_SELECT_BANK(lp, 1); 1632 SMC_SET_GP(lp, word); 1633 /* set the address to put the data in EEPROM */ 1634 SMC_SELECT_BANK(lp, 2); 1635 SMC_SET_PTR(lp, addr); 1636 /* tell it to write */ 1637 SMC_SELECT_BANK(lp, 1); 1638 ctl = SMC_GET_CTL(lp); 1639 SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_STORE)); 1640 /* wait for it to finish */ 1641 do { 1642 udelay(1); 1643 } while (SMC_GET_CTL(lp) & CTL_STORE); 1644 /* clean up */ 1645 SMC_SET_CTL(lp, ctl); 1646 SMC_SELECT_BANK(lp, 2); 1647 spin_unlock_irq(&lp->lock); 1648 return 0; 1649 } 1650 1651 static int smc_read_eeprom_word(struct net_device *dev, u16 addr, u16 *word) 1652 { 1653 u16 ctl; 1654 struct smc_local *lp = netdev_priv(dev); 1655 void __iomem *ioaddr = lp->base; 1656 1657 spin_lock_irq(&lp->lock); 1658 /* set the EEPROM address to get the data from */ 1659 SMC_SELECT_BANK(lp, 2); 1660 SMC_SET_PTR(lp, addr | PTR_READ); 1661 /* tell it to load */ 1662 SMC_SELECT_BANK(lp, 1); 1663 SMC_SET_GP(lp, 0xffff); /* init to known */ 1664 ctl = SMC_GET_CTL(lp); 1665 SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_RELOAD)); 1666 /* wait for it to finish */ 1667 do { 1668 udelay(1); 1669 } while (SMC_GET_CTL(lp) & CTL_RELOAD); 1670 /* read word from GP register */ 1671 *word = SMC_GET_GP(lp); 1672 /* clean up */ 1673 SMC_SET_CTL(lp, ctl); 1674 SMC_SELECT_BANK(lp, 2); 1675 spin_unlock_irq(&lp->lock); 1676 return 0; 1677 } 1678 1679 static int smc_ethtool_geteeprom_len(struct net_device *dev) 1680 { 1681 return 0x23 * 2; 1682 } 1683 1684 static int smc_ethtool_geteeprom(struct net_device *dev, 1685 struct ethtool_eeprom *eeprom, u8 *data) 1686 { 1687 int i; 1688 int imax; 1689 1690 DBG(1, dev, "Reading %d bytes at %d(0x%x)\n", 1691 eeprom->len, eeprom->offset, eeprom->offset); 1692 imax = smc_ethtool_geteeprom_len(dev); 1693 for (i = 0; i < eeprom->len; i += 2) { 1694 int ret; 1695 u16 wbuf; 1696 int offset = i + eeprom->offset; 1697 if (offset > imax) 1698 break; 1699 ret = smc_read_eeprom_word(dev, offset >> 1, &wbuf); 1700 if (ret != 0) 1701 return ret; 1702 DBG(2, dev, "Read 0x%x from 0x%x\n", wbuf, offset >> 1); 1703 data[i] = (wbuf >> 8) & 0xff; 1704 data[i+1] = wbuf & 0xff; 1705 } 1706 return 0; 1707 } 1708 1709 static int smc_ethtool_seteeprom(struct net_device *dev, 1710 struct ethtool_eeprom *eeprom, u8 *data) 1711 { 1712 int i; 1713 int imax; 1714 1715 DBG(1, dev, "Writing %d bytes to %d(0x%x)\n", 1716 eeprom->len, eeprom->offset, eeprom->offset); 1717 imax = smc_ethtool_geteeprom_len(dev); 1718 for (i = 0; i < eeprom->len; i += 2) { 1719 int ret; 1720 u16 wbuf; 1721 int offset = i + eeprom->offset; 1722 if (offset > imax) 1723 break; 1724 wbuf = (data[i] << 8) | data[i + 1]; 1725 DBG(2, dev, "Writing 0x%x to 0x%x\n", wbuf, offset >> 1); 1726 ret = smc_write_eeprom_word(dev, offset >> 1, wbuf); 1727 if (ret != 0) 1728 return ret; 1729 } 1730 return 0; 1731 } 1732 1733 1734 static const struct ethtool_ops smc_ethtool_ops = { 1735 .get_drvinfo = smc_ethtool_getdrvinfo, 1736 1737 .get_msglevel = smc_ethtool_getmsglevel, 1738 .set_msglevel = smc_ethtool_setmsglevel, 1739 .nway_reset = smc_ethtool_nwayreset, 1740 .get_link = ethtool_op_get_link, 1741 .get_eeprom_len = smc_ethtool_geteeprom_len, 1742 .get_eeprom = smc_ethtool_geteeprom, 1743 .set_eeprom = smc_ethtool_seteeprom, 1744 .get_link_ksettings = smc_ethtool_get_link_ksettings, 1745 .set_link_ksettings = smc_ethtool_set_link_ksettings, 1746 }; 1747 1748 static const struct net_device_ops smc_netdev_ops = { 1749 .ndo_open = smc_open, 1750 .ndo_stop = smc_close, 1751 .ndo_start_xmit = smc_hard_start_xmit, 1752 .ndo_tx_timeout = smc_timeout, 1753 .ndo_set_rx_mode = smc_set_multicast_list, 1754 .ndo_validate_addr = eth_validate_addr, 1755 .ndo_set_mac_address = eth_mac_addr, 1756 #ifdef CONFIG_NET_POLL_CONTROLLER 1757 .ndo_poll_controller = smc_poll_controller, 1758 #endif 1759 }; 1760 1761 /* 1762 * smc_findirq 1763 * 1764 * This routine has a simple purpose -- make the SMC chip generate an 1765 * interrupt, so an auto-detect routine can detect it, and find the IRQ, 1766 */ 1767 /* 1768 * does this still work? 1769 * 1770 * I just deleted auto_irq.c, since it was never built... 1771 * --jgarzik 1772 */ 1773 static int smc_findirq(struct smc_local *lp) 1774 { 1775 void __iomem *ioaddr = lp->base; 1776 int timeout = 20; 1777 unsigned long cookie; 1778 1779 DBG(2, lp->dev, "%s: %s\n", CARDNAME, __func__); 1780 1781 cookie = probe_irq_on(); 1782 1783 /* 1784 * What I try to do here is trigger an ALLOC_INT. This is done 1785 * by allocating a small chunk of memory, which will give an interrupt 1786 * when done. 1787 */ 1788 /* enable ALLOCation interrupts ONLY */ 1789 SMC_SELECT_BANK(lp, 2); 1790 SMC_SET_INT_MASK(lp, IM_ALLOC_INT); 1791 1792 /* 1793 * Allocate 512 bytes of memory. Note that the chip was just 1794 * reset so all the memory is available 1795 */ 1796 SMC_SET_MMU_CMD(lp, MC_ALLOC | 1); 1797 1798 /* 1799 * Wait until positive that the interrupt has been generated 1800 */ 1801 do { 1802 int int_status; 1803 udelay(10); 1804 int_status = SMC_GET_INT(lp); 1805 if (int_status & IM_ALLOC_INT) 1806 break; /* got the interrupt */ 1807 } while (--timeout); 1808 1809 /* 1810 * there is really nothing that I can do here if timeout fails, 1811 * as autoirq_report will return a 0 anyway, which is what I 1812 * want in this case. Plus, the clean up is needed in both 1813 * cases. 1814 */ 1815 1816 /* and disable all interrupts again */ 1817 SMC_SET_INT_MASK(lp, 0); 1818 1819 /* and return what I found */ 1820 return probe_irq_off(cookie); 1821 } 1822 1823 /* 1824 * Function: smc_probe(unsigned long ioaddr) 1825 * 1826 * Purpose: 1827 * Tests to see if a given ioaddr points to an SMC91x chip. 1828 * Returns a 0 on success 1829 * 1830 * Algorithm: 1831 * (1) see if the high byte of BANK_SELECT is 0x33 1832 * (2) compare the ioaddr with the base register's address 1833 * (3) see if I recognize the chip ID in the appropriate register 1834 * 1835 * Here I do typical initialization tasks. 1836 * 1837 * o Initialize the structure if needed 1838 * o print out my vanity message if not done so already 1839 * o print out what type of hardware is detected 1840 * o print out the ethernet address 1841 * o find the IRQ 1842 * o set up my private data 1843 * o configure the dev structure with my subroutines 1844 * o actually GRAB the irq. 1845 * o GRAB the region 1846 */ 1847 static int smc_probe(struct net_device *dev, void __iomem *ioaddr, 1848 unsigned long irq_flags) 1849 { 1850 struct smc_local *lp = netdev_priv(dev); 1851 int retval; 1852 unsigned int val, revision_register; 1853 const char *version_string; 1854 u8 addr[ETH_ALEN]; 1855 1856 DBG(2, dev, "%s: %s\n", CARDNAME, __func__); 1857 1858 /* First, see if the high byte is 0x33 */ 1859 val = SMC_CURRENT_BANK(lp); 1860 DBG(2, dev, "%s: bank signature probe returned 0x%04x\n", 1861 CARDNAME, val); 1862 if ((val & 0xFF00) != 0x3300) { 1863 if ((val & 0xFF) == 0x33) { 1864 netdev_warn(dev, 1865 "%s: Detected possible byte-swapped interface at IOADDR %p\n", 1866 CARDNAME, ioaddr); 1867 } 1868 retval = -ENODEV; 1869 goto err_out; 1870 } 1871 1872 /* 1873 * The above MIGHT indicate a device, but I need to write to 1874 * further test this. 1875 */ 1876 SMC_SELECT_BANK(lp, 0); 1877 val = SMC_CURRENT_BANK(lp); 1878 if ((val & 0xFF00) != 0x3300) { 1879 retval = -ENODEV; 1880 goto err_out; 1881 } 1882 1883 /* 1884 * well, we've already written once, so hopefully another 1885 * time won't hurt. This time, I need to switch the bank 1886 * register to bank 1, so I can access the base address 1887 * register 1888 */ 1889 SMC_SELECT_BANK(lp, 1); 1890 val = SMC_GET_BASE(lp); 1891 val = ((val & 0x1F00) >> 3) << SMC_IO_SHIFT; 1892 if (((unsigned long)ioaddr & (0x3e0 << SMC_IO_SHIFT)) != val) { 1893 netdev_warn(dev, "%s: IOADDR %p doesn't match configuration (%x).\n", 1894 CARDNAME, ioaddr, val); 1895 } 1896 1897 /* 1898 * check if the revision register is something that I 1899 * recognize. These might need to be added to later, 1900 * as future revisions could be added. 1901 */ 1902 SMC_SELECT_BANK(lp, 3); 1903 revision_register = SMC_GET_REV(lp); 1904 DBG(2, dev, "%s: revision = 0x%04x\n", CARDNAME, revision_register); 1905 version_string = chip_ids[ (revision_register >> 4) & 0xF]; 1906 if (!version_string || (revision_register & 0xff00) != 0x3300) { 1907 /* I don't recognize this chip, so... */ 1908 netdev_warn(dev, "%s: IO %p: Unrecognized revision register 0x%04x, Contact author.\n", 1909 CARDNAME, ioaddr, revision_register); 1910 1911 retval = -ENODEV; 1912 goto err_out; 1913 } 1914 1915 /* At this point I'll assume that the chip is an SMC91x. */ 1916 pr_info_once("%s\n", version); 1917 1918 /* fill in some of the fields */ 1919 dev->base_addr = (unsigned long)ioaddr; 1920 lp->base = ioaddr; 1921 lp->version = revision_register & 0xff; 1922 spin_lock_init(&lp->lock); 1923 1924 /* Get the MAC address */ 1925 SMC_SELECT_BANK(lp, 1); 1926 SMC_GET_MAC_ADDR(lp, addr); 1927 eth_hw_addr_set(dev, addr); 1928 1929 /* now, reset the chip, and put it into a known state */ 1930 smc_reset(dev); 1931 1932 /* 1933 * If dev->irq is 0, then the device has to be banged on to see 1934 * what the IRQ is. 1935 * 1936 * This banging doesn't always detect the IRQ, for unknown reasons. 1937 * a workaround is to reset the chip and try again. 1938 * 1939 * Interestingly, the DOS packet driver *SETS* the IRQ on the card to 1940 * be what is requested on the command line. I don't do that, mostly 1941 * because the card that I have uses a non-standard method of accessing 1942 * the IRQs, and because this _should_ work in most configurations. 1943 * 1944 * Specifying an IRQ is done with the assumption that the user knows 1945 * what (s)he is doing. No checking is done!!!! 1946 */ 1947 if (dev->irq < 1) { 1948 int trials; 1949 1950 trials = 3; 1951 while (trials--) { 1952 dev->irq = smc_findirq(lp); 1953 if (dev->irq) 1954 break; 1955 /* kick the card and try again */ 1956 smc_reset(dev); 1957 } 1958 } 1959 if (dev->irq == 0) { 1960 netdev_warn(dev, "Couldn't autodetect your IRQ. Use irq=xx.\n"); 1961 retval = -ENODEV; 1962 goto err_out; 1963 } 1964 dev->irq = irq_canonicalize(dev->irq); 1965 1966 dev->watchdog_timeo = msecs_to_jiffies(watchdog); 1967 dev->netdev_ops = &smc_netdev_ops; 1968 dev->ethtool_ops = &smc_ethtool_ops; 1969 1970 tasklet_setup(&lp->tx_task, smc_hardware_send_pkt); 1971 INIT_WORK(&lp->phy_configure, smc_phy_configure); 1972 lp->dev = dev; 1973 lp->mii.phy_id_mask = 0x1f; 1974 lp->mii.reg_num_mask = 0x1f; 1975 lp->mii.force_media = 0; 1976 lp->mii.full_duplex = 0; 1977 lp->mii.dev = dev; 1978 lp->mii.mdio_read = smc_phy_read; 1979 lp->mii.mdio_write = smc_phy_write; 1980 1981 /* 1982 * Locate the phy, if any. 1983 */ 1984 if (lp->version >= (CHIP_91100 << 4)) 1985 smc_phy_detect(dev); 1986 1987 /* then shut everything down to save power */ 1988 smc_shutdown(dev); 1989 smc_phy_powerdown(dev); 1990 1991 /* Set default parameters */ 1992 lp->msg_enable = NETIF_MSG_LINK; 1993 lp->ctl_rfduplx = 0; 1994 lp->ctl_rspeed = 10; 1995 1996 if (lp->version >= (CHIP_91100 << 4)) { 1997 lp->ctl_rfduplx = 1; 1998 lp->ctl_rspeed = 100; 1999 } 2000 2001 /* Grab the IRQ */ 2002 retval = request_irq(dev->irq, smc_interrupt, irq_flags, dev->name, dev); 2003 if (retval) 2004 goto err_out; 2005 2006 #ifdef CONFIG_ARCH_PXA 2007 # ifdef SMC_USE_PXA_DMA 2008 lp->cfg.flags |= SMC91X_USE_DMA; 2009 # endif 2010 if (lp->cfg.flags & SMC91X_USE_DMA) { 2011 dma_cap_mask_t mask; 2012 2013 dma_cap_zero(mask); 2014 dma_cap_set(DMA_SLAVE, mask); 2015 lp->dma_chan = dma_request_channel(mask, NULL, NULL); 2016 } 2017 #endif 2018 2019 retval = register_netdev(dev); 2020 if (retval == 0) { 2021 /* now, print out the card info, in a short format.. */ 2022 netdev_info(dev, "%s (rev %d) at %p IRQ %d", 2023 version_string, revision_register & 0x0f, 2024 lp->base, dev->irq); 2025 2026 if (lp->dma_chan) 2027 pr_cont(" DMA %p", lp->dma_chan); 2028 2029 pr_cont("%s%s\n", 2030 lp->cfg.flags & SMC91X_NOWAIT ? " [nowait]" : "", 2031 THROTTLE_TX_PKTS ? " [throttle_tx]" : ""); 2032 2033 if (!is_valid_ether_addr(dev->dev_addr)) { 2034 netdev_warn(dev, "Invalid ethernet MAC address. Please set using ifconfig\n"); 2035 } else { 2036 /* Print the Ethernet address */ 2037 netdev_info(dev, "Ethernet addr: %pM\n", 2038 dev->dev_addr); 2039 } 2040 2041 if (lp->phy_type == 0) { 2042 PRINTK(dev, "No PHY found\n"); 2043 } else if ((lp->phy_type & 0xfffffff0) == 0x0016f840) { 2044 PRINTK(dev, "PHY LAN83C183 (LAN91C111 Internal)\n"); 2045 } else if ((lp->phy_type & 0xfffffff0) == 0x02821c50) { 2046 PRINTK(dev, "PHY LAN83C180\n"); 2047 } 2048 } 2049 2050 err_out: 2051 #ifdef CONFIG_ARCH_PXA 2052 if (retval && lp->dma_chan) 2053 dma_release_channel(lp->dma_chan); 2054 #endif 2055 return retval; 2056 } 2057 2058 static int smc_enable_device(struct platform_device *pdev) 2059 { 2060 struct net_device *ndev = platform_get_drvdata(pdev); 2061 struct smc_local *lp = netdev_priv(ndev); 2062 unsigned long flags; 2063 unsigned char ecor, ecsr; 2064 void __iomem *addr; 2065 struct resource * res; 2066 2067 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib"); 2068 if (!res) 2069 return 0; 2070 2071 /* 2072 * Map the attribute space. This is overkill, but clean. 2073 */ 2074 addr = ioremap(res->start, ATTRIB_SIZE); 2075 if (!addr) 2076 return -ENOMEM; 2077 2078 /* 2079 * Reset the device. We must disable IRQs around this 2080 * since a reset causes the IRQ line become active. 2081 */ 2082 local_irq_save(flags); 2083 ecor = readb(addr + (ECOR << SMC_IO_SHIFT)) & ~ECOR_RESET; 2084 writeb(ecor | ECOR_RESET, addr + (ECOR << SMC_IO_SHIFT)); 2085 readb(addr + (ECOR << SMC_IO_SHIFT)); 2086 2087 /* 2088 * Wait 100us for the chip to reset. 2089 */ 2090 udelay(100); 2091 2092 /* 2093 * The device will ignore all writes to the enable bit while 2094 * reset is asserted, even if the reset bit is cleared in the 2095 * same write. Must clear reset first, then enable the device. 2096 */ 2097 writeb(ecor, addr + (ECOR << SMC_IO_SHIFT)); 2098 writeb(ecor | ECOR_ENABLE, addr + (ECOR << SMC_IO_SHIFT)); 2099 2100 /* 2101 * Set the appropriate byte/word mode. 2102 */ 2103 ecsr = readb(addr + (ECSR << SMC_IO_SHIFT)) & ~ECSR_IOIS8; 2104 if (!SMC_16BIT(lp)) 2105 ecsr |= ECSR_IOIS8; 2106 writeb(ecsr, addr + (ECSR << SMC_IO_SHIFT)); 2107 local_irq_restore(flags); 2108 2109 iounmap(addr); 2110 2111 /* 2112 * Wait for the chip to wake up. We could poll the control 2113 * register in the main register space, but that isn't mapped 2114 * yet. We know this is going to take 750us. 2115 */ 2116 msleep(1); 2117 2118 return 0; 2119 } 2120 2121 static int smc_request_attrib(struct platform_device *pdev, 2122 struct net_device *ndev) 2123 { 2124 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib"); 2125 struct smc_local *lp __maybe_unused = netdev_priv(ndev); 2126 2127 if (!res) 2128 return 0; 2129 2130 if (!request_mem_region(res->start, ATTRIB_SIZE, CARDNAME)) 2131 return -EBUSY; 2132 2133 return 0; 2134 } 2135 2136 static void smc_release_attrib(struct platform_device *pdev, 2137 struct net_device *ndev) 2138 { 2139 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib"); 2140 struct smc_local *lp __maybe_unused = netdev_priv(ndev); 2141 2142 if (res) 2143 release_mem_region(res->start, ATTRIB_SIZE); 2144 } 2145 2146 static inline void smc_request_datacs(struct platform_device *pdev, struct net_device *ndev) 2147 { 2148 if (SMC_CAN_USE_DATACS) { 2149 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32"); 2150 struct smc_local *lp = netdev_priv(ndev); 2151 2152 if (!res) 2153 return; 2154 2155 if(!request_mem_region(res->start, SMC_DATA_EXTENT, CARDNAME)) { 2156 netdev_info(ndev, "%s: failed to request datacs memory region.\n", 2157 CARDNAME); 2158 return; 2159 } 2160 2161 lp->datacs = ioremap(res->start, SMC_DATA_EXTENT); 2162 } 2163 } 2164 2165 static void smc_release_datacs(struct platform_device *pdev, struct net_device *ndev) 2166 { 2167 if (SMC_CAN_USE_DATACS) { 2168 struct smc_local *lp = netdev_priv(ndev); 2169 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32"); 2170 2171 if (lp->datacs) 2172 iounmap(lp->datacs); 2173 2174 lp->datacs = NULL; 2175 2176 if (res) 2177 release_mem_region(res->start, SMC_DATA_EXTENT); 2178 } 2179 } 2180 2181 static const struct acpi_device_id smc91x_acpi_match[] = { 2182 { "LNRO0003", 0 }, 2183 { } 2184 }; 2185 MODULE_DEVICE_TABLE(acpi, smc91x_acpi_match); 2186 2187 #if IS_BUILTIN(CONFIG_OF) 2188 static const struct of_device_id smc91x_match[] = { 2189 { .compatible = "smsc,lan91c94", }, 2190 { .compatible = "smsc,lan91c111", }, 2191 {}, 2192 }; 2193 MODULE_DEVICE_TABLE(of, smc91x_match); 2194 2195 /** 2196 * try_toggle_control_gpio - configure a gpio if it exists 2197 * @dev: net device 2198 * @desc: where to store the GPIO descriptor, if it exists 2199 * @name: name of the GPIO in DT 2200 * @index: index of the GPIO in DT 2201 * @value: set the GPIO to this value 2202 * @nsdelay: delay before setting the GPIO 2203 */ 2204 static int try_toggle_control_gpio(struct device *dev, 2205 struct gpio_desc **desc, 2206 const char *name, int index, 2207 int value, unsigned int nsdelay) 2208 { 2209 struct gpio_desc *gpio; 2210 enum gpiod_flags flags = value ? GPIOD_OUT_LOW : GPIOD_OUT_HIGH; 2211 2212 gpio = devm_gpiod_get_index_optional(dev, name, index, flags); 2213 if (IS_ERR(gpio)) 2214 return PTR_ERR(gpio); 2215 2216 if (gpio) { 2217 if (nsdelay) 2218 usleep_range(nsdelay, 2 * nsdelay); 2219 gpiod_set_value_cansleep(gpio, value); 2220 } 2221 *desc = gpio; 2222 2223 return 0; 2224 } 2225 #endif 2226 2227 /* 2228 * smc_init(void) 2229 * Input parameters: 2230 * dev->base_addr == 0, try to find all possible locations 2231 * dev->base_addr > 0x1ff, this is the address to check 2232 * dev->base_addr == <anything else>, return failure code 2233 * 2234 * Output: 2235 * 0 --> there is a device 2236 * anything else, error 2237 */ 2238 static int smc_drv_probe(struct platform_device *pdev) 2239 { 2240 struct smc91x_platdata *pd = dev_get_platdata(&pdev->dev); 2241 const struct of_device_id *match = NULL; 2242 struct smc_local *lp; 2243 struct net_device *ndev; 2244 struct resource *res; 2245 unsigned int __iomem *addr; 2246 unsigned long irq_flags = SMC_IRQ_FLAGS; 2247 unsigned long irq_resflags; 2248 int ret; 2249 2250 ndev = alloc_etherdev(sizeof(struct smc_local)); 2251 if (!ndev) { 2252 ret = -ENOMEM; 2253 goto out; 2254 } 2255 SET_NETDEV_DEV(ndev, &pdev->dev); 2256 2257 /* get configuration from platform data, only allow use of 2258 * bus width if both SMC_CAN_USE_xxx and SMC91X_USE_xxx are set. 2259 */ 2260 2261 lp = netdev_priv(ndev); 2262 lp->cfg.flags = 0; 2263 2264 if (pd) { 2265 memcpy(&lp->cfg, pd, sizeof(lp->cfg)); 2266 lp->io_shift = SMC91X_IO_SHIFT(lp->cfg.flags); 2267 2268 if (!SMC_8BIT(lp) && !SMC_16BIT(lp)) { 2269 dev_err(&pdev->dev, 2270 "at least one of 8-bit or 16-bit access support is required.\n"); 2271 ret = -ENXIO; 2272 goto out_free_netdev; 2273 } 2274 } 2275 2276 #if IS_BUILTIN(CONFIG_OF) 2277 match = of_match_device(of_match_ptr(smc91x_match), &pdev->dev); 2278 if (match) { 2279 u32 val; 2280 2281 /* Optional pwrdwn GPIO configured? */ 2282 ret = try_toggle_control_gpio(&pdev->dev, &lp->power_gpio, 2283 "power", 0, 0, 100); 2284 if (ret) 2285 goto out_free_netdev; 2286 2287 /* 2288 * Optional reset GPIO configured? Minimum 100 ns reset needed 2289 * according to LAN91C96 datasheet page 14. 2290 */ 2291 ret = try_toggle_control_gpio(&pdev->dev, &lp->reset_gpio, 2292 "reset", 0, 0, 100); 2293 if (ret) 2294 goto out_free_netdev; 2295 2296 /* 2297 * Need to wait for optional EEPROM to load, max 750 us according 2298 * to LAN91C96 datasheet page 55. 2299 */ 2300 if (lp->reset_gpio) 2301 usleep_range(750, 1000); 2302 2303 /* Combination of IO widths supported, default to 16-bit */ 2304 if (!device_property_read_u32(&pdev->dev, "reg-io-width", 2305 &val)) { 2306 if (val & 1) 2307 lp->cfg.flags |= SMC91X_USE_8BIT; 2308 if ((val == 0) || (val & 2)) 2309 lp->cfg.flags |= SMC91X_USE_16BIT; 2310 if (val & 4) 2311 lp->cfg.flags |= SMC91X_USE_32BIT; 2312 } else { 2313 lp->cfg.flags |= SMC91X_USE_16BIT; 2314 } 2315 if (!device_property_read_u32(&pdev->dev, "reg-shift", 2316 &val)) 2317 lp->io_shift = val; 2318 lp->cfg.pxa_u16_align4 = 2319 device_property_read_bool(&pdev->dev, "pxa-u16-align4"); 2320 } 2321 #endif 2322 2323 if (!pd && !match) { 2324 lp->cfg.flags |= (SMC_CAN_USE_8BIT) ? SMC91X_USE_8BIT : 0; 2325 lp->cfg.flags |= (SMC_CAN_USE_16BIT) ? SMC91X_USE_16BIT : 0; 2326 lp->cfg.flags |= (SMC_CAN_USE_32BIT) ? SMC91X_USE_32BIT : 0; 2327 lp->cfg.flags |= (nowait) ? SMC91X_NOWAIT : 0; 2328 } 2329 2330 if (!lp->cfg.leda && !lp->cfg.ledb) { 2331 lp->cfg.leda = RPC_LSA_DEFAULT; 2332 lp->cfg.ledb = RPC_LSB_DEFAULT; 2333 } 2334 2335 ndev->dma = (unsigned char)-1; 2336 2337 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs"); 2338 if (!res) 2339 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2340 if (!res) { 2341 ret = -ENODEV; 2342 goto out_free_netdev; 2343 } 2344 2345 2346 if (!request_mem_region(res->start, SMC_IO_EXTENT, CARDNAME)) { 2347 ret = -EBUSY; 2348 goto out_free_netdev; 2349 } 2350 2351 ndev->irq = platform_get_irq(pdev, 0); 2352 if (ndev->irq < 0) { 2353 ret = ndev->irq; 2354 goto out_release_io; 2355 } 2356 /* 2357 * If this platform does not specify any special irqflags, or if 2358 * the resource supplies a trigger, override the irqflags with 2359 * the trigger flags from the resource. 2360 */ 2361 irq_resflags = irqd_get_trigger_type(irq_get_irq_data(ndev->irq)); 2362 if (irq_flags == -1 || irq_resflags & IRQF_TRIGGER_MASK) 2363 irq_flags = irq_resflags & IRQF_TRIGGER_MASK; 2364 2365 ret = smc_request_attrib(pdev, ndev); 2366 if (ret) 2367 goto out_release_io; 2368 #if defined(CONFIG_ASSABET_NEPONSET) 2369 if (machine_is_assabet() && machine_has_neponset()) 2370 neponset_ncr_set(NCR_ENET_OSC_EN); 2371 #endif 2372 platform_set_drvdata(pdev, ndev); 2373 ret = smc_enable_device(pdev); 2374 if (ret) 2375 goto out_release_attrib; 2376 2377 addr = ioremap(res->start, SMC_IO_EXTENT); 2378 if (!addr) { 2379 ret = -ENOMEM; 2380 goto out_release_attrib; 2381 } 2382 2383 #ifdef CONFIG_ARCH_PXA 2384 { 2385 struct smc_local *lp = netdev_priv(ndev); 2386 lp->device = &pdev->dev; 2387 lp->physaddr = res->start; 2388 2389 } 2390 #endif 2391 2392 ret = smc_probe(ndev, addr, irq_flags); 2393 if (ret != 0) 2394 goto out_iounmap; 2395 2396 smc_request_datacs(pdev, ndev); 2397 2398 return 0; 2399 2400 out_iounmap: 2401 iounmap(addr); 2402 out_release_attrib: 2403 smc_release_attrib(pdev, ndev); 2404 out_release_io: 2405 release_mem_region(res->start, SMC_IO_EXTENT); 2406 out_free_netdev: 2407 free_netdev(ndev); 2408 out: 2409 pr_info("%s: not found (%d).\n", CARDNAME, ret); 2410 2411 return ret; 2412 } 2413 2414 static void smc_drv_remove(struct platform_device *pdev) 2415 { 2416 struct net_device *ndev = platform_get_drvdata(pdev); 2417 struct smc_local *lp = netdev_priv(ndev); 2418 struct resource *res; 2419 2420 unregister_netdev(ndev); 2421 2422 free_irq(ndev->irq, ndev); 2423 2424 #ifdef CONFIG_ARCH_PXA 2425 if (lp->dma_chan) 2426 dma_release_channel(lp->dma_chan); 2427 #endif 2428 iounmap(lp->base); 2429 2430 smc_release_datacs(pdev,ndev); 2431 smc_release_attrib(pdev,ndev); 2432 2433 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs"); 2434 if (!res) 2435 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2436 release_mem_region(res->start, SMC_IO_EXTENT); 2437 2438 free_netdev(ndev); 2439 } 2440 2441 static int smc_drv_suspend(struct device *dev) 2442 { 2443 struct net_device *ndev = dev_get_drvdata(dev); 2444 2445 if (ndev) { 2446 if (netif_running(ndev)) { 2447 netif_device_detach(ndev); 2448 smc_shutdown(ndev); 2449 smc_phy_powerdown(ndev); 2450 } 2451 } 2452 return 0; 2453 } 2454 2455 static int smc_drv_resume(struct device *dev) 2456 { 2457 struct platform_device *pdev = to_platform_device(dev); 2458 struct net_device *ndev = platform_get_drvdata(pdev); 2459 2460 if (ndev) { 2461 struct smc_local *lp = netdev_priv(ndev); 2462 smc_enable_device(pdev); 2463 if (netif_running(ndev)) { 2464 smc_reset(ndev); 2465 smc_enable(ndev); 2466 if (lp->phy_type != 0) 2467 smc_phy_configure(&lp->phy_configure); 2468 netif_device_attach(ndev); 2469 } 2470 } 2471 return 0; 2472 } 2473 2474 static const struct dev_pm_ops smc_drv_pm_ops = { 2475 .suspend = smc_drv_suspend, 2476 .resume = smc_drv_resume, 2477 }; 2478 2479 static struct platform_driver smc_driver = { 2480 .probe = smc_drv_probe, 2481 .remove_new = smc_drv_remove, 2482 .driver = { 2483 .name = CARDNAME, 2484 .pm = &smc_drv_pm_ops, 2485 .of_match_table = of_match_ptr(smc91x_match), 2486 .acpi_match_table = smc91x_acpi_match, 2487 }, 2488 }; 2489 2490 module_platform_driver(smc_driver); 2491