1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * smc91x.c 4 * This is a driver for SMSC's 91C9x/91C1xx single-chip Ethernet devices. 5 * 6 * Copyright (C) 1996 by Erik Stahlman 7 * Copyright (C) 2001 Standard Microsystems Corporation 8 * Developed by Simple Network Magic Corporation 9 * Copyright (C) 2003 Monta Vista Software, Inc. 10 * Unified SMC91x driver by Nicolas Pitre 11 * 12 * Arguments: 13 * io = for the base address 14 * irq = for the IRQ 15 * nowait = 0 for normal wait states, 1 eliminates additional wait states 16 * 17 * original author: 18 * Erik Stahlman <erik@vt.edu> 19 * 20 * hardware multicast code: 21 * Peter Cammaert <pc@denkart.be> 22 * 23 * contributors: 24 * Daris A Nevil <dnevil@snmc.com> 25 * Nicolas Pitre <nico@fluxnic.net> 26 * Russell King <rmk@arm.linux.org.uk> 27 * 28 * History: 29 * 08/20/00 Arnaldo Melo fix kfree(skb) in smc_hardware_send_packet 30 * 12/15/00 Christian Jullien fix "Warning: kfree_skb on hard IRQ" 31 * 03/16/01 Daris A Nevil modified smc9194.c for use with LAN91C111 32 * 08/22/01 Scott Anderson merge changes from smc9194 to smc91111 33 * 08/21/01 Pramod B Bhardwaj added support for RevB of LAN91C111 34 * 12/20/01 Jeff Sutherland initial port to Xscale PXA with DMA support 35 * 04/07/03 Nicolas Pitre unified SMC91x driver, killed irq races, 36 * more bus abstraction, big cleanup, etc. 37 * 29/09/03 Russell King - add driver model support 38 * - ethtool support 39 * - convert to use generic MII interface 40 * - add link up/down notification 41 * - don't try to handle full negotiation in 42 * smc_phy_configure 43 * - clean up (and fix stack overrun) in PHY 44 * MII read/write functions 45 * 22/09/04 Nicolas Pitre big update (see commit log for details) 46 */ 47 static const char version[] = 48 "smc91x.c: v1.1, sep 22 2004 by Nicolas Pitre <nico@fluxnic.net>"; 49 50 /* Debugging level */ 51 #ifndef SMC_DEBUG 52 #define SMC_DEBUG 0 53 #endif 54 55 56 #include <linux/module.h> 57 #include <linux/kernel.h> 58 #include <linux/sched.h> 59 #include <linux/delay.h> 60 #include <linux/gpio/consumer.h> 61 #include <linux/interrupt.h> 62 #include <linux/irq.h> 63 #include <linux/errno.h> 64 #include <linux/ioport.h> 65 #include <linux/crc32.h> 66 #include <linux/platform_device.h> 67 #include <linux/spinlock.h> 68 #include <linux/ethtool.h> 69 #include <linux/mii.h> 70 #include <linux/workqueue.h> 71 #include <linux/of.h> 72 #include <linux/of_device.h> 73 74 #include <linux/netdevice.h> 75 #include <linux/etherdevice.h> 76 #include <linux/skbuff.h> 77 78 #include <asm/io.h> 79 80 #include "smc91x.h" 81 82 #if defined(CONFIG_ASSABET_NEPONSET) 83 #include <mach/assabet.h> 84 #include <mach/neponset.h> 85 #endif 86 87 #ifndef SMC_NOWAIT 88 # define SMC_NOWAIT 0 89 #endif 90 static int nowait = SMC_NOWAIT; 91 module_param(nowait, int, 0400); 92 MODULE_PARM_DESC(nowait, "set to 1 for no wait state"); 93 94 /* 95 * Transmit timeout, default 5 seconds. 96 */ 97 static int watchdog = 1000; 98 module_param(watchdog, int, 0400); 99 MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds"); 100 101 MODULE_DESCRIPTION("SMC 91C9x/91C1xxx Ethernet driver"); 102 MODULE_LICENSE("GPL"); 103 MODULE_ALIAS("platform:smc91x"); 104 105 /* 106 * The internal workings of the driver. If you are changing anything 107 * here with the SMC stuff, you should have the datasheet and know 108 * what you are doing. 109 */ 110 #define CARDNAME "smc91x" 111 112 /* 113 * Use power-down feature of the chip 114 */ 115 #define POWER_DOWN 1 116 117 /* 118 * Wait time for memory to be free. This probably shouldn't be 119 * tuned that much, as waiting for this means nothing else happens 120 * in the system 121 */ 122 #define MEMORY_WAIT_TIME 16 123 124 /* 125 * The maximum number of processing loops allowed for each call to the 126 * IRQ handler. 127 */ 128 #define MAX_IRQ_LOOPS 8 129 130 /* 131 * This selects whether TX packets are sent one by one to the SMC91x internal 132 * memory and throttled until transmission completes. This may prevent 133 * RX overruns a litle by keeping much of the memory free for RX packets 134 * but to the expense of reduced TX throughput and increased IRQ overhead. 135 * Note this is not a cure for a too slow data bus or too high IRQ latency. 136 */ 137 #define THROTTLE_TX_PKTS 0 138 139 /* 140 * The MII clock high/low times. 2x this number gives the MII clock period 141 * in microseconds. (was 50, but this gives 6.4ms for each MII transaction!) 142 */ 143 #define MII_DELAY 1 144 145 #define DBG(n, dev, fmt, ...) \ 146 do { \ 147 if (SMC_DEBUG >= (n)) \ 148 netdev_dbg(dev, fmt, ##__VA_ARGS__); \ 149 } while (0) 150 151 #define PRINTK(dev, fmt, ...) \ 152 do { \ 153 if (SMC_DEBUG > 0) \ 154 netdev_info(dev, fmt, ##__VA_ARGS__); \ 155 else \ 156 netdev_dbg(dev, fmt, ##__VA_ARGS__); \ 157 } while (0) 158 159 #if SMC_DEBUG > 3 160 static void PRINT_PKT(u_char *buf, int length) 161 { 162 int i; 163 int remainder; 164 int lines; 165 166 lines = length / 16; 167 remainder = length % 16; 168 169 for (i = 0; i < lines ; i ++) { 170 int cur; 171 printk(KERN_DEBUG); 172 for (cur = 0; cur < 8; cur++) { 173 u_char a, b; 174 a = *buf++; 175 b = *buf++; 176 pr_cont("%02x%02x ", a, b); 177 } 178 pr_cont("\n"); 179 } 180 printk(KERN_DEBUG); 181 for (i = 0; i < remainder/2 ; i++) { 182 u_char a, b; 183 a = *buf++; 184 b = *buf++; 185 pr_cont("%02x%02x ", a, b); 186 } 187 pr_cont("\n"); 188 } 189 #else 190 static inline void PRINT_PKT(u_char *buf, int length) { } 191 #endif 192 193 194 /* this enables an interrupt in the interrupt mask register */ 195 #define SMC_ENABLE_INT(lp, x) do { \ 196 unsigned char mask; \ 197 unsigned long smc_enable_flags; \ 198 spin_lock_irqsave(&lp->lock, smc_enable_flags); \ 199 mask = SMC_GET_INT_MASK(lp); \ 200 mask |= (x); \ 201 SMC_SET_INT_MASK(lp, mask); \ 202 spin_unlock_irqrestore(&lp->lock, smc_enable_flags); \ 203 } while (0) 204 205 /* this disables an interrupt from the interrupt mask register */ 206 #define SMC_DISABLE_INT(lp, x) do { \ 207 unsigned char mask; \ 208 unsigned long smc_disable_flags; \ 209 spin_lock_irqsave(&lp->lock, smc_disable_flags); \ 210 mask = SMC_GET_INT_MASK(lp); \ 211 mask &= ~(x); \ 212 SMC_SET_INT_MASK(lp, mask); \ 213 spin_unlock_irqrestore(&lp->lock, smc_disable_flags); \ 214 } while (0) 215 216 /* 217 * Wait while MMU is busy. This is usually in the order of a few nanosecs 218 * if at all, but let's avoid deadlocking the system if the hardware 219 * decides to go south. 220 */ 221 #define SMC_WAIT_MMU_BUSY(lp) do { \ 222 if (unlikely(SMC_GET_MMU_CMD(lp) & MC_BUSY)) { \ 223 unsigned long timeout = jiffies + 2; \ 224 while (SMC_GET_MMU_CMD(lp) & MC_BUSY) { \ 225 if (time_after(jiffies, timeout)) { \ 226 netdev_dbg(dev, "timeout %s line %d\n", \ 227 __FILE__, __LINE__); \ 228 break; \ 229 } \ 230 cpu_relax(); \ 231 } \ 232 } \ 233 } while (0) 234 235 236 /* 237 * this does a soft reset on the device 238 */ 239 static void smc_reset(struct net_device *dev) 240 { 241 struct smc_local *lp = netdev_priv(dev); 242 void __iomem *ioaddr = lp->base; 243 unsigned int ctl, cfg; 244 struct sk_buff *pending_skb; 245 246 DBG(2, dev, "%s\n", __func__); 247 248 /* Disable all interrupts, block TX tasklet */ 249 spin_lock_irq(&lp->lock); 250 SMC_SELECT_BANK(lp, 2); 251 SMC_SET_INT_MASK(lp, 0); 252 pending_skb = lp->pending_tx_skb; 253 lp->pending_tx_skb = NULL; 254 spin_unlock_irq(&lp->lock); 255 256 /* free any pending tx skb */ 257 if (pending_skb) { 258 dev_kfree_skb(pending_skb); 259 dev->stats.tx_errors++; 260 dev->stats.tx_aborted_errors++; 261 } 262 263 /* 264 * This resets the registers mostly to defaults, but doesn't 265 * affect EEPROM. That seems unnecessary 266 */ 267 SMC_SELECT_BANK(lp, 0); 268 SMC_SET_RCR(lp, RCR_SOFTRST); 269 270 /* 271 * Setup the Configuration Register 272 * This is necessary because the CONFIG_REG is not affected 273 * by a soft reset 274 */ 275 SMC_SELECT_BANK(lp, 1); 276 277 cfg = CONFIG_DEFAULT; 278 279 /* 280 * Setup for fast accesses if requested. If the card/system 281 * can't handle it then there will be no recovery except for 282 * a hard reset or power cycle 283 */ 284 if (lp->cfg.flags & SMC91X_NOWAIT) 285 cfg |= CONFIG_NO_WAIT; 286 287 /* 288 * Release from possible power-down state 289 * Configuration register is not affected by Soft Reset 290 */ 291 cfg |= CONFIG_EPH_POWER_EN; 292 293 SMC_SET_CONFIG(lp, cfg); 294 295 /* this should pause enough for the chip to be happy */ 296 /* 297 * elaborate? What does the chip _need_? --jgarzik 298 * 299 * This seems to be undocumented, but something the original 300 * driver(s) have always done. Suspect undocumented timing 301 * info/determined empirically. --rmk 302 */ 303 udelay(1); 304 305 /* Disable transmit and receive functionality */ 306 SMC_SELECT_BANK(lp, 0); 307 SMC_SET_RCR(lp, RCR_CLEAR); 308 SMC_SET_TCR(lp, TCR_CLEAR); 309 310 SMC_SELECT_BANK(lp, 1); 311 ctl = SMC_GET_CTL(lp) | CTL_LE_ENABLE; 312 313 /* 314 * Set the control register to automatically release successfully 315 * transmitted packets, to make the best use out of our limited 316 * memory 317 */ 318 if(!THROTTLE_TX_PKTS) 319 ctl |= CTL_AUTO_RELEASE; 320 else 321 ctl &= ~CTL_AUTO_RELEASE; 322 SMC_SET_CTL(lp, ctl); 323 324 /* Reset the MMU */ 325 SMC_SELECT_BANK(lp, 2); 326 SMC_SET_MMU_CMD(lp, MC_RESET); 327 SMC_WAIT_MMU_BUSY(lp); 328 } 329 330 /* 331 * Enable Interrupts, Receive, and Transmit 332 */ 333 static void smc_enable(struct net_device *dev) 334 { 335 struct smc_local *lp = netdev_priv(dev); 336 void __iomem *ioaddr = lp->base; 337 int mask; 338 339 DBG(2, dev, "%s\n", __func__); 340 341 /* see the header file for options in TCR/RCR DEFAULT */ 342 SMC_SELECT_BANK(lp, 0); 343 SMC_SET_TCR(lp, lp->tcr_cur_mode); 344 SMC_SET_RCR(lp, lp->rcr_cur_mode); 345 346 SMC_SELECT_BANK(lp, 1); 347 SMC_SET_MAC_ADDR(lp, dev->dev_addr); 348 349 /* now, enable interrupts */ 350 mask = IM_EPH_INT|IM_RX_OVRN_INT|IM_RCV_INT; 351 if (lp->version >= (CHIP_91100 << 4)) 352 mask |= IM_MDINT; 353 SMC_SELECT_BANK(lp, 2); 354 SMC_SET_INT_MASK(lp, mask); 355 356 /* 357 * From this point the register bank must _NOT_ be switched away 358 * to something else than bank 2 without proper locking against 359 * races with any tasklet or interrupt handlers until smc_shutdown() 360 * or smc_reset() is called. 361 */ 362 } 363 364 /* 365 * this puts the device in an inactive state 366 */ 367 static void smc_shutdown(struct net_device *dev) 368 { 369 struct smc_local *lp = netdev_priv(dev); 370 void __iomem *ioaddr = lp->base; 371 struct sk_buff *pending_skb; 372 373 DBG(2, dev, "%s: %s\n", CARDNAME, __func__); 374 375 /* no more interrupts for me */ 376 spin_lock_irq(&lp->lock); 377 SMC_SELECT_BANK(lp, 2); 378 SMC_SET_INT_MASK(lp, 0); 379 pending_skb = lp->pending_tx_skb; 380 lp->pending_tx_skb = NULL; 381 spin_unlock_irq(&lp->lock); 382 dev_kfree_skb(pending_skb); 383 384 /* and tell the card to stay away from that nasty outside world */ 385 SMC_SELECT_BANK(lp, 0); 386 SMC_SET_RCR(lp, RCR_CLEAR); 387 SMC_SET_TCR(lp, TCR_CLEAR); 388 389 #ifdef POWER_DOWN 390 /* finally, shut the chip down */ 391 SMC_SELECT_BANK(lp, 1); 392 SMC_SET_CONFIG(lp, SMC_GET_CONFIG(lp) & ~CONFIG_EPH_POWER_EN); 393 #endif 394 } 395 396 /* 397 * This is the procedure to handle the receipt of a packet. 398 */ 399 static inline void smc_rcv(struct net_device *dev) 400 { 401 struct smc_local *lp = netdev_priv(dev); 402 void __iomem *ioaddr = lp->base; 403 unsigned int packet_number, status, packet_len; 404 405 DBG(3, dev, "%s\n", __func__); 406 407 packet_number = SMC_GET_RXFIFO(lp); 408 if (unlikely(packet_number & RXFIFO_REMPTY)) { 409 PRINTK(dev, "smc_rcv with nothing on FIFO.\n"); 410 return; 411 } 412 413 /* read from start of packet */ 414 SMC_SET_PTR(lp, PTR_READ | PTR_RCV | PTR_AUTOINC); 415 416 /* First two words are status and packet length */ 417 SMC_GET_PKT_HDR(lp, status, packet_len); 418 packet_len &= 0x07ff; /* mask off top bits */ 419 DBG(2, dev, "RX PNR 0x%x STATUS 0x%04x LENGTH 0x%04x (%d)\n", 420 packet_number, status, packet_len, packet_len); 421 422 back: 423 if (unlikely(packet_len < 6 || status & RS_ERRORS)) { 424 if (status & RS_TOOLONG && packet_len <= (1514 + 4 + 6)) { 425 /* accept VLAN packets */ 426 status &= ~RS_TOOLONG; 427 goto back; 428 } 429 if (packet_len < 6) { 430 /* bloody hardware */ 431 netdev_err(dev, "fubar (rxlen %u status %x\n", 432 packet_len, status); 433 status |= RS_TOOSHORT; 434 } 435 SMC_WAIT_MMU_BUSY(lp); 436 SMC_SET_MMU_CMD(lp, MC_RELEASE); 437 dev->stats.rx_errors++; 438 if (status & RS_ALGNERR) 439 dev->stats.rx_frame_errors++; 440 if (status & (RS_TOOSHORT | RS_TOOLONG)) 441 dev->stats.rx_length_errors++; 442 if (status & RS_BADCRC) 443 dev->stats.rx_crc_errors++; 444 } else { 445 struct sk_buff *skb; 446 unsigned char *data; 447 unsigned int data_len; 448 449 /* set multicast stats */ 450 if (status & RS_MULTICAST) 451 dev->stats.multicast++; 452 453 /* 454 * Actual payload is packet_len - 6 (or 5 if odd byte). 455 * We want skb_reserve(2) and the final ctrl word 456 * (2 bytes, possibly containing the payload odd byte). 457 * Furthermore, we add 2 bytes to allow rounding up to 458 * multiple of 4 bytes on 32 bit buses. 459 * Hence packet_len - 6 + 2 + 2 + 2. 460 */ 461 skb = netdev_alloc_skb(dev, packet_len); 462 if (unlikely(skb == NULL)) { 463 SMC_WAIT_MMU_BUSY(lp); 464 SMC_SET_MMU_CMD(lp, MC_RELEASE); 465 dev->stats.rx_dropped++; 466 return; 467 } 468 469 /* Align IP header to 32 bits */ 470 skb_reserve(skb, 2); 471 472 /* BUG: the LAN91C111 rev A never sets this bit. Force it. */ 473 if (lp->version == 0x90) 474 status |= RS_ODDFRAME; 475 476 /* 477 * If odd length: packet_len - 5, 478 * otherwise packet_len - 6. 479 * With the trailing ctrl byte it's packet_len - 4. 480 */ 481 data_len = packet_len - ((status & RS_ODDFRAME) ? 5 : 6); 482 data = skb_put(skb, data_len); 483 SMC_PULL_DATA(lp, data, packet_len - 4); 484 485 SMC_WAIT_MMU_BUSY(lp); 486 SMC_SET_MMU_CMD(lp, MC_RELEASE); 487 488 PRINT_PKT(data, packet_len - 4); 489 490 skb->protocol = eth_type_trans(skb, dev); 491 netif_rx(skb); 492 dev->stats.rx_packets++; 493 dev->stats.rx_bytes += data_len; 494 } 495 } 496 497 #ifdef CONFIG_SMP 498 /* 499 * On SMP we have the following problem: 500 * 501 * A = smc_hardware_send_pkt() 502 * B = smc_hard_start_xmit() 503 * C = smc_interrupt() 504 * 505 * A and B can never be executed simultaneously. However, at least on UP, 506 * it is possible (and even desirable) for C to interrupt execution of 507 * A or B in order to have better RX reliability and avoid overruns. 508 * C, just like A and B, must have exclusive access to the chip and 509 * each of them must lock against any other concurrent access. 510 * Unfortunately this is not possible to have C suspend execution of A or 511 * B taking place on another CPU. On UP this is no an issue since A and B 512 * are run from softirq context and C from hard IRQ context, and there is 513 * no other CPU where concurrent access can happen. 514 * If ever there is a way to force at least B and C to always be executed 515 * on the same CPU then we could use read/write locks to protect against 516 * any other concurrent access and C would always interrupt B. But life 517 * isn't that easy in a SMP world... 518 */ 519 #define smc_special_trylock(lock, flags) \ 520 ({ \ 521 int __ret; \ 522 local_irq_save(flags); \ 523 __ret = spin_trylock(lock); \ 524 if (!__ret) \ 525 local_irq_restore(flags); \ 526 __ret; \ 527 }) 528 #define smc_special_lock(lock, flags) spin_lock_irqsave(lock, flags) 529 #define smc_special_unlock(lock, flags) spin_unlock_irqrestore(lock, flags) 530 #else 531 #define smc_special_trylock(lock, flags) ((void)flags, true) 532 #define smc_special_lock(lock, flags) do { flags = 0; } while (0) 533 #define smc_special_unlock(lock, flags) do { flags = 0; } while (0) 534 #endif 535 536 /* 537 * This is called to actually send a packet to the chip. 538 */ 539 static void smc_hardware_send_pkt(struct tasklet_struct *t) 540 { 541 struct smc_local *lp = from_tasklet(lp, t, tx_task); 542 struct net_device *dev = lp->dev; 543 void __iomem *ioaddr = lp->base; 544 struct sk_buff *skb; 545 unsigned int packet_no, len; 546 unsigned char *buf; 547 unsigned long flags; 548 549 DBG(3, dev, "%s\n", __func__); 550 551 if (!smc_special_trylock(&lp->lock, flags)) { 552 netif_stop_queue(dev); 553 tasklet_schedule(&lp->tx_task); 554 return; 555 } 556 557 skb = lp->pending_tx_skb; 558 if (unlikely(!skb)) { 559 smc_special_unlock(&lp->lock, flags); 560 return; 561 } 562 lp->pending_tx_skb = NULL; 563 564 packet_no = SMC_GET_AR(lp); 565 if (unlikely(packet_no & AR_FAILED)) { 566 netdev_err(dev, "Memory allocation failed.\n"); 567 dev->stats.tx_errors++; 568 dev->stats.tx_fifo_errors++; 569 smc_special_unlock(&lp->lock, flags); 570 goto done; 571 } 572 573 /* point to the beginning of the packet */ 574 SMC_SET_PN(lp, packet_no); 575 SMC_SET_PTR(lp, PTR_AUTOINC); 576 577 buf = skb->data; 578 len = skb->len; 579 DBG(2, dev, "TX PNR 0x%x LENGTH 0x%04x (%d) BUF 0x%p\n", 580 packet_no, len, len, buf); 581 PRINT_PKT(buf, len); 582 583 /* 584 * Send the packet length (+6 for status words, length, and ctl. 585 * The card will pad to 64 bytes with zeroes if packet is too small. 586 */ 587 SMC_PUT_PKT_HDR(lp, 0, len + 6); 588 589 /* send the actual data */ 590 SMC_PUSH_DATA(lp, buf, len & ~1); 591 592 /* Send final ctl word with the last byte if there is one */ 593 SMC_outw(lp, ((len & 1) ? (0x2000 | buf[len - 1]) : 0), ioaddr, 594 DATA_REG(lp)); 595 596 /* 597 * If THROTTLE_TX_PKTS is set, we stop the queue here. This will 598 * have the effect of having at most one packet queued for TX 599 * in the chip's memory at all time. 600 * 601 * If THROTTLE_TX_PKTS is not set then the queue is stopped only 602 * when memory allocation (MC_ALLOC) does not succeed right away. 603 */ 604 if (THROTTLE_TX_PKTS) 605 netif_stop_queue(dev); 606 607 /* queue the packet for TX */ 608 SMC_SET_MMU_CMD(lp, MC_ENQUEUE); 609 smc_special_unlock(&lp->lock, flags); 610 611 netif_trans_update(dev); 612 dev->stats.tx_packets++; 613 dev->stats.tx_bytes += len; 614 615 SMC_ENABLE_INT(lp, IM_TX_INT | IM_TX_EMPTY_INT); 616 617 done: if (!THROTTLE_TX_PKTS) 618 netif_wake_queue(dev); 619 620 dev_consume_skb_any(skb); 621 } 622 623 /* 624 * Since I am not sure if I will have enough room in the chip's ram 625 * to store the packet, I call this routine which either sends it 626 * now, or set the card to generates an interrupt when ready 627 * for the packet. 628 */ 629 static netdev_tx_t 630 smc_hard_start_xmit(struct sk_buff *skb, struct net_device *dev) 631 { 632 struct smc_local *lp = netdev_priv(dev); 633 void __iomem *ioaddr = lp->base; 634 unsigned int numPages, poll_count, status; 635 unsigned long flags; 636 637 DBG(3, dev, "%s\n", __func__); 638 639 BUG_ON(lp->pending_tx_skb != NULL); 640 641 /* 642 * The MMU wants the number of pages to be the number of 256 bytes 643 * 'pages', minus 1 (since a packet can't ever have 0 pages :)) 644 * 645 * The 91C111 ignores the size bits, but earlier models don't. 646 * 647 * Pkt size for allocating is data length +6 (for additional status 648 * words, length and ctl) 649 * 650 * If odd size then last byte is included in ctl word. 651 */ 652 numPages = ((skb->len & ~1) + (6 - 1)) >> 8; 653 if (unlikely(numPages > 7)) { 654 netdev_warn(dev, "Far too big packet error.\n"); 655 dev->stats.tx_errors++; 656 dev->stats.tx_dropped++; 657 dev_kfree_skb_any(skb); 658 return NETDEV_TX_OK; 659 } 660 661 smc_special_lock(&lp->lock, flags); 662 663 /* now, try to allocate the memory */ 664 SMC_SET_MMU_CMD(lp, MC_ALLOC | numPages); 665 666 /* 667 * Poll the chip for a short amount of time in case the 668 * allocation succeeds quickly. 669 */ 670 poll_count = MEMORY_WAIT_TIME; 671 do { 672 status = SMC_GET_INT(lp); 673 if (status & IM_ALLOC_INT) { 674 SMC_ACK_INT(lp, IM_ALLOC_INT); 675 break; 676 } 677 } while (--poll_count); 678 679 smc_special_unlock(&lp->lock, flags); 680 681 lp->pending_tx_skb = skb; 682 if (!poll_count) { 683 /* oh well, wait until the chip finds memory later */ 684 netif_stop_queue(dev); 685 DBG(2, dev, "TX memory allocation deferred.\n"); 686 SMC_ENABLE_INT(lp, IM_ALLOC_INT); 687 } else { 688 /* 689 * Allocation succeeded: push packet to the chip's own memory 690 * immediately. 691 */ 692 smc_hardware_send_pkt(&lp->tx_task); 693 } 694 695 return NETDEV_TX_OK; 696 } 697 698 /* 699 * This handles a TX interrupt, which is only called when: 700 * - a TX error occurred, or 701 * - CTL_AUTO_RELEASE is not set and TX of a packet completed. 702 */ 703 static void smc_tx(struct net_device *dev) 704 { 705 struct smc_local *lp = netdev_priv(dev); 706 void __iomem *ioaddr = lp->base; 707 unsigned int saved_packet, packet_no, tx_status; 708 unsigned int pkt_len __always_unused; 709 710 DBG(3, dev, "%s\n", __func__); 711 712 /* If the TX FIFO is empty then nothing to do */ 713 packet_no = SMC_GET_TXFIFO(lp); 714 if (unlikely(packet_no & TXFIFO_TEMPTY)) { 715 PRINTK(dev, "smc_tx with nothing on FIFO.\n"); 716 return; 717 } 718 719 /* select packet to read from */ 720 saved_packet = SMC_GET_PN(lp); 721 SMC_SET_PN(lp, packet_no); 722 723 /* read the first word (status word) from this packet */ 724 SMC_SET_PTR(lp, PTR_AUTOINC | PTR_READ); 725 SMC_GET_PKT_HDR(lp, tx_status, pkt_len); 726 DBG(2, dev, "TX STATUS 0x%04x PNR 0x%02x\n", 727 tx_status, packet_no); 728 729 if (!(tx_status & ES_TX_SUC)) 730 dev->stats.tx_errors++; 731 732 if (tx_status & ES_LOSTCARR) 733 dev->stats.tx_carrier_errors++; 734 735 if (tx_status & (ES_LATCOL | ES_16COL)) { 736 PRINTK(dev, "%s occurred on last xmit\n", 737 (tx_status & ES_LATCOL) ? 738 "late collision" : "too many collisions"); 739 dev->stats.tx_window_errors++; 740 if (!(dev->stats.tx_window_errors & 63) && net_ratelimit()) { 741 netdev_info(dev, "unexpectedly large number of bad collisions. Please check duplex setting.\n"); 742 } 743 } 744 745 /* kill the packet */ 746 SMC_WAIT_MMU_BUSY(lp); 747 SMC_SET_MMU_CMD(lp, MC_FREEPKT); 748 749 /* Don't restore Packet Number Reg until busy bit is cleared */ 750 SMC_WAIT_MMU_BUSY(lp); 751 SMC_SET_PN(lp, saved_packet); 752 753 /* re-enable transmit */ 754 SMC_SELECT_BANK(lp, 0); 755 SMC_SET_TCR(lp, lp->tcr_cur_mode); 756 SMC_SELECT_BANK(lp, 2); 757 } 758 759 760 /*---PHY CONTROL AND CONFIGURATION-----------------------------------------*/ 761 762 static void smc_mii_out(struct net_device *dev, unsigned int val, int bits) 763 { 764 struct smc_local *lp = netdev_priv(dev); 765 void __iomem *ioaddr = lp->base; 766 unsigned int mii_reg, mask; 767 768 mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO); 769 mii_reg |= MII_MDOE; 770 771 for (mask = 1 << (bits - 1); mask; mask >>= 1) { 772 if (val & mask) 773 mii_reg |= MII_MDO; 774 else 775 mii_reg &= ~MII_MDO; 776 777 SMC_SET_MII(lp, mii_reg); 778 udelay(MII_DELAY); 779 SMC_SET_MII(lp, mii_reg | MII_MCLK); 780 udelay(MII_DELAY); 781 } 782 } 783 784 static unsigned int smc_mii_in(struct net_device *dev, int bits) 785 { 786 struct smc_local *lp = netdev_priv(dev); 787 void __iomem *ioaddr = lp->base; 788 unsigned int mii_reg, mask, val; 789 790 mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO); 791 SMC_SET_MII(lp, mii_reg); 792 793 for (mask = 1 << (bits - 1), val = 0; mask; mask >>= 1) { 794 if (SMC_GET_MII(lp) & MII_MDI) 795 val |= mask; 796 797 SMC_SET_MII(lp, mii_reg); 798 udelay(MII_DELAY); 799 SMC_SET_MII(lp, mii_reg | MII_MCLK); 800 udelay(MII_DELAY); 801 } 802 803 return val; 804 } 805 806 /* 807 * Reads a register from the MII Management serial interface 808 */ 809 static int smc_phy_read(struct net_device *dev, int phyaddr, int phyreg) 810 { 811 struct smc_local *lp = netdev_priv(dev); 812 void __iomem *ioaddr = lp->base; 813 unsigned int phydata; 814 815 SMC_SELECT_BANK(lp, 3); 816 817 /* Idle - 32 ones */ 818 smc_mii_out(dev, 0xffffffff, 32); 819 820 /* Start code (01) + read (10) + phyaddr + phyreg */ 821 smc_mii_out(dev, 6 << 10 | phyaddr << 5 | phyreg, 14); 822 823 /* Turnaround (2bits) + phydata */ 824 phydata = smc_mii_in(dev, 18); 825 826 /* Return to idle state */ 827 SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO)); 828 829 DBG(3, dev, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n", 830 __func__, phyaddr, phyreg, phydata); 831 832 SMC_SELECT_BANK(lp, 2); 833 return phydata; 834 } 835 836 /* 837 * Writes a register to the MII Management serial interface 838 */ 839 static void smc_phy_write(struct net_device *dev, int phyaddr, int phyreg, 840 int phydata) 841 { 842 struct smc_local *lp = netdev_priv(dev); 843 void __iomem *ioaddr = lp->base; 844 845 SMC_SELECT_BANK(lp, 3); 846 847 /* Idle - 32 ones */ 848 smc_mii_out(dev, 0xffffffff, 32); 849 850 /* Start code (01) + write (01) + phyaddr + phyreg + turnaround + phydata */ 851 smc_mii_out(dev, 5 << 28 | phyaddr << 23 | phyreg << 18 | 2 << 16 | phydata, 32); 852 853 /* Return to idle state */ 854 SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO)); 855 856 DBG(3, dev, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n", 857 __func__, phyaddr, phyreg, phydata); 858 859 SMC_SELECT_BANK(lp, 2); 860 } 861 862 /* 863 * Finds and reports the PHY address 864 */ 865 static void smc_phy_detect(struct net_device *dev) 866 { 867 struct smc_local *lp = netdev_priv(dev); 868 int phyaddr; 869 870 DBG(2, dev, "%s\n", __func__); 871 872 lp->phy_type = 0; 873 874 /* 875 * Scan all 32 PHY addresses if necessary, starting at 876 * PHY#1 to PHY#31, and then PHY#0 last. 877 */ 878 for (phyaddr = 1; phyaddr < 33; ++phyaddr) { 879 unsigned int id1, id2; 880 881 /* Read the PHY identifiers */ 882 id1 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID1); 883 id2 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID2); 884 885 DBG(3, dev, "phy_id1=0x%x, phy_id2=0x%x\n", 886 id1, id2); 887 888 /* Make sure it is a valid identifier */ 889 if (id1 != 0x0000 && id1 != 0xffff && id1 != 0x8000 && 890 id2 != 0x0000 && id2 != 0xffff && id2 != 0x8000) { 891 /* Save the PHY's address */ 892 lp->mii.phy_id = phyaddr & 31; 893 lp->phy_type = id1 << 16 | id2; 894 break; 895 } 896 } 897 } 898 899 /* 900 * Sets the PHY to a configuration as determined by the user 901 */ 902 static int smc_phy_fixed(struct net_device *dev) 903 { 904 struct smc_local *lp = netdev_priv(dev); 905 void __iomem *ioaddr = lp->base; 906 int phyaddr = lp->mii.phy_id; 907 int bmcr, cfg1; 908 909 DBG(3, dev, "%s\n", __func__); 910 911 /* Enter Link Disable state */ 912 cfg1 = smc_phy_read(dev, phyaddr, PHY_CFG1_REG); 913 cfg1 |= PHY_CFG1_LNKDIS; 914 smc_phy_write(dev, phyaddr, PHY_CFG1_REG, cfg1); 915 916 /* 917 * Set our fixed capabilities 918 * Disable auto-negotiation 919 */ 920 bmcr = 0; 921 922 if (lp->ctl_rfduplx) 923 bmcr |= BMCR_FULLDPLX; 924 925 if (lp->ctl_rspeed == 100) 926 bmcr |= BMCR_SPEED100; 927 928 /* Write our capabilities to the phy control register */ 929 smc_phy_write(dev, phyaddr, MII_BMCR, bmcr); 930 931 /* Re-Configure the Receive/Phy Control register */ 932 SMC_SELECT_BANK(lp, 0); 933 SMC_SET_RPC(lp, lp->rpc_cur_mode); 934 SMC_SELECT_BANK(lp, 2); 935 936 return 1; 937 } 938 939 /** 940 * smc_phy_reset - reset the phy 941 * @dev: net device 942 * @phy: phy address 943 * 944 * Issue a software reset for the specified PHY and 945 * wait up to 100ms for the reset to complete. We should 946 * not access the PHY for 50ms after issuing the reset. 947 * 948 * The time to wait appears to be dependent on the PHY. 949 * 950 * Must be called with lp->lock locked. 951 */ 952 static int smc_phy_reset(struct net_device *dev, int phy) 953 { 954 struct smc_local *lp = netdev_priv(dev); 955 unsigned int bmcr; 956 int timeout; 957 958 smc_phy_write(dev, phy, MII_BMCR, BMCR_RESET); 959 960 for (timeout = 2; timeout; timeout--) { 961 spin_unlock_irq(&lp->lock); 962 msleep(50); 963 spin_lock_irq(&lp->lock); 964 965 bmcr = smc_phy_read(dev, phy, MII_BMCR); 966 if (!(bmcr & BMCR_RESET)) 967 break; 968 } 969 970 return bmcr & BMCR_RESET; 971 } 972 973 /** 974 * smc_phy_powerdown - powerdown phy 975 * @dev: net device 976 * 977 * Power down the specified PHY 978 */ 979 static void smc_phy_powerdown(struct net_device *dev) 980 { 981 struct smc_local *lp = netdev_priv(dev); 982 unsigned int bmcr; 983 int phy = lp->mii.phy_id; 984 985 if (lp->phy_type == 0) 986 return; 987 988 /* We need to ensure that no calls to smc_phy_configure are 989 pending. 990 */ 991 cancel_work_sync(&lp->phy_configure); 992 993 bmcr = smc_phy_read(dev, phy, MII_BMCR); 994 smc_phy_write(dev, phy, MII_BMCR, bmcr | BMCR_PDOWN); 995 } 996 997 /** 998 * smc_phy_check_media - check the media status and adjust TCR 999 * @dev: net device 1000 * @init: set true for initialisation 1001 * 1002 * Select duplex mode depending on negotiation state. This 1003 * also updates our carrier state. 1004 */ 1005 static void smc_phy_check_media(struct net_device *dev, int init) 1006 { 1007 struct smc_local *lp = netdev_priv(dev); 1008 void __iomem *ioaddr = lp->base; 1009 1010 if (mii_check_media(&lp->mii, netif_msg_link(lp), init)) { 1011 /* duplex state has changed */ 1012 if (lp->mii.full_duplex) { 1013 lp->tcr_cur_mode |= TCR_SWFDUP; 1014 } else { 1015 lp->tcr_cur_mode &= ~TCR_SWFDUP; 1016 } 1017 1018 SMC_SELECT_BANK(lp, 0); 1019 SMC_SET_TCR(lp, lp->tcr_cur_mode); 1020 } 1021 } 1022 1023 /* 1024 * Configures the specified PHY through the MII management interface 1025 * using Autonegotiation. 1026 * Calls smc_phy_fixed() if the user has requested a certain config. 1027 * If RPC ANEG bit is set, the media selection is dependent purely on 1028 * the selection by the MII (either in the MII BMCR reg or the result 1029 * of autonegotiation.) If the RPC ANEG bit is cleared, the selection 1030 * is controlled by the RPC SPEED and RPC DPLX bits. 1031 */ 1032 static void smc_phy_configure(struct work_struct *work) 1033 { 1034 struct smc_local *lp = 1035 container_of(work, struct smc_local, phy_configure); 1036 struct net_device *dev = lp->dev; 1037 void __iomem *ioaddr = lp->base; 1038 int phyaddr = lp->mii.phy_id; 1039 int my_phy_caps; /* My PHY capabilities */ 1040 int my_ad_caps; /* My Advertised capabilities */ 1041 1042 DBG(3, dev, "smc_program_phy()\n"); 1043 1044 spin_lock_irq(&lp->lock); 1045 1046 /* 1047 * We should not be called if phy_type is zero. 1048 */ 1049 if (lp->phy_type == 0) 1050 goto smc_phy_configure_exit; 1051 1052 if (smc_phy_reset(dev, phyaddr)) { 1053 netdev_info(dev, "PHY reset timed out\n"); 1054 goto smc_phy_configure_exit; 1055 } 1056 1057 /* 1058 * Enable PHY Interrupts (for register 18) 1059 * Interrupts listed here are disabled 1060 */ 1061 smc_phy_write(dev, phyaddr, PHY_MASK_REG, 1062 PHY_INT_LOSSSYNC | PHY_INT_CWRD | PHY_INT_SSD | 1063 PHY_INT_ESD | PHY_INT_RPOL | PHY_INT_JAB | 1064 PHY_INT_SPDDET | PHY_INT_DPLXDET); 1065 1066 /* Configure the Receive/Phy Control register */ 1067 SMC_SELECT_BANK(lp, 0); 1068 SMC_SET_RPC(lp, lp->rpc_cur_mode); 1069 1070 /* If the user requested no auto neg, then go set his request */ 1071 if (lp->mii.force_media) { 1072 smc_phy_fixed(dev); 1073 goto smc_phy_configure_exit; 1074 } 1075 1076 /* Copy our capabilities from MII_BMSR to MII_ADVERTISE */ 1077 my_phy_caps = smc_phy_read(dev, phyaddr, MII_BMSR); 1078 1079 if (!(my_phy_caps & BMSR_ANEGCAPABLE)) { 1080 netdev_info(dev, "Auto negotiation NOT supported\n"); 1081 smc_phy_fixed(dev); 1082 goto smc_phy_configure_exit; 1083 } 1084 1085 my_ad_caps = ADVERTISE_CSMA; /* I am CSMA capable */ 1086 1087 if (my_phy_caps & BMSR_100BASE4) 1088 my_ad_caps |= ADVERTISE_100BASE4; 1089 if (my_phy_caps & BMSR_100FULL) 1090 my_ad_caps |= ADVERTISE_100FULL; 1091 if (my_phy_caps & BMSR_100HALF) 1092 my_ad_caps |= ADVERTISE_100HALF; 1093 if (my_phy_caps & BMSR_10FULL) 1094 my_ad_caps |= ADVERTISE_10FULL; 1095 if (my_phy_caps & BMSR_10HALF) 1096 my_ad_caps |= ADVERTISE_10HALF; 1097 1098 /* Disable capabilities not selected by our user */ 1099 if (lp->ctl_rspeed != 100) 1100 my_ad_caps &= ~(ADVERTISE_100BASE4|ADVERTISE_100FULL|ADVERTISE_100HALF); 1101 1102 if (!lp->ctl_rfduplx) 1103 my_ad_caps &= ~(ADVERTISE_100FULL|ADVERTISE_10FULL); 1104 1105 /* Update our Auto-Neg Advertisement Register */ 1106 smc_phy_write(dev, phyaddr, MII_ADVERTISE, my_ad_caps); 1107 lp->mii.advertising = my_ad_caps; 1108 1109 /* 1110 * Read the register back. Without this, it appears that when 1111 * auto-negotiation is restarted, sometimes it isn't ready and 1112 * the link does not come up. 1113 */ 1114 smc_phy_read(dev, phyaddr, MII_ADVERTISE); 1115 1116 DBG(2, dev, "phy caps=%x\n", my_phy_caps); 1117 DBG(2, dev, "phy advertised caps=%x\n", my_ad_caps); 1118 1119 /* Restart auto-negotiation process in order to advertise my caps */ 1120 smc_phy_write(dev, phyaddr, MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART); 1121 1122 smc_phy_check_media(dev, 1); 1123 1124 smc_phy_configure_exit: 1125 SMC_SELECT_BANK(lp, 2); 1126 spin_unlock_irq(&lp->lock); 1127 } 1128 1129 /* 1130 * smc_phy_interrupt 1131 * 1132 * Purpose: Handle interrupts relating to PHY register 18. This is 1133 * called from the "hard" interrupt handler under our private spinlock. 1134 */ 1135 static void smc_phy_interrupt(struct net_device *dev) 1136 { 1137 struct smc_local *lp = netdev_priv(dev); 1138 int phyaddr = lp->mii.phy_id; 1139 int phy18; 1140 1141 DBG(2, dev, "%s\n", __func__); 1142 1143 if (lp->phy_type == 0) 1144 return; 1145 1146 for(;;) { 1147 smc_phy_check_media(dev, 0); 1148 1149 /* Read PHY Register 18, Status Output */ 1150 phy18 = smc_phy_read(dev, phyaddr, PHY_INT_REG); 1151 if ((phy18 & PHY_INT_INT) == 0) 1152 break; 1153 } 1154 } 1155 1156 /*--- END PHY CONTROL AND CONFIGURATION-------------------------------------*/ 1157 1158 static void smc_10bt_check_media(struct net_device *dev, int init) 1159 { 1160 struct smc_local *lp = netdev_priv(dev); 1161 void __iomem *ioaddr = lp->base; 1162 unsigned int old_carrier, new_carrier; 1163 1164 old_carrier = netif_carrier_ok(dev) ? 1 : 0; 1165 1166 SMC_SELECT_BANK(lp, 0); 1167 new_carrier = (SMC_GET_EPH_STATUS(lp) & ES_LINK_OK) ? 1 : 0; 1168 SMC_SELECT_BANK(lp, 2); 1169 1170 if (init || (old_carrier != new_carrier)) { 1171 if (!new_carrier) { 1172 netif_carrier_off(dev); 1173 } else { 1174 netif_carrier_on(dev); 1175 } 1176 if (netif_msg_link(lp)) 1177 netdev_info(dev, "link %s\n", 1178 new_carrier ? "up" : "down"); 1179 } 1180 } 1181 1182 static void smc_eph_interrupt(struct net_device *dev) 1183 { 1184 struct smc_local *lp = netdev_priv(dev); 1185 void __iomem *ioaddr = lp->base; 1186 unsigned int ctl; 1187 1188 smc_10bt_check_media(dev, 0); 1189 1190 SMC_SELECT_BANK(lp, 1); 1191 ctl = SMC_GET_CTL(lp); 1192 SMC_SET_CTL(lp, ctl & ~CTL_LE_ENABLE); 1193 SMC_SET_CTL(lp, ctl); 1194 SMC_SELECT_BANK(lp, 2); 1195 } 1196 1197 /* 1198 * This is the main routine of the driver, to handle the device when 1199 * it needs some attention. 1200 */ 1201 static irqreturn_t smc_interrupt(int irq, void *dev_id) 1202 { 1203 struct net_device *dev = dev_id; 1204 struct smc_local *lp = netdev_priv(dev); 1205 void __iomem *ioaddr = lp->base; 1206 int status, mask, timeout, card_stats; 1207 int saved_pointer; 1208 1209 DBG(3, dev, "%s\n", __func__); 1210 1211 spin_lock(&lp->lock); 1212 1213 /* A preamble may be used when there is a potential race 1214 * between the interruptible transmit functions and this 1215 * ISR. */ 1216 SMC_INTERRUPT_PREAMBLE; 1217 1218 saved_pointer = SMC_GET_PTR(lp); 1219 mask = SMC_GET_INT_MASK(lp); 1220 SMC_SET_INT_MASK(lp, 0); 1221 1222 /* set a timeout value, so I don't stay here forever */ 1223 timeout = MAX_IRQ_LOOPS; 1224 1225 do { 1226 status = SMC_GET_INT(lp); 1227 1228 DBG(2, dev, "INT 0x%02x MASK 0x%02x MEM 0x%04x FIFO 0x%04x\n", 1229 status, mask, 1230 ({ int meminfo; SMC_SELECT_BANK(lp, 0); 1231 meminfo = SMC_GET_MIR(lp); 1232 SMC_SELECT_BANK(lp, 2); meminfo; }), 1233 SMC_GET_FIFO(lp)); 1234 1235 status &= mask; 1236 if (!status) 1237 break; 1238 1239 if (status & IM_TX_INT) { 1240 /* do this before RX as it will free memory quickly */ 1241 DBG(3, dev, "TX int\n"); 1242 smc_tx(dev); 1243 SMC_ACK_INT(lp, IM_TX_INT); 1244 if (THROTTLE_TX_PKTS) 1245 netif_wake_queue(dev); 1246 } else if (status & IM_RCV_INT) { 1247 DBG(3, dev, "RX irq\n"); 1248 smc_rcv(dev); 1249 } else if (status & IM_ALLOC_INT) { 1250 DBG(3, dev, "Allocation irq\n"); 1251 tasklet_hi_schedule(&lp->tx_task); 1252 mask &= ~IM_ALLOC_INT; 1253 } else if (status & IM_TX_EMPTY_INT) { 1254 DBG(3, dev, "TX empty\n"); 1255 mask &= ~IM_TX_EMPTY_INT; 1256 1257 /* update stats */ 1258 SMC_SELECT_BANK(lp, 0); 1259 card_stats = SMC_GET_COUNTER(lp); 1260 SMC_SELECT_BANK(lp, 2); 1261 1262 /* single collisions */ 1263 dev->stats.collisions += card_stats & 0xF; 1264 card_stats >>= 4; 1265 1266 /* multiple collisions */ 1267 dev->stats.collisions += card_stats & 0xF; 1268 } else if (status & IM_RX_OVRN_INT) { 1269 DBG(1, dev, "RX overrun (EPH_ST 0x%04x)\n", 1270 ({ int eph_st; SMC_SELECT_BANK(lp, 0); 1271 eph_st = SMC_GET_EPH_STATUS(lp); 1272 SMC_SELECT_BANK(lp, 2); eph_st; })); 1273 SMC_ACK_INT(lp, IM_RX_OVRN_INT); 1274 dev->stats.rx_errors++; 1275 dev->stats.rx_fifo_errors++; 1276 } else if (status & IM_EPH_INT) { 1277 smc_eph_interrupt(dev); 1278 } else if (status & IM_MDINT) { 1279 SMC_ACK_INT(lp, IM_MDINT); 1280 smc_phy_interrupt(dev); 1281 } else if (status & IM_ERCV_INT) { 1282 SMC_ACK_INT(lp, IM_ERCV_INT); 1283 PRINTK(dev, "UNSUPPORTED: ERCV INTERRUPT\n"); 1284 } 1285 } while (--timeout); 1286 1287 /* restore register states */ 1288 SMC_SET_PTR(lp, saved_pointer); 1289 SMC_SET_INT_MASK(lp, mask); 1290 spin_unlock(&lp->lock); 1291 1292 #ifndef CONFIG_NET_POLL_CONTROLLER 1293 if (timeout == MAX_IRQ_LOOPS) 1294 PRINTK(dev, "spurious interrupt (mask = 0x%02x)\n", 1295 mask); 1296 #endif 1297 DBG(3, dev, "Interrupt done (%d loops)\n", 1298 MAX_IRQ_LOOPS - timeout); 1299 1300 /* 1301 * We return IRQ_HANDLED unconditionally here even if there was 1302 * nothing to do. There is a possibility that a packet might 1303 * get enqueued into the chip right after TX_EMPTY_INT is raised 1304 * but just before the CPU acknowledges the IRQ. 1305 * Better take an unneeded IRQ in some occasions than complexifying 1306 * the code for all cases. 1307 */ 1308 return IRQ_HANDLED; 1309 } 1310 1311 #ifdef CONFIG_NET_POLL_CONTROLLER 1312 /* 1313 * Polling receive - used by netconsole and other diagnostic tools 1314 * to allow network i/o with interrupts disabled. 1315 */ 1316 static void smc_poll_controller(struct net_device *dev) 1317 { 1318 disable_irq(dev->irq); 1319 smc_interrupt(dev->irq, dev); 1320 enable_irq(dev->irq); 1321 } 1322 #endif 1323 1324 /* Our watchdog timed out. Called by the networking layer */ 1325 static void smc_timeout(struct net_device *dev, unsigned int txqueue) 1326 { 1327 struct smc_local *lp = netdev_priv(dev); 1328 void __iomem *ioaddr = lp->base; 1329 int status, mask, eph_st, meminfo, fifo; 1330 1331 DBG(2, dev, "%s\n", __func__); 1332 1333 spin_lock_irq(&lp->lock); 1334 status = SMC_GET_INT(lp); 1335 mask = SMC_GET_INT_MASK(lp); 1336 fifo = SMC_GET_FIFO(lp); 1337 SMC_SELECT_BANK(lp, 0); 1338 eph_st = SMC_GET_EPH_STATUS(lp); 1339 meminfo = SMC_GET_MIR(lp); 1340 SMC_SELECT_BANK(lp, 2); 1341 spin_unlock_irq(&lp->lock); 1342 PRINTK(dev, "TX timeout (INT 0x%02x INTMASK 0x%02x MEM 0x%04x FIFO 0x%04x EPH_ST 0x%04x)\n", 1343 status, mask, meminfo, fifo, eph_st); 1344 1345 smc_reset(dev); 1346 smc_enable(dev); 1347 1348 /* 1349 * Reconfiguring the PHY doesn't seem like a bad idea here, but 1350 * smc_phy_configure() calls msleep() which calls schedule_timeout() 1351 * which calls schedule(). Hence we use a work queue. 1352 */ 1353 if (lp->phy_type != 0) 1354 schedule_work(&lp->phy_configure); 1355 1356 /* We can accept TX packets again */ 1357 netif_trans_update(dev); /* prevent tx timeout */ 1358 netif_wake_queue(dev); 1359 } 1360 1361 /* 1362 * This routine will, depending on the values passed to it, 1363 * either make it accept multicast packets, go into 1364 * promiscuous mode (for TCPDUMP and cousins) or accept 1365 * a select set of multicast packets 1366 */ 1367 static void smc_set_multicast_list(struct net_device *dev) 1368 { 1369 struct smc_local *lp = netdev_priv(dev); 1370 void __iomem *ioaddr = lp->base; 1371 unsigned char multicast_table[8]; 1372 int update_multicast = 0; 1373 1374 DBG(2, dev, "%s\n", __func__); 1375 1376 if (dev->flags & IFF_PROMISC) { 1377 DBG(2, dev, "RCR_PRMS\n"); 1378 lp->rcr_cur_mode |= RCR_PRMS; 1379 } 1380 1381 /* BUG? I never disable promiscuous mode if multicasting was turned on. 1382 Now, I turn off promiscuous mode, but I don't do anything to multicasting 1383 when promiscuous mode is turned on. 1384 */ 1385 1386 /* 1387 * Here, I am setting this to accept all multicast packets. 1388 * I don't need to zero the multicast table, because the flag is 1389 * checked before the table is 1390 */ 1391 else if (dev->flags & IFF_ALLMULTI || netdev_mc_count(dev) > 16) { 1392 DBG(2, dev, "RCR_ALMUL\n"); 1393 lp->rcr_cur_mode |= RCR_ALMUL; 1394 } 1395 1396 /* 1397 * This sets the internal hardware table to filter out unwanted 1398 * multicast packets before they take up memory. 1399 * 1400 * The SMC chip uses a hash table where the high 6 bits of the CRC of 1401 * address are the offset into the table. If that bit is 1, then the 1402 * multicast packet is accepted. Otherwise, it's dropped silently. 1403 * 1404 * To use the 6 bits as an offset into the table, the high 3 bits are 1405 * the number of the 8 bit register, while the low 3 bits are the bit 1406 * within that register. 1407 */ 1408 else if (!netdev_mc_empty(dev)) { 1409 struct netdev_hw_addr *ha; 1410 1411 /* table for flipping the order of 3 bits */ 1412 static const unsigned char invert3[] = {0, 4, 2, 6, 1, 5, 3, 7}; 1413 1414 /* start with a table of all zeros: reject all */ 1415 memset(multicast_table, 0, sizeof(multicast_table)); 1416 1417 netdev_for_each_mc_addr(ha, dev) { 1418 int position; 1419 1420 /* only use the low order bits */ 1421 position = crc32_le(~0, ha->addr, 6) & 0x3f; 1422 1423 /* do some messy swapping to put the bit in the right spot */ 1424 multicast_table[invert3[position&7]] |= 1425 (1<<invert3[(position>>3)&7]); 1426 } 1427 1428 /* be sure I get rid of flags I might have set */ 1429 lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL); 1430 1431 /* now, the table can be loaded into the chipset */ 1432 update_multicast = 1; 1433 } else { 1434 DBG(2, dev, "~(RCR_PRMS|RCR_ALMUL)\n"); 1435 lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL); 1436 1437 /* 1438 * since I'm disabling all multicast entirely, I need to 1439 * clear the multicast list 1440 */ 1441 memset(multicast_table, 0, sizeof(multicast_table)); 1442 update_multicast = 1; 1443 } 1444 1445 spin_lock_irq(&lp->lock); 1446 SMC_SELECT_BANK(lp, 0); 1447 SMC_SET_RCR(lp, lp->rcr_cur_mode); 1448 if (update_multicast) { 1449 SMC_SELECT_BANK(lp, 3); 1450 SMC_SET_MCAST(lp, multicast_table); 1451 } 1452 SMC_SELECT_BANK(lp, 2); 1453 spin_unlock_irq(&lp->lock); 1454 } 1455 1456 1457 /* 1458 * Open and Initialize the board 1459 * 1460 * Set up everything, reset the card, etc.. 1461 */ 1462 static int 1463 smc_open(struct net_device *dev) 1464 { 1465 struct smc_local *lp = netdev_priv(dev); 1466 1467 DBG(2, dev, "%s\n", __func__); 1468 1469 /* Setup the default Register Modes */ 1470 lp->tcr_cur_mode = TCR_DEFAULT; 1471 lp->rcr_cur_mode = RCR_DEFAULT; 1472 lp->rpc_cur_mode = RPC_DEFAULT | 1473 lp->cfg.leda << RPC_LSXA_SHFT | 1474 lp->cfg.ledb << RPC_LSXB_SHFT; 1475 1476 /* 1477 * If we are not using a MII interface, we need to 1478 * monitor our own carrier signal to detect faults. 1479 */ 1480 if (lp->phy_type == 0) 1481 lp->tcr_cur_mode |= TCR_MON_CSN; 1482 1483 /* reset the hardware */ 1484 smc_reset(dev); 1485 smc_enable(dev); 1486 1487 /* Configure the PHY, initialize the link state */ 1488 if (lp->phy_type != 0) 1489 smc_phy_configure(&lp->phy_configure); 1490 else { 1491 spin_lock_irq(&lp->lock); 1492 smc_10bt_check_media(dev, 1); 1493 spin_unlock_irq(&lp->lock); 1494 } 1495 1496 netif_start_queue(dev); 1497 return 0; 1498 } 1499 1500 /* 1501 * smc_close 1502 * 1503 * this makes the board clean up everything that it can 1504 * and not talk to the outside world. Caused by 1505 * an 'ifconfig ethX down' 1506 */ 1507 static int smc_close(struct net_device *dev) 1508 { 1509 struct smc_local *lp = netdev_priv(dev); 1510 1511 DBG(2, dev, "%s\n", __func__); 1512 1513 netif_stop_queue(dev); 1514 netif_carrier_off(dev); 1515 1516 /* clear everything */ 1517 smc_shutdown(dev); 1518 tasklet_kill(&lp->tx_task); 1519 smc_phy_powerdown(dev); 1520 return 0; 1521 } 1522 1523 /* 1524 * Ethtool support 1525 */ 1526 static int 1527 smc_ethtool_get_link_ksettings(struct net_device *dev, 1528 struct ethtool_link_ksettings *cmd) 1529 { 1530 struct smc_local *lp = netdev_priv(dev); 1531 1532 if (lp->phy_type != 0) { 1533 spin_lock_irq(&lp->lock); 1534 mii_ethtool_get_link_ksettings(&lp->mii, cmd); 1535 spin_unlock_irq(&lp->lock); 1536 } else { 1537 u32 supported = SUPPORTED_10baseT_Half | 1538 SUPPORTED_10baseT_Full | 1539 SUPPORTED_TP | SUPPORTED_AUI; 1540 1541 if (lp->ctl_rspeed == 10) 1542 cmd->base.speed = SPEED_10; 1543 else if (lp->ctl_rspeed == 100) 1544 cmd->base.speed = SPEED_100; 1545 1546 cmd->base.autoneg = AUTONEG_DISABLE; 1547 cmd->base.port = 0; 1548 cmd->base.duplex = lp->tcr_cur_mode & TCR_SWFDUP ? 1549 DUPLEX_FULL : DUPLEX_HALF; 1550 1551 ethtool_convert_legacy_u32_to_link_mode( 1552 cmd->link_modes.supported, supported); 1553 } 1554 1555 return 0; 1556 } 1557 1558 static int 1559 smc_ethtool_set_link_ksettings(struct net_device *dev, 1560 const struct ethtool_link_ksettings *cmd) 1561 { 1562 struct smc_local *lp = netdev_priv(dev); 1563 int ret; 1564 1565 if (lp->phy_type != 0) { 1566 spin_lock_irq(&lp->lock); 1567 ret = mii_ethtool_set_link_ksettings(&lp->mii, cmd); 1568 spin_unlock_irq(&lp->lock); 1569 } else { 1570 if (cmd->base.autoneg != AUTONEG_DISABLE || 1571 cmd->base.speed != SPEED_10 || 1572 (cmd->base.duplex != DUPLEX_HALF && 1573 cmd->base.duplex != DUPLEX_FULL) || 1574 (cmd->base.port != PORT_TP && cmd->base.port != PORT_AUI)) 1575 return -EINVAL; 1576 1577 lp->ctl_rfduplx = cmd->base.duplex == DUPLEX_FULL; 1578 1579 ret = 0; 1580 } 1581 1582 return ret; 1583 } 1584 1585 static void 1586 smc_ethtool_getdrvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 1587 { 1588 strscpy(info->driver, CARDNAME, sizeof(info->driver)); 1589 strscpy(info->version, version, sizeof(info->version)); 1590 strscpy(info->bus_info, dev_name(dev->dev.parent), 1591 sizeof(info->bus_info)); 1592 } 1593 1594 static int smc_ethtool_nwayreset(struct net_device *dev) 1595 { 1596 struct smc_local *lp = netdev_priv(dev); 1597 int ret = -EINVAL; 1598 1599 if (lp->phy_type != 0) { 1600 spin_lock_irq(&lp->lock); 1601 ret = mii_nway_restart(&lp->mii); 1602 spin_unlock_irq(&lp->lock); 1603 } 1604 1605 return ret; 1606 } 1607 1608 static u32 smc_ethtool_getmsglevel(struct net_device *dev) 1609 { 1610 struct smc_local *lp = netdev_priv(dev); 1611 return lp->msg_enable; 1612 } 1613 1614 static void smc_ethtool_setmsglevel(struct net_device *dev, u32 level) 1615 { 1616 struct smc_local *lp = netdev_priv(dev); 1617 lp->msg_enable = level; 1618 } 1619 1620 static int smc_write_eeprom_word(struct net_device *dev, u16 addr, u16 word) 1621 { 1622 u16 ctl; 1623 struct smc_local *lp = netdev_priv(dev); 1624 void __iomem *ioaddr = lp->base; 1625 1626 spin_lock_irq(&lp->lock); 1627 /* load word into GP register */ 1628 SMC_SELECT_BANK(lp, 1); 1629 SMC_SET_GP(lp, word); 1630 /* set the address to put the data in EEPROM */ 1631 SMC_SELECT_BANK(lp, 2); 1632 SMC_SET_PTR(lp, addr); 1633 /* tell it to write */ 1634 SMC_SELECT_BANK(lp, 1); 1635 ctl = SMC_GET_CTL(lp); 1636 SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_STORE)); 1637 /* wait for it to finish */ 1638 do { 1639 udelay(1); 1640 } while (SMC_GET_CTL(lp) & CTL_STORE); 1641 /* clean up */ 1642 SMC_SET_CTL(lp, ctl); 1643 SMC_SELECT_BANK(lp, 2); 1644 spin_unlock_irq(&lp->lock); 1645 return 0; 1646 } 1647 1648 static int smc_read_eeprom_word(struct net_device *dev, u16 addr, u16 *word) 1649 { 1650 u16 ctl; 1651 struct smc_local *lp = netdev_priv(dev); 1652 void __iomem *ioaddr = lp->base; 1653 1654 spin_lock_irq(&lp->lock); 1655 /* set the EEPROM address to get the data from */ 1656 SMC_SELECT_BANK(lp, 2); 1657 SMC_SET_PTR(lp, addr | PTR_READ); 1658 /* tell it to load */ 1659 SMC_SELECT_BANK(lp, 1); 1660 SMC_SET_GP(lp, 0xffff); /* init to known */ 1661 ctl = SMC_GET_CTL(lp); 1662 SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_RELOAD)); 1663 /* wait for it to finish */ 1664 do { 1665 udelay(1); 1666 } while (SMC_GET_CTL(lp) & CTL_RELOAD); 1667 /* read word from GP register */ 1668 *word = SMC_GET_GP(lp); 1669 /* clean up */ 1670 SMC_SET_CTL(lp, ctl); 1671 SMC_SELECT_BANK(lp, 2); 1672 spin_unlock_irq(&lp->lock); 1673 return 0; 1674 } 1675 1676 static int smc_ethtool_geteeprom_len(struct net_device *dev) 1677 { 1678 return 0x23 * 2; 1679 } 1680 1681 static int smc_ethtool_geteeprom(struct net_device *dev, 1682 struct ethtool_eeprom *eeprom, u8 *data) 1683 { 1684 int i; 1685 int imax; 1686 1687 DBG(1, dev, "Reading %d bytes at %d(0x%x)\n", 1688 eeprom->len, eeprom->offset, eeprom->offset); 1689 imax = smc_ethtool_geteeprom_len(dev); 1690 for (i = 0; i < eeprom->len; i += 2) { 1691 int ret; 1692 u16 wbuf; 1693 int offset = i + eeprom->offset; 1694 if (offset > imax) 1695 break; 1696 ret = smc_read_eeprom_word(dev, offset >> 1, &wbuf); 1697 if (ret != 0) 1698 return ret; 1699 DBG(2, dev, "Read 0x%x from 0x%x\n", wbuf, offset >> 1); 1700 data[i] = (wbuf >> 8) & 0xff; 1701 data[i+1] = wbuf & 0xff; 1702 } 1703 return 0; 1704 } 1705 1706 static int smc_ethtool_seteeprom(struct net_device *dev, 1707 struct ethtool_eeprom *eeprom, u8 *data) 1708 { 1709 int i; 1710 int imax; 1711 1712 DBG(1, dev, "Writing %d bytes to %d(0x%x)\n", 1713 eeprom->len, eeprom->offset, eeprom->offset); 1714 imax = smc_ethtool_geteeprom_len(dev); 1715 for (i = 0; i < eeprom->len; i += 2) { 1716 int ret; 1717 u16 wbuf; 1718 int offset = i + eeprom->offset; 1719 if (offset > imax) 1720 break; 1721 wbuf = (data[i] << 8) | data[i + 1]; 1722 DBG(2, dev, "Writing 0x%x to 0x%x\n", wbuf, offset >> 1); 1723 ret = smc_write_eeprom_word(dev, offset >> 1, wbuf); 1724 if (ret != 0) 1725 return ret; 1726 } 1727 return 0; 1728 } 1729 1730 1731 static const struct ethtool_ops smc_ethtool_ops = { 1732 .get_drvinfo = smc_ethtool_getdrvinfo, 1733 1734 .get_msglevel = smc_ethtool_getmsglevel, 1735 .set_msglevel = smc_ethtool_setmsglevel, 1736 .nway_reset = smc_ethtool_nwayreset, 1737 .get_link = ethtool_op_get_link, 1738 .get_eeprom_len = smc_ethtool_geteeprom_len, 1739 .get_eeprom = smc_ethtool_geteeprom, 1740 .set_eeprom = smc_ethtool_seteeprom, 1741 .get_link_ksettings = smc_ethtool_get_link_ksettings, 1742 .set_link_ksettings = smc_ethtool_set_link_ksettings, 1743 }; 1744 1745 static const struct net_device_ops smc_netdev_ops = { 1746 .ndo_open = smc_open, 1747 .ndo_stop = smc_close, 1748 .ndo_start_xmit = smc_hard_start_xmit, 1749 .ndo_tx_timeout = smc_timeout, 1750 .ndo_set_rx_mode = smc_set_multicast_list, 1751 .ndo_validate_addr = eth_validate_addr, 1752 .ndo_set_mac_address = eth_mac_addr, 1753 #ifdef CONFIG_NET_POLL_CONTROLLER 1754 .ndo_poll_controller = smc_poll_controller, 1755 #endif 1756 }; 1757 1758 /* 1759 * smc_findirq 1760 * 1761 * This routine has a simple purpose -- make the SMC chip generate an 1762 * interrupt, so an auto-detect routine can detect it, and find the IRQ, 1763 */ 1764 /* 1765 * does this still work? 1766 * 1767 * I just deleted auto_irq.c, since it was never built... 1768 * --jgarzik 1769 */ 1770 static int smc_findirq(struct smc_local *lp) 1771 { 1772 void __iomem *ioaddr = lp->base; 1773 int timeout = 20; 1774 unsigned long cookie; 1775 1776 DBG(2, lp->dev, "%s: %s\n", CARDNAME, __func__); 1777 1778 cookie = probe_irq_on(); 1779 1780 /* 1781 * What I try to do here is trigger an ALLOC_INT. This is done 1782 * by allocating a small chunk of memory, which will give an interrupt 1783 * when done. 1784 */ 1785 /* enable ALLOCation interrupts ONLY */ 1786 SMC_SELECT_BANK(lp, 2); 1787 SMC_SET_INT_MASK(lp, IM_ALLOC_INT); 1788 1789 /* 1790 * Allocate 512 bytes of memory. Note that the chip was just 1791 * reset so all the memory is available 1792 */ 1793 SMC_SET_MMU_CMD(lp, MC_ALLOC | 1); 1794 1795 /* 1796 * Wait until positive that the interrupt has been generated 1797 */ 1798 do { 1799 int int_status; 1800 udelay(10); 1801 int_status = SMC_GET_INT(lp); 1802 if (int_status & IM_ALLOC_INT) 1803 break; /* got the interrupt */ 1804 } while (--timeout); 1805 1806 /* 1807 * there is really nothing that I can do here if timeout fails, 1808 * as autoirq_report will return a 0 anyway, which is what I 1809 * want in this case. Plus, the clean up is needed in both 1810 * cases. 1811 */ 1812 1813 /* and disable all interrupts again */ 1814 SMC_SET_INT_MASK(lp, 0); 1815 1816 /* and return what I found */ 1817 return probe_irq_off(cookie); 1818 } 1819 1820 /* 1821 * Function: smc_probe(unsigned long ioaddr) 1822 * 1823 * Purpose: 1824 * Tests to see if a given ioaddr points to an SMC91x chip. 1825 * Returns a 0 on success 1826 * 1827 * Algorithm: 1828 * (1) see if the high byte of BANK_SELECT is 0x33 1829 * (2) compare the ioaddr with the base register's address 1830 * (3) see if I recognize the chip ID in the appropriate register 1831 * 1832 * Here I do typical initialization tasks. 1833 * 1834 * o Initialize the structure if needed 1835 * o print out my vanity message if not done so already 1836 * o print out what type of hardware is detected 1837 * o print out the ethernet address 1838 * o find the IRQ 1839 * o set up my private data 1840 * o configure the dev structure with my subroutines 1841 * o actually GRAB the irq. 1842 * o GRAB the region 1843 */ 1844 static int smc_probe(struct net_device *dev, void __iomem *ioaddr, 1845 unsigned long irq_flags) 1846 { 1847 struct smc_local *lp = netdev_priv(dev); 1848 int retval; 1849 unsigned int val, revision_register; 1850 const char *version_string; 1851 u8 addr[ETH_ALEN]; 1852 1853 DBG(2, dev, "%s: %s\n", CARDNAME, __func__); 1854 1855 /* First, see if the high byte is 0x33 */ 1856 val = SMC_CURRENT_BANK(lp); 1857 DBG(2, dev, "%s: bank signature probe returned 0x%04x\n", 1858 CARDNAME, val); 1859 if ((val & 0xFF00) != 0x3300) { 1860 if ((val & 0xFF) == 0x33) { 1861 netdev_warn(dev, 1862 "%s: Detected possible byte-swapped interface at IOADDR %p\n", 1863 CARDNAME, ioaddr); 1864 } 1865 retval = -ENODEV; 1866 goto err_out; 1867 } 1868 1869 /* 1870 * The above MIGHT indicate a device, but I need to write to 1871 * further test this. 1872 */ 1873 SMC_SELECT_BANK(lp, 0); 1874 val = SMC_CURRENT_BANK(lp); 1875 if ((val & 0xFF00) != 0x3300) { 1876 retval = -ENODEV; 1877 goto err_out; 1878 } 1879 1880 /* 1881 * well, we've already written once, so hopefully another 1882 * time won't hurt. This time, I need to switch the bank 1883 * register to bank 1, so I can access the base address 1884 * register 1885 */ 1886 SMC_SELECT_BANK(lp, 1); 1887 val = SMC_GET_BASE(lp); 1888 val = ((val & 0x1F00) >> 3) << SMC_IO_SHIFT; 1889 if (((unsigned long)ioaddr & (0x3e0 << SMC_IO_SHIFT)) != val) { 1890 netdev_warn(dev, "%s: IOADDR %p doesn't match configuration (%x).\n", 1891 CARDNAME, ioaddr, val); 1892 } 1893 1894 /* 1895 * check if the revision register is something that I 1896 * recognize. These might need to be added to later, 1897 * as future revisions could be added. 1898 */ 1899 SMC_SELECT_BANK(lp, 3); 1900 revision_register = SMC_GET_REV(lp); 1901 DBG(2, dev, "%s: revision = 0x%04x\n", CARDNAME, revision_register); 1902 version_string = chip_ids[ (revision_register >> 4) & 0xF]; 1903 if (!version_string || (revision_register & 0xff00) != 0x3300) { 1904 /* I don't recognize this chip, so... */ 1905 netdev_warn(dev, "%s: IO %p: Unrecognized revision register 0x%04x, Contact author.\n", 1906 CARDNAME, ioaddr, revision_register); 1907 1908 retval = -ENODEV; 1909 goto err_out; 1910 } 1911 1912 /* At this point I'll assume that the chip is an SMC91x. */ 1913 pr_info_once("%s\n", version); 1914 1915 /* fill in some of the fields */ 1916 dev->base_addr = (unsigned long)ioaddr; 1917 lp->base = ioaddr; 1918 lp->version = revision_register & 0xff; 1919 spin_lock_init(&lp->lock); 1920 1921 /* Get the MAC address */ 1922 SMC_SELECT_BANK(lp, 1); 1923 SMC_GET_MAC_ADDR(lp, addr); 1924 eth_hw_addr_set(dev, addr); 1925 1926 /* now, reset the chip, and put it into a known state */ 1927 smc_reset(dev); 1928 1929 /* 1930 * If dev->irq is 0, then the device has to be banged on to see 1931 * what the IRQ is. 1932 * 1933 * This banging doesn't always detect the IRQ, for unknown reasons. 1934 * a workaround is to reset the chip and try again. 1935 * 1936 * Interestingly, the DOS packet driver *SETS* the IRQ on the card to 1937 * be what is requested on the command line. I don't do that, mostly 1938 * because the card that I have uses a non-standard method of accessing 1939 * the IRQs, and because this _should_ work in most configurations. 1940 * 1941 * Specifying an IRQ is done with the assumption that the user knows 1942 * what (s)he is doing. No checking is done!!!! 1943 */ 1944 if (dev->irq < 1) { 1945 int trials; 1946 1947 trials = 3; 1948 while (trials--) { 1949 dev->irq = smc_findirq(lp); 1950 if (dev->irq) 1951 break; 1952 /* kick the card and try again */ 1953 smc_reset(dev); 1954 } 1955 } 1956 if (dev->irq == 0) { 1957 netdev_warn(dev, "Couldn't autodetect your IRQ. Use irq=xx.\n"); 1958 retval = -ENODEV; 1959 goto err_out; 1960 } 1961 dev->irq = irq_canonicalize(dev->irq); 1962 1963 dev->watchdog_timeo = msecs_to_jiffies(watchdog); 1964 dev->netdev_ops = &smc_netdev_ops; 1965 dev->ethtool_ops = &smc_ethtool_ops; 1966 1967 tasklet_setup(&lp->tx_task, smc_hardware_send_pkt); 1968 INIT_WORK(&lp->phy_configure, smc_phy_configure); 1969 lp->dev = dev; 1970 lp->mii.phy_id_mask = 0x1f; 1971 lp->mii.reg_num_mask = 0x1f; 1972 lp->mii.force_media = 0; 1973 lp->mii.full_duplex = 0; 1974 lp->mii.dev = dev; 1975 lp->mii.mdio_read = smc_phy_read; 1976 lp->mii.mdio_write = smc_phy_write; 1977 1978 /* 1979 * Locate the phy, if any. 1980 */ 1981 if (lp->version >= (CHIP_91100 << 4)) 1982 smc_phy_detect(dev); 1983 1984 /* then shut everything down to save power */ 1985 smc_shutdown(dev); 1986 smc_phy_powerdown(dev); 1987 1988 /* Set default parameters */ 1989 lp->msg_enable = NETIF_MSG_LINK; 1990 lp->ctl_rfduplx = 0; 1991 lp->ctl_rspeed = 10; 1992 1993 if (lp->version >= (CHIP_91100 << 4)) { 1994 lp->ctl_rfduplx = 1; 1995 lp->ctl_rspeed = 100; 1996 } 1997 1998 /* Grab the IRQ */ 1999 retval = request_irq(dev->irq, smc_interrupt, irq_flags, dev->name, dev); 2000 if (retval) 2001 goto err_out; 2002 2003 #ifdef CONFIG_ARCH_PXA 2004 # ifdef SMC_USE_PXA_DMA 2005 lp->cfg.flags |= SMC91X_USE_DMA; 2006 # endif 2007 if (lp->cfg.flags & SMC91X_USE_DMA) { 2008 dma_cap_mask_t mask; 2009 2010 dma_cap_zero(mask); 2011 dma_cap_set(DMA_SLAVE, mask); 2012 lp->dma_chan = dma_request_channel(mask, NULL, NULL); 2013 } 2014 #endif 2015 2016 retval = register_netdev(dev); 2017 if (retval == 0) { 2018 /* now, print out the card info, in a short format.. */ 2019 netdev_info(dev, "%s (rev %d) at %p IRQ %d", 2020 version_string, revision_register & 0x0f, 2021 lp->base, dev->irq); 2022 2023 if (lp->dma_chan) 2024 pr_cont(" DMA %p", lp->dma_chan); 2025 2026 pr_cont("%s%s\n", 2027 lp->cfg.flags & SMC91X_NOWAIT ? " [nowait]" : "", 2028 THROTTLE_TX_PKTS ? " [throttle_tx]" : ""); 2029 2030 if (!is_valid_ether_addr(dev->dev_addr)) { 2031 netdev_warn(dev, "Invalid ethernet MAC address. Please set using ifconfig\n"); 2032 } else { 2033 /* Print the Ethernet address */ 2034 netdev_info(dev, "Ethernet addr: %pM\n", 2035 dev->dev_addr); 2036 } 2037 2038 if (lp->phy_type == 0) { 2039 PRINTK(dev, "No PHY found\n"); 2040 } else if ((lp->phy_type & 0xfffffff0) == 0x0016f840) { 2041 PRINTK(dev, "PHY LAN83C183 (LAN91C111 Internal)\n"); 2042 } else if ((lp->phy_type & 0xfffffff0) == 0x02821c50) { 2043 PRINTK(dev, "PHY LAN83C180\n"); 2044 } 2045 } 2046 2047 err_out: 2048 #ifdef CONFIG_ARCH_PXA 2049 if (retval && lp->dma_chan) 2050 dma_release_channel(lp->dma_chan); 2051 #endif 2052 return retval; 2053 } 2054 2055 static int smc_enable_device(struct platform_device *pdev) 2056 { 2057 struct net_device *ndev = platform_get_drvdata(pdev); 2058 struct smc_local *lp = netdev_priv(ndev); 2059 unsigned long flags; 2060 unsigned char ecor, ecsr; 2061 void __iomem *addr; 2062 struct resource * res; 2063 2064 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib"); 2065 if (!res) 2066 return 0; 2067 2068 /* 2069 * Map the attribute space. This is overkill, but clean. 2070 */ 2071 addr = ioremap(res->start, ATTRIB_SIZE); 2072 if (!addr) 2073 return -ENOMEM; 2074 2075 /* 2076 * Reset the device. We must disable IRQs around this 2077 * since a reset causes the IRQ line become active. 2078 */ 2079 local_irq_save(flags); 2080 ecor = readb(addr + (ECOR << SMC_IO_SHIFT)) & ~ECOR_RESET; 2081 writeb(ecor | ECOR_RESET, addr + (ECOR << SMC_IO_SHIFT)); 2082 readb(addr + (ECOR << SMC_IO_SHIFT)); 2083 2084 /* 2085 * Wait 100us for the chip to reset. 2086 */ 2087 udelay(100); 2088 2089 /* 2090 * The device will ignore all writes to the enable bit while 2091 * reset is asserted, even if the reset bit is cleared in the 2092 * same write. Must clear reset first, then enable the device. 2093 */ 2094 writeb(ecor, addr + (ECOR << SMC_IO_SHIFT)); 2095 writeb(ecor | ECOR_ENABLE, addr + (ECOR << SMC_IO_SHIFT)); 2096 2097 /* 2098 * Set the appropriate byte/word mode. 2099 */ 2100 ecsr = readb(addr + (ECSR << SMC_IO_SHIFT)) & ~ECSR_IOIS8; 2101 if (!SMC_16BIT(lp)) 2102 ecsr |= ECSR_IOIS8; 2103 writeb(ecsr, addr + (ECSR << SMC_IO_SHIFT)); 2104 local_irq_restore(flags); 2105 2106 iounmap(addr); 2107 2108 /* 2109 * Wait for the chip to wake up. We could poll the control 2110 * register in the main register space, but that isn't mapped 2111 * yet. We know this is going to take 750us. 2112 */ 2113 msleep(1); 2114 2115 return 0; 2116 } 2117 2118 static int smc_request_attrib(struct platform_device *pdev, 2119 struct net_device *ndev) 2120 { 2121 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib"); 2122 struct smc_local *lp __maybe_unused = netdev_priv(ndev); 2123 2124 if (!res) 2125 return 0; 2126 2127 if (!request_mem_region(res->start, ATTRIB_SIZE, CARDNAME)) 2128 return -EBUSY; 2129 2130 return 0; 2131 } 2132 2133 static void smc_release_attrib(struct platform_device *pdev, 2134 struct net_device *ndev) 2135 { 2136 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib"); 2137 struct smc_local *lp __maybe_unused = netdev_priv(ndev); 2138 2139 if (res) 2140 release_mem_region(res->start, ATTRIB_SIZE); 2141 } 2142 2143 static inline void smc_request_datacs(struct platform_device *pdev, struct net_device *ndev) 2144 { 2145 if (SMC_CAN_USE_DATACS) { 2146 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32"); 2147 struct smc_local *lp = netdev_priv(ndev); 2148 2149 if (!res) 2150 return; 2151 2152 if(!request_mem_region(res->start, SMC_DATA_EXTENT, CARDNAME)) { 2153 netdev_info(ndev, "%s: failed to request datacs memory region.\n", 2154 CARDNAME); 2155 return; 2156 } 2157 2158 lp->datacs = ioremap(res->start, SMC_DATA_EXTENT); 2159 } 2160 } 2161 2162 static void smc_release_datacs(struct platform_device *pdev, struct net_device *ndev) 2163 { 2164 if (SMC_CAN_USE_DATACS) { 2165 struct smc_local *lp = netdev_priv(ndev); 2166 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32"); 2167 2168 if (lp->datacs) 2169 iounmap(lp->datacs); 2170 2171 lp->datacs = NULL; 2172 2173 if (res) 2174 release_mem_region(res->start, SMC_DATA_EXTENT); 2175 } 2176 } 2177 2178 static const struct acpi_device_id smc91x_acpi_match[] = { 2179 { "LNRO0003", 0 }, 2180 { } 2181 }; 2182 MODULE_DEVICE_TABLE(acpi, smc91x_acpi_match); 2183 2184 #if IS_BUILTIN(CONFIG_OF) 2185 static const struct of_device_id smc91x_match[] = { 2186 { .compatible = "smsc,lan91c94", }, 2187 { .compatible = "smsc,lan91c111", }, 2188 {}, 2189 }; 2190 MODULE_DEVICE_TABLE(of, smc91x_match); 2191 2192 /** 2193 * try_toggle_control_gpio - configure a gpio if it exists 2194 * @dev: net device 2195 * @desc: where to store the GPIO descriptor, if it exists 2196 * @name: name of the GPIO in DT 2197 * @index: index of the GPIO in DT 2198 * @value: set the GPIO to this value 2199 * @nsdelay: delay before setting the GPIO 2200 */ 2201 static int try_toggle_control_gpio(struct device *dev, 2202 struct gpio_desc **desc, 2203 const char *name, int index, 2204 int value, unsigned int nsdelay) 2205 { 2206 struct gpio_desc *gpio; 2207 enum gpiod_flags flags = value ? GPIOD_OUT_LOW : GPIOD_OUT_HIGH; 2208 2209 gpio = devm_gpiod_get_index_optional(dev, name, index, flags); 2210 if (IS_ERR(gpio)) 2211 return PTR_ERR(gpio); 2212 2213 if (gpio) { 2214 if (nsdelay) 2215 usleep_range(nsdelay, 2 * nsdelay); 2216 gpiod_set_value_cansleep(gpio, value); 2217 } 2218 *desc = gpio; 2219 2220 return 0; 2221 } 2222 #endif 2223 2224 /* 2225 * smc_init(void) 2226 * Input parameters: 2227 * dev->base_addr == 0, try to find all possible locations 2228 * dev->base_addr > 0x1ff, this is the address to check 2229 * dev->base_addr == <anything else>, return failure code 2230 * 2231 * Output: 2232 * 0 --> there is a device 2233 * anything else, error 2234 */ 2235 static int smc_drv_probe(struct platform_device *pdev) 2236 { 2237 struct smc91x_platdata *pd = dev_get_platdata(&pdev->dev); 2238 const struct of_device_id *match = NULL; 2239 struct smc_local *lp; 2240 struct net_device *ndev; 2241 struct resource *res; 2242 unsigned int __iomem *addr; 2243 unsigned long irq_flags = SMC_IRQ_FLAGS; 2244 unsigned long irq_resflags; 2245 int ret; 2246 2247 ndev = alloc_etherdev(sizeof(struct smc_local)); 2248 if (!ndev) { 2249 ret = -ENOMEM; 2250 goto out; 2251 } 2252 SET_NETDEV_DEV(ndev, &pdev->dev); 2253 2254 /* get configuration from platform data, only allow use of 2255 * bus width if both SMC_CAN_USE_xxx and SMC91X_USE_xxx are set. 2256 */ 2257 2258 lp = netdev_priv(ndev); 2259 lp->cfg.flags = 0; 2260 2261 if (pd) { 2262 memcpy(&lp->cfg, pd, sizeof(lp->cfg)); 2263 lp->io_shift = SMC91X_IO_SHIFT(lp->cfg.flags); 2264 2265 if (!SMC_8BIT(lp) && !SMC_16BIT(lp)) { 2266 dev_err(&pdev->dev, 2267 "at least one of 8-bit or 16-bit access support is required.\n"); 2268 ret = -ENXIO; 2269 goto out_free_netdev; 2270 } 2271 } 2272 2273 #if IS_BUILTIN(CONFIG_OF) 2274 match = of_match_device(of_match_ptr(smc91x_match), &pdev->dev); 2275 if (match) { 2276 u32 val; 2277 2278 /* Optional pwrdwn GPIO configured? */ 2279 ret = try_toggle_control_gpio(&pdev->dev, &lp->power_gpio, 2280 "power", 0, 0, 100); 2281 if (ret) 2282 goto out_free_netdev; 2283 2284 /* 2285 * Optional reset GPIO configured? Minimum 100 ns reset needed 2286 * according to LAN91C96 datasheet page 14. 2287 */ 2288 ret = try_toggle_control_gpio(&pdev->dev, &lp->reset_gpio, 2289 "reset", 0, 0, 100); 2290 if (ret) 2291 goto out_free_netdev; 2292 2293 /* 2294 * Need to wait for optional EEPROM to load, max 750 us according 2295 * to LAN91C96 datasheet page 55. 2296 */ 2297 if (lp->reset_gpio) 2298 usleep_range(750, 1000); 2299 2300 /* Combination of IO widths supported, default to 16-bit */ 2301 if (!device_property_read_u32(&pdev->dev, "reg-io-width", 2302 &val)) { 2303 if (val & 1) 2304 lp->cfg.flags |= SMC91X_USE_8BIT; 2305 if ((val == 0) || (val & 2)) 2306 lp->cfg.flags |= SMC91X_USE_16BIT; 2307 if (val & 4) 2308 lp->cfg.flags |= SMC91X_USE_32BIT; 2309 } else { 2310 lp->cfg.flags |= SMC91X_USE_16BIT; 2311 } 2312 if (!device_property_read_u32(&pdev->dev, "reg-shift", 2313 &val)) 2314 lp->io_shift = val; 2315 lp->cfg.pxa_u16_align4 = 2316 device_property_read_bool(&pdev->dev, "pxa-u16-align4"); 2317 } 2318 #endif 2319 2320 if (!pd && !match) { 2321 lp->cfg.flags |= (SMC_CAN_USE_8BIT) ? SMC91X_USE_8BIT : 0; 2322 lp->cfg.flags |= (SMC_CAN_USE_16BIT) ? SMC91X_USE_16BIT : 0; 2323 lp->cfg.flags |= (SMC_CAN_USE_32BIT) ? SMC91X_USE_32BIT : 0; 2324 lp->cfg.flags |= (nowait) ? SMC91X_NOWAIT : 0; 2325 } 2326 2327 if (!lp->cfg.leda && !lp->cfg.ledb) { 2328 lp->cfg.leda = RPC_LSA_DEFAULT; 2329 lp->cfg.ledb = RPC_LSB_DEFAULT; 2330 } 2331 2332 ndev->dma = (unsigned char)-1; 2333 2334 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs"); 2335 if (!res) 2336 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2337 if (!res) { 2338 ret = -ENODEV; 2339 goto out_free_netdev; 2340 } 2341 2342 2343 if (!request_mem_region(res->start, SMC_IO_EXTENT, CARDNAME)) { 2344 ret = -EBUSY; 2345 goto out_free_netdev; 2346 } 2347 2348 ndev->irq = platform_get_irq(pdev, 0); 2349 if (ndev->irq < 0) { 2350 ret = ndev->irq; 2351 goto out_release_io; 2352 } 2353 /* 2354 * If this platform does not specify any special irqflags, or if 2355 * the resource supplies a trigger, override the irqflags with 2356 * the trigger flags from the resource. 2357 */ 2358 irq_resflags = irqd_get_trigger_type(irq_get_irq_data(ndev->irq)); 2359 if (irq_flags == -1 || irq_resflags & IRQF_TRIGGER_MASK) 2360 irq_flags = irq_resflags & IRQF_TRIGGER_MASK; 2361 2362 ret = smc_request_attrib(pdev, ndev); 2363 if (ret) 2364 goto out_release_io; 2365 #if defined(CONFIG_ASSABET_NEPONSET) 2366 if (machine_is_assabet() && machine_has_neponset()) 2367 neponset_ncr_set(NCR_ENET_OSC_EN); 2368 #endif 2369 platform_set_drvdata(pdev, ndev); 2370 ret = smc_enable_device(pdev); 2371 if (ret) 2372 goto out_release_attrib; 2373 2374 addr = ioremap(res->start, SMC_IO_EXTENT); 2375 if (!addr) { 2376 ret = -ENOMEM; 2377 goto out_release_attrib; 2378 } 2379 2380 #ifdef CONFIG_ARCH_PXA 2381 { 2382 struct smc_local *lp = netdev_priv(ndev); 2383 lp->device = &pdev->dev; 2384 lp->physaddr = res->start; 2385 2386 } 2387 #endif 2388 2389 ret = smc_probe(ndev, addr, irq_flags); 2390 if (ret != 0) 2391 goto out_iounmap; 2392 2393 smc_request_datacs(pdev, ndev); 2394 2395 return 0; 2396 2397 out_iounmap: 2398 iounmap(addr); 2399 out_release_attrib: 2400 smc_release_attrib(pdev, ndev); 2401 out_release_io: 2402 release_mem_region(res->start, SMC_IO_EXTENT); 2403 out_free_netdev: 2404 free_netdev(ndev); 2405 out: 2406 pr_info("%s: not found (%d).\n", CARDNAME, ret); 2407 2408 return ret; 2409 } 2410 2411 static void smc_drv_remove(struct platform_device *pdev) 2412 { 2413 struct net_device *ndev = platform_get_drvdata(pdev); 2414 struct smc_local *lp = netdev_priv(ndev); 2415 struct resource *res; 2416 2417 unregister_netdev(ndev); 2418 2419 free_irq(ndev->irq, ndev); 2420 2421 #ifdef CONFIG_ARCH_PXA 2422 if (lp->dma_chan) 2423 dma_release_channel(lp->dma_chan); 2424 #endif 2425 iounmap(lp->base); 2426 2427 smc_release_datacs(pdev,ndev); 2428 smc_release_attrib(pdev,ndev); 2429 2430 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs"); 2431 if (!res) 2432 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2433 release_mem_region(res->start, SMC_IO_EXTENT); 2434 2435 free_netdev(ndev); 2436 } 2437 2438 static int smc_drv_suspend(struct device *dev) 2439 { 2440 struct net_device *ndev = dev_get_drvdata(dev); 2441 2442 if (ndev) { 2443 if (netif_running(ndev)) { 2444 netif_device_detach(ndev); 2445 smc_shutdown(ndev); 2446 smc_phy_powerdown(ndev); 2447 } 2448 } 2449 return 0; 2450 } 2451 2452 static int smc_drv_resume(struct device *dev) 2453 { 2454 struct platform_device *pdev = to_platform_device(dev); 2455 struct net_device *ndev = platform_get_drvdata(pdev); 2456 2457 if (ndev) { 2458 struct smc_local *lp = netdev_priv(ndev); 2459 smc_enable_device(pdev); 2460 if (netif_running(ndev)) { 2461 smc_reset(ndev); 2462 smc_enable(ndev); 2463 if (lp->phy_type != 0) 2464 smc_phy_configure(&lp->phy_configure); 2465 netif_device_attach(ndev); 2466 } 2467 } 2468 return 0; 2469 } 2470 2471 static const struct dev_pm_ops smc_drv_pm_ops = { 2472 .suspend = smc_drv_suspend, 2473 .resume = smc_drv_resume, 2474 }; 2475 2476 static struct platform_driver smc_driver = { 2477 .probe = smc_drv_probe, 2478 .remove_new = smc_drv_remove, 2479 .driver = { 2480 .name = CARDNAME, 2481 .pm = &smc_drv_pm_ops, 2482 .of_match_table = of_match_ptr(smc91x_match), 2483 .acpi_match_table = smc91x_acpi_match, 2484 }, 2485 }; 2486 2487 module_platform_driver(smc_driver); 2488