1 /* 2 * smc91x.c 3 * This is a driver for SMSC's 91C9x/91C1xx single-chip Ethernet devices. 4 * 5 * Copyright (C) 1996 by Erik Stahlman 6 * Copyright (C) 2001 Standard Microsystems Corporation 7 * Developed by Simple Network Magic Corporation 8 * Copyright (C) 2003 Monta Vista Software, Inc. 9 * Unified SMC91x driver by Nicolas Pitre 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2 of the License, or 14 * (at your option) any later version. 15 * 16 * This program is distributed in the hope that it will be useful, 17 * but WITHOUT ANY WARRANTY; without even the implied warranty of 18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 19 * GNU General Public License for more details. 20 * 21 * You should have received a copy of the GNU General Public License 22 * along with this program; if not, write to the Free Software 23 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 24 * 25 * Arguments: 26 * io = for the base address 27 * irq = for the IRQ 28 * nowait = 0 for normal wait states, 1 eliminates additional wait states 29 * 30 * original author: 31 * Erik Stahlman <erik@vt.edu> 32 * 33 * hardware multicast code: 34 * Peter Cammaert <pc@denkart.be> 35 * 36 * contributors: 37 * Daris A Nevil <dnevil@snmc.com> 38 * Nicolas Pitre <nico@fluxnic.net> 39 * Russell King <rmk@arm.linux.org.uk> 40 * 41 * History: 42 * 08/20/00 Arnaldo Melo fix kfree(skb) in smc_hardware_send_packet 43 * 12/15/00 Christian Jullien fix "Warning: kfree_skb on hard IRQ" 44 * 03/16/01 Daris A Nevil modified smc9194.c for use with LAN91C111 45 * 08/22/01 Scott Anderson merge changes from smc9194 to smc91111 46 * 08/21/01 Pramod B Bhardwaj added support for RevB of LAN91C111 47 * 12/20/01 Jeff Sutherland initial port to Xscale PXA with DMA support 48 * 04/07/03 Nicolas Pitre unified SMC91x driver, killed irq races, 49 * more bus abstraction, big cleanup, etc. 50 * 29/09/03 Russell King - add driver model support 51 * - ethtool support 52 * - convert to use generic MII interface 53 * - add link up/down notification 54 * - don't try to handle full negotiation in 55 * smc_phy_configure 56 * - clean up (and fix stack overrun) in PHY 57 * MII read/write functions 58 * 22/09/04 Nicolas Pitre big update (see commit log for details) 59 */ 60 static const char version[] = 61 "smc91x.c: v1.1, sep 22 2004 by Nicolas Pitre <nico@fluxnic.net>\n"; 62 63 /* Debugging level */ 64 #ifndef SMC_DEBUG 65 #define SMC_DEBUG 0 66 #endif 67 68 69 #include <linux/init.h> 70 #include <linux/module.h> 71 #include <linux/kernel.h> 72 #include <linux/sched.h> 73 #include <linux/delay.h> 74 #include <linux/interrupt.h> 75 #include <linux/irq.h> 76 #include <linux/errno.h> 77 #include <linux/ioport.h> 78 #include <linux/crc32.h> 79 #include <linux/platform_device.h> 80 #include <linux/spinlock.h> 81 #include <linux/ethtool.h> 82 #include <linux/mii.h> 83 #include <linux/workqueue.h> 84 #include <linux/of.h> 85 86 #include <linux/netdevice.h> 87 #include <linux/etherdevice.h> 88 #include <linux/skbuff.h> 89 90 #include <asm/io.h> 91 92 #include "smc91x.h" 93 94 #ifndef SMC_NOWAIT 95 # define SMC_NOWAIT 0 96 #endif 97 static int nowait = SMC_NOWAIT; 98 module_param(nowait, int, 0400); 99 MODULE_PARM_DESC(nowait, "set to 1 for no wait state"); 100 101 /* 102 * Transmit timeout, default 5 seconds. 103 */ 104 static int watchdog = 1000; 105 module_param(watchdog, int, 0400); 106 MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds"); 107 108 MODULE_LICENSE("GPL"); 109 MODULE_ALIAS("platform:smc91x"); 110 111 /* 112 * The internal workings of the driver. If you are changing anything 113 * here with the SMC stuff, you should have the datasheet and know 114 * what you are doing. 115 */ 116 #define CARDNAME "smc91x" 117 118 /* 119 * Use power-down feature of the chip 120 */ 121 #define POWER_DOWN 1 122 123 /* 124 * Wait time for memory to be free. This probably shouldn't be 125 * tuned that much, as waiting for this means nothing else happens 126 * in the system 127 */ 128 #define MEMORY_WAIT_TIME 16 129 130 /* 131 * The maximum number of processing loops allowed for each call to the 132 * IRQ handler. 133 */ 134 #define MAX_IRQ_LOOPS 8 135 136 /* 137 * This selects whether TX packets are sent one by one to the SMC91x internal 138 * memory and throttled until transmission completes. This may prevent 139 * RX overruns a litle by keeping much of the memory free for RX packets 140 * but to the expense of reduced TX throughput and increased IRQ overhead. 141 * Note this is not a cure for a too slow data bus or too high IRQ latency. 142 */ 143 #define THROTTLE_TX_PKTS 0 144 145 /* 146 * The MII clock high/low times. 2x this number gives the MII clock period 147 * in microseconds. (was 50, but this gives 6.4ms for each MII transaction!) 148 */ 149 #define MII_DELAY 1 150 151 #if SMC_DEBUG > 0 152 #define DBG(n, args...) \ 153 do { \ 154 if (SMC_DEBUG >= (n)) \ 155 printk(args); \ 156 } while (0) 157 158 #define PRINTK(args...) printk(args) 159 #else 160 #define DBG(n, args...) do { } while(0) 161 #define PRINTK(args...) printk(KERN_DEBUG args) 162 #endif 163 164 #if SMC_DEBUG > 3 165 static void PRINT_PKT(u_char *buf, int length) 166 { 167 int i; 168 int remainder; 169 int lines; 170 171 lines = length / 16; 172 remainder = length % 16; 173 174 for (i = 0; i < lines ; i ++) { 175 int cur; 176 for (cur = 0; cur < 8; cur++) { 177 u_char a, b; 178 a = *buf++; 179 b = *buf++; 180 printk("%02x%02x ", a, b); 181 } 182 printk("\n"); 183 } 184 for (i = 0; i < remainder/2 ; i++) { 185 u_char a, b; 186 a = *buf++; 187 b = *buf++; 188 printk("%02x%02x ", a, b); 189 } 190 printk("\n"); 191 } 192 #else 193 #define PRINT_PKT(x...) do { } while(0) 194 #endif 195 196 197 /* this enables an interrupt in the interrupt mask register */ 198 #define SMC_ENABLE_INT(lp, x) do { \ 199 unsigned char mask; \ 200 unsigned long smc_enable_flags; \ 201 spin_lock_irqsave(&lp->lock, smc_enable_flags); \ 202 mask = SMC_GET_INT_MASK(lp); \ 203 mask |= (x); \ 204 SMC_SET_INT_MASK(lp, mask); \ 205 spin_unlock_irqrestore(&lp->lock, smc_enable_flags); \ 206 } while (0) 207 208 /* this disables an interrupt from the interrupt mask register */ 209 #define SMC_DISABLE_INT(lp, x) do { \ 210 unsigned char mask; \ 211 unsigned long smc_disable_flags; \ 212 spin_lock_irqsave(&lp->lock, smc_disable_flags); \ 213 mask = SMC_GET_INT_MASK(lp); \ 214 mask &= ~(x); \ 215 SMC_SET_INT_MASK(lp, mask); \ 216 spin_unlock_irqrestore(&lp->lock, smc_disable_flags); \ 217 } while (0) 218 219 /* 220 * Wait while MMU is busy. This is usually in the order of a few nanosecs 221 * if at all, but let's avoid deadlocking the system if the hardware 222 * decides to go south. 223 */ 224 #define SMC_WAIT_MMU_BUSY(lp) do { \ 225 if (unlikely(SMC_GET_MMU_CMD(lp) & MC_BUSY)) { \ 226 unsigned long timeout = jiffies + 2; \ 227 while (SMC_GET_MMU_CMD(lp) & MC_BUSY) { \ 228 if (time_after(jiffies, timeout)) { \ 229 printk("%s: timeout %s line %d\n", \ 230 dev->name, __FILE__, __LINE__); \ 231 break; \ 232 } \ 233 cpu_relax(); \ 234 } \ 235 } \ 236 } while (0) 237 238 239 /* 240 * this does a soft reset on the device 241 */ 242 static void smc_reset(struct net_device *dev) 243 { 244 struct smc_local *lp = netdev_priv(dev); 245 void __iomem *ioaddr = lp->base; 246 unsigned int ctl, cfg; 247 struct sk_buff *pending_skb; 248 249 DBG(2, "%s: %s\n", dev->name, __func__); 250 251 /* Disable all interrupts, block TX tasklet */ 252 spin_lock_irq(&lp->lock); 253 SMC_SELECT_BANK(lp, 2); 254 SMC_SET_INT_MASK(lp, 0); 255 pending_skb = lp->pending_tx_skb; 256 lp->pending_tx_skb = NULL; 257 spin_unlock_irq(&lp->lock); 258 259 /* free any pending tx skb */ 260 if (pending_skb) { 261 dev_kfree_skb(pending_skb); 262 dev->stats.tx_errors++; 263 dev->stats.tx_aborted_errors++; 264 } 265 266 /* 267 * This resets the registers mostly to defaults, but doesn't 268 * affect EEPROM. That seems unnecessary 269 */ 270 SMC_SELECT_BANK(lp, 0); 271 SMC_SET_RCR(lp, RCR_SOFTRST); 272 273 /* 274 * Setup the Configuration Register 275 * This is necessary because the CONFIG_REG is not affected 276 * by a soft reset 277 */ 278 SMC_SELECT_BANK(lp, 1); 279 280 cfg = CONFIG_DEFAULT; 281 282 /* 283 * Setup for fast accesses if requested. If the card/system 284 * can't handle it then there will be no recovery except for 285 * a hard reset or power cycle 286 */ 287 if (lp->cfg.flags & SMC91X_NOWAIT) 288 cfg |= CONFIG_NO_WAIT; 289 290 /* 291 * Release from possible power-down state 292 * Configuration register is not affected by Soft Reset 293 */ 294 cfg |= CONFIG_EPH_POWER_EN; 295 296 SMC_SET_CONFIG(lp, cfg); 297 298 /* this should pause enough for the chip to be happy */ 299 /* 300 * elaborate? What does the chip _need_? --jgarzik 301 * 302 * This seems to be undocumented, but something the original 303 * driver(s) have always done. Suspect undocumented timing 304 * info/determined empirically. --rmk 305 */ 306 udelay(1); 307 308 /* Disable transmit and receive functionality */ 309 SMC_SELECT_BANK(lp, 0); 310 SMC_SET_RCR(lp, RCR_CLEAR); 311 SMC_SET_TCR(lp, TCR_CLEAR); 312 313 SMC_SELECT_BANK(lp, 1); 314 ctl = SMC_GET_CTL(lp) | CTL_LE_ENABLE; 315 316 /* 317 * Set the control register to automatically release successfully 318 * transmitted packets, to make the best use out of our limited 319 * memory 320 */ 321 if(!THROTTLE_TX_PKTS) 322 ctl |= CTL_AUTO_RELEASE; 323 else 324 ctl &= ~CTL_AUTO_RELEASE; 325 SMC_SET_CTL(lp, ctl); 326 327 /* Reset the MMU */ 328 SMC_SELECT_BANK(lp, 2); 329 SMC_SET_MMU_CMD(lp, MC_RESET); 330 SMC_WAIT_MMU_BUSY(lp); 331 } 332 333 /* 334 * Enable Interrupts, Receive, and Transmit 335 */ 336 static void smc_enable(struct net_device *dev) 337 { 338 struct smc_local *lp = netdev_priv(dev); 339 void __iomem *ioaddr = lp->base; 340 int mask; 341 342 DBG(2, "%s: %s\n", dev->name, __func__); 343 344 /* see the header file for options in TCR/RCR DEFAULT */ 345 SMC_SELECT_BANK(lp, 0); 346 SMC_SET_TCR(lp, lp->tcr_cur_mode); 347 SMC_SET_RCR(lp, lp->rcr_cur_mode); 348 349 SMC_SELECT_BANK(lp, 1); 350 SMC_SET_MAC_ADDR(lp, dev->dev_addr); 351 352 /* now, enable interrupts */ 353 mask = IM_EPH_INT|IM_RX_OVRN_INT|IM_RCV_INT; 354 if (lp->version >= (CHIP_91100 << 4)) 355 mask |= IM_MDINT; 356 SMC_SELECT_BANK(lp, 2); 357 SMC_SET_INT_MASK(lp, mask); 358 359 /* 360 * From this point the register bank must _NOT_ be switched away 361 * to something else than bank 2 without proper locking against 362 * races with any tasklet or interrupt handlers until smc_shutdown() 363 * or smc_reset() is called. 364 */ 365 } 366 367 /* 368 * this puts the device in an inactive state 369 */ 370 static void smc_shutdown(struct net_device *dev) 371 { 372 struct smc_local *lp = netdev_priv(dev); 373 void __iomem *ioaddr = lp->base; 374 struct sk_buff *pending_skb; 375 376 DBG(2, "%s: %s\n", CARDNAME, __func__); 377 378 /* no more interrupts for me */ 379 spin_lock_irq(&lp->lock); 380 SMC_SELECT_BANK(lp, 2); 381 SMC_SET_INT_MASK(lp, 0); 382 pending_skb = lp->pending_tx_skb; 383 lp->pending_tx_skb = NULL; 384 spin_unlock_irq(&lp->lock); 385 if (pending_skb) 386 dev_kfree_skb(pending_skb); 387 388 /* and tell the card to stay away from that nasty outside world */ 389 SMC_SELECT_BANK(lp, 0); 390 SMC_SET_RCR(lp, RCR_CLEAR); 391 SMC_SET_TCR(lp, TCR_CLEAR); 392 393 #ifdef POWER_DOWN 394 /* finally, shut the chip down */ 395 SMC_SELECT_BANK(lp, 1); 396 SMC_SET_CONFIG(lp, SMC_GET_CONFIG(lp) & ~CONFIG_EPH_POWER_EN); 397 #endif 398 } 399 400 /* 401 * This is the procedure to handle the receipt of a packet. 402 */ 403 static inline void smc_rcv(struct net_device *dev) 404 { 405 struct smc_local *lp = netdev_priv(dev); 406 void __iomem *ioaddr = lp->base; 407 unsigned int packet_number, status, packet_len; 408 409 DBG(3, "%s: %s\n", dev->name, __func__); 410 411 packet_number = SMC_GET_RXFIFO(lp); 412 if (unlikely(packet_number & RXFIFO_REMPTY)) { 413 PRINTK("%s: smc_rcv with nothing on FIFO.\n", dev->name); 414 return; 415 } 416 417 /* read from start of packet */ 418 SMC_SET_PTR(lp, PTR_READ | PTR_RCV | PTR_AUTOINC); 419 420 /* First two words are status and packet length */ 421 SMC_GET_PKT_HDR(lp, status, packet_len); 422 packet_len &= 0x07ff; /* mask off top bits */ 423 DBG(2, "%s: RX PNR 0x%x STATUS 0x%04x LENGTH 0x%04x (%d)\n", 424 dev->name, packet_number, status, 425 packet_len, packet_len); 426 427 back: 428 if (unlikely(packet_len < 6 || status & RS_ERRORS)) { 429 if (status & RS_TOOLONG && packet_len <= (1514 + 4 + 6)) { 430 /* accept VLAN packets */ 431 status &= ~RS_TOOLONG; 432 goto back; 433 } 434 if (packet_len < 6) { 435 /* bloody hardware */ 436 printk(KERN_ERR "%s: fubar (rxlen %u status %x\n", 437 dev->name, packet_len, status); 438 status |= RS_TOOSHORT; 439 } 440 SMC_WAIT_MMU_BUSY(lp); 441 SMC_SET_MMU_CMD(lp, MC_RELEASE); 442 dev->stats.rx_errors++; 443 if (status & RS_ALGNERR) 444 dev->stats.rx_frame_errors++; 445 if (status & (RS_TOOSHORT | RS_TOOLONG)) 446 dev->stats.rx_length_errors++; 447 if (status & RS_BADCRC) 448 dev->stats.rx_crc_errors++; 449 } else { 450 struct sk_buff *skb; 451 unsigned char *data; 452 unsigned int data_len; 453 454 /* set multicast stats */ 455 if (status & RS_MULTICAST) 456 dev->stats.multicast++; 457 458 /* 459 * Actual payload is packet_len - 6 (or 5 if odd byte). 460 * We want skb_reserve(2) and the final ctrl word 461 * (2 bytes, possibly containing the payload odd byte). 462 * Furthermore, we add 2 bytes to allow rounding up to 463 * multiple of 4 bytes on 32 bit buses. 464 * Hence packet_len - 6 + 2 + 2 + 2. 465 */ 466 skb = netdev_alloc_skb(dev, packet_len); 467 if (unlikely(skb == NULL)) { 468 printk(KERN_NOTICE "%s: Low memory, packet dropped.\n", 469 dev->name); 470 SMC_WAIT_MMU_BUSY(lp); 471 SMC_SET_MMU_CMD(lp, MC_RELEASE); 472 dev->stats.rx_dropped++; 473 return; 474 } 475 476 /* Align IP header to 32 bits */ 477 skb_reserve(skb, 2); 478 479 /* BUG: the LAN91C111 rev A never sets this bit. Force it. */ 480 if (lp->version == 0x90) 481 status |= RS_ODDFRAME; 482 483 /* 484 * If odd length: packet_len - 5, 485 * otherwise packet_len - 6. 486 * With the trailing ctrl byte it's packet_len - 4. 487 */ 488 data_len = packet_len - ((status & RS_ODDFRAME) ? 5 : 6); 489 data = skb_put(skb, data_len); 490 SMC_PULL_DATA(lp, data, packet_len - 4); 491 492 SMC_WAIT_MMU_BUSY(lp); 493 SMC_SET_MMU_CMD(lp, MC_RELEASE); 494 495 PRINT_PKT(data, packet_len - 4); 496 497 skb->protocol = eth_type_trans(skb, dev); 498 netif_rx(skb); 499 dev->stats.rx_packets++; 500 dev->stats.rx_bytes += data_len; 501 } 502 } 503 504 #ifdef CONFIG_SMP 505 /* 506 * On SMP we have the following problem: 507 * 508 * A = smc_hardware_send_pkt() 509 * B = smc_hard_start_xmit() 510 * C = smc_interrupt() 511 * 512 * A and B can never be executed simultaneously. However, at least on UP, 513 * it is possible (and even desirable) for C to interrupt execution of 514 * A or B in order to have better RX reliability and avoid overruns. 515 * C, just like A and B, must have exclusive access to the chip and 516 * each of them must lock against any other concurrent access. 517 * Unfortunately this is not possible to have C suspend execution of A or 518 * B taking place on another CPU. On UP this is no an issue since A and B 519 * are run from softirq context and C from hard IRQ context, and there is 520 * no other CPU where concurrent access can happen. 521 * If ever there is a way to force at least B and C to always be executed 522 * on the same CPU then we could use read/write locks to protect against 523 * any other concurrent access and C would always interrupt B. But life 524 * isn't that easy in a SMP world... 525 */ 526 #define smc_special_trylock(lock, flags) \ 527 ({ \ 528 int __ret; \ 529 local_irq_save(flags); \ 530 __ret = spin_trylock(lock); \ 531 if (!__ret) \ 532 local_irq_restore(flags); \ 533 __ret; \ 534 }) 535 #define smc_special_lock(lock, flags) spin_lock_irqsave(lock, flags) 536 #define smc_special_unlock(lock, flags) spin_unlock_irqrestore(lock, flags) 537 #else 538 #define smc_special_trylock(lock, flags) (flags == flags) 539 #define smc_special_lock(lock, flags) do { flags = 0; } while (0) 540 #define smc_special_unlock(lock, flags) do { flags = 0; } while (0) 541 #endif 542 543 /* 544 * This is called to actually send a packet to the chip. 545 */ 546 static void smc_hardware_send_pkt(unsigned long data) 547 { 548 struct net_device *dev = (struct net_device *)data; 549 struct smc_local *lp = netdev_priv(dev); 550 void __iomem *ioaddr = lp->base; 551 struct sk_buff *skb; 552 unsigned int packet_no, len; 553 unsigned char *buf; 554 unsigned long flags; 555 556 DBG(3, "%s: %s\n", dev->name, __func__); 557 558 if (!smc_special_trylock(&lp->lock, flags)) { 559 netif_stop_queue(dev); 560 tasklet_schedule(&lp->tx_task); 561 return; 562 } 563 564 skb = lp->pending_tx_skb; 565 if (unlikely(!skb)) { 566 smc_special_unlock(&lp->lock, flags); 567 return; 568 } 569 lp->pending_tx_skb = NULL; 570 571 packet_no = SMC_GET_AR(lp); 572 if (unlikely(packet_no & AR_FAILED)) { 573 printk("%s: Memory allocation failed.\n", dev->name); 574 dev->stats.tx_errors++; 575 dev->stats.tx_fifo_errors++; 576 smc_special_unlock(&lp->lock, flags); 577 goto done; 578 } 579 580 /* point to the beginning of the packet */ 581 SMC_SET_PN(lp, packet_no); 582 SMC_SET_PTR(lp, PTR_AUTOINC); 583 584 buf = skb->data; 585 len = skb->len; 586 DBG(2, "%s: TX PNR 0x%x LENGTH 0x%04x (%d) BUF 0x%p\n", 587 dev->name, packet_no, len, len, buf); 588 PRINT_PKT(buf, len); 589 590 /* 591 * Send the packet length (+6 for status words, length, and ctl. 592 * The card will pad to 64 bytes with zeroes if packet is too small. 593 */ 594 SMC_PUT_PKT_HDR(lp, 0, len + 6); 595 596 /* send the actual data */ 597 SMC_PUSH_DATA(lp, buf, len & ~1); 598 599 /* Send final ctl word with the last byte if there is one */ 600 SMC_outw(((len & 1) ? (0x2000 | buf[len-1]) : 0), ioaddr, DATA_REG(lp)); 601 602 /* 603 * If THROTTLE_TX_PKTS is set, we stop the queue here. This will 604 * have the effect of having at most one packet queued for TX 605 * in the chip's memory at all time. 606 * 607 * If THROTTLE_TX_PKTS is not set then the queue is stopped only 608 * when memory allocation (MC_ALLOC) does not succeed right away. 609 */ 610 if (THROTTLE_TX_PKTS) 611 netif_stop_queue(dev); 612 613 /* queue the packet for TX */ 614 SMC_SET_MMU_CMD(lp, MC_ENQUEUE); 615 smc_special_unlock(&lp->lock, flags); 616 617 dev->trans_start = jiffies; 618 dev->stats.tx_packets++; 619 dev->stats.tx_bytes += len; 620 621 SMC_ENABLE_INT(lp, IM_TX_INT | IM_TX_EMPTY_INT); 622 623 done: if (!THROTTLE_TX_PKTS) 624 netif_wake_queue(dev); 625 626 dev_kfree_skb(skb); 627 } 628 629 /* 630 * Since I am not sure if I will have enough room in the chip's ram 631 * to store the packet, I call this routine which either sends it 632 * now, or set the card to generates an interrupt when ready 633 * for the packet. 634 */ 635 static int smc_hard_start_xmit(struct sk_buff *skb, struct net_device *dev) 636 { 637 struct smc_local *lp = netdev_priv(dev); 638 void __iomem *ioaddr = lp->base; 639 unsigned int numPages, poll_count, status; 640 unsigned long flags; 641 642 DBG(3, "%s: %s\n", dev->name, __func__); 643 644 BUG_ON(lp->pending_tx_skb != NULL); 645 646 /* 647 * The MMU wants the number of pages to be the number of 256 bytes 648 * 'pages', minus 1 (since a packet can't ever have 0 pages :)) 649 * 650 * The 91C111 ignores the size bits, but earlier models don't. 651 * 652 * Pkt size for allocating is data length +6 (for additional status 653 * words, length and ctl) 654 * 655 * If odd size then last byte is included in ctl word. 656 */ 657 numPages = ((skb->len & ~1) + (6 - 1)) >> 8; 658 if (unlikely(numPages > 7)) { 659 printk("%s: Far too big packet error.\n", dev->name); 660 dev->stats.tx_errors++; 661 dev->stats.tx_dropped++; 662 dev_kfree_skb(skb); 663 return NETDEV_TX_OK; 664 } 665 666 smc_special_lock(&lp->lock, flags); 667 668 /* now, try to allocate the memory */ 669 SMC_SET_MMU_CMD(lp, MC_ALLOC | numPages); 670 671 /* 672 * Poll the chip for a short amount of time in case the 673 * allocation succeeds quickly. 674 */ 675 poll_count = MEMORY_WAIT_TIME; 676 do { 677 status = SMC_GET_INT(lp); 678 if (status & IM_ALLOC_INT) { 679 SMC_ACK_INT(lp, IM_ALLOC_INT); 680 break; 681 } 682 } while (--poll_count); 683 684 smc_special_unlock(&lp->lock, flags); 685 686 lp->pending_tx_skb = skb; 687 if (!poll_count) { 688 /* oh well, wait until the chip finds memory later */ 689 netif_stop_queue(dev); 690 DBG(2, "%s: TX memory allocation deferred.\n", dev->name); 691 SMC_ENABLE_INT(lp, IM_ALLOC_INT); 692 } else { 693 /* 694 * Allocation succeeded: push packet to the chip's own memory 695 * immediately. 696 */ 697 smc_hardware_send_pkt((unsigned long)dev); 698 } 699 700 return NETDEV_TX_OK; 701 } 702 703 /* 704 * This handles a TX interrupt, which is only called when: 705 * - a TX error occurred, or 706 * - CTL_AUTO_RELEASE is not set and TX of a packet completed. 707 */ 708 static void smc_tx(struct net_device *dev) 709 { 710 struct smc_local *lp = netdev_priv(dev); 711 void __iomem *ioaddr = lp->base; 712 unsigned int saved_packet, packet_no, tx_status, pkt_len; 713 714 DBG(3, "%s: %s\n", dev->name, __func__); 715 716 /* If the TX FIFO is empty then nothing to do */ 717 packet_no = SMC_GET_TXFIFO(lp); 718 if (unlikely(packet_no & TXFIFO_TEMPTY)) { 719 PRINTK("%s: smc_tx with nothing on FIFO.\n", dev->name); 720 return; 721 } 722 723 /* select packet to read from */ 724 saved_packet = SMC_GET_PN(lp); 725 SMC_SET_PN(lp, packet_no); 726 727 /* read the first word (status word) from this packet */ 728 SMC_SET_PTR(lp, PTR_AUTOINC | PTR_READ); 729 SMC_GET_PKT_HDR(lp, tx_status, pkt_len); 730 DBG(2, "%s: TX STATUS 0x%04x PNR 0x%02x\n", 731 dev->name, tx_status, packet_no); 732 733 if (!(tx_status & ES_TX_SUC)) 734 dev->stats.tx_errors++; 735 736 if (tx_status & ES_LOSTCARR) 737 dev->stats.tx_carrier_errors++; 738 739 if (tx_status & (ES_LATCOL | ES_16COL)) { 740 PRINTK("%s: %s occurred on last xmit\n", dev->name, 741 (tx_status & ES_LATCOL) ? 742 "late collision" : "too many collisions"); 743 dev->stats.tx_window_errors++; 744 if (!(dev->stats.tx_window_errors & 63) && net_ratelimit()) { 745 printk(KERN_INFO "%s: unexpectedly large number of " 746 "bad collisions. Please check duplex " 747 "setting.\n", dev->name); 748 } 749 } 750 751 /* kill the packet */ 752 SMC_WAIT_MMU_BUSY(lp); 753 SMC_SET_MMU_CMD(lp, MC_FREEPKT); 754 755 /* Don't restore Packet Number Reg until busy bit is cleared */ 756 SMC_WAIT_MMU_BUSY(lp); 757 SMC_SET_PN(lp, saved_packet); 758 759 /* re-enable transmit */ 760 SMC_SELECT_BANK(lp, 0); 761 SMC_SET_TCR(lp, lp->tcr_cur_mode); 762 SMC_SELECT_BANK(lp, 2); 763 } 764 765 766 /*---PHY CONTROL AND CONFIGURATION-----------------------------------------*/ 767 768 static void smc_mii_out(struct net_device *dev, unsigned int val, int bits) 769 { 770 struct smc_local *lp = netdev_priv(dev); 771 void __iomem *ioaddr = lp->base; 772 unsigned int mii_reg, mask; 773 774 mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO); 775 mii_reg |= MII_MDOE; 776 777 for (mask = 1 << (bits - 1); mask; mask >>= 1) { 778 if (val & mask) 779 mii_reg |= MII_MDO; 780 else 781 mii_reg &= ~MII_MDO; 782 783 SMC_SET_MII(lp, mii_reg); 784 udelay(MII_DELAY); 785 SMC_SET_MII(lp, mii_reg | MII_MCLK); 786 udelay(MII_DELAY); 787 } 788 } 789 790 static unsigned int smc_mii_in(struct net_device *dev, int bits) 791 { 792 struct smc_local *lp = netdev_priv(dev); 793 void __iomem *ioaddr = lp->base; 794 unsigned int mii_reg, mask, val; 795 796 mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO); 797 SMC_SET_MII(lp, mii_reg); 798 799 for (mask = 1 << (bits - 1), val = 0; mask; mask >>= 1) { 800 if (SMC_GET_MII(lp) & MII_MDI) 801 val |= mask; 802 803 SMC_SET_MII(lp, mii_reg); 804 udelay(MII_DELAY); 805 SMC_SET_MII(lp, mii_reg | MII_MCLK); 806 udelay(MII_DELAY); 807 } 808 809 return val; 810 } 811 812 /* 813 * Reads a register from the MII Management serial interface 814 */ 815 static int smc_phy_read(struct net_device *dev, int phyaddr, int phyreg) 816 { 817 struct smc_local *lp = netdev_priv(dev); 818 void __iomem *ioaddr = lp->base; 819 unsigned int phydata; 820 821 SMC_SELECT_BANK(lp, 3); 822 823 /* Idle - 32 ones */ 824 smc_mii_out(dev, 0xffffffff, 32); 825 826 /* Start code (01) + read (10) + phyaddr + phyreg */ 827 smc_mii_out(dev, 6 << 10 | phyaddr << 5 | phyreg, 14); 828 829 /* Turnaround (2bits) + phydata */ 830 phydata = smc_mii_in(dev, 18); 831 832 /* Return to idle state */ 833 SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO)); 834 835 DBG(3, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n", 836 __func__, phyaddr, phyreg, phydata); 837 838 SMC_SELECT_BANK(lp, 2); 839 return phydata; 840 } 841 842 /* 843 * Writes a register to the MII Management serial interface 844 */ 845 static void smc_phy_write(struct net_device *dev, int phyaddr, int phyreg, 846 int phydata) 847 { 848 struct smc_local *lp = netdev_priv(dev); 849 void __iomem *ioaddr = lp->base; 850 851 SMC_SELECT_BANK(lp, 3); 852 853 /* Idle - 32 ones */ 854 smc_mii_out(dev, 0xffffffff, 32); 855 856 /* Start code (01) + write (01) + phyaddr + phyreg + turnaround + phydata */ 857 smc_mii_out(dev, 5 << 28 | phyaddr << 23 | phyreg << 18 | 2 << 16 | phydata, 32); 858 859 /* Return to idle state */ 860 SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO)); 861 862 DBG(3, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n", 863 __func__, phyaddr, phyreg, phydata); 864 865 SMC_SELECT_BANK(lp, 2); 866 } 867 868 /* 869 * Finds and reports the PHY address 870 */ 871 static void smc_phy_detect(struct net_device *dev) 872 { 873 struct smc_local *lp = netdev_priv(dev); 874 int phyaddr; 875 876 DBG(2, "%s: %s\n", dev->name, __func__); 877 878 lp->phy_type = 0; 879 880 /* 881 * Scan all 32 PHY addresses if necessary, starting at 882 * PHY#1 to PHY#31, and then PHY#0 last. 883 */ 884 for (phyaddr = 1; phyaddr < 33; ++phyaddr) { 885 unsigned int id1, id2; 886 887 /* Read the PHY identifiers */ 888 id1 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID1); 889 id2 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID2); 890 891 DBG(3, "%s: phy_id1=0x%x, phy_id2=0x%x\n", 892 dev->name, id1, id2); 893 894 /* Make sure it is a valid identifier */ 895 if (id1 != 0x0000 && id1 != 0xffff && id1 != 0x8000 && 896 id2 != 0x0000 && id2 != 0xffff && id2 != 0x8000) { 897 /* Save the PHY's address */ 898 lp->mii.phy_id = phyaddr & 31; 899 lp->phy_type = id1 << 16 | id2; 900 break; 901 } 902 } 903 } 904 905 /* 906 * Sets the PHY to a configuration as determined by the user 907 */ 908 static int smc_phy_fixed(struct net_device *dev) 909 { 910 struct smc_local *lp = netdev_priv(dev); 911 void __iomem *ioaddr = lp->base; 912 int phyaddr = lp->mii.phy_id; 913 int bmcr, cfg1; 914 915 DBG(3, "%s: %s\n", dev->name, __func__); 916 917 /* Enter Link Disable state */ 918 cfg1 = smc_phy_read(dev, phyaddr, PHY_CFG1_REG); 919 cfg1 |= PHY_CFG1_LNKDIS; 920 smc_phy_write(dev, phyaddr, PHY_CFG1_REG, cfg1); 921 922 /* 923 * Set our fixed capabilities 924 * Disable auto-negotiation 925 */ 926 bmcr = 0; 927 928 if (lp->ctl_rfduplx) 929 bmcr |= BMCR_FULLDPLX; 930 931 if (lp->ctl_rspeed == 100) 932 bmcr |= BMCR_SPEED100; 933 934 /* Write our capabilities to the phy control register */ 935 smc_phy_write(dev, phyaddr, MII_BMCR, bmcr); 936 937 /* Re-Configure the Receive/Phy Control register */ 938 SMC_SELECT_BANK(lp, 0); 939 SMC_SET_RPC(lp, lp->rpc_cur_mode); 940 SMC_SELECT_BANK(lp, 2); 941 942 return 1; 943 } 944 945 /** 946 * smc_phy_reset - reset the phy 947 * @dev: net device 948 * @phy: phy address 949 * 950 * Issue a software reset for the specified PHY and 951 * wait up to 100ms for the reset to complete. We should 952 * not access the PHY for 50ms after issuing the reset. 953 * 954 * The time to wait appears to be dependent on the PHY. 955 * 956 * Must be called with lp->lock locked. 957 */ 958 static int smc_phy_reset(struct net_device *dev, int phy) 959 { 960 struct smc_local *lp = netdev_priv(dev); 961 unsigned int bmcr; 962 int timeout; 963 964 smc_phy_write(dev, phy, MII_BMCR, BMCR_RESET); 965 966 for (timeout = 2; timeout; timeout--) { 967 spin_unlock_irq(&lp->lock); 968 msleep(50); 969 spin_lock_irq(&lp->lock); 970 971 bmcr = smc_phy_read(dev, phy, MII_BMCR); 972 if (!(bmcr & BMCR_RESET)) 973 break; 974 } 975 976 return bmcr & BMCR_RESET; 977 } 978 979 /** 980 * smc_phy_powerdown - powerdown phy 981 * @dev: net device 982 * 983 * Power down the specified PHY 984 */ 985 static void smc_phy_powerdown(struct net_device *dev) 986 { 987 struct smc_local *lp = netdev_priv(dev); 988 unsigned int bmcr; 989 int phy = lp->mii.phy_id; 990 991 if (lp->phy_type == 0) 992 return; 993 994 /* We need to ensure that no calls to smc_phy_configure are 995 pending. 996 */ 997 cancel_work_sync(&lp->phy_configure); 998 999 bmcr = smc_phy_read(dev, phy, MII_BMCR); 1000 smc_phy_write(dev, phy, MII_BMCR, bmcr | BMCR_PDOWN); 1001 } 1002 1003 /** 1004 * smc_phy_check_media - check the media status and adjust TCR 1005 * @dev: net device 1006 * @init: set true for initialisation 1007 * 1008 * Select duplex mode depending on negotiation state. This 1009 * also updates our carrier state. 1010 */ 1011 static void smc_phy_check_media(struct net_device *dev, int init) 1012 { 1013 struct smc_local *lp = netdev_priv(dev); 1014 void __iomem *ioaddr = lp->base; 1015 1016 if (mii_check_media(&lp->mii, netif_msg_link(lp), init)) { 1017 /* duplex state has changed */ 1018 if (lp->mii.full_duplex) { 1019 lp->tcr_cur_mode |= TCR_SWFDUP; 1020 } else { 1021 lp->tcr_cur_mode &= ~TCR_SWFDUP; 1022 } 1023 1024 SMC_SELECT_BANK(lp, 0); 1025 SMC_SET_TCR(lp, lp->tcr_cur_mode); 1026 } 1027 } 1028 1029 /* 1030 * Configures the specified PHY through the MII management interface 1031 * using Autonegotiation. 1032 * Calls smc_phy_fixed() if the user has requested a certain config. 1033 * If RPC ANEG bit is set, the media selection is dependent purely on 1034 * the selection by the MII (either in the MII BMCR reg or the result 1035 * of autonegotiation.) If the RPC ANEG bit is cleared, the selection 1036 * is controlled by the RPC SPEED and RPC DPLX bits. 1037 */ 1038 static void smc_phy_configure(struct work_struct *work) 1039 { 1040 struct smc_local *lp = 1041 container_of(work, struct smc_local, phy_configure); 1042 struct net_device *dev = lp->dev; 1043 void __iomem *ioaddr = lp->base; 1044 int phyaddr = lp->mii.phy_id; 1045 int my_phy_caps; /* My PHY capabilities */ 1046 int my_ad_caps; /* My Advertised capabilities */ 1047 int status; 1048 1049 DBG(3, "%s:smc_program_phy()\n", dev->name); 1050 1051 spin_lock_irq(&lp->lock); 1052 1053 /* 1054 * We should not be called if phy_type is zero. 1055 */ 1056 if (lp->phy_type == 0) 1057 goto smc_phy_configure_exit; 1058 1059 if (smc_phy_reset(dev, phyaddr)) { 1060 printk("%s: PHY reset timed out\n", dev->name); 1061 goto smc_phy_configure_exit; 1062 } 1063 1064 /* 1065 * Enable PHY Interrupts (for register 18) 1066 * Interrupts listed here are disabled 1067 */ 1068 smc_phy_write(dev, phyaddr, PHY_MASK_REG, 1069 PHY_INT_LOSSSYNC | PHY_INT_CWRD | PHY_INT_SSD | 1070 PHY_INT_ESD | PHY_INT_RPOL | PHY_INT_JAB | 1071 PHY_INT_SPDDET | PHY_INT_DPLXDET); 1072 1073 /* Configure the Receive/Phy Control register */ 1074 SMC_SELECT_BANK(lp, 0); 1075 SMC_SET_RPC(lp, lp->rpc_cur_mode); 1076 1077 /* If the user requested no auto neg, then go set his request */ 1078 if (lp->mii.force_media) { 1079 smc_phy_fixed(dev); 1080 goto smc_phy_configure_exit; 1081 } 1082 1083 /* Copy our capabilities from MII_BMSR to MII_ADVERTISE */ 1084 my_phy_caps = smc_phy_read(dev, phyaddr, MII_BMSR); 1085 1086 if (!(my_phy_caps & BMSR_ANEGCAPABLE)) { 1087 printk(KERN_INFO "Auto negotiation NOT supported\n"); 1088 smc_phy_fixed(dev); 1089 goto smc_phy_configure_exit; 1090 } 1091 1092 my_ad_caps = ADVERTISE_CSMA; /* I am CSMA capable */ 1093 1094 if (my_phy_caps & BMSR_100BASE4) 1095 my_ad_caps |= ADVERTISE_100BASE4; 1096 if (my_phy_caps & BMSR_100FULL) 1097 my_ad_caps |= ADVERTISE_100FULL; 1098 if (my_phy_caps & BMSR_100HALF) 1099 my_ad_caps |= ADVERTISE_100HALF; 1100 if (my_phy_caps & BMSR_10FULL) 1101 my_ad_caps |= ADVERTISE_10FULL; 1102 if (my_phy_caps & BMSR_10HALF) 1103 my_ad_caps |= ADVERTISE_10HALF; 1104 1105 /* Disable capabilities not selected by our user */ 1106 if (lp->ctl_rspeed != 100) 1107 my_ad_caps &= ~(ADVERTISE_100BASE4|ADVERTISE_100FULL|ADVERTISE_100HALF); 1108 1109 if (!lp->ctl_rfduplx) 1110 my_ad_caps &= ~(ADVERTISE_100FULL|ADVERTISE_10FULL); 1111 1112 /* Update our Auto-Neg Advertisement Register */ 1113 smc_phy_write(dev, phyaddr, MII_ADVERTISE, my_ad_caps); 1114 lp->mii.advertising = my_ad_caps; 1115 1116 /* 1117 * Read the register back. Without this, it appears that when 1118 * auto-negotiation is restarted, sometimes it isn't ready and 1119 * the link does not come up. 1120 */ 1121 status = smc_phy_read(dev, phyaddr, MII_ADVERTISE); 1122 1123 DBG(2, "%s: phy caps=%x\n", dev->name, my_phy_caps); 1124 DBG(2, "%s: phy advertised caps=%x\n", dev->name, my_ad_caps); 1125 1126 /* Restart auto-negotiation process in order to advertise my caps */ 1127 smc_phy_write(dev, phyaddr, MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART); 1128 1129 smc_phy_check_media(dev, 1); 1130 1131 smc_phy_configure_exit: 1132 SMC_SELECT_BANK(lp, 2); 1133 spin_unlock_irq(&lp->lock); 1134 } 1135 1136 /* 1137 * smc_phy_interrupt 1138 * 1139 * Purpose: Handle interrupts relating to PHY register 18. This is 1140 * called from the "hard" interrupt handler under our private spinlock. 1141 */ 1142 static void smc_phy_interrupt(struct net_device *dev) 1143 { 1144 struct smc_local *lp = netdev_priv(dev); 1145 int phyaddr = lp->mii.phy_id; 1146 int phy18; 1147 1148 DBG(2, "%s: %s\n", dev->name, __func__); 1149 1150 if (lp->phy_type == 0) 1151 return; 1152 1153 for(;;) { 1154 smc_phy_check_media(dev, 0); 1155 1156 /* Read PHY Register 18, Status Output */ 1157 phy18 = smc_phy_read(dev, phyaddr, PHY_INT_REG); 1158 if ((phy18 & PHY_INT_INT) == 0) 1159 break; 1160 } 1161 } 1162 1163 /*--- END PHY CONTROL AND CONFIGURATION-------------------------------------*/ 1164 1165 static void smc_10bt_check_media(struct net_device *dev, int init) 1166 { 1167 struct smc_local *lp = netdev_priv(dev); 1168 void __iomem *ioaddr = lp->base; 1169 unsigned int old_carrier, new_carrier; 1170 1171 old_carrier = netif_carrier_ok(dev) ? 1 : 0; 1172 1173 SMC_SELECT_BANK(lp, 0); 1174 new_carrier = (SMC_GET_EPH_STATUS(lp) & ES_LINK_OK) ? 1 : 0; 1175 SMC_SELECT_BANK(lp, 2); 1176 1177 if (init || (old_carrier != new_carrier)) { 1178 if (!new_carrier) { 1179 netif_carrier_off(dev); 1180 } else { 1181 netif_carrier_on(dev); 1182 } 1183 if (netif_msg_link(lp)) 1184 printk(KERN_INFO "%s: link %s\n", dev->name, 1185 new_carrier ? "up" : "down"); 1186 } 1187 } 1188 1189 static void smc_eph_interrupt(struct net_device *dev) 1190 { 1191 struct smc_local *lp = netdev_priv(dev); 1192 void __iomem *ioaddr = lp->base; 1193 unsigned int ctl; 1194 1195 smc_10bt_check_media(dev, 0); 1196 1197 SMC_SELECT_BANK(lp, 1); 1198 ctl = SMC_GET_CTL(lp); 1199 SMC_SET_CTL(lp, ctl & ~CTL_LE_ENABLE); 1200 SMC_SET_CTL(lp, ctl); 1201 SMC_SELECT_BANK(lp, 2); 1202 } 1203 1204 /* 1205 * This is the main routine of the driver, to handle the device when 1206 * it needs some attention. 1207 */ 1208 static irqreturn_t smc_interrupt(int irq, void *dev_id) 1209 { 1210 struct net_device *dev = dev_id; 1211 struct smc_local *lp = netdev_priv(dev); 1212 void __iomem *ioaddr = lp->base; 1213 int status, mask, timeout, card_stats; 1214 int saved_pointer; 1215 1216 DBG(3, "%s: %s\n", dev->name, __func__); 1217 1218 spin_lock(&lp->lock); 1219 1220 /* A preamble may be used when there is a potential race 1221 * between the interruptible transmit functions and this 1222 * ISR. */ 1223 SMC_INTERRUPT_PREAMBLE; 1224 1225 saved_pointer = SMC_GET_PTR(lp); 1226 mask = SMC_GET_INT_MASK(lp); 1227 SMC_SET_INT_MASK(lp, 0); 1228 1229 /* set a timeout value, so I don't stay here forever */ 1230 timeout = MAX_IRQ_LOOPS; 1231 1232 do { 1233 status = SMC_GET_INT(lp); 1234 1235 DBG(2, "%s: INT 0x%02x MASK 0x%02x MEM 0x%04x FIFO 0x%04x\n", 1236 dev->name, status, mask, 1237 ({ int meminfo; SMC_SELECT_BANK(lp, 0); 1238 meminfo = SMC_GET_MIR(lp); 1239 SMC_SELECT_BANK(lp, 2); meminfo; }), 1240 SMC_GET_FIFO(lp)); 1241 1242 status &= mask; 1243 if (!status) 1244 break; 1245 1246 if (status & IM_TX_INT) { 1247 /* do this before RX as it will free memory quickly */ 1248 DBG(3, "%s: TX int\n", dev->name); 1249 smc_tx(dev); 1250 SMC_ACK_INT(lp, IM_TX_INT); 1251 if (THROTTLE_TX_PKTS) 1252 netif_wake_queue(dev); 1253 } else if (status & IM_RCV_INT) { 1254 DBG(3, "%s: RX irq\n", dev->name); 1255 smc_rcv(dev); 1256 } else if (status & IM_ALLOC_INT) { 1257 DBG(3, "%s: Allocation irq\n", dev->name); 1258 tasklet_hi_schedule(&lp->tx_task); 1259 mask &= ~IM_ALLOC_INT; 1260 } else if (status & IM_TX_EMPTY_INT) { 1261 DBG(3, "%s: TX empty\n", dev->name); 1262 mask &= ~IM_TX_EMPTY_INT; 1263 1264 /* update stats */ 1265 SMC_SELECT_BANK(lp, 0); 1266 card_stats = SMC_GET_COUNTER(lp); 1267 SMC_SELECT_BANK(lp, 2); 1268 1269 /* single collisions */ 1270 dev->stats.collisions += card_stats & 0xF; 1271 card_stats >>= 4; 1272 1273 /* multiple collisions */ 1274 dev->stats.collisions += card_stats & 0xF; 1275 } else if (status & IM_RX_OVRN_INT) { 1276 DBG(1, "%s: RX overrun (EPH_ST 0x%04x)\n", dev->name, 1277 ({ int eph_st; SMC_SELECT_BANK(lp, 0); 1278 eph_st = SMC_GET_EPH_STATUS(lp); 1279 SMC_SELECT_BANK(lp, 2); eph_st; })); 1280 SMC_ACK_INT(lp, IM_RX_OVRN_INT); 1281 dev->stats.rx_errors++; 1282 dev->stats.rx_fifo_errors++; 1283 } else if (status & IM_EPH_INT) { 1284 smc_eph_interrupt(dev); 1285 } else if (status & IM_MDINT) { 1286 SMC_ACK_INT(lp, IM_MDINT); 1287 smc_phy_interrupt(dev); 1288 } else if (status & IM_ERCV_INT) { 1289 SMC_ACK_INT(lp, IM_ERCV_INT); 1290 PRINTK("%s: UNSUPPORTED: ERCV INTERRUPT\n", dev->name); 1291 } 1292 } while (--timeout); 1293 1294 /* restore register states */ 1295 SMC_SET_PTR(lp, saved_pointer); 1296 SMC_SET_INT_MASK(lp, mask); 1297 spin_unlock(&lp->lock); 1298 1299 #ifndef CONFIG_NET_POLL_CONTROLLER 1300 if (timeout == MAX_IRQ_LOOPS) 1301 PRINTK("%s: spurious interrupt (mask = 0x%02x)\n", 1302 dev->name, mask); 1303 #endif 1304 DBG(3, "%s: Interrupt done (%d loops)\n", 1305 dev->name, MAX_IRQ_LOOPS - timeout); 1306 1307 /* 1308 * We return IRQ_HANDLED unconditionally here even if there was 1309 * nothing to do. There is a possibility that a packet might 1310 * get enqueued into the chip right after TX_EMPTY_INT is raised 1311 * but just before the CPU acknowledges the IRQ. 1312 * Better take an unneeded IRQ in some occasions than complexifying 1313 * the code for all cases. 1314 */ 1315 return IRQ_HANDLED; 1316 } 1317 1318 #ifdef CONFIG_NET_POLL_CONTROLLER 1319 /* 1320 * Polling receive - used by netconsole and other diagnostic tools 1321 * to allow network i/o with interrupts disabled. 1322 */ 1323 static void smc_poll_controller(struct net_device *dev) 1324 { 1325 disable_irq(dev->irq); 1326 smc_interrupt(dev->irq, dev); 1327 enable_irq(dev->irq); 1328 } 1329 #endif 1330 1331 /* Our watchdog timed out. Called by the networking layer */ 1332 static void smc_timeout(struct net_device *dev) 1333 { 1334 struct smc_local *lp = netdev_priv(dev); 1335 void __iomem *ioaddr = lp->base; 1336 int status, mask, eph_st, meminfo, fifo; 1337 1338 DBG(2, "%s: %s\n", dev->name, __func__); 1339 1340 spin_lock_irq(&lp->lock); 1341 status = SMC_GET_INT(lp); 1342 mask = SMC_GET_INT_MASK(lp); 1343 fifo = SMC_GET_FIFO(lp); 1344 SMC_SELECT_BANK(lp, 0); 1345 eph_st = SMC_GET_EPH_STATUS(lp); 1346 meminfo = SMC_GET_MIR(lp); 1347 SMC_SELECT_BANK(lp, 2); 1348 spin_unlock_irq(&lp->lock); 1349 PRINTK( "%s: TX timeout (INT 0x%02x INTMASK 0x%02x " 1350 "MEM 0x%04x FIFO 0x%04x EPH_ST 0x%04x)\n", 1351 dev->name, status, mask, meminfo, fifo, eph_st ); 1352 1353 smc_reset(dev); 1354 smc_enable(dev); 1355 1356 /* 1357 * Reconfiguring the PHY doesn't seem like a bad idea here, but 1358 * smc_phy_configure() calls msleep() which calls schedule_timeout() 1359 * which calls schedule(). Hence we use a work queue. 1360 */ 1361 if (lp->phy_type != 0) 1362 schedule_work(&lp->phy_configure); 1363 1364 /* We can accept TX packets again */ 1365 dev->trans_start = jiffies; /* prevent tx timeout */ 1366 netif_wake_queue(dev); 1367 } 1368 1369 /* 1370 * This routine will, depending on the values passed to it, 1371 * either make it accept multicast packets, go into 1372 * promiscuous mode (for TCPDUMP and cousins) or accept 1373 * a select set of multicast packets 1374 */ 1375 static void smc_set_multicast_list(struct net_device *dev) 1376 { 1377 struct smc_local *lp = netdev_priv(dev); 1378 void __iomem *ioaddr = lp->base; 1379 unsigned char multicast_table[8]; 1380 int update_multicast = 0; 1381 1382 DBG(2, "%s: %s\n", dev->name, __func__); 1383 1384 if (dev->flags & IFF_PROMISC) { 1385 DBG(2, "%s: RCR_PRMS\n", dev->name); 1386 lp->rcr_cur_mode |= RCR_PRMS; 1387 } 1388 1389 /* BUG? I never disable promiscuous mode if multicasting was turned on. 1390 Now, I turn off promiscuous mode, but I don't do anything to multicasting 1391 when promiscuous mode is turned on. 1392 */ 1393 1394 /* 1395 * Here, I am setting this to accept all multicast packets. 1396 * I don't need to zero the multicast table, because the flag is 1397 * checked before the table is 1398 */ 1399 else if (dev->flags & IFF_ALLMULTI || netdev_mc_count(dev) > 16) { 1400 DBG(2, "%s: RCR_ALMUL\n", dev->name); 1401 lp->rcr_cur_mode |= RCR_ALMUL; 1402 } 1403 1404 /* 1405 * This sets the internal hardware table to filter out unwanted 1406 * multicast packets before they take up memory. 1407 * 1408 * The SMC chip uses a hash table where the high 6 bits of the CRC of 1409 * address are the offset into the table. If that bit is 1, then the 1410 * multicast packet is accepted. Otherwise, it's dropped silently. 1411 * 1412 * To use the 6 bits as an offset into the table, the high 3 bits are 1413 * the number of the 8 bit register, while the low 3 bits are the bit 1414 * within that register. 1415 */ 1416 else if (!netdev_mc_empty(dev)) { 1417 struct netdev_hw_addr *ha; 1418 1419 /* table for flipping the order of 3 bits */ 1420 static const unsigned char invert3[] = {0, 4, 2, 6, 1, 5, 3, 7}; 1421 1422 /* start with a table of all zeros: reject all */ 1423 memset(multicast_table, 0, sizeof(multicast_table)); 1424 1425 netdev_for_each_mc_addr(ha, dev) { 1426 int position; 1427 1428 /* only use the low order bits */ 1429 position = crc32_le(~0, ha->addr, 6) & 0x3f; 1430 1431 /* do some messy swapping to put the bit in the right spot */ 1432 multicast_table[invert3[position&7]] |= 1433 (1<<invert3[(position>>3)&7]); 1434 } 1435 1436 /* be sure I get rid of flags I might have set */ 1437 lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL); 1438 1439 /* now, the table can be loaded into the chipset */ 1440 update_multicast = 1; 1441 } else { 1442 DBG(2, "%s: ~(RCR_PRMS|RCR_ALMUL)\n", dev->name); 1443 lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL); 1444 1445 /* 1446 * since I'm disabling all multicast entirely, I need to 1447 * clear the multicast list 1448 */ 1449 memset(multicast_table, 0, sizeof(multicast_table)); 1450 update_multicast = 1; 1451 } 1452 1453 spin_lock_irq(&lp->lock); 1454 SMC_SELECT_BANK(lp, 0); 1455 SMC_SET_RCR(lp, lp->rcr_cur_mode); 1456 if (update_multicast) { 1457 SMC_SELECT_BANK(lp, 3); 1458 SMC_SET_MCAST(lp, multicast_table); 1459 } 1460 SMC_SELECT_BANK(lp, 2); 1461 spin_unlock_irq(&lp->lock); 1462 } 1463 1464 1465 /* 1466 * Open and Initialize the board 1467 * 1468 * Set up everything, reset the card, etc.. 1469 */ 1470 static int 1471 smc_open(struct net_device *dev) 1472 { 1473 struct smc_local *lp = netdev_priv(dev); 1474 1475 DBG(2, "%s: %s\n", dev->name, __func__); 1476 1477 /* Setup the default Register Modes */ 1478 lp->tcr_cur_mode = TCR_DEFAULT; 1479 lp->rcr_cur_mode = RCR_DEFAULT; 1480 lp->rpc_cur_mode = RPC_DEFAULT | 1481 lp->cfg.leda << RPC_LSXA_SHFT | 1482 lp->cfg.ledb << RPC_LSXB_SHFT; 1483 1484 /* 1485 * If we are not using a MII interface, we need to 1486 * monitor our own carrier signal to detect faults. 1487 */ 1488 if (lp->phy_type == 0) 1489 lp->tcr_cur_mode |= TCR_MON_CSN; 1490 1491 /* reset the hardware */ 1492 smc_reset(dev); 1493 smc_enable(dev); 1494 1495 /* Configure the PHY, initialize the link state */ 1496 if (lp->phy_type != 0) 1497 smc_phy_configure(&lp->phy_configure); 1498 else { 1499 spin_lock_irq(&lp->lock); 1500 smc_10bt_check_media(dev, 1); 1501 spin_unlock_irq(&lp->lock); 1502 } 1503 1504 netif_start_queue(dev); 1505 return 0; 1506 } 1507 1508 /* 1509 * smc_close 1510 * 1511 * this makes the board clean up everything that it can 1512 * and not talk to the outside world. Caused by 1513 * an 'ifconfig ethX down' 1514 */ 1515 static int smc_close(struct net_device *dev) 1516 { 1517 struct smc_local *lp = netdev_priv(dev); 1518 1519 DBG(2, "%s: %s\n", dev->name, __func__); 1520 1521 netif_stop_queue(dev); 1522 netif_carrier_off(dev); 1523 1524 /* clear everything */ 1525 smc_shutdown(dev); 1526 tasklet_kill(&lp->tx_task); 1527 smc_phy_powerdown(dev); 1528 return 0; 1529 } 1530 1531 /* 1532 * Ethtool support 1533 */ 1534 static int 1535 smc_ethtool_getsettings(struct net_device *dev, struct ethtool_cmd *cmd) 1536 { 1537 struct smc_local *lp = netdev_priv(dev); 1538 int ret; 1539 1540 cmd->maxtxpkt = 1; 1541 cmd->maxrxpkt = 1; 1542 1543 if (lp->phy_type != 0) { 1544 spin_lock_irq(&lp->lock); 1545 ret = mii_ethtool_gset(&lp->mii, cmd); 1546 spin_unlock_irq(&lp->lock); 1547 } else { 1548 cmd->supported = SUPPORTED_10baseT_Half | 1549 SUPPORTED_10baseT_Full | 1550 SUPPORTED_TP | SUPPORTED_AUI; 1551 1552 if (lp->ctl_rspeed == 10) 1553 ethtool_cmd_speed_set(cmd, SPEED_10); 1554 else if (lp->ctl_rspeed == 100) 1555 ethtool_cmd_speed_set(cmd, SPEED_100); 1556 1557 cmd->autoneg = AUTONEG_DISABLE; 1558 cmd->transceiver = XCVR_INTERNAL; 1559 cmd->port = 0; 1560 cmd->duplex = lp->tcr_cur_mode & TCR_SWFDUP ? DUPLEX_FULL : DUPLEX_HALF; 1561 1562 ret = 0; 1563 } 1564 1565 return ret; 1566 } 1567 1568 static int 1569 smc_ethtool_setsettings(struct net_device *dev, struct ethtool_cmd *cmd) 1570 { 1571 struct smc_local *lp = netdev_priv(dev); 1572 int ret; 1573 1574 if (lp->phy_type != 0) { 1575 spin_lock_irq(&lp->lock); 1576 ret = mii_ethtool_sset(&lp->mii, cmd); 1577 spin_unlock_irq(&lp->lock); 1578 } else { 1579 if (cmd->autoneg != AUTONEG_DISABLE || 1580 cmd->speed != SPEED_10 || 1581 (cmd->duplex != DUPLEX_HALF && cmd->duplex != DUPLEX_FULL) || 1582 (cmd->port != PORT_TP && cmd->port != PORT_AUI)) 1583 return -EINVAL; 1584 1585 // lp->port = cmd->port; 1586 lp->ctl_rfduplx = cmd->duplex == DUPLEX_FULL; 1587 1588 // if (netif_running(dev)) 1589 // smc_set_port(dev); 1590 1591 ret = 0; 1592 } 1593 1594 return ret; 1595 } 1596 1597 static void 1598 smc_ethtool_getdrvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 1599 { 1600 strncpy(info->driver, CARDNAME, sizeof(info->driver)); 1601 strncpy(info->version, version, sizeof(info->version)); 1602 strncpy(info->bus_info, dev_name(dev->dev.parent), sizeof(info->bus_info)); 1603 } 1604 1605 static int smc_ethtool_nwayreset(struct net_device *dev) 1606 { 1607 struct smc_local *lp = netdev_priv(dev); 1608 int ret = -EINVAL; 1609 1610 if (lp->phy_type != 0) { 1611 spin_lock_irq(&lp->lock); 1612 ret = mii_nway_restart(&lp->mii); 1613 spin_unlock_irq(&lp->lock); 1614 } 1615 1616 return ret; 1617 } 1618 1619 static u32 smc_ethtool_getmsglevel(struct net_device *dev) 1620 { 1621 struct smc_local *lp = netdev_priv(dev); 1622 return lp->msg_enable; 1623 } 1624 1625 static void smc_ethtool_setmsglevel(struct net_device *dev, u32 level) 1626 { 1627 struct smc_local *lp = netdev_priv(dev); 1628 lp->msg_enable = level; 1629 } 1630 1631 static int smc_write_eeprom_word(struct net_device *dev, u16 addr, u16 word) 1632 { 1633 u16 ctl; 1634 struct smc_local *lp = netdev_priv(dev); 1635 void __iomem *ioaddr = lp->base; 1636 1637 spin_lock_irq(&lp->lock); 1638 /* load word into GP register */ 1639 SMC_SELECT_BANK(lp, 1); 1640 SMC_SET_GP(lp, word); 1641 /* set the address to put the data in EEPROM */ 1642 SMC_SELECT_BANK(lp, 2); 1643 SMC_SET_PTR(lp, addr); 1644 /* tell it to write */ 1645 SMC_SELECT_BANK(lp, 1); 1646 ctl = SMC_GET_CTL(lp); 1647 SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_STORE)); 1648 /* wait for it to finish */ 1649 do { 1650 udelay(1); 1651 } while (SMC_GET_CTL(lp) & CTL_STORE); 1652 /* clean up */ 1653 SMC_SET_CTL(lp, ctl); 1654 SMC_SELECT_BANK(lp, 2); 1655 spin_unlock_irq(&lp->lock); 1656 return 0; 1657 } 1658 1659 static int smc_read_eeprom_word(struct net_device *dev, u16 addr, u16 *word) 1660 { 1661 u16 ctl; 1662 struct smc_local *lp = netdev_priv(dev); 1663 void __iomem *ioaddr = lp->base; 1664 1665 spin_lock_irq(&lp->lock); 1666 /* set the EEPROM address to get the data from */ 1667 SMC_SELECT_BANK(lp, 2); 1668 SMC_SET_PTR(lp, addr | PTR_READ); 1669 /* tell it to load */ 1670 SMC_SELECT_BANK(lp, 1); 1671 SMC_SET_GP(lp, 0xffff); /* init to known */ 1672 ctl = SMC_GET_CTL(lp); 1673 SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_RELOAD)); 1674 /* wait for it to finish */ 1675 do { 1676 udelay(1); 1677 } while (SMC_GET_CTL(lp) & CTL_RELOAD); 1678 /* read word from GP register */ 1679 *word = SMC_GET_GP(lp); 1680 /* clean up */ 1681 SMC_SET_CTL(lp, ctl); 1682 SMC_SELECT_BANK(lp, 2); 1683 spin_unlock_irq(&lp->lock); 1684 return 0; 1685 } 1686 1687 static int smc_ethtool_geteeprom_len(struct net_device *dev) 1688 { 1689 return 0x23 * 2; 1690 } 1691 1692 static int smc_ethtool_geteeprom(struct net_device *dev, 1693 struct ethtool_eeprom *eeprom, u8 *data) 1694 { 1695 int i; 1696 int imax; 1697 1698 DBG(1, "Reading %d bytes at %d(0x%x)\n", 1699 eeprom->len, eeprom->offset, eeprom->offset); 1700 imax = smc_ethtool_geteeprom_len(dev); 1701 for (i = 0; i < eeprom->len; i += 2) { 1702 int ret; 1703 u16 wbuf; 1704 int offset = i + eeprom->offset; 1705 if (offset > imax) 1706 break; 1707 ret = smc_read_eeprom_word(dev, offset >> 1, &wbuf); 1708 if (ret != 0) 1709 return ret; 1710 DBG(2, "Read 0x%x from 0x%x\n", wbuf, offset >> 1); 1711 data[i] = (wbuf >> 8) & 0xff; 1712 data[i+1] = wbuf & 0xff; 1713 } 1714 return 0; 1715 } 1716 1717 static int smc_ethtool_seteeprom(struct net_device *dev, 1718 struct ethtool_eeprom *eeprom, u8 *data) 1719 { 1720 int i; 1721 int imax; 1722 1723 DBG(1, "Writing %d bytes to %d(0x%x)\n", 1724 eeprom->len, eeprom->offset, eeprom->offset); 1725 imax = smc_ethtool_geteeprom_len(dev); 1726 for (i = 0; i < eeprom->len; i += 2) { 1727 int ret; 1728 u16 wbuf; 1729 int offset = i + eeprom->offset; 1730 if (offset > imax) 1731 break; 1732 wbuf = (data[i] << 8) | data[i + 1]; 1733 DBG(2, "Writing 0x%x to 0x%x\n", wbuf, offset >> 1); 1734 ret = smc_write_eeprom_word(dev, offset >> 1, wbuf); 1735 if (ret != 0) 1736 return ret; 1737 } 1738 return 0; 1739 } 1740 1741 1742 static const struct ethtool_ops smc_ethtool_ops = { 1743 .get_settings = smc_ethtool_getsettings, 1744 .set_settings = smc_ethtool_setsettings, 1745 .get_drvinfo = smc_ethtool_getdrvinfo, 1746 1747 .get_msglevel = smc_ethtool_getmsglevel, 1748 .set_msglevel = smc_ethtool_setmsglevel, 1749 .nway_reset = smc_ethtool_nwayreset, 1750 .get_link = ethtool_op_get_link, 1751 .get_eeprom_len = smc_ethtool_geteeprom_len, 1752 .get_eeprom = smc_ethtool_geteeprom, 1753 .set_eeprom = smc_ethtool_seteeprom, 1754 }; 1755 1756 static const struct net_device_ops smc_netdev_ops = { 1757 .ndo_open = smc_open, 1758 .ndo_stop = smc_close, 1759 .ndo_start_xmit = smc_hard_start_xmit, 1760 .ndo_tx_timeout = smc_timeout, 1761 .ndo_set_rx_mode = smc_set_multicast_list, 1762 .ndo_change_mtu = eth_change_mtu, 1763 .ndo_validate_addr = eth_validate_addr, 1764 .ndo_set_mac_address = eth_mac_addr, 1765 #ifdef CONFIG_NET_POLL_CONTROLLER 1766 .ndo_poll_controller = smc_poll_controller, 1767 #endif 1768 }; 1769 1770 /* 1771 * smc_findirq 1772 * 1773 * This routine has a simple purpose -- make the SMC chip generate an 1774 * interrupt, so an auto-detect routine can detect it, and find the IRQ, 1775 */ 1776 /* 1777 * does this still work? 1778 * 1779 * I just deleted auto_irq.c, since it was never built... 1780 * --jgarzik 1781 */ 1782 static int smc_findirq(struct smc_local *lp) 1783 { 1784 void __iomem *ioaddr = lp->base; 1785 int timeout = 20; 1786 unsigned long cookie; 1787 1788 DBG(2, "%s: %s\n", CARDNAME, __func__); 1789 1790 cookie = probe_irq_on(); 1791 1792 /* 1793 * What I try to do here is trigger an ALLOC_INT. This is done 1794 * by allocating a small chunk of memory, which will give an interrupt 1795 * when done. 1796 */ 1797 /* enable ALLOCation interrupts ONLY */ 1798 SMC_SELECT_BANK(lp, 2); 1799 SMC_SET_INT_MASK(lp, IM_ALLOC_INT); 1800 1801 /* 1802 * Allocate 512 bytes of memory. Note that the chip was just 1803 * reset so all the memory is available 1804 */ 1805 SMC_SET_MMU_CMD(lp, MC_ALLOC | 1); 1806 1807 /* 1808 * Wait until positive that the interrupt has been generated 1809 */ 1810 do { 1811 int int_status; 1812 udelay(10); 1813 int_status = SMC_GET_INT(lp); 1814 if (int_status & IM_ALLOC_INT) 1815 break; /* got the interrupt */ 1816 } while (--timeout); 1817 1818 /* 1819 * there is really nothing that I can do here if timeout fails, 1820 * as autoirq_report will return a 0 anyway, which is what I 1821 * want in this case. Plus, the clean up is needed in both 1822 * cases. 1823 */ 1824 1825 /* and disable all interrupts again */ 1826 SMC_SET_INT_MASK(lp, 0); 1827 1828 /* and return what I found */ 1829 return probe_irq_off(cookie); 1830 } 1831 1832 /* 1833 * Function: smc_probe(unsigned long ioaddr) 1834 * 1835 * Purpose: 1836 * Tests to see if a given ioaddr points to an SMC91x chip. 1837 * Returns a 0 on success 1838 * 1839 * Algorithm: 1840 * (1) see if the high byte of BANK_SELECT is 0x33 1841 * (2) compare the ioaddr with the base register's address 1842 * (3) see if I recognize the chip ID in the appropriate register 1843 * 1844 * Here I do typical initialization tasks. 1845 * 1846 * o Initialize the structure if needed 1847 * o print out my vanity message if not done so already 1848 * o print out what type of hardware is detected 1849 * o print out the ethernet address 1850 * o find the IRQ 1851 * o set up my private data 1852 * o configure the dev structure with my subroutines 1853 * o actually GRAB the irq. 1854 * o GRAB the region 1855 */ 1856 static int smc_probe(struct net_device *dev, void __iomem *ioaddr, 1857 unsigned long irq_flags) 1858 { 1859 struct smc_local *lp = netdev_priv(dev); 1860 static int version_printed = 0; 1861 int retval; 1862 unsigned int val, revision_register; 1863 const char *version_string; 1864 1865 DBG(2, "%s: %s\n", CARDNAME, __func__); 1866 1867 /* First, see if the high byte is 0x33 */ 1868 val = SMC_CURRENT_BANK(lp); 1869 DBG(2, "%s: bank signature probe returned 0x%04x\n", CARDNAME, val); 1870 if ((val & 0xFF00) != 0x3300) { 1871 if ((val & 0xFF) == 0x33) { 1872 printk(KERN_WARNING 1873 "%s: Detected possible byte-swapped interface" 1874 " at IOADDR %p\n", CARDNAME, ioaddr); 1875 } 1876 retval = -ENODEV; 1877 goto err_out; 1878 } 1879 1880 /* 1881 * The above MIGHT indicate a device, but I need to write to 1882 * further test this. 1883 */ 1884 SMC_SELECT_BANK(lp, 0); 1885 val = SMC_CURRENT_BANK(lp); 1886 if ((val & 0xFF00) != 0x3300) { 1887 retval = -ENODEV; 1888 goto err_out; 1889 } 1890 1891 /* 1892 * well, we've already written once, so hopefully another 1893 * time won't hurt. This time, I need to switch the bank 1894 * register to bank 1, so I can access the base address 1895 * register 1896 */ 1897 SMC_SELECT_BANK(lp, 1); 1898 val = SMC_GET_BASE(lp); 1899 val = ((val & 0x1F00) >> 3) << SMC_IO_SHIFT; 1900 if (((unsigned int)ioaddr & (0x3e0 << SMC_IO_SHIFT)) != val) { 1901 printk("%s: IOADDR %p doesn't match configuration (%x).\n", 1902 CARDNAME, ioaddr, val); 1903 } 1904 1905 /* 1906 * check if the revision register is something that I 1907 * recognize. These might need to be added to later, 1908 * as future revisions could be added. 1909 */ 1910 SMC_SELECT_BANK(lp, 3); 1911 revision_register = SMC_GET_REV(lp); 1912 DBG(2, "%s: revision = 0x%04x\n", CARDNAME, revision_register); 1913 version_string = chip_ids[ (revision_register >> 4) & 0xF]; 1914 if (!version_string || (revision_register & 0xff00) != 0x3300) { 1915 /* I don't recognize this chip, so... */ 1916 printk("%s: IO %p: Unrecognized revision register 0x%04x" 1917 ", Contact author.\n", CARDNAME, 1918 ioaddr, revision_register); 1919 1920 retval = -ENODEV; 1921 goto err_out; 1922 } 1923 1924 /* At this point I'll assume that the chip is an SMC91x. */ 1925 if (version_printed++ == 0) 1926 printk("%s", version); 1927 1928 /* fill in some of the fields */ 1929 dev->base_addr = (unsigned long)ioaddr; 1930 lp->base = ioaddr; 1931 lp->version = revision_register & 0xff; 1932 spin_lock_init(&lp->lock); 1933 1934 /* Get the MAC address */ 1935 SMC_SELECT_BANK(lp, 1); 1936 SMC_GET_MAC_ADDR(lp, dev->dev_addr); 1937 1938 /* now, reset the chip, and put it into a known state */ 1939 smc_reset(dev); 1940 1941 /* 1942 * If dev->irq is 0, then the device has to be banged on to see 1943 * what the IRQ is. 1944 * 1945 * This banging doesn't always detect the IRQ, for unknown reasons. 1946 * a workaround is to reset the chip and try again. 1947 * 1948 * Interestingly, the DOS packet driver *SETS* the IRQ on the card to 1949 * be what is requested on the command line. I don't do that, mostly 1950 * because the card that I have uses a non-standard method of accessing 1951 * the IRQs, and because this _should_ work in most configurations. 1952 * 1953 * Specifying an IRQ is done with the assumption that the user knows 1954 * what (s)he is doing. No checking is done!!!! 1955 */ 1956 if (dev->irq < 1) { 1957 int trials; 1958 1959 trials = 3; 1960 while (trials--) { 1961 dev->irq = smc_findirq(lp); 1962 if (dev->irq) 1963 break; 1964 /* kick the card and try again */ 1965 smc_reset(dev); 1966 } 1967 } 1968 if (dev->irq == 0) { 1969 printk("%s: Couldn't autodetect your IRQ. Use irq=xx.\n", 1970 dev->name); 1971 retval = -ENODEV; 1972 goto err_out; 1973 } 1974 dev->irq = irq_canonicalize(dev->irq); 1975 1976 /* Fill in the fields of the device structure with ethernet values. */ 1977 ether_setup(dev); 1978 1979 dev->watchdog_timeo = msecs_to_jiffies(watchdog); 1980 dev->netdev_ops = &smc_netdev_ops; 1981 dev->ethtool_ops = &smc_ethtool_ops; 1982 1983 tasklet_init(&lp->tx_task, smc_hardware_send_pkt, (unsigned long)dev); 1984 INIT_WORK(&lp->phy_configure, smc_phy_configure); 1985 lp->dev = dev; 1986 lp->mii.phy_id_mask = 0x1f; 1987 lp->mii.reg_num_mask = 0x1f; 1988 lp->mii.force_media = 0; 1989 lp->mii.full_duplex = 0; 1990 lp->mii.dev = dev; 1991 lp->mii.mdio_read = smc_phy_read; 1992 lp->mii.mdio_write = smc_phy_write; 1993 1994 /* 1995 * Locate the phy, if any. 1996 */ 1997 if (lp->version >= (CHIP_91100 << 4)) 1998 smc_phy_detect(dev); 1999 2000 /* then shut everything down to save power */ 2001 smc_shutdown(dev); 2002 smc_phy_powerdown(dev); 2003 2004 /* Set default parameters */ 2005 lp->msg_enable = NETIF_MSG_LINK; 2006 lp->ctl_rfduplx = 0; 2007 lp->ctl_rspeed = 10; 2008 2009 if (lp->version >= (CHIP_91100 << 4)) { 2010 lp->ctl_rfduplx = 1; 2011 lp->ctl_rspeed = 100; 2012 } 2013 2014 /* Grab the IRQ */ 2015 retval = request_irq(dev->irq, smc_interrupt, irq_flags, dev->name, dev); 2016 if (retval) 2017 goto err_out; 2018 2019 #ifdef CONFIG_ARCH_PXA 2020 # ifdef SMC_USE_PXA_DMA 2021 lp->cfg.flags |= SMC91X_USE_DMA; 2022 # endif 2023 if (lp->cfg.flags & SMC91X_USE_DMA) { 2024 int dma = pxa_request_dma(dev->name, DMA_PRIO_LOW, 2025 smc_pxa_dma_irq, NULL); 2026 if (dma >= 0) 2027 dev->dma = dma; 2028 } 2029 #endif 2030 2031 retval = register_netdev(dev); 2032 if (retval == 0) { 2033 /* now, print out the card info, in a short format.. */ 2034 printk("%s: %s (rev %d) at %p IRQ %d", 2035 dev->name, version_string, revision_register & 0x0f, 2036 lp->base, dev->irq); 2037 2038 if (dev->dma != (unsigned char)-1) 2039 printk(" DMA %d", dev->dma); 2040 2041 printk("%s%s\n", 2042 lp->cfg.flags & SMC91X_NOWAIT ? " [nowait]" : "", 2043 THROTTLE_TX_PKTS ? " [throttle_tx]" : ""); 2044 2045 if (!is_valid_ether_addr(dev->dev_addr)) { 2046 printk("%s: Invalid ethernet MAC address. Please " 2047 "set using ifconfig\n", dev->name); 2048 } else { 2049 /* Print the Ethernet address */ 2050 printk("%s: Ethernet addr: %pM\n", 2051 dev->name, dev->dev_addr); 2052 } 2053 2054 if (lp->phy_type == 0) { 2055 PRINTK("%s: No PHY found\n", dev->name); 2056 } else if ((lp->phy_type & 0xfffffff0) == 0x0016f840) { 2057 PRINTK("%s: PHY LAN83C183 (LAN91C111 Internal)\n", dev->name); 2058 } else if ((lp->phy_type & 0xfffffff0) == 0x02821c50) { 2059 PRINTK("%s: PHY LAN83C180\n", dev->name); 2060 } 2061 } 2062 2063 err_out: 2064 #ifdef CONFIG_ARCH_PXA 2065 if (retval && dev->dma != (unsigned char)-1) 2066 pxa_free_dma(dev->dma); 2067 #endif 2068 return retval; 2069 } 2070 2071 static int smc_enable_device(struct platform_device *pdev) 2072 { 2073 struct net_device *ndev = platform_get_drvdata(pdev); 2074 struct smc_local *lp = netdev_priv(ndev); 2075 unsigned long flags; 2076 unsigned char ecor, ecsr; 2077 void __iomem *addr; 2078 struct resource * res; 2079 2080 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib"); 2081 if (!res) 2082 return 0; 2083 2084 /* 2085 * Map the attribute space. This is overkill, but clean. 2086 */ 2087 addr = ioremap(res->start, ATTRIB_SIZE); 2088 if (!addr) 2089 return -ENOMEM; 2090 2091 /* 2092 * Reset the device. We must disable IRQs around this 2093 * since a reset causes the IRQ line become active. 2094 */ 2095 local_irq_save(flags); 2096 ecor = readb(addr + (ECOR << SMC_IO_SHIFT)) & ~ECOR_RESET; 2097 writeb(ecor | ECOR_RESET, addr + (ECOR << SMC_IO_SHIFT)); 2098 readb(addr + (ECOR << SMC_IO_SHIFT)); 2099 2100 /* 2101 * Wait 100us for the chip to reset. 2102 */ 2103 udelay(100); 2104 2105 /* 2106 * The device will ignore all writes to the enable bit while 2107 * reset is asserted, even if the reset bit is cleared in the 2108 * same write. Must clear reset first, then enable the device. 2109 */ 2110 writeb(ecor, addr + (ECOR << SMC_IO_SHIFT)); 2111 writeb(ecor | ECOR_ENABLE, addr + (ECOR << SMC_IO_SHIFT)); 2112 2113 /* 2114 * Set the appropriate byte/word mode. 2115 */ 2116 ecsr = readb(addr + (ECSR << SMC_IO_SHIFT)) & ~ECSR_IOIS8; 2117 if (!SMC_16BIT(lp)) 2118 ecsr |= ECSR_IOIS8; 2119 writeb(ecsr, addr + (ECSR << SMC_IO_SHIFT)); 2120 local_irq_restore(flags); 2121 2122 iounmap(addr); 2123 2124 /* 2125 * Wait for the chip to wake up. We could poll the control 2126 * register in the main register space, but that isn't mapped 2127 * yet. We know this is going to take 750us. 2128 */ 2129 msleep(1); 2130 2131 return 0; 2132 } 2133 2134 static int smc_request_attrib(struct platform_device *pdev, 2135 struct net_device *ndev) 2136 { 2137 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib"); 2138 struct smc_local *lp __maybe_unused = netdev_priv(ndev); 2139 2140 if (!res) 2141 return 0; 2142 2143 if (!request_mem_region(res->start, ATTRIB_SIZE, CARDNAME)) 2144 return -EBUSY; 2145 2146 return 0; 2147 } 2148 2149 static void smc_release_attrib(struct platform_device *pdev, 2150 struct net_device *ndev) 2151 { 2152 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib"); 2153 struct smc_local *lp __maybe_unused = netdev_priv(ndev); 2154 2155 if (res) 2156 release_mem_region(res->start, ATTRIB_SIZE); 2157 } 2158 2159 static inline void smc_request_datacs(struct platform_device *pdev, struct net_device *ndev) 2160 { 2161 if (SMC_CAN_USE_DATACS) { 2162 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32"); 2163 struct smc_local *lp = netdev_priv(ndev); 2164 2165 if (!res) 2166 return; 2167 2168 if(!request_mem_region(res->start, SMC_DATA_EXTENT, CARDNAME)) { 2169 printk(KERN_INFO "%s: failed to request datacs memory region.\n", CARDNAME); 2170 return; 2171 } 2172 2173 lp->datacs = ioremap(res->start, SMC_DATA_EXTENT); 2174 } 2175 } 2176 2177 static void smc_release_datacs(struct platform_device *pdev, struct net_device *ndev) 2178 { 2179 if (SMC_CAN_USE_DATACS) { 2180 struct smc_local *lp = netdev_priv(ndev); 2181 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32"); 2182 2183 if (lp->datacs) 2184 iounmap(lp->datacs); 2185 2186 lp->datacs = NULL; 2187 2188 if (res) 2189 release_mem_region(res->start, SMC_DATA_EXTENT); 2190 } 2191 } 2192 2193 /* 2194 * smc_init(void) 2195 * Input parameters: 2196 * dev->base_addr == 0, try to find all possible locations 2197 * dev->base_addr > 0x1ff, this is the address to check 2198 * dev->base_addr == <anything else>, return failure code 2199 * 2200 * Output: 2201 * 0 --> there is a device 2202 * anything else, error 2203 */ 2204 static int smc_drv_probe(struct platform_device *pdev) 2205 { 2206 struct smc91x_platdata *pd = pdev->dev.platform_data; 2207 struct smc_local *lp; 2208 struct net_device *ndev; 2209 struct resource *res, *ires; 2210 unsigned int __iomem *addr; 2211 unsigned long irq_flags = SMC_IRQ_FLAGS; 2212 int ret; 2213 2214 ndev = alloc_etherdev(sizeof(struct smc_local)); 2215 if (!ndev) { 2216 ret = -ENOMEM; 2217 goto out; 2218 } 2219 SET_NETDEV_DEV(ndev, &pdev->dev); 2220 2221 /* get configuration from platform data, only allow use of 2222 * bus width if both SMC_CAN_USE_xxx and SMC91X_USE_xxx are set. 2223 */ 2224 2225 lp = netdev_priv(ndev); 2226 2227 if (pd) { 2228 memcpy(&lp->cfg, pd, sizeof(lp->cfg)); 2229 lp->io_shift = SMC91X_IO_SHIFT(lp->cfg.flags); 2230 } else { 2231 lp->cfg.flags |= (SMC_CAN_USE_8BIT) ? SMC91X_USE_8BIT : 0; 2232 lp->cfg.flags |= (SMC_CAN_USE_16BIT) ? SMC91X_USE_16BIT : 0; 2233 lp->cfg.flags |= (SMC_CAN_USE_32BIT) ? SMC91X_USE_32BIT : 0; 2234 lp->cfg.flags |= (nowait) ? SMC91X_NOWAIT : 0; 2235 } 2236 2237 if (!lp->cfg.leda && !lp->cfg.ledb) { 2238 lp->cfg.leda = RPC_LSA_DEFAULT; 2239 lp->cfg.ledb = RPC_LSB_DEFAULT; 2240 } 2241 2242 ndev->dma = (unsigned char)-1; 2243 2244 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs"); 2245 if (!res) 2246 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2247 if (!res) { 2248 ret = -ENODEV; 2249 goto out_free_netdev; 2250 } 2251 2252 2253 if (!request_mem_region(res->start, SMC_IO_EXTENT, CARDNAME)) { 2254 ret = -EBUSY; 2255 goto out_free_netdev; 2256 } 2257 2258 ires = platform_get_resource(pdev, IORESOURCE_IRQ, 0); 2259 if (!ires) { 2260 ret = -ENODEV; 2261 goto out_release_io; 2262 } 2263 2264 ndev->irq = ires->start; 2265 2266 if (irq_flags == -1 || ires->flags & IRQF_TRIGGER_MASK) 2267 irq_flags = ires->flags & IRQF_TRIGGER_MASK; 2268 2269 ret = smc_request_attrib(pdev, ndev); 2270 if (ret) 2271 goto out_release_io; 2272 #if defined(CONFIG_SA1100_ASSABET) 2273 neponset_ncr_set(NCR_ENET_OSC_EN); 2274 #endif 2275 platform_set_drvdata(pdev, ndev); 2276 ret = smc_enable_device(pdev); 2277 if (ret) 2278 goto out_release_attrib; 2279 2280 addr = ioremap(res->start, SMC_IO_EXTENT); 2281 if (!addr) { 2282 ret = -ENOMEM; 2283 goto out_release_attrib; 2284 } 2285 2286 #ifdef CONFIG_ARCH_PXA 2287 { 2288 struct smc_local *lp = netdev_priv(ndev); 2289 lp->device = &pdev->dev; 2290 lp->physaddr = res->start; 2291 } 2292 #endif 2293 2294 ret = smc_probe(ndev, addr, irq_flags); 2295 if (ret != 0) 2296 goto out_iounmap; 2297 2298 smc_request_datacs(pdev, ndev); 2299 2300 return 0; 2301 2302 out_iounmap: 2303 platform_set_drvdata(pdev, NULL); 2304 iounmap(addr); 2305 out_release_attrib: 2306 smc_release_attrib(pdev, ndev); 2307 out_release_io: 2308 release_mem_region(res->start, SMC_IO_EXTENT); 2309 out_free_netdev: 2310 free_netdev(ndev); 2311 out: 2312 printk("%s: not found (%d).\n", CARDNAME, ret); 2313 2314 return ret; 2315 } 2316 2317 static int smc_drv_remove(struct platform_device *pdev) 2318 { 2319 struct net_device *ndev = platform_get_drvdata(pdev); 2320 struct smc_local *lp = netdev_priv(ndev); 2321 struct resource *res; 2322 2323 platform_set_drvdata(pdev, NULL); 2324 2325 unregister_netdev(ndev); 2326 2327 free_irq(ndev->irq, ndev); 2328 2329 #ifdef CONFIG_ARCH_PXA 2330 if (ndev->dma != (unsigned char)-1) 2331 pxa_free_dma(ndev->dma); 2332 #endif 2333 iounmap(lp->base); 2334 2335 smc_release_datacs(pdev,ndev); 2336 smc_release_attrib(pdev,ndev); 2337 2338 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs"); 2339 if (!res) 2340 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2341 release_mem_region(res->start, SMC_IO_EXTENT); 2342 2343 free_netdev(ndev); 2344 2345 return 0; 2346 } 2347 2348 static int smc_drv_suspend(struct device *dev) 2349 { 2350 struct platform_device *pdev = to_platform_device(dev); 2351 struct net_device *ndev = platform_get_drvdata(pdev); 2352 2353 if (ndev) { 2354 if (netif_running(ndev)) { 2355 netif_device_detach(ndev); 2356 smc_shutdown(ndev); 2357 smc_phy_powerdown(ndev); 2358 } 2359 } 2360 return 0; 2361 } 2362 2363 static int smc_drv_resume(struct device *dev) 2364 { 2365 struct platform_device *pdev = to_platform_device(dev); 2366 struct net_device *ndev = platform_get_drvdata(pdev); 2367 2368 if (ndev) { 2369 struct smc_local *lp = netdev_priv(ndev); 2370 smc_enable_device(pdev); 2371 if (netif_running(ndev)) { 2372 smc_reset(ndev); 2373 smc_enable(ndev); 2374 if (lp->phy_type != 0) 2375 smc_phy_configure(&lp->phy_configure); 2376 netif_device_attach(ndev); 2377 } 2378 } 2379 return 0; 2380 } 2381 2382 #ifdef CONFIG_OF 2383 static const struct of_device_id smc91x_match[] = { 2384 { .compatible = "smsc,lan91c94", }, 2385 { .compatible = "smsc,lan91c111", }, 2386 {}, 2387 }; 2388 MODULE_DEVICE_TABLE(of, smc91x_match); 2389 #else 2390 #define smc91x_match NULL 2391 #endif 2392 2393 static struct dev_pm_ops smc_drv_pm_ops = { 2394 .suspend = smc_drv_suspend, 2395 .resume = smc_drv_resume, 2396 }; 2397 2398 static struct platform_driver smc_driver = { 2399 .probe = smc_drv_probe, 2400 .remove = smc_drv_remove, 2401 .driver = { 2402 .name = CARDNAME, 2403 .owner = THIS_MODULE, 2404 .pm = &smc_drv_pm_ops, 2405 .of_match_table = smc91x_match, 2406 }, 2407 }; 2408 2409 module_platform_driver(smc_driver); 2410