xref: /linux/drivers/net/ethernet/smsc/smc91x.c (revision 06a130e42a5bfc84795464bff023bff4c16f58c5)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * smc91x.c
4  * This is a driver for SMSC's 91C9x/91C1xx single-chip Ethernet devices.
5  *
6  * Copyright (C) 1996 by Erik Stahlman
7  * Copyright (C) 2001 Standard Microsystems Corporation
8  *	Developed by Simple Network Magic Corporation
9  * Copyright (C) 2003 Monta Vista Software, Inc.
10  *	Unified SMC91x driver by Nicolas Pitre
11  *
12  * Arguments:
13  * 	io	= for the base address
14  *	irq	= for the IRQ
15  *	nowait	= 0 for normal wait states, 1 eliminates additional wait states
16  *
17  * original author:
18  * 	Erik Stahlman <erik@vt.edu>
19  *
20  * hardware multicast code:
21  *    Peter Cammaert <pc@denkart.be>
22  *
23  * contributors:
24  * 	Daris A Nevil <dnevil@snmc.com>
25  *      Nicolas Pitre <nico@fluxnic.net>
26  *	Russell King <rmk@arm.linux.org.uk>
27  *
28  * History:
29  *   08/20/00  Arnaldo Melo       fix kfree(skb) in smc_hardware_send_packet
30  *   12/15/00  Christian Jullien  fix "Warning: kfree_skb on hard IRQ"
31  *   03/16/01  Daris A Nevil      modified smc9194.c for use with LAN91C111
32  *   08/22/01  Scott Anderson     merge changes from smc9194 to smc91111
33  *   08/21/01  Pramod B Bhardwaj  added support for RevB of LAN91C111
34  *   12/20/01  Jeff Sutherland    initial port to Xscale PXA with DMA support
35  *   04/07/03  Nicolas Pitre      unified SMC91x driver, killed irq races,
36  *                                more bus abstraction, big cleanup, etc.
37  *   29/09/03  Russell King       - add driver model support
38  *                                - ethtool support
39  *                                - convert to use generic MII interface
40  *                                - add link up/down notification
41  *                                - don't try to handle full negotiation in
42  *                                  smc_phy_configure
43  *                                - clean up (and fix stack overrun) in PHY
44  *                                  MII read/write functions
45  *   22/09/04  Nicolas Pitre      big update (see commit log for details)
46  */
47 static const char version[] =
48 	"smc91x.c: v1.1, sep 22 2004 by Nicolas Pitre <nico@fluxnic.net>";
49 
50 /* Debugging level */
51 #ifndef SMC_DEBUG
52 #define SMC_DEBUG		0
53 #endif
54 
55 
56 #include <linux/module.h>
57 #include <linux/kernel.h>
58 #include <linux/sched.h>
59 #include <linux/delay.h>
60 #include <linux/gpio/consumer.h>
61 #include <linux/interrupt.h>
62 #include <linux/irq.h>
63 #include <linux/errno.h>
64 #include <linux/ioport.h>
65 #include <linux/crc32.h>
66 #include <linux/platform_device.h>
67 #include <linux/spinlock.h>
68 #include <linux/ethtool.h>
69 #include <linux/mii.h>
70 #include <linux/workqueue.h>
71 #include <linux/of.h>
72 #include <linux/of_device.h>
73 
74 #include <linux/netdevice.h>
75 #include <linux/etherdevice.h>
76 #include <linux/skbuff.h>
77 
78 #include <asm/io.h>
79 
80 #include "smc91x.h"
81 
82 #if defined(CONFIG_ASSABET_NEPONSET)
83 #include <mach/assabet.h>
84 #include <mach/neponset.h>
85 #endif
86 
87 #ifndef SMC_NOWAIT
88 # define SMC_NOWAIT		0
89 #endif
90 static int nowait = SMC_NOWAIT;
91 module_param(nowait, int, 0400);
92 MODULE_PARM_DESC(nowait, "set to 1 for no wait state");
93 
94 /*
95  * Transmit timeout, default 5 seconds.
96  */
97 static int watchdog = 1000;
98 module_param(watchdog, int, 0400);
99 MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
100 
101 MODULE_DESCRIPTION("SMC 91C9x/91C1xxx Ethernet driver");
102 MODULE_LICENSE("GPL");
103 MODULE_ALIAS("platform:smc91x");
104 
105 /*
106  * The internal workings of the driver.  If you are changing anything
107  * here with the SMC stuff, you should have the datasheet and know
108  * what you are doing.
109  */
110 #define CARDNAME "smc91x"
111 
112 /*
113  * Use power-down feature of the chip
114  */
115 #define POWER_DOWN		1
116 
117 /*
118  * Wait time for memory to be free.  This probably shouldn't be
119  * tuned that much, as waiting for this means nothing else happens
120  * in the system
121  */
122 #define MEMORY_WAIT_TIME	16
123 
124 /*
125  * The maximum number of processing loops allowed for each call to the
126  * IRQ handler.
127  */
128 #define MAX_IRQ_LOOPS		8
129 
130 /*
131  * This selects whether TX packets are sent one by one to the SMC91x internal
132  * memory and throttled until transmission completes.  This may prevent
133  * RX overruns a litle by keeping much of the memory free for RX packets
134  * but to the expense of reduced TX throughput and increased IRQ overhead.
135  * Note this is not a cure for a too slow data bus or too high IRQ latency.
136  */
137 #define THROTTLE_TX_PKTS	0
138 
139 /*
140  * The MII clock high/low times.  2x this number gives the MII clock period
141  * in microseconds. (was 50, but this gives 6.4ms for each MII transaction!)
142  */
143 #define MII_DELAY		1
144 
145 #define DBG(n, dev, fmt, ...)					\
146 	do {							\
147 		if (SMC_DEBUG >= (n))				\
148 			netdev_dbg(dev, fmt, ##__VA_ARGS__);	\
149 	} while (0)
150 
151 #define PRINTK(dev, fmt, ...)					\
152 	do {							\
153 		if (SMC_DEBUG > 0)				\
154 			netdev_info(dev, fmt, ##__VA_ARGS__);	\
155 		else						\
156 			netdev_dbg(dev, fmt, ##__VA_ARGS__);	\
157 	} while (0)
158 
159 #if SMC_DEBUG > 3
160 static void PRINT_PKT(u_char *buf, int length)
161 {
162 	int i;
163 	int remainder;
164 	int lines;
165 
166 	lines = length / 16;
167 	remainder = length % 16;
168 
169 	for (i = 0; i < lines ; i ++) {
170 		int cur;
171 		printk(KERN_DEBUG);
172 		for (cur = 0; cur < 8; cur++) {
173 			u_char a, b;
174 			a = *buf++;
175 			b = *buf++;
176 			pr_cont("%02x%02x ", a, b);
177 		}
178 		pr_cont("\n");
179 	}
180 	printk(KERN_DEBUG);
181 	for (i = 0; i < remainder/2 ; i++) {
182 		u_char a, b;
183 		a = *buf++;
184 		b = *buf++;
185 		pr_cont("%02x%02x ", a, b);
186 	}
187 	pr_cont("\n");
188 }
189 #else
190 static inline void PRINT_PKT(u_char *buf, int length) { }
191 #endif
192 
193 
194 /* this enables an interrupt in the interrupt mask register */
195 #define SMC_ENABLE_INT(lp, x) do {					\
196 	unsigned char mask;						\
197 	unsigned long smc_enable_flags;					\
198 	spin_lock_irqsave(&lp->lock, smc_enable_flags);			\
199 	mask = SMC_GET_INT_MASK(lp);					\
200 	mask |= (x);							\
201 	SMC_SET_INT_MASK(lp, mask);					\
202 	spin_unlock_irqrestore(&lp->lock, smc_enable_flags);		\
203 } while (0)
204 
205 /* this disables an interrupt from the interrupt mask register */
206 #define SMC_DISABLE_INT(lp, x) do {					\
207 	unsigned char mask;						\
208 	unsigned long smc_disable_flags;				\
209 	spin_lock_irqsave(&lp->lock, smc_disable_flags);		\
210 	mask = SMC_GET_INT_MASK(lp);					\
211 	mask &= ~(x);							\
212 	SMC_SET_INT_MASK(lp, mask);					\
213 	spin_unlock_irqrestore(&lp->lock, smc_disable_flags);		\
214 } while (0)
215 
216 /*
217  * Wait while MMU is busy.  This is usually in the order of a few nanosecs
218  * if at all, but let's avoid deadlocking the system if the hardware
219  * decides to go south.
220  */
221 #define SMC_WAIT_MMU_BUSY(lp) do {					\
222 	if (unlikely(SMC_GET_MMU_CMD(lp) & MC_BUSY)) {		\
223 		unsigned long timeout = jiffies + 2;			\
224 		while (SMC_GET_MMU_CMD(lp) & MC_BUSY) {		\
225 			if (time_after(jiffies, timeout)) {		\
226 				netdev_dbg(dev, "timeout %s line %d\n",	\
227 					   __FILE__, __LINE__);		\
228 				break;					\
229 			}						\
230 			cpu_relax();					\
231 		}							\
232 	}								\
233 } while (0)
234 
235 
236 /*
237  * this does a soft reset on the device
238  */
239 static void smc_reset(struct net_device *dev)
240 {
241 	struct smc_local *lp = netdev_priv(dev);
242 	void __iomem *ioaddr = lp->base;
243 	unsigned int ctl, cfg;
244 	struct sk_buff *pending_skb;
245 
246 	DBG(2, dev, "%s\n", __func__);
247 
248 	/* Disable all interrupts, block TX tasklet */
249 	spin_lock_irq(&lp->lock);
250 	SMC_SELECT_BANK(lp, 2);
251 	SMC_SET_INT_MASK(lp, 0);
252 	pending_skb = lp->pending_tx_skb;
253 	lp->pending_tx_skb = NULL;
254 	spin_unlock_irq(&lp->lock);
255 
256 	/* free any pending tx skb */
257 	if (pending_skb) {
258 		dev_kfree_skb(pending_skb);
259 		dev->stats.tx_errors++;
260 		dev->stats.tx_aborted_errors++;
261 	}
262 
263 	/*
264 	 * This resets the registers mostly to defaults, but doesn't
265 	 * affect EEPROM.  That seems unnecessary
266 	 */
267 	SMC_SELECT_BANK(lp, 0);
268 	SMC_SET_RCR(lp, RCR_SOFTRST);
269 
270 	/*
271 	 * Setup the Configuration Register
272 	 * This is necessary because the CONFIG_REG is not affected
273 	 * by a soft reset
274 	 */
275 	SMC_SELECT_BANK(lp, 1);
276 
277 	cfg = CONFIG_DEFAULT;
278 
279 	/*
280 	 * Setup for fast accesses if requested.  If the card/system
281 	 * can't handle it then there will be no recovery except for
282 	 * a hard reset or power cycle
283 	 */
284 	if (lp->cfg.flags & SMC91X_NOWAIT)
285 		cfg |= CONFIG_NO_WAIT;
286 
287 	/*
288 	 * Release from possible power-down state
289 	 * Configuration register is not affected by Soft Reset
290 	 */
291 	cfg |= CONFIG_EPH_POWER_EN;
292 
293 	SMC_SET_CONFIG(lp, cfg);
294 
295 	/* this should pause enough for the chip to be happy */
296 	/*
297 	 * elaborate?  What does the chip _need_? --jgarzik
298 	 *
299 	 * This seems to be undocumented, but something the original
300 	 * driver(s) have always done.  Suspect undocumented timing
301 	 * info/determined empirically. --rmk
302 	 */
303 	udelay(1);
304 
305 	/* Disable transmit and receive functionality */
306 	SMC_SELECT_BANK(lp, 0);
307 	SMC_SET_RCR(lp, RCR_CLEAR);
308 	SMC_SET_TCR(lp, TCR_CLEAR);
309 
310 	SMC_SELECT_BANK(lp, 1);
311 	ctl = SMC_GET_CTL(lp) | CTL_LE_ENABLE;
312 
313 	/*
314 	 * Set the control register to automatically release successfully
315 	 * transmitted packets, to make the best use out of our limited
316 	 * memory
317 	 */
318 	if(!THROTTLE_TX_PKTS)
319 		ctl |= CTL_AUTO_RELEASE;
320 	else
321 		ctl &= ~CTL_AUTO_RELEASE;
322 	SMC_SET_CTL(lp, ctl);
323 
324 	/* Reset the MMU */
325 	SMC_SELECT_BANK(lp, 2);
326 	SMC_SET_MMU_CMD(lp, MC_RESET);
327 	SMC_WAIT_MMU_BUSY(lp);
328 }
329 
330 /*
331  * Enable Interrupts, Receive, and Transmit
332  */
333 static void smc_enable(struct net_device *dev)
334 {
335 	struct smc_local *lp = netdev_priv(dev);
336 	void __iomem *ioaddr = lp->base;
337 	int mask;
338 
339 	DBG(2, dev, "%s\n", __func__);
340 
341 	/* see the header file for options in TCR/RCR DEFAULT */
342 	SMC_SELECT_BANK(lp, 0);
343 	SMC_SET_TCR(lp, lp->tcr_cur_mode);
344 	SMC_SET_RCR(lp, lp->rcr_cur_mode);
345 
346 	SMC_SELECT_BANK(lp, 1);
347 	SMC_SET_MAC_ADDR(lp, dev->dev_addr);
348 
349 	/* now, enable interrupts */
350 	mask = IM_EPH_INT|IM_RX_OVRN_INT|IM_RCV_INT;
351 	if (lp->version >= (CHIP_91100 << 4))
352 		mask |= IM_MDINT;
353 	SMC_SELECT_BANK(lp, 2);
354 	SMC_SET_INT_MASK(lp, mask);
355 
356 	/*
357 	 * From this point the register bank must _NOT_ be switched away
358 	 * to something else than bank 2 without proper locking against
359 	 * races with any tasklet or interrupt handlers until smc_shutdown()
360 	 * or smc_reset() is called.
361 	 */
362 }
363 
364 /*
365  * this puts the device in an inactive state
366  */
367 static void smc_shutdown(struct net_device *dev)
368 {
369 	struct smc_local *lp = netdev_priv(dev);
370 	void __iomem *ioaddr = lp->base;
371 	struct sk_buff *pending_skb;
372 
373 	DBG(2, dev, "%s: %s\n", CARDNAME, __func__);
374 
375 	/* no more interrupts for me */
376 	spin_lock_irq(&lp->lock);
377 	SMC_SELECT_BANK(lp, 2);
378 	SMC_SET_INT_MASK(lp, 0);
379 	pending_skb = lp->pending_tx_skb;
380 	lp->pending_tx_skb = NULL;
381 	spin_unlock_irq(&lp->lock);
382 	dev_kfree_skb(pending_skb);
383 
384 	/* and tell the card to stay away from that nasty outside world */
385 	SMC_SELECT_BANK(lp, 0);
386 	SMC_SET_RCR(lp, RCR_CLEAR);
387 	SMC_SET_TCR(lp, TCR_CLEAR);
388 
389 #ifdef POWER_DOWN
390 	/* finally, shut the chip down */
391 	SMC_SELECT_BANK(lp, 1);
392 	SMC_SET_CONFIG(lp, SMC_GET_CONFIG(lp) & ~CONFIG_EPH_POWER_EN);
393 #endif
394 }
395 
396 /*
397  * This is the procedure to handle the receipt of a packet.
398  */
399 static inline void  smc_rcv(struct net_device *dev)
400 {
401 	struct smc_local *lp = netdev_priv(dev);
402 	void __iomem *ioaddr = lp->base;
403 	unsigned int packet_number, status, packet_len;
404 
405 	DBG(3, dev, "%s\n", __func__);
406 
407 	packet_number = SMC_GET_RXFIFO(lp);
408 	if (unlikely(packet_number & RXFIFO_REMPTY)) {
409 		PRINTK(dev, "smc_rcv with nothing on FIFO.\n");
410 		return;
411 	}
412 
413 	/* read from start of packet */
414 	SMC_SET_PTR(lp, PTR_READ | PTR_RCV | PTR_AUTOINC);
415 
416 	/* First two words are status and packet length */
417 	SMC_GET_PKT_HDR(lp, status, packet_len);
418 	packet_len &= 0x07ff;  /* mask off top bits */
419 	DBG(2, dev, "RX PNR 0x%x STATUS 0x%04x LENGTH 0x%04x (%d)\n",
420 	    packet_number, status, packet_len, packet_len);
421 
422 	back:
423 	if (unlikely(packet_len < 6 || status & RS_ERRORS)) {
424 		if (status & RS_TOOLONG && packet_len <= (1514 + 4 + 6)) {
425 			/* accept VLAN packets */
426 			status &= ~RS_TOOLONG;
427 			goto back;
428 		}
429 		if (packet_len < 6) {
430 			/* bloody hardware */
431 			netdev_err(dev, "fubar (rxlen %u status %x\n",
432 				   packet_len, status);
433 			status |= RS_TOOSHORT;
434 		}
435 		SMC_WAIT_MMU_BUSY(lp);
436 		SMC_SET_MMU_CMD(lp, MC_RELEASE);
437 		dev->stats.rx_errors++;
438 		if (status & RS_ALGNERR)
439 			dev->stats.rx_frame_errors++;
440 		if (status & (RS_TOOSHORT | RS_TOOLONG))
441 			dev->stats.rx_length_errors++;
442 		if (status & RS_BADCRC)
443 			dev->stats.rx_crc_errors++;
444 	} else {
445 		struct sk_buff *skb;
446 		unsigned char *data;
447 		unsigned int data_len;
448 
449 		/* set multicast stats */
450 		if (status & RS_MULTICAST)
451 			dev->stats.multicast++;
452 
453 		/*
454 		 * Actual payload is packet_len - 6 (or 5 if odd byte).
455 		 * We want skb_reserve(2) and the final ctrl word
456 		 * (2 bytes, possibly containing the payload odd byte).
457 		 * Furthermore, we add 2 bytes to allow rounding up to
458 		 * multiple of 4 bytes on 32 bit buses.
459 		 * Hence packet_len - 6 + 2 + 2 + 2.
460 		 */
461 		skb = netdev_alloc_skb(dev, packet_len);
462 		if (unlikely(skb == NULL)) {
463 			SMC_WAIT_MMU_BUSY(lp);
464 			SMC_SET_MMU_CMD(lp, MC_RELEASE);
465 			dev->stats.rx_dropped++;
466 			return;
467 		}
468 
469 		/* Align IP header to 32 bits */
470 		skb_reserve(skb, 2);
471 
472 		/* BUG: the LAN91C111 rev A never sets this bit. Force it. */
473 		if (lp->version == 0x90)
474 			status |= RS_ODDFRAME;
475 
476 		/*
477 		 * If odd length: packet_len - 5,
478 		 * otherwise packet_len - 6.
479 		 * With the trailing ctrl byte it's packet_len - 4.
480 		 */
481 		data_len = packet_len - ((status & RS_ODDFRAME) ? 5 : 6);
482 		data = skb_put(skb, data_len);
483 		SMC_PULL_DATA(lp, data, packet_len - 4);
484 
485 		SMC_WAIT_MMU_BUSY(lp);
486 		SMC_SET_MMU_CMD(lp, MC_RELEASE);
487 
488 		PRINT_PKT(data, packet_len - 4);
489 
490 		skb->protocol = eth_type_trans(skb, dev);
491 		netif_rx(skb);
492 		dev->stats.rx_packets++;
493 		dev->stats.rx_bytes += data_len;
494 	}
495 }
496 
497 #ifdef CONFIG_SMP
498 /*
499  * On SMP we have the following problem:
500  *
501  * 	A = smc_hardware_send_pkt()
502  * 	B = smc_hard_start_xmit()
503  * 	C = smc_interrupt()
504  *
505  * A and B can never be executed simultaneously.  However, at least on UP,
506  * it is possible (and even desirable) for C to interrupt execution of
507  * A or B in order to have better RX reliability and avoid overruns.
508  * C, just like A and B, must have exclusive access to the chip and
509  * each of them must lock against any other concurrent access.
510  * Unfortunately this is not possible to have C suspend execution of A or
511  * B taking place on another CPU. On UP this is no an issue since A and B
512  * are run from softirq context and C from hard IRQ context, and there is
513  * no other CPU where concurrent access can happen.
514  * If ever there is a way to force at least B and C to always be executed
515  * on the same CPU then we could use read/write locks to protect against
516  * any other concurrent access and C would always interrupt B. But life
517  * isn't that easy in a SMP world...
518  */
519 #define smc_special_trylock(lock, flags)				\
520 ({									\
521 	int __ret;							\
522 	local_irq_save(flags);						\
523 	__ret = spin_trylock(lock);					\
524 	if (!__ret)							\
525 		local_irq_restore(flags);				\
526 	__ret;								\
527 })
528 #define smc_special_lock(lock, flags)		spin_lock_irqsave(lock, flags)
529 #define smc_special_unlock(lock, flags) 	spin_unlock_irqrestore(lock, flags)
530 #else
531 #define smc_special_trylock(lock, flags)	((void)flags, true)
532 #define smc_special_lock(lock, flags)   	do { flags = 0; } while (0)
533 #define smc_special_unlock(lock, flags)	do { flags = 0; } while (0)
534 #endif
535 
536 /*
537  * This is called to actually send a packet to the chip.
538  */
539 static void smc_hardware_send_pkt(struct tasklet_struct *t)
540 {
541 	struct smc_local *lp = from_tasklet(lp, t, tx_task);
542 	struct net_device *dev = lp->dev;
543 	void __iomem *ioaddr = lp->base;
544 	struct sk_buff *skb;
545 	unsigned int packet_no, len;
546 	unsigned char *buf;
547 	unsigned long flags;
548 
549 	DBG(3, dev, "%s\n", __func__);
550 
551 	if (!smc_special_trylock(&lp->lock, flags)) {
552 		netif_stop_queue(dev);
553 		tasklet_schedule(&lp->tx_task);
554 		return;
555 	}
556 
557 	skb = lp->pending_tx_skb;
558 	if (unlikely(!skb)) {
559 		smc_special_unlock(&lp->lock, flags);
560 		return;
561 	}
562 	lp->pending_tx_skb = NULL;
563 
564 	packet_no = SMC_GET_AR(lp);
565 	if (unlikely(packet_no & AR_FAILED)) {
566 		netdev_err(dev, "Memory allocation failed.\n");
567 		dev->stats.tx_errors++;
568 		dev->stats.tx_fifo_errors++;
569 		smc_special_unlock(&lp->lock, flags);
570 		goto done;
571 	}
572 
573 	/* point to the beginning of the packet */
574 	SMC_SET_PN(lp, packet_no);
575 	SMC_SET_PTR(lp, PTR_AUTOINC);
576 
577 	buf = skb->data;
578 	len = skb->len;
579 	DBG(2, dev, "TX PNR 0x%x LENGTH 0x%04x (%d) BUF 0x%p\n",
580 	    packet_no, len, len, buf);
581 	PRINT_PKT(buf, len);
582 
583 	/*
584 	 * Send the packet length (+6 for status words, length, and ctl.
585 	 * The card will pad to 64 bytes with zeroes if packet is too small.
586 	 */
587 	SMC_PUT_PKT_HDR(lp, 0, len + 6);
588 
589 	/* send the actual data */
590 	SMC_PUSH_DATA(lp, buf, len & ~1);
591 
592 	/* Send final ctl word with the last byte if there is one */
593 	SMC_outw(lp, ((len & 1) ? (0x2000 | buf[len - 1]) : 0), ioaddr,
594 		 DATA_REG(lp));
595 
596 	/*
597 	 * If THROTTLE_TX_PKTS is set, we stop the queue here. This will
598 	 * have the effect of having at most one packet queued for TX
599 	 * in the chip's memory at all time.
600 	 *
601 	 * If THROTTLE_TX_PKTS is not set then the queue is stopped only
602 	 * when memory allocation (MC_ALLOC) does not succeed right away.
603 	 */
604 	if (THROTTLE_TX_PKTS)
605 		netif_stop_queue(dev);
606 
607 	/* queue the packet for TX */
608 	SMC_SET_MMU_CMD(lp, MC_ENQUEUE);
609 	smc_special_unlock(&lp->lock, flags);
610 
611 	netif_trans_update(dev);
612 	dev->stats.tx_packets++;
613 	dev->stats.tx_bytes += len;
614 
615 	SMC_ENABLE_INT(lp, IM_TX_INT | IM_TX_EMPTY_INT);
616 
617 done:	if (!THROTTLE_TX_PKTS)
618 		netif_wake_queue(dev);
619 
620 	dev_consume_skb_any(skb);
621 }
622 
623 /*
624  * Since I am not sure if I will have enough room in the chip's ram
625  * to store the packet, I call this routine which either sends it
626  * now, or set the card to generates an interrupt when ready
627  * for the packet.
628  */
629 static netdev_tx_t
630 smc_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
631 {
632 	struct smc_local *lp = netdev_priv(dev);
633 	void __iomem *ioaddr = lp->base;
634 	unsigned int numPages, poll_count, status;
635 	unsigned long flags;
636 
637 	DBG(3, dev, "%s\n", __func__);
638 
639 	BUG_ON(lp->pending_tx_skb != NULL);
640 
641 	/*
642 	 * The MMU wants the number of pages to be the number of 256 bytes
643 	 * 'pages', minus 1 (since a packet can't ever have 0 pages :))
644 	 *
645 	 * The 91C111 ignores the size bits, but earlier models don't.
646 	 *
647 	 * Pkt size for allocating is data length +6 (for additional status
648 	 * words, length and ctl)
649 	 *
650 	 * If odd size then last byte is included in ctl word.
651 	 */
652 	numPages = ((skb->len & ~1) + (6 - 1)) >> 8;
653 	if (unlikely(numPages > 7)) {
654 		netdev_warn(dev, "Far too big packet error.\n");
655 		dev->stats.tx_errors++;
656 		dev->stats.tx_dropped++;
657 		dev_kfree_skb_any(skb);
658 		return NETDEV_TX_OK;
659 	}
660 
661 	smc_special_lock(&lp->lock, flags);
662 
663 	/* now, try to allocate the memory */
664 	SMC_SET_MMU_CMD(lp, MC_ALLOC | numPages);
665 
666 	/*
667 	 * Poll the chip for a short amount of time in case the
668 	 * allocation succeeds quickly.
669 	 */
670 	poll_count = MEMORY_WAIT_TIME;
671 	do {
672 		status = SMC_GET_INT(lp);
673 		if (status & IM_ALLOC_INT) {
674 			SMC_ACK_INT(lp, IM_ALLOC_INT);
675 			break;
676 		}
677 	} while (--poll_count);
678 
679 	smc_special_unlock(&lp->lock, flags);
680 
681 	lp->pending_tx_skb = skb;
682 	if (!poll_count) {
683 		/* oh well, wait until the chip finds memory later */
684 		netif_stop_queue(dev);
685 		DBG(2, dev, "TX memory allocation deferred.\n");
686 		SMC_ENABLE_INT(lp, IM_ALLOC_INT);
687 	} else {
688 		/*
689 		 * Allocation succeeded: push packet to the chip's own memory
690 		 * immediately.
691 		 */
692 		smc_hardware_send_pkt(&lp->tx_task);
693 	}
694 
695 	return NETDEV_TX_OK;
696 }
697 
698 /*
699  * This handles a TX interrupt, which is only called when:
700  * - a TX error occurred, or
701  * - CTL_AUTO_RELEASE is not set and TX of a packet completed.
702  */
703 static void smc_tx(struct net_device *dev)
704 {
705 	struct smc_local *lp = netdev_priv(dev);
706 	void __iomem *ioaddr = lp->base;
707 	unsigned int saved_packet, packet_no, tx_status;
708 	unsigned int pkt_len __always_unused;
709 
710 	DBG(3, dev, "%s\n", __func__);
711 
712 	/* If the TX FIFO is empty then nothing to do */
713 	packet_no = SMC_GET_TXFIFO(lp);
714 	if (unlikely(packet_no & TXFIFO_TEMPTY)) {
715 		PRINTK(dev, "smc_tx with nothing on FIFO.\n");
716 		return;
717 	}
718 
719 	/* select packet to read from */
720 	saved_packet = SMC_GET_PN(lp);
721 	SMC_SET_PN(lp, packet_no);
722 
723 	/* read the first word (status word) from this packet */
724 	SMC_SET_PTR(lp, PTR_AUTOINC | PTR_READ);
725 	SMC_GET_PKT_HDR(lp, tx_status, pkt_len);
726 	DBG(2, dev, "TX STATUS 0x%04x PNR 0x%02x\n",
727 	    tx_status, packet_no);
728 
729 	if (!(tx_status & ES_TX_SUC))
730 		dev->stats.tx_errors++;
731 
732 	if (tx_status & ES_LOSTCARR)
733 		dev->stats.tx_carrier_errors++;
734 
735 	if (tx_status & (ES_LATCOL | ES_16COL)) {
736 		PRINTK(dev, "%s occurred on last xmit\n",
737 		       (tx_status & ES_LATCOL) ?
738 			"late collision" : "too many collisions");
739 		dev->stats.tx_window_errors++;
740 		if (!(dev->stats.tx_window_errors & 63) && net_ratelimit()) {
741 			netdev_info(dev, "unexpectedly large number of bad collisions. Please check duplex setting.\n");
742 		}
743 	}
744 
745 	/* kill the packet */
746 	SMC_WAIT_MMU_BUSY(lp);
747 	SMC_SET_MMU_CMD(lp, MC_FREEPKT);
748 
749 	/* Don't restore Packet Number Reg until busy bit is cleared */
750 	SMC_WAIT_MMU_BUSY(lp);
751 	SMC_SET_PN(lp, saved_packet);
752 
753 	/* re-enable transmit */
754 	SMC_SELECT_BANK(lp, 0);
755 	SMC_SET_TCR(lp, lp->tcr_cur_mode);
756 	SMC_SELECT_BANK(lp, 2);
757 }
758 
759 
760 /*---PHY CONTROL AND CONFIGURATION-----------------------------------------*/
761 
762 static void smc_mii_out(struct net_device *dev, unsigned int val, int bits)
763 {
764 	struct smc_local *lp = netdev_priv(dev);
765 	void __iomem *ioaddr = lp->base;
766 	unsigned int mii_reg, mask;
767 
768 	mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO);
769 	mii_reg |= MII_MDOE;
770 
771 	for (mask = 1 << (bits - 1); mask; mask >>= 1) {
772 		if (val & mask)
773 			mii_reg |= MII_MDO;
774 		else
775 			mii_reg &= ~MII_MDO;
776 
777 		SMC_SET_MII(lp, mii_reg);
778 		udelay(MII_DELAY);
779 		SMC_SET_MII(lp, mii_reg | MII_MCLK);
780 		udelay(MII_DELAY);
781 	}
782 }
783 
784 static unsigned int smc_mii_in(struct net_device *dev, int bits)
785 {
786 	struct smc_local *lp = netdev_priv(dev);
787 	void __iomem *ioaddr = lp->base;
788 	unsigned int mii_reg, mask, val;
789 
790 	mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO);
791 	SMC_SET_MII(lp, mii_reg);
792 
793 	for (mask = 1 << (bits - 1), val = 0; mask; mask >>= 1) {
794 		if (SMC_GET_MII(lp) & MII_MDI)
795 			val |= mask;
796 
797 		SMC_SET_MII(lp, mii_reg);
798 		udelay(MII_DELAY);
799 		SMC_SET_MII(lp, mii_reg | MII_MCLK);
800 		udelay(MII_DELAY);
801 	}
802 
803 	return val;
804 }
805 
806 /*
807  * Reads a register from the MII Management serial interface
808  */
809 static int smc_phy_read(struct net_device *dev, int phyaddr, int phyreg)
810 {
811 	struct smc_local *lp = netdev_priv(dev);
812 	void __iomem *ioaddr = lp->base;
813 	unsigned int phydata;
814 
815 	SMC_SELECT_BANK(lp, 3);
816 
817 	/* Idle - 32 ones */
818 	smc_mii_out(dev, 0xffffffff, 32);
819 
820 	/* Start code (01) + read (10) + phyaddr + phyreg */
821 	smc_mii_out(dev, 6 << 10 | phyaddr << 5 | phyreg, 14);
822 
823 	/* Turnaround (2bits) + phydata */
824 	phydata = smc_mii_in(dev, 18);
825 
826 	/* Return to idle state */
827 	SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO));
828 
829 	DBG(3, dev, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
830 	    __func__, phyaddr, phyreg, phydata);
831 
832 	SMC_SELECT_BANK(lp, 2);
833 	return phydata;
834 }
835 
836 /*
837  * Writes a register to the MII Management serial interface
838  */
839 static void smc_phy_write(struct net_device *dev, int phyaddr, int phyreg,
840 			  int phydata)
841 {
842 	struct smc_local *lp = netdev_priv(dev);
843 	void __iomem *ioaddr = lp->base;
844 
845 	SMC_SELECT_BANK(lp, 3);
846 
847 	/* Idle - 32 ones */
848 	smc_mii_out(dev, 0xffffffff, 32);
849 
850 	/* Start code (01) + write (01) + phyaddr + phyreg + turnaround + phydata */
851 	smc_mii_out(dev, 5 << 28 | phyaddr << 23 | phyreg << 18 | 2 << 16 | phydata, 32);
852 
853 	/* Return to idle state */
854 	SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO));
855 
856 	DBG(3, dev, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
857 	    __func__, phyaddr, phyreg, phydata);
858 
859 	SMC_SELECT_BANK(lp, 2);
860 }
861 
862 /*
863  * Finds and reports the PHY address
864  */
865 static void smc_phy_detect(struct net_device *dev)
866 {
867 	struct smc_local *lp = netdev_priv(dev);
868 	int phyaddr;
869 
870 	DBG(2, dev, "%s\n", __func__);
871 
872 	lp->phy_type = 0;
873 
874 	/*
875 	 * Scan all 32 PHY addresses if necessary, starting at
876 	 * PHY#1 to PHY#31, and then PHY#0 last.
877 	 */
878 	for (phyaddr = 1; phyaddr < 33; ++phyaddr) {
879 		unsigned int id1, id2;
880 
881 		/* Read the PHY identifiers */
882 		id1 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID1);
883 		id2 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID2);
884 
885 		DBG(3, dev, "phy_id1=0x%x, phy_id2=0x%x\n",
886 		    id1, id2);
887 
888 		/* Make sure it is a valid identifier */
889 		if (id1 != 0x0000 && id1 != 0xffff && id1 != 0x8000 &&
890 		    id2 != 0x0000 && id2 != 0xffff && id2 != 0x8000) {
891 			/* Save the PHY's address */
892 			lp->mii.phy_id = phyaddr & 31;
893 			lp->phy_type = id1 << 16 | id2;
894 			break;
895 		}
896 	}
897 }
898 
899 /*
900  * Sets the PHY to a configuration as determined by the user
901  */
902 static int smc_phy_fixed(struct net_device *dev)
903 {
904 	struct smc_local *lp = netdev_priv(dev);
905 	void __iomem *ioaddr = lp->base;
906 	int phyaddr = lp->mii.phy_id;
907 	int bmcr, cfg1;
908 
909 	DBG(3, dev, "%s\n", __func__);
910 
911 	/* Enter Link Disable state */
912 	cfg1 = smc_phy_read(dev, phyaddr, PHY_CFG1_REG);
913 	cfg1 |= PHY_CFG1_LNKDIS;
914 	smc_phy_write(dev, phyaddr, PHY_CFG1_REG, cfg1);
915 
916 	/*
917 	 * Set our fixed capabilities
918 	 * Disable auto-negotiation
919 	 */
920 	bmcr = 0;
921 
922 	if (lp->ctl_rfduplx)
923 		bmcr |= BMCR_FULLDPLX;
924 
925 	if (lp->ctl_rspeed == 100)
926 		bmcr |= BMCR_SPEED100;
927 
928 	/* Write our capabilities to the phy control register */
929 	smc_phy_write(dev, phyaddr, MII_BMCR, bmcr);
930 
931 	/* Re-Configure the Receive/Phy Control register */
932 	SMC_SELECT_BANK(lp, 0);
933 	SMC_SET_RPC(lp, lp->rpc_cur_mode);
934 	SMC_SELECT_BANK(lp, 2);
935 
936 	return 1;
937 }
938 
939 /**
940  * smc_phy_reset - reset the phy
941  * @dev: net device
942  * @phy: phy address
943  *
944  * Issue a software reset for the specified PHY and
945  * wait up to 100ms for the reset to complete.  We should
946  * not access the PHY for 50ms after issuing the reset.
947  *
948  * The time to wait appears to be dependent on the PHY.
949  *
950  * Must be called with lp->lock locked.
951  */
952 static int smc_phy_reset(struct net_device *dev, int phy)
953 {
954 	struct smc_local *lp = netdev_priv(dev);
955 	unsigned int bmcr;
956 	int timeout;
957 
958 	smc_phy_write(dev, phy, MII_BMCR, BMCR_RESET);
959 
960 	for (timeout = 2; timeout; timeout--) {
961 		spin_unlock_irq(&lp->lock);
962 		msleep(50);
963 		spin_lock_irq(&lp->lock);
964 
965 		bmcr = smc_phy_read(dev, phy, MII_BMCR);
966 		if (!(bmcr & BMCR_RESET))
967 			break;
968 	}
969 
970 	return bmcr & BMCR_RESET;
971 }
972 
973 /**
974  * smc_phy_powerdown - powerdown phy
975  * @dev: net device
976  *
977  * Power down the specified PHY
978  */
979 static void smc_phy_powerdown(struct net_device *dev)
980 {
981 	struct smc_local *lp = netdev_priv(dev);
982 	unsigned int bmcr;
983 	int phy = lp->mii.phy_id;
984 
985 	if (lp->phy_type == 0)
986 		return;
987 
988 	/* We need to ensure that no calls to smc_phy_configure are
989 	   pending.
990 	*/
991 	cancel_work_sync(&lp->phy_configure);
992 
993 	bmcr = smc_phy_read(dev, phy, MII_BMCR);
994 	smc_phy_write(dev, phy, MII_BMCR, bmcr | BMCR_PDOWN);
995 }
996 
997 /**
998  * smc_phy_check_media - check the media status and adjust TCR
999  * @dev: net device
1000  * @init: set true for initialisation
1001  *
1002  * Select duplex mode depending on negotiation state.  This
1003  * also updates our carrier state.
1004  */
1005 static void smc_phy_check_media(struct net_device *dev, int init)
1006 {
1007 	struct smc_local *lp = netdev_priv(dev);
1008 	void __iomem *ioaddr = lp->base;
1009 
1010 	if (mii_check_media(&lp->mii, netif_msg_link(lp), init)) {
1011 		/* duplex state has changed */
1012 		if (lp->mii.full_duplex) {
1013 			lp->tcr_cur_mode |= TCR_SWFDUP;
1014 		} else {
1015 			lp->tcr_cur_mode &= ~TCR_SWFDUP;
1016 		}
1017 
1018 		SMC_SELECT_BANK(lp, 0);
1019 		SMC_SET_TCR(lp, lp->tcr_cur_mode);
1020 	}
1021 }
1022 
1023 /*
1024  * Configures the specified PHY through the MII management interface
1025  * using Autonegotiation.
1026  * Calls smc_phy_fixed() if the user has requested a certain config.
1027  * If RPC ANEG bit is set, the media selection is dependent purely on
1028  * the selection by the MII (either in the MII BMCR reg or the result
1029  * of autonegotiation.)  If the RPC ANEG bit is cleared, the selection
1030  * is controlled by the RPC SPEED and RPC DPLX bits.
1031  */
1032 static void smc_phy_configure(struct work_struct *work)
1033 {
1034 	struct smc_local *lp =
1035 		container_of(work, struct smc_local, phy_configure);
1036 	struct net_device *dev = lp->dev;
1037 	void __iomem *ioaddr = lp->base;
1038 	int phyaddr = lp->mii.phy_id;
1039 	int my_phy_caps; /* My PHY capabilities */
1040 	int my_ad_caps; /* My Advertised capabilities */
1041 
1042 	DBG(3, dev, "smc_program_phy()\n");
1043 
1044 	spin_lock_irq(&lp->lock);
1045 
1046 	/*
1047 	 * We should not be called if phy_type is zero.
1048 	 */
1049 	if (lp->phy_type == 0)
1050 		goto smc_phy_configure_exit;
1051 
1052 	if (smc_phy_reset(dev, phyaddr)) {
1053 		netdev_info(dev, "PHY reset timed out\n");
1054 		goto smc_phy_configure_exit;
1055 	}
1056 
1057 	/*
1058 	 * Enable PHY Interrupts (for register 18)
1059 	 * Interrupts listed here are disabled
1060 	 */
1061 	smc_phy_write(dev, phyaddr, PHY_MASK_REG,
1062 		PHY_INT_LOSSSYNC | PHY_INT_CWRD | PHY_INT_SSD |
1063 		PHY_INT_ESD | PHY_INT_RPOL | PHY_INT_JAB |
1064 		PHY_INT_SPDDET | PHY_INT_DPLXDET);
1065 
1066 	/* Configure the Receive/Phy Control register */
1067 	SMC_SELECT_BANK(lp, 0);
1068 	SMC_SET_RPC(lp, lp->rpc_cur_mode);
1069 
1070 	/* If the user requested no auto neg, then go set his request */
1071 	if (lp->mii.force_media) {
1072 		smc_phy_fixed(dev);
1073 		goto smc_phy_configure_exit;
1074 	}
1075 
1076 	/* Copy our capabilities from MII_BMSR to MII_ADVERTISE */
1077 	my_phy_caps = smc_phy_read(dev, phyaddr, MII_BMSR);
1078 
1079 	if (!(my_phy_caps & BMSR_ANEGCAPABLE)) {
1080 		netdev_info(dev, "Auto negotiation NOT supported\n");
1081 		smc_phy_fixed(dev);
1082 		goto smc_phy_configure_exit;
1083 	}
1084 
1085 	my_ad_caps = ADVERTISE_CSMA; /* I am CSMA capable */
1086 
1087 	if (my_phy_caps & BMSR_100BASE4)
1088 		my_ad_caps |= ADVERTISE_100BASE4;
1089 	if (my_phy_caps & BMSR_100FULL)
1090 		my_ad_caps |= ADVERTISE_100FULL;
1091 	if (my_phy_caps & BMSR_100HALF)
1092 		my_ad_caps |= ADVERTISE_100HALF;
1093 	if (my_phy_caps & BMSR_10FULL)
1094 		my_ad_caps |= ADVERTISE_10FULL;
1095 	if (my_phy_caps & BMSR_10HALF)
1096 		my_ad_caps |= ADVERTISE_10HALF;
1097 
1098 	/* Disable capabilities not selected by our user */
1099 	if (lp->ctl_rspeed != 100)
1100 		my_ad_caps &= ~(ADVERTISE_100BASE4|ADVERTISE_100FULL|ADVERTISE_100HALF);
1101 
1102 	if (!lp->ctl_rfduplx)
1103 		my_ad_caps &= ~(ADVERTISE_100FULL|ADVERTISE_10FULL);
1104 
1105 	/* Update our Auto-Neg Advertisement Register */
1106 	smc_phy_write(dev, phyaddr, MII_ADVERTISE, my_ad_caps);
1107 	lp->mii.advertising = my_ad_caps;
1108 
1109 	/*
1110 	 * Read the register back.  Without this, it appears that when
1111 	 * auto-negotiation is restarted, sometimes it isn't ready and
1112 	 * the link does not come up.
1113 	 */
1114 	smc_phy_read(dev, phyaddr, MII_ADVERTISE);
1115 
1116 	DBG(2, dev, "phy caps=%x\n", my_phy_caps);
1117 	DBG(2, dev, "phy advertised caps=%x\n", my_ad_caps);
1118 
1119 	/* Restart auto-negotiation process in order to advertise my caps */
1120 	smc_phy_write(dev, phyaddr, MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART);
1121 
1122 	smc_phy_check_media(dev, 1);
1123 
1124 smc_phy_configure_exit:
1125 	SMC_SELECT_BANK(lp, 2);
1126 	spin_unlock_irq(&lp->lock);
1127 }
1128 
1129 /*
1130  * smc_phy_interrupt
1131  *
1132  * Purpose:  Handle interrupts relating to PHY register 18. This is
1133  *  called from the "hard" interrupt handler under our private spinlock.
1134  */
1135 static void smc_phy_interrupt(struct net_device *dev)
1136 {
1137 	struct smc_local *lp = netdev_priv(dev);
1138 	int phyaddr = lp->mii.phy_id;
1139 	int phy18;
1140 
1141 	DBG(2, dev, "%s\n", __func__);
1142 
1143 	if (lp->phy_type == 0)
1144 		return;
1145 
1146 	for(;;) {
1147 		smc_phy_check_media(dev, 0);
1148 
1149 		/* Read PHY Register 18, Status Output */
1150 		phy18 = smc_phy_read(dev, phyaddr, PHY_INT_REG);
1151 		if ((phy18 & PHY_INT_INT) == 0)
1152 			break;
1153 	}
1154 }
1155 
1156 /*--- END PHY CONTROL AND CONFIGURATION-------------------------------------*/
1157 
1158 static void smc_10bt_check_media(struct net_device *dev, int init)
1159 {
1160 	struct smc_local *lp = netdev_priv(dev);
1161 	void __iomem *ioaddr = lp->base;
1162 	unsigned int old_carrier, new_carrier;
1163 
1164 	old_carrier = netif_carrier_ok(dev) ? 1 : 0;
1165 
1166 	SMC_SELECT_BANK(lp, 0);
1167 	new_carrier = (SMC_GET_EPH_STATUS(lp) & ES_LINK_OK) ? 1 : 0;
1168 	SMC_SELECT_BANK(lp, 2);
1169 
1170 	if (init || (old_carrier != new_carrier)) {
1171 		if (!new_carrier) {
1172 			netif_carrier_off(dev);
1173 		} else {
1174 			netif_carrier_on(dev);
1175 		}
1176 		if (netif_msg_link(lp))
1177 			netdev_info(dev, "link %s\n",
1178 				    new_carrier ? "up" : "down");
1179 	}
1180 }
1181 
1182 static void smc_eph_interrupt(struct net_device *dev)
1183 {
1184 	struct smc_local *lp = netdev_priv(dev);
1185 	void __iomem *ioaddr = lp->base;
1186 	unsigned int ctl;
1187 
1188 	smc_10bt_check_media(dev, 0);
1189 
1190 	SMC_SELECT_BANK(lp, 1);
1191 	ctl = SMC_GET_CTL(lp);
1192 	SMC_SET_CTL(lp, ctl & ~CTL_LE_ENABLE);
1193 	SMC_SET_CTL(lp, ctl);
1194 	SMC_SELECT_BANK(lp, 2);
1195 }
1196 
1197 /*
1198  * This is the main routine of the driver, to handle the device when
1199  * it needs some attention.
1200  */
1201 static irqreturn_t smc_interrupt(int irq, void *dev_id)
1202 {
1203 	struct net_device *dev = dev_id;
1204 	struct smc_local *lp = netdev_priv(dev);
1205 	void __iomem *ioaddr = lp->base;
1206 	int status, mask, timeout, card_stats;
1207 	int saved_pointer;
1208 
1209 	DBG(3, dev, "%s\n", __func__);
1210 
1211 	spin_lock(&lp->lock);
1212 
1213 	/* A preamble may be used when there is a potential race
1214 	 * between the interruptible transmit functions and this
1215 	 * ISR. */
1216 	SMC_INTERRUPT_PREAMBLE;
1217 
1218 	saved_pointer = SMC_GET_PTR(lp);
1219 	mask = SMC_GET_INT_MASK(lp);
1220 	SMC_SET_INT_MASK(lp, 0);
1221 
1222 	/* set a timeout value, so I don't stay here forever */
1223 	timeout = MAX_IRQ_LOOPS;
1224 
1225 	do {
1226 		status = SMC_GET_INT(lp);
1227 
1228 		DBG(2, dev, "INT 0x%02x MASK 0x%02x MEM 0x%04x FIFO 0x%04x\n",
1229 		    status, mask,
1230 		    ({ int meminfo; SMC_SELECT_BANK(lp, 0);
1231 		       meminfo = SMC_GET_MIR(lp);
1232 		       SMC_SELECT_BANK(lp, 2); meminfo; }),
1233 		    SMC_GET_FIFO(lp));
1234 
1235 		status &= mask;
1236 		if (!status)
1237 			break;
1238 
1239 		if (status & IM_TX_INT) {
1240 			/* do this before RX as it will free memory quickly */
1241 			DBG(3, dev, "TX int\n");
1242 			smc_tx(dev);
1243 			SMC_ACK_INT(lp, IM_TX_INT);
1244 			if (THROTTLE_TX_PKTS)
1245 				netif_wake_queue(dev);
1246 		} else if (status & IM_RCV_INT) {
1247 			DBG(3, dev, "RX irq\n");
1248 			smc_rcv(dev);
1249 		} else if (status & IM_ALLOC_INT) {
1250 			DBG(3, dev, "Allocation irq\n");
1251 			tasklet_hi_schedule(&lp->tx_task);
1252 			mask &= ~IM_ALLOC_INT;
1253 		} else if (status & IM_TX_EMPTY_INT) {
1254 			DBG(3, dev, "TX empty\n");
1255 			mask &= ~IM_TX_EMPTY_INT;
1256 
1257 			/* update stats */
1258 			SMC_SELECT_BANK(lp, 0);
1259 			card_stats = SMC_GET_COUNTER(lp);
1260 			SMC_SELECT_BANK(lp, 2);
1261 
1262 			/* single collisions */
1263 			dev->stats.collisions += card_stats & 0xF;
1264 			card_stats >>= 4;
1265 
1266 			/* multiple collisions */
1267 			dev->stats.collisions += card_stats & 0xF;
1268 		} else if (status & IM_RX_OVRN_INT) {
1269 			DBG(1, dev, "RX overrun (EPH_ST 0x%04x)\n",
1270 			    ({ int eph_st; SMC_SELECT_BANK(lp, 0);
1271 			       eph_st = SMC_GET_EPH_STATUS(lp);
1272 			       SMC_SELECT_BANK(lp, 2); eph_st; }));
1273 			SMC_ACK_INT(lp, IM_RX_OVRN_INT);
1274 			dev->stats.rx_errors++;
1275 			dev->stats.rx_fifo_errors++;
1276 		} else if (status & IM_EPH_INT) {
1277 			smc_eph_interrupt(dev);
1278 		} else if (status & IM_MDINT) {
1279 			SMC_ACK_INT(lp, IM_MDINT);
1280 			smc_phy_interrupt(dev);
1281 		} else if (status & IM_ERCV_INT) {
1282 			SMC_ACK_INT(lp, IM_ERCV_INT);
1283 			PRINTK(dev, "UNSUPPORTED: ERCV INTERRUPT\n");
1284 		}
1285 	} while (--timeout);
1286 
1287 	/* restore register states */
1288 	SMC_SET_PTR(lp, saved_pointer);
1289 	SMC_SET_INT_MASK(lp, mask);
1290 	spin_unlock(&lp->lock);
1291 
1292 #ifndef CONFIG_NET_POLL_CONTROLLER
1293 	if (timeout == MAX_IRQ_LOOPS)
1294 		PRINTK(dev, "spurious interrupt (mask = 0x%02x)\n",
1295 		       mask);
1296 #endif
1297 	DBG(3, dev, "Interrupt done (%d loops)\n",
1298 	    MAX_IRQ_LOOPS - timeout);
1299 
1300 	/*
1301 	 * We return IRQ_HANDLED unconditionally here even if there was
1302 	 * nothing to do.  There is a possibility that a packet might
1303 	 * get enqueued into the chip right after TX_EMPTY_INT is raised
1304 	 * but just before the CPU acknowledges the IRQ.
1305 	 * Better take an unneeded IRQ in some occasions than complexifying
1306 	 * the code for all cases.
1307 	 */
1308 	return IRQ_HANDLED;
1309 }
1310 
1311 #ifdef CONFIG_NET_POLL_CONTROLLER
1312 /*
1313  * Polling receive - used by netconsole and other diagnostic tools
1314  * to allow network i/o with interrupts disabled.
1315  */
1316 static void smc_poll_controller(struct net_device *dev)
1317 {
1318 	disable_irq(dev->irq);
1319 	smc_interrupt(dev->irq, dev);
1320 	enable_irq(dev->irq);
1321 }
1322 #endif
1323 
1324 /* Our watchdog timed out. Called by the networking layer */
1325 static void smc_timeout(struct net_device *dev, unsigned int txqueue)
1326 {
1327 	struct smc_local *lp = netdev_priv(dev);
1328 	void __iomem *ioaddr = lp->base;
1329 	int status, mask, eph_st, meminfo, fifo;
1330 
1331 	DBG(2, dev, "%s\n", __func__);
1332 
1333 	spin_lock_irq(&lp->lock);
1334 	status = SMC_GET_INT(lp);
1335 	mask = SMC_GET_INT_MASK(lp);
1336 	fifo = SMC_GET_FIFO(lp);
1337 	SMC_SELECT_BANK(lp, 0);
1338 	eph_st = SMC_GET_EPH_STATUS(lp);
1339 	meminfo = SMC_GET_MIR(lp);
1340 	SMC_SELECT_BANK(lp, 2);
1341 	spin_unlock_irq(&lp->lock);
1342 	PRINTK(dev, "TX timeout (INT 0x%02x INTMASK 0x%02x MEM 0x%04x FIFO 0x%04x EPH_ST 0x%04x)\n",
1343 	       status, mask, meminfo, fifo, eph_st);
1344 
1345 	smc_reset(dev);
1346 	smc_enable(dev);
1347 
1348 	/*
1349 	 * Reconfiguring the PHY doesn't seem like a bad idea here, but
1350 	 * smc_phy_configure() calls msleep() which calls schedule_timeout()
1351 	 * which calls schedule().  Hence we use a work queue.
1352 	 */
1353 	if (lp->phy_type != 0)
1354 		schedule_work(&lp->phy_configure);
1355 
1356 	/* We can accept TX packets again */
1357 	netif_trans_update(dev); /* prevent tx timeout */
1358 	netif_wake_queue(dev);
1359 }
1360 
1361 /*
1362  * This routine will, depending on the values passed to it,
1363  * either make it accept multicast packets, go into
1364  * promiscuous mode (for TCPDUMP and cousins) or accept
1365  * a select set of multicast packets
1366  */
1367 static void smc_set_multicast_list(struct net_device *dev)
1368 {
1369 	struct smc_local *lp = netdev_priv(dev);
1370 	void __iomem *ioaddr = lp->base;
1371 	unsigned char multicast_table[8];
1372 	int update_multicast = 0;
1373 
1374 	DBG(2, dev, "%s\n", __func__);
1375 
1376 	if (dev->flags & IFF_PROMISC) {
1377 		DBG(2, dev, "RCR_PRMS\n");
1378 		lp->rcr_cur_mode |= RCR_PRMS;
1379 	}
1380 
1381 /* BUG?  I never disable promiscuous mode if multicasting was turned on.
1382    Now, I turn off promiscuous mode, but I don't do anything to multicasting
1383    when promiscuous mode is turned on.
1384 */
1385 
1386 	/*
1387 	 * Here, I am setting this to accept all multicast packets.
1388 	 * I don't need to zero the multicast table, because the flag is
1389 	 * checked before the table is
1390 	 */
1391 	else if (dev->flags & IFF_ALLMULTI || netdev_mc_count(dev) > 16) {
1392 		DBG(2, dev, "RCR_ALMUL\n");
1393 		lp->rcr_cur_mode |= RCR_ALMUL;
1394 	}
1395 
1396 	/*
1397 	 * This sets the internal hardware table to filter out unwanted
1398 	 * multicast packets before they take up memory.
1399 	 *
1400 	 * The SMC chip uses a hash table where the high 6 bits of the CRC of
1401 	 * address are the offset into the table.  If that bit is 1, then the
1402 	 * multicast packet is accepted.  Otherwise, it's dropped silently.
1403 	 *
1404 	 * To use the 6 bits as an offset into the table, the high 3 bits are
1405 	 * the number of the 8 bit register, while the low 3 bits are the bit
1406 	 * within that register.
1407 	 */
1408 	else if (!netdev_mc_empty(dev)) {
1409 		struct netdev_hw_addr *ha;
1410 
1411 		/* table for flipping the order of 3 bits */
1412 		static const unsigned char invert3[] = {0, 4, 2, 6, 1, 5, 3, 7};
1413 
1414 		/* start with a table of all zeros: reject all */
1415 		memset(multicast_table, 0, sizeof(multicast_table));
1416 
1417 		netdev_for_each_mc_addr(ha, dev) {
1418 			int position;
1419 
1420 			/* only use the low order bits */
1421 			position = crc32_le(~0, ha->addr, 6) & 0x3f;
1422 
1423 			/* do some messy swapping to put the bit in the right spot */
1424 			multicast_table[invert3[position&7]] |=
1425 				(1<<invert3[(position>>3)&7]);
1426 		}
1427 
1428 		/* be sure I get rid of flags I might have set */
1429 		lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1430 
1431 		/* now, the table can be loaded into the chipset */
1432 		update_multicast = 1;
1433 	} else  {
1434 		DBG(2, dev, "~(RCR_PRMS|RCR_ALMUL)\n");
1435 		lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1436 
1437 		/*
1438 		 * since I'm disabling all multicast entirely, I need to
1439 		 * clear the multicast list
1440 		 */
1441 		memset(multicast_table, 0, sizeof(multicast_table));
1442 		update_multicast = 1;
1443 	}
1444 
1445 	spin_lock_irq(&lp->lock);
1446 	SMC_SELECT_BANK(lp, 0);
1447 	SMC_SET_RCR(lp, lp->rcr_cur_mode);
1448 	if (update_multicast) {
1449 		SMC_SELECT_BANK(lp, 3);
1450 		SMC_SET_MCAST(lp, multicast_table);
1451 	}
1452 	SMC_SELECT_BANK(lp, 2);
1453 	spin_unlock_irq(&lp->lock);
1454 }
1455 
1456 
1457 /*
1458  * Open and Initialize the board
1459  *
1460  * Set up everything, reset the card, etc..
1461  */
1462 static int
1463 smc_open(struct net_device *dev)
1464 {
1465 	struct smc_local *lp = netdev_priv(dev);
1466 
1467 	DBG(2, dev, "%s\n", __func__);
1468 
1469 	/* Setup the default Register Modes */
1470 	lp->tcr_cur_mode = TCR_DEFAULT;
1471 	lp->rcr_cur_mode = RCR_DEFAULT;
1472 	lp->rpc_cur_mode = RPC_DEFAULT |
1473 				lp->cfg.leda << RPC_LSXA_SHFT |
1474 				lp->cfg.ledb << RPC_LSXB_SHFT;
1475 
1476 	/*
1477 	 * If we are not using a MII interface, we need to
1478 	 * monitor our own carrier signal to detect faults.
1479 	 */
1480 	if (lp->phy_type == 0)
1481 		lp->tcr_cur_mode |= TCR_MON_CSN;
1482 
1483 	/* reset the hardware */
1484 	smc_reset(dev);
1485 	smc_enable(dev);
1486 
1487 	/* Configure the PHY, initialize the link state */
1488 	if (lp->phy_type != 0)
1489 		smc_phy_configure(&lp->phy_configure);
1490 	else {
1491 		spin_lock_irq(&lp->lock);
1492 		smc_10bt_check_media(dev, 1);
1493 		spin_unlock_irq(&lp->lock);
1494 	}
1495 
1496 	netif_start_queue(dev);
1497 	return 0;
1498 }
1499 
1500 /*
1501  * smc_close
1502  *
1503  * this makes the board clean up everything that it can
1504  * and not talk to the outside world.   Caused by
1505  * an 'ifconfig ethX down'
1506  */
1507 static int smc_close(struct net_device *dev)
1508 {
1509 	struct smc_local *lp = netdev_priv(dev);
1510 
1511 	DBG(2, dev, "%s\n", __func__);
1512 
1513 	netif_stop_queue(dev);
1514 	netif_carrier_off(dev);
1515 
1516 	/* clear everything */
1517 	smc_shutdown(dev);
1518 	tasklet_kill(&lp->tx_task);
1519 	smc_phy_powerdown(dev);
1520 	return 0;
1521 }
1522 
1523 /*
1524  * Ethtool support
1525  */
1526 static int
1527 smc_ethtool_get_link_ksettings(struct net_device *dev,
1528 			       struct ethtool_link_ksettings *cmd)
1529 {
1530 	struct smc_local *lp = netdev_priv(dev);
1531 
1532 	if (lp->phy_type != 0) {
1533 		spin_lock_irq(&lp->lock);
1534 		mii_ethtool_get_link_ksettings(&lp->mii, cmd);
1535 		spin_unlock_irq(&lp->lock);
1536 	} else {
1537 		u32 supported = SUPPORTED_10baseT_Half |
1538 				 SUPPORTED_10baseT_Full |
1539 				 SUPPORTED_TP | SUPPORTED_AUI;
1540 
1541 		if (lp->ctl_rspeed == 10)
1542 			cmd->base.speed = SPEED_10;
1543 		else if (lp->ctl_rspeed == 100)
1544 			cmd->base.speed = SPEED_100;
1545 
1546 		cmd->base.autoneg = AUTONEG_DISABLE;
1547 		cmd->base.port = 0;
1548 		cmd->base.duplex = lp->tcr_cur_mode & TCR_SWFDUP ?
1549 			DUPLEX_FULL : DUPLEX_HALF;
1550 
1551 		ethtool_convert_legacy_u32_to_link_mode(
1552 			cmd->link_modes.supported, supported);
1553 	}
1554 
1555 	return 0;
1556 }
1557 
1558 static int
1559 smc_ethtool_set_link_ksettings(struct net_device *dev,
1560 			       const struct ethtool_link_ksettings *cmd)
1561 {
1562 	struct smc_local *lp = netdev_priv(dev);
1563 	int ret;
1564 
1565 	if (lp->phy_type != 0) {
1566 		spin_lock_irq(&lp->lock);
1567 		ret = mii_ethtool_set_link_ksettings(&lp->mii, cmd);
1568 		spin_unlock_irq(&lp->lock);
1569 	} else {
1570 		if (cmd->base.autoneg != AUTONEG_DISABLE ||
1571 		    cmd->base.speed != SPEED_10 ||
1572 		    (cmd->base.duplex != DUPLEX_HALF &&
1573 		     cmd->base.duplex != DUPLEX_FULL) ||
1574 		    (cmd->base.port != PORT_TP && cmd->base.port != PORT_AUI))
1575 			return -EINVAL;
1576 
1577 		lp->ctl_rfduplx = cmd->base.duplex == DUPLEX_FULL;
1578 
1579 		ret = 0;
1580 	}
1581 
1582 	return ret;
1583 }
1584 
1585 static void
1586 smc_ethtool_getdrvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1587 {
1588 	strscpy(info->driver, CARDNAME, sizeof(info->driver));
1589 	strscpy(info->version, version, sizeof(info->version));
1590 	strscpy(info->bus_info, dev_name(dev->dev.parent),
1591 		sizeof(info->bus_info));
1592 }
1593 
1594 static int smc_ethtool_nwayreset(struct net_device *dev)
1595 {
1596 	struct smc_local *lp = netdev_priv(dev);
1597 	int ret = -EINVAL;
1598 
1599 	if (lp->phy_type != 0) {
1600 		spin_lock_irq(&lp->lock);
1601 		ret = mii_nway_restart(&lp->mii);
1602 		spin_unlock_irq(&lp->lock);
1603 	}
1604 
1605 	return ret;
1606 }
1607 
1608 static u32 smc_ethtool_getmsglevel(struct net_device *dev)
1609 {
1610 	struct smc_local *lp = netdev_priv(dev);
1611 	return lp->msg_enable;
1612 }
1613 
1614 static void smc_ethtool_setmsglevel(struct net_device *dev, u32 level)
1615 {
1616 	struct smc_local *lp = netdev_priv(dev);
1617 	lp->msg_enable = level;
1618 }
1619 
1620 static int smc_write_eeprom_word(struct net_device *dev, u16 addr, u16 word)
1621 {
1622 	u16 ctl;
1623 	struct smc_local *lp = netdev_priv(dev);
1624 	void __iomem *ioaddr = lp->base;
1625 
1626 	spin_lock_irq(&lp->lock);
1627 	/* load word into GP register */
1628 	SMC_SELECT_BANK(lp, 1);
1629 	SMC_SET_GP(lp, word);
1630 	/* set the address to put the data in EEPROM */
1631 	SMC_SELECT_BANK(lp, 2);
1632 	SMC_SET_PTR(lp, addr);
1633 	/* tell it to write */
1634 	SMC_SELECT_BANK(lp, 1);
1635 	ctl = SMC_GET_CTL(lp);
1636 	SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_STORE));
1637 	/* wait for it to finish */
1638 	do {
1639 		udelay(1);
1640 	} while (SMC_GET_CTL(lp) & CTL_STORE);
1641 	/* clean up */
1642 	SMC_SET_CTL(lp, ctl);
1643 	SMC_SELECT_BANK(lp, 2);
1644 	spin_unlock_irq(&lp->lock);
1645 	return 0;
1646 }
1647 
1648 static int smc_read_eeprom_word(struct net_device *dev, u16 addr, u16 *word)
1649 {
1650 	u16 ctl;
1651 	struct smc_local *lp = netdev_priv(dev);
1652 	void __iomem *ioaddr = lp->base;
1653 
1654 	spin_lock_irq(&lp->lock);
1655 	/* set the EEPROM address to get the data from */
1656 	SMC_SELECT_BANK(lp, 2);
1657 	SMC_SET_PTR(lp, addr | PTR_READ);
1658 	/* tell it to load */
1659 	SMC_SELECT_BANK(lp, 1);
1660 	SMC_SET_GP(lp, 0xffff);	/* init to known */
1661 	ctl = SMC_GET_CTL(lp);
1662 	SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_RELOAD));
1663 	/* wait for it to finish */
1664 	do {
1665 		udelay(1);
1666 	} while (SMC_GET_CTL(lp) & CTL_RELOAD);
1667 	/* read word from GP register */
1668 	*word = SMC_GET_GP(lp);
1669 	/* clean up */
1670 	SMC_SET_CTL(lp, ctl);
1671 	SMC_SELECT_BANK(lp, 2);
1672 	spin_unlock_irq(&lp->lock);
1673 	return 0;
1674 }
1675 
1676 static int smc_ethtool_geteeprom_len(struct net_device *dev)
1677 {
1678 	return 0x23 * 2;
1679 }
1680 
1681 static int smc_ethtool_geteeprom(struct net_device *dev,
1682 		struct ethtool_eeprom *eeprom, u8 *data)
1683 {
1684 	int i;
1685 	int imax;
1686 
1687 	DBG(1, dev, "Reading %d bytes at %d(0x%x)\n",
1688 		eeprom->len, eeprom->offset, eeprom->offset);
1689 	imax = smc_ethtool_geteeprom_len(dev);
1690 	for (i = 0; i < eeprom->len; i += 2) {
1691 		int ret;
1692 		u16 wbuf;
1693 		int offset = i + eeprom->offset;
1694 		if (offset > imax)
1695 			break;
1696 		ret = smc_read_eeprom_word(dev, offset >> 1, &wbuf);
1697 		if (ret != 0)
1698 			return ret;
1699 		DBG(2, dev, "Read 0x%x from 0x%x\n", wbuf, offset >> 1);
1700 		data[i] = (wbuf >> 8) & 0xff;
1701 		data[i+1] = wbuf & 0xff;
1702 	}
1703 	return 0;
1704 }
1705 
1706 static int smc_ethtool_seteeprom(struct net_device *dev,
1707 		struct ethtool_eeprom *eeprom, u8 *data)
1708 {
1709 	int i;
1710 	int imax;
1711 
1712 	DBG(1, dev, "Writing %d bytes to %d(0x%x)\n",
1713 	    eeprom->len, eeprom->offset, eeprom->offset);
1714 	imax = smc_ethtool_geteeprom_len(dev);
1715 	for (i = 0; i < eeprom->len; i += 2) {
1716 		int ret;
1717 		u16 wbuf;
1718 		int offset = i + eeprom->offset;
1719 		if (offset > imax)
1720 			break;
1721 		wbuf = (data[i] << 8) | data[i + 1];
1722 		DBG(2, dev, "Writing 0x%x to 0x%x\n", wbuf, offset >> 1);
1723 		ret = smc_write_eeprom_word(dev, offset >> 1, wbuf);
1724 		if (ret != 0)
1725 			return ret;
1726 	}
1727 	return 0;
1728 }
1729 
1730 
1731 static const struct ethtool_ops smc_ethtool_ops = {
1732 	.get_drvinfo	= smc_ethtool_getdrvinfo,
1733 
1734 	.get_msglevel	= smc_ethtool_getmsglevel,
1735 	.set_msglevel	= smc_ethtool_setmsglevel,
1736 	.nway_reset	= smc_ethtool_nwayreset,
1737 	.get_link	= ethtool_op_get_link,
1738 	.get_eeprom_len = smc_ethtool_geteeprom_len,
1739 	.get_eeprom	= smc_ethtool_geteeprom,
1740 	.set_eeprom	= smc_ethtool_seteeprom,
1741 	.get_link_ksettings	= smc_ethtool_get_link_ksettings,
1742 	.set_link_ksettings	= smc_ethtool_set_link_ksettings,
1743 };
1744 
1745 static const struct net_device_ops smc_netdev_ops = {
1746 	.ndo_open		= smc_open,
1747 	.ndo_stop		= smc_close,
1748 	.ndo_start_xmit		= smc_hard_start_xmit,
1749 	.ndo_tx_timeout		= smc_timeout,
1750 	.ndo_set_rx_mode	= smc_set_multicast_list,
1751 	.ndo_validate_addr	= eth_validate_addr,
1752 	.ndo_set_mac_address 	= eth_mac_addr,
1753 #ifdef CONFIG_NET_POLL_CONTROLLER
1754 	.ndo_poll_controller	= smc_poll_controller,
1755 #endif
1756 };
1757 
1758 /*
1759  * smc_findirq
1760  *
1761  * This routine has a simple purpose -- make the SMC chip generate an
1762  * interrupt, so an auto-detect routine can detect it, and find the IRQ,
1763  */
1764 /*
1765  * does this still work?
1766  *
1767  * I just deleted auto_irq.c, since it was never built...
1768  *   --jgarzik
1769  */
1770 static int smc_findirq(struct smc_local *lp)
1771 {
1772 	void __iomem *ioaddr = lp->base;
1773 	int timeout = 20;
1774 	unsigned long cookie;
1775 
1776 	DBG(2, lp->dev, "%s: %s\n", CARDNAME, __func__);
1777 
1778 	cookie = probe_irq_on();
1779 
1780 	/*
1781 	 * What I try to do here is trigger an ALLOC_INT. This is done
1782 	 * by allocating a small chunk of memory, which will give an interrupt
1783 	 * when done.
1784 	 */
1785 	/* enable ALLOCation interrupts ONLY */
1786 	SMC_SELECT_BANK(lp, 2);
1787 	SMC_SET_INT_MASK(lp, IM_ALLOC_INT);
1788 
1789 	/*
1790 	 * Allocate 512 bytes of memory.  Note that the chip was just
1791 	 * reset so all the memory is available
1792 	 */
1793 	SMC_SET_MMU_CMD(lp, MC_ALLOC | 1);
1794 
1795 	/*
1796 	 * Wait until positive that the interrupt has been generated
1797 	 */
1798 	do {
1799 		int int_status;
1800 		udelay(10);
1801 		int_status = SMC_GET_INT(lp);
1802 		if (int_status & IM_ALLOC_INT)
1803 			break;		/* got the interrupt */
1804 	} while (--timeout);
1805 
1806 	/*
1807 	 * there is really nothing that I can do here if timeout fails,
1808 	 * as autoirq_report will return a 0 anyway, which is what I
1809 	 * want in this case.   Plus, the clean up is needed in both
1810 	 * cases.
1811 	 */
1812 
1813 	/* and disable all interrupts again */
1814 	SMC_SET_INT_MASK(lp, 0);
1815 
1816 	/* and return what I found */
1817 	return probe_irq_off(cookie);
1818 }
1819 
1820 /*
1821  * Function: smc_probe(unsigned long ioaddr)
1822  *
1823  * Purpose:
1824  *	Tests to see if a given ioaddr points to an SMC91x chip.
1825  *	Returns a 0 on success
1826  *
1827  * Algorithm:
1828  *	(1) see if the high byte of BANK_SELECT is 0x33
1829  * 	(2) compare the ioaddr with the base register's address
1830  *	(3) see if I recognize the chip ID in the appropriate register
1831  *
1832  * Here I do typical initialization tasks.
1833  *
1834  * o  Initialize the structure if needed
1835  * o  print out my vanity message if not done so already
1836  * o  print out what type of hardware is detected
1837  * o  print out the ethernet address
1838  * o  find the IRQ
1839  * o  set up my private data
1840  * o  configure the dev structure with my subroutines
1841  * o  actually GRAB the irq.
1842  * o  GRAB the region
1843  */
1844 static int smc_probe(struct net_device *dev, void __iomem *ioaddr,
1845 		     unsigned long irq_flags)
1846 {
1847 	struct smc_local *lp = netdev_priv(dev);
1848 	int retval;
1849 	unsigned int val, revision_register;
1850 	const char *version_string;
1851 	u8 addr[ETH_ALEN];
1852 
1853 	DBG(2, dev, "%s: %s\n", CARDNAME, __func__);
1854 
1855 	/* First, see if the high byte is 0x33 */
1856 	val = SMC_CURRENT_BANK(lp);
1857 	DBG(2, dev, "%s: bank signature probe returned 0x%04x\n",
1858 	    CARDNAME, val);
1859 	if ((val & 0xFF00) != 0x3300) {
1860 		if ((val & 0xFF) == 0x33) {
1861 			netdev_warn(dev,
1862 				    "%s: Detected possible byte-swapped interface at IOADDR %p\n",
1863 				    CARDNAME, ioaddr);
1864 		}
1865 		retval = -ENODEV;
1866 		goto err_out;
1867 	}
1868 
1869 	/*
1870 	 * The above MIGHT indicate a device, but I need to write to
1871 	 * further test this.
1872 	 */
1873 	SMC_SELECT_BANK(lp, 0);
1874 	val = SMC_CURRENT_BANK(lp);
1875 	if ((val & 0xFF00) != 0x3300) {
1876 		retval = -ENODEV;
1877 		goto err_out;
1878 	}
1879 
1880 	/*
1881 	 * well, we've already written once, so hopefully another
1882 	 * time won't hurt.  This time, I need to switch the bank
1883 	 * register to bank 1, so I can access the base address
1884 	 * register
1885 	 */
1886 	SMC_SELECT_BANK(lp, 1);
1887 	val = SMC_GET_BASE(lp);
1888 	val = ((val & 0x1F00) >> 3) << SMC_IO_SHIFT;
1889 	if (((unsigned long)ioaddr & (0x3e0 << SMC_IO_SHIFT)) != val) {
1890 		netdev_warn(dev, "%s: IOADDR %p doesn't match configuration (%x).\n",
1891 			    CARDNAME, ioaddr, val);
1892 	}
1893 
1894 	/*
1895 	 * check if the revision register is something that I
1896 	 * recognize.  These might need to be added to later,
1897 	 * as future revisions could be added.
1898 	 */
1899 	SMC_SELECT_BANK(lp, 3);
1900 	revision_register = SMC_GET_REV(lp);
1901 	DBG(2, dev, "%s: revision = 0x%04x\n", CARDNAME, revision_register);
1902 	version_string = chip_ids[ (revision_register >> 4) & 0xF];
1903 	if (!version_string || (revision_register & 0xff00) != 0x3300) {
1904 		/* I don't recognize this chip, so... */
1905 		netdev_warn(dev, "%s: IO %p: Unrecognized revision register 0x%04x, Contact author.\n",
1906 			    CARDNAME, ioaddr, revision_register);
1907 
1908 		retval = -ENODEV;
1909 		goto err_out;
1910 	}
1911 
1912 	/* At this point I'll assume that the chip is an SMC91x. */
1913 	pr_info_once("%s\n", version);
1914 
1915 	/* fill in some of the fields */
1916 	dev->base_addr = (unsigned long)ioaddr;
1917 	lp->base = ioaddr;
1918 	lp->version = revision_register & 0xff;
1919 	spin_lock_init(&lp->lock);
1920 
1921 	/* Get the MAC address */
1922 	SMC_SELECT_BANK(lp, 1);
1923 	SMC_GET_MAC_ADDR(lp, addr);
1924 	eth_hw_addr_set(dev, addr);
1925 
1926 	/* now, reset the chip, and put it into a known state */
1927 	smc_reset(dev);
1928 
1929 	/*
1930 	 * If dev->irq is 0, then the device has to be banged on to see
1931 	 * what the IRQ is.
1932 	 *
1933 	 * This banging doesn't always detect the IRQ, for unknown reasons.
1934 	 * a workaround is to reset the chip and try again.
1935 	 *
1936 	 * Interestingly, the DOS packet driver *SETS* the IRQ on the card to
1937 	 * be what is requested on the command line.   I don't do that, mostly
1938 	 * because the card that I have uses a non-standard method of accessing
1939 	 * the IRQs, and because this _should_ work in most configurations.
1940 	 *
1941 	 * Specifying an IRQ is done with the assumption that the user knows
1942 	 * what (s)he is doing.  No checking is done!!!!
1943 	 */
1944 	if (dev->irq < 1) {
1945 		int trials;
1946 
1947 		trials = 3;
1948 		while (trials--) {
1949 			dev->irq = smc_findirq(lp);
1950 			if (dev->irq)
1951 				break;
1952 			/* kick the card and try again */
1953 			smc_reset(dev);
1954 		}
1955 	}
1956 	if (dev->irq == 0) {
1957 		netdev_warn(dev, "Couldn't autodetect your IRQ. Use irq=xx.\n");
1958 		retval = -ENODEV;
1959 		goto err_out;
1960 	}
1961 	dev->irq = irq_canonicalize(dev->irq);
1962 
1963 	dev->watchdog_timeo = msecs_to_jiffies(watchdog);
1964 	dev->netdev_ops = &smc_netdev_ops;
1965 	dev->ethtool_ops = &smc_ethtool_ops;
1966 
1967 	tasklet_setup(&lp->tx_task, smc_hardware_send_pkt);
1968 	INIT_WORK(&lp->phy_configure, smc_phy_configure);
1969 	lp->dev = dev;
1970 	lp->mii.phy_id_mask = 0x1f;
1971 	lp->mii.reg_num_mask = 0x1f;
1972 	lp->mii.force_media = 0;
1973 	lp->mii.full_duplex = 0;
1974 	lp->mii.dev = dev;
1975 	lp->mii.mdio_read = smc_phy_read;
1976 	lp->mii.mdio_write = smc_phy_write;
1977 
1978 	/*
1979 	 * Locate the phy, if any.
1980 	 */
1981 	if (lp->version >= (CHIP_91100 << 4))
1982 		smc_phy_detect(dev);
1983 
1984 	/* then shut everything down to save power */
1985 	smc_shutdown(dev);
1986 	smc_phy_powerdown(dev);
1987 
1988 	/* Set default parameters */
1989 	lp->msg_enable = NETIF_MSG_LINK;
1990 	lp->ctl_rfduplx = 0;
1991 	lp->ctl_rspeed = 10;
1992 
1993 	if (lp->version >= (CHIP_91100 << 4)) {
1994 		lp->ctl_rfduplx = 1;
1995 		lp->ctl_rspeed = 100;
1996 	}
1997 
1998 	/* Grab the IRQ */
1999 	retval = request_irq(dev->irq, smc_interrupt, irq_flags, dev->name, dev);
2000 	if (retval)
2001 		goto err_out;
2002 
2003 #ifdef CONFIG_ARCH_PXA
2004 #  ifdef SMC_USE_PXA_DMA
2005 	lp->cfg.flags |= SMC91X_USE_DMA;
2006 #  endif
2007 	if (lp->cfg.flags & SMC91X_USE_DMA) {
2008 		dma_cap_mask_t mask;
2009 
2010 		dma_cap_zero(mask);
2011 		dma_cap_set(DMA_SLAVE, mask);
2012 		lp->dma_chan = dma_request_channel(mask, NULL, NULL);
2013 	}
2014 #endif
2015 
2016 	retval = register_netdev(dev);
2017 	if (retval == 0) {
2018 		/* now, print out the card info, in a short format.. */
2019 		netdev_info(dev, "%s (rev %d) at %p IRQ %d",
2020 			    version_string, revision_register & 0x0f,
2021 			    lp->base, dev->irq);
2022 
2023 		if (lp->dma_chan)
2024 			pr_cont(" DMA %p", lp->dma_chan);
2025 
2026 		pr_cont("%s%s\n",
2027 			lp->cfg.flags & SMC91X_NOWAIT ? " [nowait]" : "",
2028 			THROTTLE_TX_PKTS ? " [throttle_tx]" : "");
2029 
2030 		if (!is_valid_ether_addr(dev->dev_addr)) {
2031 			netdev_warn(dev, "Invalid ethernet MAC address. Please set using ifconfig\n");
2032 		} else {
2033 			/* Print the Ethernet address */
2034 			netdev_info(dev, "Ethernet addr: %pM\n",
2035 				    dev->dev_addr);
2036 		}
2037 
2038 		if (lp->phy_type == 0) {
2039 			PRINTK(dev, "No PHY found\n");
2040 		} else if ((lp->phy_type & 0xfffffff0) == 0x0016f840) {
2041 			PRINTK(dev, "PHY LAN83C183 (LAN91C111 Internal)\n");
2042 		} else if ((lp->phy_type & 0xfffffff0) == 0x02821c50) {
2043 			PRINTK(dev, "PHY LAN83C180\n");
2044 		}
2045 	}
2046 
2047 err_out:
2048 #ifdef CONFIG_ARCH_PXA
2049 	if (retval && lp->dma_chan)
2050 		dma_release_channel(lp->dma_chan);
2051 #endif
2052 	return retval;
2053 }
2054 
2055 static int smc_enable_device(struct platform_device *pdev)
2056 {
2057 	struct net_device *ndev = platform_get_drvdata(pdev);
2058 	struct smc_local *lp = netdev_priv(ndev);
2059 	unsigned long flags;
2060 	unsigned char ecor, ecsr;
2061 	void __iomem *addr;
2062 	struct resource * res;
2063 
2064 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2065 	if (!res)
2066 		return 0;
2067 
2068 	/*
2069 	 * Map the attribute space.  This is overkill, but clean.
2070 	 */
2071 	addr = ioremap(res->start, ATTRIB_SIZE);
2072 	if (!addr)
2073 		return -ENOMEM;
2074 
2075 	/*
2076 	 * Reset the device.  We must disable IRQs around this
2077 	 * since a reset causes the IRQ line become active.
2078 	 */
2079 	local_irq_save(flags);
2080 	ecor = readb(addr + (ECOR << SMC_IO_SHIFT)) & ~ECOR_RESET;
2081 	writeb(ecor | ECOR_RESET, addr + (ECOR << SMC_IO_SHIFT));
2082 	readb(addr + (ECOR << SMC_IO_SHIFT));
2083 
2084 	/*
2085 	 * Wait 100us for the chip to reset.
2086 	 */
2087 	udelay(100);
2088 
2089 	/*
2090 	 * The device will ignore all writes to the enable bit while
2091 	 * reset is asserted, even if the reset bit is cleared in the
2092 	 * same write.  Must clear reset first, then enable the device.
2093 	 */
2094 	writeb(ecor, addr + (ECOR << SMC_IO_SHIFT));
2095 	writeb(ecor | ECOR_ENABLE, addr + (ECOR << SMC_IO_SHIFT));
2096 
2097 	/*
2098 	 * Set the appropriate byte/word mode.
2099 	 */
2100 	ecsr = readb(addr + (ECSR << SMC_IO_SHIFT)) & ~ECSR_IOIS8;
2101 	if (!SMC_16BIT(lp))
2102 		ecsr |= ECSR_IOIS8;
2103 	writeb(ecsr, addr + (ECSR << SMC_IO_SHIFT));
2104 	local_irq_restore(flags);
2105 
2106 	iounmap(addr);
2107 
2108 	/*
2109 	 * Wait for the chip to wake up.  We could poll the control
2110 	 * register in the main register space, but that isn't mapped
2111 	 * yet.  We know this is going to take 750us.
2112 	 */
2113 	msleep(1);
2114 
2115 	return 0;
2116 }
2117 
2118 static int smc_request_attrib(struct platform_device *pdev,
2119 			      struct net_device *ndev)
2120 {
2121 	struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2122 	struct smc_local *lp __maybe_unused = netdev_priv(ndev);
2123 
2124 	if (!res)
2125 		return 0;
2126 
2127 	if (!request_mem_region(res->start, ATTRIB_SIZE, CARDNAME))
2128 		return -EBUSY;
2129 
2130 	return 0;
2131 }
2132 
2133 static void smc_release_attrib(struct platform_device *pdev,
2134 			       struct net_device *ndev)
2135 {
2136 	struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2137 	struct smc_local *lp __maybe_unused = netdev_priv(ndev);
2138 
2139 	if (res)
2140 		release_mem_region(res->start, ATTRIB_SIZE);
2141 }
2142 
2143 static inline void smc_request_datacs(struct platform_device *pdev, struct net_device *ndev)
2144 {
2145 	if (SMC_CAN_USE_DATACS) {
2146 		struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2147 		struct smc_local *lp = netdev_priv(ndev);
2148 
2149 		if (!res)
2150 			return;
2151 
2152 		if(!request_mem_region(res->start, SMC_DATA_EXTENT, CARDNAME)) {
2153 			netdev_info(ndev, "%s: failed to request datacs memory region.\n",
2154 				    CARDNAME);
2155 			return;
2156 		}
2157 
2158 		lp->datacs = ioremap(res->start, SMC_DATA_EXTENT);
2159 	}
2160 }
2161 
2162 static void smc_release_datacs(struct platform_device *pdev, struct net_device *ndev)
2163 {
2164 	if (SMC_CAN_USE_DATACS) {
2165 		struct smc_local *lp = netdev_priv(ndev);
2166 		struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2167 
2168 		if (lp->datacs)
2169 			iounmap(lp->datacs);
2170 
2171 		lp->datacs = NULL;
2172 
2173 		if (res)
2174 			release_mem_region(res->start, SMC_DATA_EXTENT);
2175 	}
2176 }
2177 
2178 static const struct acpi_device_id smc91x_acpi_match[] = {
2179 	{ "LNRO0003", 0 },
2180 	{ }
2181 };
2182 MODULE_DEVICE_TABLE(acpi, smc91x_acpi_match);
2183 
2184 #if IS_BUILTIN(CONFIG_OF)
2185 static const struct of_device_id smc91x_match[] = {
2186 	{ .compatible = "smsc,lan91c94", },
2187 	{ .compatible = "smsc,lan91c111", },
2188 	{},
2189 };
2190 MODULE_DEVICE_TABLE(of, smc91x_match);
2191 
2192 /**
2193  * try_toggle_control_gpio - configure a gpio if it exists
2194  * @dev: net device
2195  * @desc: where to store the GPIO descriptor, if it exists
2196  * @name: name of the GPIO in DT
2197  * @index: index of the GPIO in DT
2198  * @value: set the GPIO to this value
2199  * @nsdelay: delay before setting the GPIO
2200  */
2201 static int try_toggle_control_gpio(struct device *dev,
2202 				   struct gpio_desc **desc,
2203 				   const char *name, int index,
2204 				   int value, unsigned int nsdelay)
2205 {
2206 	struct gpio_desc *gpio;
2207 	enum gpiod_flags flags = value ? GPIOD_OUT_LOW : GPIOD_OUT_HIGH;
2208 
2209 	gpio = devm_gpiod_get_index_optional(dev, name, index, flags);
2210 	if (IS_ERR(gpio))
2211 		return PTR_ERR(gpio);
2212 
2213 	if (gpio) {
2214 		if (nsdelay)
2215 			usleep_range(nsdelay, 2 * nsdelay);
2216 		gpiod_set_value_cansleep(gpio, value);
2217 	}
2218 	*desc = gpio;
2219 
2220 	return 0;
2221 }
2222 #endif
2223 
2224 /*
2225  * smc_init(void)
2226  *   Input parameters:
2227  *	dev->base_addr == 0, try to find all possible locations
2228  *	dev->base_addr > 0x1ff, this is the address to check
2229  *	dev->base_addr == <anything else>, return failure code
2230  *
2231  *   Output:
2232  *	0 --> there is a device
2233  *	anything else, error
2234  */
2235 static int smc_drv_probe(struct platform_device *pdev)
2236 {
2237 	struct smc91x_platdata *pd = dev_get_platdata(&pdev->dev);
2238 	const struct of_device_id *match = NULL;
2239 	struct smc_local *lp;
2240 	struct net_device *ndev;
2241 	struct resource *res;
2242 	unsigned int __iomem *addr;
2243 	unsigned long irq_flags = SMC_IRQ_FLAGS;
2244 	unsigned long irq_resflags;
2245 	int ret;
2246 
2247 	ndev = alloc_etherdev(sizeof(struct smc_local));
2248 	if (!ndev) {
2249 		ret = -ENOMEM;
2250 		goto out;
2251 	}
2252 	SET_NETDEV_DEV(ndev, &pdev->dev);
2253 
2254 	/* get configuration from platform data, only allow use of
2255 	 * bus width if both SMC_CAN_USE_xxx and SMC91X_USE_xxx are set.
2256 	 */
2257 
2258 	lp = netdev_priv(ndev);
2259 	lp->cfg.flags = 0;
2260 
2261 	if (pd) {
2262 		memcpy(&lp->cfg, pd, sizeof(lp->cfg));
2263 		lp->io_shift = SMC91X_IO_SHIFT(lp->cfg.flags);
2264 
2265 		if (!SMC_8BIT(lp) && !SMC_16BIT(lp)) {
2266 			dev_err(&pdev->dev,
2267 				"at least one of 8-bit or 16-bit access support is required.\n");
2268 			ret = -ENXIO;
2269 			goto out_free_netdev;
2270 		}
2271 	}
2272 
2273 #if IS_BUILTIN(CONFIG_OF)
2274 	match = of_match_device(of_match_ptr(smc91x_match), &pdev->dev);
2275 	if (match) {
2276 		u32 val;
2277 
2278 		/* Optional pwrdwn GPIO configured? */
2279 		ret = try_toggle_control_gpio(&pdev->dev, &lp->power_gpio,
2280 					      "power", 0, 0, 100);
2281 		if (ret)
2282 			goto out_free_netdev;
2283 
2284 		/*
2285 		 * Optional reset GPIO configured? Minimum 100 ns reset needed
2286 		 * according to LAN91C96 datasheet page 14.
2287 		 */
2288 		ret = try_toggle_control_gpio(&pdev->dev, &lp->reset_gpio,
2289 					      "reset", 0, 0, 100);
2290 		if (ret)
2291 			goto out_free_netdev;
2292 
2293 		/*
2294 		 * Need to wait for optional EEPROM to load, max 750 us according
2295 		 * to LAN91C96 datasheet page 55.
2296 		 */
2297 		if (lp->reset_gpio)
2298 			usleep_range(750, 1000);
2299 
2300 		/* Combination of IO widths supported, default to 16-bit */
2301 		if (!device_property_read_u32(&pdev->dev, "reg-io-width",
2302 					      &val)) {
2303 			if (val & 1)
2304 				lp->cfg.flags |= SMC91X_USE_8BIT;
2305 			if ((val == 0) || (val & 2))
2306 				lp->cfg.flags |= SMC91X_USE_16BIT;
2307 			if (val & 4)
2308 				lp->cfg.flags |= SMC91X_USE_32BIT;
2309 		} else {
2310 			lp->cfg.flags |= SMC91X_USE_16BIT;
2311 		}
2312 		if (!device_property_read_u32(&pdev->dev, "reg-shift",
2313 					      &val))
2314 			lp->io_shift = val;
2315 		lp->cfg.pxa_u16_align4 =
2316 			device_property_read_bool(&pdev->dev, "pxa-u16-align4");
2317 	}
2318 #endif
2319 
2320 	if (!pd && !match) {
2321 		lp->cfg.flags |= (SMC_CAN_USE_8BIT)  ? SMC91X_USE_8BIT  : 0;
2322 		lp->cfg.flags |= (SMC_CAN_USE_16BIT) ? SMC91X_USE_16BIT : 0;
2323 		lp->cfg.flags |= (SMC_CAN_USE_32BIT) ? SMC91X_USE_32BIT : 0;
2324 		lp->cfg.flags |= (nowait) ? SMC91X_NOWAIT : 0;
2325 	}
2326 
2327 	if (!lp->cfg.leda && !lp->cfg.ledb) {
2328 		lp->cfg.leda = RPC_LSA_DEFAULT;
2329 		lp->cfg.ledb = RPC_LSB_DEFAULT;
2330 	}
2331 
2332 	ndev->dma = (unsigned char)-1;
2333 
2334 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2335 	if (!res)
2336 		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2337 	if (!res) {
2338 		ret = -ENODEV;
2339 		goto out_free_netdev;
2340 	}
2341 
2342 
2343 	if (!request_mem_region(res->start, SMC_IO_EXTENT, CARDNAME)) {
2344 		ret = -EBUSY;
2345 		goto out_free_netdev;
2346 	}
2347 
2348 	ndev->irq = platform_get_irq(pdev, 0);
2349 	if (ndev->irq < 0) {
2350 		ret = ndev->irq;
2351 		goto out_release_io;
2352 	}
2353 	/*
2354 	 * If this platform does not specify any special irqflags, or if
2355 	 * the resource supplies a trigger, override the irqflags with
2356 	 * the trigger flags from the resource.
2357 	 */
2358 	irq_resflags = irq_get_trigger_type(ndev->irq);
2359 	if (irq_flags == -1 || irq_resflags & IRQF_TRIGGER_MASK)
2360 		irq_flags = irq_resflags & IRQF_TRIGGER_MASK;
2361 
2362 	ret = smc_request_attrib(pdev, ndev);
2363 	if (ret)
2364 		goto out_release_io;
2365 #if defined(CONFIG_ASSABET_NEPONSET)
2366 	if (machine_is_assabet() && machine_has_neponset())
2367 		neponset_ncr_set(NCR_ENET_OSC_EN);
2368 #endif
2369 	platform_set_drvdata(pdev, ndev);
2370 	ret = smc_enable_device(pdev);
2371 	if (ret)
2372 		goto out_release_attrib;
2373 
2374 	addr = ioremap(res->start, SMC_IO_EXTENT);
2375 	if (!addr) {
2376 		ret = -ENOMEM;
2377 		goto out_release_attrib;
2378 	}
2379 
2380 #ifdef CONFIG_ARCH_PXA
2381 	{
2382 		struct smc_local *lp = netdev_priv(ndev);
2383 		lp->device = &pdev->dev;
2384 		lp->physaddr = res->start;
2385 
2386 	}
2387 #endif
2388 
2389 	ret = smc_probe(ndev, addr, irq_flags);
2390 	if (ret != 0)
2391 		goto out_iounmap;
2392 
2393 	smc_request_datacs(pdev, ndev);
2394 
2395 	return 0;
2396 
2397  out_iounmap:
2398 	iounmap(addr);
2399  out_release_attrib:
2400 	smc_release_attrib(pdev, ndev);
2401  out_release_io:
2402 	release_mem_region(res->start, SMC_IO_EXTENT);
2403  out_free_netdev:
2404 	free_netdev(ndev);
2405  out:
2406 	pr_info("%s: not found (%d).\n", CARDNAME, ret);
2407 
2408 	return ret;
2409 }
2410 
2411 static void smc_drv_remove(struct platform_device *pdev)
2412 {
2413 	struct net_device *ndev = platform_get_drvdata(pdev);
2414 	struct smc_local *lp = netdev_priv(ndev);
2415 	struct resource *res;
2416 
2417 	unregister_netdev(ndev);
2418 
2419 	free_irq(ndev->irq, ndev);
2420 
2421 #ifdef CONFIG_ARCH_PXA
2422 	if (lp->dma_chan)
2423 		dma_release_channel(lp->dma_chan);
2424 #endif
2425 	iounmap(lp->base);
2426 
2427 	smc_release_datacs(pdev,ndev);
2428 	smc_release_attrib(pdev,ndev);
2429 
2430 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2431 	if (!res)
2432 		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2433 	release_mem_region(res->start, SMC_IO_EXTENT);
2434 
2435 	free_netdev(ndev);
2436 }
2437 
2438 static int smc_drv_suspend(struct device *dev)
2439 {
2440 	struct net_device *ndev = dev_get_drvdata(dev);
2441 
2442 	if (ndev) {
2443 		if (netif_running(ndev)) {
2444 			netif_device_detach(ndev);
2445 			smc_shutdown(ndev);
2446 			smc_phy_powerdown(ndev);
2447 		}
2448 	}
2449 	return 0;
2450 }
2451 
2452 static int smc_drv_resume(struct device *dev)
2453 {
2454 	struct platform_device *pdev = to_platform_device(dev);
2455 	struct net_device *ndev = platform_get_drvdata(pdev);
2456 
2457 	if (ndev) {
2458 		struct smc_local *lp = netdev_priv(ndev);
2459 		smc_enable_device(pdev);
2460 		if (netif_running(ndev)) {
2461 			smc_reset(ndev);
2462 			smc_enable(ndev);
2463 			if (lp->phy_type != 0)
2464 				smc_phy_configure(&lp->phy_configure);
2465 			netif_device_attach(ndev);
2466 		}
2467 	}
2468 	return 0;
2469 }
2470 
2471 static const struct dev_pm_ops smc_drv_pm_ops = {
2472 	.suspend	= smc_drv_suspend,
2473 	.resume		= smc_drv_resume,
2474 };
2475 
2476 static struct platform_driver smc_driver = {
2477 	.probe		= smc_drv_probe,
2478 	.remove_new	= smc_drv_remove,
2479 	.driver		= {
2480 		.name	= CARDNAME,
2481 		.pm	= &smc_drv_pm_ops,
2482 		.of_match_table   = of_match_ptr(smc91x_match),
2483 		.acpi_match_table = smc91x_acpi_match,
2484 	},
2485 };
2486 
2487 module_platform_driver(smc_driver);
2488