xref: /linux/drivers/net/ethernet/smsc/epic100.c (revision b43ab901d671e3e3cad425ea5e9a3c74e266dcdd)
1 /* epic100.c: A SMC 83c170 EPIC/100 Fast Ethernet driver for Linux. */
2 /*
3 	Written/copyright 1997-2001 by Donald Becker.
4 
5 	This software may be used and distributed according to the terms of
6 	the GNU General Public License (GPL), incorporated herein by reference.
7 	Drivers based on or derived from this code fall under the GPL and must
8 	retain the authorship, copyright and license notice.  This file is not
9 	a complete program and may only be used when the entire operating
10 	system is licensed under the GPL.
11 
12 	This driver is for the SMC83c170/175 "EPIC" series, as used on the
13 	SMC EtherPower II 9432 PCI adapter, and several CardBus cards.
14 
15 	The author may be reached as becker@scyld.com, or C/O
16 	Scyld Computing Corporation
17 	410 Severn Ave., Suite 210
18 	Annapolis MD 21403
19 
20 	Information and updates available at
21 	http://www.scyld.com/network/epic100.html
22 	[this link no longer provides anything useful -jgarzik]
23 
24 	---------------------------------------------------------------------
25 
26 */
27 
28 #define DRV_NAME        "epic100"
29 #define DRV_VERSION     "2.1"
30 #define DRV_RELDATE     "Sept 11, 2006"
31 
32 /* The user-configurable values.
33    These may be modified when a driver module is loaded.*/
34 
35 static int debug = 1;			/* 1 normal messages, 0 quiet .. 7 verbose. */
36 
37 /* Used to pass the full-duplex flag, etc. */
38 #define MAX_UNITS 8		/* More are supported, limit only on options */
39 static int options[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
40 static int full_duplex[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
41 
42 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
43    Setting to > 1518 effectively disables this feature. */
44 static int rx_copybreak;
45 
46 /* Operational parameters that are set at compile time. */
47 
48 /* Keep the ring sizes a power of two for operational efficiency.
49    The compiler will convert <unsigned>'%'<2^N> into a bit mask.
50    Making the Tx ring too large decreases the effectiveness of channel
51    bonding and packet priority.
52    There are no ill effects from too-large receive rings. */
53 #define TX_RING_SIZE	256
54 #define TX_QUEUE_LEN	240		/* Limit ring entries actually used.  */
55 #define RX_RING_SIZE	256
56 #define TX_TOTAL_SIZE	TX_RING_SIZE*sizeof(struct epic_tx_desc)
57 #define RX_TOTAL_SIZE	RX_RING_SIZE*sizeof(struct epic_rx_desc)
58 
59 /* Operational parameters that usually are not changed. */
60 /* Time in jiffies before concluding the transmitter is hung. */
61 #define TX_TIMEOUT  (2*HZ)
62 
63 #define PKT_BUF_SZ		1536			/* Size of each temporary Rx buffer.*/
64 
65 /* Bytes transferred to chip before transmission starts. */
66 /* Initial threshold, increased on underflow, rounded down to 4 byte units. */
67 #define TX_FIFO_THRESH 256
68 #define RX_FIFO_THRESH 1		/* 0-3, 0==32, 64,96, or 3==128 bytes  */
69 
70 #include <linux/module.h>
71 #include <linux/kernel.h>
72 #include <linux/string.h>
73 #include <linux/timer.h>
74 #include <linux/errno.h>
75 #include <linux/ioport.h>
76 #include <linux/interrupt.h>
77 #include <linux/pci.h>
78 #include <linux/delay.h>
79 #include <linux/netdevice.h>
80 #include <linux/etherdevice.h>
81 #include <linux/skbuff.h>
82 #include <linux/init.h>
83 #include <linux/spinlock.h>
84 #include <linux/ethtool.h>
85 #include <linux/mii.h>
86 #include <linux/crc32.h>
87 #include <linux/bitops.h>
88 #include <asm/io.h>
89 #include <asm/uaccess.h>
90 #include <asm/byteorder.h>
91 
92 /* These identify the driver base version and may not be removed. */
93 static char version[] __devinitdata =
94 DRV_NAME ".c:v1.11 1/7/2001 Written by Donald Becker <becker@scyld.com>\n";
95 static char version2[] __devinitdata =
96 "  (unofficial 2.4.x kernel port, version " DRV_VERSION ", " DRV_RELDATE ")\n";
97 
98 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
99 MODULE_DESCRIPTION("SMC 83c170 EPIC series Ethernet driver");
100 MODULE_LICENSE("GPL");
101 
102 module_param(debug, int, 0);
103 module_param(rx_copybreak, int, 0);
104 module_param_array(options, int, NULL, 0);
105 module_param_array(full_duplex, int, NULL, 0);
106 MODULE_PARM_DESC(debug, "EPIC/100 debug level (0-5)");
107 MODULE_PARM_DESC(options, "EPIC/100: Bits 0-3: media type, bit 4: full duplex");
108 MODULE_PARM_DESC(rx_copybreak, "EPIC/100 copy breakpoint for copy-only-tiny-frames");
109 MODULE_PARM_DESC(full_duplex, "EPIC/100 full duplex setting(s) (1)");
110 
111 /*
112 				Theory of Operation
113 
114 I. Board Compatibility
115 
116 This device driver is designed for the SMC "EPIC/100", the SMC
117 single-chip Ethernet controllers for PCI.  This chip is used on
118 the SMC EtherPower II boards.
119 
120 II. Board-specific settings
121 
122 PCI bus devices are configured by the system at boot time, so no jumpers
123 need to be set on the board.  The system BIOS will assign the
124 PCI INTA signal to a (preferably otherwise unused) system IRQ line.
125 Note: Kernel versions earlier than 1.3.73 do not support shared PCI
126 interrupt lines.
127 
128 III. Driver operation
129 
130 IIIa. Ring buffers
131 
132 IVb. References
133 
134 http://www.smsc.com/media/Downloads_Public/discontinued/83c171.pdf
135 http://www.smsc.com/media/Downloads_Public/discontinued/83c175.pdf
136 http://scyld.com/expert/NWay.html
137 http://www.national.com/pf/DP/DP83840A.html
138 
139 IVc. Errata
140 
141 */
142 
143 
144 enum chip_capability_flags { MII_PWRDWN=1, TYPE2_INTR=2, NO_MII=4 };
145 
146 #define EPIC_TOTAL_SIZE 0x100
147 #define USE_IO_OPS 1
148 
149 typedef enum {
150 	SMSC_83C170_0,
151 	SMSC_83C170,
152 	SMSC_83C175,
153 } chip_t;
154 
155 
156 struct epic_chip_info {
157 	const char *name;
158         int drv_flags;                          /* Driver use, intended as capability flags. */
159 };
160 
161 
162 /* indexed by chip_t */
163 static const struct epic_chip_info pci_id_tbl[] = {
164 	{ "SMSC EPIC/100 83c170",	TYPE2_INTR | NO_MII | MII_PWRDWN },
165 	{ "SMSC EPIC/100 83c170",	TYPE2_INTR },
166 	{ "SMSC EPIC/C 83c175",		TYPE2_INTR | MII_PWRDWN },
167 };
168 
169 
170 static DEFINE_PCI_DEVICE_TABLE(epic_pci_tbl) = {
171 	{ 0x10B8, 0x0005, 0x1092, 0x0AB4, 0, 0, SMSC_83C170_0 },
172 	{ 0x10B8, 0x0005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, SMSC_83C170 },
173 	{ 0x10B8, 0x0006, PCI_ANY_ID, PCI_ANY_ID,
174 	  PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, SMSC_83C175 },
175 	{ 0,}
176 };
177 MODULE_DEVICE_TABLE (pci, epic_pci_tbl);
178 
179 
180 #ifndef USE_IO_OPS
181 #undef inb
182 #undef inw
183 #undef inl
184 #undef outb
185 #undef outw
186 #undef outl
187 #define inb readb
188 #define inw readw
189 #define inl readl
190 #define outb writeb
191 #define outw writew
192 #define outl writel
193 #endif
194 
195 /* Offsets to registers, using the (ugh) SMC names. */
196 enum epic_registers {
197   COMMAND=0, INTSTAT=4, INTMASK=8, GENCTL=0x0C, NVCTL=0x10, EECTL=0x14,
198   PCIBurstCnt=0x18,
199   TEST1=0x1C, CRCCNT=0x20, ALICNT=0x24, MPCNT=0x28,	/* Rx error counters. */
200   MIICtrl=0x30, MIIData=0x34, MIICfg=0x38,
201   LAN0=64,						/* MAC address. */
202   MC0=80,						/* Multicast filter table. */
203   RxCtrl=96, TxCtrl=112, TxSTAT=0x74,
204   PRxCDAR=0x84, RxSTAT=0xA4, EarlyRx=0xB0, PTxCDAR=0xC4, TxThresh=0xDC,
205 };
206 
207 /* Interrupt register bits, using my own meaningful names. */
208 enum IntrStatus {
209 	TxIdle=0x40000, RxIdle=0x20000, IntrSummary=0x010000,
210 	PCIBusErr170=0x7000, PCIBusErr175=0x1000, PhyEvent175=0x8000,
211 	RxStarted=0x0800, RxEarlyWarn=0x0400, CntFull=0x0200, TxUnderrun=0x0100,
212 	TxEmpty=0x0080, TxDone=0x0020, RxError=0x0010,
213 	RxOverflow=0x0008, RxFull=0x0004, RxHeader=0x0002, RxDone=0x0001,
214 };
215 enum CommandBits {
216 	StopRx=1, StartRx=2, TxQueued=4, RxQueued=8,
217 	StopTxDMA=0x20, StopRxDMA=0x40, RestartTx=0x80,
218 };
219 
220 #define EpicRemoved	0xffffffff	/* Chip failed or removed (CardBus) */
221 
222 #define EpicNapiEvent	(TxEmpty | TxDone | \
223 			 RxDone | RxStarted | RxEarlyWarn | RxOverflow | RxFull)
224 #define EpicNormalEvent	(0x0000ffff & ~EpicNapiEvent)
225 
226 static const u16 media2miictl[16] = {
227 	0, 0x0C00, 0x0C00, 0x2000,  0x0100, 0x2100, 0, 0,
228 	0, 0, 0, 0,  0, 0, 0, 0 };
229 
230 /*
231  * The EPIC100 Rx and Tx buffer descriptors.  Note that these
232  * really ARE host-endian; it's not a misannotation.  We tell
233  * the card to byteswap them internally on big-endian hosts -
234  * look for #ifdef __BIG_ENDIAN in epic_open().
235  */
236 
237 struct epic_tx_desc {
238 	u32 txstatus;
239 	u32 bufaddr;
240 	u32 buflength;
241 	u32 next;
242 };
243 
244 struct epic_rx_desc {
245 	u32 rxstatus;
246 	u32 bufaddr;
247 	u32 buflength;
248 	u32 next;
249 };
250 
251 enum desc_status_bits {
252 	DescOwn=0x8000,
253 };
254 
255 #define PRIV_ALIGN	15 	/* Required alignment mask */
256 struct epic_private {
257 	struct epic_rx_desc *rx_ring;
258 	struct epic_tx_desc *tx_ring;
259 	/* The saved address of a sent-in-place packet/buffer, for skfree(). */
260 	struct sk_buff* tx_skbuff[TX_RING_SIZE];
261 	/* The addresses of receive-in-place skbuffs. */
262 	struct sk_buff* rx_skbuff[RX_RING_SIZE];
263 
264 	dma_addr_t tx_ring_dma;
265 	dma_addr_t rx_ring_dma;
266 
267 	/* Ring pointers. */
268 	spinlock_t lock;				/* Group with Tx control cache line. */
269 	spinlock_t napi_lock;
270 	struct napi_struct napi;
271 	unsigned int reschedule_in_poll;
272 	unsigned int cur_tx, dirty_tx;
273 
274 	unsigned int cur_rx, dirty_rx;
275 	u32 irq_mask;
276 	unsigned int rx_buf_sz;				/* Based on MTU+slack. */
277 
278 	struct pci_dev *pci_dev;			/* PCI bus location. */
279 	int chip_id, chip_flags;
280 
281 	struct timer_list timer;			/* Media selection timer. */
282 	int tx_threshold;
283 	unsigned char mc_filter[8];
284 	signed char phys[4];				/* MII device addresses. */
285 	u16 advertising;					/* NWay media advertisement */
286 	int mii_phy_cnt;
287 	struct mii_if_info mii;
288 	unsigned int tx_full:1;				/* The Tx queue is full. */
289 	unsigned int default_port:4;		/* Last dev->if_port value. */
290 };
291 
292 static int epic_open(struct net_device *dev);
293 static int read_eeprom(long ioaddr, int location);
294 static int mdio_read(struct net_device *dev, int phy_id, int location);
295 static void mdio_write(struct net_device *dev, int phy_id, int loc, int val);
296 static void epic_restart(struct net_device *dev);
297 static void epic_timer(unsigned long data);
298 static void epic_tx_timeout(struct net_device *dev);
299 static void epic_init_ring(struct net_device *dev);
300 static netdev_tx_t epic_start_xmit(struct sk_buff *skb,
301 				   struct net_device *dev);
302 static int epic_rx(struct net_device *dev, int budget);
303 static int epic_poll(struct napi_struct *napi, int budget);
304 static irqreturn_t epic_interrupt(int irq, void *dev_instance);
305 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
306 static const struct ethtool_ops netdev_ethtool_ops;
307 static int epic_close(struct net_device *dev);
308 static struct net_device_stats *epic_get_stats(struct net_device *dev);
309 static void set_rx_mode(struct net_device *dev);
310 
311 static const struct net_device_ops epic_netdev_ops = {
312 	.ndo_open		= epic_open,
313 	.ndo_stop		= epic_close,
314 	.ndo_start_xmit		= epic_start_xmit,
315 	.ndo_tx_timeout 	= epic_tx_timeout,
316 	.ndo_get_stats		= epic_get_stats,
317 	.ndo_set_rx_mode	= set_rx_mode,
318 	.ndo_do_ioctl 		= netdev_ioctl,
319 	.ndo_change_mtu		= eth_change_mtu,
320 	.ndo_set_mac_address 	= eth_mac_addr,
321 	.ndo_validate_addr	= eth_validate_addr,
322 };
323 
324 static int __devinit epic_init_one (struct pci_dev *pdev,
325 				    const struct pci_device_id *ent)
326 {
327 	static int card_idx = -1;
328 	long ioaddr;
329 	int chip_idx = (int) ent->driver_data;
330 	int irq;
331 	struct net_device *dev;
332 	struct epic_private *ep;
333 	int i, ret, option = 0, duplex = 0;
334 	void *ring_space;
335 	dma_addr_t ring_dma;
336 
337 /* when built into the kernel, we only print version if device is found */
338 #ifndef MODULE
339 	static int printed_version;
340 	if (!printed_version++)
341 		printk(KERN_INFO "%s%s", version, version2);
342 #endif
343 
344 	card_idx++;
345 
346 	ret = pci_enable_device(pdev);
347 	if (ret)
348 		goto out;
349 	irq = pdev->irq;
350 
351 	if (pci_resource_len(pdev, 0) < EPIC_TOTAL_SIZE) {
352 		dev_err(&pdev->dev, "no PCI region space\n");
353 		ret = -ENODEV;
354 		goto err_out_disable;
355 	}
356 
357 	pci_set_master(pdev);
358 
359 	ret = pci_request_regions(pdev, DRV_NAME);
360 	if (ret < 0)
361 		goto err_out_disable;
362 
363 	ret = -ENOMEM;
364 
365 	dev = alloc_etherdev(sizeof (*ep));
366 	if (!dev) {
367 		dev_err(&pdev->dev, "no memory for eth device\n");
368 		goto err_out_free_res;
369 	}
370 	SET_NETDEV_DEV(dev, &pdev->dev);
371 
372 #ifdef USE_IO_OPS
373 	ioaddr = pci_resource_start (pdev, 0);
374 #else
375 	ioaddr = pci_resource_start (pdev, 1);
376 	ioaddr = (long) pci_ioremap_bar(pdev, 1);
377 	if (!ioaddr) {
378 		dev_err(&pdev->dev, "ioremap failed\n");
379 		goto err_out_free_netdev;
380 	}
381 #endif
382 
383 	pci_set_drvdata(pdev, dev);
384 	ep = netdev_priv(dev);
385 	ep->mii.dev = dev;
386 	ep->mii.mdio_read = mdio_read;
387 	ep->mii.mdio_write = mdio_write;
388 	ep->mii.phy_id_mask = 0x1f;
389 	ep->mii.reg_num_mask = 0x1f;
390 
391 	ring_space = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
392 	if (!ring_space)
393 		goto err_out_iounmap;
394 	ep->tx_ring = ring_space;
395 	ep->tx_ring_dma = ring_dma;
396 
397 	ring_space = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
398 	if (!ring_space)
399 		goto err_out_unmap_tx;
400 	ep->rx_ring = ring_space;
401 	ep->rx_ring_dma = ring_dma;
402 
403 	if (dev->mem_start) {
404 		option = dev->mem_start;
405 		duplex = (dev->mem_start & 16) ? 1 : 0;
406 	} else if (card_idx >= 0  &&  card_idx < MAX_UNITS) {
407 		if (options[card_idx] >= 0)
408 			option = options[card_idx];
409 		if (full_duplex[card_idx] >= 0)
410 			duplex = full_duplex[card_idx];
411 	}
412 
413 	dev->base_addr = ioaddr;
414 	dev->irq = irq;
415 
416 	spin_lock_init(&ep->lock);
417 	spin_lock_init(&ep->napi_lock);
418 	ep->reschedule_in_poll = 0;
419 
420 	/* Bring the chip out of low-power mode. */
421 	outl(0x4200, ioaddr + GENCTL);
422 	/* Magic?!  If we don't set this bit the MII interface won't work. */
423 	/* This magic is documented in SMSC app note 7.15 */
424 	for (i = 16; i > 0; i--)
425 		outl(0x0008, ioaddr + TEST1);
426 
427 	/* Turn on the MII transceiver. */
428 	outl(0x12, ioaddr + MIICfg);
429 	if (chip_idx == 1)
430 		outl((inl(ioaddr + NVCTL) & ~0x003C) | 0x4800, ioaddr + NVCTL);
431 	outl(0x0200, ioaddr + GENCTL);
432 
433 	/* Note: the '175 does not have a serial EEPROM. */
434 	for (i = 0; i < 3; i++)
435 		((__le16 *)dev->dev_addr)[i] = cpu_to_le16(inw(ioaddr + LAN0 + i*4));
436 
437 	if (debug > 2) {
438 		dev_printk(KERN_DEBUG, &pdev->dev, "EEPROM contents:\n");
439 		for (i = 0; i < 64; i++)
440 			printk(" %4.4x%s", read_eeprom(ioaddr, i),
441 				   i % 16 == 15 ? "\n" : "");
442 	}
443 
444 	ep->pci_dev = pdev;
445 	ep->chip_id = chip_idx;
446 	ep->chip_flags = pci_id_tbl[chip_idx].drv_flags;
447 	ep->irq_mask =
448 		(ep->chip_flags & TYPE2_INTR ?  PCIBusErr175 : PCIBusErr170)
449 		 | CntFull | TxUnderrun | EpicNapiEvent;
450 
451 	/* Find the connected MII xcvrs.
452 	   Doing this in open() would allow detecting external xcvrs later, but
453 	   takes much time and no cards have external MII. */
454 	{
455 		int phy, phy_idx = 0;
456 		for (phy = 1; phy < 32 && phy_idx < sizeof(ep->phys); phy++) {
457 			int mii_status = mdio_read(dev, phy, MII_BMSR);
458 			if (mii_status != 0xffff  &&  mii_status != 0x0000) {
459 				ep->phys[phy_idx++] = phy;
460 				dev_info(&pdev->dev,
461 					"MII transceiver #%d control "
462 					"%4.4x status %4.4x.\n",
463 					phy, mdio_read(dev, phy, 0), mii_status);
464 			}
465 		}
466 		ep->mii_phy_cnt = phy_idx;
467 		if (phy_idx != 0) {
468 			phy = ep->phys[0];
469 			ep->mii.advertising = mdio_read(dev, phy, MII_ADVERTISE);
470 			dev_info(&pdev->dev,
471 				"Autonegotiation advertising %4.4x link "
472 				   "partner %4.4x.\n",
473 				   ep->mii.advertising, mdio_read(dev, phy, 5));
474 		} else if ( ! (ep->chip_flags & NO_MII)) {
475 			dev_warn(&pdev->dev,
476 				"***WARNING***: No MII transceiver found!\n");
477 			/* Use the known PHY address of the EPII. */
478 			ep->phys[0] = 3;
479 		}
480 		ep->mii.phy_id = ep->phys[0];
481 	}
482 
483 	/* Turn off the MII xcvr (175 only!), leave the chip in low-power mode. */
484 	if (ep->chip_flags & MII_PWRDWN)
485 		outl(inl(ioaddr + NVCTL) & ~0x483C, ioaddr + NVCTL);
486 	outl(0x0008, ioaddr + GENCTL);
487 
488 	/* The lower four bits are the media type. */
489 	if (duplex) {
490 		ep->mii.force_media = ep->mii.full_duplex = 1;
491 		dev_info(&pdev->dev, "Forced full duplex requested.\n");
492 	}
493 	dev->if_port = ep->default_port = option;
494 
495 	/* The Epic-specific entries in the device structure. */
496 	dev->netdev_ops = &epic_netdev_ops;
497 	dev->ethtool_ops = &netdev_ethtool_ops;
498 	dev->watchdog_timeo = TX_TIMEOUT;
499 	netif_napi_add(dev, &ep->napi, epic_poll, 64);
500 
501 	ret = register_netdev(dev);
502 	if (ret < 0)
503 		goto err_out_unmap_rx;
504 
505 	printk(KERN_INFO "%s: %s at %#lx, IRQ %d, %pM\n",
506 	       dev->name, pci_id_tbl[chip_idx].name, ioaddr, dev->irq,
507 	       dev->dev_addr);
508 
509 out:
510 	return ret;
511 
512 err_out_unmap_rx:
513 	pci_free_consistent(pdev, RX_TOTAL_SIZE, ep->rx_ring, ep->rx_ring_dma);
514 err_out_unmap_tx:
515 	pci_free_consistent(pdev, TX_TOTAL_SIZE, ep->tx_ring, ep->tx_ring_dma);
516 err_out_iounmap:
517 #ifndef USE_IO_OPS
518 	iounmap(ioaddr);
519 err_out_free_netdev:
520 #endif
521 	free_netdev(dev);
522 err_out_free_res:
523 	pci_release_regions(pdev);
524 err_out_disable:
525 	pci_disable_device(pdev);
526 	goto out;
527 }
528 
529 /* Serial EEPROM section. */
530 
531 /*  EEPROM_Ctrl bits. */
532 #define EE_SHIFT_CLK	0x04	/* EEPROM shift clock. */
533 #define EE_CS			0x02	/* EEPROM chip select. */
534 #define EE_DATA_WRITE	0x08	/* EEPROM chip data in. */
535 #define EE_WRITE_0		0x01
536 #define EE_WRITE_1		0x09
537 #define EE_DATA_READ	0x10	/* EEPROM chip data out. */
538 #define EE_ENB			(0x0001 | EE_CS)
539 
540 /* Delay between EEPROM clock transitions.
541    This serves to flush the operation to the PCI bus.
542  */
543 
544 #define eeprom_delay()	inl(ee_addr)
545 
546 /* The EEPROM commands include the alway-set leading bit. */
547 #define EE_WRITE_CMD	(5 << 6)
548 #define EE_READ64_CMD	(6 << 6)
549 #define EE_READ256_CMD	(6 << 8)
550 #define EE_ERASE_CMD	(7 << 6)
551 
552 static void epic_disable_int(struct net_device *dev, struct epic_private *ep)
553 {
554 	long ioaddr = dev->base_addr;
555 
556 	outl(0x00000000, ioaddr + INTMASK);
557 }
558 
559 static inline void __epic_pci_commit(long ioaddr)
560 {
561 #ifndef USE_IO_OPS
562 	inl(ioaddr + INTMASK);
563 #endif
564 }
565 
566 static inline void epic_napi_irq_off(struct net_device *dev,
567 				     struct epic_private *ep)
568 {
569 	long ioaddr = dev->base_addr;
570 
571 	outl(ep->irq_mask & ~EpicNapiEvent, ioaddr + INTMASK);
572 	__epic_pci_commit(ioaddr);
573 }
574 
575 static inline void epic_napi_irq_on(struct net_device *dev,
576 				    struct epic_private *ep)
577 {
578 	long ioaddr = dev->base_addr;
579 
580 	/* No need to commit possible posted write */
581 	outl(ep->irq_mask | EpicNapiEvent, ioaddr + INTMASK);
582 }
583 
584 static int __devinit read_eeprom(long ioaddr, int location)
585 {
586 	int i;
587 	int retval = 0;
588 	long ee_addr = ioaddr + EECTL;
589 	int read_cmd = location |
590 		(inl(ee_addr) & 0x40 ? EE_READ64_CMD : EE_READ256_CMD);
591 
592 	outl(EE_ENB & ~EE_CS, ee_addr);
593 	outl(EE_ENB, ee_addr);
594 
595 	/* Shift the read command bits out. */
596 	for (i = 12; i >= 0; i--) {
597 		short dataval = (read_cmd & (1 << i)) ? EE_WRITE_1 : EE_WRITE_0;
598 		outl(EE_ENB | dataval, ee_addr);
599 		eeprom_delay();
600 		outl(EE_ENB | dataval | EE_SHIFT_CLK, ee_addr);
601 		eeprom_delay();
602 	}
603 	outl(EE_ENB, ee_addr);
604 
605 	for (i = 16; i > 0; i--) {
606 		outl(EE_ENB | EE_SHIFT_CLK, ee_addr);
607 		eeprom_delay();
608 		retval = (retval << 1) | ((inl(ee_addr) & EE_DATA_READ) ? 1 : 0);
609 		outl(EE_ENB, ee_addr);
610 		eeprom_delay();
611 	}
612 
613 	/* Terminate the EEPROM access. */
614 	outl(EE_ENB & ~EE_CS, ee_addr);
615 	return retval;
616 }
617 
618 #define MII_READOP		1
619 #define MII_WRITEOP		2
620 static int mdio_read(struct net_device *dev, int phy_id, int location)
621 {
622 	long ioaddr = dev->base_addr;
623 	int read_cmd = (phy_id << 9) | (location << 4) | MII_READOP;
624 	int i;
625 
626 	outl(read_cmd, ioaddr + MIICtrl);
627 	/* Typical operation takes 25 loops. */
628 	for (i = 400; i > 0; i--) {
629 		barrier();
630 		if ((inl(ioaddr + MIICtrl) & MII_READOP) == 0) {
631 			/* Work around read failure bug. */
632 			if (phy_id == 1 && location < 6 &&
633 			    inw(ioaddr + MIIData) == 0xffff) {
634 				outl(read_cmd, ioaddr + MIICtrl);
635 				continue;
636 			}
637 			return inw(ioaddr + MIIData);
638 		}
639 	}
640 	return 0xffff;
641 }
642 
643 static void mdio_write(struct net_device *dev, int phy_id, int loc, int value)
644 {
645 	long ioaddr = dev->base_addr;
646 	int i;
647 
648 	outw(value, ioaddr + MIIData);
649 	outl((phy_id << 9) | (loc << 4) | MII_WRITEOP, ioaddr + MIICtrl);
650 	for (i = 10000; i > 0; i--) {
651 		barrier();
652 		if ((inl(ioaddr + MIICtrl) & MII_WRITEOP) == 0)
653 			break;
654 	}
655 }
656 
657 
658 static int epic_open(struct net_device *dev)
659 {
660 	struct epic_private *ep = netdev_priv(dev);
661 	long ioaddr = dev->base_addr;
662 	int i;
663 	int retval;
664 
665 	/* Soft reset the chip. */
666 	outl(0x4001, ioaddr + GENCTL);
667 
668 	napi_enable(&ep->napi);
669 	if ((retval = request_irq(dev->irq, epic_interrupt, IRQF_SHARED, dev->name, dev))) {
670 		napi_disable(&ep->napi);
671 		return retval;
672 	}
673 
674 	epic_init_ring(dev);
675 
676 	outl(0x4000, ioaddr + GENCTL);
677 	/* This magic is documented in SMSC app note 7.15 */
678 	for (i = 16; i > 0; i--)
679 		outl(0x0008, ioaddr + TEST1);
680 
681 	/* Pull the chip out of low-power mode, enable interrupts, and set for
682 	   PCI read multiple.  The MIIcfg setting and strange write order are
683 	   required by the details of which bits are reset and the transceiver
684 	   wiring on the Ositech CardBus card.
685 	*/
686 #if 0
687 	outl(dev->if_port == 1 ? 0x13 : 0x12, ioaddr + MIICfg);
688 #endif
689 	if (ep->chip_flags & MII_PWRDWN)
690 		outl((inl(ioaddr + NVCTL) & ~0x003C) | 0x4800, ioaddr + NVCTL);
691 
692 	/* Tell the chip to byteswap descriptors on big-endian hosts */
693 #ifdef __BIG_ENDIAN
694 	outl(0x4432 | (RX_FIFO_THRESH<<8), ioaddr + GENCTL);
695 	inl(ioaddr + GENCTL);
696 	outl(0x0432 | (RX_FIFO_THRESH<<8), ioaddr + GENCTL);
697 #else
698 	outl(0x4412 | (RX_FIFO_THRESH<<8), ioaddr + GENCTL);
699 	inl(ioaddr + GENCTL);
700 	outl(0x0412 | (RX_FIFO_THRESH<<8), ioaddr + GENCTL);
701 #endif
702 
703 	udelay(20); /* Looks like EPII needs that if you want reliable RX init. FIXME: pci posting bug? */
704 
705 	for (i = 0; i < 3; i++)
706 		outl(le16_to_cpu(((__le16*)dev->dev_addr)[i]), ioaddr + LAN0 + i*4);
707 
708 	ep->tx_threshold = TX_FIFO_THRESH;
709 	outl(ep->tx_threshold, ioaddr + TxThresh);
710 
711 	if (media2miictl[dev->if_port & 15]) {
712 		if (ep->mii_phy_cnt)
713 			mdio_write(dev, ep->phys[0], MII_BMCR, media2miictl[dev->if_port&15]);
714 		if (dev->if_port == 1) {
715 			if (debug > 1)
716 				printk(KERN_INFO "%s: Using the 10base2 transceiver, MII "
717 					   "status %4.4x.\n",
718 					   dev->name, mdio_read(dev, ep->phys[0], MII_BMSR));
719 		}
720 	} else {
721 		int mii_lpa = mdio_read(dev, ep->phys[0], MII_LPA);
722 		if (mii_lpa != 0xffff) {
723 			if ((mii_lpa & LPA_100FULL) || (mii_lpa & 0x01C0) == LPA_10FULL)
724 				ep->mii.full_duplex = 1;
725 			else if (! (mii_lpa & LPA_LPACK))
726 				mdio_write(dev, ep->phys[0], MII_BMCR, BMCR_ANENABLE|BMCR_ANRESTART);
727 			if (debug > 1)
728 				printk(KERN_INFO "%s: Setting %s-duplex based on MII xcvr %d"
729 					   " register read of %4.4x.\n", dev->name,
730 					   ep->mii.full_duplex ? "full" : "half",
731 					   ep->phys[0], mii_lpa);
732 		}
733 	}
734 
735 	outl(ep->mii.full_duplex ? 0x7F : 0x79, ioaddr + TxCtrl);
736 	outl(ep->rx_ring_dma, ioaddr + PRxCDAR);
737 	outl(ep->tx_ring_dma, ioaddr + PTxCDAR);
738 
739 	/* Start the chip's Rx process. */
740 	set_rx_mode(dev);
741 	outl(StartRx | RxQueued, ioaddr + COMMAND);
742 
743 	netif_start_queue(dev);
744 
745 	/* Enable interrupts by setting the interrupt mask. */
746 	outl((ep->chip_flags & TYPE2_INTR ? PCIBusErr175 : PCIBusErr170)
747 		 | CntFull | TxUnderrun
748 		 | RxError | RxHeader | EpicNapiEvent, ioaddr + INTMASK);
749 
750 	if (debug > 1)
751 		printk(KERN_DEBUG "%s: epic_open() ioaddr %lx IRQ %d status %4.4x "
752 			   "%s-duplex.\n",
753 			   dev->name, ioaddr, dev->irq, (int)inl(ioaddr + GENCTL),
754 			   ep->mii.full_duplex ? "full" : "half");
755 
756 	/* Set the timer to switch to check for link beat and perhaps switch
757 	   to an alternate media type. */
758 	init_timer(&ep->timer);
759 	ep->timer.expires = jiffies + 3*HZ;
760 	ep->timer.data = (unsigned long)dev;
761 	ep->timer.function = epic_timer;				/* timer handler */
762 	add_timer(&ep->timer);
763 
764 	return 0;
765 }
766 
767 /* Reset the chip to recover from a PCI transaction error.
768    This may occur at interrupt time. */
769 static void epic_pause(struct net_device *dev)
770 {
771 	long ioaddr = dev->base_addr;
772 
773 	netif_stop_queue (dev);
774 
775 	/* Disable interrupts by clearing the interrupt mask. */
776 	outl(0x00000000, ioaddr + INTMASK);
777 	/* Stop the chip's Tx and Rx DMA processes. */
778 	outw(StopRx | StopTxDMA | StopRxDMA, ioaddr + COMMAND);
779 
780 	/* Update the error counts. */
781 	if (inw(ioaddr + COMMAND) != 0xffff) {
782 		dev->stats.rx_missed_errors += inb(ioaddr + MPCNT);
783 		dev->stats.rx_frame_errors += inb(ioaddr + ALICNT);
784 		dev->stats.rx_crc_errors += inb(ioaddr + CRCCNT);
785 	}
786 
787 	/* Remove the packets on the Rx queue. */
788 	epic_rx(dev, RX_RING_SIZE);
789 }
790 
791 static void epic_restart(struct net_device *dev)
792 {
793 	long ioaddr = dev->base_addr;
794 	struct epic_private *ep = netdev_priv(dev);
795 	int i;
796 
797 	/* Soft reset the chip. */
798 	outl(0x4001, ioaddr + GENCTL);
799 
800 	printk(KERN_DEBUG "%s: Restarting the EPIC chip, Rx %d/%d Tx %d/%d.\n",
801 		   dev->name, ep->cur_rx, ep->dirty_rx, ep->dirty_tx, ep->cur_tx);
802 	udelay(1);
803 
804 	/* This magic is documented in SMSC app note 7.15 */
805 	for (i = 16; i > 0; i--)
806 		outl(0x0008, ioaddr + TEST1);
807 
808 #ifdef __BIG_ENDIAN
809 	outl(0x0432 | (RX_FIFO_THRESH<<8), ioaddr + GENCTL);
810 #else
811 	outl(0x0412 | (RX_FIFO_THRESH<<8), ioaddr + GENCTL);
812 #endif
813 	outl(dev->if_port == 1 ? 0x13 : 0x12, ioaddr + MIICfg);
814 	if (ep->chip_flags & MII_PWRDWN)
815 		outl((inl(ioaddr + NVCTL) & ~0x003C) | 0x4800, ioaddr + NVCTL);
816 
817 	for (i = 0; i < 3; i++)
818 		outl(le16_to_cpu(((__le16*)dev->dev_addr)[i]), ioaddr + LAN0 + i*4);
819 
820 	ep->tx_threshold = TX_FIFO_THRESH;
821 	outl(ep->tx_threshold, ioaddr + TxThresh);
822 	outl(ep->mii.full_duplex ? 0x7F : 0x79, ioaddr + TxCtrl);
823 	outl(ep->rx_ring_dma + (ep->cur_rx%RX_RING_SIZE)*
824 		sizeof(struct epic_rx_desc), ioaddr + PRxCDAR);
825 	outl(ep->tx_ring_dma + (ep->dirty_tx%TX_RING_SIZE)*
826 		 sizeof(struct epic_tx_desc), ioaddr + PTxCDAR);
827 
828 	/* Start the chip's Rx process. */
829 	set_rx_mode(dev);
830 	outl(StartRx | RxQueued, ioaddr + COMMAND);
831 
832 	/* Enable interrupts by setting the interrupt mask. */
833 	outl((ep->chip_flags & TYPE2_INTR ? PCIBusErr175 : PCIBusErr170)
834 		 | CntFull | TxUnderrun
835 		 | RxError | RxHeader | EpicNapiEvent, ioaddr + INTMASK);
836 
837 	printk(KERN_DEBUG "%s: epic_restart() done, cmd status %4.4x, ctl %4.4x"
838 		   " interrupt %4.4x.\n",
839 		   dev->name, (int)inl(ioaddr + COMMAND), (int)inl(ioaddr + GENCTL),
840 		   (int)inl(ioaddr + INTSTAT));
841 }
842 
843 static void check_media(struct net_device *dev)
844 {
845 	struct epic_private *ep = netdev_priv(dev);
846 	long ioaddr = dev->base_addr;
847 	int mii_lpa = ep->mii_phy_cnt ? mdio_read(dev, ep->phys[0], MII_LPA) : 0;
848 	int negotiated = mii_lpa & ep->mii.advertising;
849 	int duplex = (negotiated & 0x0100) || (negotiated & 0x01C0) == 0x0040;
850 
851 	if (ep->mii.force_media)
852 		return;
853 	if (mii_lpa == 0xffff)		/* Bogus read */
854 		return;
855 	if (ep->mii.full_duplex != duplex) {
856 		ep->mii.full_duplex = duplex;
857 		printk(KERN_INFO "%s: Setting %s-duplex based on MII #%d link"
858 			   " partner capability of %4.4x.\n", dev->name,
859 			   ep->mii.full_duplex ? "full" : "half", ep->phys[0], mii_lpa);
860 		outl(ep->mii.full_duplex ? 0x7F : 0x79, ioaddr + TxCtrl);
861 	}
862 }
863 
864 static void epic_timer(unsigned long data)
865 {
866 	struct net_device *dev = (struct net_device *)data;
867 	struct epic_private *ep = netdev_priv(dev);
868 	long ioaddr = dev->base_addr;
869 	int next_tick = 5*HZ;
870 
871 	if (debug > 3) {
872 		printk(KERN_DEBUG "%s: Media monitor tick, Tx status %8.8x.\n",
873 			   dev->name, (int)inl(ioaddr + TxSTAT));
874 		printk(KERN_DEBUG "%s: Other registers are IntMask %4.4x "
875 			   "IntStatus %4.4x RxStatus %4.4x.\n",
876 			   dev->name, (int)inl(ioaddr + INTMASK),
877 			   (int)inl(ioaddr + INTSTAT), (int)inl(ioaddr + RxSTAT));
878 	}
879 
880 	check_media(dev);
881 
882 	ep->timer.expires = jiffies + next_tick;
883 	add_timer(&ep->timer);
884 }
885 
886 static void epic_tx_timeout(struct net_device *dev)
887 {
888 	struct epic_private *ep = netdev_priv(dev);
889 	long ioaddr = dev->base_addr;
890 
891 	if (debug > 0) {
892 		printk(KERN_WARNING "%s: Transmit timeout using MII device, "
893 			   "Tx status %4.4x.\n",
894 			   dev->name, (int)inw(ioaddr + TxSTAT));
895 		if (debug > 1) {
896 			printk(KERN_DEBUG "%s: Tx indices: dirty_tx %d, cur_tx %d.\n",
897 				   dev->name, ep->dirty_tx, ep->cur_tx);
898 		}
899 	}
900 	if (inw(ioaddr + TxSTAT) & 0x10) {		/* Tx FIFO underflow. */
901 		dev->stats.tx_fifo_errors++;
902 		outl(RestartTx, ioaddr + COMMAND);
903 	} else {
904 		epic_restart(dev);
905 		outl(TxQueued, dev->base_addr + COMMAND);
906 	}
907 
908 	dev->trans_start = jiffies; /* prevent tx timeout */
909 	dev->stats.tx_errors++;
910 	if (!ep->tx_full)
911 		netif_wake_queue(dev);
912 }
913 
914 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
915 static void epic_init_ring(struct net_device *dev)
916 {
917 	struct epic_private *ep = netdev_priv(dev);
918 	int i;
919 
920 	ep->tx_full = 0;
921 	ep->dirty_tx = ep->cur_tx = 0;
922 	ep->cur_rx = ep->dirty_rx = 0;
923 	ep->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
924 
925 	/* Initialize all Rx descriptors. */
926 	for (i = 0; i < RX_RING_SIZE; i++) {
927 		ep->rx_ring[i].rxstatus = 0;
928 		ep->rx_ring[i].buflength = ep->rx_buf_sz;
929 		ep->rx_ring[i].next = ep->rx_ring_dma +
930 				      (i+1)*sizeof(struct epic_rx_desc);
931 		ep->rx_skbuff[i] = NULL;
932 	}
933 	/* Mark the last entry as wrapping the ring. */
934 	ep->rx_ring[i-1].next = ep->rx_ring_dma;
935 
936 	/* Fill in the Rx buffers.  Handle allocation failure gracefully. */
937 	for (i = 0; i < RX_RING_SIZE; i++) {
938 		struct sk_buff *skb = dev_alloc_skb(ep->rx_buf_sz + 2);
939 		ep->rx_skbuff[i] = skb;
940 		if (skb == NULL)
941 			break;
942 		skb_reserve(skb, 2);	/* 16 byte align the IP header. */
943 		ep->rx_ring[i].bufaddr = pci_map_single(ep->pci_dev,
944 			skb->data, ep->rx_buf_sz, PCI_DMA_FROMDEVICE);
945 		ep->rx_ring[i].rxstatus = DescOwn;
946 	}
947 	ep->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
948 
949 	/* The Tx buffer descriptor is filled in as needed, but we
950 	   do need to clear the ownership bit. */
951 	for (i = 0; i < TX_RING_SIZE; i++) {
952 		ep->tx_skbuff[i] = NULL;
953 		ep->tx_ring[i].txstatus = 0x0000;
954 		ep->tx_ring[i].next = ep->tx_ring_dma +
955 			(i+1)*sizeof(struct epic_tx_desc);
956 	}
957 	ep->tx_ring[i-1].next = ep->tx_ring_dma;
958 }
959 
960 static netdev_tx_t epic_start_xmit(struct sk_buff *skb, struct net_device *dev)
961 {
962 	struct epic_private *ep = netdev_priv(dev);
963 	int entry, free_count;
964 	u32 ctrl_word;
965 	unsigned long flags;
966 
967 	if (skb_padto(skb, ETH_ZLEN))
968 		return NETDEV_TX_OK;
969 
970 	/* Caution: the write order is important here, set the field with the
971 	   "ownership" bit last. */
972 
973 	/* Calculate the next Tx descriptor entry. */
974 	spin_lock_irqsave(&ep->lock, flags);
975 	free_count = ep->cur_tx - ep->dirty_tx;
976 	entry = ep->cur_tx % TX_RING_SIZE;
977 
978 	ep->tx_skbuff[entry] = skb;
979 	ep->tx_ring[entry].bufaddr = pci_map_single(ep->pci_dev, skb->data,
980 		 			            skb->len, PCI_DMA_TODEVICE);
981 	if (free_count < TX_QUEUE_LEN/2) {/* Typical path */
982 		ctrl_word = 0x100000; /* No interrupt */
983 	} else if (free_count == TX_QUEUE_LEN/2) {
984 		ctrl_word = 0x140000; /* Tx-done intr. */
985 	} else if (free_count < TX_QUEUE_LEN - 1) {
986 		ctrl_word = 0x100000; /* No Tx-done intr. */
987 	} else {
988 		/* Leave room for an additional entry. */
989 		ctrl_word = 0x140000; /* Tx-done intr. */
990 		ep->tx_full = 1;
991 	}
992 	ep->tx_ring[entry].buflength = ctrl_word | skb->len;
993 	ep->tx_ring[entry].txstatus =
994 		((skb->len >= ETH_ZLEN ? skb->len : ETH_ZLEN) << 16)
995 			    | DescOwn;
996 
997 	ep->cur_tx++;
998 	if (ep->tx_full)
999 		netif_stop_queue(dev);
1000 
1001 	spin_unlock_irqrestore(&ep->lock, flags);
1002 	/* Trigger an immediate transmit demand. */
1003 	outl(TxQueued, dev->base_addr + COMMAND);
1004 
1005 	if (debug > 4)
1006 		printk(KERN_DEBUG "%s: Queued Tx packet size %d to slot %d, "
1007 			   "flag %2.2x Tx status %8.8x.\n",
1008 			   dev->name, (int)skb->len, entry, ctrl_word,
1009 			   (int)inl(dev->base_addr + TxSTAT));
1010 
1011 	return NETDEV_TX_OK;
1012 }
1013 
1014 static void epic_tx_error(struct net_device *dev, struct epic_private *ep,
1015 			  int status)
1016 {
1017 	struct net_device_stats *stats = &dev->stats;
1018 
1019 #ifndef final_version
1020 	/* There was an major error, log it. */
1021 	if (debug > 1)
1022 		printk(KERN_DEBUG "%s: Transmit error, Tx status %8.8x.\n",
1023 		       dev->name, status);
1024 #endif
1025 	stats->tx_errors++;
1026 	if (status & 0x1050)
1027 		stats->tx_aborted_errors++;
1028 	if (status & 0x0008)
1029 		stats->tx_carrier_errors++;
1030 	if (status & 0x0040)
1031 		stats->tx_window_errors++;
1032 	if (status & 0x0010)
1033 		stats->tx_fifo_errors++;
1034 }
1035 
1036 static void epic_tx(struct net_device *dev, struct epic_private *ep)
1037 {
1038 	unsigned int dirty_tx, cur_tx;
1039 
1040 	/*
1041 	 * Note: if this lock becomes a problem we can narrow the locked
1042 	 * region at the cost of occasionally grabbing the lock more times.
1043 	 */
1044 	cur_tx = ep->cur_tx;
1045 	for (dirty_tx = ep->dirty_tx; cur_tx - dirty_tx > 0; dirty_tx++) {
1046 		struct sk_buff *skb;
1047 		int entry = dirty_tx % TX_RING_SIZE;
1048 		int txstatus = ep->tx_ring[entry].txstatus;
1049 
1050 		if (txstatus & DescOwn)
1051 			break;	/* It still hasn't been Txed */
1052 
1053 		if (likely(txstatus & 0x0001)) {
1054 			dev->stats.collisions += (txstatus >> 8) & 15;
1055 			dev->stats.tx_packets++;
1056 			dev->stats.tx_bytes += ep->tx_skbuff[entry]->len;
1057 		} else
1058 			epic_tx_error(dev, ep, txstatus);
1059 
1060 		/* Free the original skb. */
1061 		skb = ep->tx_skbuff[entry];
1062 		pci_unmap_single(ep->pci_dev, ep->tx_ring[entry].bufaddr,
1063 				 skb->len, PCI_DMA_TODEVICE);
1064 		dev_kfree_skb_irq(skb);
1065 		ep->tx_skbuff[entry] = NULL;
1066 	}
1067 
1068 #ifndef final_version
1069 	if (cur_tx - dirty_tx > TX_RING_SIZE) {
1070 		printk(KERN_WARNING
1071 		       "%s: Out-of-sync dirty pointer, %d vs. %d, full=%d.\n",
1072 		       dev->name, dirty_tx, cur_tx, ep->tx_full);
1073 		dirty_tx += TX_RING_SIZE;
1074 	}
1075 #endif
1076 	ep->dirty_tx = dirty_tx;
1077 	if (ep->tx_full && cur_tx - dirty_tx < TX_QUEUE_LEN - 4) {
1078 		/* The ring is no longer full, allow new TX entries. */
1079 		ep->tx_full = 0;
1080 		netif_wake_queue(dev);
1081 	}
1082 }
1083 
1084 /* The interrupt handler does all of the Rx thread work and cleans up
1085    after the Tx thread. */
1086 static irqreturn_t epic_interrupt(int irq, void *dev_instance)
1087 {
1088 	struct net_device *dev = dev_instance;
1089 	struct epic_private *ep = netdev_priv(dev);
1090 	long ioaddr = dev->base_addr;
1091 	unsigned int handled = 0;
1092 	int status;
1093 
1094 	status = inl(ioaddr + INTSTAT);
1095 	/* Acknowledge all of the current interrupt sources ASAP. */
1096 	outl(status & EpicNormalEvent, ioaddr + INTSTAT);
1097 
1098 	if (debug > 4) {
1099 		printk(KERN_DEBUG "%s: Interrupt, status=%#8.8x new "
1100 				   "intstat=%#8.8x.\n", dev->name, status,
1101 				   (int)inl(ioaddr + INTSTAT));
1102 	}
1103 
1104 	if ((status & IntrSummary) == 0)
1105 		goto out;
1106 
1107 	handled = 1;
1108 
1109 	if ((status & EpicNapiEvent) && !ep->reschedule_in_poll) {
1110 		spin_lock(&ep->napi_lock);
1111 		if (napi_schedule_prep(&ep->napi)) {
1112 			epic_napi_irq_off(dev, ep);
1113 			__napi_schedule(&ep->napi);
1114 		} else
1115 			ep->reschedule_in_poll++;
1116 		spin_unlock(&ep->napi_lock);
1117 	}
1118 	status &= ~EpicNapiEvent;
1119 
1120 	/* Check uncommon events all at once. */
1121 	if (status & (CntFull | TxUnderrun | PCIBusErr170 | PCIBusErr175)) {
1122 		if (status == EpicRemoved)
1123 			goto out;
1124 
1125 		/* Always update the error counts to avoid overhead later. */
1126 		dev->stats.rx_missed_errors += inb(ioaddr + MPCNT);
1127 		dev->stats.rx_frame_errors += inb(ioaddr + ALICNT);
1128 		dev->stats.rx_crc_errors += inb(ioaddr + CRCCNT);
1129 
1130 		if (status & TxUnderrun) { /* Tx FIFO underflow. */
1131 			dev->stats.tx_fifo_errors++;
1132 			outl(ep->tx_threshold += 128, ioaddr + TxThresh);
1133 			/* Restart the transmit process. */
1134 			outl(RestartTx, ioaddr + COMMAND);
1135 		}
1136 		if (status & PCIBusErr170) {
1137 			printk(KERN_ERR "%s: PCI Bus Error! status %4.4x.\n",
1138 					 dev->name, status);
1139 			epic_pause(dev);
1140 			epic_restart(dev);
1141 		}
1142 		/* Clear all error sources. */
1143 		outl(status & 0x7f18, ioaddr + INTSTAT);
1144 	}
1145 
1146 out:
1147 	if (debug > 3) {
1148 		printk(KERN_DEBUG "%s: exit interrupt, intr_status=%#4.4x.\n",
1149 				   dev->name, status);
1150 	}
1151 
1152 	return IRQ_RETVAL(handled);
1153 }
1154 
1155 static int epic_rx(struct net_device *dev, int budget)
1156 {
1157 	struct epic_private *ep = netdev_priv(dev);
1158 	int entry = ep->cur_rx % RX_RING_SIZE;
1159 	int rx_work_limit = ep->dirty_rx + RX_RING_SIZE - ep->cur_rx;
1160 	int work_done = 0;
1161 
1162 	if (debug > 4)
1163 		printk(KERN_DEBUG " In epic_rx(), entry %d %8.8x.\n", entry,
1164 			   ep->rx_ring[entry].rxstatus);
1165 
1166 	if (rx_work_limit > budget)
1167 		rx_work_limit = budget;
1168 
1169 	/* If we own the next entry, it's a new packet. Send it up. */
1170 	while ((ep->rx_ring[entry].rxstatus & DescOwn) == 0) {
1171 		int status = ep->rx_ring[entry].rxstatus;
1172 
1173 		if (debug > 4)
1174 			printk(KERN_DEBUG "  epic_rx() status was %8.8x.\n", status);
1175 		if (--rx_work_limit < 0)
1176 			break;
1177 		if (status & 0x2006) {
1178 			if (debug > 2)
1179 				printk(KERN_DEBUG "%s: epic_rx() error status was %8.8x.\n",
1180 					   dev->name, status);
1181 			if (status & 0x2000) {
1182 				printk(KERN_WARNING "%s: Oversized Ethernet frame spanned "
1183 					   "multiple buffers, status %4.4x!\n", dev->name, status);
1184 				dev->stats.rx_length_errors++;
1185 			} else if (status & 0x0006)
1186 				/* Rx Frame errors are counted in hardware. */
1187 				dev->stats.rx_errors++;
1188 		} else {
1189 			/* Malloc up new buffer, compatible with net-2e. */
1190 			/* Omit the four octet CRC from the length. */
1191 			short pkt_len = (status >> 16) - 4;
1192 			struct sk_buff *skb;
1193 
1194 			if (pkt_len > PKT_BUF_SZ - 4) {
1195 				printk(KERN_ERR "%s: Oversized Ethernet frame, status %x "
1196 					   "%d bytes.\n",
1197 					   dev->name, status, pkt_len);
1198 				pkt_len = 1514;
1199 			}
1200 			/* Check if the packet is long enough to accept without copying
1201 			   to a minimally-sized skbuff. */
1202 			if (pkt_len < rx_copybreak &&
1203 			    (skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
1204 				skb_reserve(skb, 2);	/* 16 byte align the IP header */
1205 				pci_dma_sync_single_for_cpu(ep->pci_dev,
1206 							    ep->rx_ring[entry].bufaddr,
1207 							    ep->rx_buf_sz,
1208 							    PCI_DMA_FROMDEVICE);
1209 				skb_copy_to_linear_data(skb, ep->rx_skbuff[entry]->data, pkt_len);
1210 				skb_put(skb, pkt_len);
1211 				pci_dma_sync_single_for_device(ep->pci_dev,
1212 							       ep->rx_ring[entry].bufaddr,
1213 							       ep->rx_buf_sz,
1214 							       PCI_DMA_FROMDEVICE);
1215 			} else {
1216 				pci_unmap_single(ep->pci_dev,
1217 					ep->rx_ring[entry].bufaddr,
1218 					ep->rx_buf_sz, PCI_DMA_FROMDEVICE);
1219 				skb_put(skb = ep->rx_skbuff[entry], pkt_len);
1220 				ep->rx_skbuff[entry] = NULL;
1221 			}
1222 			skb->protocol = eth_type_trans(skb, dev);
1223 			netif_receive_skb(skb);
1224 			dev->stats.rx_packets++;
1225 			dev->stats.rx_bytes += pkt_len;
1226 		}
1227 		work_done++;
1228 		entry = (++ep->cur_rx) % RX_RING_SIZE;
1229 	}
1230 
1231 	/* Refill the Rx ring buffers. */
1232 	for (; ep->cur_rx - ep->dirty_rx > 0; ep->dirty_rx++) {
1233 		entry = ep->dirty_rx % RX_RING_SIZE;
1234 		if (ep->rx_skbuff[entry] == NULL) {
1235 			struct sk_buff *skb;
1236 			skb = ep->rx_skbuff[entry] = dev_alloc_skb(ep->rx_buf_sz + 2);
1237 			if (skb == NULL)
1238 				break;
1239 			skb_reserve(skb, 2);	/* Align IP on 16 byte boundaries */
1240 			ep->rx_ring[entry].bufaddr = pci_map_single(ep->pci_dev,
1241 				skb->data, ep->rx_buf_sz, PCI_DMA_FROMDEVICE);
1242 			work_done++;
1243 		}
1244 		/* AV: shouldn't we add a barrier here? */
1245 		ep->rx_ring[entry].rxstatus = DescOwn;
1246 	}
1247 	return work_done;
1248 }
1249 
1250 static void epic_rx_err(struct net_device *dev, struct epic_private *ep)
1251 {
1252 	long ioaddr = dev->base_addr;
1253 	int status;
1254 
1255 	status = inl(ioaddr + INTSTAT);
1256 
1257 	if (status == EpicRemoved)
1258 		return;
1259 	if (status & RxOverflow) 	/* Missed a Rx frame. */
1260 		dev->stats.rx_errors++;
1261 	if (status & (RxOverflow | RxFull))
1262 		outw(RxQueued, ioaddr + COMMAND);
1263 }
1264 
1265 static int epic_poll(struct napi_struct *napi, int budget)
1266 {
1267 	struct epic_private *ep = container_of(napi, struct epic_private, napi);
1268 	struct net_device *dev = ep->mii.dev;
1269 	int work_done = 0;
1270 	long ioaddr = dev->base_addr;
1271 
1272 rx_action:
1273 
1274 	epic_tx(dev, ep);
1275 
1276 	work_done += epic_rx(dev, budget);
1277 
1278 	epic_rx_err(dev, ep);
1279 
1280 	if (work_done < budget) {
1281 		unsigned long flags;
1282 		int more;
1283 
1284 		/* A bit baroque but it avoids a (space hungry) spin_unlock */
1285 
1286 		spin_lock_irqsave(&ep->napi_lock, flags);
1287 
1288 		more = ep->reschedule_in_poll;
1289 		if (!more) {
1290 			__napi_complete(napi);
1291 			outl(EpicNapiEvent, ioaddr + INTSTAT);
1292 			epic_napi_irq_on(dev, ep);
1293 		} else
1294 			ep->reschedule_in_poll--;
1295 
1296 		spin_unlock_irqrestore(&ep->napi_lock, flags);
1297 
1298 		if (more)
1299 			goto rx_action;
1300 	}
1301 
1302 	return work_done;
1303 }
1304 
1305 static int epic_close(struct net_device *dev)
1306 {
1307 	long ioaddr = dev->base_addr;
1308 	struct epic_private *ep = netdev_priv(dev);
1309 	struct sk_buff *skb;
1310 	int i;
1311 
1312 	netif_stop_queue(dev);
1313 	napi_disable(&ep->napi);
1314 
1315 	if (debug > 1)
1316 		printk(KERN_DEBUG "%s: Shutting down ethercard, status was %2.2x.\n",
1317 			   dev->name, (int)inl(ioaddr + INTSTAT));
1318 
1319 	del_timer_sync(&ep->timer);
1320 
1321 	epic_disable_int(dev, ep);
1322 
1323 	free_irq(dev->irq, dev);
1324 
1325 	epic_pause(dev);
1326 
1327 	/* Free all the skbuffs in the Rx queue. */
1328 	for (i = 0; i < RX_RING_SIZE; i++) {
1329 		skb = ep->rx_skbuff[i];
1330 		ep->rx_skbuff[i] = NULL;
1331 		ep->rx_ring[i].rxstatus = 0;		/* Not owned by Epic chip. */
1332 		ep->rx_ring[i].buflength = 0;
1333 		if (skb) {
1334 			pci_unmap_single(ep->pci_dev, ep->rx_ring[i].bufaddr,
1335 				 	 ep->rx_buf_sz, PCI_DMA_FROMDEVICE);
1336 			dev_kfree_skb(skb);
1337 		}
1338 		ep->rx_ring[i].bufaddr = 0xBADF00D0; /* An invalid address. */
1339 	}
1340 	for (i = 0; i < TX_RING_SIZE; i++) {
1341 		skb = ep->tx_skbuff[i];
1342 		ep->tx_skbuff[i] = NULL;
1343 		if (!skb)
1344 			continue;
1345 		pci_unmap_single(ep->pci_dev, ep->tx_ring[i].bufaddr,
1346 				 skb->len, PCI_DMA_TODEVICE);
1347 		dev_kfree_skb(skb);
1348 	}
1349 
1350 	/* Green! Leave the chip in low-power mode. */
1351 	outl(0x0008, ioaddr + GENCTL);
1352 
1353 	return 0;
1354 }
1355 
1356 static struct net_device_stats *epic_get_stats(struct net_device *dev)
1357 {
1358 	long ioaddr = dev->base_addr;
1359 
1360 	if (netif_running(dev)) {
1361 		/* Update the error counts. */
1362 		dev->stats.rx_missed_errors += inb(ioaddr + MPCNT);
1363 		dev->stats.rx_frame_errors += inb(ioaddr + ALICNT);
1364 		dev->stats.rx_crc_errors += inb(ioaddr + CRCCNT);
1365 	}
1366 
1367 	return &dev->stats;
1368 }
1369 
1370 /* Set or clear the multicast filter for this adaptor.
1371    Note that we only use exclusion around actually queueing the
1372    new frame, not around filling ep->setup_frame.  This is non-deterministic
1373    when re-entered but still correct. */
1374 
1375 static void set_rx_mode(struct net_device *dev)
1376 {
1377 	long ioaddr = dev->base_addr;
1378 	struct epic_private *ep = netdev_priv(dev);
1379 	unsigned char mc_filter[8];		 /* Multicast hash filter */
1380 	int i;
1381 
1382 	if (dev->flags & IFF_PROMISC) {			/* Set promiscuous. */
1383 		outl(0x002C, ioaddr + RxCtrl);
1384 		/* Unconditionally log net taps. */
1385 		memset(mc_filter, 0xff, sizeof(mc_filter));
1386 	} else if ((!netdev_mc_empty(dev)) || (dev->flags & IFF_ALLMULTI)) {
1387 		/* There is apparently a chip bug, so the multicast filter
1388 		   is never enabled. */
1389 		/* Too many to filter perfectly -- accept all multicasts. */
1390 		memset(mc_filter, 0xff, sizeof(mc_filter));
1391 		outl(0x000C, ioaddr + RxCtrl);
1392 	} else if (netdev_mc_empty(dev)) {
1393 		outl(0x0004, ioaddr + RxCtrl);
1394 		return;
1395 	} else {					/* Never executed, for now. */
1396 		struct netdev_hw_addr *ha;
1397 
1398 		memset(mc_filter, 0, sizeof(mc_filter));
1399 		netdev_for_each_mc_addr(ha, dev) {
1400 			unsigned int bit_nr =
1401 				ether_crc_le(ETH_ALEN, ha->addr) & 0x3f;
1402 			mc_filter[bit_nr >> 3] |= (1 << bit_nr);
1403 		}
1404 	}
1405 	/* ToDo: perhaps we need to stop the Tx and Rx process here? */
1406 	if (memcmp(mc_filter, ep->mc_filter, sizeof(mc_filter))) {
1407 		for (i = 0; i < 4; i++)
1408 			outw(((u16 *)mc_filter)[i], ioaddr + MC0 + i*4);
1409 		memcpy(ep->mc_filter, mc_filter, sizeof(mc_filter));
1410 	}
1411 }
1412 
1413 static void netdev_get_drvinfo (struct net_device *dev, struct ethtool_drvinfo *info)
1414 {
1415 	struct epic_private *np = netdev_priv(dev);
1416 
1417 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1418 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1419 	strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1420 }
1421 
1422 static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1423 {
1424 	struct epic_private *np = netdev_priv(dev);
1425 	int rc;
1426 
1427 	spin_lock_irq(&np->lock);
1428 	rc = mii_ethtool_gset(&np->mii, cmd);
1429 	spin_unlock_irq(&np->lock);
1430 
1431 	return rc;
1432 }
1433 
1434 static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1435 {
1436 	struct epic_private *np = netdev_priv(dev);
1437 	int rc;
1438 
1439 	spin_lock_irq(&np->lock);
1440 	rc = mii_ethtool_sset(&np->mii, cmd);
1441 	spin_unlock_irq(&np->lock);
1442 
1443 	return rc;
1444 }
1445 
1446 static int netdev_nway_reset(struct net_device *dev)
1447 {
1448 	struct epic_private *np = netdev_priv(dev);
1449 	return mii_nway_restart(&np->mii);
1450 }
1451 
1452 static u32 netdev_get_link(struct net_device *dev)
1453 {
1454 	struct epic_private *np = netdev_priv(dev);
1455 	return mii_link_ok(&np->mii);
1456 }
1457 
1458 static u32 netdev_get_msglevel(struct net_device *dev)
1459 {
1460 	return debug;
1461 }
1462 
1463 static void netdev_set_msglevel(struct net_device *dev, u32 value)
1464 {
1465 	debug = value;
1466 }
1467 
1468 static int ethtool_begin(struct net_device *dev)
1469 {
1470 	unsigned long ioaddr = dev->base_addr;
1471 	/* power-up, if interface is down */
1472 	if (! netif_running(dev)) {
1473 		outl(0x0200, ioaddr + GENCTL);
1474 		outl((inl(ioaddr + NVCTL) & ~0x003C) | 0x4800, ioaddr + NVCTL);
1475 	}
1476 	return 0;
1477 }
1478 
1479 static void ethtool_complete(struct net_device *dev)
1480 {
1481 	unsigned long ioaddr = dev->base_addr;
1482 	/* power-down, if interface is down */
1483 	if (! netif_running(dev)) {
1484 		outl(0x0008, ioaddr + GENCTL);
1485 		outl((inl(ioaddr + NVCTL) & ~0x483C) | 0x0000, ioaddr + NVCTL);
1486 	}
1487 }
1488 
1489 static const struct ethtool_ops netdev_ethtool_ops = {
1490 	.get_drvinfo		= netdev_get_drvinfo,
1491 	.get_settings		= netdev_get_settings,
1492 	.set_settings		= netdev_set_settings,
1493 	.nway_reset		= netdev_nway_reset,
1494 	.get_link		= netdev_get_link,
1495 	.get_msglevel		= netdev_get_msglevel,
1496 	.set_msglevel		= netdev_set_msglevel,
1497 	.begin			= ethtool_begin,
1498 	.complete		= ethtool_complete
1499 };
1500 
1501 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1502 {
1503 	struct epic_private *np = netdev_priv(dev);
1504 	long ioaddr = dev->base_addr;
1505 	struct mii_ioctl_data *data = if_mii(rq);
1506 	int rc;
1507 
1508 	/* power-up, if interface is down */
1509 	if (! netif_running(dev)) {
1510 		outl(0x0200, ioaddr + GENCTL);
1511 		outl((inl(ioaddr + NVCTL) & ~0x003C) | 0x4800, ioaddr + NVCTL);
1512 	}
1513 
1514 	/* all non-ethtool ioctls (the SIOC[GS]MIIxxx ioctls) */
1515 	spin_lock_irq(&np->lock);
1516 	rc = generic_mii_ioctl(&np->mii, data, cmd, NULL);
1517 	spin_unlock_irq(&np->lock);
1518 
1519 	/* power-down, if interface is down */
1520 	if (! netif_running(dev)) {
1521 		outl(0x0008, ioaddr + GENCTL);
1522 		outl((inl(ioaddr + NVCTL) & ~0x483C) | 0x0000, ioaddr + NVCTL);
1523 	}
1524 	return rc;
1525 }
1526 
1527 
1528 static void __devexit epic_remove_one (struct pci_dev *pdev)
1529 {
1530 	struct net_device *dev = pci_get_drvdata(pdev);
1531 	struct epic_private *ep = netdev_priv(dev);
1532 
1533 	pci_free_consistent(pdev, TX_TOTAL_SIZE, ep->tx_ring, ep->tx_ring_dma);
1534 	pci_free_consistent(pdev, RX_TOTAL_SIZE, ep->rx_ring, ep->rx_ring_dma);
1535 	unregister_netdev(dev);
1536 #ifndef USE_IO_OPS
1537 	iounmap((void*) dev->base_addr);
1538 #endif
1539 	pci_release_regions(pdev);
1540 	free_netdev(dev);
1541 	pci_disable_device(pdev);
1542 	pci_set_drvdata(pdev, NULL);
1543 	/* pci_power_off(pdev, -1); */
1544 }
1545 
1546 
1547 #ifdef CONFIG_PM
1548 
1549 static int epic_suspend (struct pci_dev *pdev, pm_message_t state)
1550 {
1551 	struct net_device *dev = pci_get_drvdata(pdev);
1552 	long ioaddr = dev->base_addr;
1553 
1554 	if (!netif_running(dev))
1555 		return 0;
1556 	epic_pause(dev);
1557 	/* Put the chip into low-power mode. */
1558 	outl(0x0008, ioaddr + GENCTL);
1559 	/* pci_power_off(pdev, -1); */
1560 	return 0;
1561 }
1562 
1563 
1564 static int epic_resume (struct pci_dev *pdev)
1565 {
1566 	struct net_device *dev = pci_get_drvdata(pdev);
1567 
1568 	if (!netif_running(dev))
1569 		return 0;
1570 	epic_restart(dev);
1571 	/* pci_power_on(pdev); */
1572 	return 0;
1573 }
1574 
1575 #endif /* CONFIG_PM */
1576 
1577 
1578 static struct pci_driver epic_driver = {
1579 	.name		= DRV_NAME,
1580 	.id_table	= epic_pci_tbl,
1581 	.probe		= epic_init_one,
1582 	.remove		= __devexit_p(epic_remove_one),
1583 #ifdef CONFIG_PM
1584 	.suspend	= epic_suspend,
1585 	.resume		= epic_resume,
1586 #endif /* CONFIG_PM */
1587 };
1588 
1589 
1590 static int __init epic_init (void)
1591 {
1592 /* when a module, this is printed whether or not devices are found in probe */
1593 #ifdef MODULE
1594 	printk (KERN_INFO "%s%s",
1595 		version, version2);
1596 #endif
1597 
1598 	return pci_register_driver(&epic_driver);
1599 }
1600 
1601 
1602 static void __exit epic_cleanup (void)
1603 {
1604 	pci_unregister_driver (&epic_driver);
1605 }
1606 
1607 
1608 module_init(epic_init);
1609 module_exit(epic_cleanup);
1610