xref: /linux/drivers/net/ethernet/sis/sis900.c (revision 6fdcba32711044c35c0e1b094cbd8f3f0b4472c9)
1 /* sis900.c: A SiS 900/7016 PCI Fast Ethernet driver for Linux.
2    Copyright 1999 Silicon Integrated System Corporation
3    Revision:	1.08.10 Apr. 2 2006
4 
5    Modified from the driver which is originally written by Donald Becker.
6 
7    This software may be used and distributed according to the terms
8    of the GNU General Public License (GPL), incorporated herein by reference.
9    Drivers based on this skeleton fall under the GPL and must retain
10    the authorship (implicit copyright) notice.
11 
12    References:
13    SiS 7016 Fast Ethernet PCI Bus 10/100 Mbps LAN Controller with OnNow Support,
14    preliminary Rev. 1.0 Jan. 14, 1998
15    SiS 900 Fast Ethernet PCI Bus 10/100 Mbps LAN Single Chip with OnNow Support,
16    preliminary Rev. 1.0 Nov. 10, 1998
17    SiS 7014 Single Chip 100BASE-TX/10BASE-T Physical Layer Solution,
18    preliminary Rev. 1.0 Jan. 18, 1998
19 
20    Rev 1.08.10 Apr.  2 2006 Daniele Venzano add vlan (jumbo packets) support
21    Rev 1.08.09 Sep. 19 2005 Daniele Venzano add Wake on LAN support
22    Rev 1.08.08 Jan. 22 2005 Daniele Venzano use netif_msg for debugging messages
23    Rev 1.08.07 Nov.  2 2003 Daniele Venzano <venza@brownhat.org> add suspend/resume support
24    Rev 1.08.06 Sep. 24 2002 Mufasa Yang bug fix for Tx timeout & add SiS963 support
25    Rev 1.08.05 Jun.  6 2002 Mufasa Yang bug fix for read_eeprom & Tx descriptor over-boundary
26    Rev 1.08.04 Apr. 25 2002 Mufasa Yang <mufasa@sis.com.tw> added SiS962 support
27    Rev 1.08.03 Feb.  1 2002 Matt Domsch <Matt_Domsch@dell.com> update to use library crc32 function
28    Rev 1.08.02 Nov. 30 2001 Hui-Fen Hsu workaround for EDB & bug fix for dhcp problem
29    Rev 1.08.01 Aug. 25 2001 Hui-Fen Hsu update for 630ET & workaround for ICS1893 PHY
30    Rev 1.08.00 Jun. 11 2001 Hui-Fen Hsu workaround for RTL8201 PHY and some bug fix
31    Rev 1.07.11 Apr.  2 2001 Hui-Fen Hsu updates PCI drivers to use the new pci_set_dma_mask for kernel 2.4.3
32    Rev 1.07.10 Mar.  1 2001 Hui-Fen Hsu <hfhsu@sis.com.tw> some bug fix & 635M/B support
33    Rev 1.07.09 Feb.  9 2001 Dave Jones <davej@suse.de> PCI enable cleanup
34    Rev 1.07.08 Jan.  8 2001 Lei-Chun Chang added RTL8201 PHY support
35    Rev 1.07.07 Nov. 29 2000 Lei-Chun Chang added kernel-doc extractable documentation and 630 workaround fix
36    Rev 1.07.06 Nov.  7 2000 Jeff Garzik <jgarzik@pobox.com> some bug fix and cleaning
37    Rev 1.07.05 Nov.  6 2000 metapirat<metapirat@gmx.de> contribute media type select by ifconfig
38    Rev 1.07.04 Sep.  6 2000 Lei-Chun Chang added ICS1893 PHY support
39    Rev 1.07.03 Aug. 24 2000 Lei-Chun Chang (lcchang@sis.com.tw) modified 630E equalizer workaround rule
40    Rev 1.07.01 Aug. 08 2000 Ollie Lho minor update for SiS 630E and SiS 630E A1
41    Rev 1.07    Mar. 07 2000 Ollie Lho bug fix in Rx buffer ring
42    Rev 1.06.04 Feb. 11 2000 Jeff Garzik <jgarzik@pobox.com> softnet and init for kernel 2.4
43    Rev 1.06.03 Dec. 23 1999 Ollie Lho Third release
44    Rev 1.06.02 Nov. 23 1999 Ollie Lho bug in mac probing fixed
45    Rev 1.06.01 Nov. 16 1999 Ollie Lho CRC calculation provide by Joseph Zbiciak (im14u2c@primenet.com)
46    Rev 1.06 Nov. 4 1999 Ollie Lho (ollie@sis.com.tw) Second release
47    Rev 1.05.05 Oct. 29 1999 Ollie Lho (ollie@sis.com.tw) Single buffer Tx/Rx
48    Chin-Shan Li (lcs@sis.com.tw) Added AMD Am79c901 HomePNA PHY support
49    Rev 1.05 Aug. 7 1999 Jim Huang (cmhuang@sis.com.tw) Initial release
50 */
51 
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/kernel.h>
55 #include <linux/sched.h>
56 #include <linux/string.h>
57 #include <linux/timer.h>
58 #include <linux/errno.h>
59 #include <linux/ioport.h>
60 #include <linux/slab.h>
61 #include <linux/interrupt.h>
62 #include <linux/pci.h>
63 #include <linux/netdevice.h>
64 #include <linux/init.h>
65 #include <linux/mii.h>
66 #include <linux/etherdevice.h>
67 #include <linux/skbuff.h>
68 #include <linux/delay.h>
69 #include <linux/ethtool.h>
70 #include <linux/crc32.h>
71 #include <linux/bitops.h>
72 #include <linux/dma-mapping.h>
73 
74 #include <asm/processor.h>      /* Processor type for cache alignment. */
75 #include <asm/io.h>
76 #include <asm/irq.h>
77 #include <linux/uaccess.h>	/* User space memory access functions */
78 
79 #include "sis900.h"
80 
81 #define SIS900_MODULE_NAME "sis900"
82 #define SIS900_DRV_VERSION "v1.08.10 Apr. 2 2006"
83 
84 static const char version[] =
85 	KERN_INFO "sis900.c: " SIS900_DRV_VERSION "\n";
86 
87 static int max_interrupt_work = 40;
88 static int multicast_filter_limit = 128;
89 
90 static int sis900_debug = -1; /* Use SIS900_DEF_MSG as value */
91 
92 #define SIS900_DEF_MSG \
93 	(NETIF_MSG_DRV		| \
94 	 NETIF_MSG_LINK		| \
95 	 NETIF_MSG_RX_ERR	| \
96 	 NETIF_MSG_TX_ERR)
97 
98 /* Time in jiffies before concluding the transmitter is hung. */
99 #define TX_TIMEOUT  (4*HZ)
100 
101 enum {
102 	SIS_900 = 0,
103 	SIS_7016
104 };
105 static const char * card_names[] = {
106 	"SiS 900 PCI Fast Ethernet",
107 	"SiS 7016 PCI Fast Ethernet"
108 };
109 
110 static const struct pci_device_id sis900_pci_tbl[] = {
111 	{PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_900,
112 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_900},
113 	{PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_7016,
114 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_7016},
115 	{0,}
116 };
117 MODULE_DEVICE_TABLE (pci, sis900_pci_tbl);
118 
119 static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex);
120 
121 static const struct mii_chip_info {
122 	const char * name;
123 	u16 phy_id0;
124 	u16 phy_id1;
125 	u8  phy_types;
126 #define	HOME 	0x0001
127 #define LAN	0x0002
128 #define MIX	0x0003
129 #define UNKNOWN	0x0
130 } mii_chip_table[] = {
131 	{ "SiS 900 Internal MII PHY", 		0x001d, 0x8000, LAN },
132 	{ "SiS 7014 Physical Layer Solution", 	0x0016, 0xf830, LAN },
133 	{ "SiS 900 on Foxconn 661 7MI",         0x0143, 0xBC70, LAN },
134 	{ "Altimata AC101LF PHY",               0x0022, 0x5520, LAN },
135 	{ "ADM 7001 LAN PHY",			0x002e, 0xcc60, LAN },
136 	{ "AMD 79C901 10BASE-T PHY",  		0x0000, 0x6B70, LAN },
137 	{ "AMD 79C901 HomePNA PHY",		0x0000, 0x6B90, HOME},
138 	{ "ICS LAN PHY",			0x0015, 0xF440, LAN },
139 	{ "ICS LAN PHY",			0x0143, 0xBC70, LAN },
140 	{ "NS 83851 PHY",			0x2000, 0x5C20, MIX },
141 	{ "NS 83847 PHY",                       0x2000, 0x5C30, MIX },
142 	{ "Realtek RTL8201 PHY",		0x0000, 0x8200, LAN },
143 	{ "VIA 6103 PHY",			0x0101, 0x8f20, LAN },
144 	{NULL,},
145 };
146 
147 struct mii_phy {
148 	struct mii_phy * next;
149 	int phy_addr;
150 	u16 phy_id0;
151 	u16 phy_id1;
152 	u16 status;
153 	u8  phy_types;
154 };
155 
156 typedef struct _BufferDesc {
157 	u32 link;
158 	u32 cmdsts;
159 	u32 bufptr;
160 } BufferDesc;
161 
162 struct sis900_private {
163 	struct pci_dev * pci_dev;
164 
165 	spinlock_t lock;
166 
167 	struct mii_phy * mii;
168 	struct mii_phy * first_mii; /* record the first mii structure */
169 	unsigned int cur_phy;
170 	struct mii_if_info mii_info;
171 
172 	void __iomem	*ioaddr;
173 
174 	struct timer_list timer; /* Link status detection timer. */
175 	u8 autong_complete; /* 1: auto-negotiate complete  */
176 
177 	u32 msg_enable;
178 
179 	unsigned int cur_rx, dirty_rx; /* producer/consumer pointers for Tx/Rx ring */
180 	unsigned int cur_tx, dirty_tx;
181 
182 	/* The saved address of a sent/receive-in-place packet buffer */
183 	struct sk_buff *tx_skbuff[NUM_TX_DESC];
184 	struct sk_buff *rx_skbuff[NUM_RX_DESC];
185 	BufferDesc *tx_ring;
186 	BufferDesc *rx_ring;
187 
188 	dma_addr_t tx_ring_dma;
189 	dma_addr_t rx_ring_dma;
190 
191 	unsigned int tx_full; /* The Tx queue is full. */
192 	u8 host_bridge_rev;
193 	u8 chipset_rev;
194 	/* EEPROM data */
195 	int eeprom_size;
196 };
197 
198 MODULE_AUTHOR("Jim Huang <cmhuang@sis.com.tw>, Ollie Lho <ollie@sis.com.tw>");
199 MODULE_DESCRIPTION("SiS 900 PCI Fast Ethernet driver");
200 MODULE_LICENSE("GPL");
201 
202 module_param(multicast_filter_limit, int, 0444);
203 module_param(max_interrupt_work, int, 0444);
204 module_param(sis900_debug, int, 0444);
205 MODULE_PARM_DESC(multicast_filter_limit, "SiS 900/7016 maximum number of filtered multicast addresses");
206 MODULE_PARM_DESC(max_interrupt_work, "SiS 900/7016 maximum events handled per interrupt");
207 MODULE_PARM_DESC(sis900_debug, "SiS 900/7016 bitmapped debugging message level");
208 
209 #define sw32(reg, val)	iowrite32(val, ioaddr + (reg))
210 #define sw8(reg, val)	iowrite8(val, ioaddr + (reg))
211 #define sr32(reg)	ioread32(ioaddr + (reg))
212 #define sr16(reg)	ioread16(ioaddr + (reg))
213 
214 #ifdef CONFIG_NET_POLL_CONTROLLER
215 static void sis900_poll(struct net_device *dev);
216 #endif
217 static int sis900_open(struct net_device *net_dev);
218 static int sis900_mii_probe (struct net_device * net_dev);
219 static void sis900_init_rxfilter (struct net_device * net_dev);
220 static u16 read_eeprom(void __iomem *ioaddr, int location);
221 static int mdio_read(struct net_device *net_dev, int phy_id, int location);
222 static void mdio_write(struct net_device *net_dev, int phy_id, int location, int val);
223 static void sis900_timer(struct timer_list *t);
224 static void sis900_check_mode (struct net_device *net_dev, struct mii_phy *mii_phy);
225 static void sis900_tx_timeout(struct net_device *net_dev);
226 static void sis900_init_tx_ring(struct net_device *net_dev);
227 static void sis900_init_rx_ring(struct net_device *net_dev);
228 static netdev_tx_t sis900_start_xmit(struct sk_buff *skb,
229 				     struct net_device *net_dev);
230 static int sis900_rx(struct net_device *net_dev);
231 static void sis900_finish_xmit (struct net_device *net_dev);
232 static irqreturn_t sis900_interrupt(int irq, void *dev_instance);
233 static int sis900_close(struct net_device *net_dev);
234 static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd);
235 static u16 sis900_mcast_bitnr(u8 *addr, u8 revision);
236 static void set_rx_mode(struct net_device *net_dev);
237 static void sis900_reset(struct net_device *net_dev);
238 static void sis630_set_eq(struct net_device *net_dev, u8 revision);
239 static int sis900_set_config(struct net_device *dev, struct ifmap *map);
240 static u16 sis900_default_phy(struct net_device * net_dev);
241 static void sis900_set_capability( struct net_device *net_dev ,struct mii_phy *phy);
242 static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr);
243 static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr);
244 static void sis900_set_mode(struct sis900_private *, int speed, int duplex);
245 static const struct ethtool_ops sis900_ethtool_ops;
246 
247 /**
248  *	sis900_get_mac_addr - Get MAC address for stand alone SiS900 model
249  *	@pci_dev: the sis900 pci device
250  *	@net_dev: the net device to get address for
251  *
252  *	Older SiS900 and friends, use EEPROM to store MAC address.
253  *	MAC address is read from read_eeprom() into @net_dev->dev_addr.
254  */
255 
256 static int sis900_get_mac_addr(struct pci_dev *pci_dev,
257 			       struct net_device *net_dev)
258 {
259 	struct sis900_private *sis_priv = netdev_priv(net_dev);
260 	void __iomem *ioaddr = sis_priv->ioaddr;
261 	u16 signature;
262 	int i;
263 
264 	/* check to see if we have sane EEPROM */
265 	signature = (u16) read_eeprom(ioaddr, EEPROMSignature);
266 	if (signature == 0xffff || signature == 0x0000) {
267 		printk (KERN_WARNING "%s: Error EEPROM read %x\n",
268 			pci_name(pci_dev), signature);
269 		return 0;
270 	}
271 
272 	/* get MAC address from EEPROM */
273 	for (i = 0; i < 3; i++)
274 	        ((u16 *)(net_dev->dev_addr))[i] = read_eeprom(ioaddr, i+EEPROMMACAddr);
275 
276 	return 1;
277 }
278 
279 /**
280  *	sis630e_get_mac_addr - Get MAC address for SiS630E model
281  *	@pci_dev: the sis900 pci device
282  *	@net_dev: the net device to get address for
283  *
284  *	SiS630E model, use APC CMOS RAM to store MAC address.
285  *	APC CMOS RAM is accessed through ISA bridge.
286  *	MAC address is read into @net_dev->dev_addr.
287  */
288 
289 static int sis630e_get_mac_addr(struct pci_dev *pci_dev,
290 				struct net_device *net_dev)
291 {
292 	struct pci_dev *isa_bridge = NULL;
293 	u8 reg;
294 	int i;
295 
296 	isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0008, isa_bridge);
297 	if (!isa_bridge)
298 		isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0018, isa_bridge);
299 	if (!isa_bridge) {
300 		printk(KERN_WARNING "%s: Can not find ISA bridge\n",
301 		       pci_name(pci_dev));
302 		return 0;
303 	}
304 	pci_read_config_byte(isa_bridge, 0x48, &reg);
305 	pci_write_config_byte(isa_bridge, 0x48, reg | 0x40);
306 
307 	for (i = 0; i < 6; i++) {
308 		outb(0x09 + i, 0x70);
309 		((u8 *)(net_dev->dev_addr))[i] = inb(0x71);
310 	}
311 
312 	pci_write_config_byte(isa_bridge, 0x48, reg & ~0x40);
313 	pci_dev_put(isa_bridge);
314 
315 	return 1;
316 }
317 
318 
319 /**
320  *	sis635_get_mac_addr - Get MAC address for SIS635 model
321  *	@pci_dev: the sis900 pci device
322  *	@net_dev: the net device to get address for
323  *
324  *	SiS635 model, set MAC Reload Bit to load Mac address from APC
325  *	to rfdr. rfdr is accessed through rfcr. MAC address is read into
326  *	@net_dev->dev_addr.
327  */
328 
329 static int sis635_get_mac_addr(struct pci_dev *pci_dev,
330 			       struct net_device *net_dev)
331 {
332 	struct sis900_private *sis_priv = netdev_priv(net_dev);
333 	void __iomem *ioaddr = sis_priv->ioaddr;
334 	u32 rfcrSave;
335 	u32 i;
336 
337 	rfcrSave = sr32(rfcr);
338 
339 	sw32(cr, rfcrSave | RELOAD);
340 	sw32(cr, 0);
341 
342 	/* disable packet filtering before setting filter */
343 	sw32(rfcr, rfcrSave & ~RFEN);
344 
345 	/* load MAC addr to filter data register */
346 	for (i = 0 ; i < 3 ; i++) {
347 		sw32(rfcr, (i << RFADDR_shift));
348 		*( ((u16 *)net_dev->dev_addr) + i) = sr16(rfdr);
349 	}
350 
351 	/* enable packet filtering */
352 	sw32(rfcr, rfcrSave | RFEN);
353 
354 	return 1;
355 }
356 
357 /**
358  *	sis96x_get_mac_addr - Get MAC address for SiS962 or SiS963 model
359  *	@pci_dev: the sis900 pci device
360  *	@net_dev: the net device to get address for
361  *
362  *	SiS962 or SiS963 model, use EEPROM to store MAC address. And EEPROM
363  *	is shared by
364  *	LAN and 1394. When accessing EEPROM, send EEREQ signal to hardware first
365  *	and wait for EEGNT. If EEGNT is ON, EEPROM is permitted to be accessed
366  *	by LAN, otherwise it is not. After MAC address is read from EEPROM, send
367  *	EEDONE signal to refuse EEPROM access by LAN.
368  *	The EEPROM map of SiS962 or SiS963 is different to SiS900.
369  *	The signature field in SiS962 or SiS963 spec is meaningless.
370  *	MAC address is read into @net_dev->dev_addr.
371  */
372 
373 static int sis96x_get_mac_addr(struct pci_dev *pci_dev,
374 			       struct net_device *net_dev)
375 {
376 	struct sis900_private *sis_priv = netdev_priv(net_dev);
377 	void __iomem *ioaddr = sis_priv->ioaddr;
378 	int wait, rc = 0;
379 
380 	sw32(mear, EEREQ);
381 	for (wait = 0; wait < 2000; wait++) {
382 		if (sr32(mear) & EEGNT) {
383 			u16 *mac = (u16 *)net_dev->dev_addr;
384 			int i;
385 
386 			/* get MAC address from EEPROM */
387 			for (i = 0; i < 3; i++)
388 			        mac[i] = read_eeprom(ioaddr, i + EEPROMMACAddr);
389 
390 			rc = 1;
391 			break;
392 		}
393 		udelay(1);
394 	}
395 	sw32(mear, EEDONE);
396 	return rc;
397 }
398 
399 static const struct net_device_ops sis900_netdev_ops = {
400 	.ndo_open		 = sis900_open,
401 	.ndo_stop		= sis900_close,
402 	.ndo_start_xmit		= sis900_start_xmit,
403 	.ndo_set_config		= sis900_set_config,
404 	.ndo_set_rx_mode	= set_rx_mode,
405 	.ndo_validate_addr	= eth_validate_addr,
406 	.ndo_set_mac_address 	= eth_mac_addr,
407 	.ndo_do_ioctl		= mii_ioctl,
408 	.ndo_tx_timeout		= sis900_tx_timeout,
409 #ifdef CONFIG_NET_POLL_CONTROLLER
410         .ndo_poll_controller	= sis900_poll,
411 #endif
412 };
413 
414 /**
415  *	sis900_probe - Probe for sis900 device
416  *	@pci_dev: the sis900 pci device
417  *	@pci_id: the pci device ID
418  *
419  *	Check and probe sis900 net device for @pci_dev.
420  *	Get mac address according to the chip revision,
421  *	and assign SiS900-specific entries in the device structure.
422  *	ie: sis900_open(), sis900_start_xmit(), sis900_close(), etc.
423  */
424 
425 static int sis900_probe(struct pci_dev *pci_dev,
426 			const struct pci_device_id *pci_id)
427 {
428 	struct sis900_private *sis_priv;
429 	struct net_device *net_dev;
430 	struct pci_dev *dev;
431 	dma_addr_t ring_dma;
432 	void *ring_space;
433 	void __iomem *ioaddr;
434 	int i, ret;
435 	const char *card_name = card_names[pci_id->driver_data];
436 	const char *dev_name = pci_name(pci_dev);
437 
438 /* when built into the kernel, we only print version if device is found */
439 #ifndef MODULE
440 	static int printed_version;
441 	if (!printed_version++)
442 		printk(version);
443 #endif
444 
445 	/* setup various bits in PCI command register */
446 	ret = pci_enable_device(pci_dev);
447 	if(ret) return ret;
448 
449 	i = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32));
450 	if(i){
451 		printk(KERN_ERR "sis900.c: architecture does not support "
452 			"32bit PCI busmaster DMA\n");
453 		return i;
454 	}
455 
456 	pci_set_master(pci_dev);
457 
458 	net_dev = alloc_etherdev(sizeof(struct sis900_private));
459 	if (!net_dev)
460 		return -ENOMEM;
461 	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
462 
463 	/* We do a request_region() to register /proc/ioports info. */
464 	ret = pci_request_regions(pci_dev, "sis900");
465 	if (ret)
466 		goto err_out;
467 
468 	/* IO region. */
469 	ioaddr = pci_iomap(pci_dev, 0, 0);
470 	if (!ioaddr) {
471 		ret = -ENOMEM;
472 		goto err_out_cleardev;
473 	}
474 
475 	sis_priv = netdev_priv(net_dev);
476 	sis_priv->ioaddr = ioaddr;
477 	sis_priv->pci_dev = pci_dev;
478 	spin_lock_init(&sis_priv->lock);
479 
480 	sis_priv->eeprom_size = 24;
481 
482 	pci_set_drvdata(pci_dev, net_dev);
483 
484 	ring_space = pci_alloc_consistent(pci_dev, TX_TOTAL_SIZE, &ring_dma);
485 	if (!ring_space) {
486 		ret = -ENOMEM;
487 		goto err_out_unmap;
488 	}
489 	sis_priv->tx_ring = ring_space;
490 	sis_priv->tx_ring_dma = ring_dma;
491 
492 	ring_space = pci_alloc_consistent(pci_dev, RX_TOTAL_SIZE, &ring_dma);
493 	if (!ring_space) {
494 		ret = -ENOMEM;
495 		goto err_unmap_tx;
496 	}
497 	sis_priv->rx_ring = ring_space;
498 	sis_priv->rx_ring_dma = ring_dma;
499 
500 	/* The SiS900-specific entries in the device structure. */
501 	net_dev->netdev_ops = &sis900_netdev_ops;
502 	net_dev->watchdog_timeo = TX_TIMEOUT;
503 	net_dev->ethtool_ops = &sis900_ethtool_ops;
504 
505 	if (sis900_debug > 0)
506 		sis_priv->msg_enable = sis900_debug;
507 	else
508 		sis_priv->msg_enable = SIS900_DEF_MSG;
509 
510 	sis_priv->mii_info.dev = net_dev;
511 	sis_priv->mii_info.mdio_read = mdio_read;
512 	sis_priv->mii_info.mdio_write = mdio_write;
513 	sis_priv->mii_info.phy_id_mask = 0x1f;
514 	sis_priv->mii_info.reg_num_mask = 0x1f;
515 
516 	/* Get Mac address according to the chip revision */
517 	sis_priv->chipset_rev = pci_dev->revision;
518 	if(netif_msg_probe(sis_priv))
519 		printk(KERN_DEBUG "%s: detected revision %2.2x, "
520 				"trying to get MAC address...\n",
521 				dev_name, sis_priv->chipset_rev);
522 
523 	ret = 0;
524 	if (sis_priv->chipset_rev == SIS630E_900_REV)
525 		ret = sis630e_get_mac_addr(pci_dev, net_dev);
526 	else if ((sis_priv->chipset_rev > 0x81) && (sis_priv->chipset_rev <= 0x90) )
527 		ret = sis635_get_mac_addr(pci_dev, net_dev);
528 	else if (sis_priv->chipset_rev == SIS96x_900_REV)
529 		ret = sis96x_get_mac_addr(pci_dev, net_dev);
530 	else
531 		ret = sis900_get_mac_addr(pci_dev, net_dev);
532 
533 	if (!ret || !is_valid_ether_addr(net_dev->dev_addr)) {
534 		eth_hw_addr_random(net_dev);
535 		printk(KERN_WARNING "%s: Unreadable or invalid MAC address,"
536 				"using random generated one\n", dev_name);
537 	}
538 
539 	/* 630ET : set the mii access mode as software-mode */
540 	if (sis_priv->chipset_rev == SIS630ET_900_REV)
541 		sw32(cr, ACCESSMODE | sr32(cr));
542 
543 	/* probe for mii transceiver */
544 	if (sis900_mii_probe(net_dev) == 0) {
545 		printk(KERN_WARNING "%s: Error probing MII device.\n",
546 		       dev_name);
547 		ret = -ENODEV;
548 		goto err_unmap_rx;
549 	}
550 
551 	/* save our host bridge revision */
552 	dev = pci_get_device(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_630, NULL);
553 	if (dev) {
554 		sis_priv->host_bridge_rev = dev->revision;
555 		pci_dev_put(dev);
556 	}
557 
558 	ret = register_netdev(net_dev);
559 	if (ret)
560 		goto err_unmap_rx;
561 
562 	/* print some information about our NIC */
563 	printk(KERN_INFO "%s: %s at 0x%p, IRQ %d, %pM\n",
564 	       net_dev->name, card_name, ioaddr, pci_dev->irq,
565 	       net_dev->dev_addr);
566 
567 	/* Detect Wake on Lan support */
568 	ret = (sr32(CFGPMC) & PMESP) >> 27;
569 	if (netif_msg_probe(sis_priv) && (ret & PME_D3C) == 0)
570 		printk(KERN_INFO "%s: Wake on LAN only available from suspend to RAM.", net_dev->name);
571 
572 	return 0;
573 
574 err_unmap_rx:
575 	pci_free_consistent(pci_dev, RX_TOTAL_SIZE, sis_priv->rx_ring,
576 		sis_priv->rx_ring_dma);
577 err_unmap_tx:
578 	pci_free_consistent(pci_dev, TX_TOTAL_SIZE, sis_priv->tx_ring,
579 		sis_priv->tx_ring_dma);
580 err_out_unmap:
581 	pci_iounmap(pci_dev, ioaddr);
582 err_out_cleardev:
583 	pci_release_regions(pci_dev);
584  err_out:
585 	free_netdev(net_dev);
586 	return ret;
587 }
588 
589 /**
590  *	sis900_mii_probe - Probe MII PHY for sis900
591  *	@net_dev: the net device to probe for
592  *
593  *	Search for total of 32 possible mii phy addresses.
594  *	Identify and set current phy if found one,
595  *	return error if it failed to found.
596  */
597 
598 static int sis900_mii_probe(struct net_device *net_dev)
599 {
600 	struct sis900_private *sis_priv = netdev_priv(net_dev);
601 	const char *dev_name = pci_name(sis_priv->pci_dev);
602 	u16 poll_bit = MII_STAT_LINK, status = 0;
603 	unsigned long timeout = jiffies + 5 * HZ;
604 	int phy_addr;
605 
606 	sis_priv->mii = NULL;
607 
608 	/* search for total of 32 possible mii phy addresses */
609 	for (phy_addr = 0; phy_addr < 32; phy_addr++) {
610 		struct mii_phy * mii_phy = NULL;
611 		u16 mii_status;
612 		int i;
613 
614 		mii_phy = NULL;
615 		for(i = 0; i < 2; i++)
616 			mii_status = mdio_read(net_dev, phy_addr, MII_STATUS);
617 
618 		if (mii_status == 0xffff || mii_status == 0x0000) {
619 			if (netif_msg_probe(sis_priv))
620 				printk(KERN_DEBUG "%s: MII at address %d"
621 						" not accessible\n",
622 						dev_name, phy_addr);
623 			continue;
624 		}
625 
626 		if ((mii_phy = kmalloc(sizeof(struct mii_phy), GFP_KERNEL)) == NULL) {
627 			mii_phy = sis_priv->first_mii;
628 			while (mii_phy) {
629 				struct mii_phy *phy;
630 				phy = mii_phy;
631 				mii_phy = mii_phy->next;
632 				kfree(phy);
633 			}
634 			return 0;
635 		}
636 
637 		mii_phy->phy_id0 = mdio_read(net_dev, phy_addr, MII_PHY_ID0);
638 		mii_phy->phy_id1 = mdio_read(net_dev, phy_addr, MII_PHY_ID1);
639 		mii_phy->phy_addr = phy_addr;
640 		mii_phy->status = mii_status;
641 		mii_phy->next = sis_priv->mii;
642 		sis_priv->mii = mii_phy;
643 		sis_priv->first_mii = mii_phy;
644 
645 		for (i = 0; mii_chip_table[i].phy_id1; i++)
646 			if ((mii_phy->phy_id0 == mii_chip_table[i].phy_id0 ) &&
647 			    ((mii_phy->phy_id1 & 0xFFF0) == mii_chip_table[i].phy_id1)){
648 				mii_phy->phy_types = mii_chip_table[i].phy_types;
649 				if (mii_chip_table[i].phy_types == MIX)
650 					mii_phy->phy_types =
651 					    (mii_status & (MII_STAT_CAN_TX_FDX | MII_STAT_CAN_TX)) ? LAN : HOME;
652 				printk(KERN_INFO "%s: %s transceiver found "
653 							"at address %d.\n",
654 							dev_name,
655 							mii_chip_table[i].name,
656 							phy_addr);
657 				break;
658 			}
659 
660 		if( !mii_chip_table[i].phy_id1 ) {
661 			printk(KERN_INFO "%s: Unknown PHY transceiver found at address %d.\n",
662 			       dev_name, phy_addr);
663 			mii_phy->phy_types = UNKNOWN;
664 		}
665 	}
666 
667 	if (sis_priv->mii == NULL) {
668 		printk(KERN_INFO "%s: No MII transceivers found!\n", dev_name);
669 		return 0;
670 	}
671 
672 	/* select default PHY for mac */
673 	sis_priv->mii = NULL;
674 	sis900_default_phy( net_dev );
675 
676 	/* Reset phy if default phy is internal sis900 */
677         if ((sis_priv->mii->phy_id0 == 0x001D) &&
678 	    ((sis_priv->mii->phy_id1&0xFFF0) == 0x8000))
679         	status = sis900_reset_phy(net_dev, sis_priv->cur_phy);
680 
681         /* workaround for ICS1893 PHY */
682         if ((sis_priv->mii->phy_id0 == 0x0015) &&
683             ((sis_priv->mii->phy_id1&0xFFF0) == 0xF440))
684             	mdio_write(net_dev, sis_priv->cur_phy, 0x0018, 0xD200);
685 
686 	if(status & MII_STAT_LINK){
687 		while (poll_bit) {
688 			yield();
689 
690 			poll_bit ^= (mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS) & poll_bit);
691 			if (time_after_eq(jiffies, timeout)) {
692 				printk(KERN_WARNING "%s: reset phy and link down now\n",
693 				       dev_name);
694 				return -ETIME;
695 			}
696 		}
697 	}
698 
699 	if (sis_priv->chipset_rev == SIS630E_900_REV) {
700 		/* SiS 630E has some bugs on default value of PHY registers */
701 		mdio_write(net_dev, sis_priv->cur_phy, MII_ANADV, 0x05e1);
702 		mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG1, 0x22);
703 		mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG2, 0xff00);
704 		mdio_write(net_dev, sis_priv->cur_phy, MII_MASK, 0xffc0);
705 		//mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, 0x1000);
706 	}
707 
708 	if (sis_priv->mii->status & MII_STAT_LINK)
709 		netif_carrier_on(net_dev);
710 	else
711 		netif_carrier_off(net_dev);
712 
713 	return 1;
714 }
715 
716 /**
717  *	sis900_default_phy - Select default PHY for sis900 mac.
718  *	@net_dev: the net device to probe for
719  *
720  *	Select first detected PHY with link as default.
721  *	If no one is link on, select PHY whose types is HOME as default.
722  *	If HOME doesn't exist, select LAN.
723  */
724 
725 static u16 sis900_default_phy(struct net_device * net_dev)
726 {
727 	struct sis900_private *sis_priv = netdev_priv(net_dev);
728  	struct mii_phy *phy = NULL, *phy_home = NULL,
729 		*default_phy = NULL, *phy_lan = NULL;
730 	u16 status;
731 
732         for (phy=sis_priv->first_mii; phy; phy=phy->next) {
733 		status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
734 		status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
735 
736 		/* Link ON & Not select default PHY & not ghost PHY */
737 		if ((status & MII_STAT_LINK) && !default_phy &&
738 		    (phy->phy_types != UNKNOWN)) {
739 			default_phy = phy;
740 		} else {
741 			status = mdio_read(net_dev, phy->phy_addr, MII_CONTROL);
742 			mdio_write(net_dev, phy->phy_addr, MII_CONTROL,
743 				status | MII_CNTL_AUTO | MII_CNTL_ISOLATE);
744 			if (phy->phy_types == HOME)
745 				phy_home = phy;
746 			else if(phy->phy_types == LAN)
747 				phy_lan = phy;
748 		}
749 	}
750 
751 	if (!default_phy && phy_home)
752 		default_phy = phy_home;
753 	else if (!default_phy && phy_lan)
754 		default_phy = phy_lan;
755 	else if (!default_phy)
756 		default_phy = sis_priv->first_mii;
757 
758 	if (sis_priv->mii != default_phy) {
759 		sis_priv->mii = default_phy;
760 		sis_priv->cur_phy = default_phy->phy_addr;
761 		printk(KERN_INFO "%s: Using transceiver found at address %d as default\n",
762 		       pci_name(sis_priv->pci_dev), sis_priv->cur_phy);
763 	}
764 
765 	sis_priv->mii_info.phy_id = sis_priv->cur_phy;
766 
767 	status = mdio_read(net_dev, sis_priv->cur_phy, MII_CONTROL);
768 	status &= (~MII_CNTL_ISOLATE);
769 
770 	mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, status);
771 	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
772 	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
773 
774 	return status;
775 }
776 
777 
778 /**
779  * 	sis900_set_capability - set the media capability of network adapter.
780  *	@net_dev : the net device to probe for
781  *	@phy : default PHY
782  *
783  *	Set the media capability of network adapter according to
784  *	mii status register. It's necessary before auto-negotiate.
785  */
786 
787 static void sis900_set_capability(struct net_device *net_dev, struct mii_phy *phy)
788 {
789 	u16 cap;
790 	u16 status;
791 
792 	status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
793 	status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
794 
795 	cap = MII_NWAY_CSMA_CD |
796 		((phy->status & MII_STAT_CAN_TX_FDX)? MII_NWAY_TX_FDX:0) |
797 		((phy->status & MII_STAT_CAN_TX)    ? MII_NWAY_TX:0) |
798 		((phy->status & MII_STAT_CAN_T_FDX) ? MII_NWAY_T_FDX:0)|
799 		((phy->status & MII_STAT_CAN_T)     ? MII_NWAY_T:0);
800 
801 	mdio_write(net_dev, phy->phy_addr, MII_ANADV, cap);
802 }
803 
804 
805 /* Delay between EEPROM clock transitions. */
806 #define eeprom_delay()	sr32(mear)
807 
808 /**
809  *	read_eeprom - Read Serial EEPROM
810  *	@ioaddr: base i/o address
811  *	@location: the EEPROM location to read
812  *
813  *	Read Serial EEPROM through EEPROM Access Register.
814  *	Note that location is in word (16 bits) unit
815  */
816 
817 static u16 read_eeprom(void __iomem *ioaddr, int location)
818 {
819 	u32 read_cmd = location | EEread;
820 	int i;
821 	u16 retval = 0;
822 
823 	sw32(mear, 0);
824 	eeprom_delay();
825 	sw32(mear, EECS);
826 	eeprom_delay();
827 
828 	/* Shift the read command (9) bits out. */
829 	for (i = 8; i >= 0; i--) {
830 		u32 dataval = (read_cmd & (1 << i)) ? EEDI | EECS : EECS;
831 
832 		sw32(mear, dataval);
833 		eeprom_delay();
834 		sw32(mear, dataval | EECLK);
835 		eeprom_delay();
836 	}
837 	sw32(mear, EECS);
838 	eeprom_delay();
839 
840 	/* read the 16-bits data in */
841 	for (i = 16; i > 0; i--) {
842 		sw32(mear, EECS);
843 		eeprom_delay();
844 		sw32(mear, EECS | EECLK);
845 		eeprom_delay();
846 		retval = (retval << 1) | ((sr32(mear) & EEDO) ? 1 : 0);
847 		eeprom_delay();
848 	}
849 
850 	/* Terminate the EEPROM access. */
851 	sw32(mear, 0);
852 	eeprom_delay();
853 
854 	return retval;
855 }
856 
857 /* Read and write the MII management registers using software-generated
858    serial MDIO protocol. Note that the command bits and data bits are
859    send out separately */
860 #define mdio_delay()	sr32(mear)
861 
862 static void mdio_idle(struct sis900_private *sp)
863 {
864 	void __iomem *ioaddr = sp->ioaddr;
865 
866 	sw32(mear, MDIO | MDDIR);
867 	mdio_delay();
868 	sw32(mear, MDIO | MDDIR | MDC);
869 }
870 
871 /* Synchronize the MII management interface by shifting 32 one bits out. */
872 static void mdio_reset(struct sis900_private *sp)
873 {
874 	void __iomem *ioaddr = sp->ioaddr;
875 	int i;
876 
877 	for (i = 31; i >= 0; i--) {
878 		sw32(mear, MDDIR | MDIO);
879 		mdio_delay();
880 		sw32(mear, MDDIR | MDIO | MDC);
881 		mdio_delay();
882 	}
883 }
884 
885 /**
886  *	mdio_read - read MII PHY register
887  *	@net_dev: the net device to read
888  *	@phy_id: the phy address to read
889  *	@location: the phy register id to read
890  *
891  *	Read MII registers through MDIO and MDC
892  *	using MDIO management frame structure and protocol(defined by ISO/IEC).
893  *	Please see SiS7014 or ICS spec
894  */
895 
896 static int mdio_read(struct net_device *net_dev, int phy_id, int location)
897 {
898 	int mii_cmd = MIIread|(phy_id<<MIIpmdShift)|(location<<MIIregShift);
899 	struct sis900_private *sp = netdev_priv(net_dev);
900 	void __iomem *ioaddr = sp->ioaddr;
901 	u16 retval = 0;
902 	int i;
903 
904 	mdio_reset(sp);
905 	mdio_idle(sp);
906 
907 	for (i = 15; i >= 0; i--) {
908 		int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR;
909 
910 		sw32(mear, dataval);
911 		mdio_delay();
912 		sw32(mear, dataval | MDC);
913 		mdio_delay();
914 	}
915 
916 	/* Read the 16 data bits. */
917 	for (i = 16; i > 0; i--) {
918 		sw32(mear, 0);
919 		mdio_delay();
920 		retval = (retval << 1) | ((sr32(mear) & MDIO) ? 1 : 0);
921 		sw32(mear, MDC);
922 		mdio_delay();
923 	}
924 	sw32(mear, 0x00);
925 
926 	return retval;
927 }
928 
929 /**
930  *	mdio_write - write MII PHY register
931  *	@net_dev: the net device to write
932  *	@phy_id: the phy address to write
933  *	@location: the phy register id to write
934  *	@value: the register value to write with
935  *
936  *	Write MII registers with @value through MDIO and MDC
937  *	using MDIO management frame structure and protocol(defined by ISO/IEC)
938  *	please see SiS7014 or ICS spec
939  */
940 
941 static void mdio_write(struct net_device *net_dev, int phy_id, int location,
942 			int value)
943 {
944 	int mii_cmd = MIIwrite|(phy_id<<MIIpmdShift)|(location<<MIIregShift);
945 	struct sis900_private *sp = netdev_priv(net_dev);
946 	void __iomem *ioaddr = sp->ioaddr;
947 	int i;
948 
949 	mdio_reset(sp);
950 	mdio_idle(sp);
951 
952 	/* Shift the command bits out. */
953 	for (i = 15; i >= 0; i--) {
954 		int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR;
955 
956 		sw8(mear, dataval);
957 		mdio_delay();
958 		sw8(mear, dataval | MDC);
959 		mdio_delay();
960 	}
961 	mdio_delay();
962 
963 	/* Shift the value bits out. */
964 	for (i = 15; i >= 0; i--) {
965 		int dataval = (value & (1 << i)) ? MDDIR | MDIO : MDDIR;
966 
967 		sw32(mear, dataval);
968 		mdio_delay();
969 		sw32(mear, dataval | MDC);
970 		mdio_delay();
971 	}
972 	mdio_delay();
973 
974 	/* Clear out extra bits. */
975 	for (i = 2; i > 0; i--) {
976 		sw8(mear, 0);
977 		mdio_delay();
978 		sw8(mear, MDC);
979 		mdio_delay();
980 	}
981 	sw32(mear, 0x00);
982 }
983 
984 
985 /**
986  *	sis900_reset_phy - reset sis900 mii phy.
987  *	@net_dev: the net device to write
988  *	@phy_addr: default phy address
989  *
990  *	Some specific phy can't work properly without reset.
991  *	This function will be called during initialization and
992  *	link status change from ON to DOWN.
993  */
994 
995 static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr)
996 {
997 	int i;
998 	u16 status;
999 
1000 	for (i = 0; i < 2; i++)
1001 		status = mdio_read(net_dev, phy_addr, MII_STATUS);
1002 
1003 	mdio_write( net_dev, phy_addr, MII_CONTROL, MII_CNTL_RESET );
1004 
1005 	return status;
1006 }
1007 
1008 #ifdef CONFIG_NET_POLL_CONTROLLER
1009 /*
1010  * Polling 'interrupt' - used by things like netconsole to send skbs
1011  * without having to re-enable interrupts. It's not called while
1012  * the interrupt routine is executing.
1013 */
1014 static void sis900_poll(struct net_device *dev)
1015 {
1016 	struct sis900_private *sp = netdev_priv(dev);
1017 	const int irq = sp->pci_dev->irq;
1018 
1019 	disable_irq(irq);
1020 	sis900_interrupt(irq, dev);
1021 	enable_irq(irq);
1022 }
1023 #endif
1024 
1025 /**
1026  *	sis900_open - open sis900 device
1027  *	@net_dev: the net device to open
1028  *
1029  *	Do some initialization and start net interface.
1030  *	enable interrupts and set sis900 timer.
1031  */
1032 
1033 static int
1034 sis900_open(struct net_device *net_dev)
1035 {
1036 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1037 	void __iomem *ioaddr = sis_priv->ioaddr;
1038 	int ret;
1039 
1040 	/* Soft reset the chip. */
1041 	sis900_reset(net_dev);
1042 
1043 	/* Equalizer workaround Rule */
1044 	sis630_set_eq(net_dev, sis_priv->chipset_rev);
1045 
1046 	ret = request_irq(sis_priv->pci_dev->irq, sis900_interrupt, IRQF_SHARED,
1047 			  net_dev->name, net_dev);
1048 	if (ret)
1049 		return ret;
1050 
1051 	sis900_init_rxfilter(net_dev);
1052 
1053 	sis900_init_tx_ring(net_dev);
1054 	sis900_init_rx_ring(net_dev);
1055 
1056 	set_rx_mode(net_dev);
1057 
1058 	netif_start_queue(net_dev);
1059 
1060 	/* Workaround for EDB */
1061 	sis900_set_mode(sis_priv, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED);
1062 
1063 	/* Enable all known interrupts by setting the interrupt mask. */
1064 	sw32(imr, RxSOVR | RxORN | RxERR | RxOK | TxURN | TxERR | TxDESC);
1065 	sw32(cr, RxENA | sr32(cr));
1066 	sw32(ier, IE);
1067 
1068 	sis900_check_mode(net_dev, sis_priv->mii);
1069 
1070 	/* Set the timer to switch to check for link beat and perhaps switch
1071 	   to an alternate media type. */
1072 	timer_setup(&sis_priv->timer, sis900_timer, 0);
1073 	sis_priv->timer.expires = jiffies + HZ;
1074 	add_timer(&sis_priv->timer);
1075 
1076 	return 0;
1077 }
1078 
1079 /**
1080  *	sis900_init_rxfilter - Initialize the Rx filter
1081  *	@net_dev: the net device to initialize for
1082  *
1083  *	Set receive filter address to our MAC address
1084  *	and enable packet filtering.
1085  */
1086 
1087 static void
1088 sis900_init_rxfilter (struct net_device * net_dev)
1089 {
1090 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1091 	void __iomem *ioaddr = sis_priv->ioaddr;
1092 	u32 rfcrSave;
1093 	u32 i;
1094 
1095 	rfcrSave = sr32(rfcr);
1096 
1097 	/* disable packet filtering before setting filter */
1098 	sw32(rfcr, rfcrSave & ~RFEN);
1099 
1100 	/* load MAC addr to filter data register */
1101 	for (i = 0 ; i < 3 ; i++) {
1102 		u32 w = (u32) *((u16 *)(net_dev->dev_addr)+i);
1103 
1104 		sw32(rfcr, i << RFADDR_shift);
1105 		sw32(rfdr, w);
1106 
1107 		if (netif_msg_hw(sis_priv)) {
1108 			printk(KERN_DEBUG "%s: Receive Filter Address[%d]=%x\n",
1109 			       net_dev->name, i, sr32(rfdr));
1110 		}
1111 	}
1112 
1113 	/* enable packet filtering */
1114 	sw32(rfcr, rfcrSave | RFEN);
1115 }
1116 
1117 /**
1118  *	sis900_init_tx_ring - Initialize the Tx descriptor ring
1119  *	@net_dev: the net device to initialize for
1120  *
1121  *	Initialize the Tx descriptor ring,
1122  */
1123 
1124 static void
1125 sis900_init_tx_ring(struct net_device *net_dev)
1126 {
1127 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1128 	void __iomem *ioaddr = sis_priv->ioaddr;
1129 	int i;
1130 
1131 	sis_priv->tx_full = 0;
1132 	sis_priv->dirty_tx = sis_priv->cur_tx = 0;
1133 
1134 	for (i = 0; i < NUM_TX_DESC; i++) {
1135 		sis_priv->tx_skbuff[i] = NULL;
1136 
1137 		sis_priv->tx_ring[i].link = sis_priv->tx_ring_dma +
1138 			((i+1)%NUM_TX_DESC)*sizeof(BufferDesc);
1139 		sis_priv->tx_ring[i].cmdsts = 0;
1140 		sis_priv->tx_ring[i].bufptr = 0;
1141 	}
1142 
1143 	/* load Transmit Descriptor Register */
1144 	sw32(txdp, sis_priv->tx_ring_dma);
1145 	if (netif_msg_hw(sis_priv))
1146 		printk(KERN_DEBUG "%s: TX descriptor register loaded with: %8.8x\n",
1147 		       net_dev->name, sr32(txdp));
1148 }
1149 
1150 /**
1151  *	sis900_init_rx_ring - Initialize the Rx descriptor ring
1152  *	@net_dev: the net device to initialize for
1153  *
1154  *	Initialize the Rx descriptor ring,
1155  *	and pre-allocate receive buffers (socket buffer)
1156  */
1157 
1158 static void
1159 sis900_init_rx_ring(struct net_device *net_dev)
1160 {
1161 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1162 	void __iomem *ioaddr = sis_priv->ioaddr;
1163 	int i;
1164 
1165 	sis_priv->cur_rx = 0;
1166 	sis_priv->dirty_rx = 0;
1167 
1168 	/* init RX descriptor */
1169 	for (i = 0; i < NUM_RX_DESC; i++) {
1170 		sis_priv->rx_skbuff[i] = NULL;
1171 
1172 		sis_priv->rx_ring[i].link = sis_priv->rx_ring_dma +
1173 			((i+1)%NUM_RX_DESC)*sizeof(BufferDesc);
1174 		sis_priv->rx_ring[i].cmdsts = 0;
1175 		sis_priv->rx_ring[i].bufptr = 0;
1176 	}
1177 
1178 	/* allocate sock buffers */
1179 	for (i = 0; i < NUM_RX_DESC; i++) {
1180 		struct sk_buff *skb;
1181 
1182 		if ((skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE)) == NULL) {
1183 			/* not enough memory for skbuff, this makes a "hole"
1184 			   on the buffer ring, it is not clear how the
1185 			   hardware will react to this kind of degenerated
1186 			   buffer */
1187 			break;
1188 		}
1189 		sis_priv->rx_skbuff[i] = skb;
1190 		sis_priv->rx_ring[i].cmdsts = RX_BUF_SIZE;
1191 		sis_priv->rx_ring[i].bufptr = pci_map_single(sis_priv->pci_dev,
1192 				skb->data, RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1193 		if (unlikely(pci_dma_mapping_error(sis_priv->pci_dev,
1194 				sis_priv->rx_ring[i].bufptr))) {
1195 			dev_kfree_skb(skb);
1196 			sis_priv->rx_skbuff[i] = NULL;
1197 			break;
1198 		}
1199 	}
1200 	sis_priv->dirty_rx = (unsigned int) (i - NUM_RX_DESC);
1201 
1202 	/* load Receive Descriptor Register */
1203 	sw32(rxdp, sis_priv->rx_ring_dma);
1204 	if (netif_msg_hw(sis_priv))
1205 		printk(KERN_DEBUG "%s: RX descriptor register loaded with: %8.8x\n",
1206 		       net_dev->name, sr32(rxdp));
1207 }
1208 
1209 /**
1210  *	sis630_set_eq - set phy equalizer value for 630 LAN
1211  *	@net_dev: the net device to set equalizer value
1212  *	@revision: 630 LAN revision number
1213  *
1214  *	630E equalizer workaround rule(Cyrus Huang 08/15)
1215  *	PHY register 14h(Test)
1216  *	Bit 14: 0 -- Automatically detect (default)
1217  *		1 -- Manually set Equalizer filter
1218  *	Bit 13: 0 -- (Default)
1219  *		1 -- Speed up convergence of equalizer setting
1220  *	Bit 9 : 0 -- (Default)
1221  *		1 -- Disable Baseline Wander
1222  *	Bit 3~7   -- Equalizer filter setting
1223  *	Link ON: Set Bit 9, 13 to 1, Bit 14 to 0
1224  *	Then calculate equalizer value
1225  *	Then set equalizer value, and set Bit 14 to 1, Bit 9 to 0
1226  *	Link Off:Set Bit 13 to 1, Bit 14 to 0
1227  *	Calculate Equalizer value:
1228  *	When Link is ON and Bit 14 is 0, SIS900PHY will auto-detect proper equalizer value.
1229  *	When the equalizer is stable, this value is not a fixed value. It will be within
1230  *	a small range(eg. 7~9). Then we get a minimum and a maximum value(eg. min=7, max=9)
1231  *	0 <= max <= 4  --> set equalizer to max
1232  *	5 <= max <= 14 --> set equalizer to max+1 or set equalizer to max+2 if max == min
1233  *	max >= 15      --> set equalizer to max+5 or set equalizer to max+6 if max == min
1234  */
1235 
1236 static void sis630_set_eq(struct net_device *net_dev, u8 revision)
1237 {
1238 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1239 	u16 reg14h, eq_value=0, max_value=0, min_value=0;
1240 	int i, maxcount=10;
1241 
1242 	if ( !(revision == SIS630E_900_REV || revision == SIS630EA1_900_REV ||
1243 	       revision == SIS630A_900_REV || revision ==  SIS630ET_900_REV) )
1244 		return;
1245 
1246 	if (netif_carrier_ok(net_dev)) {
1247 		reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1248 		mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1249 					(0x2200 | reg14h) & 0xBFFF);
1250 		for (i=0; i < maxcount; i++) {
1251 			eq_value = (0x00F8 & mdio_read(net_dev,
1252 					sis_priv->cur_phy, MII_RESV)) >> 3;
1253 			if (i == 0)
1254 				max_value=min_value=eq_value;
1255 			max_value = (eq_value > max_value) ?
1256 						eq_value : max_value;
1257 			min_value = (eq_value < min_value) ?
1258 						eq_value : min_value;
1259 		}
1260 		/* 630E rule to determine the equalizer value */
1261 		if (revision == SIS630E_900_REV || revision == SIS630EA1_900_REV ||
1262 		    revision == SIS630ET_900_REV) {
1263 			if (max_value < 5)
1264 				eq_value = max_value;
1265 			else if (max_value >= 5 && max_value < 15)
1266 				eq_value = (max_value == min_value) ?
1267 						max_value+2 : max_value+1;
1268 			else if (max_value >= 15)
1269 				eq_value=(max_value == min_value) ?
1270 						max_value+6 : max_value+5;
1271 		}
1272 		/* 630B0&B1 rule to determine the equalizer value */
1273 		if (revision == SIS630A_900_REV &&
1274 		    (sis_priv->host_bridge_rev == SIS630B0 ||
1275 		     sis_priv->host_bridge_rev == SIS630B1)) {
1276 			if (max_value == 0)
1277 				eq_value = 3;
1278 			else
1279 				eq_value = (max_value + min_value + 1)/2;
1280 		}
1281 		/* write equalizer value and setting */
1282 		reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1283 		reg14h = (reg14h & 0xFF07) | ((eq_value << 3) & 0x00F8);
1284 		reg14h = (reg14h | 0x6000) & 0xFDFF;
1285 		mdio_write(net_dev, sis_priv->cur_phy, MII_RESV, reg14h);
1286 	} else {
1287 		reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1288 		if (revision == SIS630A_900_REV &&
1289 		    (sis_priv->host_bridge_rev == SIS630B0 ||
1290 		     sis_priv->host_bridge_rev == SIS630B1))
1291 			mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1292 						(reg14h | 0x2200) & 0xBFFF);
1293 		else
1294 			mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1295 						(reg14h | 0x2000) & 0xBFFF);
1296 	}
1297 }
1298 
1299 /**
1300  *	sis900_timer - sis900 timer routine
1301  *	@data: pointer to sis900 net device
1302  *
1303  *	On each timer ticks we check two things,
1304  *	link status (ON/OFF) and link mode (10/100/Full/Half)
1305  */
1306 
1307 static void sis900_timer(struct timer_list *t)
1308 {
1309 	struct sis900_private *sis_priv = from_timer(sis_priv, t, timer);
1310 	struct net_device *net_dev = sis_priv->mii_info.dev;
1311 	struct mii_phy *mii_phy = sis_priv->mii;
1312 	static const int next_tick = 5*HZ;
1313 	int speed = 0, duplex = 0;
1314 	u16 status;
1315 
1316 	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
1317 	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
1318 
1319 	/* Link OFF -> ON */
1320 	if (!netif_carrier_ok(net_dev)) {
1321 	LookForLink:
1322 		/* Search for new PHY */
1323 		status = sis900_default_phy(net_dev);
1324 		mii_phy = sis_priv->mii;
1325 
1326 		if (status & MII_STAT_LINK) {
1327 			WARN_ON(!(status & MII_STAT_AUTO_DONE));
1328 
1329 			sis900_read_mode(net_dev, &speed, &duplex);
1330 			if (duplex) {
1331 				sis900_set_mode(sis_priv, speed, duplex);
1332 				sis630_set_eq(net_dev, sis_priv->chipset_rev);
1333 				netif_carrier_on(net_dev);
1334 			}
1335 		}
1336 	} else {
1337 	/* Link ON -> OFF */
1338                 if (!(status & MII_STAT_LINK)){
1339                 	netif_carrier_off(net_dev);
1340 			if(netif_msg_link(sis_priv))
1341                 		printk(KERN_INFO "%s: Media Link Off\n", net_dev->name);
1342 
1343                 	/* Change mode issue */
1344                 	if ((mii_phy->phy_id0 == 0x001D) &&
1345 			    ((mii_phy->phy_id1 & 0xFFF0) == 0x8000))
1346                			sis900_reset_phy(net_dev,  sis_priv->cur_phy);
1347 
1348 			sis630_set_eq(net_dev, sis_priv->chipset_rev);
1349 
1350                 	goto LookForLink;
1351                 }
1352 	}
1353 
1354 	sis_priv->timer.expires = jiffies + next_tick;
1355 	add_timer(&sis_priv->timer);
1356 }
1357 
1358 /**
1359  *	sis900_check_mode - check the media mode for sis900
1360  *	@net_dev: the net device to be checked
1361  *	@mii_phy: the mii phy
1362  *
1363  *	Older driver gets the media mode from mii status output
1364  *	register. Now we set our media capability and auto-negotiate
1365  *	to get the upper bound of speed and duplex between two ends.
1366  *	If the types of mii phy is HOME, it doesn't need to auto-negotiate
1367  *	and autong_complete should be set to 1.
1368  */
1369 
1370 static void sis900_check_mode(struct net_device *net_dev, struct mii_phy *mii_phy)
1371 {
1372 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1373 	void __iomem *ioaddr = sis_priv->ioaddr;
1374 	int speed, duplex;
1375 
1376 	if (mii_phy->phy_types == LAN) {
1377 		sw32(cfg, ~EXD & sr32(cfg));
1378 		sis900_set_capability(net_dev , mii_phy);
1379 		sis900_auto_negotiate(net_dev, sis_priv->cur_phy);
1380 	} else {
1381 		sw32(cfg, EXD | sr32(cfg));
1382 		speed = HW_SPEED_HOME;
1383 		duplex = FDX_CAPABLE_HALF_SELECTED;
1384 		sis900_set_mode(sis_priv, speed, duplex);
1385 		sis_priv->autong_complete = 1;
1386 	}
1387 }
1388 
1389 /**
1390  *	sis900_set_mode - Set the media mode of mac register.
1391  *	@sp:     the device private data
1392  *	@speed : the transmit speed to be determined
1393  *	@duplex: the duplex mode to be determined
1394  *
1395  *	Set the media mode of mac register txcfg/rxcfg according to
1396  *	speed and duplex of phy. Bit EDB_MASTER_EN indicates the EDB
1397  *	bus is used instead of PCI bus. When this bit is set 1, the
1398  *	Max DMA Burst Size for TX/RX DMA should be no larger than 16
1399  *	double words.
1400  */
1401 
1402 static void sis900_set_mode(struct sis900_private *sp, int speed, int duplex)
1403 {
1404 	void __iomem *ioaddr = sp->ioaddr;
1405 	u32 tx_flags = 0, rx_flags = 0;
1406 
1407 	if (sr32( cfg) & EDB_MASTER_EN) {
1408 		tx_flags = TxATP | (DMA_BURST_64 << TxMXDMA_shift) |
1409 					(TX_FILL_THRESH << TxFILLT_shift);
1410 		rx_flags = DMA_BURST_64 << RxMXDMA_shift;
1411 	} else {
1412 		tx_flags = TxATP | (DMA_BURST_512 << TxMXDMA_shift) |
1413 					(TX_FILL_THRESH << TxFILLT_shift);
1414 		rx_flags = DMA_BURST_512 << RxMXDMA_shift;
1415 	}
1416 
1417 	if (speed == HW_SPEED_HOME || speed == HW_SPEED_10_MBPS) {
1418 		rx_flags |= (RxDRNT_10 << RxDRNT_shift);
1419 		tx_flags |= (TxDRNT_10 << TxDRNT_shift);
1420 	} else {
1421 		rx_flags |= (RxDRNT_100 << RxDRNT_shift);
1422 		tx_flags |= (TxDRNT_100 << TxDRNT_shift);
1423 	}
1424 
1425 	if (duplex == FDX_CAPABLE_FULL_SELECTED) {
1426 		tx_flags |= (TxCSI | TxHBI);
1427 		rx_flags |= RxATX;
1428 	}
1429 
1430 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1431 	/* Can accept Jumbo packet */
1432 	rx_flags |= RxAJAB;
1433 #endif
1434 
1435 	sw32(txcfg, tx_flags);
1436 	sw32(rxcfg, rx_flags);
1437 }
1438 
1439 /**
1440  *	sis900_auto_negotiate - Set the Auto-Negotiation Enable/Reset bit.
1441  *	@net_dev: the net device to read mode for
1442  *	@phy_addr: mii phy address
1443  *
1444  *	If the adapter is link-on, set the auto-negotiate enable/reset bit.
1445  *	autong_complete should be set to 0 when starting auto-negotiation.
1446  *	autong_complete should be set to 1 if we didn't start auto-negotiation.
1447  *	sis900_timer will wait for link on again if autong_complete = 0.
1448  */
1449 
1450 static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr)
1451 {
1452 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1453 	int i = 0;
1454 	u32 status;
1455 
1456 	for (i = 0; i < 2; i++)
1457 		status = mdio_read(net_dev, phy_addr, MII_STATUS);
1458 
1459 	if (!(status & MII_STAT_LINK)){
1460 		if(netif_msg_link(sis_priv))
1461 			printk(KERN_INFO "%s: Media Link Off\n", net_dev->name);
1462 		sis_priv->autong_complete = 1;
1463 		netif_carrier_off(net_dev);
1464 		return;
1465 	}
1466 
1467 	/* (Re)start AutoNegotiate */
1468 	mdio_write(net_dev, phy_addr, MII_CONTROL,
1469 		   MII_CNTL_AUTO | MII_CNTL_RST_AUTO);
1470 	sis_priv->autong_complete = 0;
1471 }
1472 
1473 
1474 /**
1475  *	sis900_read_mode - read media mode for sis900 internal phy
1476  *	@net_dev: the net device to read mode for
1477  *	@speed  : the transmit speed to be determined
1478  *	@duplex : the duplex mode to be determined
1479  *
1480  *	The capability of remote end will be put in mii register autorec
1481  *	after auto-negotiation. Use AND operation to get the upper bound
1482  *	of speed and duplex between two ends.
1483  */
1484 
1485 static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex)
1486 {
1487 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1488 	struct mii_phy *phy = sis_priv->mii;
1489 	int phy_addr = sis_priv->cur_phy;
1490 	u32 status;
1491 	u16 autoadv, autorec;
1492 	int i;
1493 
1494 	for (i = 0; i < 2; i++)
1495 		status = mdio_read(net_dev, phy_addr, MII_STATUS);
1496 
1497 	if (!(status & MII_STAT_LINK))
1498 		return;
1499 
1500 	/* AutoNegotiate completed */
1501 	autoadv = mdio_read(net_dev, phy_addr, MII_ANADV);
1502 	autorec = mdio_read(net_dev, phy_addr, MII_ANLPAR);
1503 	status = autoadv & autorec;
1504 
1505 	*speed = HW_SPEED_10_MBPS;
1506 	*duplex = FDX_CAPABLE_HALF_SELECTED;
1507 
1508 	if (status & (MII_NWAY_TX | MII_NWAY_TX_FDX))
1509 		*speed = HW_SPEED_100_MBPS;
1510 	if (status & ( MII_NWAY_TX_FDX | MII_NWAY_T_FDX))
1511 		*duplex = FDX_CAPABLE_FULL_SELECTED;
1512 
1513 	sis_priv->autong_complete = 1;
1514 
1515 	/* Workaround for Realtek RTL8201 PHY issue */
1516 	if ((phy->phy_id0 == 0x0000) && ((phy->phy_id1 & 0xFFF0) == 0x8200)) {
1517 		if (mdio_read(net_dev, phy_addr, MII_CONTROL) & MII_CNTL_FDX)
1518 			*duplex = FDX_CAPABLE_FULL_SELECTED;
1519 		if (mdio_read(net_dev, phy_addr, 0x0019) & 0x01)
1520 			*speed = HW_SPEED_100_MBPS;
1521 	}
1522 
1523 	if(netif_msg_link(sis_priv))
1524 		printk(KERN_INFO "%s: Media Link On %s %s-duplex\n",
1525 	       				net_dev->name,
1526 	       				*speed == HW_SPEED_100_MBPS ?
1527 	       					"100mbps" : "10mbps",
1528 	       				*duplex == FDX_CAPABLE_FULL_SELECTED ?
1529 	       					"full" : "half");
1530 }
1531 
1532 /**
1533  *	sis900_tx_timeout - sis900 transmit timeout routine
1534  *	@net_dev: the net device to transmit
1535  *
1536  *	print transmit timeout status
1537  *	disable interrupts and do some tasks
1538  */
1539 
1540 static void sis900_tx_timeout(struct net_device *net_dev)
1541 {
1542 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1543 	void __iomem *ioaddr = sis_priv->ioaddr;
1544 	unsigned long flags;
1545 	int i;
1546 
1547 	if (netif_msg_tx_err(sis_priv)) {
1548 		printk(KERN_INFO "%s: Transmit timeout, status %8.8x %8.8x\n",
1549 			net_dev->name, sr32(cr), sr32(isr));
1550 	}
1551 
1552 	/* Disable interrupts by clearing the interrupt mask. */
1553 	sw32(imr, 0x0000);
1554 
1555 	/* use spinlock to prevent interrupt handler accessing buffer ring */
1556 	spin_lock_irqsave(&sis_priv->lock, flags);
1557 
1558 	/* discard unsent packets */
1559 	sis_priv->dirty_tx = sis_priv->cur_tx = 0;
1560 	for (i = 0; i < NUM_TX_DESC; i++) {
1561 		struct sk_buff *skb = sis_priv->tx_skbuff[i];
1562 
1563 		if (skb) {
1564 			pci_unmap_single(sis_priv->pci_dev,
1565 				sis_priv->tx_ring[i].bufptr, skb->len,
1566 				PCI_DMA_TODEVICE);
1567 			dev_kfree_skb_irq(skb);
1568 			sis_priv->tx_skbuff[i] = NULL;
1569 			sis_priv->tx_ring[i].cmdsts = 0;
1570 			sis_priv->tx_ring[i].bufptr = 0;
1571 			net_dev->stats.tx_dropped++;
1572 		}
1573 	}
1574 	sis_priv->tx_full = 0;
1575 	netif_wake_queue(net_dev);
1576 
1577 	spin_unlock_irqrestore(&sis_priv->lock, flags);
1578 
1579 	netif_trans_update(net_dev); /* prevent tx timeout */
1580 
1581 	/* load Transmit Descriptor Register */
1582 	sw32(txdp, sis_priv->tx_ring_dma);
1583 
1584 	/* Enable all known interrupts by setting the interrupt mask. */
1585 	sw32(imr, RxSOVR | RxORN | RxERR | RxOK | TxURN | TxERR | TxDESC);
1586 }
1587 
1588 /**
1589  *	sis900_start_xmit - sis900 start transmit routine
1590  *	@skb: socket buffer pointer to put the data being transmitted
1591  *	@net_dev: the net device to transmit with
1592  *
1593  *	Set the transmit buffer descriptor,
1594  *	and write TxENA to enable transmit state machine.
1595  *	tell upper layer if the buffer is full
1596  */
1597 
1598 static netdev_tx_t
1599 sis900_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
1600 {
1601 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1602 	void __iomem *ioaddr = sis_priv->ioaddr;
1603 	unsigned int  entry;
1604 	unsigned long flags;
1605 	unsigned int  index_cur_tx, index_dirty_tx;
1606 	unsigned int  count_dirty_tx;
1607 
1608 	spin_lock_irqsave(&sis_priv->lock, flags);
1609 
1610 	/* Calculate the next Tx descriptor entry. */
1611 	entry = sis_priv->cur_tx % NUM_TX_DESC;
1612 	sis_priv->tx_skbuff[entry] = skb;
1613 
1614 	/* set the transmit buffer descriptor and enable Transmit State Machine */
1615 	sis_priv->tx_ring[entry].bufptr = pci_map_single(sis_priv->pci_dev,
1616 		skb->data, skb->len, PCI_DMA_TODEVICE);
1617 	if (unlikely(pci_dma_mapping_error(sis_priv->pci_dev,
1618 		sis_priv->tx_ring[entry].bufptr))) {
1619 			dev_kfree_skb_any(skb);
1620 			sis_priv->tx_skbuff[entry] = NULL;
1621 			net_dev->stats.tx_dropped++;
1622 			spin_unlock_irqrestore(&sis_priv->lock, flags);
1623 			return NETDEV_TX_OK;
1624 	}
1625 	sis_priv->tx_ring[entry].cmdsts = (OWN | INTR | skb->len);
1626 	sw32(cr, TxENA | sr32(cr));
1627 
1628 	sis_priv->cur_tx ++;
1629 	index_cur_tx = sis_priv->cur_tx;
1630 	index_dirty_tx = sis_priv->dirty_tx;
1631 
1632 	for (count_dirty_tx = 0; index_cur_tx != index_dirty_tx; index_dirty_tx++)
1633 		count_dirty_tx ++;
1634 
1635 	if (index_cur_tx == index_dirty_tx) {
1636 		/* dirty_tx is met in the cycle of cur_tx, buffer full */
1637 		sis_priv->tx_full = 1;
1638 		netif_stop_queue(net_dev);
1639 	} else if (count_dirty_tx < NUM_TX_DESC) {
1640 		/* Typical path, tell upper layer that more transmission is possible */
1641 		netif_start_queue(net_dev);
1642 	} else {
1643 		/* buffer full, tell upper layer no more transmission */
1644 		sis_priv->tx_full = 1;
1645 		netif_stop_queue(net_dev);
1646 	}
1647 
1648 	spin_unlock_irqrestore(&sis_priv->lock, flags);
1649 
1650 	if (netif_msg_tx_queued(sis_priv))
1651 		printk(KERN_DEBUG "%s: Queued Tx packet at %p size %d "
1652 		       "to slot %d.\n",
1653 		       net_dev->name, skb->data, (int)skb->len, entry);
1654 
1655 	return NETDEV_TX_OK;
1656 }
1657 
1658 /**
1659  *	sis900_interrupt - sis900 interrupt handler
1660  *	@irq: the irq number
1661  *	@dev_instance: the client data object
1662  *
1663  *	The interrupt handler does all of the Rx thread work,
1664  *	and cleans up after the Tx thread
1665  */
1666 
1667 static irqreturn_t sis900_interrupt(int irq, void *dev_instance)
1668 {
1669 	struct net_device *net_dev = dev_instance;
1670 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1671 	int boguscnt = max_interrupt_work;
1672 	void __iomem *ioaddr = sis_priv->ioaddr;
1673 	u32 status;
1674 	unsigned int handled = 0;
1675 
1676 	spin_lock (&sis_priv->lock);
1677 
1678 	do {
1679 		status = sr32(isr);
1680 
1681 		if ((status & (HIBERR|TxURN|TxERR|TxDESC|RxORN|RxERR|RxOK)) == 0)
1682 			/* nothing interesting happened */
1683 			break;
1684 		handled = 1;
1685 
1686 		/* why dow't we break after Tx/Rx case ?? keyword: full-duplex */
1687 		if (status & (RxORN | RxERR | RxOK))
1688 			/* Rx interrupt */
1689 			sis900_rx(net_dev);
1690 
1691 		if (status & (TxURN | TxERR | TxDESC))
1692 			/* Tx interrupt */
1693 			sis900_finish_xmit(net_dev);
1694 
1695 		/* something strange happened !!! */
1696 		if (status & HIBERR) {
1697 			if(netif_msg_intr(sis_priv))
1698 				printk(KERN_INFO "%s: Abnormal interrupt, "
1699 					"status %#8.8x.\n", net_dev->name, status);
1700 			break;
1701 		}
1702 		if (--boguscnt < 0) {
1703 			if(netif_msg_intr(sis_priv))
1704 				printk(KERN_INFO "%s: Too much work at interrupt, "
1705 					"interrupt status = %#8.8x.\n",
1706 					net_dev->name, status);
1707 			break;
1708 		}
1709 	} while (1);
1710 
1711 	if(netif_msg_intr(sis_priv))
1712 		printk(KERN_DEBUG "%s: exiting interrupt, "
1713 		       "interrupt status = %#8.8x\n",
1714 		       net_dev->name, sr32(isr));
1715 
1716 	spin_unlock (&sis_priv->lock);
1717 	return IRQ_RETVAL(handled);
1718 }
1719 
1720 /**
1721  *	sis900_rx - sis900 receive routine
1722  *	@net_dev: the net device which receives data
1723  *
1724  *	Process receive interrupt events,
1725  *	put buffer to higher layer and refill buffer pool
1726  *	Note: This function is called by interrupt handler,
1727  *	don't do "too much" work here
1728  */
1729 
1730 static int sis900_rx(struct net_device *net_dev)
1731 {
1732 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1733 	void __iomem *ioaddr = sis_priv->ioaddr;
1734 	unsigned int entry = sis_priv->cur_rx % NUM_RX_DESC;
1735 	u32 rx_status = sis_priv->rx_ring[entry].cmdsts;
1736 	int rx_work_limit;
1737 
1738 	if (netif_msg_rx_status(sis_priv))
1739 		printk(KERN_DEBUG "sis900_rx, cur_rx:%4.4d, dirty_rx:%4.4d "
1740 		       "status:0x%8.8x\n",
1741 		       sis_priv->cur_rx, sis_priv->dirty_rx, rx_status);
1742 	rx_work_limit = sis_priv->dirty_rx + NUM_RX_DESC - sis_priv->cur_rx;
1743 
1744 	while (rx_status & OWN) {
1745 		unsigned int rx_size;
1746 		unsigned int data_size;
1747 
1748 		if (--rx_work_limit < 0)
1749 			break;
1750 
1751 		data_size = rx_status & DSIZE;
1752 		rx_size = data_size - CRC_SIZE;
1753 
1754 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1755 		/* ``TOOLONG'' flag means jumbo packet received. */
1756 		if ((rx_status & TOOLONG) && data_size <= MAX_FRAME_SIZE)
1757 			rx_status &= (~ ((unsigned int)TOOLONG));
1758 #endif
1759 
1760 		if (rx_status & (ABORT|OVERRUN|TOOLONG|RUNT|RXISERR|CRCERR|FAERR)) {
1761 			/* corrupted packet received */
1762 			if (netif_msg_rx_err(sis_priv))
1763 				printk(KERN_DEBUG "%s: Corrupted packet "
1764 				       "received, buffer status = 0x%8.8x/%d.\n",
1765 				       net_dev->name, rx_status, data_size);
1766 			net_dev->stats.rx_errors++;
1767 			if (rx_status & OVERRUN)
1768 				net_dev->stats.rx_over_errors++;
1769 			if (rx_status & (TOOLONG|RUNT))
1770 				net_dev->stats.rx_length_errors++;
1771 			if (rx_status & (RXISERR | FAERR))
1772 				net_dev->stats.rx_frame_errors++;
1773 			if (rx_status & CRCERR)
1774 				net_dev->stats.rx_crc_errors++;
1775 			/* reset buffer descriptor state */
1776 			sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1777 		} else {
1778 			struct sk_buff * skb;
1779 			struct sk_buff * rx_skb;
1780 
1781 			pci_unmap_single(sis_priv->pci_dev,
1782 				sis_priv->rx_ring[entry].bufptr, RX_BUF_SIZE,
1783 				PCI_DMA_FROMDEVICE);
1784 
1785 			/* refill the Rx buffer, what if there is not enough
1786 			 * memory for new socket buffer ?? */
1787 			if ((skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE)) == NULL) {
1788 				/*
1789 				 * Not enough memory to refill the buffer
1790 				 * so we need to recycle the old one so
1791 				 * as to avoid creating a memory hole
1792 				 * in the rx ring
1793 				 */
1794 				skb = sis_priv->rx_skbuff[entry];
1795 				net_dev->stats.rx_dropped++;
1796 				goto refill_rx_ring;
1797 			}
1798 
1799 			/* This situation should never happen, but due to
1800 			   some unknown bugs, it is possible that
1801 			   we are working on NULL sk_buff :-( */
1802 			if (sis_priv->rx_skbuff[entry] == NULL) {
1803 				if (netif_msg_rx_err(sis_priv))
1804 					printk(KERN_WARNING "%s: NULL pointer "
1805 					      "encountered in Rx ring\n"
1806 					      "cur_rx:%4.4d, dirty_rx:%4.4d\n",
1807 					      net_dev->name, sis_priv->cur_rx,
1808 					      sis_priv->dirty_rx);
1809 				dev_kfree_skb(skb);
1810 				break;
1811 			}
1812 
1813 			/* give the socket buffer to upper layers */
1814 			rx_skb = sis_priv->rx_skbuff[entry];
1815 			skb_put(rx_skb, rx_size);
1816 			rx_skb->protocol = eth_type_trans(rx_skb, net_dev);
1817 			netif_rx(rx_skb);
1818 
1819 			/* some network statistics */
1820 			if ((rx_status & BCAST) == MCAST)
1821 				net_dev->stats.multicast++;
1822 			net_dev->stats.rx_bytes += rx_size;
1823 			net_dev->stats.rx_packets++;
1824 			sis_priv->dirty_rx++;
1825 refill_rx_ring:
1826 			sis_priv->rx_skbuff[entry] = skb;
1827 			sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1828 			sis_priv->rx_ring[entry].bufptr =
1829 				pci_map_single(sis_priv->pci_dev, skb->data,
1830 					RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1831 			if (unlikely(pci_dma_mapping_error(sis_priv->pci_dev,
1832 				sis_priv->rx_ring[entry].bufptr))) {
1833 				dev_kfree_skb_irq(skb);
1834 				sis_priv->rx_skbuff[entry] = NULL;
1835 				break;
1836 			}
1837 		}
1838 		sis_priv->cur_rx++;
1839 		entry = sis_priv->cur_rx % NUM_RX_DESC;
1840 		rx_status = sis_priv->rx_ring[entry].cmdsts;
1841 	} // while
1842 
1843 	/* refill the Rx buffer, what if the rate of refilling is slower
1844 	 * than consuming ?? */
1845 	for (; sis_priv->cur_rx != sis_priv->dirty_rx; sis_priv->dirty_rx++) {
1846 		struct sk_buff *skb;
1847 
1848 		entry = sis_priv->dirty_rx % NUM_RX_DESC;
1849 
1850 		if (sis_priv->rx_skbuff[entry] == NULL) {
1851 			skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE);
1852 			if (skb == NULL) {
1853 				/* not enough memory for skbuff, this makes a
1854 				 * "hole" on the buffer ring, it is not clear
1855 				 * how the hardware will react to this kind
1856 				 * of degenerated buffer */
1857 				net_dev->stats.rx_dropped++;
1858 				break;
1859 			}
1860 			sis_priv->rx_skbuff[entry] = skb;
1861 			sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1862 			sis_priv->rx_ring[entry].bufptr =
1863 				pci_map_single(sis_priv->pci_dev, skb->data,
1864 					RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1865 			if (unlikely(pci_dma_mapping_error(sis_priv->pci_dev,
1866 					sis_priv->rx_ring[entry].bufptr))) {
1867 				dev_kfree_skb_irq(skb);
1868 				sis_priv->rx_skbuff[entry] = NULL;
1869 				break;
1870 			}
1871 		}
1872 	}
1873 	/* re-enable the potentially idle receive state matchine */
1874 	sw32(cr , RxENA | sr32(cr));
1875 
1876 	return 0;
1877 }
1878 
1879 /**
1880  *	sis900_finish_xmit - finish up transmission of packets
1881  *	@net_dev: the net device to be transmitted on
1882  *
1883  *	Check for error condition and free socket buffer etc
1884  *	schedule for more transmission as needed
1885  *	Note: This function is called by interrupt handler,
1886  *	don't do "too much" work here
1887  */
1888 
1889 static void sis900_finish_xmit (struct net_device *net_dev)
1890 {
1891 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1892 
1893 	for (; sis_priv->dirty_tx != sis_priv->cur_tx; sis_priv->dirty_tx++) {
1894 		struct sk_buff *skb;
1895 		unsigned int entry;
1896 		u32 tx_status;
1897 
1898 		entry = sis_priv->dirty_tx % NUM_TX_DESC;
1899 		tx_status = sis_priv->tx_ring[entry].cmdsts;
1900 
1901 		if (tx_status & OWN) {
1902 			/* The packet is not transmitted yet (owned by hardware) !
1903 			 * Note: this is an almost impossible condition
1904 			 * on TxDESC interrupt ('descriptor interrupt') */
1905 			break;
1906 		}
1907 
1908 		if (tx_status & (ABORT | UNDERRUN | OWCOLL)) {
1909 			/* packet unsuccessfully transmitted */
1910 			if (netif_msg_tx_err(sis_priv))
1911 				printk(KERN_DEBUG "%s: Transmit "
1912 				       "error, Tx status %8.8x.\n",
1913 				       net_dev->name, tx_status);
1914 			net_dev->stats.tx_errors++;
1915 			if (tx_status & UNDERRUN)
1916 				net_dev->stats.tx_fifo_errors++;
1917 			if (tx_status & ABORT)
1918 				net_dev->stats.tx_aborted_errors++;
1919 			if (tx_status & NOCARRIER)
1920 				net_dev->stats.tx_carrier_errors++;
1921 			if (tx_status & OWCOLL)
1922 				net_dev->stats.tx_window_errors++;
1923 		} else {
1924 			/* packet successfully transmitted */
1925 			net_dev->stats.collisions += (tx_status & COLCNT) >> 16;
1926 			net_dev->stats.tx_bytes += tx_status & DSIZE;
1927 			net_dev->stats.tx_packets++;
1928 		}
1929 		/* Free the original skb. */
1930 		skb = sis_priv->tx_skbuff[entry];
1931 		pci_unmap_single(sis_priv->pci_dev,
1932 			sis_priv->tx_ring[entry].bufptr, skb->len,
1933 			PCI_DMA_TODEVICE);
1934 		dev_consume_skb_irq(skb);
1935 		sis_priv->tx_skbuff[entry] = NULL;
1936 		sis_priv->tx_ring[entry].bufptr = 0;
1937 		sis_priv->tx_ring[entry].cmdsts = 0;
1938 	}
1939 
1940 	if (sis_priv->tx_full && netif_queue_stopped(net_dev) &&
1941 	    sis_priv->cur_tx - sis_priv->dirty_tx < NUM_TX_DESC - 4) {
1942 		/* The ring is no longer full, clear tx_full and schedule
1943 		 * more transmission by netif_wake_queue(net_dev) */
1944 		sis_priv->tx_full = 0;
1945 		netif_wake_queue (net_dev);
1946 	}
1947 }
1948 
1949 /**
1950  *	sis900_close - close sis900 device
1951  *	@net_dev: the net device to be closed
1952  *
1953  *	Disable interrupts, stop the Tx and Rx Status Machine
1954  *	free Tx and RX socket buffer
1955  */
1956 
1957 static int sis900_close(struct net_device *net_dev)
1958 {
1959 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1960 	struct pci_dev *pdev = sis_priv->pci_dev;
1961 	void __iomem *ioaddr = sis_priv->ioaddr;
1962 	struct sk_buff *skb;
1963 	int i;
1964 
1965 	netif_stop_queue(net_dev);
1966 
1967 	/* Disable interrupts by clearing the interrupt mask. */
1968 	sw32(imr, 0x0000);
1969 	sw32(ier, 0x0000);
1970 
1971 	/* Stop the chip's Tx and Rx Status Machine */
1972 	sw32(cr, RxDIS | TxDIS | sr32(cr));
1973 
1974 	del_timer(&sis_priv->timer);
1975 
1976 	free_irq(pdev->irq, net_dev);
1977 
1978 	/* Free Tx and RX skbuff */
1979 	for (i = 0; i < NUM_RX_DESC; i++) {
1980 		skb = sis_priv->rx_skbuff[i];
1981 		if (skb) {
1982 			pci_unmap_single(pdev, sis_priv->rx_ring[i].bufptr,
1983 					 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1984 			dev_kfree_skb(skb);
1985 			sis_priv->rx_skbuff[i] = NULL;
1986 		}
1987 	}
1988 	for (i = 0; i < NUM_TX_DESC; i++) {
1989 		skb = sis_priv->tx_skbuff[i];
1990 		if (skb) {
1991 			pci_unmap_single(pdev, sis_priv->tx_ring[i].bufptr,
1992 					 skb->len, PCI_DMA_TODEVICE);
1993 			dev_kfree_skb(skb);
1994 			sis_priv->tx_skbuff[i] = NULL;
1995 		}
1996 	}
1997 
1998 	/* Green! Put the chip in low-power mode. */
1999 
2000 	return 0;
2001 }
2002 
2003 /**
2004  *	sis900_get_drvinfo - Return information about driver
2005  *	@net_dev: the net device to probe
2006  *	@info: container for info returned
2007  *
2008  *	Process ethtool command such as "ehtool -i" to show information
2009  */
2010 
2011 static void sis900_get_drvinfo(struct net_device *net_dev,
2012 			       struct ethtool_drvinfo *info)
2013 {
2014 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2015 
2016 	strlcpy(info->driver, SIS900_MODULE_NAME, sizeof(info->driver));
2017 	strlcpy(info->version, SIS900_DRV_VERSION, sizeof(info->version));
2018 	strlcpy(info->bus_info, pci_name(sis_priv->pci_dev),
2019 		sizeof(info->bus_info));
2020 }
2021 
2022 static u32 sis900_get_msglevel(struct net_device *net_dev)
2023 {
2024 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2025 	return sis_priv->msg_enable;
2026 }
2027 
2028 static void sis900_set_msglevel(struct net_device *net_dev, u32 value)
2029 {
2030 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2031 	sis_priv->msg_enable = value;
2032 }
2033 
2034 static u32 sis900_get_link(struct net_device *net_dev)
2035 {
2036 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2037 	return mii_link_ok(&sis_priv->mii_info);
2038 }
2039 
2040 static int sis900_get_link_ksettings(struct net_device *net_dev,
2041 				     struct ethtool_link_ksettings *cmd)
2042 {
2043 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2044 	spin_lock_irq(&sis_priv->lock);
2045 	mii_ethtool_get_link_ksettings(&sis_priv->mii_info, cmd);
2046 	spin_unlock_irq(&sis_priv->lock);
2047 	return 0;
2048 }
2049 
2050 static int sis900_set_link_ksettings(struct net_device *net_dev,
2051 				     const struct ethtool_link_ksettings *cmd)
2052 {
2053 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2054 	int rt;
2055 	spin_lock_irq(&sis_priv->lock);
2056 	rt = mii_ethtool_set_link_ksettings(&sis_priv->mii_info, cmd);
2057 	spin_unlock_irq(&sis_priv->lock);
2058 	return rt;
2059 }
2060 
2061 static int sis900_nway_reset(struct net_device *net_dev)
2062 {
2063 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2064 	return mii_nway_restart(&sis_priv->mii_info);
2065 }
2066 
2067 /**
2068  *	sis900_set_wol - Set up Wake on Lan registers
2069  *	@net_dev: the net device to probe
2070  *	@wol: container for info passed to the driver
2071  *
2072  *	Process ethtool command "wol" to setup wake on lan features.
2073  *	SiS900 supports sending WoL events if a correct packet is received,
2074  *	but there is no simple way to filter them to only a subset (broadcast,
2075  *	multicast, unicast or arp).
2076  */
2077 
2078 static int sis900_set_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol)
2079 {
2080 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2081 	void __iomem *ioaddr = sis_priv->ioaddr;
2082 	u32 cfgpmcsr = 0, pmctrl_bits = 0;
2083 
2084 	if (wol->wolopts == 0) {
2085 		pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr);
2086 		cfgpmcsr &= ~PME_EN;
2087 		pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr);
2088 		sw32(pmctrl, pmctrl_bits);
2089 		if (netif_msg_wol(sis_priv))
2090 			printk(KERN_DEBUG "%s: Wake on LAN disabled\n", net_dev->name);
2091 		return 0;
2092 	}
2093 
2094 	if (wol->wolopts & (WAKE_MAGICSECURE | WAKE_UCAST | WAKE_MCAST
2095 				| WAKE_BCAST | WAKE_ARP))
2096 		return -EINVAL;
2097 
2098 	if (wol->wolopts & WAKE_MAGIC)
2099 		pmctrl_bits |= MAGICPKT;
2100 	if (wol->wolopts & WAKE_PHY)
2101 		pmctrl_bits |= LINKON;
2102 
2103 	sw32(pmctrl, pmctrl_bits);
2104 
2105 	pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr);
2106 	cfgpmcsr |= PME_EN;
2107 	pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr);
2108 	if (netif_msg_wol(sis_priv))
2109 		printk(KERN_DEBUG "%s: Wake on LAN enabled\n", net_dev->name);
2110 
2111 	return 0;
2112 }
2113 
2114 static void sis900_get_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol)
2115 {
2116 	struct sis900_private *sp = netdev_priv(net_dev);
2117 	void __iomem *ioaddr = sp->ioaddr;
2118 	u32 pmctrl_bits;
2119 
2120 	pmctrl_bits = sr32(pmctrl);
2121 	if (pmctrl_bits & MAGICPKT)
2122 		wol->wolopts |= WAKE_MAGIC;
2123 	if (pmctrl_bits & LINKON)
2124 		wol->wolopts |= WAKE_PHY;
2125 
2126 	wol->supported = (WAKE_PHY | WAKE_MAGIC);
2127 }
2128 
2129 static int sis900_get_eeprom_len(struct net_device *dev)
2130 {
2131 	struct sis900_private *sis_priv = netdev_priv(dev);
2132 
2133 	return sis_priv->eeprom_size;
2134 }
2135 
2136 static int sis900_read_eeprom(struct net_device *net_dev, u8 *buf)
2137 {
2138 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2139 	void __iomem *ioaddr = sis_priv->ioaddr;
2140 	int wait, ret = -EAGAIN;
2141 	u16 signature;
2142 	u16 *ebuf = (u16 *)buf;
2143 	int i;
2144 
2145 	if (sis_priv->chipset_rev == SIS96x_900_REV) {
2146 		sw32(mear, EEREQ);
2147 		for (wait = 0; wait < 2000; wait++) {
2148 			if (sr32(mear) & EEGNT) {
2149 				/* read 16 bits, and index by 16 bits */
2150 				for (i = 0; i < sis_priv->eeprom_size / 2; i++)
2151 					ebuf[i] = (u16)read_eeprom(ioaddr, i);
2152 				ret = 0;
2153 				break;
2154 			}
2155 			udelay(1);
2156 		}
2157 		sw32(mear, EEDONE);
2158 	} else {
2159 		signature = (u16)read_eeprom(ioaddr, EEPROMSignature);
2160 		if (signature != 0xffff && signature != 0x0000) {
2161 			/* read 16 bits, and index by 16 bits */
2162 			for (i = 0; i < sis_priv->eeprom_size / 2; i++)
2163 				ebuf[i] = (u16)read_eeprom(ioaddr, i);
2164 			ret = 0;
2165 		}
2166 	}
2167 	return ret;
2168 }
2169 
2170 #define SIS900_EEPROM_MAGIC	0xBABE
2171 static int sis900_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data)
2172 {
2173 	struct sis900_private *sis_priv = netdev_priv(dev);
2174 	u8 *eebuf;
2175 	int res;
2176 
2177 	eebuf = kmalloc(sis_priv->eeprom_size, GFP_KERNEL);
2178 	if (!eebuf)
2179 		return -ENOMEM;
2180 
2181 	eeprom->magic = SIS900_EEPROM_MAGIC;
2182 	spin_lock_irq(&sis_priv->lock);
2183 	res = sis900_read_eeprom(dev, eebuf);
2184 	spin_unlock_irq(&sis_priv->lock);
2185 	if (!res)
2186 		memcpy(data, eebuf + eeprom->offset, eeprom->len);
2187 	kfree(eebuf);
2188 	return res;
2189 }
2190 
2191 static const struct ethtool_ops sis900_ethtool_ops = {
2192 	.get_drvinfo 	= sis900_get_drvinfo,
2193 	.get_msglevel	= sis900_get_msglevel,
2194 	.set_msglevel	= sis900_set_msglevel,
2195 	.get_link	= sis900_get_link,
2196 	.nway_reset	= sis900_nway_reset,
2197 	.get_wol	= sis900_get_wol,
2198 	.set_wol	= sis900_set_wol,
2199 	.get_link_ksettings = sis900_get_link_ksettings,
2200 	.set_link_ksettings = sis900_set_link_ksettings,
2201 	.get_eeprom_len = sis900_get_eeprom_len,
2202 	.get_eeprom = sis900_get_eeprom,
2203 };
2204 
2205 /**
2206  *	mii_ioctl - process MII i/o control command
2207  *	@net_dev: the net device to command for
2208  *	@rq: parameter for command
2209  *	@cmd: the i/o command
2210  *
2211  *	Process MII command like read/write MII register
2212  */
2213 
2214 static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd)
2215 {
2216 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2217 	struct mii_ioctl_data *data = if_mii(rq);
2218 
2219 	switch(cmd) {
2220 	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
2221 		data->phy_id = sis_priv->mii->phy_addr;
2222 		/* Fall Through */
2223 
2224 	case SIOCGMIIREG:		/* Read MII PHY register. */
2225 		data->val_out = mdio_read(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f);
2226 		return 0;
2227 
2228 	case SIOCSMIIREG:		/* Write MII PHY register. */
2229 		mdio_write(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in);
2230 		return 0;
2231 	default:
2232 		return -EOPNOTSUPP;
2233 	}
2234 }
2235 
2236 /**
2237  *	sis900_set_config - Set media type by net_device.set_config
2238  *	@dev: the net device for media type change
2239  *	@map: ifmap passed by ifconfig
2240  *
2241  *	Set media type to 10baseT, 100baseT or 0(for auto) by ifconfig
2242  *	we support only port changes. All other runtime configuration
2243  *	changes will be ignored
2244  */
2245 
2246 static int sis900_set_config(struct net_device *dev, struct ifmap *map)
2247 {
2248 	struct sis900_private *sis_priv = netdev_priv(dev);
2249 	struct mii_phy *mii_phy = sis_priv->mii;
2250 
2251 	u16 status;
2252 
2253 	if ((map->port != (u_char)(-1)) && (map->port != dev->if_port)) {
2254 		/* we switch on the ifmap->port field. I couldn't find anything
2255 		 * like a definition or standard for the values of that field.
2256 		 * I think the meaning of those values is device specific. But
2257 		 * since I would like to change the media type via the ifconfig
2258 		 * command I use the definition from linux/netdevice.h
2259 		 * (which seems to be different from the ifport(pcmcia) definition) */
2260 		switch(map->port){
2261 		case IF_PORT_UNKNOWN: /* use auto here */
2262 			dev->if_port = map->port;
2263 			/* we are going to change the media type, so the Link
2264 			 * will be temporary down and we need to reflect that
2265 			 * here. When the Link comes up again, it will be
2266 			 * sensed by the sis_timer procedure, which also does
2267 			 * all the rest for us */
2268 			netif_carrier_off(dev);
2269 
2270 			/* read current state */
2271 			status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2272 
2273 			/* enable auto negotiation and reset the negotioation
2274 			 * (I don't really know what the auto negatiotiation
2275 			 * reset really means, but it sounds for me right to
2276 			 * do one here) */
2277 			mdio_write(dev, mii_phy->phy_addr,
2278 				   MII_CONTROL, status | MII_CNTL_AUTO | MII_CNTL_RST_AUTO);
2279 
2280 			break;
2281 
2282 		case IF_PORT_10BASET: /* 10BaseT */
2283 			dev->if_port = map->port;
2284 
2285 			/* we are going to change the media type, so the Link
2286 			 * will be temporary down and we need to reflect that
2287 			 * here. When the Link comes up again, it will be
2288 			 * sensed by the sis_timer procedure, which also does
2289 			 * all the rest for us */
2290 			netif_carrier_off(dev);
2291 
2292 			/* set Speed to 10Mbps */
2293 			/* read current state */
2294 			status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2295 
2296 			/* disable auto negotiation and force 10MBit mode*/
2297 			mdio_write(dev, mii_phy->phy_addr,
2298 				   MII_CONTROL, status & ~(MII_CNTL_SPEED |
2299 					MII_CNTL_AUTO));
2300 			break;
2301 
2302 		case IF_PORT_100BASET: /* 100BaseT */
2303 		case IF_PORT_100BASETX: /* 100BaseTx */
2304 			dev->if_port = map->port;
2305 
2306 			/* we are going to change the media type, so the Link
2307 			 * will be temporary down and we need to reflect that
2308 			 * here. When the Link comes up again, it will be
2309 			 * sensed by the sis_timer procedure, which also does
2310 			 * all the rest for us */
2311 			netif_carrier_off(dev);
2312 
2313 			/* set Speed to 100Mbps */
2314 			/* disable auto negotiation and enable 100MBit Mode */
2315 			status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2316 			mdio_write(dev, mii_phy->phy_addr,
2317 				   MII_CONTROL, (status & ~MII_CNTL_SPEED) |
2318 				   MII_CNTL_SPEED);
2319 
2320 			break;
2321 
2322 		case IF_PORT_10BASE2: /* 10Base2 */
2323 		case IF_PORT_AUI: /* AUI */
2324 		case IF_PORT_100BASEFX: /* 100BaseFx */
2325                 	/* These Modes are not supported (are they?)*/
2326 			return -EOPNOTSUPP;
2327 
2328 		default:
2329 			return -EINVAL;
2330 		}
2331 	}
2332 	return 0;
2333 }
2334 
2335 /**
2336  *	sis900_mcast_bitnr - compute hashtable index
2337  *	@addr: multicast address
2338  *	@revision: revision id of chip
2339  *
2340  *	SiS 900 uses the most sigificant 7 bits to index a 128 bits multicast
2341  *	hash table, which makes this function a little bit different from other drivers
2342  *	SiS 900 B0 & 635 M/B uses the most significat 8 bits to index 256 bits
2343  *   	multicast hash table.
2344  */
2345 
2346 static inline u16 sis900_mcast_bitnr(u8 *addr, u8 revision)
2347 {
2348 
2349 	u32 crc = ether_crc(6, addr);
2350 
2351 	/* leave 8 or 7 most siginifant bits */
2352 	if ((revision >= SIS635A_900_REV) || (revision == SIS900B_900_REV))
2353 		return (int)(crc >> 24);
2354 	else
2355 		return (int)(crc >> 25);
2356 }
2357 
2358 /**
2359  *	set_rx_mode - Set SiS900 receive mode
2360  *	@net_dev: the net device to be set
2361  *
2362  *	Set SiS900 receive mode for promiscuous, multicast, or broadcast mode.
2363  *	And set the appropriate multicast filter.
2364  *	Multicast hash table changes from 128 to 256 bits for 635M/B & 900B0.
2365  */
2366 
2367 static void set_rx_mode(struct net_device *net_dev)
2368 {
2369 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2370 	void __iomem *ioaddr = sis_priv->ioaddr;
2371 	u16 mc_filter[16] = {0};	/* 256/128 bits multicast hash table */
2372 	int i, table_entries;
2373 	u32 rx_mode;
2374 
2375 	/* 635 Hash Table entries = 256(2^16) */
2376 	if((sis_priv->chipset_rev >= SIS635A_900_REV) ||
2377 			(sis_priv->chipset_rev == SIS900B_900_REV))
2378 		table_entries = 16;
2379 	else
2380 		table_entries = 8;
2381 
2382 	if (net_dev->flags & IFF_PROMISC) {
2383 		/* Accept any kinds of packets */
2384 		rx_mode = RFPromiscuous;
2385 		for (i = 0; i < table_entries; i++)
2386 			mc_filter[i] = 0xffff;
2387 	} else if ((netdev_mc_count(net_dev) > multicast_filter_limit) ||
2388 		   (net_dev->flags & IFF_ALLMULTI)) {
2389 		/* too many multicast addresses or accept all multicast packet */
2390 		rx_mode = RFAAB | RFAAM;
2391 		for (i = 0; i < table_entries; i++)
2392 			mc_filter[i] = 0xffff;
2393 	} else {
2394 		/* Accept Broadcast packet, destination address matchs our
2395 		 * MAC address, use Receive Filter to reject unwanted MCAST
2396 		 * packets */
2397 		struct netdev_hw_addr *ha;
2398 		rx_mode = RFAAB;
2399 
2400 		netdev_for_each_mc_addr(ha, net_dev) {
2401 			unsigned int bit_nr;
2402 
2403 			bit_nr = sis900_mcast_bitnr(ha->addr,
2404 						    sis_priv->chipset_rev);
2405 			mc_filter[bit_nr >> 4] |= (1 << (bit_nr & 0xf));
2406 		}
2407 	}
2408 
2409 	/* update Multicast Hash Table in Receive Filter */
2410 	for (i = 0; i < table_entries; i++) {
2411                 /* why plus 0x04 ??, That makes the correct value for hash table. */
2412 		sw32(rfcr, (u32)(0x00000004 + i) << RFADDR_shift);
2413 		sw32(rfdr, mc_filter[i]);
2414 	}
2415 
2416 	sw32(rfcr, RFEN | rx_mode);
2417 
2418 	/* sis900 is capable of looping back packets at MAC level for
2419 	 * debugging purpose */
2420 	if (net_dev->flags & IFF_LOOPBACK) {
2421 		u32 cr_saved;
2422 		/* We must disable Tx/Rx before setting loopback mode */
2423 		cr_saved = sr32(cr);
2424 		sw32(cr, cr_saved | TxDIS | RxDIS);
2425 		/* enable loopback */
2426 		sw32(txcfg, sr32(txcfg) | TxMLB);
2427 		sw32(rxcfg, sr32(rxcfg) | RxATX);
2428 		/* restore cr */
2429 		sw32(cr, cr_saved);
2430 	}
2431 }
2432 
2433 /**
2434  *	sis900_reset - Reset sis900 MAC
2435  *	@net_dev: the net device to reset
2436  *
2437  *	reset sis900 MAC and wait until finished
2438  *	reset through command register
2439  *	change backoff algorithm for 900B0 & 635 M/B
2440  */
2441 
2442 static void sis900_reset(struct net_device *net_dev)
2443 {
2444 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2445 	void __iomem *ioaddr = sis_priv->ioaddr;
2446 	u32 status = TxRCMP | RxRCMP;
2447 	int i;
2448 
2449 	sw32(ier, 0);
2450 	sw32(imr, 0);
2451 	sw32(rfcr, 0);
2452 
2453 	sw32(cr, RxRESET | TxRESET | RESET | sr32(cr));
2454 
2455 	/* Check that the chip has finished the reset. */
2456 	for (i = 0; status && (i < 1000); i++)
2457 		status ^= sr32(isr) & status;
2458 
2459 	if (sis_priv->chipset_rev >= SIS635A_900_REV ||
2460 	    sis_priv->chipset_rev == SIS900B_900_REV)
2461 		sw32(cfg, PESEL | RND_CNT);
2462 	else
2463 		sw32(cfg, PESEL);
2464 }
2465 
2466 /**
2467  *	sis900_remove - Remove sis900 device
2468  *	@pci_dev: the pci device to be removed
2469  *
2470  *	remove and release SiS900 net device
2471  */
2472 
2473 static void sis900_remove(struct pci_dev *pci_dev)
2474 {
2475 	struct net_device *net_dev = pci_get_drvdata(pci_dev);
2476 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2477 
2478 	unregister_netdev(net_dev);
2479 
2480 	while (sis_priv->first_mii) {
2481 		struct mii_phy *phy = sis_priv->first_mii;
2482 
2483 		sis_priv->first_mii = phy->next;
2484 		kfree(phy);
2485 	}
2486 
2487 	pci_free_consistent(pci_dev, RX_TOTAL_SIZE, sis_priv->rx_ring,
2488 		sis_priv->rx_ring_dma);
2489 	pci_free_consistent(pci_dev, TX_TOTAL_SIZE, sis_priv->tx_ring,
2490 		sis_priv->tx_ring_dma);
2491 	pci_iounmap(pci_dev, sis_priv->ioaddr);
2492 	free_netdev(net_dev);
2493 	pci_release_regions(pci_dev);
2494 }
2495 
2496 #ifdef CONFIG_PM
2497 
2498 static int sis900_suspend(struct pci_dev *pci_dev, pm_message_t state)
2499 {
2500 	struct net_device *net_dev = pci_get_drvdata(pci_dev);
2501 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2502 	void __iomem *ioaddr = sis_priv->ioaddr;
2503 
2504 	if(!netif_running(net_dev))
2505 		return 0;
2506 
2507 	netif_stop_queue(net_dev);
2508 	netif_device_detach(net_dev);
2509 
2510 	/* Stop the chip's Tx and Rx Status Machine */
2511 	sw32(cr, RxDIS | TxDIS | sr32(cr));
2512 
2513 	pci_set_power_state(pci_dev, PCI_D3hot);
2514 	pci_save_state(pci_dev);
2515 
2516 	return 0;
2517 }
2518 
2519 static int sis900_resume(struct pci_dev *pci_dev)
2520 {
2521 	struct net_device *net_dev = pci_get_drvdata(pci_dev);
2522 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2523 	void __iomem *ioaddr = sis_priv->ioaddr;
2524 
2525 	if(!netif_running(net_dev))
2526 		return 0;
2527 	pci_restore_state(pci_dev);
2528 	pci_set_power_state(pci_dev, PCI_D0);
2529 
2530 	sis900_init_rxfilter(net_dev);
2531 
2532 	sis900_init_tx_ring(net_dev);
2533 	sis900_init_rx_ring(net_dev);
2534 
2535 	set_rx_mode(net_dev);
2536 
2537 	netif_device_attach(net_dev);
2538 	netif_start_queue(net_dev);
2539 
2540 	/* Workaround for EDB */
2541 	sis900_set_mode(sis_priv, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED);
2542 
2543 	/* Enable all known interrupts by setting the interrupt mask. */
2544 	sw32(imr, RxSOVR | RxORN | RxERR | RxOK | TxURN | TxERR | TxDESC);
2545 	sw32(cr, RxENA | sr32(cr));
2546 	sw32(ier, IE);
2547 
2548 	sis900_check_mode(net_dev, sis_priv->mii);
2549 
2550 	return 0;
2551 }
2552 #endif /* CONFIG_PM */
2553 
2554 static struct pci_driver sis900_pci_driver = {
2555 	.name		= SIS900_MODULE_NAME,
2556 	.id_table	= sis900_pci_tbl,
2557 	.probe		= sis900_probe,
2558 	.remove		= sis900_remove,
2559 #ifdef CONFIG_PM
2560 	.suspend	= sis900_suspend,
2561 	.resume		= sis900_resume,
2562 #endif /* CONFIG_PM */
2563 };
2564 
2565 static int __init sis900_init_module(void)
2566 {
2567 /* when a module, this is printed whether or not devices are found in probe */
2568 #ifdef MODULE
2569 	printk(version);
2570 #endif
2571 
2572 	return pci_register_driver(&sis900_pci_driver);
2573 }
2574 
2575 static void __exit sis900_cleanup_module(void)
2576 {
2577 	pci_unregister_driver(&sis900_pci_driver);
2578 }
2579 
2580 module_init(sis900_init_module);
2581 module_exit(sis900_cleanup_module);
2582 
2583