xref: /linux/drivers/net/ethernet/sfc/tx_common.c (revision fcc79e1714e8c2b8e216dc3149812edd37884eef)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2018 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #include "net_driver.h"
12 #include "efx.h"
13 #include "nic_common.h"
14 #include "tx_common.h"
15 #include <net/gso.h>
16 
17 static unsigned int efx_tx_cb_page_count(struct efx_tx_queue *tx_queue)
18 {
19 	return DIV_ROUND_UP(tx_queue->ptr_mask + 1,
20 			    PAGE_SIZE >> EFX_TX_CB_ORDER);
21 }
22 
23 int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
24 {
25 	struct efx_nic *efx = tx_queue->efx;
26 	unsigned int entries;
27 	int rc;
28 
29 	/* Create the smallest power-of-two aligned ring */
30 	entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
31 	EFX_WARN_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
32 	tx_queue->ptr_mask = entries - 1;
33 
34 	netif_dbg(efx, probe, efx->net_dev,
35 		  "creating TX queue %d size %#x mask %#x\n",
36 		  tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
37 
38 	/* Allocate software ring */
39 	tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
40 				   GFP_KERNEL);
41 	if (!tx_queue->buffer)
42 		return -ENOMEM;
43 
44 	tx_queue->cb_page = kcalloc(efx_tx_cb_page_count(tx_queue),
45 				    sizeof(tx_queue->cb_page[0]), GFP_KERNEL);
46 	if (!tx_queue->cb_page) {
47 		rc = -ENOMEM;
48 		goto fail1;
49 	}
50 
51 	/* Allocate hardware ring, determine TXQ type */
52 	rc = efx_nic_probe_tx(tx_queue);
53 	if (rc)
54 		goto fail2;
55 
56 	tx_queue->channel->tx_queue_by_type[tx_queue->type] = tx_queue;
57 	return 0;
58 
59 fail2:
60 	kfree(tx_queue->cb_page);
61 	tx_queue->cb_page = NULL;
62 fail1:
63 	kfree(tx_queue->buffer);
64 	tx_queue->buffer = NULL;
65 	return rc;
66 }
67 
68 void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
69 {
70 	struct efx_nic *efx = tx_queue->efx;
71 
72 	netif_dbg(efx, drv, efx->net_dev,
73 		  "initialising TX queue %d\n", tx_queue->queue);
74 
75 	tx_queue->insert_count = 0;
76 	tx_queue->notify_count = 0;
77 	tx_queue->write_count = 0;
78 	tx_queue->packet_write_count = 0;
79 	tx_queue->old_write_count = 0;
80 	tx_queue->read_count = 0;
81 	tx_queue->old_read_count = 0;
82 	tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
83 	tx_queue->xmit_pending = false;
84 	tx_queue->timestamping = (efx_ptp_use_mac_tx_timestamps(efx) &&
85 				  tx_queue->channel == efx_ptp_channel(efx));
86 	tx_queue->completed_timestamp_major = 0;
87 	tx_queue->completed_timestamp_minor = 0;
88 
89 	tx_queue->old_complete_packets = tx_queue->complete_packets;
90 	tx_queue->old_complete_bytes = tx_queue->complete_bytes;
91 	tx_queue->old_tso_bursts = tx_queue->tso_bursts;
92 	tx_queue->old_tso_packets = tx_queue->tso_packets;
93 
94 	tx_queue->xdp_tx = efx_channel_is_xdp_tx(tx_queue->channel);
95 	tx_queue->tso_version = 0;
96 
97 	/* Set up TX descriptor ring */
98 	efx_nic_init_tx(tx_queue);
99 
100 	tx_queue->initialised = true;
101 }
102 
103 void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
104 {
105 	struct efx_tx_buffer *buffer;
106 
107 	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
108 		  "shutting down TX queue %d\n", tx_queue->queue);
109 
110 	tx_queue->initialised = false;
111 
112 	if (!tx_queue->buffer)
113 		return;
114 
115 	/* Free any buffers left in the ring */
116 	while (tx_queue->read_count != tx_queue->write_count) {
117 		unsigned int xdp_pkts_compl = 0, xdp_bytes_compl = 0;
118 		unsigned int pkts_compl = 0, bytes_compl = 0;
119 		unsigned int efv_pkts_compl = 0;
120 
121 		buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
122 		efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl,
123 				   &efv_pkts_compl, &xdp_pkts_compl,
124 				   &xdp_bytes_compl);
125 
126 		++tx_queue->read_count;
127 	}
128 	tx_queue->xmit_pending = false;
129 	netdev_tx_reset_queue(tx_queue->core_txq);
130 }
131 
132 void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
133 {
134 	int i;
135 
136 	if (!tx_queue->buffer)
137 		return;
138 
139 	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
140 		  "destroying TX queue %d\n", tx_queue->queue);
141 	efx_nic_remove_tx(tx_queue);
142 
143 	if (tx_queue->cb_page) {
144 		for (i = 0; i < efx_tx_cb_page_count(tx_queue); i++)
145 			efx_nic_free_buffer(tx_queue->efx,
146 					    &tx_queue->cb_page[i]);
147 		kfree(tx_queue->cb_page);
148 		tx_queue->cb_page = NULL;
149 	}
150 
151 	kfree(tx_queue->buffer);
152 	tx_queue->buffer = NULL;
153 	tx_queue->channel->tx_queue_by_type[tx_queue->type] = NULL;
154 }
155 
156 void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
157 			struct efx_tx_buffer *buffer,
158 			unsigned int *pkts_compl,
159 			unsigned int *bytes_compl,
160 			unsigned int *efv_pkts_compl,
161 			unsigned int *xdp_pkts,
162 			unsigned int *xdp_bytes)
163 {
164 	if (buffer->unmap_len) {
165 		struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
166 		dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset;
167 
168 		if (buffer->flags & EFX_TX_BUF_MAP_SINGLE)
169 			dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len,
170 					 DMA_TO_DEVICE);
171 		else
172 			dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len,
173 				       DMA_TO_DEVICE);
174 		buffer->unmap_len = 0;
175 	}
176 
177 	if (buffer->flags & EFX_TX_BUF_SKB) {
178 		struct sk_buff *skb = (struct sk_buff *)buffer->skb;
179 
180 		if (unlikely(buffer->flags & EFX_TX_BUF_EFV)) {
181 			EFX_WARN_ON_PARANOID(!efv_pkts_compl);
182 			(*efv_pkts_compl)++;
183 		} else {
184 			EFX_WARN_ON_PARANOID(!pkts_compl || !bytes_compl);
185 			(*pkts_compl)++;
186 			(*bytes_compl) += skb->len;
187 		}
188 
189 		if (tx_queue->timestamping &&
190 		    (tx_queue->completed_timestamp_major ||
191 		     tx_queue->completed_timestamp_minor)) {
192 			struct skb_shared_hwtstamps hwtstamp;
193 
194 			hwtstamp.hwtstamp =
195 				efx_ptp_nic_to_kernel_time(tx_queue);
196 			skb_tstamp_tx(skb, &hwtstamp);
197 
198 			tx_queue->completed_timestamp_major = 0;
199 			tx_queue->completed_timestamp_minor = 0;
200 		}
201 		dev_consume_skb_any((struct sk_buff *)buffer->skb);
202 		netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
203 			   "TX queue %d transmission id %x complete\n",
204 			   tx_queue->queue, tx_queue->read_count);
205 	} else if (buffer->flags & EFX_TX_BUF_XDP) {
206 		xdp_return_frame_rx_napi(buffer->xdpf);
207 		if (xdp_pkts)
208 			(*xdp_pkts)++;
209 		if (xdp_bytes)
210 			(*xdp_bytes) += buffer->xdpf->len;
211 	}
212 
213 	buffer->len = 0;
214 	buffer->flags = 0;
215 }
216 
217 /* Remove packets from the TX queue
218  *
219  * This removes packets from the TX queue, up to and including the
220  * specified index.
221  */
222 static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
223 				unsigned int index,
224 				unsigned int *pkts_compl,
225 				unsigned int *bytes_compl,
226 				unsigned int *efv_pkts_compl,
227 				unsigned int *xdp_pkts,
228 				unsigned int *xdp_bytes)
229 {
230 	struct efx_nic *efx = tx_queue->efx;
231 	unsigned int stop_index, read_ptr;
232 
233 	stop_index = (index + 1) & tx_queue->ptr_mask;
234 	read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
235 
236 	while (read_ptr != stop_index) {
237 		struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
238 
239 		if (!efx_tx_buffer_in_use(buffer)) {
240 			netif_err(efx, tx_err, efx->net_dev,
241 				  "TX queue %d spurious TX completion id %d\n",
242 				  tx_queue->queue, read_ptr);
243 			efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
244 			return;
245 		}
246 
247 		efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl,
248 				   efv_pkts_compl, xdp_pkts, xdp_bytes);
249 
250 		++tx_queue->read_count;
251 		read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
252 	}
253 }
254 
255 void efx_xmit_done_check_empty(struct efx_tx_queue *tx_queue)
256 {
257 	if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
258 		tx_queue->old_write_count = READ_ONCE(tx_queue->write_count);
259 		if (tx_queue->read_count == tx_queue->old_write_count) {
260 			/* Ensure that read_count is flushed. */
261 			smp_mb();
262 			tx_queue->empty_read_count =
263 				tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
264 		}
265 	}
266 }
267 
268 int efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
269 {
270 	unsigned int fill_level, pkts_compl = 0, bytes_compl = 0;
271 	unsigned int xdp_pkts_compl = 0, xdp_bytes_compl = 0;
272 	unsigned int efv_pkts_compl = 0;
273 	struct efx_nic *efx = tx_queue->efx;
274 
275 	EFX_WARN_ON_ONCE_PARANOID(index > tx_queue->ptr_mask);
276 
277 	efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl,
278 			    &efv_pkts_compl, &xdp_pkts_compl, &xdp_bytes_compl);
279 	tx_queue->pkts_compl += pkts_compl;
280 	tx_queue->bytes_compl += bytes_compl;
281 	tx_queue->complete_xdp_packets += xdp_pkts_compl;
282 	tx_queue->complete_xdp_bytes += xdp_bytes_compl;
283 
284 	if (pkts_compl + efv_pkts_compl > 1)
285 		++tx_queue->merge_events;
286 
287 	/* See if we need to restart the netif queue.  This memory
288 	 * barrier ensures that we write read_count (inside
289 	 * efx_dequeue_buffers()) before reading the queue status.
290 	 */
291 	smp_mb();
292 	if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
293 	    likely(efx->port_enabled) &&
294 	    likely(netif_device_present(efx->net_dev))) {
295 		fill_level = efx_channel_tx_fill_level(tx_queue->channel);
296 		if (fill_level <= efx->txq_wake_thresh)
297 			netif_tx_wake_queue(tx_queue->core_txq);
298 	}
299 
300 	efx_xmit_done_check_empty(tx_queue);
301 
302 	return pkts_compl + efv_pkts_compl;
303 }
304 
305 /* Remove buffers put into a tx_queue for the current packet.
306  * None of the buffers must have an skb attached.
307  */
308 void efx_enqueue_unwind(struct efx_tx_queue *tx_queue,
309 			unsigned int insert_count)
310 {
311 	unsigned int xdp_bytes_compl = 0;
312 	unsigned int xdp_pkts_compl = 0;
313 	unsigned int efv_pkts_compl = 0;
314 	struct efx_tx_buffer *buffer;
315 	unsigned int bytes_compl = 0;
316 	unsigned int pkts_compl = 0;
317 
318 	/* Work backwards until we hit the original insert pointer value */
319 	while (tx_queue->insert_count != insert_count) {
320 		--tx_queue->insert_count;
321 		buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
322 		efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl,
323 				   &efv_pkts_compl, &xdp_pkts_compl,
324 				   &xdp_bytes_compl);
325 	}
326 }
327 
328 struct efx_tx_buffer *efx_tx_map_chunk(struct efx_tx_queue *tx_queue,
329 				       dma_addr_t dma_addr, size_t len)
330 {
331 	const struct efx_nic_type *nic_type = tx_queue->efx->type;
332 	struct efx_tx_buffer *buffer;
333 	unsigned int dma_len;
334 
335 	/* Map the fragment taking account of NIC-dependent DMA limits. */
336 	do {
337 		buffer = efx_tx_queue_get_insert_buffer(tx_queue);
338 
339 		if (nic_type->tx_limit_len)
340 			dma_len = nic_type->tx_limit_len(tx_queue, dma_addr, len);
341 		else
342 			dma_len = len;
343 
344 		buffer->len = dma_len;
345 		buffer->dma_addr = dma_addr;
346 		buffer->flags = EFX_TX_BUF_CONT;
347 		len -= dma_len;
348 		dma_addr += dma_len;
349 		++tx_queue->insert_count;
350 	} while (len);
351 
352 	return buffer;
353 }
354 
355 int efx_tx_tso_header_length(struct sk_buff *skb)
356 {
357 	size_t header_len;
358 
359 	if (skb->encapsulation)
360 		header_len = skb_inner_transport_offset(skb) +
361 				(inner_tcp_hdr(skb)->doff << 2u);
362 	else
363 		header_len = skb_transport_offset(skb) +
364 				(tcp_hdr(skb)->doff << 2u);
365 	return header_len;
366 }
367 
368 /* Map all data from an SKB for DMA and create descriptors on the queue. */
369 int efx_tx_map_data(struct efx_tx_queue *tx_queue, struct sk_buff *skb,
370 		    unsigned int segment_count)
371 {
372 	struct efx_nic *efx = tx_queue->efx;
373 	struct device *dma_dev = &efx->pci_dev->dev;
374 	unsigned int frag_index, nr_frags;
375 	dma_addr_t dma_addr, unmap_addr;
376 	unsigned short dma_flags;
377 	size_t len, unmap_len;
378 
379 	nr_frags = skb_shinfo(skb)->nr_frags;
380 	frag_index = 0;
381 
382 	/* Map header data. */
383 	len = skb_headlen(skb);
384 	dma_addr = dma_map_single(dma_dev, skb->data, len, DMA_TO_DEVICE);
385 	dma_flags = EFX_TX_BUF_MAP_SINGLE;
386 	unmap_len = len;
387 	unmap_addr = dma_addr;
388 
389 	if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
390 		return -EIO;
391 
392 	if (segment_count) {
393 		/* For TSO we need to put the header in to a separate
394 		 * descriptor. Map this separately if necessary.
395 		 */
396 		size_t header_len = efx_tx_tso_header_length(skb);
397 
398 		if (header_len != len) {
399 			tx_queue->tso_long_headers++;
400 			efx_tx_map_chunk(tx_queue, dma_addr, header_len);
401 			len -= header_len;
402 			dma_addr += header_len;
403 		}
404 	}
405 
406 	/* Add descriptors for each fragment. */
407 	do {
408 		struct efx_tx_buffer *buffer;
409 		skb_frag_t *fragment;
410 
411 		buffer = efx_tx_map_chunk(tx_queue, dma_addr, len);
412 
413 		/* The final descriptor for a fragment is responsible for
414 		 * unmapping the whole fragment.
415 		 */
416 		buffer->flags = EFX_TX_BUF_CONT | dma_flags;
417 		buffer->unmap_len = unmap_len;
418 		buffer->dma_offset = buffer->dma_addr - unmap_addr;
419 
420 		if (frag_index >= nr_frags) {
421 			/* Store SKB details with the final buffer for
422 			 * the completion.
423 			 */
424 			buffer->skb = skb;
425 			buffer->flags = EFX_TX_BUF_SKB | dma_flags;
426 			return 0;
427 		}
428 
429 		/* Move on to the next fragment. */
430 		fragment = &skb_shinfo(skb)->frags[frag_index++];
431 		len = skb_frag_size(fragment);
432 		dma_addr = skb_frag_dma_map(dma_dev, fragment, 0, len,
433 					    DMA_TO_DEVICE);
434 		dma_flags = 0;
435 		unmap_len = len;
436 		unmap_addr = dma_addr;
437 
438 		if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
439 			return -EIO;
440 	} while (1);
441 }
442 
443 unsigned int efx_tx_max_skb_descs(struct efx_nic *efx)
444 {
445 	/* Header and payload descriptor for each output segment, plus
446 	 * one for every input fragment boundary within a segment
447 	 */
448 	unsigned int max_descs = EFX_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;
449 
450 	/* Possibly one more per segment for option descriptors */
451 	if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
452 		max_descs += EFX_TSO_MAX_SEGS;
453 
454 	/* Possibly more for PCIe page boundaries within input fragments */
455 	if (PAGE_SIZE > EFX_PAGE_SIZE)
456 		max_descs += max_t(unsigned int, MAX_SKB_FRAGS,
457 				   DIV_ROUND_UP(GSO_LEGACY_MAX_SIZE,
458 						EFX_PAGE_SIZE));
459 
460 	return max_descs;
461 }
462 
463 /*
464  * Fallback to software TSO.
465  *
466  * This is used if we are unable to send a GSO packet through hardware TSO.
467  * This should only ever happen due to per-queue restrictions - unsupported
468  * packets should first be filtered by the feature flags.
469  *
470  * Returns 0 on success, error code otherwise.
471  */
472 int efx_tx_tso_fallback(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
473 {
474 	struct sk_buff *segments, *next;
475 
476 	segments = skb_gso_segment(skb, 0);
477 	if (IS_ERR(segments))
478 		return PTR_ERR(segments);
479 
480 	dev_consume_skb_any(skb);
481 
482 	skb_list_walk_safe(segments, skb, next) {
483 		skb_mark_not_on_list(skb);
484 		efx_enqueue_skb(tx_queue, skb);
485 	}
486 
487 	return 0;
488 }
489