xref: /linux/drivers/net/ethernet/sfc/tx_common.c (revision 0a94608f0f7de9b1135ffea3546afe68eafef57f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2018 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #include "net_driver.h"
12 #include "efx.h"
13 #include "nic_common.h"
14 #include "tx_common.h"
15 
16 static unsigned int efx_tx_cb_page_count(struct efx_tx_queue *tx_queue)
17 {
18 	return DIV_ROUND_UP(tx_queue->ptr_mask + 1,
19 			    PAGE_SIZE >> EFX_TX_CB_ORDER);
20 }
21 
22 int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
23 {
24 	struct efx_nic *efx = tx_queue->efx;
25 	unsigned int entries;
26 	int rc;
27 
28 	/* Create the smallest power-of-two aligned ring */
29 	entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
30 	EFX_WARN_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
31 	tx_queue->ptr_mask = entries - 1;
32 
33 	netif_dbg(efx, probe, efx->net_dev,
34 		  "creating TX queue %d size %#x mask %#x\n",
35 		  tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
36 
37 	/* Allocate software ring */
38 	tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
39 				   GFP_KERNEL);
40 	if (!tx_queue->buffer)
41 		return -ENOMEM;
42 
43 	tx_queue->cb_page = kcalloc(efx_tx_cb_page_count(tx_queue),
44 				    sizeof(tx_queue->cb_page[0]), GFP_KERNEL);
45 	if (!tx_queue->cb_page) {
46 		rc = -ENOMEM;
47 		goto fail1;
48 	}
49 
50 	/* Allocate hardware ring, determine TXQ type */
51 	rc = efx_nic_probe_tx(tx_queue);
52 	if (rc)
53 		goto fail2;
54 
55 	tx_queue->channel->tx_queue_by_type[tx_queue->type] = tx_queue;
56 	return 0;
57 
58 fail2:
59 	kfree(tx_queue->cb_page);
60 	tx_queue->cb_page = NULL;
61 fail1:
62 	kfree(tx_queue->buffer);
63 	tx_queue->buffer = NULL;
64 	return rc;
65 }
66 
67 void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
68 {
69 	struct efx_nic *efx = tx_queue->efx;
70 
71 	netif_dbg(efx, drv, efx->net_dev,
72 		  "initialising TX queue %d\n", tx_queue->queue);
73 
74 	tx_queue->insert_count = 0;
75 	tx_queue->notify_count = 0;
76 	tx_queue->write_count = 0;
77 	tx_queue->packet_write_count = 0;
78 	tx_queue->old_write_count = 0;
79 	tx_queue->read_count = 0;
80 	tx_queue->old_read_count = 0;
81 	tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
82 	tx_queue->xmit_pending = false;
83 	tx_queue->timestamping = (efx_ptp_use_mac_tx_timestamps(efx) &&
84 				  tx_queue->channel == efx_ptp_channel(efx));
85 	tx_queue->completed_timestamp_major = 0;
86 	tx_queue->completed_timestamp_minor = 0;
87 
88 	tx_queue->xdp_tx = efx_channel_is_xdp_tx(tx_queue->channel);
89 	tx_queue->tso_version = 0;
90 
91 	/* Set up TX descriptor ring */
92 	efx_nic_init_tx(tx_queue);
93 
94 	tx_queue->initialised = true;
95 }
96 
97 void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
98 {
99 	struct efx_tx_buffer *buffer;
100 
101 	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
102 		  "shutting down TX queue %d\n", tx_queue->queue);
103 
104 	tx_queue->initialised = false;
105 
106 	if (!tx_queue->buffer)
107 		return;
108 
109 	/* Free any buffers left in the ring */
110 	while (tx_queue->read_count != tx_queue->write_count) {
111 		unsigned int pkts_compl = 0, bytes_compl = 0;
112 
113 		buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
114 		efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
115 
116 		++tx_queue->read_count;
117 	}
118 	tx_queue->xmit_pending = false;
119 	netdev_tx_reset_queue(tx_queue->core_txq);
120 }
121 
122 void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
123 {
124 	int i;
125 
126 	if (!tx_queue->buffer)
127 		return;
128 
129 	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
130 		  "destroying TX queue %d\n", tx_queue->queue);
131 	efx_nic_remove_tx(tx_queue);
132 
133 	if (tx_queue->cb_page) {
134 		for (i = 0; i < efx_tx_cb_page_count(tx_queue); i++)
135 			efx_nic_free_buffer(tx_queue->efx,
136 					    &tx_queue->cb_page[i]);
137 		kfree(tx_queue->cb_page);
138 		tx_queue->cb_page = NULL;
139 	}
140 
141 	kfree(tx_queue->buffer);
142 	tx_queue->buffer = NULL;
143 	tx_queue->channel->tx_queue_by_type[tx_queue->type] = NULL;
144 }
145 
146 void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
147 			struct efx_tx_buffer *buffer,
148 			unsigned int *pkts_compl,
149 			unsigned int *bytes_compl)
150 {
151 	if (buffer->unmap_len) {
152 		struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
153 		dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset;
154 
155 		if (buffer->flags & EFX_TX_BUF_MAP_SINGLE)
156 			dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len,
157 					 DMA_TO_DEVICE);
158 		else
159 			dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len,
160 				       DMA_TO_DEVICE);
161 		buffer->unmap_len = 0;
162 	}
163 
164 	if (buffer->flags & EFX_TX_BUF_SKB) {
165 		struct sk_buff *skb = (struct sk_buff *)buffer->skb;
166 
167 		EFX_WARN_ON_PARANOID(!pkts_compl || !bytes_compl);
168 		(*pkts_compl)++;
169 		(*bytes_compl) += skb->len;
170 		if (tx_queue->timestamping &&
171 		    (tx_queue->completed_timestamp_major ||
172 		     tx_queue->completed_timestamp_minor)) {
173 			struct skb_shared_hwtstamps hwtstamp;
174 
175 			hwtstamp.hwtstamp =
176 				efx_ptp_nic_to_kernel_time(tx_queue);
177 			skb_tstamp_tx(skb, &hwtstamp);
178 
179 			tx_queue->completed_timestamp_major = 0;
180 			tx_queue->completed_timestamp_minor = 0;
181 		}
182 		dev_consume_skb_any((struct sk_buff *)buffer->skb);
183 		netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
184 			   "TX queue %d transmission id %x complete\n",
185 			   tx_queue->queue, tx_queue->read_count);
186 	} else if (buffer->flags & EFX_TX_BUF_XDP) {
187 		xdp_return_frame_rx_napi(buffer->xdpf);
188 	}
189 
190 	buffer->len = 0;
191 	buffer->flags = 0;
192 }
193 
194 /* Remove packets from the TX queue
195  *
196  * This removes packets from the TX queue, up to and including the
197  * specified index.
198  */
199 static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
200 				unsigned int index,
201 				unsigned int *pkts_compl,
202 				unsigned int *bytes_compl)
203 {
204 	struct efx_nic *efx = tx_queue->efx;
205 	unsigned int stop_index, read_ptr;
206 
207 	stop_index = (index + 1) & tx_queue->ptr_mask;
208 	read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
209 
210 	while (read_ptr != stop_index) {
211 		struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
212 
213 		if (!efx_tx_buffer_in_use(buffer)) {
214 			netif_err(efx, tx_err, efx->net_dev,
215 				  "TX queue %d spurious TX completion id %d\n",
216 				  tx_queue->queue, read_ptr);
217 			efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
218 			return;
219 		}
220 
221 		efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl);
222 
223 		++tx_queue->read_count;
224 		read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
225 	}
226 }
227 
228 void efx_xmit_done_check_empty(struct efx_tx_queue *tx_queue)
229 {
230 	if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
231 		tx_queue->old_write_count = READ_ONCE(tx_queue->write_count);
232 		if (tx_queue->read_count == tx_queue->old_write_count) {
233 			/* Ensure that read_count is flushed. */
234 			smp_mb();
235 			tx_queue->empty_read_count =
236 				tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
237 		}
238 	}
239 }
240 
241 void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
242 {
243 	unsigned int fill_level, pkts_compl = 0, bytes_compl = 0;
244 	struct efx_nic *efx = tx_queue->efx;
245 
246 	EFX_WARN_ON_ONCE_PARANOID(index > tx_queue->ptr_mask);
247 
248 	efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl);
249 	tx_queue->pkts_compl += pkts_compl;
250 	tx_queue->bytes_compl += bytes_compl;
251 
252 	if (pkts_compl > 1)
253 		++tx_queue->merge_events;
254 
255 	/* See if we need to restart the netif queue.  This memory
256 	 * barrier ensures that we write read_count (inside
257 	 * efx_dequeue_buffers()) before reading the queue status.
258 	 */
259 	smp_mb();
260 	if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
261 	    likely(efx->port_enabled) &&
262 	    likely(netif_device_present(efx->net_dev))) {
263 		fill_level = efx_channel_tx_fill_level(tx_queue->channel);
264 		if (fill_level <= efx->txq_wake_thresh)
265 			netif_tx_wake_queue(tx_queue->core_txq);
266 	}
267 
268 	efx_xmit_done_check_empty(tx_queue);
269 }
270 
271 /* Remove buffers put into a tx_queue for the current packet.
272  * None of the buffers must have an skb attached.
273  */
274 void efx_enqueue_unwind(struct efx_tx_queue *tx_queue,
275 			unsigned int insert_count)
276 {
277 	struct efx_tx_buffer *buffer;
278 	unsigned int bytes_compl = 0;
279 	unsigned int pkts_compl = 0;
280 
281 	/* Work backwards until we hit the original insert pointer value */
282 	while (tx_queue->insert_count != insert_count) {
283 		--tx_queue->insert_count;
284 		buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
285 		efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
286 	}
287 }
288 
289 struct efx_tx_buffer *efx_tx_map_chunk(struct efx_tx_queue *tx_queue,
290 				       dma_addr_t dma_addr, size_t len)
291 {
292 	const struct efx_nic_type *nic_type = tx_queue->efx->type;
293 	struct efx_tx_buffer *buffer;
294 	unsigned int dma_len;
295 
296 	/* Map the fragment taking account of NIC-dependent DMA limits. */
297 	do {
298 		buffer = efx_tx_queue_get_insert_buffer(tx_queue);
299 
300 		if (nic_type->tx_limit_len)
301 			dma_len = nic_type->tx_limit_len(tx_queue, dma_addr, len);
302 		else
303 			dma_len = len;
304 
305 		buffer->len = dma_len;
306 		buffer->dma_addr = dma_addr;
307 		buffer->flags = EFX_TX_BUF_CONT;
308 		len -= dma_len;
309 		dma_addr += dma_len;
310 		++tx_queue->insert_count;
311 	} while (len);
312 
313 	return buffer;
314 }
315 
316 int efx_tx_tso_header_length(struct sk_buff *skb)
317 {
318 	size_t header_len;
319 
320 	if (skb->encapsulation)
321 		header_len = skb_inner_transport_header(skb) -
322 				skb->data +
323 				(inner_tcp_hdr(skb)->doff << 2u);
324 	else
325 		header_len = skb_transport_header(skb) - skb->data +
326 				(tcp_hdr(skb)->doff << 2u);
327 	return header_len;
328 }
329 
330 /* Map all data from an SKB for DMA and create descriptors on the queue. */
331 int efx_tx_map_data(struct efx_tx_queue *tx_queue, struct sk_buff *skb,
332 		    unsigned int segment_count)
333 {
334 	struct efx_nic *efx = tx_queue->efx;
335 	struct device *dma_dev = &efx->pci_dev->dev;
336 	unsigned int frag_index, nr_frags;
337 	dma_addr_t dma_addr, unmap_addr;
338 	unsigned short dma_flags;
339 	size_t len, unmap_len;
340 
341 	nr_frags = skb_shinfo(skb)->nr_frags;
342 	frag_index = 0;
343 
344 	/* Map header data. */
345 	len = skb_headlen(skb);
346 	dma_addr = dma_map_single(dma_dev, skb->data, len, DMA_TO_DEVICE);
347 	dma_flags = EFX_TX_BUF_MAP_SINGLE;
348 	unmap_len = len;
349 	unmap_addr = dma_addr;
350 
351 	if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
352 		return -EIO;
353 
354 	if (segment_count) {
355 		/* For TSO we need to put the header in to a separate
356 		 * descriptor. Map this separately if necessary.
357 		 */
358 		size_t header_len = efx_tx_tso_header_length(skb);
359 
360 		if (header_len != len) {
361 			tx_queue->tso_long_headers++;
362 			efx_tx_map_chunk(tx_queue, dma_addr, header_len);
363 			len -= header_len;
364 			dma_addr += header_len;
365 		}
366 	}
367 
368 	/* Add descriptors for each fragment. */
369 	do {
370 		struct efx_tx_buffer *buffer;
371 		skb_frag_t *fragment;
372 
373 		buffer = efx_tx_map_chunk(tx_queue, dma_addr, len);
374 
375 		/* The final descriptor for a fragment is responsible for
376 		 * unmapping the whole fragment.
377 		 */
378 		buffer->flags = EFX_TX_BUF_CONT | dma_flags;
379 		buffer->unmap_len = unmap_len;
380 		buffer->dma_offset = buffer->dma_addr - unmap_addr;
381 
382 		if (frag_index >= nr_frags) {
383 			/* Store SKB details with the final buffer for
384 			 * the completion.
385 			 */
386 			buffer->skb = skb;
387 			buffer->flags = EFX_TX_BUF_SKB | dma_flags;
388 			return 0;
389 		}
390 
391 		/* Move on to the next fragment. */
392 		fragment = &skb_shinfo(skb)->frags[frag_index++];
393 		len = skb_frag_size(fragment);
394 		dma_addr = skb_frag_dma_map(dma_dev, fragment, 0, len,
395 					    DMA_TO_DEVICE);
396 		dma_flags = 0;
397 		unmap_len = len;
398 		unmap_addr = dma_addr;
399 
400 		if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
401 			return -EIO;
402 	} while (1);
403 }
404 
405 unsigned int efx_tx_max_skb_descs(struct efx_nic *efx)
406 {
407 	/* Header and payload descriptor for each output segment, plus
408 	 * one for every input fragment boundary within a segment
409 	 */
410 	unsigned int max_descs = EFX_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;
411 
412 	/* Possibly one more per segment for option descriptors */
413 	if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
414 		max_descs += EFX_TSO_MAX_SEGS;
415 
416 	/* Possibly more for PCIe page boundaries within input fragments */
417 	if (PAGE_SIZE > EFX_PAGE_SIZE)
418 		max_descs += max_t(unsigned int, MAX_SKB_FRAGS,
419 				   DIV_ROUND_UP(GSO_MAX_SIZE, EFX_PAGE_SIZE));
420 
421 	return max_descs;
422 }
423 
424 /*
425  * Fallback to software TSO.
426  *
427  * This is used if we are unable to send a GSO packet through hardware TSO.
428  * This should only ever happen due to per-queue restrictions - unsupported
429  * packets should first be filtered by the feature flags.
430  *
431  * Returns 0 on success, error code otherwise.
432  */
433 int efx_tx_tso_fallback(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
434 {
435 	struct sk_buff *segments, *next;
436 
437 	segments = skb_gso_segment(skb, 0);
438 	if (IS_ERR(segments))
439 		return PTR_ERR(segments);
440 
441 	dev_consume_skb_any(skb);
442 
443 	skb_list_walk_safe(segments, skb, next) {
444 		skb_mark_not_on_list(skb);
445 		efx_enqueue_skb(tx_queue, skb);
446 	}
447 
448 	return 0;
449 }
450