1 /**************************************************************************** 2 * Driver for Solarflare Solarstorm network controllers and boards 3 * Copyright 2005-2006 Fen Systems Ltd. 4 * Copyright 2005-2010 Solarflare Communications Inc. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published 8 * by the Free Software Foundation, incorporated herein by reference. 9 */ 10 11 #include <linux/pci.h> 12 #include <linux/tcp.h> 13 #include <linux/ip.h> 14 #include <linux/in.h> 15 #include <linux/ipv6.h> 16 #include <linux/slab.h> 17 #include <net/ipv6.h> 18 #include <linux/if_ether.h> 19 #include <linux/highmem.h> 20 #include "net_driver.h" 21 #include "efx.h" 22 #include "nic.h" 23 #include "workarounds.h" 24 25 /* 26 * TX descriptor ring full threshold 27 * 28 * The tx_queue descriptor ring fill-level must fall below this value 29 * before we restart the netif queue 30 */ 31 #define EFX_TXQ_THRESHOLD(_efx) ((_efx)->txq_entries / 2u) 32 33 static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue, 34 struct efx_tx_buffer *buffer) 35 { 36 if (buffer->unmap_len) { 37 struct pci_dev *pci_dev = tx_queue->efx->pci_dev; 38 dma_addr_t unmap_addr = (buffer->dma_addr + buffer->len - 39 buffer->unmap_len); 40 if (buffer->unmap_single) 41 pci_unmap_single(pci_dev, unmap_addr, buffer->unmap_len, 42 PCI_DMA_TODEVICE); 43 else 44 pci_unmap_page(pci_dev, unmap_addr, buffer->unmap_len, 45 PCI_DMA_TODEVICE); 46 buffer->unmap_len = 0; 47 buffer->unmap_single = false; 48 } 49 50 if (buffer->skb) { 51 dev_kfree_skb_any((struct sk_buff *) buffer->skb); 52 buffer->skb = NULL; 53 netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev, 54 "TX queue %d transmission id %x complete\n", 55 tx_queue->queue, tx_queue->read_count); 56 } 57 } 58 59 /** 60 * struct efx_tso_header - a DMA mapped buffer for packet headers 61 * @next: Linked list of free ones. 62 * The list is protected by the TX queue lock. 63 * @dma_unmap_len: Length to unmap for an oversize buffer, or 0. 64 * @dma_addr: The DMA address of the header below. 65 * 66 * This controls the memory used for a TSO header. Use TSOH_DATA() 67 * to find the packet header data. Use TSOH_SIZE() to calculate the 68 * total size required for a given packet header length. TSO headers 69 * in the free list are exactly %TSOH_STD_SIZE bytes in size. 70 */ 71 struct efx_tso_header { 72 union { 73 struct efx_tso_header *next; 74 size_t unmap_len; 75 }; 76 dma_addr_t dma_addr; 77 }; 78 79 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue, 80 struct sk_buff *skb); 81 static void efx_fini_tso(struct efx_tx_queue *tx_queue); 82 static void efx_tsoh_heap_free(struct efx_tx_queue *tx_queue, 83 struct efx_tso_header *tsoh); 84 85 static void efx_tsoh_free(struct efx_tx_queue *tx_queue, 86 struct efx_tx_buffer *buffer) 87 { 88 if (buffer->tsoh) { 89 if (likely(!buffer->tsoh->unmap_len)) { 90 buffer->tsoh->next = tx_queue->tso_headers_free; 91 tx_queue->tso_headers_free = buffer->tsoh; 92 } else { 93 efx_tsoh_heap_free(tx_queue, buffer->tsoh); 94 } 95 buffer->tsoh = NULL; 96 } 97 } 98 99 100 static inline unsigned 101 efx_max_tx_len(struct efx_nic *efx, dma_addr_t dma_addr) 102 { 103 /* Depending on the NIC revision, we can use descriptor 104 * lengths up to 8K or 8K-1. However, since PCI Express 105 * devices must split read requests at 4K boundaries, there is 106 * little benefit from using descriptors that cross those 107 * boundaries and we keep things simple by not doing so. 108 */ 109 unsigned len = (~dma_addr & 0xfff) + 1; 110 111 /* Work around hardware bug for unaligned buffers. */ 112 if (EFX_WORKAROUND_5391(efx) && (dma_addr & 0xf)) 113 len = min_t(unsigned, len, 512 - (dma_addr & 0xf)); 114 115 return len; 116 } 117 118 /* 119 * Add a socket buffer to a TX queue 120 * 121 * This maps all fragments of a socket buffer for DMA and adds them to 122 * the TX queue. The queue's insert pointer will be incremented by 123 * the number of fragments in the socket buffer. 124 * 125 * If any DMA mapping fails, any mapped fragments will be unmapped, 126 * the queue's insert pointer will be restored to its original value. 127 * 128 * This function is split out from efx_hard_start_xmit to allow the 129 * loopback test to direct packets via specific TX queues. 130 * 131 * Returns NETDEV_TX_OK or NETDEV_TX_BUSY 132 * You must hold netif_tx_lock() to call this function. 133 */ 134 netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb) 135 { 136 struct efx_nic *efx = tx_queue->efx; 137 struct pci_dev *pci_dev = efx->pci_dev; 138 struct efx_tx_buffer *buffer; 139 skb_frag_t *fragment; 140 unsigned int len, unmap_len = 0, fill_level, insert_ptr; 141 dma_addr_t dma_addr, unmap_addr = 0; 142 unsigned int dma_len; 143 bool unmap_single; 144 int q_space, i = 0; 145 netdev_tx_t rc = NETDEV_TX_OK; 146 147 EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count); 148 149 if (skb_shinfo(skb)->gso_size) 150 return efx_enqueue_skb_tso(tx_queue, skb); 151 152 /* Get size of the initial fragment */ 153 len = skb_headlen(skb); 154 155 /* Pad if necessary */ 156 if (EFX_WORKAROUND_15592(efx) && skb->len <= 32) { 157 EFX_BUG_ON_PARANOID(skb->data_len); 158 len = 32 + 1; 159 if (skb_pad(skb, len - skb->len)) 160 return NETDEV_TX_OK; 161 } 162 163 fill_level = tx_queue->insert_count - tx_queue->old_read_count; 164 q_space = efx->txq_entries - 1 - fill_level; 165 166 /* Map for DMA. Use pci_map_single rather than pci_map_page 167 * since this is more efficient on machines with sparse 168 * memory. 169 */ 170 unmap_single = true; 171 dma_addr = pci_map_single(pci_dev, skb->data, len, PCI_DMA_TODEVICE); 172 173 /* Process all fragments */ 174 while (1) { 175 if (unlikely(pci_dma_mapping_error(pci_dev, dma_addr))) 176 goto pci_err; 177 178 /* Store fields for marking in the per-fragment final 179 * descriptor */ 180 unmap_len = len; 181 unmap_addr = dma_addr; 182 183 /* Add to TX queue, splitting across DMA boundaries */ 184 do { 185 if (unlikely(q_space-- <= 0)) { 186 /* It might be that completions have 187 * happened since the xmit path last 188 * checked. Update the xmit path's 189 * copy of read_count. 190 */ 191 netif_tx_stop_queue(tx_queue->core_txq); 192 /* This memory barrier protects the 193 * change of queue state from the access 194 * of read_count. */ 195 smp_mb(); 196 tx_queue->old_read_count = 197 ACCESS_ONCE(tx_queue->read_count); 198 fill_level = (tx_queue->insert_count 199 - tx_queue->old_read_count); 200 q_space = efx->txq_entries - 1 - fill_level; 201 if (unlikely(q_space-- <= 0)) { 202 rc = NETDEV_TX_BUSY; 203 goto unwind; 204 } 205 smp_mb(); 206 if (likely(!efx->loopback_selftest)) 207 netif_tx_start_queue( 208 tx_queue->core_txq); 209 } 210 211 insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask; 212 buffer = &tx_queue->buffer[insert_ptr]; 213 efx_tsoh_free(tx_queue, buffer); 214 EFX_BUG_ON_PARANOID(buffer->tsoh); 215 EFX_BUG_ON_PARANOID(buffer->skb); 216 EFX_BUG_ON_PARANOID(buffer->len); 217 EFX_BUG_ON_PARANOID(!buffer->continuation); 218 EFX_BUG_ON_PARANOID(buffer->unmap_len); 219 220 dma_len = efx_max_tx_len(efx, dma_addr); 221 if (likely(dma_len >= len)) 222 dma_len = len; 223 224 /* Fill out per descriptor fields */ 225 buffer->len = dma_len; 226 buffer->dma_addr = dma_addr; 227 len -= dma_len; 228 dma_addr += dma_len; 229 ++tx_queue->insert_count; 230 } while (len); 231 232 /* Transfer ownership of the unmapping to the final buffer */ 233 buffer->unmap_single = unmap_single; 234 buffer->unmap_len = unmap_len; 235 unmap_len = 0; 236 237 /* Get address and size of next fragment */ 238 if (i >= skb_shinfo(skb)->nr_frags) 239 break; 240 fragment = &skb_shinfo(skb)->frags[i]; 241 len = skb_frag_size(fragment); 242 i++; 243 /* Map for DMA */ 244 unmap_single = false; 245 dma_addr = skb_frag_dma_map(&pci_dev->dev, fragment, 0, len, 246 DMA_TO_DEVICE); 247 } 248 249 /* Transfer ownership of the skb to the final buffer */ 250 buffer->skb = skb; 251 buffer->continuation = false; 252 253 /* Pass off to hardware */ 254 efx_nic_push_buffers(tx_queue); 255 256 return NETDEV_TX_OK; 257 258 pci_err: 259 netif_err(efx, tx_err, efx->net_dev, 260 " TX queue %d could not map skb with %d bytes %d " 261 "fragments for DMA\n", tx_queue->queue, skb->len, 262 skb_shinfo(skb)->nr_frags + 1); 263 264 /* Mark the packet as transmitted, and free the SKB ourselves */ 265 dev_kfree_skb_any(skb); 266 267 unwind: 268 /* Work backwards until we hit the original insert pointer value */ 269 while (tx_queue->insert_count != tx_queue->write_count) { 270 --tx_queue->insert_count; 271 insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask; 272 buffer = &tx_queue->buffer[insert_ptr]; 273 efx_dequeue_buffer(tx_queue, buffer); 274 buffer->len = 0; 275 } 276 277 /* Free the fragment we were mid-way through pushing */ 278 if (unmap_len) { 279 if (unmap_single) 280 pci_unmap_single(pci_dev, unmap_addr, unmap_len, 281 PCI_DMA_TODEVICE); 282 else 283 pci_unmap_page(pci_dev, unmap_addr, unmap_len, 284 PCI_DMA_TODEVICE); 285 } 286 287 return rc; 288 } 289 290 /* Remove packets from the TX queue 291 * 292 * This removes packets from the TX queue, up to and including the 293 * specified index. 294 */ 295 static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue, 296 unsigned int index) 297 { 298 struct efx_nic *efx = tx_queue->efx; 299 unsigned int stop_index, read_ptr; 300 301 stop_index = (index + 1) & tx_queue->ptr_mask; 302 read_ptr = tx_queue->read_count & tx_queue->ptr_mask; 303 304 while (read_ptr != stop_index) { 305 struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr]; 306 if (unlikely(buffer->len == 0)) { 307 netif_err(efx, tx_err, efx->net_dev, 308 "TX queue %d spurious TX completion id %x\n", 309 tx_queue->queue, read_ptr); 310 efx_schedule_reset(efx, RESET_TYPE_TX_SKIP); 311 return; 312 } 313 314 efx_dequeue_buffer(tx_queue, buffer); 315 buffer->continuation = true; 316 buffer->len = 0; 317 318 ++tx_queue->read_count; 319 read_ptr = tx_queue->read_count & tx_queue->ptr_mask; 320 } 321 } 322 323 /* Initiate a packet transmission. We use one channel per CPU 324 * (sharing when we have more CPUs than channels). On Falcon, the TX 325 * completion events will be directed back to the CPU that transmitted 326 * the packet, which should be cache-efficient. 327 * 328 * Context: non-blocking. 329 * Note that returning anything other than NETDEV_TX_OK will cause the 330 * OS to free the skb. 331 */ 332 netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb, 333 struct net_device *net_dev) 334 { 335 struct efx_nic *efx = netdev_priv(net_dev); 336 struct efx_tx_queue *tx_queue; 337 unsigned index, type; 338 339 EFX_WARN_ON_PARANOID(!netif_device_present(net_dev)); 340 341 index = skb_get_queue_mapping(skb); 342 type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0; 343 if (index >= efx->n_tx_channels) { 344 index -= efx->n_tx_channels; 345 type |= EFX_TXQ_TYPE_HIGHPRI; 346 } 347 tx_queue = efx_get_tx_queue(efx, index, type); 348 349 return efx_enqueue_skb(tx_queue, skb); 350 } 351 352 void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue) 353 { 354 struct efx_nic *efx = tx_queue->efx; 355 356 /* Must be inverse of queue lookup in efx_hard_start_xmit() */ 357 tx_queue->core_txq = 358 netdev_get_tx_queue(efx->net_dev, 359 tx_queue->queue / EFX_TXQ_TYPES + 360 ((tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ? 361 efx->n_tx_channels : 0)); 362 } 363 364 int efx_setup_tc(struct net_device *net_dev, u8 num_tc) 365 { 366 struct efx_nic *efx = netdev_priv(net_dev); 367 struct efx_channel *channel; 368 struct efx_tx_queue *tx_queue; 369 unsigned tc; 370 int rc; 371 372 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0 || num_tc > EFX_MAX_TX_TC) 373 return -EINVAL; 374 375 if (num_tc == net_dev->num_tc) 376 return 0; 377 378 for (tc = 0; tc < num_tc; tc++) { 379 net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels; 380 net_dev->tc_to_txq[tc].count = efx->n_tx_channels; 381 } 382 383 if (num_tc > net_dev->num_tc) { 384 /* Initialise high-priority queues as necessary */ 385 efx_for_each_channel(channel, efx) { 386 efx_for_each_possible_channel_tx_queue(tx_queue, 387 channel) { 388 if (!(tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI)) 389 continue; 390 if (!tx_queue->buffer) { 391 rc = efx_probe_tx_queue(tx_queue); 392 if (rc) 393 return rc; 394 } 395 if (!tx_queue->initialised) 396 efx_init_tx_queue(tx_queue); 397 efx_init_tx_queue_core_txq(tx_queue); 398 } 399 } 400 } else { 401 /* Reduce number of classes before number of queues */ 402 net_dev->num_tc = num_tc; 403 } 404 405 rc = netif_set_real_num_tx_queues(net_dev, 406 max_t(int, num_tc, 1) * 407 efx->n_tx_channels); 408 if (rc) 409 return rc; 410 411 /* Do not destroy high-priority queues when they become 412 * unused. We would have to flush them first, and it is 413 * fairly difficult to flush a subset of TX queues. Leave 414 * it to efx_fini_channels(). 415 */ 416 417 net_dev->num_tc = num_tc; 418 return 0; 419 } 420 421 void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index) 422 { 423 unsigned fill_level; 424 struct efx_nic *efx = tx_queue->efx; 425 426 EFX_BUG_ON_PARANOID(index > tx_queue->ptr_mask); 427 428 efx_dequeue_buffers(tx_queue, index); 429 430 /* See if we need to restart the netif queue. This barrier 431 * separates the update of read_count from the test of the 432 * queue state. */ 433 smp_mb(); 434 if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) && 435 likely(efx->port_enabled) && 436 likely(netif_device_present(efx->net_dev))) { 437 fill_level = tx_queue->insert_count - tx_queue->read_count; 438 if (fill_level < EFX_TXQ_THRESHOLD(efx)) { 439 EFX_BUG_ON_PARANOID(!efx_dev_registered(efx)); 440 netif_tx_wake_queue(tx_queue->core_txq); 441 } 442 } 443 444 /* Check whether the hardware queue is now empty */ 445 if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) { 446 tx_queue->old_write_count = ACCESS_ONCE(tx_queue->write_count); 447 if (tx_queue->read_count == tx_queue->old_write_count) { 448 smp_mb(); 449 tx_queue->empty_read_count = 450 tx_queue->read_count | EFX_EMPTY_COUNT_VALID; 451 } 452 } 453 } 454 455 int efx_probe_tx_queue(struct efx_tx_queue *tx_queue) 456 { 457 struct efx_nic *efx = tx_queue->efx; 458 unsigned int entries; 459 int i, rc; 460 461 /* Create the smallest power-of-two aligned ring */ 462 entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE); 463 EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE); 464 tx_queue->ptr_mask = entries - 1; 465 466 netif_dbg(efx, probe, efx->net_dev, 467 "creating TX queue %d size %#x mask %#x\n", 468 tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask); 469 470 /* Allocate software ring */ 471 tx_queue->buffer = kzalloc(entries * sizeof(*tx_queue->buffer), 472 GFP_KERNEL); 473 if (!tx_queue->buffer) 474 return -ENOMEM; 475 for (i = 0; i <= tx_queue->ptr_mask; ++i) 476 tx_queue->buffer[i].continuation = true; 477 478 /* Allocate hardware ring */ 479 rc = efx_nic_probe_tx(tx_queue); 480 if (rc) 481 goto fail; 482 483 return 0; 484 485 fail: 486 kfree(tx_queue->buffer); 487 tx_queue->buffer = NULL; 488 return rc; 489 } 490 491 void efx_init_tx_queue(struct efx_tx_queue *tx_queue) 492 { 493 netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev, 494 "initialising TX queue %d\n", tx_queue->queue); 495 496 tx_queue->insert_count = 0; 497 tx_queue->write_count = 0; 498 tx_queue->old_write_count = 0; 499 tx_queue->read_count = 0; 500 tx_queue->old_read_count = 0; 501 tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID; 502 503 /* Set up TX descriptor ring */ 504 efx_nic_init_tx(tx_queue); 505 506 tx_queue->initialised = true; 507 } 508 509 void efx_release_tx_buffers(struct efx_tx_queue *tx_queue) 510 { 511 struct efx_tx_buffer *buffer; 512 513 if (!tx_queue->buffer) 514 return; 515 516 /* Free any buffers left in the ring */ 517 while (tx_queue->read_count != tx_queue->write_count) { 518 buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask]; 519 efx_dequeue_buffer(tx_queue, buffer); 520 buffer->continuation = true; 521 buffer->len = 0; 522 523 ++tx_queue->read_count; 524 } 525 } 526 527 void efx_fini_tx_queue(struct efx_tx_queue *tx_queue) 528 { 529 if (!tx_queue->initialised) 530 return; 531 532 netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev, 533 "shutting down TX queue %d\n", tx_queue->queue); 534 535 tx_queue->initialised = false; 536 537 /* Flush TX queue, remove descriptor ring */ 538 efx_nic_fini_tx(tx_queue); 539 540 efx_release_tx_buffers(tx_queue); 541 542 /* Free up TSO header cache */ 543 efx_fini_tso(tx_queue); 544 } 545 546 void efx_remove_tx_queue(struct efx_tx_queue *tx_queue) 547 { 548 if (!tx_queue->buffer) 549 return; 550 551 netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev, 552 "destroying TX queue %d\n", tx_queue->queue); 553 efx_nic_remove_tx(tx_queue); 554 555 kfree(tx_queue->buffer); 556 tx_queue->buffer = NULL; 557 } 558 559 560 /* Efx TCP segmentation acceleration. 561 * 562 * Why? Because by doing it here in the driver we can go significantly 563 * faster than the GSO. 564 * 565 * Requires TX checksum offload support. 566 */ 567 568 /* Number of bytes inserted at the start of a TSO header buffer, 569 * similar to NET_IP_ALIGN. 570 */ 571 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 572 #define TSOH_OFFSET 0 573 #else 574 #define TSOH_OFFSET NET_IP_ALIGN 575 #endif 576 577 #define TSOH_BUFFER(tsoh) ((u8 *)(tsoh + 1) + TSOH_OFFSET) 578 579 /* Total size of struct efx_tso_header, buffer and padding */ 580 #define TSOH_SIZE(hdr_len) \ 581 (sizeof(struct efx_tso_header) + TSOH_OFFSET + hdr_len) 582 583 /* Size of blocks on free list. Larger blocks must be allocated from 584 * the heap. 585 */ 586 #define TSOH_STD_SIZE 128 587 588 #define PTR_DIFF(p1, p2) ((u8 *)(p1) - (u8 *)(p2)) 589 #define ETH_HDR_LEN(skb) (skb_network_header(skb) - (skb)->data) 590 #define SKB_TCP_OFF(skb) PTR_DIFF(tcp_hdr(skb), (skb)->data) 591 #define SKB_IPV4_OFF(skb) PTR_DIFF(ip_hdr(skb), (skb)->data) 592 #define SKB_IPV6_OFF(skb) PTR_DIFF(ipv6_hdr(skb), (skb)->data) 593 594 /** 595 * struct tso_state - TSO state for an SKB 596 * @out_len: Remaining length in current segment 597 * @seqnum: Current sequence number 598 * @ipv4_id: Current IPv4 ID, host endian 599 * @packet_space: Remaining space in current packet 600 * @dma_addr: DMA address of current position 601 * @in_len: Remaining length in current SKB fragment 602 * @unmap_len: Length of SKB fragment 603 * @unmap_addr: DMA address of SKB fragment 604 * @unmap_single: DMA single vs page mapping flag 605 * @protocol: Network protocol (after any VLAN header) 606 * @header_len: Number of bytes of header 607 * @full_packet_size: Number of bytes to put in each outgoing segment 608 * 609 * The state used during segmentation. It is put into this data structure 610 * just to make it easy to pass into inline functions. 611 */ 612 struct tso_state { 613 /* Output position */ 614 unsigned out_len; 615 unsigned seqnum; 616 unsigned ipv4_id; 617 unsigned packet_space; 618 619 /* Input position */ 620 dma_addr_t dma_addr; 621 unsigned in_len; 622 unsigned unmap_len; 623 dma_addr_t unmap_addr; 624 bool unmap_single; 625 626 __be16 protocol; 627 unsigned header_len; 628 int full_packet_size; 629 }; 630 631 632 /* 633 * Verify that our various assumptions about sk_buffs and the conditions 634 * under which TSO will be attempted hold true. Return the protocol number. 635 */ 636 static __be16 efx_tso_check_protocol(struct sk_buff *skb) 637 { 638 __be16 protocol = skb->protocol; 639 640 EFX_BUG_ON_PARANOID(((struct ethhdr *)skb->data)->h_proto != 641 protocol); 642 if (protocol == htons(ETH_P_8021Q)) { 643 /* Find the encapsulated protocol; reset network header 644 * and transport header based on that. */ 645 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 646 protocol = veh->h_vlan_encapsulated_proto; 647 skb_set_network_header(skb, sizeof(*veh)); 648 if (protocol == htons(ETH_P_IP)) 649 skb_set_transport_header(skb, sizeof(*veh) + 650 4 * ip_hdr(skb)->ihl); 651 else if (protocol == htons(ETH_P_IPV6)) 652 skb_set_transport_header(skb, sizeof(*veh) + 653 sizeof(struct ipv6hdr)); 654 } 655 656 if (protocol == htons(ETH_P_IP)) { 657 EFX_BUG_ON_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP); 658 } else { 659 EFX_BUG_ON_PARANOID(protocol != htons(ETH_P_IPV6)); 660 EFX_BUG_ON_PARANOID(ipv6_hdr(skb)->nexthdr != NEXTHDR_TCP); 661 } 662 EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data) 663 + (tcp_hdr(skb)->doff << 2u)) > 664 skb_headlen(skb)); 665 666 return protocol; 667 } 668 669 670 /* 671 * Allocate a page worth of efx_tso_header structures, and string them 672 * into the tx_queue->tso_headers_free linked list. Return 0 or -ENOMEM. 673 */ 674 static int efx_tsoh_block_alloc(struct efx_tx_queue *tx_queue) 675 { 676 677 struct pci_dev *pci_dev = tx_queue->efx->pci_dev; 678 struct efx_tso_header *tsoh; 679 dma_addr_t dma_addr; 680 u8 *base_kva, *kva; 681 682 base_kva = pci_alloc_consistent(pci_dev, PAGE_SIZE, &dma_addr); 683 if (base_kva == NULL) { 684 netif_err(tx_queue->efx, tx_err, tx_queue->efx->net_dev, 685 "Unable to allocate page for TSO headers\n"); 686 return -ENOMEM; 687 } 688 689 /* pci_alloc_consistent() allocates pages. */ 690 EFX_BUG_ON_PARANOID(dma_addr & (PAGE_SIZE - 1u)); 691 692 for (kva = base_kva; kva < base_kva + PAGE_SIZE; kva += TSOH_STD_SIZE) { 693 tsoh = (struct efx_tso_header *)kva; 694 tsoh->dma_addr = dma_addr + (TSOH_BUFFER(tsoh) - base_kva); 695 tsoh->next = tx_queue->tso_headers_free; 696 tx_queue->tso_headers_free = tsoh; 697 } 698 699 return 0; 700 } 701 702 703 /* Free up a TSO header, and all others in the same page. */ 704 static void efx_tsoh_block_free(struct efx_tx_queue *tx_queue, 705 struct efx_tso_header *tsoh, 706 struct pci_dev *pci_dev) 707 { 708 struct efx_tso_header **p; 709 unsigned long base_kva; 710 dma_addr_t base_dma; 711 712 base_kva = (unsigned long)tsoh & PAGE_MASK; 713 base_dma = tsoh->dma_addr & PAGE_MASK; 714 715 p = &tx_queue->tso_headers_free; 716 while (*p != NULL) { 717 if (((unsigned long)*p & PAGE_MASK) == base_kva) 718 *p = (*p)->next; 719 else 720 p = &(*p)->next; 721 } 722 723 pci_free_consistent(pci_dev, PAGE_SIZE, (void *)base_kva, base_dma); 724 } 725 726 static struct efx_tso_header * 727 efx_tsoh_heap_alloc(struct efx_tx_queue *tx_queue, size_t header_len) 728 { 729 struct efx_tso_header *tsoh; 730 731 tsoh = kmalloc(TSOH_SIZE(header_len), GFP_ATOMIC | GFP_DMA); 732 if (unlikely(!tsoh)) 733 return NULL; 734 735 tsoh->dma_addr = pci_map_single(tx_queue->efx->pci_dev, 736 TSOH_BUFFER(tsoh), header_len, 737 PCI_DMA_TODEVICE); 738 if (unlikely(pci_dma_mapping_error(tx_queue->efx->pci_dev, 739 tsoh->dma_addr))) { 740 kfree(tsoh); 741 return NULL; 742 } 743 744 tsoh->unmap_len = header_len; 745 return tsoh; 746 } 747 748 static void 749 efx_tsoh_heap_free(struct efx_tx_queue *tx_queue, struct efx_tso_header *tsoh) 750 { 751 pci_unmap_single(tx_queue->efx->pci_dev, 752 tsoh->dma_addr, tsoh->unmap_len, 753 PCI_DMA_TODEVICE); 754 kfree(tsoh); 755 } 756 757 /** 758 * efx_tx_queue_insert - push descriptors onto the TX queue 759 * @tx_queue: Efx TX queue 760 * @dma_addr: DMA address of fragment 761 * @len: Length of fragment 762 * @final_buffer: The final buffer inserted into the queue 763 * 764 * Push descriptors onto the TX queue. Return 0 on success or 1 if 765 * @tx_queue full. 766 */ 767 static int efx_tx_queue_insert(struct efx_tx_queue *tx_queue, 768 dma_addr_t dma_addr, unsigned len, 769 struct efx_tx_buffer **final_buffer) 770 { 771 struct efx_tx_buffer *buffer; 772 struct efx_nic *efx = tx_queue->efx; 773 unsigned dma_len, fill_level, insert_ptr; 774 int q_space; 775 776 EFX_BUG_ON_PARANOID(len <= 0); 777 778 fill_level = tx_queue->insert_count - tx_queue->old_read_count; 779 /* -1 as there is no way to represent all descriptors used */ 780 q_space = efx->txq_entries - 1 - fill_level; 781 782 while (1) { 783 if (unlikely(q_space-- <= 0)) { 784 /* It might be that completions have happened 785 * since the xmit path last checked. Update 786 * the xmit path's copy of read_count. 787 */ 788 netif_tx_stop_queue(tx_queue->core_txq); 789 /* This memory barrier protects the change of 790 * queue state from the access of read_count. */ 791 smp_mb(); 792 tx_queue->old_read_count = 793 ACCESS_ONCE(tx_queue->read_count); 794 fill_level = (tx_queue->insert_count 795 - tx_queue->old_read_count); 796 q_space = efx->txq_entries - 1 - fill_level; 797 if (unlikely(q_space-- <= 0)) { 798 *final_buffer = NULL; 799 return 1; 800 } 801 smp_mb(); 802 netif_tx_start_queue(tx_queue->core_txq); 803 } 804 805 insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask; 806 buffer = &tx_queue->buffer[insert_ptr]; 807 ++tx_queue->insert_count; 808 809 EFX_BUG_ON_PARANOID(tx_queue->insert_count - 810 tx_queue->read_count >= 811 efx->txq_entries); 812 813 efx_tsoh_free(tx_queue, buffer); 814 EFX_BUG_ON_PARANOID(buffer->len); 815 EFX_BUG_ON_PARANOID(buffer->unmap_len); 816 EFX_BUG_ON_PARANOID(buffer->skb); 817 EFX_BUG_ON_PARANOID(!buffer->continuation); 818 EFX_BUG_ON_PARANOID(buffer->tsoh); 819 820 buffer->dma_addr = dma_addr; 821 822 dma_len = efx_max_tx_len(efx, dma_addr); 823 824 /* If there is enough space to send then do so */ 825 if (dma_len >= len) 826 break; 827 828 buffer->len = dma_len; /* Don't set the other members */ 829 dma_addr += dma_len; 830 len -= dma_len; 831 } 832 833 EFX_BUG_ON_PARANOID(!len); 834 buffer->len = len; 835 *final_buffer = buffer; 836 return 0; 837 } 838 839 840 /* 841 * Put a TSO header into the TX queue. 842 * 843 * This is special-cased because we know that it is small enough to fit in 844 * a single fragment, and we know it doesn't cross a page boundary. It 845 * also allows us to not worry about end-of-packet etc. 846 */ 847 static void efx_tso_put_header(struct efx_tx_queue *tx_queue, 848 struct efx_tso_header *tsoh, unsigned len) 849 { 850 struct efx_tx_buffer *buffer; 851 852 buffer = &tx_queue->buffer[tx_queue->insert_count & tx_queue->ptr_mask]; 853 efx_tsoh_free(tx_queue, buffer); 854 EFX_BUG_ON_PARANOID(buffer->len); 855 EFX_BUG_ON_PARANOID(buffer->unmap_len); 856 EFX_BUG_ON_PARANOID(buffer->skb); 857 EFX_BUG_ON_PARANOID(!buffer->continuation); 858 EFX_BUG_ON_PARANOID(buffer->tsoh); 859 buffer->len = len; 860 buffer->dma_addr = tsoh->dma_addr; 861 buffer->tsoh = tsoh; 862 863 ++tx_queue->insert_count; 864 } 865 866 867 /* Remove descriptors put into a tx_queue. */ 868 static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue) 869 { 870 struct efx_tx_buffer *buffer; 871 dma_addr_t unmap_addr; 872 873 /* Work backwards until we hit the original insert pointer value */ 874 while (tx_queue->insert_count != tx_queue->write_count) { 875 --tx_queue->insert_count; 876 buffer = &tx_queue->buffer[tx_queue->insert_count & 877 tx_queue->ptr_mask]; 878 efx_tsoh_free(tx_queue, buffer); 879 EFX_BUG_ON_PARANOID(buffer->skb); 880 if (buffer->unmap_len) { 881 unmap_addr = (buffer->dma_addr + buffer->len - 882 buffer->unmap_len); 883 if (buffer->unmap_single) 884 pci_unmap_single(tx_queue->efx->pci_dev, 885 unmap_addr, buffer->unmap_len, 886 PCI_DMA_TODEVICE); 887 else 888 pci_unmap_page(tx_queue->efx->pci_dev, 889 unmap_addr, buffer->unmap_len, 890 PCI_DMA_TODEVICE); 891 buffer->unmap_len = 0; 892 } 893 buffer->len = 0; 894 buffer->continuation = true; 895 } 896 } 897 898 899 /* Parse the SKB header and initialise state. */ 900 static void tso_start(struct tso_state *st, const struct sk_buff *skb) 901 { 902 /* All ethernet/IP/TCP headers combined size is TCP header size 903 * plus offset of TCP header relative to start of packet. 904 */ 905 st->header_len = ((tcp_hdr(skb)->doff << 2u) 906 + PTR_DIFF(tcp_hdr(skb), skb->data)); 907 st->full_packet_size = st->header_len + skb_shinfo(skb)->gso_size; 908 909 if (st->protocol == htons(ETH_P_IP)) 910 st->ipv4_id = ntohs(ip_hdr(skb)->id); 911 else 912 st->ipv4_id = 0; 913 st->seqnum = ntohl(tcp_hdr(skb)->seq); 914 915 EFX_BUG_ON_PARANOID(tcp_hdr(skb)->urg); 916 EFX_BUG_ON_PARANOID(tcp_hdr(skb)->syn); 917 EFX_BUG_ON_PARANOID(tcp_hdr(skb)->rst); 918 919 st->packet_space = st->full_packet_size; 920 st->out_len = skb->len - st->header_len; 921 st->unmap_len = 0; 922 st->unmap_single = false; 923 } 924 925 static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx, 926 skb_frag_t *frag) 927 { 928 st->unmap_addr = skb_frag_dma_map(&efx->pci_dev->dev, frag, 0, 929 skb_frag_size(frag), DMA_TO_DEVICE); 930 if (likely(!dma_mapping_error(&efx->pci_dev->dev, st->unmap_addr))) { 931 st->unmap_single = false; 932 st->unmap_len = skb_frag_size(frag); 933 st->in_len = skb_frag_size(frag); 934 st->dma_addr = st->unmap_addr; 935 return 0; 936 } 937 return -ENOMEM; 938 } 939 940 static int tso_get_head_fragment(struct tso_state *st, struct efx_nic *efx, 941 const struct sk_buff *skb) 942 { 943 int hl = st->header_len; 944 int len = skb_headlen(skb) - hl; 945 946 st->unmap_addr = pci_map_single(efx->pci_dev, skb->data + hl, 947 len, PCI_DMA_TODEVICE); 948 if (likely(!pci_dma_mapping_error(efx->pci_dev, st->unmap_addr))) { 949 st->unmap_single = true; 950 st->unmap_len = len; 951 st->in_len = len; 952 st->dma_addr = st->unmap_addr; 953 return 0; 954 } 955 return -ENOMEM; 956 } 957 958 959 /** 960 * tso_fill_packet_with_fragment - form descriptors for the current fragment 961 * @tx_queue: Efx TX queue 962 * @skb: Socket buffer 963 * @st: TSO state 964 * 965 * Form descriptors for the current fragment, until we reach the end 966 * of fragment or end-of-packet. Return 0 on success, 1 if not enough 967 * space in @tx_queue. 968 */ 969 static int tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue, 970 const struct sk_buff *skb, 971 struct tso_state *st) 972 { 973 struct efx_tx_buffer *buffer; 974 int n, end_of_packet, rc; 975 976 if (st->in_len == 0) 977 return 0; 978 if (st->packet_space == 0) 979 return 0; 980 981 EFX_BUG_ON_PARANOID(st->in_len <= 0); 982 EFX_BUG_ON_PARANOID(st->packet_space <= 0); 983 984 n = min(st->in_len, st->packet_space); 985 986 st->packet_space -= n; 987 st->out_len -= n; 988 st->in_len -= n; 989 990 rc = efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer); 991 if (likely(rc == 0)) { 992 if (st->out_len == 0) 993 /* Transfer ownership of the skb */ 994 buffer->skb = skb; 995 996 end_of_packet = st->out_len == 0 || st->packet_space == 0; 997 buffer->continuation = !end_of_packet; 998 999 if (st->in_len == 0) { 1000 /* Transfer ownership of the pci mapping */ 1001 buffer->unmap_len = st->unmap_len; 1002 buffer->unmap_single = st->unmap_single; 1003 st->unmap_len = 0; 1004 } 1005 } 1006 1007 st->dma_addr += n; 1008 return rc; 1009 } 1010 1011 1012 /** 1013 * tso_start_new_packet - generate a new header and prepare for the new packet 1014 * @tx_queue: Efx TX queue 1015 * @skb: Socket buffer 1016 * @st: TSO state 1017 * 1018 * Generate a new header and prepare for the new packet. Return 0 on 1019 * success, or -1 if failed to alloc header. 1020 */ 1021 static int tso_start_new_packet(struct efx_tx_queue *tx_queue, 1022 const struct sk_buff *skb, 1023 struct tso_state *st) 1024 { 1025 struct efx_tso_header *tsoh; 1026 struct tcphdr *tsoh_th; 1027 unsigned ip_length; 1028 u8 *header; 1029 1030 /* Allocate a DMA-mapped header buffer. */ 1031 if (likely(TSOH_SIZE(st->header_len) <= TSOH_STD_SIZE)) { 1032 if (tx_queue->tso_headers_free == NULL) { 1033 if (efx_tsoh_block_alloc(tx_queue)) 1034 return -1; 1035 } 1036 EFX_BUG_ON_PARANOID(!tx_queue->tso_headers_free); 1037 tsoh = tx_queue->tso_headers_free; 1038 tx_queue->tso_headers_free = tsoh->next; 1039 tsoh->unmap_len = 0; 1040 } else { 1041 tx_queue->tso_long_headers++; 1042 tsoh = efx_tsoh_heap_alloc(tx_queue, st->header_len); 1043 if (unlikely(!tsoh)) 1044 return -1; 1045 } 1046 1047 header = TSOH_BUFFER(tsoh); 1048 tsoh_th = (struct tcphdr *)(header + SKB_TCP_OFF(skb)); 1049 1050 /* Copy and update the headers. */ 1051 memcpy(header, skb->data, st->header_len); 1052 1053 tsoh_th->seq = htonl(st->seqnum); 1054 st->seqnum += skb_shinfo(skb)->gso_size; 1055 if (st->out_len > skb_shinfo(skb)->gso_size) { 1056 /* This packet will not finish the TSO burst. */ 1057 ip_length = st->full_packet_size - ETH_HDR_LEN(skb); 1058 tsoh_th->fin = 0; 1059 tsoh_th->psh = 0; 1060 } else { 1061 /* This packet will be the last in the TSO burst. */ 1062 ip_length = st->header_len - ETH_HDR_LEN(skb) + st->out_len; 1063 tsoh_th->fin = tcp_hdr(skb)->fin; 1064 tsoh_th->psh = tcp_hdr(skb)->psh; 1065 } 1066 1067 if (st->protocol == htons(ETH_P_IP)) { 1068 struct iphdr *tsoh_iph = 1069 (struct iphdr *)(header + SKB_IPV4_OFF(skb)); 1070 1071 tsoh_iph->tot_len = htons(ip_length); 1072 1073 /* Linux leaves suitable gaps in the IP ID space for us to fill. */ 1074 tsoh_iph->id = htons(st->ipv4_id); 1075 st->ipv4_id++; 1076 } else { 1077 struct ipv6hdr *tsoh_iph = 1078 (struct ipv6hdr *)(header + SKB_IPV6_OFF(skb)); 1079 1080 tsoh_iph->payload_len = htons(ip_length - sizeof(*tsoh_iph)); 1081 } 1082 1083 st->packet_space = skb_shinfo(skb)->gso_size; 1084 ++tx_queue->tso_packets; 1085 1086 /* Form a descriptor for this header. */ 1087 efx_tso_put_header(tx_queue, tsoh, st->header_len); 1088 1089 return 0; 1090 } 1091 1092 1093 /** 1094 * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer 1095 * @tx_queue: Efx TX queue 1096 * @skb: Socket buffer 1097 * 1098 * Context: You must hold netif_tx_lock() to call this function. 1099 * 1100 * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if 1101 * @skb was not enqueued. In all cases @skb is consumed. Return 1102 * %NETDEV_TX_OK or %NETDEV_TX_BUSY. 1103 */ 1104 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue, 1105 struct sk_buff *skb) 1106 { 1107 struct efx_nic *efx = tx_queue->efx; 1108 int frag_i, rc, rc2 = NETDEV_TX_OK; 1109 struct tso_state state; 1110 1111 /* Find the packet protocol and sanity-check it */ 1112 state.protocol = efx_tso_check_protocol(skb); 1113 1114 EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count); 1115 1116 tso_start(&state, skb); 1117 1118 /* Assume that skb header area contains exactly the headers, and 1119 * all payload is in the frag list. 1120 */ 1121 if (skb_headlen(skb) == state.header_len) { 1122 /* Grab the first payload fragment. */ 1123 EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags < 1); 1124 frag_i = 0; 1125 rc = tso_get_fragment(&state, efx, 1126 skb_shinfo(skb)->frags + frag_i); 1127 if (rc) 1128 goto mem_err; 1129 } else { 1130 rc = tso_get_head_fragment(&state, efx, skb); 1131 if (rc) 1132 goto mem_err; 1133 frag_i = -1; 1134 } 1135 1136 if (tso_start_new_packet(tx_queue, skb, &state) < 0) 1137 goto mem_err; 1138 1139 while (1) { 1140 rc = tso_fill_packet_with_fragment(tx_queue, skb, &state); 1141 if (unlikely(rc)) { 1142 rc2 = NETDEV_TX_BUSY; 1143 goto unwind; 1144 } 1145 1146 /* Move onto the next fragment? */ 1147 if (state.in_len == 0) { 1148 if (++frag_i >= skb_shinfo(skb)->nr_frags) 1149 /* End of payload reached. */ 1150 break; 1151 rc = tso_get_fragment(&state, efx, 1152 skb_shinfo(skb)->frags + frag_i); 1153 if (rc) 1154 goto mem_err; 1155 } 1156 1157 /* Start at new packet? */ 1158 if (state.packet_space == 0 && 1159 tso_start_new_packet(tx_queue, skb, &state) < 0) 1160 goto mem_err; 1161 } 1162 1163 /* Pass off to hardware */ 1164 efx_nic_push_buffers(tx_queue); 1165 1166 tx_queue->tso_bursts++; 1167 return NETDEV_TX_OK; 1168 1169 mem_err: 1170 netif_err(efx, tx_err, efx->net_dev, 1171 "Out of memory for TSO headers, or PCI mapping error\n"); 1172 dev_kfree_skb_any(skb); 1173 1174 unwind: 1175 /* Free the DMA mapping we were in the process of writing out */ 1176 if (state.unmap_len) { 1177 if (state.unmap_single) 1178 pci_unmap_single(efx->pci_dev, state.unmap_addr, 1179 state.unmap_len, PCI_DMA_TODEVICE); 1180 else 1181 pci_unmap_page(efx->pci_dev, state.unmap_addr, 1182 state.unmap_len, PCI_DMA_TODEVICE); 1183 } 1184 1185 efx_enqueue_unwind(tx_queue); 1186 return rc2; 1187 } 1188 1189 1190 /* 1191 * Free up all TSO datastructures associated with tx_queue. This 1192 * routine should be called only once the tx_queue is both empty and 1193 * will no longer be used. 1194 */ 1195 static void efx_fini_tso(struct efx_tx_queue *tx_queue) 1196 { 1197 unsigned i; 1198 1199 if (tx_queue->buffer) { 1200 for (i = 0; i <= tx_queue->ptr_mask; ++i) 1201 efx_tsoh_free(tx_queue, &tx_queue->buffer[i]); 1202 } 1203 1204 while (tx_queue->tso_headers_free != NULL) 1205 efx_tsoh_block_free(tx_queue, tx_queue->tso_headers_free, 1206 tx_queue->efx->pci_dev); 1207 } 1208