xref: /linux/drivers/net/ethernet/sfc/tx.c (revision e5c86679d5e864947a52fb31e45a425dea3e7fa9)
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2005-2013 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #include <linux/pci.h>
12 #include <linux/tcp.h>
13 #include <linux/ip.h>
14 #include <linux/in.h>
15 #include <linux/ipv6.h>
16 #include <linux/slab.h>
17 #include <net/ipv6.h>
18 #include <linux/if_ether.h>
19 #include <linux/highmem.h>
20 #include <linux/cache.h>
21 #include "net_driver.h"
22 #include "efx.h"
23 #include "io.h"
24 #include "nic.h"
25 #include "tx.h"
26 #include "workarounds.h"
27 #include "ef10_regs.h"
28 
29 #ifdef EFX_USE_PIO
30 
31 #define EFX_PIOBUF_SIZE_DEF ALIGN(256, L1_CACHE_BYTES)
32 unsigned int efx_piobuf_size __read_mostly = EFX_PIOBUF_SIZE_DEF;
33 
34 #endif /* EFX_USE_PIO */
35 
36 static inline u8 *efx_tx_get_copy_buffer(struct efx_tx_queue *tx_queue,
37 					 struct efx_tx_buffer *buffer)
38 {
39 	unsigned int index = efx_tx_queue_get_insert_index(tx_queue);
40 	struct efx_buffer *page_buf =
41 		&tx_queue->cb_page[index >> (PAGE_SHIFT - EFX_TX_CB_ORDER)];
42 	unsigned int offset =
43 		((index << EFX_TX_CB_ORDER) + NET_IP_ALIGN) & (PAGE_SIZE - 1);
44 
45 	if (unlikely(!page_buf->addr) &&
46 	    efx_nic_alloc_buffer(tx_queue->efx, page_buf, PAGE_SIZE,
47 				 GFP_ATOMIC))
48 		return NULL;
49 	buffer->dma_addr = page_buf->dma_addr + offset;
50 	buffer->unmap_len = 0;
51 	return (u8 *)page_buf->addr + offset;
52 }
53 
54 u8 *efx_tx_get_copy_buffer_limited(struct efx_tx_queue *tx_queue,
55 				   struct efx_tx_buffer *buffer, size_t len)
56 {
57 	if (len > EFX_TX_CB_SIZE)
58 		return NULL;
59 	return efx_tx_get_copy_buffer(tx_queue, buffer);
60 }
61 
62 static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
63 			       struct efx_tx_buffer *buffer,
64 			       unsigned int *pkts_compl,
65 			       unsigned int *bytes_compl)
66 {
67 	if (buffer->unmap_len) {
68 		struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
69 		dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset;
70 		if (buffer->flags & EFX_TX_BUF_MAP_SINGLE)
71 			dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len,
72 					 DMA_TO_DEVICE);
73 		else
74 			dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len,
75 				       DMA_TO_DEVICE);
76 		buffer->unmap_len = 0;
77 	}
78 
79 	if (buffer->flags & EFX_TX_BUF_SKB) {
80 		(*pkts_compl)++;
81 		(*bytes_compl) += buffer->skb->len;
82 		dev_consume_skb_any((struct sk_buff *)buffer->skb);
83 		netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
84 			   "TX queue %d transmission id %x complete\n",
85 			   tx_queue->queue, tx_queue->read_count);
86 	}
87 
88 	buffer->len = 0;
89 	buffer->flags = 0;
90 }
91 
92 unsigned int efx_tx_max_skb_descs(struct efx_nic *efx)
93 {
94 	/* Header and payload descriptor for each output segment, plus
95 	 * one for every input fragment boundary within a segment
96 	 */
97 	unsigned int max_descs = EFX_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;
98 
99 	/* Possibly one more per segment for option descriptors */
100 	if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
101 		max_descs += EFX_TSO_MAX_SEGS;
102 
103 	/* Possibly more for PCIe page boundaries within input fragments */
104 	if (PAGE_SIZE > EFX_PAGE_SIZE)
105 		max_descs += max_t(unsigned int, MAX_SKB_FRAGS,
106 				   DIV_ROUND_UP(GSO_MAX_SIZE, EFX_PAGE_SIZE));
107 
108 	return max_descs;
109 }
110 
111 static void efx_tx_maybe_stop_queue(struct efx_tx_queue *txq1)
112 {
113 	/* We need to consider both queues that the net core sees as one */
114 	struct efx_tx_queue *txq2 = efx_tx_queue_partner(txq1);
115 	struct efx_nic *efx = txq1->efx;
116 	unsigned int fill_level;
117 
118 	fill_level = max(txq1->insert_count - txq1->old_read_count,
119 			 txq2->insert_count - txq2->old_read_count);
120 	if (likely(fill_level < efx->txq_stop_thresh))
121 		return;
122 
123 	/* We used the stale old_read_count above, which gives us a
124 	 * pessimistic estimate of the fill level (which may even
125 	 * validly be >= efx->txq_entries).  Now try again using
126 	 * read_count (more likely to be a cache miss).
127 	 *
128 	 * If we read read_count and then conditionally stop the
129 	 * queue, it is possible for the completion path to race with
130 	 * us and complete all outstanding descriptors in the middle,
131 	 * after which there will be no more completions to wake it.
132 	 * Therefore we stop the queue first, then read read_count
133 	 * (with a memory barrier to ensure the ordering), then
134 	 * restart the queue if the fill level turns out to be low
135 	 * enough.
136 	 */
137 	netif_tx_stop_queue(txq1->core_txq);
138 	smp_mb();
139 	txq1->old_read_count = ACCESS_ONCE(txq1->read_count);
140 	txq2->old_read_count = ACCESS_ONCE(txq2->read_count);
141 
142 	fill_level = max(txq1->insert_count - txq1->old_read_count,
143 			 txq2->insert_count - txq2->old_read_count);
144 	EFX_WARN_ON_ONCE_PARANOID(fill_level >= efx->txq_entries);
145 	if (likely(fill_level < efx->txq_stop_thresh)) {
146 		smp_mb();
147 		if (likely(!efx->loopback_selftest))
148 			netif_tx_start_queue(txq1->core_txq);
149 	}
150 }
151 
152 static int efx_enqueue_skb_copy(struct efx_tx_queue *tx_queue,
153 				struct sk_buff *skb)
154 {
155 	unsigned int copy_len = skb->len;
156 	struct efx_tx_buffer *buffer;
157 	u8 *copy_buffer;
158 	int rc;
159 
160 	EFX_WARN_ON_ONCE_PARANOID(copy_len > EFX_TX_CB_SIZE);
161 
162 	buffer = efx_tx_queue_get_insert_buffer(tx_queue);
163 
164 	copy_buffer = efx_tx_get_copy_buffer(tx_queue, buffer);
165 	if (unlikely(!copy_buffer))
166 		return -ENOMEM;
167 
168 	rc = skb_copy_bits(skb, 0, copy_buffer, copy_len);
169 	EFX_WARN_ON_PARANOID(rc);
170 	buffer->len = copy_len;
171 
172 	buffer->skb = skb;
173 	buffer->flags = EFX_TX_BUF_SKB;
174 
175 	++tx_queue->insert_count;
176 	return rc;
177 }
178 
179 #ifdef EFX_USE_PIO
180 
181 struct efx_short_copy_buffer {
182 	int used;
183 	u8 buf[L1_CACHE_BYTES];
184 };
185 
186 /* Copy to PIO, respecting that writes to PIO buffers must be dword aligned.
187  * Advances piobuf pointer. Leaves additional data in the copy buffer.
188  */
189 static void efx_memcpy_toio_aligned(struct efx_nic *efx, u8 __iomem **piobuf,
190 				    u8 *data, int len,
191 				    struct efx_short_copy_buffer *copy_buf)
192 {
193 	int block_len = len & ~(sizeof(copy_buf->buf) - 1);
194 
195 	__iowrite64_copy(*piobuf, data, block_len >> 3);
196 	*piobuf += block_len;
197 	len -= block_len;
198 
199 	if (len) {
200 		data += block_len;
201 		BUG_ON(copy_buf->used);
202 		BUG_ON(len > sizeof(copy_buf->buf));
203 		memcpy(copy_buf->buf, data, len);
204 		copy_buf->used = len;
205 	}
206 }
207 
208 /* Copy to PIO, respecting dword alignment, popping data from copy buffer first.
209  * Advances piobuf pointer. Leaves additional data in the copy buffer.
210  */
211 static void efx_memcpy_toio_aligned_cb(struct efx_nic *efx, u8 __iomem **piobuf,
212 				       u8 *data, int len,
213 				       struct efx_short_copy_buffer *copy_buf)
214 {
215 	if (copy_buf->used) {
216 		/* if the copy buffer is partially full, fill it up and write */
217 		int copy_to_buf =
218 			min_t(int, sizeof(copy_buf->buf) - copy_buf->used, len);
219 
220 		memcpy(copy_buf->buf + copy_buf->used, data, copy_to_buf);
221 		copy_buf->used += copy_to_buf;
222 
223 		/* if we didn't fill it up then we're done for now */
224 		if (copy_buf->used < sizeof(copy_buf->buf))
225 			return;
226 
227 		__iowrite64_copy(*piobuf, copy_buf->buf,
228 				 sizeof(copy_buf->buf) >> 3);
229 		*piobuf += sizeof(copy_buf->buf);
230 		data += copy_to_buf;
231 		len -= copy_to_buf;
232 		copy_buf->used = 0;
233 	}
234 
235 	efx_memcpy_toio_aligned(efx, piobuf, data, len, copy_buf);
236 }
237 
238 static void efx_flush_copy_buffer(struct efx_nic *efx, u8 __iomem *piobuf,
239 				  struct efx_short_copy_buffer *copy_buf)
240 {
241 	/* if there's anything in it, write the whole buffer, including junk */
242 	if (copy_buf->used)
243 		__iowrite64_copy(piobuf, copy_buf->buf,
244 				 sizeof(copy_buf->buf) >> 3);
245 }
246 
247 /* Traverse skb structure and copy fragments in to PIO buffer.
248  * Advances piobuf pointer.
249  */
250 static void efx_skb_copy_bits_to_pio(struct efx_nic *efx, struct sk_buff *skb,
251 				     u8 __iomem **piobuf,
252 				     struct efx_short_copy_buffer *copy_buf)
253 {
254 	int i;
255 
256 	efx_memcpy_toio_aligned(efx, piobuf, skb->data, skb_headlen(skb),
257 				copy_buf);
258 
259 	for (i = 0; i < skb_shinfo(skb)->nr_frags; ++i) {
260 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
261 		u8 *vaddr;
262 
263 		vaddr = kmap_atomic(skb_frag_page(f));
264 
265 		efx_memcpy_toio_aligned_cb(efx, piobuf, vaddr + f->page_offset,
266 					   skb_frag_size(f), copy_buf);
267 		kunmap_atomic(vaddr);
268 	}
269 
270 	EFX_WARN_ON_ONCE_PARANOID(skb_shinfo(skb)->frag_list);
271 }
272 
273 static int efx_enqueue_skb_pio(struct efx_tx_queue *tx_queue,
274 			       struct sk_buff *skb)
275 {
276 	struct efx_tx_buffer *buffer =
277 		efx_tx_queue_get_insert_buffer(tx_queue);
278 	u8 __iomem *piobuf = tx_queue->piobuf;
279 
280 	/* Copy to PIO buffer. Ensure the writes are padded to the end
281 	 * of a cache line, as this is required for write-combining to be
282 	 * effective on at least x86.
283 	 */
284 
285 	if (skb_shinfo(skb)->nr_frags) {
286 		/* The size of the copy buffer will ensure all writes
287 		 * are the size of a cache line.
288 		 */
289 		struct efx_short_copy_buffer copy_buf;
290 
291 		copy_buf.used = 0;
292 
293 		efx_skb_copy_bits_to_pio(tx_queue->efx, skb,
294 					 &piobuf, &copy_buf);
295 		efx_flush_copy_buffer(tx_queue->efx, piobuf, &copy_buf);
296 	} else {
297 		/* Pad the write to the size of a cache line.
298 		 * We can do this because we know the skb_shared_info struct is
299 		 * after the source, and the destination buffer is big enough.
300 		 */
301 		BUILD_BUG_ON(L1_CACHE_BYTES >
302 			     SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
303 		__iowrite64_copy(tx_queue->piobuf, skb->data,
304 				 ALIGN(skb->len, L1_CACHE_BYTES) >> 3);
305 	}
306 
307 	buffer->skb = skb;
308 	buffer->flags = EFX_TX_BUF_SKB | EFX_TX_BUF_OPTION;
309 
310 	EFX_POPULATE_QWORD_5(buffer->option,
311 			     ESF_DZ_TX_DESC_IS_OPT, 1,
312 			     ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_PIO,
313 			     ESF_DZ_TX_PIO_CONT, 0,
314 			     ESF_DZ_TX_PIO_BYTE_CNT, skb->len,
315 			     ESF_DZ_TX_PIO_BUF_ADDR,
316 			     tx_queue->piobuf_offset);
317 	++tx_queue->insert_count;
318 	return 0;
319 }
320 #endif /* EFX_USE_PIO */
321 
322 static struct efx_tx_buffer *efx_tx_map_chunk(struct efx_tx_queue *tx_queue,
323 					      dma_addr_t dma_addr,
324 					      size_t len)
325 {
326 	const struct efx_nic_type *nic_type = tx_queue->efx->type;
327 	struct efx_tx_buffer *buffer;
328 	unsigned int dma_len;
329 
330 	/* Map the fragment taking account of NIC-dependent DMA limits. */
331 	do {
332 		buffer = efx_tx_queue_get_insert_buffer(tx_queue);
333 		dma_len = nic_type->tx_limit_len(tx_queue, dma_addr, len);
334 
335 		buffer->len = dma_len;
336 		buffer->dma_addr = dma_addr;
337 		buffer->flags = EFX_TX_BUF_CONT;
338 		len -= dma_len;
339 		dma_addr += dma_len;
340 		++tx_queue->insert_count;
341 	} while (len);
342 
343 	return buffer;
344 }
345 
346 /* Map all data from an SKB for DMA and create descriptors on the queue.
347  */
348 static int efx_tx_map_data(struct efx_tx_queue *tx_queue, struct sk_buff *skb,
349 			   unsigned int segment_count)
350 {
351 	struct efx_nic *efx = tx_queue->efx;
352 	struct device *dma_dev = &efx->pci_dev->dev;
353 	unsigned int frag_index, nr_frags;
354 	dma_addr_t dma_addr, unmap_addr;
355 	unsigned short dma_flags;
356 	size_t len, unmap_len;
357 
358 	nr_frags = skb_shinfo(skb)->nr_frags;
359 	frag_index = 0;
360 
361 	/* Map header data. */
362 	len = skb_headlen(skb);
363 	dma_addr = dma_map_single(dma_dev, skb->data, len, DMA_TO_DEVICE);
364 	dma_flags = EFX_TX_BUF_MAP_SINGLE;
365 	unmap_len = len;
366 	unmap_addr = dma_addr;
367 
368 	if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
369 		return -EIO;
370 
371 	if (segment_count) {
372 		/* For TSO we need to put the header in to a separate
373 		 * descriptor. Map this separately if necessary.
374 		 */
375 		size_t header_len = skb_transport_header(skb) - skb->data +
376 				(tcp_hdr(skb)->doff << 2u);
377 
378 		if (header_len != len) {
379 			tx_queue->tso_long_headers++;
380 			efx_tx_map_chunk(tx_queue, dma_addr, header_len);
381 			len -= header_len;
382 			dma_addr += header_len;
383 		}
384 	}
385 
386 	/* Add descriptors for each fragment. */
387 	do {
388 		struct efx_tx_buffer *buffer;
389 		skb_frag_t *fragment;
390 
391 		buffer = efx_tx_map_chunk(tx_queue, dma_addr, len);
392 
393 		/* The final descriptor for a fragment is responsible for
394 		 * unmapping the whole fragment.
395 		 */
396 		buffer->flags = EFX_TX_BUF_CONT | dma_flags;
397 		buffer->unmap_len = unmap_len;
398 		buffer->dma_offset = buffer->dma_addr - unmap_addr;
399 
400 		if (frag_index >= nr_frags) {
401 			/* Store SKB details with the final buffer for
402 			 * the completion.
403 			 */
404 			buffer->skb = skb;
405 			buffer->flags = EFX_TX_BUF_SKB | dma_flags;
406 			return 0;
407 		}
408 
409 		/* Move on to the next fragment. */
410 		fragment = &skb_shinfo(skb)->frags[frag_index++];
411 		len = skb_frag_size(fragment);
412 		dma_addr = skb_frag_dma_map(dma_dev, fragment,
413 				0, len, DMA_TO_DEVICE);
414 		dma_flags = 0;
415 		unmap_len = len;
416 		unmap_addr = dma_addr;
417 
418 		if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
419 			return -EIO;
420 	} while (1);
421 }
422 
423 /* Remove buffers put into a tx_queue.  None of the buffers must have
424  * an skb attached.
425  */
426 static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue)
427 {
428 	struct efx_tx_buffer *buffer;
429 
430 	/* Work backwards until we hit the original insert pointer value */
431 	while (tx_queue->insert_count != tx_queue->write_count) {
432 		--tx_queue->insert_count;
433 		buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
434 		efx_dequeue_buffer(tx_queue, buffer, NULL, NULL);
435 	}
436 }
437 
438 /*
439  * Fallback to software TSO.
440  *
441  * This is used if we are unable to send a GSO packet through hardware TSO.
442  * This should only ever happen due to per-queue restrictions - unsupported
443  * packets should first be filtered by the feature flags.
444  *
445  * Returns 0 on success, error code otherwise.
446  */
447 static int efx_tx_tso_fallback(struct efx_tx_queue *tx_queue,
448 			       struct sk_buff *skb)
449 {
450 	struct sk_buff *segments, *next;
451 
452 	segments = skb_gso_segment(skb, 0);
453 	if (IS_ERR(segments))
454 		return PTR_ERR(segments);
455 
456 	dev_kfree_skb_any(skb);
457 	skb = segments;
458 
459 	while (skb) {
460 		next = skb->next;
461 		skb->next = NULL;
462 
463 		if (next)
464 			skb->xmit_more = true;
465 		efx_enqueue_skb(tx_queue, skb);
466 		skb = next;
467 	}
468 
469 	return 0;
470 }
471 
472 /*
473  * Add a socket buffer to a TX queue
474  *
475  * This maps all fragments of a socket buffer for DMA and adds them to
476  * the TX queue.  The queue's insert pointer will be incremented by
477  * the number of fragments in the socket buffer.
478  *
479  * If any DMA mapping fails, any mapped fragments will be unmapped,
480  * the queue's insert pointer will be restored to its original value.
481  *
482  * This function is split out from efx_hard_start_xmit to allow the
483  * loopback test to direct packets via specific TX queues.
484  *
485  * Returns NETDEV_TX_OK.
486  * You must hold netif_tx_lock() to call this function.
487  */
488 netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
489 {
490 	bool data_mapped = false;
491 	unsigned int segments;
492 	unsigned int skb_len;
493 	int rc;
494 
495 	skb_len = skb->len;
496 	segments = skb_is_gso(skb) ? skb_shinfo(skb)->gso_segs : 0;
497 	if (segments == 1)
498 		segments = 0; /* Don't use TSO for a single segment. */
499 
500 	/* Handle TSO first - it's *possible* (although unlikely) that we might
501 	 * be passed a packet to segment that's smaller than the copybreak/PIO
502 	 * size limit.
503 	 */
504 	if (segments) {
505 		EFX_WARN_ON_ONCE_PARANOID(!tx_queue->handle_tso);
506 		rc = tx_queue->handle_tso(tx_queue, skb, &data_mapped);
507 		if (rc == -EINVAL) {
508 			rc = efx_tx_tso_fallback(tx_queue, skb);
509 			tx_queue->tso_fallbacks++;
510 			if (rc == 0)
511 				return 0;
512 		}
513 		if (rc)
514 			goto err;
515 #ifdef EFX_USE_PIO
516 	} else if (skb_len <= efx_piobuf_size && !skb->xmit_more &&
517 		   efx_nic_may_tx_pio(tx_queue)) {
518 		/* Use PIO for short packets with an empty queue. */
519 		if (efx_enqueue_skb_pio(tx_queue, skb))
520 			goto err;
521 		tx_queue->pio_packets++;
522 		data_mapped = true;
523 #endif
524 	} else if (skb->data_len && skb_len <= EFX_TX_CB_SIZE) {
525 		/* Pad short packets or coalesce short fragmented packets. */
526 		if (efx_enqueue_skb_copy(tx_queue, skb))
527 			goto err;
528 		tx_queue->cb_packets++;
529 		data_mapped = true;
530 	}
531 
532 	/* Map for DMA and create descriptors if we haven't done so already. */
533 	if (!data_mapped && (efx_tx_map_data(tx_queue, skb, segments)))
534 		goto err;
535 
536 	/* Update BQL */
537 	netdev_tx_sent_queue(tx_queue->core_txq, skb_len);
538 
539 	/* Pass off to hardware */
540 	if (!skb->xmit_more || netif_xmit_stopped(tx_queue->core_txq)) {
541 		struct efx_tx_queue *txq2 = efx_tx_queue_partner(tx_queue);
542 
543 		/* There could be packets left on the partner queue if those
544 		 * SKBs had skb->xmit_more set. If we do not push those they
545 		 * could be left for a long time and cause a netdev watchdog.
546 		 */
547 		if (txq2->xmit_more_available)
548 			efx_nic_push_buffers(txq2);
549 
550 		efx_nic_push_buffers(tx_queue);
551 	} else {
552 		tx_queue->xmit_more_available = skb->xmit_more;
553 	}
554 
555 	if (segments) {
556 		tx_queue->tso_bursts++;
557 		tx_queue->tso_packets += segments;
558 		tx_queue->tx_packets  += segments;
559 	} else {
560 		tx_queue->tx_packets++;
561 	}
562 
563 	efx_tx_maybe_stop_queue(tx_queue);
564 
565 	return NETDEV_TX_OK;
566 
567 
568 err:
569 	efx_enqueue_unwind(tx_queue);
570 	dev_kfree_skb_any(skb);
571 	return NETDEV_TX_OK;
572 }
573 
574 /* Remove packets from the TX queue
575  *
576  * This removes packets from the TX queue, up to and including the
577  * specified index.
578  */
579 static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
580 				unsigned int index,
581 				unsigned int *pkts_compl,
582 				unsigned int *bytes_compl)
583 {
584 	struct efx_nic *efx = tx_queue->efx;
585 	unsigned int stop_index, read_ptr;
586 
587 	stop_index = (index + 1) & tx_queue->ptr_mask;
588 	read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
589 
590 	while (read_ptr != stop_index) {
591 		struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
592 
593 		if (!(buffer->flags & EFX_TX_BUF_OPTION) &&
594 		    unlikely(buffer->len == 0)) {
595 			netif_err(efx, tx_err, efx->net_dev,
596 				  "TX queue %d spurious TX completion id %x\n",
597 				  tx_queue->queue, read_ptr);
598 			efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
599 			return;
600 		}
601 
602 		efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl);
603 
604 		++tx_queue->read_count;
605 		read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
606 	}
607 }
608 
609 /* Initiate a packet transmission.  We use one channel per CPU
610  * (sharing when we have more CPUs than channels).  On Falcon, the TX
611  * completion events will be directed back to the CPU that transmitted
612  * the packet, which should be cache-efficient.
613  *
614  * Context: non-blocking.
615  * Note that returning anything other than NETDEV_TX_OK will cause the
616  * OS to free the skb.
617  */
618 netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
619 				struct net_device *net_dev)
620 {
621 	struct efx_nic *efx = netdev_priv(net_dev);
622 	struct efx_tx_queue *tx_queue;
623 	unsigned index, type;
624 
625 	EFX_WARN_ON_PARANOID(!netif_device_present(net_dev));
626 
627 	/* PTP "event" packet */
628 	if (unlikely(efx_xmit_with_hwtstamp(skb)) &&
629 	    unlikely(efx_ptp_is_ptp_tx(efx, skb))) {
630 		return efx_ptp_tx(efx, skb);
631 	}
632 
633 	index = skb_get_queue_mapping(skb);
634 	type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0;
635 	if (index >= efx->n_tx_channels) {
636 		index -= efx->n_tx_channels;
637 		type |= EFX_TXQ_TYPE_HIGHPRI;
638 	}
639 	tx_queue = efx_get_tx_queue(efx, index, type);
640 
641 	return efx_enqueue_skb(tx_queue, skb);
642 }
643 
644 void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue)
645 {
646 	struct efx_nic *efx = tx_queue->efx;
647 
648 	/* Must be inverse of queue lookup in efx_hard_start_xmit() */
649 	tx_queue->core_txq =
650 		netdev_get_tx_queue(efx->net_dev,
651 				    tx_queue->queue / EFX_TXQ_TYPES +
652 				    ((tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
653 				     efx->n_tx_channels : 0));
654 }
655 
656 int efx_setup_tc(struct net_device *net_dev, u32 handle, __be16 proto,
657 		 struct tc_to_netdev *ntc)
658 {
659 	struct efx_nic *efx = netdev_priv(net_dev);
660 	struct efx_channel *channel;
661 	struct efx_tx_queue *tx_queue;
662 	unsigned tc, num_tc;
663 	int rc;
664 
665 	if (ntc->type != TC_SETUP_MQPRIO)
666 		return -EINVAL;
667 
668 	num_tc = ntc->tc;
669 
670 	if (num_tc > EFX_MAX_TX_TC)
671 		return -EINVAL;
672 
673 	if (num_tc == net_dev->num_tc)
674 		return 0;
675 
676 	for (tc = 0; tc < num_tc; tc++) {
677 		net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
678 		net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
679 	}
680 
681 	if (num_tc > net_dev->num_tc) {
682 		/* Initialise high-priority queues as necessary */
683 		efx_for_each_channel(channel, efx) {
684 			efx_for_each_possible_channel_tx_queue(tx_queue,
685 							       channel) {
686 				if (!(tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI))
687 					continue;
688 				if (!tx_queue->buffer) {
689 					rc = efx_probe_tx_queue(tx_queue);
690 					if (rc)
691 						return rc;
692 				}
693 				if (!tx_queue->initialised)
694 					efx_init_tx_queue(tx_queue);
695 				efx_init_tx_queue_core_txq(tx_queue);
696 			}
697 		}
698 	} else {
699 		/* Reduce number of classes before number of queues */
700 		net_dev->num_tc = num_tc;
701 	}
702 
703 	rc = netif_set_real_num_tx_queues(net_dev,
704 					  max_t(int, num_tc, 1) *
705 					  efx->n_tx_channels);
706 	if (rc)
707 		return rc;
708 
709 	/* Do not destroy high-priority queues when they become
710 	 * unused.  We would have to flush them first, and it is
711 	 * fairly difficult to flush a subset of TX queues.  Leave
712 	 * it to efx_fini_channels().
713 	 */
714 
715 	net_dev->num_tc = num_tc;
716 	return 0;
717 }
718 
719 void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
720 {
721 	unsigned fill_level;
722 	struct efx_nic *efx = tx_queue->efx;
723 	struct efx_tx_queue *txq2;
724 	unsigned int pkts_compl = 0, bytes_compl = 0;
725 
726 	EFX_WARN_ON_ONCE_PARANOID(index > tx_queue->ptr_mask);
727 
728 	efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl);
729 	tx_queue->pkts_compl += pkts_compl;
730 	tx_queue->bytes_compl += bytes_compl;
731 
732 	if (pkts_compl > 1)
733 		++tx_queue->merge_events;
734 
735 	/* See if we need to restart the netif queue.  This memory
736 	 * barrier ensures that we write read_count (inside
737 	 * efx_dequeue_buffers()) before reading the queue status.
738 	 */
739 	smp_mb();
740 	if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
741 	    likely(efx->port_enabled) &&
742 	    likely(netif_device_present(efx->net_dev))) {
743 		txq2 = efx_tx_queue_partner(tx_queue);
744 		fill_level = max(tx_queue->insert_count - tx_queue->read_count,
745 				 txq2->insert_count - txq2->read_count);
746 		if (fill_level <= efx->txq_wake_thresh)
747 			netif_tx_wake_queue(tx_queue->core_txq);
748 	}
749 
750 	/* Check whether the hardware queue is now empty */
751 	if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
752 		tx_queue->old_write_count = ACCESS_ONCE(tx_queue->write_count);
753 		if (tx_queue->read_count == tx_queue->old_write_count) {
754 			smp_mb();
755 			tx_queue->empty_read_count =
756 				tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
757 		}
758 	}
759 }
760 
761 static unsigned int efx_tx_cb_page_count(struct efx_tx_queue *tx_queue)
762 {
763 	return DIV_ROUND_UP(tx_queue->ptr_mask + 1, PAGE_SIZE >> EFX_TX_CB_ORDER);
764 }
765 
766 int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
767 {
768 	struct efx_nic *efx = tx_queue->efx;
769 	unsigned int entries;
770 	int rc;
771 
772 	/* Create the smallest power-of-two aligned ring */
773 	entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
774 	EFX_WARN_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
775 	tx_queue->ptr_mask = entries - 1;
776 
777 	netif_dbg(efx, probe, efx->net_dev,
778 		  "creating TX queue %d size %#x mask %#x\n",
779 		  tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
780 
781 	/* Allocate software ring */
782 	tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
783 				   GFP_KERNEL);
784 	if (!tx_queue->buffer)
785 		return -ENOMEM;
786 
787 	tx_queue->cb_page = kcalloc(efx_tx_cb_page_count(tx_queue),
788 				    sizeof(tx_queue->cb_page[0]), GFP_KERNEL);
789 	if (!tx_queue->cb_page) {
790 		rc = -ENOMEM;
791 		goto fail1;
792 	}
793 
794 	/* Allocate hardware ring */
795 	rc = efx_nic_probe_tx(tx_queue);
796 	if (rc)
797 		goto fail2;
798 
799 	return 0;
800 
801 fail2:
802 	kfree(tx_queue->cb_page);
803 	tx_queue->cb_page = NULL;
804 fail1:
805 	kfree(tx_queue->buffer);
806 	tx_queue->buffer = NULL;
807 	return rc;
808 }
809 
810 void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
811 {
812 	struct efx_nic *efx = tx_queue->efx;
813 
814 	netif_dbg(efx, drv, efx->net_dev,
815 		  "initialising TX queue %d\n", tx_queue->queue);
816 
817 	tx_queue->insert_count = 0;
818 	tx_queue->write_count = 0;
819 	tx_queue->packet_write_count = 0;
820 	tx_queue->old_write_count = 0;
821 	tx_queue->read_count = 0;
822 	tx_queue->old_read_count = 0;
823 	tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
824 	tx_queue->xmit_more_available = false;
825 
826 	/* Set up default function pointers. These may get replaced by
827 	 * efx_nic_init_tx() based off NIC/queue capabilities.
828 	 */
829 	tx_queue->handle_tso = efx_enqueue_skb_tso;
830 
831 	/* Set up TX descriptor ring */
832 	efx_nic_init_tx(tx_queue);
833 
834 	tx_queue->initialised = true;
835 }
836 
837 void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
838 {
839 	struct efx_tx_buffer *buffer;
840 
841 	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
842 		  "shutting down TX queue %d\n", tx_queue->queue);
843 
844 	if (!tx_queue->buffer)
845 		return;
846 
847 	/* Free any buffers left in the ring */
848 	while (tx_queue->read_count != tx_queue->write_count) {
849 		unsigned int pkts_compl = 0, bytes_compl = 0;
850 		buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
851 		efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
852 
853 		++tx_queue->read_count;
854 	}
855 	tx_queue->xmit_more_available = false;
856 	netdev_tx_reset_queue(tx_queue->core_txq);
857 }
858 
859 void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
860 {
861 	int i;
862 
863 	if (!tx_queue->buffer)
864 		return;
865 
866 	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
867 		  "destroying TX queue %d\n", tx_queue->queue);
868 	efx_nic_remove_tx(tx_queue);
869 
870 	if (tx_queue->cb_page) {
871 		for (i = 0; i < efx_tx_cb_page_count(tx_queue); i++)
872 			efx_nic_free_buffer(tx_queue->efx,
873 					    &tx_queue->cb_page[i]);
874 		kfree(tx_queue->cb_page);
875 		tx_queue->cb_page = NULL;
876 	}
877 
878 	kfree(tx_queue->buffer);
879 	tx_queue->buffer = NULL;
880 }
881