1 /**************************************************************************** 2 * Driver for Solarflare Solarstorm network controllers and boards 3 * Copyright 2005-2006 Fen Systems Ltd. 4 * Copyright 2005-2010 Solarflare Communications Inc. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published 8 * by the Free Software Foundation, incorporated herein by reference. 9 */ 10 11 #include <linux/pci.h> 12 #include <linux/tcp.h> 13 #include <linux/ip.h> 14 #include <linux/in.h> 15 #include <linux/ipv6.h> 16 #include <linux/slab.h> 17 #include <net/ipv6.h> 18 #include <linux/if_ether.h> 19 #include <linux/highmem.h> 20 #include "net_driver.h" 21 #include "efx.h" 22 #include "nic.h" 23 #include "workarounds.h" 24 25 /* 26 * TX descriptor ring full threshold 27 * 28 * The tx_queue descriptor ring fill-level must fall below this value 29 * before we restart the netif queue 30 */ 31 #define EFX_TXQ_THRESHOLD(_efx) ((_efx)->txq_entries / 2u) 32 33 static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue, 34 struct efx_tx_buffer *buffer, 35 unsigned int *pkts_compl, 36 unsigned int *bytes_compl) 37 { 38 if (buffer->unmap_len) { 39 struct device *dma_dev = &tx_queue->efx->pci_dev->dev; 40 dma_addr_t unmap_addr = (buffer->dma_addr + buffer->len - 41 buffer->unmap_len); 42 if (buffer->unmap_single) 43 dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len, 44 DMA_TO_DEVICE); 45 else 46 dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len, 47 DMA_TO_DEVICE); 48 buffer->unmap_len = 0; 49 buffer->unmap_single = false; 50 } 51 52 if (buffer->skb) { 53 (*pkts_compl)++; 54 (*bytes_compl) += buffer->skb->len; 55 dev_kfree_skb_any((struct sk_buff *) buffer->skb); 56 buffer->skb = NULL; 57 netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev, 58 "TX queue %d transmission id %x complete\n", 59 tx_queue->queue, tx_queue->read_count); 60 } 61 } 62 63 /** 64 * struct efx_tso_header - a DMA mapped buffer for packet headers 65 * @next: Linked list of free ones. 66 * The list is protected by the TX queue lock. 67 * @dma_unmap_len: Length to unmap for an oversize buffer, or 0. 68 * @dma_addr: The DMA address of the header below. 69 * 70 * This controls the memory used for a TSO header. Use TSOH_DATA() 71 * to find the packet header data. Use TSOH_SIZE() to calculate the 72 * total size required for a given packet header length. TSO headers 73 * in the free list are exactly %TSOH_STD_SIZE bytes in size. 74 */ 75 struct efx_tso_header { 76 union { 77 struct efx_tso_header *next; 78 size_t unmap_len; 79 }; 80 dma_addr_t dma_addr; 81 }; 82 83 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue, 84 struct sk_buff *skb); 85 static void efx_fini_tso(struct efx_tx_queue *tx_queue); 86 static void efx_tsoh_heap_free(struct efx_tx_queue *tx_queue, 87 struct efx_tso_header *tsoh); 88 89 static void efx_tsoh_free(struct efx_tx_queue *tx_queue, 90 struct efx_tx_buffer *buffer) 91 { 92 if (buffer->tsoh) { 93 if (likely(!buffer->tsoh->unmap_len)) { 94 buffer->tsoh->next = tx_queue->tso_headers_free; 95 tx_queue->tso_headers_free = buffer->tsoh; 96 } else { 97 efx_tsoh_heap_free(tx_queue, buffer->tsoh); 98 } 99 buffer->tsoh = NULL; 100 } 101 } 102 103 104 static inline unsigned 105 efx_max_tx_len(struct efx_nic *efx, dma_addr_t dma_addr) 106 { 107 /* Depending on the NIC revision, we can use descriptor 108 * lengths up to 8K or 8K-1. However, since PCI Express 109 * devices must split read requests at 4K boundaries, there is 110 * little benefit from using descriptors that cross those 111 * boundaries and we keep things simple by not doing so. 112 */ 113 unsigned len = (~dma_addr & (EFX_PAGE_SIZE - 1)) + 1; 114 115 /* Work around hardware bug for unaligned buffers. */ 116 if (EFX_WORKAROUND_5391(efx) && (dma_addr & 0xf)) 117 len = min_t(unsigned, len, 512 - (dma_addr & 0xf)); 118 119 return len; 120 } 121 122 /* 123 * Add a socket buffer to a TX queue 124 * 125 * This maps all fragments of a socket buffer for DMA and adds them to 126 * the TX queue. The queue's insert pointer will be incremented by 127 * the number of fragments in the socket buffer. 128 * 129 * If any DMA mapping fails, any mapped fragments will be unmapped, 130 * the queue's insert pointer will be restored to its original value. 131 * 132 * This function is split out from efx_hard_start_xmit to allow the 133 * loopback test to direct packets via specific TX queues. 134 * 135 * Returns NETDEV_TX_OK or NETDEV_TX_BUSY 136 * You must hold netif_tx_lock() to call this function. 137 */ 138 netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb) 139 { 140 struct efx_nic *efx = tx_queue->efx; 141 struct device *dma_dev = &efx->pci_dev->dev; 142 struct efx_tx_buffer *buffer; 143 skb_frag_t *fragment; 144 unsigned int len, unmap_len = 0, fill_level, insert_ptr; 145 dma_addr_t dma_addr, unmap_addr = 0; 146 unsigned int dma_len; 147 bool unmap_single; 148 int q_space, i = 0; 149 netdev_tx_t rc = NETDEV_TX_OK; 150 151 EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count); 152 153 if (skb_shinfo(skb)->gso_size) 154 return efx_enqueue_skb_tso(tx_queue, skb); 155 156 /* Get size of the initial fragment */ 157 len = skb_headlen(skb); 158 159 /* Pad if necessary */ 160 if (EFX_WORKAROUND_15592(efx) && skb->len <= 32) { 161 EFX_BUG_ON_PARANOID(skb->data_len); 162 len = 32 + 1; 163 if (skb_pad(skb, len - skb->len)) 164 return NETDEV_TX_OK; 165 } 166 167 fill_level = tx_queue->insert_count - tx_queue->old_read_count; 168 q_space = efx->txq_entries - 1 - fill_level; 169 170 /* Map for DMA. Use dma_map_single rather than dma_map_page 171 * since this is more efficient on machines with sparse 172 * memory. 173 */ 174 unmap_single = true; 175 dma_addr = dma_map_single(dma_dev, skb->data, len, PCI_DMA_TODEVICE); 176 177 /* Process all fragments */ 178 while (1) { 179 if (unlikely(dma_mapping_error(dma_dev, dma_addr))) 180 goto dma_err; 181 182 /* Store fields for marking in the per-fragment final 183 * descriptor */ 184 unmap_len = len; 185 unmap_addr = dma_addr; 186 187 /* Add to TX queue, splitting across DMA boundaries */ 188 do { 189 if (unlikely(q_space-- <= 0)) { 190 /* It might be that completions have 191 * happened since the xmit path last 192 * checked. Update the xmit path's 193 * copy of read_count. 194 */ 195 netif_tx_stop_queue(tx_queue->core_txq); 196 /* This memory barrier protects the 197 * change of queue state from the access 198 * of read_count. */ 199 smp_mb(); 200 tx_queue->old_read_count = 201 ACCESS_ONCE(tx_queue->read_count); 202 fill_level = (tx_queue->insert_count 203 - tx_queue->old_read_count); 204 q_space = efx->txq_entries - 1 - fill_level; 205 if (unlikely(q_space-- <= 0)) { 206 rc = NETDEV_TX_BUSY; 207 goto unwind; 208 } 209 smp_mb(); 210 if (likely(!efx->loopback_selftest)) 211 netif_tx_start_queue( 212 tx_queue->core_txq); 213 } 214 215 insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask; 216 buffer = &tx_queue->buffer[insert_ptr]; 217 efx_tsoh_free(tx_queue, buffer); 218 EFX_BUG_ON_PARANOID(buffer->tsoh); 219 EFX_BUG_ON_PARANOID(buffer->skb); 220 EFX_BUG_ON_PARANOID(buffer->len); 221 EFX_BUG_ON_PARANOID(!buffer->continuation); 222 EFX_BUG_ON_PARANOID(buffer->unmap_len); 223 224 dma_len = efx_max_tx_len(efx, dma_addr); 225 if (likely(dma_len >= len)) 226 dma_len = len; 227 228 /* Fill out per descriptor fields */ 229 buffer->len = dma_len; 230 buffer->dma_addr = dma_addr; 231 len -= dma_len; 232 dma_addr += dma_len; 233 ++tx_queue->insert_count; 234 } while (len); 235 236 /* Transfer ownership of the unmapping to the final buffer */ 237 buffer->unmap_single = unmap_single; 238 buffer->unmap_len = unmap_len; 239 unmap_len = 0; 240 241 /* Get address and size of next fragment */ 242 if (i >= skb_shinfo(skb)->nr_frags) 243 break; 244 fragment = &skb_shinfo(skb)->frags[i]; 245 len = skb_frag_size(fragment); 246 i++; 247 /* Map for DMA */ 248 unmap_single = false; 249 dma_addr = skb_frag_dma_map(dma_dev, fragment, 0, len, 250 DMA_TO_DEVICE); 251 } 252 253 /* Transfer ownership of the skb to the final buffer */ 254 buffer->skb = skb; 255 buffer->continuation = false; 256 257 netdev_tx_sent_queue(tx_queue->core_txq, skb->len); 258 259 /* Pass off to hardware */ 260 efx_nic_push_buffers(tx_queue); 261 262 return NETDEV_TX_OK; 263 264 dma_err: 265 netif_err(efx, tx_err, efx->net_dev, 266 " TX queue %d could not map skb with %d bytes %d " 267 "fragments for DMA\n", tx_queue->queue, skb->len, 268 skb_shinfo(skb)->nr_frags + 1); 269 270 /* Mark the packet as transmitted, and free the SKB ourselves */ 271 dev_kfree_skb_any(skb); 272 273 unwind: 274 /* Work backwards until we hit the original insert pointer value */ 275 while (tx_queue->insert_count != tx_queue->write_count) { 276 unsigned int pkts_compl = 0, bytes_compl = 0; 277 --tx_queue->insert_count; 278 insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask; 279 buffer = &tx_queue->buffer[insert_ptr]; 280 efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl); 281 buffer->len = 0; 282 } 283 284 /* Free the fragment we were mid-way through pushing */ 285 if (unmap_len) { 286 if (unmap_single) 287 dma_unmap_single(dma_dev, unmap_addr, unmap_len, 288 DMA_TO_DEVICE); 289 else 290 dma_unmap_page(dma_dev, unmap_addr, unmap_len, 291 DMA_TO_DEVICE); 292 } 293 294 return rc; 295 } 296 297 /* Remove packets from the TX queue 298 * 299 * This removes packets from the TX queue, up to and including the 300 * specified index. 301 */ 302 static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue, 303 unsigned int index, 304 unsigned int *pkts_compl, 305 unsigned int *bytes_compl) 306 { 307 struct efx_nic *efx = tx_queue->efx; 308 unsigned int stop_index, read_ptr; 309 310 stop_index = (index + 1) & tx_queue->ptr_mask; 311 read_ptr = tx_queue->read_count & tx_queue->ptr_mask; 312 313 while (read_ptr != stop_index) { 314 struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr]; 315 if (unlikely(buffer->len == 0)) { 316 netif_err(efx, tx_err, efx->net_dev, 317 "TX queue %d spurious TX completion id %x\n", 318 tx_queue->queue, read_ptr); 319 efx_schedule_reset(efx, RESET_TYPE_TX_SKIP); 320 return; 321 } 322 323 efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl); 324 buffer->continuation = true; 325 buffer->len = 0; 326 327 ++tx_queue->read_count; 328 read_ptr = tx_queue->read_count & tx_queue->ptr_mask; 329 } 330 } 331 332 /* Initiate a packet transmission. We use one channel per CPU 333 * (sharing when we have more CPUs than channels). On Falcon, the TX 334 * completion events will be directed back to the CPU that transmitted 335 * the packet, which should be cache-efficient. 336 * 337 * Context: non-blocking. 338 * Note that returning anything other than NETDEV_TX_OK will cause the 339 * OS to free the skb. 340 */ 341 netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb, 342 struct net_device *net_dev) 343 { 344 struct efx_nic *efx = netdev_priv(net_dev); 345 struct efx_tx_queue *tx_queue; 346 unsigned index, type; 347 348 EFX_WARN_ON_PARANOID(!netif_device_present(net_dev)); 349 350 index = skb_get_queue_mapping(skb); 351 type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0; 352 if (index >= efx->n_tx_channels) { 353 index -= efx->n_tx_channels; 354 type |= EFX_TXQ_TYPE_HIGHPRI; 355 } 356 tx_queue = efx_get_tx_queue(efx, index, type); 357 358 return efx_enqueue_skb(tx_queue, skb); 359 } 360 361 void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue) 362 { 363 struct efx_nic *efx = tx_queue->efx; 364 365 /* Must be inverse of queue lookup in efx_hard_start_xmit() */ 366 tx_queue->core_txq = 367 netdev_get_tx_queue(efx->net_dev, 368 tx_queue->queue / EFX_TXQ_TYPES + 369 ((tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ? 370 efx->n_tx_channels : 0)); 371 } 372 373 int efx_setup_tc(struct net_device *net_dev, u8 num_tc) 374 { 375 struct efx_nic *efx = netdev_priv(net_dev); 376 struct efx_channel *channel; 377 struct efx_tx_queue *tx_queue; 378 unsigned tc; 379 int rc; 380 381 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0 || num_tc > EFX_MAX_TX_TC) 382 return -EINVAL; 383 384 if (num_tc == net_dev->num_tc) 385 return 0; 386 387 for (tc = 0; tc < num_tc; tc++) { 388 net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels; 389 net_dev->tc_to_txq[tc].count = efx->n_tx_channels; 390 } 391 392 if (num_tc > net_dev->num_tc) { 393 /* Initialise high-priority queues as necessary */ 394 efx_for_each_channel(channel, efx) { 395 efx_for_each_possible_channel_tx_queue(tx_queue, 396 channel) { 397 if (!(tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI)) 398 continue; 399 if (!tx_queue->buffer) { 400 rc = efx_probe_tx_queue(tx_queue); 401 if (rc) 402 return rc; 403 } 404 if (!tx_queue->initialised) 405 efx_init_tx_queue(tx_queue); 406 efx_init_tx_queue_core_txq(tx_queue); 407 } 408 } 409 } else { 410 /* Reduce number of classes before number of queues */ 411 net_dev->num_tc = num_tc; 412 } 413 414 rc = netif_set_real_num_tx_queues(net_dev, 415 max_t(int, num_tc, 1) * 416 efx->n_tx_channels); 417 if (rc) 418 return rc; 419 420 /* Do not destroy high-priority queues when they become 421 * unused. We would have to flush them first, and it is 422 * fairly difficult to flush a subset of TX queues. Leave 423 * it to efx_fini_channels(). 424 */ 425 426 net_dev->num_tc = num_tc; 427 return 0; 428 } 429 430 void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index) 431 { 432 unsigned fill_level; 433 struct efx_nic *efx = tx_queue->efx; 434 unsigned int pkts_compl = 0, bytes_compl = 0; 435 436 EFX_BUG_ON_PARANOID(index > tx_queue->ptr_mask); 437 438 efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl); 439 netdev_tx_completed_queue(tx_queue->core_txq, pkts_compl, bytes_compl); 440 441 /* See if we need to restart the netif queue. This barrier 442 * separates the update of read_count from the test of the 443 * queue state. */ 444 smp_mb(); 445 if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) && 446 likely(efx->port_enabled) && 447 likely(netif_device_present(efx->net_dev))) { 448 fill_level = tx_queue->insert_count - tx_queue->read_count; 449 if (fill_level < EFX_TXQ_THRESHOLD(efx)) 450 netif_tx_wake_queue(tx_queue->core_txq); 451 } 452 453 /* Check whether the hardware queue is now empty */ 454 if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) { 455 tx_queue->old_write_count = ACCESS_ONCE(tx_queue->write_count); 456 if (tx_queue->read_count == tx_queue->old_write_count) { 457 smp_mb(); 458 tx_queue->empty_read_count = 459 tx_queue->read_count | EFX_EMPTY_COUNT_VALID; 460 } 461 } 462 } 463 464 int efx_probe_tx_queue(struct efx_tx_queue *tx_queue) 465 { 466 struct efx_nic *efx = tx_queue->efx; 467 unsigned int entries; 468 int i, rc; 469 470 /* Create the smallest power-of-two aligned ring */ 471 entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE); 472 EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE); 473 tx_queue->ptr_mask = entries - 1; 474 475 netif_dbg(efx, probe, efx->net_dev, 476 "creating TX queue %d size %#x mask %#x\n", 477 tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask); 478 479 /* Allocate software ring */ 480 tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer), 481 GFP_KERNEL); 482 if (!tx_queue->buffer) 483 return -ENOMEM; 484 for (i = 0; i <= tx_queue->ptr_mask; ++i) 485 tx_queue->buffer[i].continuation = true; 486 487 /* Allocate hardware ring */ 488 rc = efx_nic_probe_tx(tx_queue); 489 if (rc) 490 goto fail; 491 492 return 0; 493 494 fail: 495 kfree(tx_queue->buffer); 496 tx_queue->buffer = NULL; 497 return rc; 498 } 499 500 void efx_init_tx_queue(struct efx_tx_queue *tx_queue) 501 { 502 netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev, 503 "initialising TX queue %d\n", tx_queue->queue); 504 505 tx_queue->insert_count = 0; 506 tx_queue->write_count = 0; 507 tx_queue->old_write_count = 0; 508 tx_queue->read_count = 0; 509 tx_queue->old_read_count = 0; 510 tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID; 511 512 /* Set up TX descriptor ring */ 513 efx_nic_init_tx(tx_queue); 514 515 tx_queue->initialised = true; 516 } 517 518 void efx_release_tx_buffers(struct efx_tx_queue *tx_queue) 519 { 520 struct efx_tx_buffer *buffer; 521 522 if (!tx_queue->buffer) 523 return; 524 525 /* Free any buffers left in the ring */ 526 while (tx_queue->read_count != tx_queue->write_count) { 527 unsigned int pkts_compl = 0, bytes_compl = 0; 528 buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask]; 529 efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl); 530 buffer->continuation = true; 531 buffer->len = 0; 532 533 ++tx_queue->read_count; 534 } 535 netdev_tx_reset_queue(tx_queue->core_txq); 536 } 537 538 void efx_fini_tx_queue(struct efx_tx_queue *tx_queue) 539 { 540 if (!tx_queue->initialised) 541 return; 542 543 netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev, 544 "shutting down TX queue %d\n", tx_queue->queue); 545 546 tx_queue->initialised = false; 547 548 /* Flush TX queue, remove descriptor ring */ 549 efx_nic_fini_tx(tx_queue); 550 551 efx_release_tx_buffers(tx_queue); 552 553 /* Free up TSO header cache */ 554 efx_fini_tso(tx_queue); 555 } 556 557 void efx_remove_tx_queue(struct efx_tx_queue *tx_queue) 558 { 559 if (!tx_queue->buffer) 560 return; 561 562 netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev, 563 "destroying TX queue %d\n", tx_queue->queue); 564 efx_nic_remove_tx(tx_queue); 565 566 kfree(tx_queue->buffer); 567 tx_queue->buffer = NULL; 568 } 569 570 571 /* Efx TCP segmentation acceleration. 572 * 573 * Why? Because by doing it here in the driver we can go significantly 574 * faster than the GSO. 575 * 576 * Requires TX checksum offload support. 577 */ 578 579 /* Number of bytes inserted at the start of a TSO header buffer, 580 * similar to NET_IP_ALIGN. 581 */ 582 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 583 #define TSOH_OFFSET 0 584 #else 585 #define TSOH_OFFSET NET_IP_ALIGN 586 #endif 587 588 #define TSOH_BUFFER(tsoh) ((u8 *)(tsoh + 1) + TSOH_OFFSET) 589 590 /* Total size of struct efx_tso_header, buffer and padding */ 591 #define TSOH_SIZE(hdr_len) \ 592 (sizeof(struct efx_tso_header) + TSOH_OFFSET + hdr_len) 593 594 /* Size of blocks on free list. Larger blocks must be allocated from 595 * the heap. 596 */ 597 #define TSOH_STD_SIZE 128 598 599 #define PTR_DIFF(p1, p2) ((u8 *)(p1) - (u8 *)(p2)) 600 #define ETH_HDR_LEN(skb) (skb_network_header(skb) - (skb)->data) 601 #define SKB_TCP_OFF(skb) PTR_DIFF(tcp_hdr(skb), (skb)->data) 602 #define SKB_IPV4_OFF(skb) PTR_DIFF(ip_hdr(skb), (skb)->data) 603 #define SKB_IPV6_OFF(skb) PTR_DIFF(ipv6_hdr(skb), (skb)->data) 604 605 /** 606 * struct tso_state - TSO state for an SKB 607 * @out_len: Remaining length in current segment 608 * @seqnum: Current sequence number 609 * @ipv4_id: Current IPv4 ID, host endian 610 * @packet_space: Remaining space in current packet 611 * @dma_addr: DMA address of current position 612 * @in_len: Remaining length in current SKB fragment 613 * @unmap_len: Length of SKB fragment 614 * @unmap_addr: DMA address of SKB fragment 615 * @unmap_single: DMA single vs page mapping flag 616 * @protocol: Network protocol (after any VLAN header) 617 * @header_len: Number of bytes of header 618 * @full_packet_size: Number of bytes to put in each outgoing segment 619 * 620 * The state used during segmentation. It is put into this data structure 621 * just to make it easy to pass into inline functions. 622 */ 623 struct tso_state { 624 /* Output position */ 625 unsigned out_len; 626 unsigned seqnum; 627 unsigned ipv4_id; 628 unsigned packet_space; 629 630 /* Input position */ 631 dma_addr_t dma_addr; 632 unsigned in_len; 633 unsigned unmap_len; 634 dma_addr_t unmap_addr; 635 bool unmap_single; 636 637 __be16 protocol; 638 unsigned header_len; 639 int full_packet_size; 640 }; 641 642 643 /* 644 * Verify that our various assumptions about sk_buffs and the conditions 645 * under which TSO will be attempted hold true. Return the protocol number. 646 */ 647 static __be16 efx_tso_check_protocol(struct sk_buff *skb) 648 { 649 __be16 protocol = skb->protocol; 650 651 EFX_BUG_ON_PARANOID(((struct ethhdr *)skb->data)->h_proto != 652 protocol); 653 if (protocol == htons(ETH_P_8021Q)) { 654 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 655 protocol = veh->h_vlan_encapsulated_proto; 656 } 657 658 if (protocol == htons(ETH_P_IP)) { 659 EFX_BUG_ON_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP); 660 } else { 661 EFX_BUG_ON_PARANOID(protocol != htons(ETH_P_IPV6)); 662 EFX_BUG_ON_PARANOID(ipv6_hdr(skb)->nexthdr != NEXTHDR_TCP); 663 } 664 EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data) 665 + (tcp_hdr(skb)->doff << 2u)) > 666 skb_headlen(skb)); 667 668 return protocol; 669 } 670 671 672 /* 673 * Allocate a page worth of efx_tso_header structures, and string them 674 * into the tx_queue->tso_headers_free linked list. Return 0 or -ENOMEM. 675 */ 676 static int efx_tsoh_block_alloc(struct efx_tx_queue *tx_queue) 677 { 678 struct device *dma_dev = &tx_queue->efx->pci_dev->dev; 679 struct efx_tso_header *tsoh; 680 dma_addr_t dma_addr; 681 u8 *base_kva, *kva; 682 683 base_kva = dma_alloc_coherent(dma_dev, PAGE_SIZE, &dma_addr, GFP_ATOMIC); 684 if (base_kva == NULL) { 685 netif_err(tx_queue->efx, tx_err, tx_queue->efx->net_dev, 686 "Unable to allocate page for TSO headers\n"); 687 return -ENOMEM; 688 } 689 690 /* dma_alloc_coherent() allocates pages. */ 691 EFX_BUG_ON_PARANOID(dma_addr & (PAGE_SIZE - 1u)); 692 693 for (kva = base_kva; kva < base_kva + PAGE_SIZE; kva += TSOH_STD_SIZE) { 694 tsoh = (struct efx_tso_header *)kva; 695 tsoh->dma_addr = dma_addr + (TSOH_BUFFER(tsoh) - base_kva); 696 tsoh->next = tx_queue->tso_headers_free; 697 tx_queue->tso_headers_free = tsoh; 698 } 699 700 return 0; 701 } 702 703 704 /* Free up a TSO header, and all others in the same page. */ 705 static void efx_tsoh_block_free(struct efx_tx_queue *tx_queue, 706 struct efx_tso_header *tsoh, 707 struct device *dma_dev) 708 { 709 struct efx_tso_header **p; 710 unsigned long base_kva; 711 dma_addr_t base_dma; 712 713 base_kva = (unsigned long)tsoh & PAGE_MASK; 714 base_dma = tsoh->dma_addr & PAGE_MASK; 715 716 p = &tx_queue->tso_headers_free; 717 while (*p != NULL) { 718 if (((unsigned long)*p & PAGE_MASK) == base_kva) 719 *p = (*p)->next; 720 else 721 p = &(*p)->next; 722 } 723 724 dma_free_coherent(dma_dev, PAGE_SIZE, (void *)base_kva, base_dma); 725 } 726 727 static struct efx_tso_header * 728 efx_tsoh_heap_alloc(struct efx_tx_queue *tx_queue, size_t header_len) 729 { 730 struct efx_tso_header *tsoh; 731 732 tsoh = kmalloc(TSOH_SIZE(header_len), GFP_ATOMIC | GFP_DMA); 733 if (unlikely(!tsoh)) 734 return NULL; 735 736 tsoh->dma_addr = dma_map_single(&tx_queue->efx->pci_dev->dev, 737 TSOH_BUFFER(tsoh), header_len, 738 DMA_TO_DEVICE); 739 if (unlikely(dma_mapping_error(&tx_queue->efx->pci_dev->dev, 740 tsoh->dma_addr))) { 741 kfree(tsoh); 742 return NULL; 743 } 744 745 tsoh->unmap_len = header_len; 746 return tsoh; 747 } 748 749 static void 750 efx_tsoh_heap_free(struct efx_tx_queue *tx_queue, struct efx_tso_header *tsoh) 751 { 752 dma_unmap_single(&tx_queue->efx->pci_dev->dev, 753 tsoh->dma_addr, tsoh->unmap_len, 754 DMA_TO_DEVICE); 755 kfree(tsoh); 756 } 757 758 /** 759 * efx_tx_queue_insert - push descriptors onto the TX queue 760 * @tx_queue: Efx TX queue 761 * @dma_addr: DMA address of fragment 762 * @len: Length of fragment 763 * @final_buffer: The final buffer inserted into the queue 764 * 765 * Push descriptors onto the TX queue. Return 0 on success or 1 if 766 * @tx_queue full. 767 */ 768 static int efx_tx_queue_insert(struct efx_tx_queue *tx_queue, 769 dma_addr_t dma_addr, unsigned len, 770 struct efx_tx_buffer **final_buffer) 771 { 772 struct efx_tx_buffer *buffer; 773 struct efx_nic *efx = tx_queue->efx; 774 unsigned dma_len, fill_level, insert_ptr; 775 int q_space; 776 777 EFX_BUG_ON_PARANOID(len <= 0); 778 779 fill_level = tx_queue->insert_count - tx_queue->old_read_count; 780 /* -1 as there is no way to represent all descriptors used */ 781 q_space = efx->txq_entries - 1 - fill_level; 782 783 while (1) { 784 if (unlikely(q_space-- <= 0)) { 785 /* It might be that completions have happened 786 * since the xmit path last checked. Update 787 * the xmit path's copy of read_count. 788 */ 789 netif_tx_stop_queue(tx_queue->core_txq); 790 /* This memory barrier protects the change of 791 * queue state from the access of read_count. */ 792 smp_mb(); 793 tx_queue->old_read_count = 794 ACCESS_ONCE(tx_queue->read_count); 795 fill_level = (tx_queue->insert_count 796 - tx_queue->old_read_count); 797 q_space = efx->txq_entries - 1 - fill_level; 798 if (unlikely(q_space-- <= 0)) { 799 *final_buffer = NULL; 800 return 1; 801 } 802 smp_mb(); 803 netif_tx_start_queue(tx_queue->core_txq); 804 } 805 806 insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask; 807 buffer = &tx_queue->buffer[insert_ptr]; 808 ++tx_queue->insert_count; 809 810 EFX_BUG_ON_PARANOID(tx_queue->insert_count - 811 tx_queue->read_count >= 812 efx->txq_entries); 813 814 efx_tsoh_free(tx_queue, buffer); 815 EFX_BUG_ON_PARANOID(buffer->len); 816 EFX_BUG_ON_PARANOID(buffer->unmap_len); 817 EFX_BUG_ON_PARANOID(buffer->skb); 818 EFX_BUG_ON_PARANOID(!buffer->continuation); 819 EFX_BUG_ON_PARANOID(buffer->tsoh); 820 821 buffer->dma_addr = dma_addr; 822 823 dma_len = efx_max_tx_len(efx, dma_addr); 824 825 /* If there is enough space to send then do so */ 826 if (dma_len >= len) 827 break; 828 829 buffer->len = dma_len; /* Don't set the other members */ 830 dma_addr += dma_len; 831 len -= dma_len; 832 } 833 834 EFX_BUG_ON_PARANOID(!len); 835 buffer->len = len; 836 *final_buffer = buffer; 837 return 0; 838 } 839 840 841 /* 842 * Put a TSO header into the TX queue. 843 * 844 * This is special-cased because we know that it is small enough to fit in 845 * a single fragment, and we know it doesn't cross a page boundary. It 846 * also allows us to not worry about end-of-packet etc. 847 */ 848 static void efx_tso_put_header(struct efx_tx_queue *tx_queue, 849 struct efx_tso_header *tsoh, unsigned len) 850 { 851 struct efx_tx_buffer *buffer; 852 853 buffer = &tx_queue->buffer[tx_queue->insert_count & tx_queue->ptr_mask]; 854 efx_tsoh_free(tx_queue, buffer); 855 EFX_BUG_ON_PARANOID(buffer->len); 856 EFX_BUG_ON_PARANOID(buffer->unmap_len); 857 EFX_BUG_ON_PARANOID(buffer->skb); 858 EFX_BUG_ON_PARANOID(!buffer->continuation); 859 EFX_BUG_ON_PARANOID(buffer->tsoh); 860 buffer->len = len; 861 buffer->dma_addr = tsoh->dma_addr; 862 buffer->tsoh = tsoh; 863 864 ++tx_queue->insert_count; 865 } 866 867 868 /* Remove descriptors put into a tx_queue. */ 869 static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue) 870 { 871 struct efx_tx_buffer *buffer; 872 dma_addr_t unmap_addr; 873 874 /* Work backwards until we hit the original insert pointer value */ 875 while (tx_queue->insert_count != tx_queue->write_count) { 876 --tx_queue->insert_count; 877 buffer = &tx_queue->buffer[tx_queue->insert_count & 878 tx_queue->ptr_mask]; 879 efx_tsoh_free(tx_queue, buffer); 880 EFX_BUG_ON_PARANOID(buffer->skb); 881 if (buffer->unmap_len) { 882 unmap_addr = (buffer->dma_addr + buffer->len - 883 buffer->unmap_len); 884 if (buffer->unmap_single) 885 dma_unmap_single(&tx_queue->efx->pci_dev->dev, 886 unmap_addr, buffer->unmap_len, 887 DMA_TO_DEVICE); 888 else 889 dma_unmap_page(&tx_queue->efx->pci_dev->dev, 890 unmap_addr, buffer->unmap_len, 891 DMA_TO_DEVICE); 892 buffer->unmap_len = 0; 893 } 894 buffer->len = 0; 895 buffer->continuation = true; 896 } 897 } 898 899 900 /* Parse the SKB header and initialise state. */ 901 static void tso_start(struct tso_state *st, const struct sk_buff *skb) 902 { 903 /* All ethernet/IP/TCP headers combined size is TCP header size 904 * plus offset of TCP header relative to start of packet. 905 */ 906 st->header_len = ((tcp_hdr(skb)->doff << 2u) 907 + PTR_DIFF(tcp_hdr(skb), skb->data)); 908 st->full_packet_size = st->header_len + skb_shinfo(skb)->gso_size; 909 910 if (st->protocol == htons(ETH_P_IP)) 911 st->ipv4_id = ntohs(ip_hdr(skb)->id); 912 else 913 st->ipv4_id = 0; 914 st->seqnum = ntohl(tcp_hdr(skb)->seq); 915 916 EFX_BUG_ON_PARANOID(tcp_hdr(skb)->urg); 917 EFX_BUG_ON_PARANOID(tcp_hdr(skb)->syn); 918 EFX_BUG_ON_PARANOID(tcp_hdr(skb)->rst); 919 920 st->out_len = skb->len - st->header_len; 921 st->unmap_len = 0; 922 st->unmap_single = false; 923 } 924 925 static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx, 926 skb_frag_t *frag) 927 { 928 st->unmap_addr = skb_frag_dma_map(&efx->pci_dev->dev, frag, 0, 929 skb_frag_size(frag), DMA_TO_DEVICE); 930 if (likely(!dma_mapping_error(&efx->pci_dev->dev, st->unmap_addr))) { 931 st->unmap_single = false; 932 st->unmap_len = skb_frag_size(frag); 933 st->in_len = skb_frag_size(frag); 934 st->dma_addr = st->unmap_addr; 935 return 0; 936 } 937 return -ENOMEM; 938 } 939 940 static int tso_get_head_fragment(struct tso_state *st, struct efx_nic *efx, 941 const struct sk_buff *skb) 942 { 943 int hl = st->header_len; 944 int len = skb_headlen(skb) - hl; 945 946 st->unmap_addr = dma_map_single(&efx->pci_dev->dev, skb->data + hl, 947 len, DMA_TO_DEVICE); 948 if (likely(!dma_mapping_error(&efx->pci_dev->dev, st->unmap_addr))) { 949 st->unmap_single = true; 950 st->unmap_len = len; 951 st->in_len = len; 952 st->dma_addr = st->unmap_addr; 953 return 0; 954 } 955 return -ENOMEM; 956 } 957 958 959 /** 960 * tso_fill_packet_with_fragment - form descriptors for the current fragment 961 * @tx_queue: Efx TX queue 962 * @skb: Socket buffer 963 * @st: TSO state 964 * 965 * Form descriptors for the current fragment, until we reach the end 966 * of fragment or end-of-packet. Return 0 on success, 1 if not enough 967 * space in @tx_queue. 968 */ 969 static int tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue, 970 const struct sk_buff *skb, 971 struct tso_state *st) 972 { 973 struct efx_tx_buffer *buffer; 974 int n, end_of_packet, rc; 975 976 if (st->in_len == 0) 977 return 0; 978 if (st->packet_space == 0) 979 return 0; 980 981 EFX_BUG_ON_PARANOID(st->in_len <= 0); 982 EFX_BUG_ON_PARANOID(st->packet_space <= 0); 983 984 n = min(st->in_len, st->packet_space); 985 986 st->packet_space -= n; 987 st->out_len -= n; 988 st->in_len -= n; 989 990 rc = efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer); 991 if (likely(rc == 0)) { 992 if (st->out_len == 0) 993 /* Transfer ownership of the skb */ 994 buffer->skb = skb; 995 996 end_of_packet = st->out_len == 0 || st->packet_space == 0; 997 buffer->continuation = !end_of_packet; 998 999 if (st->in_len == 0) { 1000 /* Transfer ownership of the DMA mapping */ 1001 buffer->unmap_len = st->unmap_len; 1002 buffer->unmap_single = st->unmap_single; 1003 st->unmap_len = 0; 1004 } 1005 } 1006 1007 st->dma_addr += n; 1008 return rc; 1009 } 1010 1011 1012 /** 1013 * tso_start_new_packet - generate a new header and prepare for the new packet 1014 * @tx_queue: Efx TX queue 1015 * @skb: Socket buffer 1016 * @st: TSO state 1017 * 1018 * Generate a new header and prepare for the new packet. Return 0 on 1019 * success, or -1 if failed to alloc header. 1020 */ 1021 static int tso_start_new_packet(struct efx_tx_queue *tx_queue, 1022 const struct sk_buff *skb, 1023 struct tso_state *st) 1024 { 1025 struct efx_tso_header *tsoh; 1026 struct tcphdr *tsoh_th; 1027 unsigned ip_length; 1028 u8 *header; 1029 1030 /* Allocate a DMA-mapped header buffer. */ 1031 if (likely(TSOH_SIZE(st->header_len) <= TSOH_STD_SIZE)) { 1032 if (tx_queue->tso_headers_free == NULL) { 1033 if (efx_tsoh_block_alloc(tx_queue)) 1034 return -1; 1035 } 1036 EFX_BUG_ON_PARANOID(!tx_queue->tso_headers_free); 1037 tsoh = tx_queue->tso_headers_free; 1038 tx_queue->tso_headers_free = tsoh->next; 1039 tsoh->unmap_len = 0; 1040 } else { 1041 tx_queue->tso_long_headers++; 1042 tsoh = efx_tsoh_heap_alloc(tx_queue, st->header_len); 1043 if (unlikely(!tsoh)) 1044 return -1; 1045 } 1046 1047 header = TSOH_BUFFER(tsoh); 1048 tsoh_th = (struct tcphdr *)(header + SKB_TCP_OFF(skb)); 1049 1050 /* Copy and update the headers. */ 1051 memcpy(header, skb->data, st->header_len); 1052 1053 tsoh_th->seq = htonl(st->seqnum); 1054 st->seqnum += skb_shinfo(skb)->gso_size; 1055 if (st->out_len > skb_shinfo(skb)->gso_size) { 1056 /* This packet will not finish the TSO burst. */ 1057 ip_length = st->full_packet_size - ETH_HDR_LEN(skb); 1058 tsoh_th->fin = 0; 1059 tsoh_th->psh = 0; 1060 } else { 1061 /* This packet will be the last in the TSO burst. */ 1062 ip_length = st->header_len - ETH_HDR_LEN(skb) + st->out_len; 1063 tsoh_th->fin = tcp_hdr(skb)->fin; 1064 tsoh_th->psh = tcp_hdr(skb)->psh; 1065 } 1066 1067 if (st->protocol == htons(ETH_P_IP)) { 1068 struct iphdr *tsoh_iph = 1069 (struct iphdr *)(header + SKB_IPV4_OFF(skb)); 1070 1071 tsoh_iph->tot_len = htons(ip_length); 1072 1073 /* Linux leaves suitable gaps in the IP ID space for us to fill. */ 1074 tsoh_iph->id = htons(st->ipv4_id); 1075 st->ipv4_id++; 1076 } else { 1077 struct ipv6hdr *tsoh_iph = 1078 (struct ipv6hdr *)(header + SKB_IPV6_OFF(skb)); 1079 1080 tsoh_iph->payload_len = htons(ip_length - sizeof(*tsoh_iph)); 1081 } 1082 1083 st->packet_space = skb_shinfo(skb)->gso_size; 1084 ++tx_queue->tso_packets; 1085 1086 /* Form a descriptor for this header. */ 1087 efx_tso_put_header(tx_queue, tsoh, st->header_len); 1088 1089 return 0; 1090 } 1091 1092 1093 /** 1094 * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer 1095 * @tx_queue: Efx TX queue 1096 * @skb: Socket buffer 1097 * 1098 * Context: You must hold netif_tx_lock() to call this function. 1099 * 1100 * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if 1101 * @skb was not enqueued. In all cases @skb is consumed. Return 1102 * %NETDEV_TX_OK or %NETDEV_TX_BUSY. 1103 */ 1104 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue, 1105 struct sk_buff *skb) 1106 { 1107 struct efx_nic *efx = tx_queue->efx; 1108 int frag_i, rc, rc2 = NETDEV_TX_OK; 1109 struct tso_state state; 1110 1111 /* Find the packet protocol and sanity-check it */ 1112 state.protocol = efx_tso_check_protocol(skb); 1113 1114 EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count); 1115 1116 tso_start(&state, skb); 1117 1118 /* Assume that skb header area contains exactly the headers, and 1119 * all payload is in the frag list. 1120 */ 1121 if (skb_headlen(skb) == state.header_len) { 1122 /* Grab the first payload fragment. */ 1123 EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags < 1); 1124 frag_i = 0; 1125 rc = tso_get_fragment(&state, efx, 1126 skb_shinfo(skb)->frags + frag_i); 1127 if (rc) 1128 goto mem_err; 1129 } else { 1130 rc = tso_get_head_fragment(&state, efx, skb); 1131 if (rc) 1132 goto mem_err; 1133 frag_i = -1; 1134 } 1135 1136 if (tso_start_new_packet(tx_queue, skb, &state) < 0) 1137 goto mem_err; 1138 1139 while (1) { 1140 rc = tso_fill_packet_with_fragment(tx_queue, skb, &state); 1141 if (unlikely(rc)) { 1142 rc2 = NETDEV_TX_BUSY; 1143 goto unwind; 1144 } 1145 1146 /* Move onto the next fragment? */ 1147 if (state.in_len == 0) { 1148 if (++frag_i >= skb_shinfo(skb)->nr_frags) 1149 /* End of payload reached. */ 1150 break; 1151 rc = tso_get_fragment(&state, efx, 1152 skb_shinfo(skb)->frags + frag_i); 1153 if (rc) 1154 goto mem_err; 1155 } 1156 1157 /* Start at new packet? */ 1158 if (state.packet_space == 0 && 1159 tso_start_new_packet(tx_queue, skb, &state) < 0) 1160 goto mem_err; 1161 } 1162 1163 netdev_tx_sent_queue(tx_queue->core_txq, skb->len); 1164 1165 /* Pass off to hardware */ 1166 efx_nic_push_buffers(tx_queue); 1167 1168 tx_queue->tso_bursts++; 1169 return NETDEV_TX_OK; 1170 1171 mem_err: 1172 netif_err(efx, tx_err, efx->net_dev, 1173 "Out of memory for TSO headers, or DMA mapping error\n"); 1174 dev_kfree_skb_any(skb); 1175 1176 unwind: 1177 /* Free the DMA mapping we were in the process of writing out */ 1178 if (state.unmap_len) { 1179 if (state.unmap_single) 1180 dma_unmap_single(&efx->pci_dev->dev, state.unmap_addr, 1181 state.unmap_len, DMA_TO_DEVICE); 1182 else 1183 dma_unmap_page(&efx->pci_dev->dev, state.unmap_addr, 1184 state.unmap_len, DMA_TO_DEVICE); 1185 } 1186 1187 efx_enqueue_unwind(tx_queue); 1188 return rc2; 1189 } 1190 1191 1192 /* 1193 * Free up all TSO datastructures associated with tx_queue. This 1194 * routine should be called only once the tx_queue is both empty and 1195 * will no longer be used. 1196 */ 1197 static void efx_fini_tso(struct efx_tx_queue *tx_queue) 1198 { 1199 unsigned i; 1200 1201 if (tx_queue->buffer) { 1202 for (i = 0; i <= tx_queue->ptr_mask; ++i) 1203 efx_tsoh_free(tx_queue, &tx_queue->buffer[i]); 1204 } 1205 1206 while (tx_queue->tso_headers_free != NULL) 1207 efx_tsoh_block_free(tx_queue, tx_queue->tso_headers_free, 1208 &tx_queue->efx->pci_dev->dev); 1209 } 1210