1 // SPDX-License-Identifier: GPL-2.0-only 2 /**************************************************************************** 3 * Driver for Solarflare network controllers and boards 4 * Copyright 2005-2006 Fen Systems Ltd. 5 * Copyright 2005-2013 Solarflare Communications Inc. 6 */ 7 8 #include <linux/pci.h> 9 #include <linux/tcp.h> 10 #include <linux/ip.h> 11 #include <linux/in.h> 12 #include <linux/ipv6.h> 13 #include <linux/slab.h> 14 #include <net/ipv6.h> 15 #include <linux/if_ether.h> 16 #include <linux/highmem.h> 17 #include <linux/cache.h> 18 #include "net_driver.h" 19 #include "efx.h" 20 #include "io.h" 21 #include "nic.h" 22 #include "tx.h" 23 #include "tx_common.h" 24 #include "workarounds.h" 25 #include "ef10_regs.h" 26 27 #ifdef EFX_USE_PIO 28 29 #define EFX_PIOBUF_SIZE_DEF ALIGN(256, L1_CACHE_BYTES) 30 unsigned int efx_piobuf_size __read_mostly = EFX_PIOBUF_SIZE_DEF; 31 32 #endif /* EFX_USE_PIO */ 33 34 static inline u8 *efx_tx_get_copy_buffer(struct efx_tx_queue *tx_queue, 35 struct efx_tx_buffer *buffer) 36 { 37 unsigned int index = efx_tx_queue_get_insert_index(tx_queue); 38 struct efx_buffer *page_buf = 39 &tx_queue->cb_page[index >> (PAGE_SHIFT - EFX_TX_CB_ORDER)]; 40 unsigned int offset = 41 ((index << EFX_TX_CB_ORDER) + NET_IP_ALIGN) & (PAGE_SIZE - 1); 42 43 if (unlikely(!page_buf->addr) && 44 efx_nic_alloc_buffer(tx_queue->efx, page_buf, PAGE_SIZE, 45 GFP_ATOMIC)) 46 return NULL; 47 buffer->dma_addr = page_buf->dma_addr + offset; 48 buffer->unmap_len = 0; 49 return (u8 *)page_buf->addr + offset; 50 } 51 52 static void efx_tx_maybe_stop_queue(struct efx_tx_queue *txq1) 53 { 54 /* We need to consider all queues that the net core sees as one */ 55 struct efx_nic *efx = txq1->efx; 56 struct efx_tx_queue *txq2; 57 unsigned int fill_level; 58 59 fill_level = efx_channel_tx_old_fill_level(txq1->channel); 60 if (likely(fill_level < efx->txq_stop_thresh)) 61 return; 62 63 /* We used the stale old_read_count above, which gives us a 64 * pessimistic estimate of the fill level (which may even 65 * validly be >= efx->txq_entries). Now try again using 66 * read_count (more likely to be a cache miss). 67 * 68 * If we read read_count and then conditionally stop the 69 * queue, it is possible for the completion path to race with 70 * us and complete all outstanding descriptors in the middle, 71 * after which there will be no more completions to wake it. 72 * Therefore we stop the queue first, then read read_count 73 * (with a memory barrier to ensure the ordering), then 74 * restart the queue if the fill level turns out to be low 75 * enough. 76 */ 77 netif_tx_stop_queue(txq1->core_txq); 78 smp_mb(); 79 efx_for_each_channel_tx_queue(txq2, txq1->channel) 80 txq2->old_read_count = READ_ONCE(txq2->read_count); 81 82 fill_level = efx_channel_tx_old_fill_level(txq1->channel); 83 EFX_WARN_ON_ONCE_PARANOID(fill_level >= efx->txq_entries); 84 if (likely(fill_level < efx->txq_stop_thresh)) { 85 smp_mb(); 86 if (likely(!efx->loopback_selftest)) 87 netif_tx_start_queue(txq1->core_txq); 88 } 89 } 90 91 static int efx_enqueue_skb_copy(struct efx_tx_queue *tx_queue, 92 struct sk_buff *skb) 93 { 94 unsigned int copy_len = skb->len; 95 struct efx_tx_buffer *buffer; 96 u8 *copy_buffer; 97 int rc; 98 99 EFX_WARN_ON_ONCE_PARANOID(copy_len > EFX_TX_CB_SIZE); 100 101 buffer = efx_tx_queue_get_insert_buffer(tx_queue); 102 103 copy_buffer = efx_tx_get_copy_buffer(tx_queue, buffer); 104 if (unlikely(!copy_buffer)) 105 return -ENOMEM; 106 107 rc = skb_copy_bits(skb, 0, copy_buffer, copy_len); 108 EFX_WARN_ON_PARANOID(rc); 109 buffer->len = copy_len; 110 111 buffer->skb = skb; 112 buffer->flags = EFX_TX_BUF_SKB; 113 114 ++tx_queue->insert_count; 115 return rc; 116 } 117 118 #ifdef EFX_USE_PIO 119 120 struct efx_short_copy_buffer { 121 int used; 122 u8 buf[L1_CACHE_BYTES]; 123 }; 124 125 /* Copy to PIO, respecting that writes to PIO buffers must be dword aligned. 126 * Advances piobuf pointer. Leaves additional data in the copy buffer. 127 */ 128 static void efx_memcpy_toio_aligned(struct efx_nic *efx, u8 __iomem **piobuf, 129 u8 *data, int len, 130 struct efx_short_copy_buffer *copy_buf) 131 { 132 int block_len = len & ~(sizeof(copy_buf->buf) - 1); 133 134 __iowrite64_copy(*piobuf, data, block_len >> 3); 135 *piobuf += block_len; 136 len -= block_len; 137 138 if (len) { 139 data += block_len; 140 BUG_ON(copy_buf->used); 141 BUG_ON(len > sizeof(copy_buf->buf)); 142 memcpy(copy_buf->buf, data, len); 143 copy_buf->used = len; 144 } 145 } 146 147 /* Copy to PIO, respecting dword alignment, popping data from copy buffer first. 148 * Advances piobuf pointer. Leaves additional data in the copy buffer. 149 */ 150 static void efx_memcpy_toio_aligned_cb(struct efx_nic *efx, u8 __iomem **piobuf, 151 u8 *data, int len, 152 struct efx_short_copy_buffer *copy_buf) 153 { 154 if (copy_buf->used) { 155 /* if the copy buffer is partially full, fill it up and write */ 156 int copy_to_buf = 157 min_t(int, sizeof(copy_buf->buf) - copy_buf->used, len); 158 159 memcpy(copy_buf->buf + copy_buf->used, data, copy_to_buf); 160 copy_buf->used += copy_to_buf; 161 162 /* if we didn't fill it up then we're done for now */ 163 if (copy_buf->used < sizeof(copy_buf->buf)) 164 return; 165 166 __iowrite64_copy(*piobuf, copy_buf->buf, 167 sizeof(copy_buf->buf) >> 3); 168 *piobuf += sizeof(copy_buf->buf); 169 data += copy_to_buf; 170 len -= copy_to_buf; 171 copy_buf->used = 0; 172 } 173 174 efx_memcpy_toio_aligned(efx, piobuf, data, len, copy_buf); 175 } 176 177 static void efx_flush_copy_buffer(struct efx_nic *efx, u8 __iomem *piobuf, 178 struct efx_short_copy_buffer *copy_buf) 179 { 180 /* if there's anything in it, write the whole buffer, including junk */ 181 if (copy_buf->used) 182 __iowrite64_copy(piobuf, copy_buf->buf, 183 sizeof(copy_buf->buf) >> 3); 184 } 185 186 /* Traverse skb structure and copy fragments in to PIO buffer. 187 * Advances piobuf pointer. 188 */ 189 static void efx_skb_copy_bits_to_pio(struct efx_nic *efx, struct sk_buff *skb, 190 u8 __iomem **piobuf, 191 struct efx_short_copy_buffer *copy_buf) 192 { 193 int i; 194 195 efx_memcpy_toio_aligned(efx, piobuf, skb->data, skb_headlen(skb), 196 copy_buf); 197 198 for (i = 0; i < skb_shinfo(skb)->nr_frags; ++i) { 199 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 200 u8 *vaddr; 201 202 vaddr = kmap_local_page(skb_frag_page(f)); 203 204 efx_memcpy_toio_aligned_cb(efx, piobuf, vaddr + skb_frag_off(f), 205 skb_frag_size(f), copy_buf); 206 kunmap_local(vaddr); 207 } 208 209 EFX_WARN_ON_ONCE_PARANOID(skb_shinfo(skb)->frag_list); 210 } 211 212 static int efx_enqueue_skb_pio(struct efx_tx_queue *tx_queue, 213 struct sk_buff *skb) 214 { 215 struct efx_tx_buffer *buffer = 216 efx_tx_queue_get_insert_buffer(tx_queue); 217 u8 __iomem *piobuf = tx_queue->piobuf; 218 219 /* Copy to PIO buffer. Ensure the writes are padded to the end 220 * of a cache line, as this is required for write-combining to be 221 * effective on at least x86. 222 */ 223 224 if (skb_shinfo(skb)->nr_frags) { 225 /* The size of the copy buffer will ensure all writes 226 * are the size of a cache line. 227 */ 228 struct efx_short_copy_buffer copy_buf; 229 230 copy_buf.used = 0; 231 232 efx_skb_copy_bits_to_pio(tx_queue->efx, skb, 233 &piobuf, ©_buf); 234 efx_flush_copy_buffer(tx_queue->efx, piobuf, ©_buf); 235 } else { 236 /* Pad the write to the size of a cache line. 237 * We can do this because we know the skb_shared_info struct is 238 * after the source, and the destination buffer is big enough. 239 */ 240 BUILD_BUG_ON(L1_CACHE_BYTES > 241 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))); 242 __iowrite64_copy(tx_queue->piobuf, skb->data, 243 ALIGN(skb->len, L1_CACHE_BYTES) >> 3); 244 } 245 246 buffer->skb = skb; 247 buffer->flags = EFX_TX_BUF_SKB | EFX_TX_BUF_OPTION; 248 249 EFX_POPULATE_QWORD_5(buffer->option, 250 ESF_DZ_TX_DESC_IS_OPT, 1, 251 ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_PIO, 252 ESF_DZ_TX_PIO_CONT, 0, 253 ESF_DZ_TX_PIO_BYTE_CNT, skb->len, 254 ESF_DZ_TX_PIO_BUF_ADDR, 255 tx_queue->piobuf_offset); 256 ++tx_queue->insert_count; 257 return 0; 258 } 259 260 /* Decide whether we can use TX PIO, ie. write packet data directly into 261 * a buffer on the device. This can reduce latency at the expense of 262 * throughput, so we only do this if both hardware and software TX rings 263 * are empty, including all queues for the channel. This also ensures that 264 * only one packet at a time can be using the PIO buffer. If the xmit_more 265 * flag is set then we don't use this - there'll be another packet along 266 * shortly and we want to hold off the doorbell. 267 */ 268 static bool efx_tx_may_pio(struct efx_tx_queue *tx_queue) 269 { 270 struct efx_channel *channel = tx_queue->channel; 271 272 if (!tx_queue->piobuf) 273 return false; 274 275 EFX_WARN_ON_ONCE_PARANOID(!channel->efx->type->option_descriptors); 276 277 efx_for_each_channel_tx_queue(tx_queue, channel) 278 if (!efx_nic_tx_is_empty(tx_queue, tx_queue->packet_write_count)) 279 return false; 280 281 return true; 282 } 283 #endif /* EFX_USE_PIO */ 284 285 /* Send any pending traffic for a channel. xmit_more is shared across all 286 * queues for a channel, so we must check all of them. 287 */ 288 static void efx_tx_send_pending(struct efx_channel *channel) 289 { 290 struct efx_tx_queue *q; 291 292 efx_for_each_channel_tx_queue(q, channel) { 293 if (q->xmit_pending) 294 efx_nic_push_buffers(q); 295 } 296 } 297 298 /* 299 * Add a socket buffer to a TX queue 300 * 301 * This maps all fragments of a socket buffer for DMA and adds them to 302 * the TX queue. The queue's insert pointer will be incremented by 303 * the number of fragments in the socket buffer. 304 * 305 * If any DMA mapping fails, any mapped fragments will be unmapped, 306 * the queue's insert pointer will be restored to its original value. 307 * 308 * This function is split out from efx_hard_start_xmit to allow the 309 * loopback test to direct packets via specific TX queues. 310 * 311 * Returns NETDEV_TX_OK. 312 * You must hold netif_tx_lock() to call this function. 313 */ 314 netdev_tx_t __efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb) 315 { 316 unsigned int old_insert_count = tx_queue->insert_count; 317 bool xmit_more = netdev_xmit_more(); 318 bool data_mapped = false; 319 unsigned int segments; 320 unsigned int skb_len; 321 int rc; 322 323 skb_len = skb->len; 324 segments = skb_is_gso(skb) ? skb_shinfo(skb)->gso_segs : 0; 325 if (segments == 1) 326 segments = 0; /* Don't use TSO for a single segment. */ 327 328 /* Handle TSO first - it's *possible* (although unlikely) that we might 329 * be passed a packet to segment that's smaller than the copybreak/PIO 330 * size limit. 331 */ 332 if (segments) { 333 switch (tx_queue->tso_version) { 334 case 1: 335 rc = efx_enqueue_skb_tso(tx_queue, skb, &data_mapped); 336 break; 337 case 2: 338 rc = efx_ef10_tx_tso_desc(tx_queue, skb, &data_mapped); 339 break; 340 case 0: /* No TSO on this queue, SW fallback needed */ 341 default: 342 rc = -EINVAL; 343 break; 344 } 345 if (rc == -EINVAL) { 346 rc = efx_tx_tso_fallback(tx_queue, skb); 347 tx_queue->tso_fallbacks++; 348 if (rc == 0) 349 return 0; 350 } 351 if (rc) 352 goto err; 353 #ifdef EFX_USE_PIO 354 } else if (skb_len <= efx_piobuf_size && !xmit_more && 355 efx_tx_may_pio(tx_queue)) { 356 /* Use PIO for short packets with an empty queue. */ 357 if (efx_enqueue_skb_pio(tx_queue, skb)) 358 goto err; 359 tx_queue->pio_packets++; 360 data_mapped = true; 361 #endif 362 } else if (skb->data_len && skb_len <= EFX_TX_CB_SIZE) { 363 /* Pad short packets or coalesce short fragmented packets. */ 364 if (efx_enqueue_skb_copy(tx_queue, skb)) 365 goto err; 366 tx_queue->cb_packets++; 367 data_mapped = true; 368 } 369 370 /* Map for DMA and create descriptors if we haven't done so already. */ 371 if (!data_mapped && (efx_tx_map_data(tx_queue, skb, segments))) 372 goto err; 373 374 efx_tx_maybe_stop_queue(tx_queue); 375 376 tx_queue->xmit_pending = true; 377 378 /* Pass off to hardware */ 379 if (__netdev_tx_sent_queue(tx_queue->core_txq, skb_len, xmit_more)) 380 efx_tx_send_pending(tx_queue->channel); 381 382 if (segments) { 383 tx_queue->tso_bursts++; 384 tx_queue->tso_packets += segments; 385 tx_queue->tx_packets += segments; 386 } else { 387 tx_queue->tx_packets++; 388 } 389 390 return NETDEV_TX_OK; 391 392 393 err: 394 efx_enqueue_unwind(tx_queue, old_insert_count); 395 dev_kfree_skb_any(skb); 396 397 /* If we're not expecting another transmit and we had something to push 398 * on this queue or a partner queue then we need to push here to get the 399 * previous packets out. 400 */ 401 if (!xmit_more) 402 efx_tx_send_pending(tx_queue->channel); 403 404 return NETDEV_TX_OK; 405 } 406 407 /* Transmit a packet from an XDP buffer 408 * 409 * Returns number of packets sent on success, error code otherwise. 410 * Runs in NAPI context, either in our poll (for XDP TX) or a different NIC 411 * (for XDP redirect). 412 */ 413 int efx_xdp_tx_buffers(struct efx_nic *efx, int n, struct xdp_frame **xdpfs, 414 bool flush) 415 { 416 struct efx_tx_buffer *tx_buffer; 417 struct efx_tx_queue *tx_queue; 418 struct xdp_frame *xdpf; 419 dma_addr_t dma_addr; 420 unsigned int len; 421 int space; 422 int cpu; 423 int i = 0; 424 425 if (unlikely(n && !xdpfs)) 426 return -EINVAL; 427 if (unlikely(!n)) 428 return 0; 429 430 cpu = raw_smp_processor_id(); 431 if (unlikely(cpu >= efx->xdp_tx_queue_count)) 432 return -EINVAL; 433 434 tx_queue = efx->xdp_tx_queues[cpu]; 435 if (unlikely(!tx_queue)) 436 return -EINVAL; 437 438 if (!tx_queue->initialised) 439 return -EINVAL; 440 441 if (efx->xdp_txq_queues_mode != EFX_XDP_TX_QUEUES_DEDICATED) 442 HARD_TX_LOCK(efx->net_dev, tx_queue->core_txq, cpu); 443 444 /* If we're borrowing net stack queues we have to handle stop-restart 445 * or we might block the queue and it will be considered as frozen 446 */ 447 if (efx->xdp_txq_queues_mode == EFX_XDP_TX_QUEUES_BORROWED) { 448 if (netif_tx_queue_stopped(tx_queue->core_txq)) 449 goto unlock; 450 efx_tx_maybe_stop_queue(tx_queue); 451 } 452 453 /* Check for available space. We should never need multiple 454 * descriptors per frame. 455 */ 456 space = efx->txq_entries + 457 tx_queue->read_count - tx_queue->insert_count; 458 459 for (i = 0; i < n; i++) { 460 xdpf = xdpfs[i]; 461 462 if (i >= space) 463 break; 464 465 /* We'll want a descriptor for this tx. */ 466 prefetchw(__efx_tx_queue_get_insert_buffer(tx_queue)); 467 468 len = xdpf->len; 469 470 /* Map for DMA. */ 471 dma_addr = dma_map_single(&efx->pci_dev->dev, 472 xdpf->data, len, 473 DMA_TO_DEVICE); 474 if (dma_mapping_error(&efx->pci_dev->dev, dma_addr)) 475 break; 476 477 /* Create descriptor and set up for unmapping DMA. */ 478 tx_buffer = efx_tx_map_chunk(tx_queue, dma_addr, len); 479 tx_buffer->xdpf = xdpf; 480 tx_buffer->flags = EFX_TX_BUF_XDP | 481 EFX_TX_BUF_MAP_SINGLE; 482 tx_buffer->dma_offset = 0; 483 tx_buffer->unmap_len = len; 484 tx_queue->tx_packets++; 485 } 486 487 /* Pass mapped frames to hardware. */ 488 if (flush && i > 0) 489 efx_nic_push_buffers(tx_queue); 490 491 unlock: 492 if (efx->xdp_txq_queues_mode != EFX_XDP_TX_QUEUES_DEDICATED) 493 HARD_TX_UNLOCK(efx->net_dev, tx_queue->core_txq); 494 495 return i == 0 ? -EIO : i; 496 } 497 498 /* Initiate a packet transmission. We use one channel per CPU 499 * (sharing when we have more CPUs than channels). 500 * 501 * Context: non-blocking. 502 * Should always return NETDEV_TX_OK and consume the skb. 503 */ 504 netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb, 505 struct net_device *net_dev) 506 { 507 struct efx_nic *efx = efx_netdev_priv(net_dev); 508 struct efx_tx_queue *tx_queue; 509 unsigned index, type; 510 511 EFX_WARN_ON_PARANOID(!netif_device_present(net_dev)); 512 index = skb_get_queue_mapping(skb); 513 type = efx_tx_csum_type_skb(skb); 514 515 /* PTP "event" packet */ 516 if (unlikely(efx_xmit_with_hwtstamp(skb)) && 517 ((efx_ptp_use_mac_tx_timestamps(efx) && efx->ptp_data) || 518 unlikely(efx_ptp_is_ptp_tx(efx, skb)))) { 519 /* There may be existing transmits on the channel that are 520 * waiting for this packet to trigger the doorbell write. 521 * We need to send the packets at this point. 522 */ 523 efx_tx_send_pending(efx_get_tx_channel(efx, index)); 524 return efx_ptp_tx(efx, skb); 525 } 526 527 tx_queue = efx_get_tx_queue(efx, index, type); 528 if (WARN_ON_ONCE(!tx_queue)) { 529 /* We don't have a TXQ of the right type. 530 * This should never happen, as we don't advertise offload 531 * features unless we can support them. 532 */ 533 dev_kfree_skb_any(skb); 534 /* If we're not expecting another transmit and we had something to push 535 * on this queue or a partner queue then we need to push here to get the 536 * previous packets out. 537 */ 538 if (!netdev_xmit_more()) 539 efx_tx_send_pending(efx_get_tx_channel(efx, index)); 540 return NETDEV_TX_OK; 541 } 542 543 return __efx_enqueue_skb(tx_queue, skb); 544 } 545 546 void efx_xmit_done_single(struct efx_tx_queue *tx_queue) 547 { 548 unsigned int xdp_pkts_compl = 0, xdp_bytes_compl = 0; 549 unsigned int pkts_compl = 0, bytes_compl = 0; 550 unsigned int efv_pkts_compl = 0; 551 unsigned int read_ptr; 552 bool finished = false; 553 554 read_ptr = tx_queue->read_count & tx_queue->ptr_mask; 555 556 while (!finished) { 557 struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr]; 558 559 if (!efx_tx_buffer_in_use(buffer)) { 560 struct efx_nic *efx = tx_queue->efx; 561 562 netif_err(efx, hw, efx->net_dev, 563 "TX queue %d spurious single TX completion\n", 564 tx_queue->queue); 565 efx_schedule_reset(efx, RESET_TYPE_TX_SKIP); 566 return; 567 } 568 569 /* Need to check the flag before dequeueing. */ 570 if (buffer->flags & EFX_TX_BUF_SKB) 571 finished = true; 572 efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl, 573 &efv_pkts_compl, &xdp_pkts_compl, 574 &xdp_bytes_compl); 575 576 ++tx_queue->read_count; 577 read_ptr = tx_queue->read_count & tx_queue->ptr_mask; 578 } 579 580 tx_queue->pkts_compl += pkts_compl; 581 tx_queue->bytes_compl += bytes_compl; 582 tx_queue->complete_xdp_packets += xdp_pkts_compl; 583 tx_queue->complete_xdp_bytes += xdp_bytes_compl; 584 585 EFX_WARN_ON_PARANOID(pkts_compl + efv_pkts_compl != 1); 586 587 efx_xmit_done_check_empty(tx_queue); 588 } 589 590 void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue) 591 { 592 struct efx_nic *efx = tx_queue->efx; 593 594 /* Must be inverse of queue lookup in efx_hard_start_xmit() */ 595 tx_queue->core_txq = 596 netdev_get_tx_queue(efx->net_dev, 597 tx_queue->channel->channel); 598 } 599