xref: /linux/drivers/net/ethernet/sfc/tx.c (revision b43ab901d671e3e3cad425ea5e9a3c74e266dcdd)
1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2005-2010 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #include <linux/pci.h>
12 #include <linux/tcp.h>
13 #include <linux/ip.h>
14 #include <linux/in.h>
15 #include <linux/ipv6.h>
16 #include <linux/slab.h>
17 #include <net/ipv6.h>
18 #include <linux/if_ether.h>
19 #include <linux/highmem.h>
20 #include "net_driver.h"
21 #include "efx.h"
22 #include "nic.h"
23 #include "workarounds.h"
24 
25 /*
26  * TX descriptor ring full threshold
27  *
28  * The tx_queue descriptor ring fill-level must fall below this value
29  * before we restart the netif queue
30  */
31 #define EFX_TXQ_THRESHOLD(_efx) ((_efx)->txq_entries / 2u)
32 
33 static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
34 			       struct efx_tx_buffer *buffer,
35 			       unsigned int *pkts_compl,
36 			       unsigned int *bytes_compl)
37 {
38 	if (buffer->unmap_len) {
39 		struct pci_dev *pci_dev = tx_queue->efx->pci_dev;
40 		dma_addr_t unmap_addr = (buffer->dma_addr + buffer->len -
41 					 buffer->unmap_len);
42 		if (buffer->unmap_single)
43 			pci_unmap_single(pci_dev, unmap_addr, buffer->unmap_len,
44 					 PCI_DMA_TODEVICE);
45 		else
46 			pci_unmap_page(pci_dev, unmap_addr, buffer->unmap_len,
47 				       PCI_DMA_TODEVICE);
48 		buffer->unmap_len = 0;
49 		buffer->unmap_single = false;
50 	}
51 
52 	if (buffer->skb) {
53 		(*pkts_compl)++;
54 		(*bytes_compl) += buffer->skb->len;
55 		dev_kfree_skb_any((struct sk_buff *) buffer->skb);
56 		buffer->skb = NULL;
57 		netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
58 			   "TX queue %d transmission id %x complete\n",
59 			   tx_queue->queue, tx_queue->read_count);
60 	}
61 }
62 
63 /**
64  * struct efx_tso_header - a DMA mapped buffer for packet headers
65  * @next: Linked list of free ones.
66  *	The list is protected by the TX queue lock.
67  * @dma_unmap_len: Length to unmap for an oversize buffer, or 0.
68  * @dma_addr: The DMA address of the header below.
69  *
70  * This controls the memory used for a TSO header.  Use TSOH_DATA()
71  * to find the packet header data.  Use TSOH_SIZE() to calculate the
72  * total size required for a given packet header length.  TSO headers
73  * in the free list are exactly %TSOH_STD_SIZE bytes in size.
74  */
75 struct efx_tso_header {
76 	union {
77 		struct efx_tso_header *next;
78 		size_t unmap_len;
79 	};
80 	dma_addr_t dma_addr;
81 };
82 
83 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
84 			       struct sk_buff *skb);
85 static void efx_fini_tso(struct efx_tx_queue *tx_queue);
86 static void efx_tsoh_heap_free(struct efx_tx_queue *tx_queue,
87 			       struct efx_tso_header *tsoh);
88 
89 static void efx_tsoh_free(struct efx_tx_queue *tx_queue,
90 			  struct efx_tx_buffer *buffer)
91 {
92 	if (buffer->tsoh) {
93 		if (likely(!buffer->tsoh->unmap_len)) {
94 			buffer->tsoh->next = tx_queue->tso_headers_free;
95 			tx_queue->tso_headers_free = buffer->tsoh;
96 		} else {
97 			efx_tsoh_heap_free(tx_queue, buffer->tsoh);
98 		}
99 		buffer->tsoh = NULL;
100 	}
101 }
102 
103 
104 static inline unsigned
105 efx_max_tx_len(struct efx_nic *efx, dma_addr_t dma_addr)
106 {
107 	/* Depending on the NIC revision, we can use descriptor
108 	 * lengths up to 8K or 8K-1.  However, since PCI Express
109 	 * devices must split read requests at 4K boundaries, there is
110 	 * little benefit from using descriptors that cross those
111 	 * boundaries and we keep things simple by not doing so.
112 	 */
113 	unsigned len = (~dma_addr & 0xfff) + 1;
114 
115 	/* Work around hardware bug for unaligned buffers. */
116 	if (EFX_WORKAROUND_5391(efx) && (dma_addr & 0xf))
117 		len = min_t(unsigned, len, 512 - (dma_addr & 0xf));
118 
119 	return len;
120 }
121 
122 /*
123  * Add a socket buffer to a TX queue
124  *
125  * This maps all fragments of a socket buffer for DMA and adds them to
126  * the TX queue.  The queue's insert pointer will be incremented by
127  * the number of fragments in the socket buffer.
128  *
129  * If any DMA mapping fails, any mapped fragments will be unmapped,
130  * the queue's insert pointer will be restored to its original value.
131  *
132  * This function is split out from efx_hard_start_xmit to allow the
133  * loopback test to direct packets via specific TX queues.
134  *
135  * Returns NETDEV_TX_OK or NETDEV_TX_BUSY
136  * You must hold netif_tx_lock() to call this function.
137  */
138 netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
139 {
140 	struct efx_nic *efx = tx_queue->efx;
141 	struct pci_dev *pci_dev = efx->pci_dev;
142 	struct efx_tx_buffer *buffer;
143 	skb_frag_t *fragment;
144 	unsigned int len, unmap_len = 0, fill_level, insert_ptr;
145 	dma_addr_t dma_addr, unmap_addr = 0;
146 	unsigned int dma_len;
147 	bool unmap_single;
148 	int q_space, i = 0;
149 	netdev_tx_t rc = NETDEV_TX_OK;
150 
151 	EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
152 
153 	if (skb_shinfo(skb)->gso_size)
154 		return efx_enqueue_skb_tso(tx_queue, skb);
155 
156 	/* Get size of the initial fragment */
157 	len = skb_headlen(skb);
158 
159 	/* Pad if necessary */
160 	if (EFX_WORKAROUND_15592(efx) && skb->len <= 32) {
161 		EFX_BUG_ON_PARANOID(skb->data_len);
162 		len = 32 + 1;
163 		if (skb_pad(skb, len - skb->len))
164 			return NETDEV_TX_OK;
165 	}
166 
167 	fill_level = tx_queue->insert_count - tx_queue->old_read_count;
168 	q_space = efx->txq_entries - 1 - fill_level;
169 
170 	/* Map for DMA.  Use pci_map_single rather than pci_map_page
171 	 * since this is more efficient on machines with sparse
172 	 * memory.
173 	 */
174 	unmap_single = true;
175 	dma_addr = pci_map_single(pci_dev, skb->data, len, PCI_DMA_TODEVICE);
176 
177 	/* Process all fragments */
178 	while (1) {
179 		if (unlikely(pci_dma_mapping_error(pci_dev, dma_addr)))
180 			goto pci_err;
181 
182 		/* Store fields for marking in the per-fragment final
183 		 * descriptor */
184 		unmap_len = len;
185 		unmap_addr = dma_addr;
186 
187 		/* Add to TX queue, splitting across DMA boundaries */
188 		do {
189 			if (unlikely(q_space-- <= 0)) {
190 				/* It might be that completions have
191 				 * happened since the xmit path last
192 				 * checked.  Update the xmit path's
193 				 * copy of read_count.
194 				 */
195 				netif_tx_stop_queue(tx_queue->core_txq);
196 				/* This memory barrier protects the
197 				 * change of queue state from the access
198 				 * of read_count. */
199 				smp_mb();
200 				tx_queue->old_read_count =
201 					ACCESS_ONCE(tx_queue->read_count);
202 				fill_level = (tx_queue->insert_count
203 					      - tx_queue->old_read_count);
204 				q_space = efx->txq_entries - 1 - fill_level;
205 				if (unlikely(q_space-- <= 0)) {
206 					rc = NETDEV_TX_BUSY;
207 					goto unwind;
208 				}
209 				smp_mb();
210 				if (likely(!efx->loopback_selftest))
211 					netif_tx_start_queue(
212 						tx_queue->core_txq);
213 			}
214 
215 			insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
216 			buffer = &tx_queue->buffer[insert_ptr];
217 			efx_tsoh_free(tx_queue, buffer);
218 			EFX_BUG_ON_PARANOID(buffer->tsoh);
219 			EFX_BUG_ON_PARANOID(buffer->skb);
220 			EFX_BUG_ON_PARANOID(buffer->len);
221 			EFX_BUG_ON_PARANOID(!buffer->continuation);
222 			EFX_BUG_ON_PARANOID(buffer->unmap_len);
223 
224 			dma_len = efx_max_tx_len(efx, dma_addr);
225 			if (likely(dma_len >= len))
226 				dma_len = len;
227 
228 			/* Fill out per descriptor fields */
229 			buffer->len = dma_len;
230 			buffer->dma_addr = dma_addr;
231 			len -= dma_len;
232 			dma_addr += dma_len;
233 			++tx_queue->insert_count;
234 		} while (len);
235 
236 		/* Transfer ownership of the unmapping to the final buffer */
237 		buffer->unmap_single = unmap_single;
238 		buffer->unmap_len = unmap_len;
239 		unmap_len = 0;
240 
241 		/* Get address and size of next fragment */
242 		if (i >= skb_shinfo(skb)->nr_frags)
243 			break;
244 		fragment = &skb_shinfo(skb)->frags[i];
245 		len = skb_frag_size(fragment);
246 		i++;
247 		/* Map for DMA */
248 		unmap_single = false;
249 		dma_addr = skb_frag_dma_map(&pci_dev->dev, fragment, 0, len,
250 					    DMA_TO_DEVICE);
251 	}
252 
253 	/* Transfer ownership of the skb to the final buffer */
254 	buffer->skb = skb;
255 	buffer->continuation = false;
256 
257 	netdev_tx_sent_queue(tx_queue->core_txq, skb->len);
258 
259 	/* Pass off to hardware */
260 	efx_nic_push_buffers(tx_queue);
261 
262 	return NETDEV_TX_OK;
263 
264  pci_err:
265 	netif_err(efx, tx_err, efx->net_dev,
266 		  " TX queue %d could not map skb with %d bytes %d "
267 		  "fragments for DMA\n", tx_queue->queue, skb->len,
268 		  skb_shinfo(skb)->nr_frags + 1);
269 
270 	/* Mark the packet as transmitted, and free the SKB ourselves */
271 	dev_kfree_skb_any(skb);
272 
273  unwind:
274 	/* Work backwards until we hit the original insert pointer value */
275 	while (tx_queue->insert_count != tx_queue->write_count) {
276 		unsigned int pkts_compl = 0, bytes_compl = 0;
277 		--tx_queue->insert_count;
278 		insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
279 		buffer = &tx_queue->buffer[insert_ptr];
280 		efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
281 		buffer->len = 0;
282 	}
283 
284 	/* Free the fragment we were mid-way through pushing */
285 	if (unmap_len) {
286 		if (unmap_single)
287 			pci_unmap_single(pci_dev, unmap_addr, unmap_len,
288 					 PCI_DMA_TODEVICE);
289 		else
290 			pci_unmap_page(pci_dev, unmap_addr, unmap_len,
291 				       PCI_DMA_TODEVICE);
292 	}
293 
294 	return rc;
295 }
296 
297 /* Remove packets from the TX queue
298  *
299  * This removes packets from the TX queue, up to and including the
300  * specified index.
301  */
302 static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
303 				unsigned int index,
304 				unsigned int *pkts_compl,
305 				unsigned int *bytes_compl)
306 {
307 	struct efx_nic *efx = tx_queue->efx;
308 	unsigned int stop_index, read_ptr;
309 
310 	stop_index = (index + 1) & tx_queue->ptr_mask;
311 	read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
312 
313 	while (read_ptr != stop_index) {
314 		struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
315 		if (unlikely(buffer->len == 0)) {
316 			netif_err(efx, tx_err, efx->net_dev,
317 				  "TX queue %d spurious TX completion id %x\n",
318 				  tx_queue->queue, read_ptr);
319 			efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
320 			return;
321 		}
322 
323 		efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl);
324 		buffer->continuation = true;
325 		buffer->len = 0;
326 
327 		++tx_queue->read_count;
328 		read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
329 	}
330 }
331 
332 /* Initiate a packet transmission.  We use one channel per CPU
333  * (sharing when we have more CPUs than channels).  On Falcon, the TX
334  * completion events will be directed back to the CPU that transmitted
335  * the packet, which should be cache-efficient.
336  *
337  * Context: non-blocking.
338  * Note that returning anything other than NETDEV_TX_OK will cause the
339  * OS to free the skb.
340  */
341 netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
342 				      struct net_device *net_dev)
343 {
344 	struct efx_nic *efx = netdev_priv(net_dev);
345 	struct efx_tx_queue *tx_queue;
346 	unsigned index, type;
347 
348 	EFX_WARN_ON_PARANOID(!netif_device_present(net_dev));
349 
350 	index = skb_get_queue_mapping(skb);
351 	type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0;
352 	if (index >= efx->n_tx_channels) {
353 		index -= efx->n_tx_channels;
354 		type |= EFX_TXQ_TYPE_HIGHPRI;
355 	}
356 	tx_queue = efx_get_tx_queue(efx, index, type);
357 
358 	return efx_enqueue_skb(tx_queue, skb);
359 }
360 
361 void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue)
362 {
363 	struct efx_nic *efx = tx_queue->efx;
364 
365 	/* Must be inverse of queue lookup in efx_hard_start_xmit() */
366 	tx_queue->core_txq =
367 		netdev_get_tx_queue(efx->net_dev,
368 				    tx_queue->queue / EFX_TXQ_TYPES +
369 				    ((tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
370 				     efx->n_tx_channels : 0));
371 }
372 
373 int efx_setup_tc(struct net_device *net_dev, u8 num_tc)
374 {
375 	struct efx_nic *efx = netdev_priv(net_dev);
376 	struct efx_channel *channel;
377 	struct efx_tx_queue *tx_queue;
378 	unsigned tc;
379 	int rc;
380 
381 	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0 || num_tc > EFX_MAX_TX_TC)
382 		return -EINVAL;
383 
384 	if (num_tc == net_dev->num_tc)
385 		return 0;
386 
387 	for (tc = 0; tc < num_tc; tc++) {
388 		net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
389 		net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
390 	}
391 
392 	if (num_tc > net_dev->num_tc) {
393 		/* Initialise high-priority queues as necessary */
394 		efx_for_each_channel(channel, efx) {
395 			efx_for_each_possible_channel_tx_queue(tx_queue,
396 							       channel) {
397 				if (!(tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI))
398 					continue;
399 				if (!tx_queue->buffer) {
400 					rc = efx_probe_tx_queue(tx_queue);
401 					if (rc)
402 						return rc;
403 				}
404 				if (!tx_queue->initialised)
405 					efx_init_tx_queue(tx_queue);
406 				efx_init_tx_queue_core_txq(tx_queue);
407 			}
408 		}
409 	} else {
410 		/* Reduce number of classes before number of queues */
411 		net_dev->num_tc = num_tc;
412 	}
413 
414 	rc = netif_set_real_num_tx_queues(net_dev,
415 					  max_t(int, num_tc, 1) *
416 					  efx->n_tx_channels);
417 	if (rc)
418 		return rc;
419 
420 	/* Do not destroy high-priority queues when they become
421 	 * unused.  We would have to flush them first, and it is
422 	 * fairly difficult to flush a subset of TX queues.  Leave
423 	 * it to efx_fini_channels().
424 	 */
425 
426 	net_dev->num_tc = num_tc;
427 	return 0;
428 }
429 
430 void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
431 {
432 	unsigned fill_level;
433 	struct efx_nic *efx = tx_queue->efx;
434 	unsigned int pkts_compl = 0, bytes_compl = 0;
435 
436 	EFX_BUG_ON_PARANOID(index > tx_queue->ptr_mask);
437 
438 	efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl);
439 	netdev_tx_completed_queue(tx_queue->core_txq, pkts_compl, bytes_compl);
440 
441 	/* See if we need to restart the netif queue.  This barrier
442 	 * separates the update of read_count from the test of the
443 	 * queue state. */
444 	smp_mb();
445 	if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
446 	    likely(efx->port_enabled) &&
447 	    likely(netif_device_present(efx->net_dev))) {
448 		fill_level = tx_queue->insert_count - tx_queue->read_count;
449 		if (fill_level < EFX_TXQ_THRESHOLD(efx)) {
450 			EFX_BUG_ON_PARANOID(!efx_dev_registered(efx));
451 			netif_tx_wake_queue(tx_queue->core_txq);
452 		}
453 	}
454 
455 	/* Check whether the hardware queue is now empty */
456 	if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
457 		tx_queue->old_write_count = ACCESS_ONCE(tx_queue->write_count);
458 		if (tx_queue->read_count == tx_queue->old_write_count) {
459 			smp_mb();
460 			tx_queue->empty_read_count =
461 				tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
462 		}
463 	}
464 }
465 
466 int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
467 {
468 	struct efx_nic *efx = tx_queue->efx;
469 	unsigned int entries;
470 	int i, rc;
471 
472 	/* Create the smallest power-of-two aligned ring */
473 	entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
474 	EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
475 	tx_queue->ptr_mask = entries - 1;
476 
477 	netif_dbg(efx, probe, efx->net_dev,
478 		  "creating TX queue %d size %#x mask %#x\n",
479 		  tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
480 
481 	/* Allocate software ring */
482 	tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
483 				   GFP_KERNEL);
484 	if (!tx_queue->buffer)
485 		return -ENOMEM;
486 	for (i = 0; i <= tx_queue->ptr_mask; ++i)
487 		tx_queue->buffer[i].continuation = true;
488 
489 	/* Allocate hardware ring */
490 	rc = efx_nic_probe_tx(tx_queue);
491 	if (rc)
492 		goto fail;
493 
494 	return 0;
495 
496  fail:
497 	kfree(tx_queue->buffer);
498 	tx_queue->buffer = NULL;
499 	return rc;
500 }
501 
502 void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
503 {
504 	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
505 		  "initialising TX queue %d\n", tx_queue->queue);
506 
507 	tx_queue->insert_count = 0;
508 	tx_queue->write_count = 0;
509 	tx_queue->old_write_count = 0;
510 	tx_queue->read_count = 0;
511 	tx_queue->old_read_count = 0;
512 	tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
513 
514 	/* Set up TX descriptor ring */
515 	efx_nic_init_tx(tx_queue);
516 
517 	tx_queue->initialised = true;
518 }
519 
520 void efx_release_tx_buffers(struct efx_tx_queue *tx_queue)
521 {
522 	struct efx_tx_buffer *buffer;
523 
524 	if (!tx_queue->buffer)
525 		return;
526 
527 	/* Free any buffers left in the ring */
528 	while (tx_queue->read_count != tx_queue->write_count) {
529 		unsigned int pkts_compl = 0, bytes_compl = 0;
530 		buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
531 		efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
532 		buffer->continuation = true;
533 		buffer->len = 0;
534 
535 		++tx_queue->read_count;
536 	}
537 	netdev_tx_reset_queue(tx_queue->core_txq);
538 }
539 
540 void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
541 {
542 	if (!tx_queue->initialised)
543 		return;
544 
545 	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
546 		  "shutting down TX queue %d\n", tx_queue->queue);
547 
548 	tx_queue->initialised = false;
549 
550 	/* Flush TX queue, remove descriptor ring */
551 	efx_nic_fini_tx(tx_queue);
552 
553 	efx_release_tx_buffers(tx_queue);
554 
555 	/* Free up TSO header cache */
556 	efx_fini_tso(tx_queue);
557 }
558 
559 void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
560 {
561 	if (!tx_queue->buffer)
562 		return;
563 
564 	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
565 		  "destroying TX queue %d\n", tx_queue->queue);
566 	efx_nic_remove_tx(tx_queue);
567 
568 	kfree(tx_queue->buffer);
569 	tx_queue->buffer = NULL;
570 }
571 
572 
573 /* Efx TCP segmentation acceleration.
574  *
575  * Why?  Because by doing it here in the driver we can go significantly
576  * faster than the GSO.
577  *
578  * Requires TX checksum offload support.
579  */
580 
581 /* Number of bytes inserted at the start of a TSO header buffer,
582  * similar to NET_IP_ALIGN.
583  */
584 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
585 #define TSOH_OFFSET	0
586 #else
587 #define TSOH_OFFSET	NET_IP_ALIGN
588 #endif
589 
590 #define TSOH_BUFFER(tsoh)	((u8 *)(tsoh + 1) + TSOH_OFFSET)
591 
592 /* Total size of struct efx_tso_header, buffer and padding */
593 #define TSOH_SIZE(hdr_len)					\
594 	(sizeof(struct efx_tso_header) + TSOH_OFFSET + hdr_len)
595 
596 /* Size of blocks on free list.  Larger blocks must be allocated from
597  * the heap.
598  */
599 #define TSOH_STD_SIZE		128
600 
601 #define PTR_DIFF(p1, p2)  ((u8 *)(p1) - (u8 *)(p2))
602 #define ETH_HDR_LEN(skb)  (skb_network_header(skb) - (skb)->data)
603 #define SKB_TCP_OFF(skb)  PTR_DIFF(tcp_hdr(skb), (skb)->data)
604 #define SKB_IPV4_OFF(skb) PTR_DIFF(ip_hdr(skb), (skb)->data)
605 #define SKB_IPV6_OFF(skb) PTR_DIFF(ipv6_hdr(skb), (skb)->data)
606 
607 /**
608  * struct tso_state - TSO state for an SKB
609  * @out_len: Remaining length in current segment
610  * @seqnum: Current sequence number
611  * @ipv4_id: Current IPv4 ID, host endian
612  * @packet_space: Remaining space in current packet
613  * @dma_addr: DMA address of current position
614  * @in_len: Remaining length in current SKB fragment
615  * @unmap_len: Length of SKB fragment
616  * @unmap_addr: DMA address of SKB fragment
617  * @unmap_single: DMA single vs page mapping flag
618  * @protocol: Network protocol (after any VLAN header)
619  * @header_len: Number of bytes of header
620  * @full_packet_size: Number of bytes to put in each outgoing segment
621  *
622  * The state used during segmentation.  It is put into this data structure
623  * just to make it easy to pass into inline functions.
624  */
625 struct tso_state {
626 	/* Output position */
627 	unsigned out_len;
628 	unsigned seqnum;
629 	unsigned ipv4_id;
630 	unsigned packet_space;
631 
632 	/* Input position */
633 	dma_addr_t dma_addr;
634 	unsigned in_len;
635 	unsigned unmap_len;
636 	dma_addr_t unmap_addr;
637 	bool unmap_single;
638 
639 	__be16 protocol;
640 	unsigned header_len;
641 	int full_packet_size;
642 };
643 
644 
645 /*
646  * Verify that our various assumptions about sk_buffs and the conditions
647  * under which TSO will be attempted hold true.  Return the protocol number.
648  */
649 static __be16 efx_tso_check_protocol(struct sk_buff *skb)
650 {
651 	__be16 protocol = skb->protocol;
652 
653 	EFX_BUG_ON_PARANOID(((struct ethhdr *)skb->data)->h_proto !=
654 			    protocol);
655 	if (protocol == htons(ETH_P_8021Q)) {
656 		/* Find the encapsulated protocol; reset network header
657 		 * and transport header based on that. */
658 		struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
659 		protocol = veh->h_vlan_encapsulated_proto;
660 		skb_set_network_header(skb, sizeof(*veh));
661 		if (protocol == htons(ETH_P_IP))
662 			skb_set_transport_header(skb, sizeof(*veh) +
663 						 4 * ip_hdr(skb)->ihl);
664 		else if (protocol == htons(ETH_P_IPV6))
665 			skb_set_transport_header(skb, sizeof(*veh) +
666 						 sizeof(struct ipv6hdr));
667 	}
668 
669 	if (protocol == htons(ETH_P_IP)) {
670 		EFX_BUG_ON_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP);
671 	} else {
672 		EFX_BUG_ON_PARANOID(protocol != htons(ETH_P_IPV6));
673 		EFX_BUG_ON_PARANOID(ipv6_hdr(skb)->nexthdr != NEXTHDR_TCP);
674 	}
675 	EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data)
676 			     + (tcp_hdr(skb)->doff << 2u)) >
677 			    skb_headlen(skb));
678 
679 	return protocol;
680 }
681 
682 
683 /*
684  * Allocate a page worth of efx_tso_header structures, and string them
685  * into the tx_queue->tso_headers_free linked list. Return 0 or -ENOMEM.
686  */
687 static int efx_tsoh_block_alloc(struct efx_tx_queue *tx_queue)
688 {
689 
690 	struct pci_dev *pci_dev = tx_queue->efx->pci_dev;
691 	struct efx_tso_header *tsoh;
692 	dma_addr_t dma_addr;
693 	u8 *base_kva, *kva;
694 
695 	base_kva = pci_alloc_consistent(pci_dev, PAGE_SIZE, &dma_addr);
696 	if (base_kva == NULL) {
697 		netif_err(tx_queue->efx, tx_err, tx_queue->efx->net_dev,
698 			  "Unable to allocate page for TSO headers\n");
699 		return -ENOMEM;
700 	}
701 
702 	/* pci_alloc_consistent() allocates pages. */
703 	EFX_BUG_ON_PARANOID(dma_addr & (PAGE_SIZE - 1u));
704 
705 	for (kva = base_kva; kva < base_kva + PAGE_SIZE; kva += TSOH_STD_SIZE) {
706 		tsoh = (struct efx_tso_header *)kva;
707 		tsoh->dma_addr = dma_addr + (TSOH_BUFFER(tsoh) - base_kva);
708 		tsoh->next = tx_queue->tso_headers_free;
709 		tx_queue->tso_headers_free = tsoh;
710 	}
711 
712 	return 0;
713 }
714 
715 
716 /* Free up a TSO header, and all others in the same page. */
717 static void efx_tsoh_block_free(struct efx_tx_queue *tx_queue,
718 				struct efx_tso_header *tsoh,
719 				struct pci_dev *pci_dev)
720 {
721 	struct efx_tso_header **p;
722 	unsigned long base_kva;
723 	dma_addr_t base_dma;
724 
725 	base_kva = (unsigned long)tsoh & PAGE_MASK;
726 	base_dma = tsoh->dma_addr & PAGE_MASK;
727 
728 	p = &tx_queue->tso_headers_free;
729 	while (*p != NULL) {
730 		if (((unsigned long)*p & PAGE_MASK) == base_kva)
731 			*p = (*p)->next;
732 		else
733 			p = &(*p)->next;
734 	}
735 
736 	pci_free_consistent(pci_dev, PAGE_SIZE, (void *)base_kva, base_dma);
737 }
738 
739 static struct efx_tso_header *
740 efx_tsoh_heap_alloc(struct efx_tx_queue *tx_queue, size_t header_len)
741 {
742 	struct efx_tso_header *tsoh;
743 
744 	tsoh = kmalloc(TSOH_SIZE(header_len), GFP_ATOMIC | GFP_DMA);
745 	if (unlikely(!tsoh))
746 		return NULL;
747 
748 	tsoh->dma_addr = pci_map_single(tx_queue->efx->pci_dev,
749 					TSOH_BUFFER(tsoh), header_len,
750 					PCI_DMA_TODEVICE);
751 	if (unlikely(pci_dma_mapping_error(tx_queue->efx->pci_dev,
752 					   tsoh->dma_addr))) {
753 		kfree(tsoh);
754 		return NULL;
755 	}
756 
757 	tsoh->unmap_len = header_len;
758 	return tsoh;
759 }
760 
761 static void
762 efx_tsoh_heap_free(struct efx_tx_queue *tx_queue, struct efx_tso_header *tsoh)
763 {
764 	pci_unmap_single(tx_queue->efx->pci_dev,
765 			 tsoh->dma_addr, tsoh->unmap_len,
766 			 PCI_DMA_TODEVICE);
767 	kfree(tsoh);
768 }
769 
770 /**
771  * efx_tx_queue_insert - push descriptors onto the TX queue
772  * @tx_queue:		Efx TX queue
773  * @dma_addr:		DMA address of fragment
774  * @len:		Length of fragment
775  * @final_buffer:	The final buffer inserted into the queue
776  *
777  * Push descriptors onto the TX queue.  Return 0 on success or 1 if
778  * @tx_queue full.
779  */
780 static int efx_tx_queue_insert(struct efx_tx_queue *tx_queue,
781 			       dma_addr_t dma_addr, unsigned len,
782 			       struct efx_tx_buffer **final_buffer)
783 {
784 	struct efx_tx_buffer *buffer;
785 	struct efx_nic *efx = tx_queue->efx;
786 	unsigned dma_len, fill_level, insert_ptr;
787 	int q_space;
788 
789 	EFX_BUG_ON_PARANOID(len <= 0);
790 
791 	fill_level = tx_queue->insert_count - tx_queue->old_read_count;
792 	/* -1 as there is no way to represent all descriptors used */
793 	q_space = efx->txq_entries - 1 - fill_level;
794 
795 	while (1) {
796 		if (unlikely(q_space-- <= 0)) {
797 			/* It might be that completions have happened
798 			 * since the xmit path last checked.  Update
799 			 * the xmit path's copy of read_count.
800 			 */
801 			netif_tx_stop_queue(tx_queue->core_txq);
802 			/* This memory barrier protects the change of
803 			 * queue state from the access of read_count. */
804 			smp_mb();
805 			tx_queue->old_read_count =
806 				ACCESS_ONCE(tx_queue->read_count);
807 			fill_level = (tx_queue->insert_count
808 				      - tx_queue->old_read_count);
809 			q_space = efx->txq_entries - 1 - fill_level;
810 			if (unlikely(q_space-- <= 0)) {
811 				*final_buffer = NULL;
812 				return 1;
813 			}
814 			smp_mb();
815 			netif_tx_start_queue(tx_queue->core_txq);
816 		}
817 
818 		insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
819 		buffer = &tx_queue->buffer[insert_ptr];
820 		++tx_queue->insert_count;
821 
822 		EFX_BUG_ON_PARANOID(tx_queue->insert_count -
823 				    tx_queue->read_count >=
824 				    efx->txq_entries);
825 
826 		efx_tsoh_free(tx_queue, buffer);
827 		EFX_BUG_ON_PARANOID(buffer->len);
828 		EFX_BUG_ON_PARANOID(buffer->unmap_len);
829 		EFX_BUG_ON_PARANOID(buffer->skb);
830 		EFX_BUG_ON_PARANOID(!buffer->continuation);
831 		EFX_BUG_ON_PARANOID(buffer->tsoh);
832 
833 		buffer->dma_addr = dma_addr;
834 
835 		dma_len = efx_max_tx_len(efx, dma_addr);
836 
837 		/* If there is enough space to send then do so */
838 		if (dma_len >= len)
839 			break;
840 
841 		buffer->len = dma_len; /* Don't set the other members */
842 		dma_addr += dma_len;
843 		len -= dma_len;
844 	}
845 
846 	EFX_BUG_ON_PARANOID(!len);
847 	buffer->len = len;
848 	*final_buffer = buffer;
849 	return 0;
850 }
851 
852 
853 /*
854  * Put a TSO header into the TX queue.
855  *
856  * This is special-cased because we know that it is small enough to fit in
857  * a single fragment, and we know it doesn't cross a page boundary.  It
858  * also allows us to not worry about end-of-packet etc.
859  */
860 static void efx_tso_put_header(struct efx_tx_queue *tx_queue,
861 			       struct efx_tso_header *tsoh, unsigned len)
862 {
863 	struct efx_tx_buffer *buffer;
864 
865 	buffer = &tx_queue->buffer[tx_queue->insert_count & tx_queue->ptr_mask];
866 	efx_tsoh_free(tx_queue, buffer);
867 	EFX_BUG_ON_PARANOID(buffer->len);
868 	EFX_BUG_ON_PARANOID(buffer->unmap_len);
869 	EFX_BUG_ON_PARANOID(buffer->skb);
870 	EFX_BUG_ON_PARANOID(!buffer->continuation);
871 	EFX_BUG_ON_PARANOID(buffer->tsoh);
872 	buffer->len = len;
873 	buffer->dma_addr = tsoh->dma_addr;
874 	buffer->tsoh = tsoh;
875 
876 	++tx_queue->insert_count;
877 }
878 
879 
880 /* Remove descriptors put into a tx_queue. */
881 static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue)
882 {
883 	struct efx_tx_buffer *buffer;
884 	dma_addr_t unmap_addr;
885 
886 	/* Work backwards until we hit the original insert pointer value */
887 	while (tx_queue->insert_count != tx_queue->write_count) {
888 		--tx_queue->insert_count;
889 		buffer = &tx_queue->buffer[tx_queue->insert_count &
890 					   tx_queue->ptr_mask];
891 		efx_tsoh_free(tx_queue, buffer);
892 		EFX_BUG_ON_PARANOID(buffer->skb);
893 		if (buffer->unmap_len) {
894 			unmap_addr = (buffer->dma_addr + buffer->len -
895 				      buffer->unmap_len);
896 			if (buffer->unmap_single)
897 				pci_unmap_single(tx_queue->efx->pci_dev,
898 						 unmap_addr, buffer->unmap_len,
899 						 PCI_DMA_TODEVICE);
900 			else
901 				pci_unmap_page(tx_queue->efx->pci_dev,
902 					       unmap_addr, buffer->unmap_len,
903 					       PCI_DMA_TODEVICE);
904 			buffer->unmap_len = 0;
905 		}
906 		buffer->len = 0;
907 		buffer->continuation = true;
908 	}
909 }
910 
911 
912 /* Parse the SKB header and initialise state. */
913 static void tso_start(struct tso_state *st, const struct sk_buff *skb)
914 {
915 	/* All ethernet/IP/TCP headers combined size is TCP header size
916 	 * plus offset of TCP header relative to start of packet.
917 	 */
918 	st->header_len = ((tcp_hdr(skb)->doff << 2u)
919 			  + PTR_DIFF(tcp_hdr(skb), skb->data));
920 	st->full_packet_size = st->header_len + skb_shinfo(skb)->gso_size;
921 
922 	if (st->protocol == htons(ETH_P_IP))
923 		st->ipv4_id = ntohs(ip_hdr(skb)->id);
924 	else
925 		st->ipv4_id = 0;
926 	st->seqnum = ntohl(tcp_hdr(skb)->seq);
927 
928 	EFX_BUG_ON_PARANOID(tcp_hdr(skb)->urg);
929 	EFX_BUG_ON_PARANOID(tcp_hdr(skb)->syn);
930 	EFX_BUG_ON_PARANOID(tcp_hdr(skb)->rst);
931 
932 	st->packet_space = st->full_packet_size;
933 	st->out_len = skb->len - st->header_len;
934 	st->unmap_len = 0;
935 	st->unmap_single = false;
936 }
937 
938 static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx,
939 			    skb_frag_t *frag)
940 {
941 	st->unmap_addr = skb_frag_dma_map(&efx->pci_dev->dev, frag, 0,
942 					  skb_frag_size(frag), DMA_TO_DEVICE);
943 	if (likely(!dma_mapping_error(&efx->pci_dev->dev, st->unmap_addr))) {
944 		st->unmap_single = false;
945 		st->unmap_len = skb_frag_size(frag);
946 		st->in_len = skb_frag_size(frag);
947 		st->dma_addr = st->unmap_addr;
948 		return 0;
949 	}
950 	return -ENOMEM;
951 }
952 
953 static int tso_get_head_fragment(struct tso_state *st, struct efx_nic *efx,
954 				 const struct sk_buff *skb)
955 {
956 	int hl = st->header_len;
957 	int len = skb_headlen(skb) - hl;
958 
959 	st->unmap_addr = pci_map_single(efx->pci_dev, skb->data + hl,
960 					len, PCI_DMA_TODEVICE);
961 	if (likely(!pci_dma_mapping_error(efx->pci_dev, st->unmap_addr))) {
962 		st->unmap_single = true;
963 		st->unmap_len = len;
964 		st->in_len = len;
965 		st->dma_addr = st->unmap_addr;
966 		return 0;
967 	}
968 	return -ENOMEM;
969 }
970 
971 
972 /**
973  * tso_fill_packet_with_fragment - form descriptors for the current fragment
974  * @tx_queue:		Efx TX queue
975  * @skb:		Socket buffer
976  * @st:			TSO state
977  *
978  * Form descriptors for the current fragment, until we reach the end
979  * of fragment or end-of-packet.  Return 0 on success, 1 if not enough
980  * space in @tx_queue.
981  */
982 static int tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue,
983 					 const struct sk_buff *skb,
984 					 struct tso_state *st)
985 {
986 	struct efx_tx_buffer *buffer;
987 	int n, end_of_packet, rc;
988 
989 	if (st->in_len == 0)
990 		return 0;
991 	if (st->packet_space == 0)
992 		return 0;
993 
994 	EFX_BUG_ON_PARANOID(st->in_len <= 0);
995 	EFX_BUG_ON_PARANOID(st->packet_space <= 0);
996 
997 	n = min(st->in_len, st->packet_space);
998 
999 	st->packet_space -= n;
1000 	st->out_len -= n;
1001 	st->in_len -= n;
1002 
1003 	rc = efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer);
1004 	if (likely(rc == 0)) {
1005 		if (st->out_len == 0)
1006 			/* Transfer ownership of the skb */
1007 			buffer->skb = skb;
1008 
1009 		end_of_packet = st->out_len == 0 || st->packet_space == 0;
1010 		buffer->continuation = !end_of_packet;
1011 
1012 		if (st->in_len == 0) {
1013 			/* Transfer ownership of the pci mapping */
1014 			buffer->unmap_len = st->unmap_len;
1015 			buffer->unmap_single = st->unmap_single;
1016 			st->unmap_len = 0;
1017 		}
1018 	}
1019 
1020 	st->dma_addr += n;
1021 	return rc;
1022 }
1023 
1024 
1025 /**
1026  * tso_start_new_packet - generate a new header and prepare for the new packet
1027  * @tx_queue:		Efx TX queue
1028  * @skb:		Socket buffer
1029  * @st:			TSO state
1030  *
1031  * Generate a new header and prepare for the new packet.  Return 0 on
1032  * success, or -1 if failed to alloc header.
1033  */
1034 static int tso_start_new_packet(struct efx_tx_queue *tx_queue,
1035 				const struct sk_buff *skb,
1036 				struct tso_state *st)
1037 {
1038 	struct efx_tso_header *tsoh;
1039 	struct tcphdr *tsoh_th;
1040 	unsigned ip_length;
1041 	u8 *header;
1042 
1043 	/* Allocate a DMA-mapped header buffer. */
1044 	if (likely(TSOH_SIZE(st->header_len) <= TSOH_STD_SIZE)) {
1045 		if (tx_queue->tso_headers_free == NULL) {
1046 			if (efx_tsoh_block_alloc(tx_queue))
1047 				return -1;
1048 		}
1049 		EFX_BUG_ON_PARANOID(!tx_queue->tso_headers_free);
1050 		tsoh = tx_queue->tso_headers_free;
1051 		tx_queue->tso_headers_free = tsoh->next;
1052 		tsoh->unmap_len = 0;
1053 	} else {
1054 		tx_queue->tso_long_headers++;
1055 		tsoh = efx_tsoh_heap_alloc(tx_queue, st->header_len);
1056 		if (unlikely(!tsoh))
1057 			return -1;
1058 	}
1059 
1060 	header = TSOH_BUFFER(tsoh);
1061 	tsoh_th = (struct tcphdr *)(header + SKB_TCP_OFF(skb));
1062 
1063 	/* Copy and update the headers. */
1064 	memcpy(header, skb->data, st->header_len);
1065 
1066 	tsoh_th->seq = htonl(st->seqnum);
1067 	st->seqnum += skb_shinfo(skb)->gso_size;
1068 	if (st->out_len > skb_shinfo(skb)->gso_size) {
1069 		/* This packet will not finish the TSO burst. */
1070 		ip_length = st->full_packet_size - ETH_HDR_LEN(skb);
1071 		tsoh_th->fin = 0;
1072 		tsoh_th->psh = 0;
1073 	} else {
1074 		/* This packet will be the last in the TSO burst. */
1075 		ip_length = st->header_len - ETH_HDR_LEN(skb) + st->out_len;
1076 		tsoh_th->fin = tcp_hdr(skb)->fin;
1077 		tsoh_th->psh = tcp_hdr(skb)->psh;
1078 	}
1079 
1080 	if (st->protocol == htons(ETH_P_IP)) {
1081 		struct iphdr *tsoh_iph =
1082 			(struct iphdr *)(header + SKB_IPV4_OFF(skb));
1083 
1084 		tsoh_iph->tot_len = htons(ip_length);
1085 
1086 		/* Linux leaves suitable gaps in the IP ID space for us to fill. */
1087 		tsoh_iph->id = htons(st->ipv4_id);
1088 		st->ipv4_id++;
1089 	} else {
1090 		struct ipv6hdr *tsoh_iph =
1091 			(struct ipv6hdr *)(header + SKB_IPV6_OFF(skb));
1092 
1093 		tsoh_iph->payload_len = htons(ip_length - sizeof(*tsoh_iph));
1094 	}
1095 
1096 	st->packet_space = skb_shinfo(skb)->gso_size;
1097 	++tx_queue->tso_packets;
1098 
1099 	/* Form a descriptor for this header. */
1100 	efx_tso_put_header(tx_queue, tsoh, st->header_len);
1101 
1102 	return 0;
1103 }
1104 
1105 
1106 /**
1107  * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer
1108  * @tx_queue:		Efx TX queue
1109  * @skb:		Socket buffer
1110  *
1111  * Context: You must hold netif_tx_lock() to call this function.
1112  *
1113  * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if
1114  * @skb was not enqueued.  In all cases @skb is consumed.  Return
1115  * %NETDEV_TX_OK or %NETDEV_TX_BUSY.
1116  */
1117 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
1118 			       struct sk_buff *skb)
1119 {
1120 	struct efx_nic *efx = tx_queue->efx;
1121 	int frag_i, rc, rc2 = NETDEV_TX_OK;
1122 	struct tso_state state;
1123 
1124 	/* Find the packet protocol and sanity-check it */
1125 	state.protocol = efx_tso_check_protocol(skb);
1126 
1127 	EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
1128 
1129 	tso_start(&state, skb);
1130 
1131 	/* Assume that skb header area contains exactly the headers, and
1132 	 * all payload is in the frag list.
1133 	 */
1134 	if (skb_headlen(skb) == state.header_len) {
1135 		/* Grab the first payload fragment. */
1136 		EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags < 1);
1137 		frag_i = 0;
1138 		rc = tso_get_fragment(&state, efx,
1139 				      skb_shinfo(skb)->frags + frag_i);
1140 		if (rc)
1141 			goto mem_err;
1142 	} else {
1143 		rc = tso_get_head_fragment(&state, efx, skb);
1144 		if (rc)
1145 			goto mem_err;
1146 		frag_i = -1;
1147 	}
1148 
1149 	if (tso_start_new_packet(tx_queue, skb, &state) < 0)
1150 		goto mem_err;
1151 
1152 	while (1) {
1153 		rc = tso_fill_packet_with_fragment(tx_queue, skb, &state);
1154 		if (unlikely(rc)) {
1155 			rc2 = NETDEV_TX_BUSY;
1156 			goto unwind;
1157 		}
1158 
1159 		/* Move onto the next fragment? */
1160 		if (state.in_len == 0) {
1161 			if (++frag_i >= skb_shinfo(skb)->nr_frags)
1162 				/* End of payload reached. */
1163 				break;
1164 			rc = tso_get_fragment(&state, efx,
1165 					      skb_shinfo(skb)->frags + frag_i);
1166 			if (rc)
1167 				goto mem_err;
1168 		}
1169 
1170 		/* Start at new packet? */
1171 		if (state.packet_space == 0 &&
1172 		    tso_start_new_packet(tx_queue, skb, &state) < 0)
1173 			goto mem_err;
1174 	}
1175 
1176 	netdev_tx_sent_queue(tx_queue->core_txq, skb->len);
1177 
1178 	/* Pass off to hardware */
1179 	efx_nic_push_buffers(tx_queue);
1180 
1181 	tx_queue->tso_bursts++;
1182 	return NETDEV_TX_OK;
1183 
1184  mem_err:
1185 	netif_err(efx, tx_err, efx->net_dev,
1186 		  "Out of memory for TSO headers, or PCI mapping error\n");
1187 	dev_kfree_skb_any(skb);
1188 
1189  unwind:
1190 	/* Free the DMA mapping we were in the process of writing out */
1191 	if (state.unmap_len) {
1192 		if (state.unmap_single)
1193 			pci_unmap_single(efx->pci_dev, state.unmap_addr,
1194 					 state.unmap_len, PCI_DMA_TODEVICE);
1195 		else
1196 			pci_unmap_page(efx->pci_dev, state.unmap_addr,
1197 				       state.unmap_len, PCI_DMA_TODEVICE);
1198 	}
1199 
1200 	efx_enqueue_unwind(tx_queue);
1201 	return rc2;
1202 }
1203 
1204 
1205 /*
1206  * Free up all TSO datastructures associated with tx_queue. This
1207  * routine should be called only once the tx_queue is both empty and
1208  * will no longer be used.
1209  */
1210 static void efx_fini_tso(struct efx_tx_queue *tx_queue)
1211 {
1212 	unsigned i;
1213 
1214 	if (tx_queue->buffer) {
1215 		for (i = 0; i <= tx_queue->ptr_mask; ++i)
1216 			efx_tsoh_free(tx_queue, &tx_queue->buffer[i]);
1217 	}
1218 
1219 	while (tx_queue->tso_headers_free != NULL)
1220 		efx_tsoh_block_free(tx_queue, tx_queue->tso_headers_free,
1221 				    tx_queue->efx->pci_dev);
1222 }
1223