1 /**************************************************************************** 2 * Driver for Solarflare network controllers and boards 3 * Copyright 2005-2006 Fen Systems Ltd. 4 * Copyright 2005-2013 Solarflare Communications Inc. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published 8 * by the Free Software Foundation, incorporated herein by reference. 9 */ 10 11 #include <linux/pci.h> 12 #include <linux/tcp.h> 13 #include <linux/ip.h> 14 #include <linux/in.h> 15 #include <linux/ipv6.h> 16 #include <linux/slab.h> 17 #include <net/ipv6.h> 18 #include <linux/if_ether.h> 19 #include <linux/highmem.h> 20 #include <linux/cache.h> 21 #include "net_driver.h" 22 #include "efx.h" 23 #include "io.h" 24 #include "nic.h" 25 #include "tx.h" 26 #include "workarounds.h" 27 #include "ef10_regs.h" 28 29 #ifdef EFX_USE_PIO 30 31 #define EFX_PIOBUF_SIZE_MAX ER_DZ_TX_PIOBUF_SIZE 32 #define EFX_PIOBUF_SIZE_DEF ALIGN(256, L1_CACHE_BYTES) 33 unsigned int efx_piobuf_size __read_mostly = EFX_PIOBUF_SIZE_DEF; 34 35 #endif /* EFX_USE_PIO */ 36 37 static inline u8 *efx_tx_get_copy_buffer(struct efx_tx_queue *tx_queue, 38 struct efx_tx_buffer *buffer) 39 { 40 unsigned int index = efx_tx_queue_get_insert_index(tx_queue); 41 struct efx_buffer *page_buf = 42 &tx_queue->cb_page[index >> (PAGE_SHIFT - EFX_TX_CB_ORDER)]; 43 unsigned int offset = 44 ((index << EFX_TX_CB_ORDER) + NET_IP_ALIGN) & (PAGE_SIZE - 1); 45 46 if (unlikely(!page_buf->addr) && 47 efx_nic_alloc_buffer(tx_queue->efx, page_buf, PAGE_SIZE, 48 GFP_ATOMIC)) 49 return NULL; 50 buffer->dma_addr = page_buf->dma_addr + offset; 51 buffer->unmap_len = 0; 52 return (u8 *)page_buf->addr + offset; 53 } 54 55 u8 *efx_tx_get_copy_buffer_limited(struct efx_tx_queue *tx_queue, 56 struct efx_tx_buffer *buffer, size_t len) 57 { 58 if (len > EFX_TX_CB_SIZE) 59 return NULL; 60 return efx_tx_get_copy_buffer(tx_queue, buffer); 61 } 62 63 static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue, 64 struct efx_tx_buffer *buffer, 65 unsigned int *pkts_compl, 66 unsigned int *bytes_compl) 67 { 68 if (buffer->unmap_len) { 69 struct device *dma_dev = &tx_queue->efx->pci_dev->dev; 70 dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset; 71 if (buffer->flags & EFX_TX_BUF_MAP_SINGLE) 72 dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len, 73 DMA_TO_DEVICE); 74 else 75 dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len, 76 DMA_TO_DEVICE); 77 buffer->unmap_len = 0; 78 } 79 80 if (buffer->flags & EFX_TX_BUF_SKB) { 81 (*pkts_compl)++; 82 (*bytes_compl) += buffer->skb->len; 83 dev_consume_skb_any((struct sk_buff *)buffer->skb); 84 netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev, 85 "TX queue %d transmission id %x complete\n", 86 tx_queue->queue, tx_queue->read_count); 87 } 88 89 buffer->len = 0; 90 buffer->flags = 0; 91 } 92 93 unsigned int efx_tx_max_skb_descs(struct efx_nic *efx) 94 { 95 /* Header and payload descriptor for each output segment, plus 96 * one for every input fragment boundary within a segment 97 */ 98 unsigned int max_descs = EFX_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS; 99 100 /* Possibly one more per segment for option descriptors */ 101 if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) 102 max_descs += EFX_TSO_MAX_SEGS; 103 104 /* Possibly more for PCIe page boundaries within input fragments */ 105 if (PAGE_SIZE > EFX_PAGE_SIZE) 106 max_descs += max_t(unsigned int, MAX_SKB_FRAGS, 107 DIV_ROUND_UP(GSO_MAX_SIZE, EFX_PAGE_SIZE)); 108 109 return max_descs; 110 } 111 112 static void efx_tx_maybe_stop_queue(struct efx_tx_queue *txq1) 113 { 114 /* We need to consider both queues that the net core sees as one */ 115 struct efx_tx_queue *txq2 = efx_tx_queue_partner(txq1); 116 struct efx_nic *efx = txq1->efx; 117 unsigned int fill_level; 118 119 fill_level = max(txq1->insert_count - txq1->old_read_count, 120 txq2->insert_count - txq2->old_read_count); 121 if (likely(fill_level < efx->txq_stop_thresh)) 122 return; 123 124 /* We used the stale old_read_count above, which gives us a 125 * pessimistic estimate of the fill level (which may even 126 * validly be >= efx->txq_entries). Now try again using 127 * read_count (more likely to be a cache miss). 128 * 129 * If we read read_count and then conditionally stop the 130 * queue, it is possible for the completion path to race with 131 * us and complete all outstanding descriptors in the middle, 132 * after which there will be no more completions to wake it. 133 * Therefore we stop the queue first, then read read_count 134 * (with a memory barrier to ensure the ordering), then 135 * restart the queue if the fill level turns out to be low 136 * enough. 137 */ 138 netif_tx_stop_queue(txq1->core_txq); 139 smp_mb(); 140 txq1->old_read_count = ACCESS_ONCE(txq1->read_count); 141 txq2->old_read_count = ACCESS_ONCE(txq2->read_count); 142 143 fill_level = max(txq1->insert_count - txq1->old_read_count, 144 txq2->insert_count - txq2->old_read_count); 145 EFX_WARN_ON_ONCE_PARANOID(fill_level >= efx->txq_entries); 146 if (likely(fill_level < efx->txq_stop_thresh)) { 147 smp_mb(); 148 if (likely(!efx->loopback_selftest)) 149 netif_tx_start_queue(txq1->core_txq); 150 } 151 } 152 153 static int efx_enqueue_skb_copy(struct efx_tx_queue *tx_queue, 154 struct sk_buff *skb) 155 { 156 unsigned int copy_len = skb->len; 157 struct efx_tx_buffer *buffer; 158 u8 *copy_buffer; 159 int rc; 160 161 EFX_WARN_ON_ONCE_PARANOID(copy_len > EFX_TX_CB_SIZE); 162 163 buffer = efx_tx_queue_get_insert_buffer(tx_queue); 164 165 copy_buffer = efx_tx_get_copy_buffer(tx_queue, buffer); 166 if (unlikely(!copy_buffer)) 167 return -ENOMEM; 168 169 rc = skb_copy_bits(skb, 0, copy_buffer, copy_len); 170 EFX_WARN_ON_PARANOID(rc); 171 buffer->len = copy_len; 172 173 buffer->skb = skb; 174 buffer->flags = EFX_TX_BUF_SKB; 175 176 ++tx_queue->insert_count; 177 return rc; 178 } 179 180 #ifdef EFX_USE_PIO 181 182 struct efx_short_copy_buffer { 183 int used; 184 u8 buf[L1_CACHE_BYTES]; 185 }; 186 187 /* Copy to PIO, respecting that writes to PIO buffers must be dword aligned. 188 * Advances piobuf pointer. Leaves additional data in the copy buffer. 189 */ 190 static void efx_memcpy_toio_aligned(struct efx_nic *efx, u8 __iomem **piobuf, 191 u8 *data, int len, 192 struct efx_short_copy_buffer *copy_buf) 193 { 194 int block_len = len & ~(sizeof(copy_buf->buf) - 1); 195 196 __iowrite64_copy(*piobuf, data, block_len >> 3); 197 *piobuf += block_len; 198 len -= block_len; 199 200 if (len) { 201 data += block_len; 202 BUG_ON(copy_buf->used); 203 BUG_ON(len > sizeof(copy_buf->buf)); 204 memcpy(copy_buf->buf, data, len); 205 copy_buf->used = len; 206 } 207 } 208 209 /* Copy to PIO, respecting dword alignment, popping data from copy buffer first. 210 * Advances piobuf pointer. Leaves additional data in the copy buffer. 211 */ 212 static void efx_memcpy_toio_aligned_cb(struct efx_nic *efx, u8 __iomem **piobuf, 213 u8 *data, int len, 214 struct efx_short_copy_buffer *copy_buf) 215 { 216 if (copy_buf->used) { 217 /* if the copy buffer is partially full, fill it up and write */ 218 int copy_to_buf = 219 min_t(int, sizeof(copy_buf->buf) - copy_buf->used, len); 220 221 memcpy(copy_buf->buf + copy_buf->used, data, copy_to_buf); 222 copy_buf->used += copy_to_buf; 223 224 /* if we didn't fill it up then we're done for now */ 225 if (copy_buf->used < sizeof(copy_buf->buf)) 226 return; 227 228 __iowrite64_copy(*piobuf, copy_buf->buf, 229 sizeof(copy_buf->buf) >> 3); 230 *piobuf += sizeof(copy_buf->buf); 231 data += copy_to_buf; 232 len -= copy_to_buf; 233 copy_buf->used = 0; 234 } 235 236 efx_memcpy_toio_aligned(efx, piobuf, data, len, copy_buf); 237 } 238 239 static void efx_flush_copy_buffer(struct efx_nic *efx, u8 __iomem *piobuf, 240 struct efx_short_copy_buffer *copy_buf) 241 { 242 /* if there's anything in it, write the whole buffer, including junk */ 243 if (copy_buf->used) 244 __iowrite64_copy(piobuf, copy_buf->buf, 245 sizeof(copy_buf->buf) >> 3); 246 } 247 248 /* Traverse skb structure and copy fragments in to PIO buffer. 249 * Advances piobuf pointer. 250 */ 251 static void efx_skb_copy_bits_to_pio(struct efx_nic *efx, struct sk_buff *skb, 252 u8 __iomem **piobuf, 253 struct efx_short_copy_buffer *copy_buf) 254 { 255 int i; 256 257 efx_memcpy_toio_aligned(efx, piobuf, skb->data, skb_headlen(skb), 258 copy_buf); 259 260 for (i = 0; i < skb_shinfo(skb)->nr_frags; ++i) { 261 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 262 u8 *vaddr; 263 264 vaddr = kmap_atomic(skb_frag_page(f)); 265 266 efx_memcpy_toio_aligned_cb(efx, piobuf, vaddr + f->page_offset, 267 skb_frag_size(f), copy_buf); 268 kunmap_atomic(vaddr); 269 } 270 271 EFX_WARN_ON_ONCE_PARANOID(skb_shinfo(skb)->frag_list); 272 } 273 274 static int efx_enqueue_skb_pio(struct efx_tx_queue *tx_queue, 275 struct sk_buff *skb) 276 { 277 struct efx_tx_buffer *buffer = 278 efx_tx_queue_get_insert_buffer(tx_queue); 279 u8 __iomem *piobuf = tx_queue->piobuf; 280 281 /* Copy to PIO buffer. Ensure the writes are padded to the end 282 * of a cache line, as this is required for write-combining to be 283 * effective on at least x86. 284 */ 285 286 if (skb_shinfo(skb)->nr_frags) { 287 /* The size of the copy buffer will ensure all writes 288 * are the size of a cache line. 289 */ 290 struct efx_short_copy_buffer copy_buf; 291 292 copy_buf.used = 0; 293 294 efx_skb_copy_bits_to_pio(tx_queue->efx, skb, 295 &piobuf, ©_buf); 296 efx_flush_copy_buffer(tx_queue->efx, piobuf, ©_buf); 297 } else { 298 /* Pad the write to the size of a cache line. 299 * We can do this because we know the skb_shared_info struct is 300 * after the source, and the destination buffer is big enough. 301 */ 302 BUILD_BUG_ON(L1_CACHE_BYTES > 303 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))); 304 __iowrite64_copy(tx_queue->piobuf, skb->data, 305 ALIGN(skb->len, L1_CACHE_BYTES) >> 3); 306 } 307 308 buffer->skb = skb; 309 buffer->flags = EFX_TX_BUF_SKB | EFX_TX_BUF_OPTION; 310 311 EFX_POPULATE_QWORD_5(buffer->option, 312 ESF_DZ_TX_DESC_IS_OPT, 1, 313 ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_PIO, 314 ESF_DZ_TX_PIO_CONT, 0, 315 ESF_DZ_TX_PIO_BYTE_CNT, skb->len, 316 ESF_DZ_TX_PIO_BUF_ADDR, 317 tx_queue->piobuf_offset); 318 ++tx_queue->insert_count; 319 return 0; 320 } 321 #endif /* EFX_USE_PIO */ 322 323 static struct efx_tx_buffer *efx_tx_map_chunk(struct efx_tx_queue *tx_queue, 324 dma_addr_t dma_addr, 325 size_t len) 326 { 327 const struct efx_nic_type *nic_type = tx_queue->efx->type; 328 struct efx_tx_buffer *buffer; 329 unsigned int dma_len; 330 331 /* Map the fragment taking account of NIC-dependent DMA limits. */ 332 do { 333 buffer = efx_tx_queue_get_insert_buffer(tx_queue); 334 dma_len = nic_type->tx_limit_len(tx_queue, dma_addr, len); 335 336 buffer->len = dma_len; 337 buffer->dma_addr = dma_addr; 338 buffer->flags = EFX_TX_BUF_CONT; 339 len -= dma_len; 340 dma_addr += dma_len; 341 ++tx_queue->insert_count; 342 } while (len); 343 344 return buffer; 345 } 346 347 /* Map all data from an SKB for DMA and create descriptors on the queue. 348 */ 349 static int efx_tx_map_data(struct efx_tx_queue *tx_queue, struct sk_buff *skb, 350 unsigned int segment_count) 351 { 352 struct efx_nic *efx = tx_queue->efx; 353 struct device *dma_dev = &efx->pci_dev->dev; 354 unsigned int frag_index, nr_frags; 355 dma_addr_t dma_addr, unmap_addr; 356 unsigned short dma_flags; 357 size_t len, unmap_len; 358 359 nr_frags = skb_shinfo(skb)->nr_frags; 360 frag_index = 0; 361 362 /* Map header data. */ 363 len = skb_headlen(skb); 364 dma_addr = dma_map_single(dma_dev, skb->data, len, DMA_TO_DEVICE); 365 dma_flags = EFX_TX_BUF_MAP_SINGLE; 366 unmap_len = len; 367 unmap_addr = dma_addr; 368 369 if (unlikely(dma_mapping_error(dma_dev, dma_addr))) 370 return -EIO; 371 372 if (segment_count) { 373 /* For TSO we need to put the header in to a separate 374 * descriptor. Map this separately if necessary. 375 */ 376 size_t header_len = skb_transport_header(skb) - skb->data + 377 (tcp_hdr(skb)->doff << 2u); 378 379 if (header_len != len) { 380 tx_queue->tso_long_headers++; 381 efx_tx_map_chunk(tx_queue, dma_addr, header_len); 382 len -= header_len; 383 dma_addr += header_len; 384 } 385 } 386 387 /* Add descriptors for each fragment. */ 388 do { 389 struct efx_tx_buffer *buffer; 390 skb_frag_t *fragment; 391 392 buffer = efx_tx_map_chunk(tx_queue, dma_addr, len); 393 394 /* The final descriptor for a fragment is responsible for 395 * unmapping the whole fragment. 396 */ 397 buffer->flags = EFX_TX_BUF_CONT | dma_flags; 398 buffer->unmap_len = unmap_len; 399 buffer->dma_offset = buffer->dma_addr - unmap_addr; 400 401 if (frag_index >= nr_frags) { 402 /* Store SKB details with the final buffer for 403 * the completion. 404 */ 405 buffer->skb = skb; 406 buffer->flags = EFX_TX_BUF_SKB | dma_flags; 407 return 0; 408 } 409 410 /* Move on to the next fragment. */ 411 fragment = &skb_shinfo(skb)->frags[frag_index++]; 412 len = skb_frag_size(fragment); 413 dma_addr = skb_frag_dma_map(dma_dev, fragment, 414 0, len, DMA_TO_DEVICE); 415 dma_flags = 0; 416 unmap_len = len; 417 unmap_addr = dma_addr; 418 419 if (unlikely(dma_mapping_error(dma_dev, dma_addr))) 420 return -EIO; 421 } while (1); 422 } 423 424 /* Remove buffers put into a tx_queue. None of the buffers must have 425 * an skb attached. 426 */ 427 static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue) 428 { 429 struct efx_tx_buffer *buffer; 430 431 /* Work backwards until we hit the original insert pointer value */ 432 while (tx_queue->insert_count != tx_queue->write_count) { 433 --tx_queue->insert_count; 434 buffer = __efx_tx_queue_get_insert_buffer(tx_queue); 435 efx_dequeue_buffer(tx_queue, buffer, NULL, NULL); 436 } 437 } 438 439 /* 440 * Fallback to software TSO. 441 * 442 * This is used if we are unable to send a GSO packet through hardware TSO. 443 * This should only ever happen due to per-queue restrictions - unsupported 444 * packets should first be filtered by the feature flags. 445 * 446 * Returns 0 on success, error code otherwise. 447 */ 448 static int efx_tx_tso_fallback(struct efx_tx_queue *tx_queue, 449 struct sk_buff *skb) 450 { 451 struct sk_buff *segments, *next; 452 453 segments = skb_gso_segment(skb, 0); 454 if (IS_ERR(segments)) 455 return PTR_ERR(segments); 456 457 dev_kfree_skb_any(skb); 458 skb = segments; 459 460 while (skb) { 461 next = skb->next; 462 skb->next = NULL; 463 464 if (next) 465 skb->xmit_more = true; 466 efx_enqueue_skb(tx_queue, skb); 467 skb = next; 468 } 469 470 return 0; 471 } 472 473 /* 474 * Add a socket buffer to a TX queue 475 * 476 * This maps all fragments of a socket buffer for DMA and adds them to 477 * the TX queue. The queue's insert pointer will be incremented by 478 * the number of fragments in the socket buffer. 479 * 480 * If any DMA mapping fails, any mapped fragments will be unmapped, 481 * the queue's insert pointer will be restored to its original value. 482 * 483 * This function is split out from efx_hard_start_xmit to allow the 484 * loopback test to direct packets via specific TX queues. 485 * 486 * Returns NETDEV_TX_OK. 487 * You must hold netif_tx_lock() to call this function. 488 */ 489 netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb) 490 { 491 bool data_mapped = false; 492 unsigned int segments; 493 unsigned int skb_len; 494 int rc; 495 496 skb_len = skb->len; 497 segments = skb_is_gso(skb) ? skb_shinfo(skb)->gso_segs : 0; 498 if (segments == 1) 499 segments = 0; /* Don't use TSO for a single segment. */ 500 501 /* Handle TSO first - it's *possible* (although unlikely) that we might 502 * be passed a packet to segment that's smaller than the copybreak/PIO 503 * size limit. 504 */ 505 if (segments) { 506 EFX_WARN_ON_ONCE_PARANOID(!tx_queue->handle_tso); 507 rc = tx_queue->handle_tso(tx_queue, skb, &data_mapped); 508 if (rc == -EINVAL) { 509 rc = efx_tx_tso_fallback(tx_queue, skb); 510 tx_queue->tso_fallbacks++; 511 if (rc == 0) 512 return 0; 513 } 514 if (rc) 515 goto err; 516 #ifdef EFX_USE_PIO 517 } else if (skb_len <= efx_piobuf_size && !skb->xmit_more && 518 efx_nic_may_tx_pio(tx_queue)) { 519 /* Use PIO for short packets with an empty queue. */ 520 if (efx_enqueue_skb_pio(tx_queue, skb)) 521 goto err; 522 tx_queue->pio_packets++; 523 data_mapped = true; 524 #endif 525 } else if (skb->data_len && skb_len <= EFX_TX_CB_SIZE) { 526 /* Pad short packets or coalesce short fragmented packets. */ 527 if (efx_enqueue_skb_copy(tx_queue, skb)) 528 goto err; 529 tx_queue->cb_packets++; 530 data_mapped = true; 531 } 532 533 /* Map for DMA and create descriptors if we haven't done so already. */ 534 if (!data_mapped && (efx_tx_map_data(tx_queue, skb, segments))) 535 goto err; 536 537 /* Update BQL */ 538 netdev_tx_sent_queue(tx_queue->core_txq, skb_len); 539 540 /* Pass off to hardware */ 541 if (!skb->xmit_more || netif_xmit_stopped(tx_queue->core_txq)) { 542 struct efx_tx_queue *txq2 = efx_tx_queue_partner(tx_queue); 543 544 /* There could be packets left on the partner queue if those 545 * SKBs had skb->xmit_more set. If we do not push those they 546 * could be left for a long time and cause a netdev watchdog. 547 */ 548 if (txq2->xmit_more_available) 549 efx_nic_push_buffers(txq2); 550 551 efx_nic_push_buffers(tx_queue); 552 } else { 553 tx_queue->xmit_more_available = skb->xmit_more; 554 } 555 556 if (segments) { 557 tx_queue->tso_bursts++; 558 tx_queue->tso_packets += segments; 559 tx_queue->tx_packets += segments; 560 } else { 561 tx_queue->tx_packets++; 562 } 563 564 efx_tx_maybe_stop_queue(tx_queue); 565 566 return NETDEV_TX_OK; 567 568 569 err: 570 efx_enqueue_unwind(tx_queue); 571 dev_kfree_skb_any(skb); 572 return NETDEV_TX_OK; 573 } 574 575 /* Remove packets from the TX queue 576 * 577 * This removes packets from the TX queue, up to and including the 578 * specified index. 579 */ 580 static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue, 581 unsigned int index, 582 unsigned int *pkts_compl, 583 unsigned int *bytes_compl) 584 { 585 struct efx_nic *efx = tx_queue->efx; 586 unsigned int stop_index, read_ptr; 587 588 stop_index = (index + 1) & tx_queue->ptr_mask; 589 read_ptr = tx_queue->read_count & tx_queue->ptr_mask; 590 591 while (read_ptr != stop_index) { 592 struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr]; 593 594 if (!(buffer->flags & EFX_TX_BUF_OPTION) && 595 unlikely(buffer->len == 0)) { 596 netif_err(efx, tx_err, efx->net_dev, 597 "TX queue %d spurious TX completion id %x\n", 598 tx_queue->queue, read_ptr); 599 efx_schedule_reset(efx, RESET_TYPE_TX_SKIP); 600 return; 601 } 602 603 efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl); 604 605 ++tx_queue->read_count; 606 read_ptr = tx_queue->read_count & tx_queue->ptr_mask; 607 } 608 } 609 610 /* Initiate a packet transmission. We use one channel per CPU 611 * (sharing when we have more CPUs than channels). On Falcon, the TX 612 * completion events will be directed back to the CPU that transmitted 613 * the packet, which should be cache-efficient. 614 * 615 * Context: non-blocking. 616 * Note that returning anything other than NETDEV_TX_OK will cause the 617 * OS to free the skb. 618 */ 619 netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb, 620 struct net_device *net_dev) 621 { 622 struct efx_nic *efx = netdev_priv(net_dev); 623 struct efx_tx_queue *tx_queue; 624 unsigned index, type; 625 626 EFX_WARN_ON_PARANOID(!netif_device_present(net_dev)); 627 628 /* PTP "event" packet */ 629 if (unlikely(efx_xmit_with_hwtstamp(skb)) && 630 unlikely(efx_ptp_is_ptp_tx(efx, skb))) { 631 return efx_ptp_tx(efx, skb); 632 } 633 634 index = skb_get_queue_mapping(skb); 635 type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0; 636 if (index >= efx->n_tx_channels) { 637 index -= efx->n_tx_channels; 638 type |= EFX_TXQ_TYPE_HIGHPRI; 639 } 640 tx_queue = efx_get_tx_queue(efx, index, type); 641 642 return efx_enqueue_skb(tx_queue, skb); 643 } 644 645 void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue) 646 { 647 struct efx_nic *efx = tx_queue->efx; 648 649 /* Must be inverse of queue lookup in efx_hard_start_xmit() */ 650 tx_queue->core_txq = 651 netdev_get_tx_queue(efx->net_dev, 652 tx_queue->queue / EFX_TXQ_TYPES + 653 ((tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ? 654 efx->n_tx_channels : 0)); 655 } 656 657 int efx_setup_tc(struct net_device *net_dev, u32 handle, __be16 proto, 658 struct tc_to_netdev *ntc) 659 { 660 struct efx_nic *efx = netdev_priv(net_dev); 661 struct efx_channel *channel; 662 struct efx_tx_queue *tx_queue; 663 unsigned tc, num_tc; 664 int rc; 665 666 if (ntc->type != TC_SETUP_MQPRIO) 667 return -EINVAL; 668 669 num_tc = ntc->tc; 670 671 if (num_tc > EFX_MAX_TX_TC) 672 return -EINVAL; 673 674 if (num_tc == net_dev->num_tc) 675 return 0; 676 677 for (tc = 0; tc < num_tc; tc++) { 678 net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels; 679 net_dev->tc_to_txq[tc].count = efx->n_tx_channels; 680 } 681 682 if (num_tc > net_dev->num_tc) { 683 /* Initialise high-priority queues as necessary */ 684 efx_for_each_channel(channel, efx) { 685 efx_for_each_possible_channel_tx_queue(tx_queue, 686 channel) { 687 if (!(tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI)) 688 continue; 689 if (!tx_queue->buffer) { 690 rc = efx_probe_tx_queue(tx_queue); 691 if (rc) 692 return rc; 693 } 694 if (!tx_queue->initialised) 695 efx_init_tx_queue(tx_queue); 696 efx_init_tx_queue_core_txq(tx_queue); 697 } 698 } 699 } else { 700 /* Reduce number of classes before number of queues */ 701 net_dev->num_tc = num_tc; 702 } 703 704 rc = netif_set_real_num_tx_queues(net_dev, 705 max_t(int, num_tc, 1) * 706 efx->n_tx_channels); 707 if (rc) 708 return rc; 709 710 /* Do not destroy high-priority queues when they become 711 * unused. We would have to flush them first, and it is 712 * fairly difficult to flush a subset of TX queues. Leave 713 * it to efx_fini_channels(). 714 */ 715 716 net_dev->num_tc = num_tc; 717 return 0; 718 } 719 720 void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index) 721 { 722 unsigned fill_level; 723 struct efx_nic *efx = tx_queue->efx; 724 struct efx_tx_queue *txq2; 725 unsigned int pkts_compl = 0, bytes_compl = 0; 726 727 EFX_WARN_ON_ONCE_PARANOID(index > tx_queue->ptr_mask); 728 729 efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl); 730 tx_queue->pkts_compl += pkts_compl; 731 tx_queue->bytes_compl += bytes_compl; 732 733 if (pkts_compl > 1) 734 ++tx_queue->merge_events; 735 736 /* See if we need to restart the netif queue. This memory 737 * barrier ensures that we write read_count (inside 738 * efx_dequeue_buffers()) before reading the queue status. 739 */ 740 smp_mb(); 741 if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) && 742 likely(efx->port_enabled) && 743 likely(netif_device_present(efx->net_dev))) { 744 txq2 = efx_tx_queue_partner(tx_queue); 745 fill_level = max(tx_queue->insert_count - tx_queue->read_count, 746 txq2->insert_count - txq2->read_count); 747 if (fill_level <= efx->txq_wake_thresh) 748 netif_tx_wake_queue(tx_queue->core_txq); 749 } 750 751 /* Check whether the hardware queue is now empty */ 752 if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) { 753 tx_queue->old_write_count = ACCESS_ONCE(tx_queue->write_count); 754 if (tx_queue->read_count == tx_queue->old_write_count) { 755 smp_mb(); 756 tx_queue->empty_read_count = 757 tx_queue->read_count | EFX_EMPTY_COUNT_VALID; 758 } 759 } 760 } 761 762 static unsigned int efx_tx_cb_page_count(struct efx_tx_queue *tx_queue) 763 { 764 return DIV_ROUND_UP(tx_queue->ptr_mask + 1, PAGE_SIZE >> EFX_TX_CB_ORDER); 765 } 766 767 int efx_probe_tx_queue(struct efx_tx_queue *tx_queue) 768 { 769 struct efx_nic *efx = tx_queue->efx; 770 unsigned int entries; 771 int rc; 772 773 /* Create the smallest power-of-two aligned ring */ 774 entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE); 775 EFX_WARN_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE); 776 tx_queue->ptr_mask = entries - 1; 777 778 netif_dbg(efx, probe, efx->net_dev, 779 "creating TX queue %d size %#x mask %#x\n", 780 tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask); 781 782 /* Allocate software ring */ 783 tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer), 784 GFP_KERNEL); 785 if (!tx_queue->buffer) 786 return -ENOMEM; 787 788 tx_queue->cb_page = kcalloc(efx_tx_cb_page_count(tx_queue), 789 sizeof(tx_queue->cb_page[0]), GFP_KERNEL); 790 if (!tx_queue->cb_page) { 791 rc = -ENOMEM; 792 goto fail1; 793 } 794 795 /* Allocate hardware ring */ 796 rc = efx_nic_probe_tx(tx_queue); 797 if (rc) 798 goto fail2; 799 800 return 0; 801 802 fail2: 803 kfree(tx_queue->cb_page); 804 tx_queue->cb_page = NULL; 805 fail1: 806 kfree(tx_queue->buffer); 807 tx_queue->buffer = NULL; 808 return rc; 809 } 810 811 void efx_init_tx_queue(struct efx_tx_queue *tx_queue) 812 { 813 struct efx_nic *efx = tx_queue->efx; 814 815 netif_dbg(efx, drv, efx->net_dev, 816 "initialising TX queue %d\n", tx_queue->queue); 817 818 tx_queue->insert_count = 0; 819 tx_queue->write_count = 0; 820 tx_queue->old_write_count = 0; 821 tx_queue->read_count = 0; 822 tx_queue->old_read_count = 0; 823 tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID; 824 tx_queue->xmit_more_available = false; 825 826 /* Set up default function pointers. These may get replaced by 827 * efx_nic_init_tx() based off NIC/queue capabilities. 828 */ 829 tx_queue->handle_tso = efx_enqueue_skb_tso; 830 831 /* Set up TX descriptor ring */ 832 efx_nic_init_tx(tx_queue); 833 834 tx_queue->initialised = true; 835 } 836 837 void efx_fini_tx_queue(struct efx_tx_queue *tx_queue) 838 { 839 struct efx_tx_buffer *buffer; 840 841 netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev, 842 "shutting down TX queue %d\n", tx_queue->queue); 843 844 if (!tx_queue->buffer) 845 return; 846 847 /* Free any buffers left in the ring */ 848 while (tx_queue->read_count != tx_queue->write_count) { 849 unsigned int pkts_compl = 0, bytes_compl = 0; 850 buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask]; 851 efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl); 852 853 ++tx_queue->read_count; 854 } 855 tx_queue->xmit_more_available = false; 856 netdev_tx_reset_queue(tx_queue->core_txq); 857 } 858 859 void efx_remove_tx_queue(struct efx_tx_queue *tx_queue) 860 { 861 int i; 862 863 if (!tx_queue->buffer) 864 return; 865 866 netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev, 867 "destroying TX queue %d\n", tx_queue->queue); 868 efx_nic_remove_tx(tx_queue); 869 870 if (tx_queue->cb_page) { 871 for (i = 0; i < efx_tx_cb_page_count(tx_queue); i++) 872 efx_nic_free_buffer(tx_queue->efx, 873 &tx_queue->cb_page[i]); 874 kfree(tx_queue->cb_page); 875 tx_queue->cb_page = NULL; 876 } 877 878 kfree(tx_queue->buffer); 879 tx_queue->buffer = NULL; 880 } 881