1 // SPDX-License-Identifier: GPL-2.0-only 2 /**************************************************************************** 3 * Driver for Solarflare network controllers and boards 4 * Copyright 2005-2006 Fen Systems Ltd. 5 * Copyright 2005-2013 Solarflare Communications Inc. 6 */ 7 8 #include <linux/pci.h> 9 #include <linux/tcp.h> 10 #include <linux/ip.h> 11 #include <linux/in.h> 12 #include <linux/ipv6.h> 13 #include <linux/slab.h> 14 #include <net/ipv6.h> 15 #include <linux/if_ether.h> 16 #include <linux/highmem.h> 17 #include <linux/cache.h> 18 #include "net_driver.h" 19 #include "efx.h" 20 #include "io.h" 21 #include "nic.h" 22 #include "tx.h" 23 #include "workarounds.h" 24 #include "ef10_regs.h" 25 26 #ifdef EFX_USE_PIO 27 28 #define EFX_PIOBUF_SIZE_DEF ALIGN(256, L1_CACHE_BYTES) 29 unsigned int efx_piobuf_size __read_mostly = EFX_PIOBUF_SIZE_DEF; 30 31 #endif /* EFX_USE_PIO */ 32 33 static inline u8 *efx_tx_get_copy_buffer(struct efx_tx_queue *tx_queue, 34 struct efx_tx_buffer *buffer) 35 { 36 unsigned int index = efx_tx_queue_get_insert_index(tx_queue); 37 struct efx_buffer *page_buf = 38 &tx_queue->cb_page[index >> (PAGE_SHIFT - EFX_TX_CB_ORDER)]; 39 unsigned int offset = 40 ((index << EFX_TX_CB_ORDER) + NET_IP_ALIGN) & (PAGE_SIZE - 1); 41 42 if (unlikely(!page_buf->addr) && 43 efx_nic_alloc_buffer(tx_queue->efx, page_buf, PAGE_SIZE, 44 GFP_ATOMIC)) 45 return NULL; 46 buffer->dma_addr = page_buf->dma_addr + offset; 47 buffer->unmap_len = 0; 48 return (u8 *)page_buf->addr + offset; 49 } 50 51 u8 *efx_tx_get_copy_buffer_limited(struct efx_tx_queue *tx_queue, 52 struct efx_tx_buffer *buffer, size_t len) 53 { 54 if (len > EFX_TX_CB_SIZE) 55 return NULL; 56 return efx_tx_get_copy_buffer(tx_queue, buffer); 57 } 58 59 static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue, 60 struct efx_tx_buffer *buffer, 61 unsigned int *pkts_compl, 62 unsigned int *bytes_compl) 63 { 64 if (buffer->unmap_len) { 65 struct device *dma_dev = &tx_queue->efx->pci_dev->dev; 66 dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset; 67 if (buffer->flags & EFX_TX_BUF_MAP_SINGLE) 68 dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len, 69 DMA_TO_DEVICE); 70 else 71 dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len, 72 DMA_TO_DEVICE); 73 buffer->unmap_len = 0; 74 } 75 76 if (buffer->flags & EFX_TX_BUF_SKB) { 77 struct sk_buff *skb = (struct sk_buff *)buffer->skb; 78 79 EFX_WARN_ON_PARANOID(!pkts_compl || !bytes_compl); 80 (*pkts_compl)++; 81 (*bytes_compl) += skb->len; 82 if (tx_queue->timestamping && 83 (tx_queue->completed_timestamp_major || 84 tx_queue->completed_timestamp_minor)) { 85 struct skb_shared_hwtstamps hwtstamp; 86 87 hwtstamp.hwtstamp = 88 efx_ptp_nic_to_kernel_time(tx_queue); 89 skb_tstamp_tx(skb, &hwtstamp); 90 91 tx_queue->completed_timestamp_major = 0; 92 tx_queue->completed_timestamp_minor = 0; 93 } 94 dev_consume_skb_any((struct sk_buff *)buffer->skb); 95 netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev, 96 "TX queue %d transmission id %x complete\n", 97 tx_queue->queue, tx_queue->read_count); 98 } 99 100 buffer->len = 0; 101 buffer->flags = 0; 102 } 103 104 unsigned int efx_tx_max_skb_descs(struct efx_nic *efx) 105 { 106 /* Header and payload descriptor for each output segment, plus 107 * one for every input fragment boundary within a segment 108 */ 109 unsigned int max_descs = EFX_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS; 110 111 /* Possibly one more per segment for option descriptors */ 112 if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) 113 max_descs += EFX_TSO_MAX_SEGS; 114 115 /* Possibly more for PCIe page boundaries within input fragments */ 116 if (PAGE_SIZE > EFX_PAGE_SIZE) 117 max_descs += max_t(unsigned int, MAX_SKB_FRAGS, 118 DIV_ROUND_UP(GSO_MAX_SIZE, EFX_PAGE_SIZE)); 119 120 return max_descs; 121 } 122 123 static void efx_tx_maybe_stop_queue(struct efx_tx_queue *txq1) 124 { 125 /* We need to consider both queues that the net core sees as one */ 126 struct efx_tx_queue *txq2 = efx_tx_queue_partner(txq1); 127 struct efx_nic *efx = txq1->efx; 128 unsigned int fill_level; 129 130 fill_level = max(txq1->insert_count - txq1->old_read_count, 131 txq2->insert_count - txq2->old_read_count); 132 if (likely(fill_level < efx->txq_stop_thresh)) 133 return; 134 135 /* We used the stale old_read_count above, which gives us a 136 * pessimistic estimate of the fill level (which may even 137 * validly be >= efx->txq_entries). Now try again using 138 * read_count (more likely to be a cache miss). 139 * 140 * If we read read_count and then conditionally stop the 141 * queue, it is possible for the completion path to race with 142 * us and complete all outstanding descriptors in the middle, 143 * after which there will be no more completions to wake it. 144 * Therefore we stop the queue first, then read read_count 145 * (with a memory barrier to ensure the ordering), then 146 * restart the queue if the fill level turns out to be low 147 * enough. 148 */ 149 netif_tx_stop_queue(txq1->core_txq); 150 smp_mb(); 151 txq1->old_read_count = READ_ONCE(txq1->read_count); 152 txq2->old_read_count = READ_ONCE(txq2->read_count); 153 154 fill_level = max(txq1->insert_count - txq1->old_read_count, 155 txq2->insert_count - txq2->old_read_count); 156 EFX_WARN_ON_ONCE_PARANOID(fill_level >= efx->txq_entries); 157 if (likely(fill_level < efx->txq_stop_thresh)) { 158 smp_mb(); 159 if (likely(!efx->loopback_selftest)) 160 netif_tx_start_queue(txq1->core_txq); 161 } 162 } 163 164 static int efx_enqueue_skb_copy(struct efx_tx_queue *tx_queue, 165 struct sk_buff *skb) 166 { 167 unsigned int copy_len = skb->len; 168 struct efx_tx_buffer *buffer; 169 u8 *copy_buffer; 170 int rc; 171 172 EFX_WARN_ON_ONCE_PARANOID(copy_len > EFX_TX_CB_SIZE); 173 174 buffer = efx_tx_queue_get_insert_buffer(tx_queue); 175 176 copy_buffer = efx_tx_get_copy_buffer(tx_queue, buffer); 177 if (unlikely(!copy_buffer)) 178 return -ENOMEM; 179 180 rc = skb_copy_bits(skb, 0, copy_buffer, copy_len); 181 EFX_WARN_ON_PARANOID(rc); 182 buffer->len = copy_len; 183 184 buffer->skb = skb; 185 buffer->flags = EFX_TX_BUF_SKB; 186 187 ++tx_queue->insert_count; 188 return rc; 189 } 190 191 #ifdef EFX_USE_PIO 192 193 struct efx_short_copy_buffer { 194 int used; 195 u8 buf[L1_CACHE_BYTES]; 196 }; 197 198 /* Copy to PIO, respecting that writes to PIO buffers must be dword aligned. 199 * Advances piobuf pointer. Leaves additional data in the copy buffer. 200 */ 201 static void efx_memcpy_toio_aligned(struct efx_nic *efx, u8 __iomem **piobuf, 202 u8 *data, int len, 203 struct efx_short_copy_buffer *copy_buf) 204 { 205 int block_len = len & ~(sizeof(copy_buf->buf) - 1); 206 207 __iowrite64_copy(*piobuf, data, block_len >> 3); 208 *piobuf += block_len; 209 len -= block_len; 210 211 if (len) { 212 data += block_len; 213 BUG_ON(copy_buf->used); 214 BUG_ON(len > sizeof(copy_buf->buf)); 215 memcpy(copy_buf->buf, data, len); 216 copy_buf->used = len; 217 } 218 } 219 220 /* Copy to PIO, respecting dword alignment, popping data from copy buffer first. 221 * Advances piobuf pointer. Leaves additional data in the copy buffer. 222 */ 223 static void efx_memcpy_toio_aligned_cb(struct efx_nic *efx, u8 __iomem **piobuf, 224 u8 *data, int len, 225 struct efx_short_copy_buffer *copy_buf) 226 { 227 if (copy_buf->used) { 228 /* if the copy buffer is partially full, fill it up and write */ 229 int copy_to_buf = 230 min_t(int, sizeof(copy_buf->buf) - copy_buf->used, len); 231 232 memcpy(copy_buf->buf + copy_buf->used, data, copy_to_buf); 233 copy_buf->used += copy_to_buf; 234 235 /* if we didn't fill it up then we're done for now */ 236 if (copy_buf->used < sizeof(copy_buf->buf)) 237 return; 238 239 __iowrite64_copy(*piobuf, copy_buf->buf, 240 sizeof(copy_buf->buf) >> 3); 241 *piobuf += sizeof(copy_buf->buf); 242 data += copy_to_buf; 243 len -= copy_to_buf; 244 copy_buf->used = 0; 245 } 246 247 efx_memcpy_toio_aligned(efx, piobuf, data, len, copy_buf); 248 } 249 250 static void efx_flush_copy_buffer(struct efx_nic *efx, u8 __iomem *piobuf, 251 struct efx_short_copy_buffer *copy_buf) 252 { 253 /* if there's anything in it, write the whole buffer, including junk */ 254 if (copy_buf->used) 255 __iowrite64_copy(piobuf, copy_buf->buf, 256 sizeof(copy_buf->buf) >> 3); 257 } 258 259 /* Traverse skb structure and copy fragments in to PIO buffer. 260 * Advances piobuf pointer. 261 */ 262 static void efx_skb_copy_bits_to_pio(struct efx_nic *efx, struct sk_buff *skb, 263 u8 __iomem **piobuf, 264 struct efx_short_copy_buffer *copy_buf) 265 { 266 int i; 267 268 efx_memcpy_toio_aligned(efx, piobuf, skb->data, skb_headlen(skb), 269 copy_buf); 270 271 for (i = 0; i < skb_shinfo(skb)->nr_frags; ++i) { 272 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 273 u8 *vaddr; 274 275 vaddr = kmap_atomic(skb_frag_page(f)); 276 277 efx_memcpy_toio_aligned_cb(efx, piobuf, vaddr + skb_frag_off(f), 278 skb_frag_size(f), copy_buf); 279 kunmap_atomic(vaddr); 280 } 281 282 EFX_WARN_ON_ONCE_PARANOID(skb_shinfo(skb)->frag_list); 283 } 284 285 static int efx_enqueue_skb_pio(struct efx_tx_queue *tx_queue, 286 struct sk_buff *skb) 287 { 288 struct efx_tx_buffer *buffer = 289 efx_tx_queue_get_insert_buffer(tx_queue); 290 u8 __iomem *piobuf = tx_queue->piobuf; 291 292 /* Copy to PIO buffer. Ensure the writes are padded to the end 293 * of a cache line, as this is required for write-combining to be 294 * effective on at least x86. 295 */ 296 297 if (skb_shinfo(skb)->nr_frags) { 298 /* The size of the copy buffer will ensure all writes 299 * are the size of a cache line. 300 */ 301 struct efx_short_copy_buffer copy_buf; 302 303 copy_buf.used = 0; 304 305 efx_skb_copy_bits_to_pio(tx_queue->efx, skb, 306 &piobuf, ©_buf); 307 efx_flush_copy_buffer(tx_queue->efx, piobuf, ©_buf); 308 } else { 309 /* Pad the write to the size of a cache line. 310 * We can do this because we know the skb_shared_info struct is 311 * after the source, and the destination buffer is big enough. 312 */ 313 BUILD_BUG_ON(L1_CACHE_BYTES > 314 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))); 315 __iowrite64_copy(tx_queue->piobuf, skb->data, 316 ALIGN(skb->len, L1_CACHE_BYTES) >> 3); 317 } 318 319 buffer->skb = skb; 320 buffer->flags = EFX_TX_BUF_SKB | EFX_TX_BUF_OPTION; 321 322 EFX_POPULATE_QWORD_5(buffer->option, 323 ESF_DZ_TX_DESC_IS_OPT, 1, 324 ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_PIO, 325 ESF_DZ_TX_PIO_CONT, 0, 326 ESF_DZ_TX_PIO_BYTE_CNT, skb->len, 327 ESF_DZ_TX_PIO_BUF_ADDR, 328 tx_queue->piobuf_offset); 329 ++tx_queue->insert_count; 330 return 0; 331 } 332 #endif /* EFX_USE_PIO */ 333 334 static struct efx_tx_buffer *efx_tx_map_chunk(struct efx_tx_queue *tx_queue, 335 dma_addr_t dma_addr, 336 size_t len) 337 { 338 const struct efx_nic_type *nic_type = tx_queue->efx->type; 339 struct efx_tx_buffer *buffer; 340 unsigned int dma_len; 341 342 /* Map the fragment taking account of NIC-dependent DMA limits. */ 343 do { 344 buffer = efx_tx_queue_get_insert_buffer(tx_queue); 345 dma_len = nic_type->tx_limit_len(tx_queue, dma_addr, len); 346 347 buffer->len = dma_len; 348 buffer->dma_addr = dma_addr; 349 buffer->flags = EFX_TX_BUF_CONT; 350 len -= dma_len; 351 dma_addr += dma_len; 352 ++tx_queue->insert_count; 353 } while (len); 354 355 return buffer; 356 } 357 358 /* Map all data from an SKB for DMA and create descriptors on the queue. 359 */ 360 static int efx_tx_map_data(struct efx_tx_queue *tx_queue, struct sk_buff *skb, 361 unsigned int segment_count) 362 { 363 struct efx_nic *efx = tx_queue->efx; 364 struct device *dma_dev = &efx->pci_dev->dev; 365 unsigned int frag_index, nr_frags; 366 dma_addr_t dma_addr, unmap_addr; 367 unsigned short dma_flags; 368 size_t len, unmap_len; 369 370 nr_frags = skb_shinfo(skb)->nr_frags; 371 frag_index = 0; 372 373 /* Map header data. */ 374 len = skb_headlen(skb); 375 dma_addr = dma_map_single(dma_dev, skb->data, len, DMA_TO_DEVICE); 376 dma_flags = EFX_TX_BUF_MAP_SINGLE; 377 unmap_len = len; 378 unmap_addr = dma_addr; 379 380 if (unlikely(dma_mapping_error(dma_dev, dma_addr))) 381 return -EIO; 382 383 if (segment_count) { 384 /* For TSO we need to put the header in to a separate 385 * descriptor. Map this separately if necessary. 386 */ 387 size_t header_len = skb_transport_header(skb) - skb->data + 388 (tcp_hdr(skb)->doff << 2u); 389 390 if (header_len != len) { 391 tx_queue->tso_long_headers++; 392 efx_tx_map_chunk(tx_queue, dma_addr, header_len); 393 len -= header_len; 394 dma_addr += header_len; 395 } 396 } 397 398 /* Add descriptors for each fragment. */ 399 do { 400 struct efx_tx_buffer *buffer; 401 skb_frag_t *fragment; 402 403 buffer = efx_tx_map_chunk(tx_queue, dma_addr, len); 404 405 /* The final descriptor for a fragment is responsible for 406 * unmapping the whole fragment. 407 */ 408 buffer->flags = EFX_TX_BUF_CONT | dma_flags; 409 buffer->unmap_len = unmap_len; 410 buffer->dma_offset = buffer->dma_addr - unmap_addr; 411 412 if (frag_index >= nr_frags) { 413 /* Store SKB details with the final buffer for 414 * the completion. 415 */ 416 buffer->skb = skb; 417 buffer->flags = EFX_TX_BUF_SKB | dma_flags; 418 return 0; 419 } 420 421 /* Move on to the next fragment. */ 422 fragment = &skb_shinfo(skb)->frags[frag_index++]; 423 len = skb_frag_size(fragment); 424 dma_addr = skb_frag_dma_map(dma_dev, fragment, 425 0, len, DMA_TO_DEVICE); 426 dma_flags = 0; 427 unmap_len = len; 428 unmap_addr = dma_addr; 429 430 if (unlikely(dma_mapping_error(dma_dev, dma_addr))) 431 return -EIO; 432 } while (1); 433 } 434 435 /* Remove buffers put into a tx_queue for the current packet. 436 * None of the buffers must have an skb attached. 437 */ 438 static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue, 439 unsigned int insert_count) 440 { 441 struct efx_tx_buffer *buffer; 442 unsigned int bytes_compl = 0; 443 unsigned int pkts_compl = 0; 444 445 /* Work backwards until we hit the original insert pointer value */ 446 while (tx_queue->insert_count != insert_count) { 447 --tx_queue->insert_count; 448 buffer = __efx_tx_queue_get_insert_buffer(tx_queue); 449 efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl); 450 } 451 } 452 453 /* 454 * Fallback to software TSO. 455 * 456 * This is used if we are unable to send a GSO packet through hardware TSO. 457 * This should only ever happen due to per-queue restrictions - unsupported 458 * packets should first be filtered by the feature flags. 459 * 460 * Returns 0 on success, error code otherwise. 461 */ 462 static int efx_tx_tso_fallback(struct efx_tx_queue *tx_queue, 463 struct sk_buff *skb) 464 { 465 struct sk_buff *segments, *next; 466 467 segments = skb_gso_segment(skb, 0); 468 if (IS_ERR(segments)) 469 return PTR_ERR(segments); 470 471 dev_consume_skb_any(skb); 472 skb = segments; 473 474 while (skb) { 475 next = skb->next; 476 skb->next = NULL; 477 478 efx_enqueue_skb(tx_queue, skb); 479 skb = next; 480 } 481 482 return 0; 483 } 484 485 /* 486 * Add a socket buffer to a TX queue 487 * 488 * This maps all fragments of a socket buffer for DMA and adds them to 489 * the TX queue. The queue's insert pointer will be incremented by 490 * the number of fragments in the socket buffer. 491 * 492 * If any DMA mapping fails, any mapped fragments will be unmapped, 493 * the queue's insert pointer will be restored to its original value. 494 * 495 * This function is split out from efx_hard_start_xmit to allow the 496 * loopback test to direct packets via specific TX queues. 497 * 498 * Returns NETDEV_TX_OK. 499 * You must hold netif_tx_lock() to call this function. 500 */ 501 netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb) 502 { 503 unsigned int old_insert_count = tx_queue->insert_count; 504 bool xmit_more = netdev_xmit_more(); 505 bool data_mapped = false; 506 unsigned int segments; 507 unsigned int skb_len; 508 int rc; 509 510 skb_len = skb->len; 511 segments = skb_is_gso(skb) ? skb_shinfo(skb)->gso_segs : 0; 512 if (segments == 1) 513 segments = 0; /* Don't use TSO for a single segment. */ 514 515 /* Handle TSO first - it's *possible* (although unlikely) that we might 516 * be passed a packet to segment that's smaller than the copybreak/PIO 517 * size limit. 518 */ 519 if (segments) { 520 EFX_WARN_ON_ONCE_PARANOID(!tx_queue->handle_tso); 521 rc = tx_queue->handle_tso(tx_queue, skb, &data_mapped); 522 if (rc == -EINVAL) { 523 rc = efx_tx_tso_fallback(tx_queue, skb); 524 tx_queue->tso_fallbacks++; 525 if (rc == 0) 526 return 0; 527 } 528 if (rc) 529 goto err; 530 #ifdef EFX_USE_PIO 531 } else if (skb_len <= efx_piobuf_size && !xmit_more && 532 efx_nic_may_tx_pio(tx_queue)) { 533 /* Use PIO for short packets with an empty queue. */ 534 if (efx_enqueue_skb_pio(tx_queue, skb)) 535 goto err; 536 tx_queue->pio_packets++; 537 data_mapped = true; 538 #endif 539 } else if (skb->data_len && skb_len <= EFX_TX_CB_SIZE) { 540 /* Pad short packets or coalesce short fragmented packets. */ 541 if (efx_enqueue_skb_copy(tx_queue, skb)) 542 goto err; 543 tx_queue->cb_packets++; 544 data_mapped = true; 545 } 546 547 /* Map for DMA and create descriptors if we haven't done so already. */ 548 if (!data_mapped && (efx_tx_map_data(tx_queue, skb, segments))) 549 goto err; 550 551 efx_tx_maybe_stop_queue(tx_queue); 552 553 /* Pass off to hardware */ 554 if (__netdev_tx_sent_queue(tx_queue->core_txq, skb_len, xmit_more)) { 555 struct efx_tx_queue *txq2 = efx_tx_queue_partner(tx_queue); 556 557 /* There could be packets left on the partner queue if 558 * xmit_more was set. If we do not push those they 559 * could be left for a long time and cause a netdev watchdog. 560 */ 561 if (txq2->xmit_more_available) 562 efx_nic_push_buffers(txq2); 563 564 efx_nic_push_buffers(tx_queue); 565 } else { 566 tx_queue->xmit_more_available = xmit_more; 567 } 568 569 if (segments) { 570 tx_queue->tso_bursts++; 571 tx_queue->tso_packets += segments; 572 tx_queue->tx_packets += segments; 573 } else { 574 tx_queue->tx_packets++; 575 } 576 577 return NETDEV_TX_OK; 578 579 580 err: 581 efx_enqueue_unwind(tx_queue, old_insert_count); 582 dev_kfree_skb_any(skb); 583 584 /* If we're not expecting another transmit and we had something to push 585 * on this queue or a partner queue then we need to push here to get the 586 * previous packets out. 587 */ 588 if (!xmit_more) { 589 struct efx_tx_queue *txq2 = efx_tx_queue_partner(tx_queue); 590 591 if (txq2->xmit_more_available) 592 efx_nic_push_buffers(txq2); 593 594 efx_nic_push_buffers(tx_queue); 595 } 596 597 return NETDEV_TX_OK; 598 } 599 600 /* Remove packets from the TX queue 601 * 602 * This removes packets from the TX queue, up to and including the 603 * specified index. 604 */ 605 static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue, 606 unsigned int index, 607 unsigned int *pkts_compl, 608 unsigned int *bytes_compl) 609 { 610 struct efx_nic *efx = tx_queue->efx; 611 unsigned int stop_index, read_ptr; 612 613 stop_index = (index + 1) & tx_queue->ptr_mask; 614 read_ptr = tx_queue->read_count & tx_queue->ptr_mask; 615 616 while (read_ptr != stop_index) { 617 struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr]; 618 619 if (!(buffer->flags & EFX_TX_BUF_OPTION) && 620 unlikely(buffer->len == 0)) { 621 netif_err(efx, tx_err, efx->net_dev, 622 "TX queue %d spurious TX completion id %x\n", 623 tx_queue->queue, read_ptr); 624 efx_schedule_reset(efx, RESET_TYPE_TX_SKIP); 625 return; 626 } 627 628 efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl); 629 630 ++tx_queue->read_count; 631 read_ptr = tx_queue->read_count & tx_queue->ptr_mask; 632 } 633 } 634 635 /* Initiate a packet transmission. We use one channel per CPU 636 * (sharing when we have more CPUs than channels). On Falcon, the TX 637 * completion events will be directed back to the CPU that transmitted 638 * the packet, which should be cache-efficient. 639 * 640 * Context: non-blocking. 641 * Note that returning anything other than NETDEV_TX_OK will cause the 642 * OS to free the skb. 643 */ 644 netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb, 645 struct net_device *net_dev) 646 { 647 struct efx_nic *efx = netdev_priv(net_dev); 648 struct efx_tx_queue *tx_queue; 649 unsigned index, type; 650 651 EFX_WARN_ON_PARANOID(!netif_device_present(net_dev)); 652 653 /* PTP "event" packet */ 654 if (unlikely(efx_xmit_with_hwtstamp(skb)) && 655 unlikely(efx_ptp_is_ptp_tx(efx, skb))) { 656 return efx_ptp_tx(efx, skb); 657 } 658 659 index = skb_get_queue_mapping(skb); 660 type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0; 661 if (index >= efx->n_tx_channels) { 662 index -= efx->n_tx_channels; 663 type |= EFX_TXQ_TYPE_HIGHPRI; 664 } 665 tx_queue = efx_get_tx_queue(efx, index, type); 666 667 return efx_enqueue_skb(tx_queue, skb); 668 } 669 670 void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue) 671 { 672 struct efx_nic *efx = tx_queue->efx; 673 674 /* Must be inverse of queue lookup in efx_hard_start_xmit() */ 675 tx_queue->core_txq = 676 netdev_get_tx_queue(efx->net_dev, 677 tx_queue->queue / EFX_TXQ_TYPES + 678 ((tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ? 679 efx->n_tx_channels : 0)); 680 } 681 682 int efx_setup_tc(struct net_device *net_dev, enum tc_setup_type type, 683 void *type_data) 684 { 685 struct efx_nic *efx = netdev_priv(net_dev); 686 struct tc_mqprio_qopt *mqprio = type_data; 687 struct efx_channel *channel; 688 struct efx_tx_queue *tx_queue; 689 unsigned tc, num_tc; 690 int rc; 691 692 if (type != TC_SETUP_QDISC_MQPRIO) 693 return -EOPNOTSUPP; 694 695 num_tc = mqprio->num_tc; 696 697 if (num_tc > EFX_MAX_TX_TC) 698 return -EINVAL; 699 700 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 701 702 if (num_tc == net_dev->num_tc) 703 return 0; 704 705 for (tc = 0; tc < num_tc; tc++) { 706 net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels; 707 net_dev->tc_to_txq[tc].count = efx->n_tx_channels; 708 } 709 710 if (num_tc > net_dev->num_tc) { 711 /* Initialise high-priority queues as necessary */ 712 efx_for_each_channel(channel, efx) { 713 efx_for_each_possible_channel_tx_queue(tx_queue, 714 channel) { 715 if (!(tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI)) 716 continue; 717 if (!tx_queue->buffer) { 718 rc = efx_probe_tx_queue(tx_queue); 719 if (rc) 720 return rc; 721 } 722 if (!tx_queue->initialised) 723 efx_init_tx_queue(tx_queue); 724 efx_init_tx_queue_core_txq(tx_queue); 725 } 726 } 727 } else { 728 /* Reduce number of classes before number of queues */ 729 net_dev->num_tc = num_tc; 730 } 731 732 rc = netif_set_real_num_tx_queues(net_dev, 733 max_t(int, num_tc, 1) * 734 efx->n_tx_channels); 735 if (rc) 736 return rc; 737 738 /* Do not destroy high-priority queues when they become 739 * unused. We would have to flush them first, and it is 740 * fairly difficult to flush a subset of TX queues. Leave 741 * it to efx_fini_channels(). 742 */ 743 744 net_dev->num_tc = num_tc; 745 return 0; 746 } 747 748 void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index) 749 { 750 unsigned fill_level; 751 struct efx_nic *efx = tx_queue->efx; 752 struct efx_tx_queue *txq2; 753 unsigned int pkts_compl = 0, bytes_compl = 0; 754 755 EFX_WARN_ON_ONCE_PARANOID(index > tx_queue->ptr_mask); 756 757 efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl); 758 tx_queue->pkts_compl += pkts_compl; 759 tx_queue->bytes_compl += bytes_compl; 760 761 if (pkts_compl > 1) 762 ++tx_queue->merge_events; 763 764 /* See if we need to restart the netif queue. This memory 765 * barrier ensures that we write read_count (inside 766 * efx_dequeue_buffers()) before reading the queue status. 767 */ 768 smp_mb(); 769 if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) && 770 likely(efx->port_enabled) && 771 likely(netif_device_present(efx->net_dev))) { 772 txq2 = efx_tx_queue_partner(tx_queue); 773 fill_level = max(tx_queue->insert_count - tx_queue->read_count, 774 txq2->insert_count - txq2->read_count); 775 if (fill_level <= efx->txq_wake_thresh) 776 netif_tx_wake_queue(tx_queue->core_txq); 777 } 778 779 /* Check whether the hardware queue is now empty */ 780 if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) { 781 tx_queue->old_write_count = READ_ONCE(tx_queue->write_count); 782 if (tx_queue->read_count == tx_queue->old_write_count) { 783 smp_mb(); 784 tx_queue->empty_read_count = 785 tx_queue->read_count | EFX_EMPTY_COUNT_VALID; 786 } 787 } 788 } 789 790 static unsigned int efx_tx_cb_page_count(struct efx_tx_queue *tx_queue) 791 { 792 return DIV_ROUND_UP(tx_queue->ptr_mask + 1, PAGE_SIZE >> EFX_TX_CB_ORDER); 793 } 794 795 int efx_probe_tx_queue(struct efx_tx_queue *tx_queue) 796 { 797 struct efx_nic *efx = tx_queue->efx; 798 unsigned int entries; 799 int rc; 800 801 /* Create the smallest power-of-two aligned ring */ 802 entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE); 803 EFX_WARN_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE); 804 tx_queue->ptr_mask = entries - 1; 805 806 netif_dbg(efx, probe, efx->net_dev, 807 "creating TX queue %d size %#x mask %#x\n", 808 tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask); 809 810 /* Allocate software ring */ 811 tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer), 812 GFP_KERNEL); 813 if (!tx_queue->buffer) 814 return -ENOMEM; 815 816 tx_queue->cb_page = kcalloc(efx_tx_cb_page_count(tx_queue), 817 sizeof(tx_queue->cb_page[0]), GFP_KERNEL); 818 if (!tx_queue->cb_page) { 819 rc = -ENOMEM; 820 goto fail1; 821 } 822 823 /* Allocate hardware ring */ 824 rc = efx_nic_probe_tx(tx_queue); 825 if (rc) 826 goto fail2; 827 828 return 0; 829 830 fail2: 831 kfree(tx_queue->cb_page); 832 tx_queue->cb_page = NULL; 833 fail1: 834 kfree(tx_queue->buffer); 835 tx_queue->buffer = NULL; 836 return rc; 837 } 838 839 void efx_init_tx_queue(struct efx_tx_queue *tx_queue) 840 { 841 struct efx_nic *efx = tx_queue->efx; 842 843 netif_dbg(efx, drv, efx->net_dev, 844 "initialising TX queue %d\n", tx_queue->queue); 845 846 tx_queue->insert_count = 0; 847 tx_queue->write_count = 0; 848 tx_queue->packet_write_count = 0; 849 tx_queue->old_write_count = 0; 850 tx_queue->read_count = 0; 851 tx_queue->old_read_count = 0; 852 tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID; 853 tx_queue->xmit_more_available = false; 854 tx_queue->timestamping = (efx_ptp_use_mac_tx_timestamps(efx) && 855 tx_queue->channel == efx_ptp_channel(efx)); 856 tx_queue->completed_desc_ptr = tx_queue->ptr_mask; 857 tx_queue->completed_timestamp_major = 0; 858 tx_queue->completed_timestamp_minor = 0; 859 860 /* Set up default function pointers. These may get replaced by 861 * efx_nic_init_tx() based off NIC/queue capabilities. 862 */ 863 tx_queue->handle_tso = efx_enqueue_skb_tso; 864 865 /* Set up TX descriptor ring */ 866 efx_nic_init_tx(tx_queue); 867 868 tx_queue->initialised = true; 869 } 870 871 void efx_fini_tx_queue(struct efx_tx_queue *tx_queue) 872 { 873 struct efx_tx_buffer *buffer; 874 875 netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev, 876 "shutting down TX queue %d\n", tx_queue->queue); 877 878 if (!tx_queue->buffer) 879 return; 880 881 /* Free any buffers left in the ring */ 882 while (tx_queue->read_count != tx_queue->write_count) { 883 unsigned int pkts_compl = 0, bytes_compl = 0; 884 buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask]; 885 efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl); 886 887 ++tx_queue->read_count; 888 } 889 tx_queue->xmit_more_available = false; 890 netdev_tx_reset_queue(tx_queue->core_txq); 891 } 892 893 void efx_remove_tx_queue(struct efx_tx_queue *tx_queue) 894 { 895 int i; 896 897 if (!tx_queue->buffer) 898 return; 899 900 netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev, 901 "destroying TX queue %d\n", tx_queue->queue); 902 efx_nic_remove_tx(tx_queue); 903 904 if (tx_queue->cb_page) { 905 for (i = 0; i < efx_tx_cb_page_count(tx_queue); i++) 906 efx_nic_free_buffer(tx_queue->efx, 907 &tx_queue->cb_page[i]); 908 kfree(tx_queue->cb_page); 909 tx_queue->cb_page = NULL; 910 } 911 912 kfree(tx_queue->buffer); 913 tx_queue->buffer = NULL; 914 } 915