xref: /linux/drivers/net/ethernet/sfc/tx.c (revision 17cfcb68af3bc7d5e8ae08779b1853310a2949f3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2005-2006 Fen Systems Ltd.
5  * Copyright 2005-2013 Solarflare Communications Inc.
6  */
7 
8 #include <linux/pci.h>
9 #include <linux/tcp.h>
10 #include <linux/ip.h>
11 #include <linux/in.h>
12 #include <linux/ipv6.h>
13 #include <linux/slab.h>
14 #include <net/ipv6.h>
15 #include <linux/if_ether.h>
16 #include <linux/highmem.h>
17 #include <linux/cache.h>
18 #include "net_driver.h"
19 #include "efx.h"
20 #include "io.h"
21 #include "nic.h"
22 #include "tx.h"
23 #include "workarounds.h"
24 #include "ef10_regs.h"
25 
26 #ifdef EFX_USE_PIO
27 
28 #define EFX_PIOBUF_SIZE_DEF ALIGN(256, L1_CACHE_BYTES)
29 unsigned int efx_piobuf_size __read_mostly = EFX_PIOBUF_SIZE_DEF;
30 
31 #endif /* EFX_USE_PIO */
32 
33 static inline u8 *efx_tx_get_copy_buffer(struct efx_tx_queue *tx_queue,
34 					 struct efx_tx_buffer *buffer)
35 {
36 	unsigned int index = efx_tx_queue_get_insert_index(tx_queue);
37 	struct efx_buffer *page_buf =
38 		&tx_queue->cb_page[index >> (PAGE_SHIFT - EFX_TX_CB_ORDER)];
39 	unsigned int offset =
40 		((index << EFX_TX_CB_ORDER) + NET_IP_ALIGN) & (PAGE_SIZE - 1);
41 
42 	if (unlikely(!page_buf->addr) &&
43 	    efx_nic_alloc_buffer(tx_queue->efx, page_buf, PAGE_SIZE,
44 				 GFP_ATOMIC))
45 		return NULL;
46 	buffer->dma_addr = page_buf->dma_addr + offset;
47 	buffer->unmap_len = 0;
48 	return (u8 *)page_buf->addr + offset;
49 }
50 
51 u8 *efx_tx_get_copy_buffer_limited(struct efx_tx_queue *tx_queue,
52 				   struct efx_tx_buffer *buffer, size_t len)
53 {
54 	if (len > EFX_TX_CB_SIZE)
55 		return NULL;
56 	return efx_tx_get_copy_buffer(tx_queue, buffer);
57 }
58 
59 static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
60 			       struct efx_tx_buffer *buffer,
61 			       unsigned int *pkts_compl,
62 			       unsigned int *bytes_compl)
63 {
64 	if (buffer->unmap_len) {
65 		struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
66 		dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset;
67 		if (buffer->flags & EFX_TX_BUF_MAP_SINGLE)
68 			dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len,
69 					 DMA_TO_DEVICE);
70 		else
71 			dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len,
72 				       DMA_TO_DEVICE);
73 		buffer->unmap_len = 0;
74 	}
75 
76 	if (buffer->flags & EFX_TX_BUF_SKB) {
77 		struct sk_buff *skb = (struct sk_buff *)buffer->skb;
78 
79 		EFX_WARN_ON_PARANOID(!pkts_compl || !bytes_compl);
80 		(*pkts_compl)++;
81 		(*bytes_compl) += skb->len;
82 		if (tx_queue->timestamping &&
83 		    (tx_queue->completed_timestamp_major ||
84 		     tx_queue->completed_timestamp_minor)) {
85 			struct skb_shared_hwtstamps hwtstamp;
86 
87 			hwtstamp.hwtstamp =
88 				efx_ptp_nic_to_kernel_time(tx_queue);
89 			skb_tstamp_tx(skb, &hwtstamp);
90 
91 			tx_queue->completed_timestamp_major = 0;
92 			tx_queue->completed_timestamp_minor = 0;
93 		}
94 		dev_consume_skb_any((struct sk_buff *)buffer->skb);
95 		netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
96 			   "TX queue %d transmission id %x complete\n",
97 			   tx_queue->queue, tx_queue->read_count);
98 	}
99 
100 	buffer->len = 0;
101 	buffer->flags = 0;
102 }
103 
104 unsigned int efx_tx_max_skb_descs(struct efx_nic *efx)
105 {
106 	/* Header and payload descriptor for each output segment, plus
107 	 * one for every input fragment boundary within a segment
108 	 */
109 	unsigned int max_descs = EFX_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;
110 
111 	/* Possibly one more per segment for option descriptors */
112 	if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
113 		max_descs += EFX_TSO_MAX_SEGS;
114 
115 	/* Possibly more for PCIe page boundaries within input fragments */
116 	if (PAGE_SIZE > EFX_PAGE_SIZE)
117 		max_descs += max_t(unsigned int, MAX_SKB_FRAGS,
118 				   DIV_ROUND_UP(GSO_MAX_SIZE, EFX_PAGE_SIZE));
119 
120 	return max_descs;
121 }
122 
123 static void efx_tx_maybe_stop_queue(struct efx_tx_queue *txq1)
124 {
125 	/* We need to consider both queues that the net core sees as one */
126 	struct efx_tx_queue *txq2 = efx_tx_queue_partner(txq1);
127 	struct efx_nic *efx = txq1->efx;
128 	unsigned int fill_level;
129 
130 	fill_level = max(txq1->insert_count - txq1->old_read_count,
131 			 txq2->insert_count - txq2->old_read_count);
132 	if (likely(fill_level < efx->txq_stop_thresh))
133 		return;
134 
135 	/* We used the stale old_read_count above, which gives us a
136 	 * pessimistic estimate of the fill level (which may even
137 	 * validly be >= efx->txq_entries).  Now try again using
138 	 * read_count (more likely to be a cache miss).
139 	 *
140 	 * If we read read_count and then conditionally stop the
141 	 * queue, it is possible for the completion path to race with
142 	 * us and complete all outstanding descriptors in the middle,
143 	 * after which there will be no more completions to wake it.
144 	 * Therefore we stop the queue first, then read read_count
145 	 * (with a memory barrier to ensure the ordering), then
146 	 * restart the queue if the fill level turns out to be low
147 	 * enough.
148 	 */
149 	netif_tx_stop_queue(txq1->core_txq);
150 	smp_mb();
151 	txq1->old_read_count = READ_ONCE(txq1->read_count);
152 	txq2->old_read_count = READ_ONCE(txq2->read_count);
153 
154 	fill_level = max(txq1->insert_count - txq1->old_read_count,
155 			 txq2->insert_count - txq2->old_read_count);
156 	EFX_WARN_ON_ONCE_PARANOID(fill_level >= efx->txq_entries);
157 	if (likely(fill_level < efx->txq_stop_thresh)) {
158 		smp_mb();
159 		if (likely(!efx->loopback_selftest))
160 			netif_tx_start_queue(txq1->core_txq);
161 	}
162 }
163 
164 static int efx_enqueue_skb_copy(struct efx_tx_queue *tx_queue,
165 				struct sk_buff *skb)
166 {
167 	unsigned int copy_len = skb->len;
168 	struct efx_tx_buffer *buffer;
169 	u8 *copy_buffer;
170 	int rc;
171 
172 	EFX_WARN_ON_ONCE_PARANOID(copy_len > EFX_TX_CB_SIZE);
173 
174 	buffer = efx_tx_queue_get_insert_buffer(tx_queue);
175 
176 	copy_buffer = efx_tx_get_copy_buffer(tx_queue, buffer);
177 	if (unlikely(!copy_buffer))
178 		return -ENOMEM;
179 
180 	rc = skb_copy_bits(skb, 0, copy_buffer, copy_len);
181 	EFX_WARN_ON_PARANOID(rc);
182 	buffer->len = copy_len;
183 
184 	buffer->skb = skb;
185 	buffer->flags = EFX_TX_BUF_SKB;
186 
187 	++tx_queue->insert_count;
188 	return rc;
189 }
190 
191 #ifdef EFX_USE_PIO
192 
193 struct efx_short_copy_buffer {
194 	int used;
195 	u8 buf[L1_CACHE_BYTES];
196 };
197 
198 /* Copy to PIO, respecting that writes to PIO buffers must be dword aligned.
199  * Advances piobuf pointer. Leaves additional data in the copy buffer.
200  */
201 static void efx_memcpy_toio_aligned(struct efx_nic *efx, u8 __iomem **piobuf,
202 				    u8 *data, int len,
203 				    struct efx_short_copy_buffer *copy_buf)
204 {
205 	int block_len = len & ~(sizeof(copy_buf->buf) - 1);
206 
207 	__iowrite64_copy(*piobuf, data, block_len >> 3);
208 	*piobuf += block_len;
209 	len -= block_len;
210 
211 	if (len) {
212 		data += block_len;
213 		BUG_ON(copy_buf->used);
214 		BUG_ON(len > sizeof(copy_buf->buf));
215 		memcpy(copy_buf->buf, data, len);
216 		copy_buf->used = len;
217 	}
218 }
219 
220 /* Copy to PIO, respecting dword alignment, popping data from copy buffer first.
221  * Advances piobuf pointer. Leaves additional data in the copy buffer.
222  */
223 static void efx_memcpy_toio_aligned_cb(struct efx_nic *efx, u8 __iomem **piobuf,
224 				       u8 *data, int len,
225 				       struct efx_short_copy_buffer *copy_buf)
226 {
227 	if (copy_buf->used) {
228 		/* if the copy buffer is partially full, fill it up and write */
229 		int copy_to_buf =
230 			min_t(int, sizeof(copy_buf->buf) - copy_buf->used, len);
231 
232 		memcpy(copy_buf->buf + copy_buf->used, data, copy_to_buf);
233 		copy_buf->used += copy_to_buf;
234 
235 		/* if we didn't fill it up then we're done for now */
236 		if (copy_buf->used < sizeof(copy_buf->buf))
237 			return;
238 
239 		__iowrite64_copy(*piobuf, copy_buf->buf,
240 				 sizeof(copy_buf->buf) >> 3);
241 		*piobuf += sizeof(copy_buf->buf);
242 		data += copy_to_buf;
243 		len -= copy_to_buf;
244 		copy_buf->used = 0;
245 	}
246 
247 	efx_memcpy_toio_aligned(efx, piobuf, data, len, copy_buf);
248 }
249 
250 static void efx_flush_copy_buffer(struct efx_nic *efx, u8 __iomem *piobuf,
251 				  struct efx_short_copy_buffer *copy_buf)
252 {
253 	/* if there's anything in it, write the whole buffer, including junk */
254 	if (copy_buf->used)
255 		__iowrite64_copy(piobuf, copy_buf->buf,
256 				 sizeof(copy_buf->buf) >> 3);
257 }
258 
259 /* Traverse skb structure and copy fragments in to PIO buffer.
260  * Advances piobuf pointer.
261  */
262 static void efx_skb_copy_bits_to_pio(struct efx_nic *efx, struct sk_buff *skb,
263 				     u8 __iomem **piobuf,
264 				     struct efx_short_copy_buffer *copy_buf)
265 {
266 	int i;
267 
268 	efx_memcpy_toio_aligned(efx, piobuf, skb->data, skb_headlen(skb),
269 				copy_buf);
270 
271 	for (i = 0; i < skb_shinfo(skb)->nr_frags; ++i) {
272 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
273 		u8 *vaddr;
274 
275 		vaddr = kmap_atomic(skb_frag_page(f));
276 
277 		efx_memcpy_toio_aligned_cb(efx, piobuf, vaddr + skb_frag_off(f),
278 					   skb_frag_size(f), copy_buf);
279 		kunmap_atomic(vaddr);
280 	}
281 
282 	EFX_WARN_ON_ONCE_PARANOID(skb_shinfo(skb)->frag_list);
283 }
284 
285 static int efx_enqueue_skb_pio(struct efx_tx_queue *tx_queue,
286 			       struct sk_buff *skb)
287 {
288 	struct efx_tx_buffer *buffer =
289 		efx_tx_queue_get_insert_buffer(tx_queue);
290 	u8 __iomem *piobuf = tx_queue->piobuf;
291 
292 	/* Copy to PIO buffer. Ensure the writes are padded to the end
293 	 * of a cache line, as this is required for write-combining to be
294 	 * effective on at least x86.
295 	 */
296 
297 	if (skb_shinfo(skb)->nr_frags) {
298 		/* The size of the copy buffer will ensure all writes
299 		 * are the size of a cache line.
300 		 */
301 		struct efx_short_copy_buffer copy_buf;
302 
303 		copy_buf.used = 0;
304 
305 		efx_skb_copy_bits_to_pio(tx_queue->efx, skb,
306 					 &piobuf, &copy_buf);
307 		efx_flush_copy_buffer(tx_queue->efx, piobuf, &copy_buf);
308 	} else {
309 		/* Pad the write to the size of a cache line.
310 		 * We can do this because we know the skb_shared_info struct is
311 		 * after the source, and the destination buffer is big enough.
312 		 */
313 		BUILD_BUG_ON(L1_CACHE_BYTES >
314 			     SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
315 		__iowrite64_copy(tx_queue->piobuf, skb->data,
316 				 ALIGN(skb->len, L1_CACHE_BYTES) >> 3);
317 	}
318 
319 	buffer->skb = skb;
320 	buffer->flags = EFX_TX_BUF_SKB | EFX_TX_BUF_OPTION;
321 
322 	EFX_POPULATE_QWORD_5(buffer->option,
323 			     ESF_DZ_TX_DESC_IS_OPT, 1,
324 			     ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_PIO,
325 			     ESF_DZ_TX_PIO_CONT, 0,
326 			     ESF_DZ_TX_PIO_BYTE_CNT, skb->len,
327 			     ESF_DZ_TX_PIO_BUF_ADDR,
328 			     tx_queue->piobuf_offset);
329 	++tx_queue->insert_count;
330 	return 0;
331 }
332 #endif /* EFX_USE_PIO */
333 
334 static struct efx_tx_buffer *efx_tx_map_chunk(struct efx_tx_queue *tx_queue,
335 					      dma_addr_t dma_addr,
336 					      size_t len)
337 {
338 	const struct efx_nic_type *nic_type = tx_queue->efx->type;
339 	struct efx_tx_buffer *buffer;
340 	unsigned int dma_len;
341 
342 	/* Map the fragment taking account of NIC-dependent DMA limits. */
343 	do {
344 		buffer = efx_tx_queue_get_insert_buffer(tx_queue);
345 		dma_len = nic_type->tx_limit_len(tx_queue, dma_addr, len);
346 
347 		buffer->len = dma_len;
348 		buffer->dma_addr = dma_addr;
349 		buffer->flags = EFX_TX_BUF_CONT;
350 		len -= dma_len;
351 		dma_addr += dma_len;
352 		++tx_queue->insert_count;
353 	} while (len);
354 
355 	return buffer;
356 }
357 
358 /* Map all data from an SKB for DMA and create descriptors on the queue.
359  */
360 static int efx_tx_map_data(struct efx_tx_queue *tx_queue, struct sk_buff *skb,
361 			   unsigned int segment_count)
362 {
363 	struct efx_nic *efx = tx_queue->efx;
364 	struct device *dma_dev = &efx->pci_dev->dev;
365 	unsigned int frag_index, nr_frags;
366 	dma_addr_t dma_addr, unmap_addr;
367 	unsigned short dma_flags;
368 	size_t len, unmap_len;
369 
370 	nr_frags = skb_shinfo(skb)->nr_frags;
371 	frag_index = 0;
372 
373 	/* Map header data. */
374 	len = skb_headlen(skb);
375 	dma_addr = dma_map_single(dma_dev, skb->data, len, DMA_TO_DEVICE);
376 	dma_flags = EFX_TX_BUF_MAP_SINGLE;
377 	unmap_len = len;
378 	unmap_addr = dma_addr;
379 
380 	if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
381 		return -EIO;
382 
383 	if (segment_count) {
384 		/* For TSO we need to put the header in to a separate
385 		 * descriptor. Map this separately if necessary.
386 		 */
387 		size_t header_len = skb_transport_header(skb) - skb->data +
388 				(tcp_hdr(skb)->doff << 2u);
389 
390 		if (header_len != len) {
391 			tx_queue->tso_long_headers++;
392 			efx_tx_map_chunk(tx_queue, dma_addr, header_len);
393 			len -= header_len;
394 			dma_addr += header_len;
395 		}
396 	}
397 
398 	/* Add descriptors for each fragment. */
399 	do {
400 		struct efx_tx_buffer *buffer;
401 		skb_frag_t *fragment;
402 
403 		buffer = efx_tx_map_chunk(tx_queue, dma_addr, len);
404 
405 		/* The final descriptor for a fragment is responsible for
406 		 * unmapping the whole fragment.
407 		 */
408 		buffer->flags = EFX_TX_BUF_CONT | dma_flags;
409 		buffer->unmap_len = unmap_len;
410 		buffer->dma_offset = buffer->dma_addr - unmap_addr;
411 
412 		if (frag_index >= nr_frags) {
413 			/* Store SKB details with the final buffer for
414 			 * the completion.
415 			 */
416 			buffer->skb = skb;
417 			buffer->flags = EFX_TX_BUF_SKB | dma_flags;
418 			return 0;
419 		}
420 
421 		/* Move on to the next fragment. */
422 		fragment = &skb_shinfo(skb)->frags[frag_index++];
423 		len = skb_frag_size(fragment);
424 		dma_addr = skb_frag_dma_map(dma_dev, fragment,
425 				0, len, DMA_TO_DEVICE);
426 		dma_flags = 0;
427 		unmap_len = len;
428 		unmap_addr = dma_addr;
429 
430 		if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
431 			return -EIO;
432 	} while (1);
433 }
434 
435 /* Remove buffers put into a tx_queue for the current packet.
436  * None of the buffers must have an skb attached.
437  */
438 static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue,
439 			       unsigned int insert_count)
440 {
441 	struct efx_tx_buffer *buffer;
442 	unsigned int bytes_compl = 0;
443 	unsigned int pkts_compl = 0;
444 
445 	/* Work backwards until we hit the original insert pointer value */
446 	while (tx_queue->insert_count != insert_count) {
447 		--tx_queue->insert_count;
448 		buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
449 		efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
450 	}
451 }
452 
453 /*
454  * Fallback to software TSO.
455  *
456  * This is used if we are unable to send a GSO packet through hardware TSO.
457  * This should only ever happen due to per-queue restrictions - unsupported
458  * packets should first be filtered by the feature flags.
459  *
460  * Returns 0 on success, error code otherwise.
461  */
462 static int efx_tx_tso_fallback(struct efx_tx_queue *tx_queue,
463 			       struct sk_buff *skb)
464 {
465 	struct sk_buff *segments, *next;
466 
467 	segments = skb_gso_segment(skb, 0);
468 	if (IS_ERR(segments))
469 		return PTR_ERR(segments);
470 
471 	dev_consume_skb_any(skb);
472 	skb = segments;
473 
474 	while (skb) {
475 		next = skb->next;
476 		skb->next = NULL;
477 
478 		efx_enqueue_skb(tx_queue, skb);
479 		skb = next;
480 	}
481 
482 	return 0;
483 }
484 
485 /*
486  * Add a socket buffer to a TX queue
487  *
488  * This maps all fragments of a socket buffer for DMA and adds them to
489  * the TX queue.  The queue's insert pointer will be incremented by
490  * the number of fragments in the socket buffer.
491  *
492  * If any DMA mapping fails, any mapped fragments will be unmapped,
493  * the queue's insert pointer will be restored to its original value.
494  *
495  * This function is split out from efx_hard_start_xmit to allow the
496  * loopback test to direct packets via specific TX queues.
497  *
498  * Returns NETDEV_TX_OK.
499  * You must hold netif_tx_lock() to call this function.
500  */
501 netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
502 {
503 	unsigned int old_insert_count = tx_queue->insert_count;
504 	bool xmit_more = netdev_xmit_more();
505 	bool data_mapped = false;
506 	unsigned int segments;
507 	unsigned int skb_len;
508 	int rc;
509 
510 	skb_len = skb->len;
511 	segments = skb_is_gso(skb) ? skb_shinfo(skb)->gso_segs : 0;
512 	if (segments == 1)
513 		segments = 0; /* Don't use TSO for a single segment. */
514 
515 	/* Handle TSO first - it's *possible* (although unlikely) that we might
516 	 * be passed a packet to segment that's smaller than the copybreak/PIO
517 	 * size limit.
518 	 */
519 	if (segments) {
520 		EFX_WARN_ON_ONCE_PARANOID(!tx_queue->handle_tso);
521 		rc = tx_queue->handle_tso(tx_queue, skb, &data_mapped);
522 		if (rc == -EINVAL) {
523 			rc = efx_tx_tso_fallback(tx_queue, skb);
524 			tx_queue->tso_fallbacks++;
525 			if (rc == 0)
526 				return 0;
527 		}
528 		if (rc)
529 			goto err;
530 #ifdef EFX_USE_PIO
531 	} else if (skb_len <= efx_piobuf_size && !xmit_more &&
532 		   efx_nic_may_tx_pio(tx_queue)) {
533 		/* Use PIO for short packets with an empty queue. */
534 		if (efx_enqueue_skb_pio(tx_queue, skb))
535 			goto err;
536 		tx_queue->pio_packets++;
537 		data_mapped = true;
538 #endif
539 	} else if (skb->data_len && skb_len <= EFX_TX_CB_SIZE) {
540 		/* Pad short packets or coalesce short fragmented packets. */
541 		if (efx_enqueue_skb_copy(tx_queue, skb))
542 			goto err;
543 		tx_queue->cb_packets++;
544 		data_mapped = true;
545 	}
546 
547 	/* Map for DMA and create descriptors if we haven't done so already. */
548 	if (!data_mapped && (efx_tx_map_data(tx_queue, skb, segments)))
549 		goto err;
550 
551 	efx_tx_maybe_stop_queue(tx_queue);
552 
553 	/* Pass off to hardware */
554 	if (__netdev_tx_sent_queue(tx_queue->core_txq, skb_len, xmit_more)) {
555 		struct efx_tx_queue *txq2 = efx_tx_queue_partner(tx_queue);
556 
557 		/* There could be packets left on the partner queue if
558 		 * xmit_more was set. If we do not push those they
559 		 * could be left for a long time and cause a netdev watchdog.
560 		 */
561 		if (txq2->xmit_more_available)
562 			efx_nic_push_buffers(txq2);
563 
564 		efx_nic_push_buffers(tx_queue);
565 	} else {
566 		tx_queue->xmit_more_available = xmit_more;
567 	}
568 
569 	if (segments) {
570 		tx_queue->tso_bursts++;
571 		tx_queue->tso_packets += segments;
572 		tx_queue->tx_packets  += segments;
573 	} else {
574 		tx_queue->tx_packets++;
575 	}
576 
577 	return NETDEV_TX_OK;
578 
579 
580 err:
581 	efx_enqueue_unwind(tx_queue, old_insert_count);
582 	dev_kfree_skb_any(skb);
583 
584 	/* If we're not expecting another transmit and we had something to push
585 	 * on this queue or a partner queue then we need to push here to get the
586 	 * previous packets out.
587 	 */
588 	if (!xmit_more) {
589 		struct efx_tx_queue *txq2 = efx_tx_queue_partner(tx_queue);
590 
591 		if (txq2->xmit_more_available)
592 			efx_nic_push_buffers(txq2);
593 
594 		efx_nic_push_buffers(tx_queue);
595 	}
596 
597 	return NETDEV_TX_OK;
598 }
599 
600 /* Remove packets from the TX queue
601  *
602  * This removes packets from the TX queue, up to and including the
603  * specified index.
604  */
605 static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
606 				unsigned int index,
607 				unsigned int *pkts_compl,
608 				unsigned int *bytes_compl)
609 {
610 	struct efx_nic *efx = tx_queue->efx;
611 	unsigned int stop_index, read_ptr;
612 
613 	stop_index = (index + 1) & tx_queue->ptr_mask;
614 	read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
615 
616 	while (read_ptr != stop_index) {
617 		struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
618 
619 		if (!(buffer->flags & EFX_TX_BUF_OPTION) &&
620 		    unlikely(buffer->len == 0)) {
621 			netif_err(efx, tx_err, efx->net_dev,
622 				  "TX queue %d spurious TX completion id %x\n",
623 				  tx_queue->queue, read_ptr);
624 			efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
625 			return;
626 		}
627 
628 		efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl);
629 
630 		++tx_queue->read_count;
631 		read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
632 	}
633 }
634 
635 /* Initiate a packet transmission.  We use one channel per CPU
636  * (sharing when we have more CPUs than channels).  On Falcon, the TX
637  * completion events will be directed back to the CPU that transmitted
638  * the packet, which should be cache-efficient.
639  *
640  * Context: non-blocking.
641  * Note that returning anything other than NETDEV_TX_OK will cause the
642  * OS to free the skb.
643  */
644 netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
645 				struct net_device *net_dev)
646 {
647 	struct efx_nic *efx = netdev_priv(net_dev);
648 	struct efx_tx_queue *tx_queue;
649 	unsigned index, type;
650 
651 	EFX_WARN_ON_PARANOID(!netif_device_present(net_dev));
652 
653 	/* PTP "event" packet */
654 	if (unlikely(efx_xmit_with_hwtstamp(skb)) &&
655 	    unlikely(efx_ptp_is_ptp_tx(efx, skb))) {
656 		return efx_ptp_tx(efx, skb);
657 	}
658 
659 	index = skb_get_queue_mapping(skb);
660 	type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0;
661 	if (index >= efx->n_tx_channels) {
662 		index -= efx->n_tx_channels;
663 		type |= EFX_TXQ_TYPE_HIGHPRI;
664 	}
665 	tx_queue = efx_get_tx_queue(efx, index, type);
666 
667 	return efx_enqueue_skb(tx_queue, skb);
668 }
669 
670 void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue)
671 {
672 	struct efx_nic *efx = tx_queue->efx;
673 
674 	/* Must be inverse of queue lookup in efx_hard_start_xmit() */
675 	tx_queue->core_txq =
676 		netdev_get_tx_queue(efx->net_dev,
677 				    tx_queue->queue / EFX_TXQ_TYPES +
678 				    ((tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
679 				     efx->n_tx_channels : 0));
680 }
681 
682 int efx_setup_tc(struct net_device *net_dev, enum tc_setup_type type,
683 		 void *type_data)
684 {
685 	struct efx_nic *efx = netdev_priv(net_dev);
686 	struct tc_mqprio_qopt *mqprio = type_data;
687 	struct efx_channel *channel;
688 	struct efx_tx_queue *tx_queue;
689 	unsigned tc, num_tc;
690 	int rc;
691 
692 	if (type != TC_SETUP_QDISC_MQPRIO)
693 		return -EOPNOTSUPP;
694 
695 	num_tc = mqprio->num_tc;
696 
697 	if (num_tc > EFX_MAX_TX_TC)
698 		return -EINVAL;
699 
700 	mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
701 
702 	if (num_tc == net_dev->num_tc)
703 		return 0;
704 
705 	for (tc = 0; tc < num_tc; tc++) {
706 		net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
707 		net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
708 	}
709 
710 	if (num_tc > net_dev->num_tc) {
711 		/* Initialise high-priority queues as necessary */
712 		efx_for_each_channel(channel, efx) {
713 			efx_for_each_possible_channel_tx_queue(tx_queue,
714 							       channel) {
715 				if (!(tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI))
716 					continue;
717 				if (!tx_queue->buffer) {
718 					rc = efx_probe_tx_queue(tx_queue);
719 					if (rc)
720 						return rc;
721 				}
722 				if (!tx_queue->initialised)
723 					efx_init_tx_queue(tx_queue);
724 				efx_init_tx_queue_core_txq(tx_queue);
725 			}
726 		}
727 	} else {
728 		/* Reduce number of classes before number of queues */
729 		net_dev->num_tc = num_tc;
730 	}
731 
732 	rc = netif_set_real_num_tx_queues(net_dev,
733 					  max_t(int, num_tc, 1) *
734 					  efx->n_tx_channels);
735 	if (rc)
736 		return rc;
737 
738 	/* Do not destroy high-priority queues when they become
739 	 * unused.  We would have to flush them first, and it is
740 	 * fairly difficult to flush a subset of TX queues.  Leave
741 	 * it to efx_fini_channels().
742 	 */
743 
744 	net_dev->num_tc = num_tc;
745 	return 0;
746 }
747 
748 void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
749 {
750 	unsigned fill_level;
751 	struct efx_nic *efx = tx_queue->efx;
752 	struct efx_tx_queue *txq2;
753 	unsigned int pkts_compl = 0, bytes_compl = 0;
754 
755 	EFX_WARN_ON_ONCE_PARANOID(index > tx_queue->ptr_mask);
756 
757 	efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl);
758 	tx_queue->pkts_compl += pkts_compl;
759 	tx_queue->bytes_compl += bytes_compl;
760 
761 	if (pkts_compl > 1)
762 		++tx_queue->merge_events;
763 
764 	/* See if we need to restart the netif queue.  This memory
765 	 * barrier ensures that we write read_count (inside
766 	 * efx_dequeue_buffers()) before reading the queue status.
767 	 */
768 	smp_mb();
769 	if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
770 	    likely(efx->port_enabled) &&
771 	    likely(netif_device_present(efx->net_dev))) {
772 		txq2 = efx_tx_queue_partner(tx_queue);
773 		fill_level = max(tx_queue->insert_count - tx_queue->read_count,
774 				 txq2->insert_count - txq2->read_count);
775 		if (fill_level <= efx->txq_wake_thresh)
776 			netif_tx_wake_queue(tx_queue->core_txq);
777 	}
778 
779 	/* Check whether the hardware queue is now empty */
780 	if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
781 		tx_queue->old_write_count = READ_ONCE(tx_queue->write_count);
782 		if (tx_queue->read_count == tx_queue->old_write_count) {
783 			smp_mb();
784 			tx_queue->empty_read_count =
785 				tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
786 		}
787 	}
788 }
789 
790 static unsigned int efx_tx_cb_page_count(struct efx_tx_queue *tx_queue)
791 {
792 	return DIV_ROUND_UP(tx_queue->ptr_mask + 1, PAGE_SIZE >> EFX_TX_CB_ORDER);
793 }
794 
795 int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
796 {
797 	struct efx_nic *efx = tx_queue->efx;
798 	unsigned int entries;
799 	int rc;
800 
801 	/* Create the smallest power-of-two aligned ring */
802 	entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
803 	EFX_WARN_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
804 	tx_queue->ptr_mask = entries - 1;
805 
806 	netif_dbg(efx, probe, efx->net_dev,
807 		  "creating TX queue %d size %#x mask %#x\n",
808 		  tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
809 
810 	/* Allocate software ring */
811 	tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
812 				   GFP_KERNEL);
813 	if (!tx_queue->buffer)
814 		return -ENOMEM;
815 
816 	tx_queue->cb_page = kcalloc(efx_tx_cb_page_count(tx_queue),
817 				    sizeof(tx_queue->cb_page[0]), GFP_KERNEL);
818 	if (!tx_queue->cb_page) {
819 		rc = -ENOMEM;
820 		goto fail1;
821 	}
822 
823 	/* Allocate hardware ring */
824 	rc = efx_nic_probe_tx(tx_queue);
825 	if (rc)
826 		goto fail2;
827 
828 	return 0;
829 
830 fail2:
831 	kfree(tx_queue->cb_page);
832 	tx_queue->cb_page = NULL;
833 fail1:
834 	kfree(tx_queue->buffer);
835 	tx_queue->buffer = NULL;
836 	return rc;
837 }
838 
839 void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
840 {
841 	struct efx_nic *efx = tx_queue->efx;
842 
843 	netif_dbg(efx, drv, efx->net_dev,
844 		  "initialising TX queue %d\n", tx_queue->queue);
845 
846 	tx_queue->insert_count = 0;
847 	tx_queue->write_count = 0;
848 	tx_queue->packet_write_count = 0;
849 	tx_queue->old_write_count = 0;
850 	tx_queue->read_count = 0;
851 	tx_queue->old_read_count = 0;
852 	tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
853 	tx_queue->xmit_more_available = false;
854 	tx_queue->timestamping = (efx_ptp_use_mac_tx_timestamps(efx) &&
855 				  tx_queue->channel == efx_ptp_channel(efx));
856 	tx_queue->completed_desc_ptr = tx_queue->ptr_mask;
857 	tx_queue->completed_timestamp_major = 0;
858 	tx_queue->completed_timestamp_minor = 0;
859 
860 	/* Set up default function pointers. These may get replaced by
861 	 * efx_nic_init_tx() based off NIC/queue capabilities.
862 	 */
863 	tx_queue->handle_tso = efx_enqueue_skb_tso;
864 
865 	/* Set up TX descriptor ring */
866 	efx_nic_init_tx(tx_queue);
867 
868 	tx_queue->initialised = true;
869 }
870 
871 void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
872 {
873 	struct efx_tx_buffer *buffer;
874 
875 	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
876 		  "shutting down TX queue %d\n", tx_queue->queue);
877 
878 	if (!tx_queue->buffer)
879 		return;
880 
881 	/* Free any buffers left in the ring */
882 	while (tx_queue->read_count != tx_queue->write_count) {
883 		unsigned int pkts_compl = 0, bytes_compl = 0;
884 		buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
885 		efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
886 
887 		++tx_queue->read_count;
888 	}
889 	tx_queue->xmit_more_available = false;
890 	netdev_tx_reset_queue(tx_queue->core_txq);
891 }
892 
893 void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
894 {
895 	int i;
896 
897 	if (!tx_queue->buffer)
898 		return;
899 
900 	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
901 		  "destroying TX queue %d\n", tx_queue->queue);
902 	efx_nic_remove_tx(tx_queue);
903 
904 	if (tx_queue->cb_page) {
905 		for (i = 0; i < efx_tx_cb_page_count(tx_queue); i++)
906 			efx_nic_free_buffer(tx_queue->efx,
907 					    &tx_queue->cb_page[i]);
908 		kfree(tx_queue->cb_page);
909 		tx_queue->cb_page = NULL;
910 	}
911 
912 	kfree(tx_queue->buffer);
913 	tx_queue->buffer = NULL;
914 }
915