xref: /linux/drivers/net/ethernet/sfc/siena/rx_common.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2018 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #include "net_driver.h"
12 #include <linux/module.h>
13 #include <linux/iommu.h>
14 #include <net/rps.h>
15 #include "efx.h"
16 #include "nic.h"
17 #include "rx_common.h"
18 
19 /* This is the percentage fill level below which new RX descriptors
20  * will be added to the RX descriptor ring.
21  */
22 static unsigned int rx_refill_threshold;
23 module_param(rx_refill_threshold, uint, 0444);
24 MODULE_PARM_DESC(rx_refill_threshold,
25 		 "RX descriptor ring refill threshold (%)");
26 
27 /* RX maximum head room required.
28  *
29  * This must be at least 1 to prevent overflow, plus one packet-worth
30  * to allow pipelined receives.
31  */
32 #define EFX_RXD_HEAD_ROOM (1 + EFX_RX_MAX_FRAGS)
33 
34 static void efx_unmap_rx_buffer(struct efx_nic *efx,
35 				struct efx_rx_buffer *rx_buf);
36 
37 /* Check the RX page recycle ring for a page that can be reused. */
38 static struct page *efx_reuse_page(struct efx_rx_queue *rx_queue)
39 {
40 	struct efx_nic *efx = rx_queue->efx;
41 	struct efx_rx_page_state *state;
42 	unsigned int index;
43 	struct page *page;
44 
45 	if (unlikely(!rx_queue->page_ring))
46 		return NULL;
47 	index = rx_queue->page_remove & rx_queue->page_ptr_mask;
48 	page = rx_queue->page_ring[index];
49 	if (page == NULL)
50 		return NULL;
51 
52 	rx_queue->page_ring[index] = NULL;
53 	/* page_remove cannot exceed page_add. */
54 	if (rx_queue->page_remove != rx_queue->page_add)
55 		++rx_queue->page_remove;
56 
57 	/* If page_count is 1 then we hold the only reference to this page. */
58 	if (page_count(page) == 1) {
59 		++rx_queue->page_recycle_count;
60 		return page;
61 	} else {
62 		state = page_address(page);
63 		dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
64 			       PAGE_SIZE << efx->rx_buffer_order,
65 			       DMA_FROM_DEVICE);
66 		put_page(page);
67 		++rx_queue->page_recycle_failed;
68 	}
69 
70 	return NULL;
71 }
72 
73 /* Attempt to recycle the page if there is an RX recycle ring; the page can
74  * only be added if this is the final RX buffer, to prevent pages being used in
75  * the descriptor ring and appearing in the recycle ring simultaneously.
76  */
77 static void efx_recycle_rx_page(struct efx_channel *channel,
78 				struct efx_rx_buffer *rx_buf)
79 {
80 	struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
81 	struct efx_nic *efx = rx_queue->efx;
82 	struct page *page = rx_buf->page;
83 	unsigned int index;
84 
85 	/* Only recycle the page after processing the final buffer. */
86 	if (!(rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE))
87 		return;
88 
89 	index = rx_queue->page_add & rx_queue->page_ptr_mask;
90 	if (rx_queue->page_ring[index] == NULL) {
91 		unsigned int read_index = rx_queue->page_remove &
92 			rx_queue->page_ptr_mask;
93 
94 		/* The next slot in the recycle ring is available, but
95 		 * increment page_remove if the read pointer currently
96 		 * points here.
97 		 */
98 		if (read_index == index)
99 			++rx_queue->page_remove;
100 		rx_queue->page_ring[index] = page;
101 		++rx_queue->page_add;
102 		return;
103 	}
104 	++rx_queue->page_recycle_full;
105 	efx_unmap_rx_buffer(efx, rx_buf);
106 	put_page(rx_buf->page);
107 }
108 
109 /* Recycle the pages that are used by buffers that have just been received. */
110 void efx_siena_recycle_rx_pages(struct efx_channel *channel,
111 				struct efx_rx_buffer *rx_buf,
112 				unsigned int n_frags)
113 {
114 	struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
115 
116 	if (unlikely(!rx_queue->page_ring))
117 		return;
118 
119 	do {
120 		efx_recycle_rx_page(channel, rx_buf);
121 		rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
122 	} while (--n_frags);
123 }
124 
125 void efx_siena_discard_rx_packet(struct efx_channel *channel,
126 				 struct efx_rx_buffer *rx_buf,
127 				 unsigned int n_frags)
128 {
129 	struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
130 
131 	efx_siena_recycle_rx_pages(channel, rx_buf, n_frags);
132 
133 	efx_siena_free_rx_buffers(rx_queue, rx_buf, n_frags);
134 }
135 
136 static void efx_init_rx_recycle_ring(struct efx_rx_queue *rx_queue)
137 {
138 	unsigned int bufs_in_recycle_ring, page_ring_size;
139 	struct efx_nic *efx = rx_queue->efx;
140 
141 	bufs_in_recycle_ring = efx_rx_recycle_ring_size(efx);
142 	page_ring_size = roundup_pow_of_two(bufs_in_recycle_ring /
143 					    efx->rx_bufs_per_page);
144 	rx_queue->page_ring = kcalloc(page_ring_size,
145 				      sizeof(*rx_queue->page_ring), GFP_KERNEL);
146 	if (!rx_queue->page_ring)
147 		rx_queue->page_ptr_mask = 0;
148 	else
149 		rx_queue->page_ptr_mask = page_ring_size - 1;
150 }
151 
152 static void efx_fini_rx_recycle_ring(struct efx_rx_queue *rx_queue)
153 {
154 	struct efx_nic *efx = rx_queue->efx;
155 	int i;
156 
157 	if (unlikely(!rx_queue->page_ring))
158 		return;
159 
160 	/* Unmap and release the pages in the recycle ring. Remove the ring. */
161 	for (i = 0; i <= rx_queue->page_ptr_mask; i++) {
162 		struct page *page = rx_queue->page_ring[i];
163 		struct efx_rx_page_state *state;
164 
165 		if (page == NULL)
166 			continue;
167 
168 		state = page_address(page);
169 		dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
170 			       PAGE_SIZE << efx->rx_buffer_order,
171 			       DMA_FROM_DEVICE);
172 		put_page(page);
173 	}
174 	kfree(rx_queue->page_ring);
175 	rx_queue->page_ring = NULL;
176 }
177 
178 static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue,
179 			       struct efx_rx_buffer *rx_buf)
180 {
181 	/* Release the page reference we hold for the buffer. */
182 	if (rx_buf->page)
183 		put_page(rx_buf->page);
184 
185 	/* If this is the last buffer in a page, unmap and free it. */
186 	if (rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE) {
187 		efx_unmap_rx_buffer(rx_queue->efx, rx_buf);
188 		efx_siena_free_rx_buffers(rx_queue, rx_buf, 1);
189 	}
190 	rx_buf->page = NULL;
191 }
192 
193 int efx_siena_probe_rx_queue(struct efx_rx_queue *rx_queue)
194 {
195 	struct efx_nic *efx = rx_queue->efx;
196 	unsigned int entries;
197 	int rc;
198 
199 	/* Create the smallest power-of-two aligned ring */
200 	entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE);
201 	EFX_WARN_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
202 	rx_queue->ptr_mask = entries - 1;
203 
204 	netif_dbg(efx, probe, efx->net_dev,
205 		  "creating RX queue %d size %#x mask %#x\n",
206 		  efx_rx_queue_index(rx_queue), efx->rxq_entries,
207 		  rx_queue->ptr_mask);
208 
209 	/* Allocate RX buffers */
210 	rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer),
211 				   GFP_KERNEL);
212 	if (!rx_queue->buffer)
213 		return -ENOMEM;
214 
215 	rc = efx_nic_probe_rx(rx_queue);
216 	if (rc) {
217 		kfree(rx_queue->buffer);
218 		rx_queue->buffer = NULL;
219 	}
220 
221 	return rc;
222 }
223 
224 void efx_siena_init_rx_queue(struct efx_rx_queue *rx_queue)
225 {
226 	unsigned int max_fill, trigger, max_trigger;
227 	struct efx_nic *efx = rx_queue->efx;
228 	int rc = 0;
229 
230 	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
231 		  "initialising RX queue %d\n", efx_rx_queue_index(rx_queue));
232 
233 	/* Initialise ptr fields */
234 	rx_queue->added_count = 0;
235 	rx_queue->notified_count = 0;
236 	rx_queue->removed_count = 0;
237 	rx_queue->min_fill = -1U;
238 	efx_init_rx_recycle_ring(rx_queue);
239 
240 	rx_queue->page_remove = 0;
241 	rx_queue->page_add = rx_queue->page_ptr_mask + 1;
242 	rx_queue->page_recycle_count = 0;
243 	rx_queue->page_recycle_failed = 0;
244 	rx_queue->page_recycle_full = 0;
245 
246 	/* Initialise limit fields */
247 	max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM;
248 	max_trigger =
249 		max_fill - efx->rx_pages_per_batch * efx->rx_bufs_per_page;
250 	if (rx_refill_threshold != 0) {
251 		trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
252 		if (trigger > max_trigger)
253 			trigger = max_trigger;
254 	} else {
255 		trigger = max_trigger;
256 	}
257 
258 	rx_queue->max_fill = max_fill;
259 	rx_queue->fast_fill_trigger = trigger;
260 	rx_queue->refill_enabled = true;
261 
262 	/* Initialise XDP queue information */
263 	rc = xdp_rxq_info_reg(&rx_queue->xdp_rxq_info, efx->net_dev,
264 			      rx_queue->core_index, 0);
265 
266 	if (rc) {
267 		netif_err(efx, rx_err, efx->net_dev,
268 			  "Failure to initialise XDP queue information rc=%d\n",
269 			  rc);
270 		efx->xdp_rxq_info_failed = true;
271 	} else {
272 		rx_queue->xdp_rxq_info_valid = true;
273 	}
274 
275 	/* Set up RX descriptor ring */
276 	efx_nic_init_rx(rx_queue);
277 }
278 
279 void efx_siena_fini_rx_queue(struct efx_rx_queue *rx_queue)
280 {
281 	struct efx_rx_buffer *rx_buf;
282 	int i;
283 
284 	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
285 		  "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue));
286 
287 	del_timer_sync(&rx_queue->slow_fill);
288 
289 	/* Release RX buffers from the current read ptr to the write ptr */
290 	if (rx_queue->buffer) {
291 		for (i = rx_queue->removed_count; i < rx_queue->added_count;
292 		     i++) {
293 			unsigned int index = i & rx_queue->ptr_mask;
294 
295 			rx_buf = efx_rx_buffer(rx_queue, index);
296 			efx_fini_rx_buffer(rx_queue, rx_buf);
297 		}
298 	}
299 
300 	efx_fini_rx_recycle_ring(rx_queue);
301 
302 	if (rx_queue->xdp_rxq_info_valid)
303 		xdp_rxq_info_unreg(&rx_queue->xdp_rxq_info);
304 
305 	rx_queue->xdp_rxq_info_valid = false;
306 }
307 
308 void efx_siena_remove_rx_queue(struct efx_rx_queue *rx_queue)
309 {
310 	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
311 		  "destroying RX queue %d\n", efx_rx_queue_index(rx_queue));
312 
313 	efx_nic_remove_rx(rx_queue);
314 
315 	kfree(rx_queue->buffer);
316 	rx_queue->buffer = NULL;
317 }
318 
319 /* Unmap a DMA-mapped page.  This function is only called for the final RX
320  * buffer in a page.
321  */
322 static void efx_unmap_rx_buffer(struct efx_nic *efx,
323 				struct efx_rx_buffer *rx_buf)
324 {
325 	struct page *page = rx_buf->page;
326 
327 	if (page) {
328 		struct efx_rx_page_state *state = page_address(page);
329 
330 		dma_unmap_page(&efx->pci_dev->dev,
331 			       state->dma_addr,
332 			       PAGE_SIZE << efx->rx_buffer_order,
333 			       DMA_FROM_DEVICE);
334 	}
335 }
336 
337 void efx_siena_free_rx_buffers(struct efx_rx_queue *rx_queue,
338 			       struct efx_rx_buffer *rx_buf,
339 			       unsigned int num_bufs)
340 {
341 	do {
342 		if (rx_buf->page) {
343 			put_page(rx_buf->page);
344 			rx_buf->page = NULL;
345 		}
346 		rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
347 	} while (--num_bufs);
348 }
349 
350 void efx_siena_rx_slow_fill(struct timer_list *t)
351 {
352 	struct efx_rx_queue *rx_queue = from_timer(rx_queue, t, slow_fill);
353 
354 	/* Post an event to cause NAPI to run and refill the queue */
355 	efx_nic_generate_fill_event(rx_queue);
356 	++rx_queue->slow_fill_count;
357 }
358 
359 static void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
360 {
361 	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(10));
362 }
363 
364 /* efx_init_rx_buffers - create EFX_RX_BATCH page-based RX buffers
365  *
366  * @rx_queue:		Efx RX queue
367  *
368  * This allocates a batch of pages, maps them for DMA, and populates
369  * struct efx_rx_buffers for each one. Return a negative error code or
370  * 0 on success. If a single page can be used for multiple buffers,
371  * then the page will either be inserted fully, or not at all.
372  */
373 static int efx_init_rx_buffers(struct efx_rx_queue *rx_queue, bool atomic)
374 {
375 	unsigned int page_offset, index, count;
376 	struct efx_nic *efx = rx_queue->efx;
377 	struct efx_rx_page_state *state;
378 	struct efx_rx_buffer *rx_buf;
379 	dma_addr_t dma_addr;
380 	struct page *page;
381 
382 	count = 0;
383 	do {
384 		page = efx_reuse_page(rx_queue);
385 		if (page == NULL) {
386 			page = alloc_pages(__GFP_COMP |
387 					   (atomic ? GFP_ATOMIC : GFP_KERNEL),
388 					   efx->rx_buffer_order);
389 			if (unlikely(page == NULL))
390 				return -ENOMEM;
391 			dma_addr =
392 				dma_map_page(&efx->pci_dev->dev, page, 0,
393 					     PAGE_SIZE << efx->rx_buffer_order,
394 					     DMA_FROM_DEVICE);
395 			if (unlikely(dma_mapping_error(&efx->pci_dev->dev,
396 						       dma_addr))) {
397 				__free_pages(page, efx->rx_buffer_order);
398 				return -EIO;
399 			}
400 			state = page_address(page);
401 			state->dma_addr = dma_addr;
402 		} else {
403 			state = page_address(page);
404 			dma_addr = state->dma_addr;
405 		}
406 
407 		dma_addr += sizeof(struct efx_rx_page_state);
408 		page_offset = sizeof(struct efx_rx_page_state);
409 
410 		do {
411 			index = rx_queue->added_count & rx_queue->ptr_mask;
412 			rx_buf = efx_rx_buffer(rx_queue, index);
413 			rx_buf->dma_addr = dma_addr + efx->rx_ip_align +
414 					   EFX_XDP_HEADROOM;
415 			rx_buf->page = page;
416 			rx_buf->page_offset = page_offset + efx->rx_ip_align +
417 					      EFX_XDP_HEADROOM;
418 			rx_buf->len = efx->rx_dma_len;
419 			rx_buf->flags = 0;
420 			++rx_queue->added_count;
421 			get_page(page);
422 			dma_addr += efx->rx_page_buf_step;
423 			page_offset += efx->rx_page_buf_step;
424 		} while (page_offset + efx->rx_page_buf_step <= PAGE_SIZE);
425 
426 		rx_buf->flags = EFX_RX_BUF_LAST_IN_PAGE;
427 	} while (++count < efx->rx_pages_per_batch);
428 
429 	return 0;
430 }
431 
432 void efx_siena_rx_config_page_split(struct efx_nic *efx)
433 {
434 	efx->rx_page_buf_step = ALIGN(efx->rx_dma_len + efx->rx_ip_align +
435 				      EFX_XDP_HEADROOM + EFX_XDP_TAILROOM,
436 				      EFX_RX_BUF_ALIGNMENT);
437 	efx->rx_bufs_per_page = efx->rx_buffer_order ? 1 :
438 		((PAGE_SIZE - sizeof(struct efx_rx_page_state)) /
439 		efx->rx_page_buf_step);
440 	efx->rx_buffer_truesize = (PAGE_SIZE << efx->rx_buffer_order) /
441 		efx->rx_bufs_per_page;
442 	efx->rx_pages_per_batch = DIV_ROUND_UP(EFX_RX_PREFERRED_BATCH,
443 					       efx->rx_bufs_per_page);
444 }
445 
446 /* efx_siena_fast_push_rx_descriptors - push new RX descriptors quickly
447  * @rx_queue:		RX descriptor queue
448  *
449  * This will aim to fill the RX descriptor queue up to
450  * @rx_queue->@max_fill. If there is insufficient atomic
451  * memory to do so, a slow fill will be scheduled.
452  *
453  * The caller must provide serialisation (none is used here). In practise,
454  * this means this function must run from the NAPI handler, or be called
455  * when NAPI is disabled.
456  */
457 void efx_siena_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue,
458 					bool atomic)
459 {
460 	struct efx_nic *efx = rx_queue->efx;
461 	unsigned int fill_level, batch_size;
462 	int space, rc = 0;
463 
464 	if (!rx_queue->refill_enabled)
465 		return;
466 
467 	/* Calculate current fill level, and exit if we don't need to fill */
468 	fill_level = (rx_queue->added_count - rx_queue->removed_count);
469 	EFX_WARN_ON_ONCE_PARANOID(fill_level > rx_queue->efx->rxq_entries);
470 	if (fill_level >= rx_queue->fast_fill_trigger)
471 		goto out;
472 
473 	/* Record minimum fill level */
474 	if (unlikely(fill_level < rx_queue->min_fill)) {
475 		if (fill_level)
476 			rx_queue->min_fill = fill_level;
477 	}
478 
479 	batch_size = efx->rx_pages_per_batch * efx->rx_bufs_per_page;
480 	space = rx_queue->max_fill - fill_level;
481 	EFX_WARN_ON_ONCE_PARANOID(space < batch_size);
482 
483 	netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
484 		   "RX queue %d fast-filling descriptor ring from"
485 		   " level %d to level %d\n",
486 		   efx_rx_queue_index(rx_queue), fill_level,
487 		   rx_queue->max_fill);
488 
489 	do {
490 		rc = efx_init_rx_buffers(rx_queue, atomic);
491 		if (unlikely(rc)) {
492 			/* Ensure that we don't leave the rx queue empty */
493 			efx_schedule_slow_fill(rx_queue);
494 			goto out;
495 		}
496 	} while ((space -= batch_size) >= batch_size);
497 
498 	netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
499 		   "RX queue %d fast-filled descriptor ring "
500 		   "to level %d\n", efx_rx_queue_index(rx_queue),
501 		   rx_queue->added_count - rx_queue->removed_count);
502 
503  out:
504 	if (rx_queue->notified_count != rx_queue->added_count)
505 		efx_nic_notify_rx_desc(rx_queue);
506 }
507 
508 /* Pass a received packet up through GRO.  GRO can handle pages
509  * regardless of checksum state and skbs with a good checksum.
510  */
511 void
512 efx_siena_rx_packet_gro(struct efx_channel *channel,
513 			struct efx_rx_buffer *rx_buf,
514 			unsigned int n_frags, u8 *eh, __wsum csum)
515 {
516 	struct napi_struct *napi = &channel->napi_str;
517 	struct efx_nic *efx = channel->efx;
518 	struct sk_buff *skb;
519 
520 	skb = napi_get_frags(napi);
521 	if (unlikely(!skb)) {
522 		struct efx_rx_queue *rx_queue;
523 
524 		rx_queue = efx_channel_get_rx_queue(channel);
525 		efx_siena_free_rx_buffers(rx_queue, rx_buf, n_frags);
526 		return;
527 	}
528 
529 	if (efx->net_dev->features & NETIF_F_RXHASH)
530 		skb_set_hash(skb, efx_rx_buf_hash(efx, eh),
531 			     PKT_HASH_TYPE_L3);
532 	if (csum) {
533 		skb->csum = csum;
534 		skb->ip_summed = CHECKSUM_COMPLETE;
535 	} else {
536 		skb->ip_summed = ((rx_buf->flags & EFX_RX_PKT_CSUMMED) ?
537 				  CHECKSUM_UNNECESSARY : CHECKSUM_NONE);
538 	}
539 	skb->csum_level = !!(rx_buf->flags & EFX_RX_PKT_CSUM_LEVEL);
540 
541 	for (;;) {
542 		skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
543 				   rx_buf->page, rx_buf->page_offset,
544 				   rx_buf->len);
545 		rx_buf->page = NULL;
546 		skb->len += rx_buf->len;
547 		if (skb_shinfo(skb)->nr_frags == n_frags)
548 			break;
549 
550 		rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
551 	}
552 
553 	skb->data_len = skb->len;
554 	skb->truesize += n_frags * efx->rx_buffer_truesize;
555 
556 	skb_record_rx_queue(skb, channel->rx_queue.core_index);
557 
558 	napi_gro_frags(napi);
559 }
560 
561 /* RSS contexts.  We're using linked lists and crappy O(n) algorithms, because
562  * (a) this is an infrequent control-plane operation and (b) n is small (max 64)
563  */
564 struct efx_rss_context *efx_siena_alloc_rss_context_entry(struct efx_nic *efx)
565 {
566 	struct list_head *head = &efx->rss_context.list;
567 	struct efx_rss_context *ctx, *new;
568 	u32 id = 1; /* Don't use zero, that refers to the master RSS context */
569 
570 	WARN_ON(!mutex_is_locked(&efx->rss_lock));
571 
572 	/* Search for first gap in the numbering */
573 	list_for_each_entry(ctx, head, list) {
574 		if (ctx->user_id != id)
575 			break;
576 		id++;
577 		/* Check for wrap.  If this happens, we have nearly 2^32
578 		 * allocated RSS contexts, which seems unlikely.
579 		 */
580 		if (WARN_ON_ONCE(!id))
581 			return NULL;
582 	}
583 
584 	/* Create the new entry */
585 	new = kmalloc(sizeof(*new), GFP_KERNEL);
586 	if (!new)
587 		return NULL;
588 	new->context_id = EFX_MCDI_RSS_CONTEXT_INVALID;
589 	new->rx_hash_udp_4tuple = false;
590 
591 	/* Insert the new entry into the gap */
592 	new->user_id = id;
593 	list_add_tail(&new->list, &ctx->list);
594 	return new;
595 }
596 
597 struct efx_rss_context *efx_siena_find_rss_context_entry(struct efx_nic *efx,
598 							 u32 id)
599 {
600 	struct list_head *head = &efx->rss_context.list;
601 	struct efx_rss_context *ctx;
602 
603 	WARN_ON(!mutex_is_locked(&efx->rss_lock));
604 
605 	list_for_each_entry(ctx, head, list)
606 		if (ctx->user_id == id)
607 			return ctx;
608 	return NULL;
609 }
610 
611 void efx_siena_free_rss_context_entry(struct efx_rss_context *ctx)
612 {
613 	list_del(&ctx->list);
614 	kfree(ctx);
615 }
616 
617 void efx_siena_set_default_rx_indir_table(struct efx_nic *efx,
618 					  struct efx_rss_context *ctx)
619 {
620 	size_t i;
621 
622 	for (i = 0; i < ARRAY_SIZE(ctx->rx_indir_table); i++)
623 		ctx->rx_indir_table[i] =
624 			ethtool_rxfh_indir_default(i, efx->rss_spread);
625 }
626 
627 /**
628  * efx_siena_filter_is_mc_recipient - test whether spec is a multicast recipient
629  * @spec: Specification to test
630  *
631  * Return: %true if the specification is a non-drop RX filter that
632  * matches a local MAC address I/G bit value of 1 or matches a local
633  * IPv4 or IPv6 address value in the respective multicast address
634  * range.  Otherwise %false.
635  */
636 bool efx_siena_filter_is_mc_recipient(const struct efx_filter_spec *spec)
637 {
638 	if (!(spec->flags & EFX_FILTER_FLAG_RX) ||
639 	    spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP)
640 		return false;
641 
642 	if (spec->match_flags &
643 	    (EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_LOC_MAC_IG) &&
644 	    is_multicast_ether_addr(spec->loc_mac))
645 		return true;
646 
647 	if ((spec->match_flags &
648 	     (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) ==
649 	    (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) {
650 		if (spec->ether_type == htons(ETH_P_IP) &&
651 		    ipv4_is_multicast(spec->loc_host[0]))
652 			return true;
653 		if (spec->ether_type == htons(ETH_P_IPV6) &&
654 		    ((const u8 *)spec->loc_host)[0] == 0xff)
655 			return true;
656 	}
657 
658 	return false;
659 }
660 
661 bool efx_siena_filter_spec_equal(const struct efx_filter_spec *left,
662 				 const struct efx_filter_spec *right)
663 {
664 	if ((left->match_flags ^ right->match_flags) |
665 	    ((left->flags ^ right->flags) &
666 	     (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)))
667 		return false;
668 
669 	return memcmp(&left->outer_vid, &right->outer_vid,
670 		      sizeof(struct efx_filter_spec) -
671 		      offsetof(struct efx_filter_spec, outer_vid)) == 0;
672 }
673 
674 u32 efx_siena_filter_spec_hash(const struct efx_filter_spec *spec)
675 {
676 	BUILD_BUG_ON(offsetof(struct efx_filter_spec, outer_vid) & 3);
677 	return jhash2((const u32 *)&spec->outer_vid,
678 		      (sizeof(struct efx_filter_spec) -
679 		       offsetof(struct efx_filter_spec, outer_vid)) / 4,
680 		      0);
681 }
682 
683 #ifdef CONFIG_RFS_ACCEL
684 bool efx_siena_rps_check_rule(struct efx_arfs_rule *rule,
685 			      unsigned int filter_idx, bool *force)
686 {
687 	if (rule->filter_id == EFX_ARFS_FILTER_ID_PENDING) {
688 		/* ARFS is currently updating this entry, leave it */
689 		return false;
690 	}
691 	if (rule->filter_id == EFX_ARFS_FILTER_ID_ERROR) {
692 		/* ARFS tried and failed to update this, so it's probably out
693 		 * of date.  Remove the filter and the ARFS rule entry.
694 		 */
695 		rule->filter_id = EFX_ARFS_FILTER_ID_REMOVING;
696 		*force = true;
697 		return true;
698 	} else if (WARN_ON(rule->filter_id != filter_idx)) { /* can't happen */
699 		/* ARFS has moved on, so old filter is not needed.  Since we did
700 		 * not mark the rule with EFX_ARFS_FILTER_ID_REMOVING, it will
701 		 * not be removed by efx_siena_rps_hash_del() subsequently.
702 		 */
703 		*force = true;
704 		return true;
705 	}
706 	/* Remove it iff ARFS wants to. */
707 	return true;
708 }
709 
710 static
711 struct hlist_head *efx_rps_hash_bucket(struct efx_nic *efx,
712 				       const struct efx_filter_spec *spec)
713 {
714 	u32 hash = efx_siena_filter_spec_hash(spec);
715 
716 	lockdep_assert_held(&efx->rps_hash_lock);
717 	if (!efx->rps_hash_table)
718 		return NULL;
719 	return &efx->rps_hash_table[hash % EFX_ARFS_HASH_TABLE_SIZE];
720 }
721 
722 struct efx_arfs_rule *efx_siena_rps_hash_find(struct efx_nic *efx,
723 					const struct efx_filter_spec *spec)
724 {
725 	struct efx_arfs_rule *rule;
726 	struct hlist_head *head;
727 	struct hlist_node *node;
728 
729 	head = efx_rps_hash_bucket(efx, spec);
730 	if (!head)
731 		return NULL;
732 	hlist_for_each(node, head) {
733 		rule = container_of(node, struct efx_arfs_rule, node);
734 		if (efx_siena_filter_spec_equal(spec, &rule->spec))
735 			return rule;
736 	}
737 	return NULL;
738 }
739 
740 static struct efx_arfs_rule *efx_rps_hash_add(struct efx_nic *efx,
741 					const struct efx_filter_spec *spec,
742 					bool *new)
743 {
744 	struct efx_arfs_rule *rule;
745 	struct hlist_head *head;
746 	struct hlist_node *node;
747 
748 	head = efx_rps_hash_bucket(efx, spec);
749 	if (!head)
750 		return NULL;
751 	hlist_for_each(node, head) {
752 		rule = container_of(node, struct efx_arfs_rule, node);
753 		if (efx_siena_filter_spec_equal(spec, &rule->spec)) {
754 			*new = false;
755 			return rule;
756 		}
757 	}
758 	rule = kmalloc(sizeof(*rule), GFP_ATOMIC);
759 	*new = true;
760 	if (rule) {
761 		memcpy(&rule->spec, spec, sizeof(rule->spec));
762 		hlist_add_head(&rule->node, head);
763 	}
764 	return rule;
765 }
766 
767 void efx_siena_rps_hash_del(struct efx_nic *efx,
768 			    const struct efx_filter_spec *spec)
769 {
770 	struct efx_arfs_rule *rule;
771 	struct hlist_head *head;
772 	struct hlist_node *node;
773 
774 	head = efx_rps_hash_bucket(efx, spec);
775 	if (WARN_ON(!head))
776 		return;
777 	hlist_for_each(node, head) {
778 		rule = container_of(node, struct efx_arfs_rule, node);
779 		if (efx_siena_filter_spec_equal(spec, &rule->spec)) {
780 			/* Someone already reused the entry.  We know that if
781 			 * this check doesn't fire (i.e. filter_id == REMOVING)
782 			 * then the REMOVING mark was put there by our caller,
783 			 * because caller is holding a lock on filter table and
784 			 * only holders of that lock set REMOVING.
785 			 */
786 			if (rule->filter_id != EFX_ARFS_FILTER_ID_REMOVING)
787 				return;
788 			hlist_del(node);
789 			kfree(rule);
790 			return;
791 		}
792 	}
793 	/* We didn't find it. */
794 	WARN_ON(1);
795 }
796 #endif
797 
798 int efx_siena_probe_filters(struct efx_nic *efx)
799 {
800 	int rc;
801 
802 	mutex_lock(&efx->mac_lock);
803 	down_write(&efx->filter_sem);
804 	rc = efx->type->filter_table_probe(efx);
805 	if (rc)
806 		goto out_unlock;
807 
808 #ifdef CONFIG_RFS_ACCEL
809 	if (efx->type->offload_features & NETIF_F_NTUPLE) {
810 		struct efx_channel *channel;
811 		int i, success = 1;
812 
813 		efx_for_each_channel(channel, efx) {
814 			channel->rps_flow_id =
815 				kcalloc(efx->type->max_rx_ip_filters,
816 					sizeof(*channel->rps_flow_id),
817 					GFP_KERNEL);
818 			if (!channel->rps_flow_id)
819 				success = 0;
820 			else
821 				for (i = 0;
822 				     i < efx->type->max_rx_ip_filters;
823 				     ++i)
824 					channel->rps_flow_id[i] =
825 						RPS_FLOW_ID_INVALID;
826 			channel->rfs_expire_index = 0;
827 			channel->rfs_filter_count = 0;
828 		}
829 
830 		if (!success) {
831 			efx_for_each_channel(channel, efx)
832 				kfree(channel->rps_flow_id);
833 			efx->type->filter_table_remove(efx);
834 			rc = -ENOMEM;
835 			goto out_unlock;
836 		}
837 	}
838 #endif
839 out_unlock:
840 	up_write(&efx->filter_sem);
841 	mutex_unlock(&efx->mac_lock);
842 	return rc;
843 }
844 
845 void efx_siena_remove_filters(struct efx_nic *efx)
846 {
847 #ifdef CONFIG_RFS_ACCEL
848 	struct efx_channel *channel;
849 
850 	efx_for_each_channel(channel, efx) {
851 		cancel_delayed_work_sync(&channel->filter_work);
852 		kfree(channel->rps_flow_id);
853 		channel->rps_flow_id = NULL;
854 	}
855 #endif
856 	down_write(&efx->filter_sem);
857 	efx->type->filter_table_remove(efx);
858 	up_write(&efx->filter_sem);
859 }
860 
861 #ifdef CONFIG_RFS_ACCEL
862 
863 static void efx_filter_rfs_work(struct work_struct *data)
864 {
865 	struct efx_async_filter_insertion *req = container_of(data, struct efx_async_filter_insertion,
866 							      work);
867 	struct efx_nic *efx = netdev_priv(req->net_dev);
868 	struct efx_channel *channel = efx_get_channel(efx, req->rxq_index);
869 	int slot_idx = req - efx->rps_slot;
870 	struct efx_arfs_rule *rule;
871 	u16 arfs_id = 0;
872 	int rc;
873 
874 	rc = efx->type->filter_insert(efx, &req->spec, true);
875 	if (rc >= 0)
876 		/* Discard 'priority' part of EF10+ filter ID (mcdi_filters) */
877 		rc %= efx->type->max_rx_ip_filters;
878 	if (efx->rps_hash_table) {
879 		spin_lock_bh(&efx->rps_hash_lock);
880 		rule = efx_siena_rps_hash_find(efx, &req->spec);
881 		/* The rule might have already gone, if someone else's request
882 		 * for the same spec was already worked and then expired before
883 		 * we got around to our work.  In that case we have nothing
884 		 * tying us to an arfs_id, meaning that as soon as the filter
885 		 * is considered for expiry it will be removed.
886 		 */
887 		if (rule) {
888 			if (rc < 0)
889 				rule->filter_id = EFX_ARFS_FILTER_ID_ERROR;
890 			else
891 				rule->filter_id = rc;
892 			arfs_id = rule->arfs_id;
893 		}
894 		spin_unlock_bh(&efx->rps_hash_lock);
895 	}
896 	if (rc >= 0) {
897 		/* Remember this so we can check whether to expire the filter
898 		 * later.
899 		 */
900 		mutex_lock(&efx->rps_mutex);
901 		if (channel->rps_flow_id[rc] == RPS_FLOW_ID_INVALID)
902 			channel->rfs_filter_count++;
903 		channel->rps_flow_id[rc] = req->flow_id;
904 		mutex_unlock(&efx->rps_mutex);
905 
906 		if (req->spec.ether_type == htons(ETH_P_IP))
907 			netif_info(efx, rx_status, efx->net_dev,
908 				   "steering %s %pI4:%u:%pI4:%u to queue %u [flow %u filter %d id %u]\n",
909 				   (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
910 				   req->spec.rem_host, ntohs(req->spec.rem_port),
911 				   req->spec.loc_host, ntohs(req->spec.loc_port),
912 				   req->rxq_index, req->flow_id, rc, arfs_id);
913 		else
914 			netif_info(efx, rx_status, efx->net_dev,
915 				   "steering %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u filter %d id %u]\n",
916 				   (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
917 				   req->spec.rem_host, ntohs(req->spec.rem_port),
918 				   req->spec.loc_host, ntohs(req->spec.loc_port),
919 				   req->rxq_index, req->flow_id, rc, arfs_id);
920 		channel->n_rfs_succeeded++;
921 	} else {
922 		if (req->spec.ether_type == htons(ETH_P_IP))
923 			netif_dbg(efx, rx_status, efx->net_dev,
924 				  "failed to steer %s %pI4:%u:%pI4:%u to queue %u [flow %u rc %d id %u]\n",
925 				  (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
926 				  req->spec.rem_host, ntohs(req->spec.rem_port),
927 				  req->spec.loc_host, ntohs(req->spec.loc_port),
928 				  req->rxq_index, req->flow_id, rc, arfs_id);
929 		else
930 			netif_dbg(efx, rx_status, efx->net_dev,
931 				  "failed to steer %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u rc %d id %u]\n",
932 				  (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
933 				  req->spec.rem_host, ntohs(req->spec.rem_port),
934 				  req->spec.loc_host, ntohs(req->spec.loc_port),
935 				  req->rxq_index, req->flow_id, rc, arfs_id);
936 		channel->n_rfs_failed++;
937 		/* We're overloading the NIC's filter tables, so let's do a
938 		 * chunk of extra expiry work.
939 		 */
940 		__efx_siena_filter_rfs_expire(channel,
941 					      min(channel->rfs_filter_count,
942 						  100u));
943 	}
944 
945 	/* Release references */
946 	clear_bit(slot_idx, &efx->rps_slot_map);
947 	dev_put(req->net_dev);
948 }
949 
950 int efx_siena_filter_rfs(struct net_device *net_dev, const struct sk_buff *skb,
951 			 u16 rxq_index, u32 flow_id)
952 {
953 	struct efx_nic *efx = netdev_priv(net_dev);
954 	struct efx_async_filter_insertion *req;
955 	struct efx_arfs_rule *rule;
956 	struct flow_keys fk;
957 	int slot_idx;
958 	bool new;
959 	int rc;
960 
961 	/* find a free slot */
962 	for (slot_idx = 0; slot_idx < EFX_RPS_MAX_IN_FLIGHT; slot_idx++)
963 		if (!test_and_set_bit(slot_idx, &efx->rps_slot_map))
964 			break;
965 	if (slot_idx >= EFX_RPS_MAX_IN_FLIGHT)
966 		return -EBUSY;
967 
968 	if (flow_id == RPS_FLOW_ID_INVALID) {
969 		rc = -EINVAL;
970 		goto out_clear;
971 	}
972 
973 	if (!skb_flow_dissect_flow_keys(skb, &fk, 0)) {
974 		rc = -EPROTONOSUPPORT;
975 		goto out_clear;
976 	}
977 
978 	if (fk.basic.n_proto != htons(ETH_P_IP) && fk.basic.n_proto != htons(ETH_P_IPV6)) {
979 		rc = -EPROTONOSUPPORT;
980 		goto out_clear;
981 	}
982 	if (fk.control.flags & FLOW_DIS_IS_FRAGMENT) {
983 		rc = -EPROTONOSUPPORT;
984 		goto out_clear;
985 	}
986 
987 	req = efx->rps_slot + slot_idx;
988 	efx_filter_init_rx(&req->spec, EFX_FILTER_PRI_HINT,
989 			   efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0,
990 			   rxq_index);
991 	req->spec.match_flags =
992 		EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
993 		EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT |
994 		EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT;
995 	req->spec.ether_type = fk.basic.n_proto;
996 	req->spec.ip_proto = fk.basic.ip_proto;
997 
998 	if (fk.basic.n_proto == htons(ETH_P_IP)) {
999 		req->spec.rem_host[0] = fk.addrs.v4addrs.src;
1000 		req->spec.loc_host[0] = fk.addrs.v4addrs.dst;
1001 	} else {
1002 		memcpy(req->spec.rem_host, &fk.addrs.v6addrs.src,
1003 		       sizeof(struct in6_addr));
1004 		memcpy(req->spec.loc_host, &fk.addrs.v6addrs.dst,
1005 		       sizeof(struct in6_addr));
1006 	}
1007 
1008 	req->spec.rem_port = fk.ports.src;
1009 	req->spec.loc_port = fk.ports.dst;
1010 
1011 	if (efx->rps_hash_table) {
1012 		/* Add it to ARFS hash table */
1013 		spin_lock(&efx->rps_hash_lock);
1014 		rule = efx_rps_hash_add(efx, &req->spec, &new);
1015 		if (!rule) {
1016 			rc = -ENOMEM;
1017 			goto out_unlock;
1018 		}
1019 		if (new)
1020 			rule->arfs_id = efx->rps_next_id++ % RPS_NO_FILTER;
1021 		rc = rule->arfs_id;
1022 		/* Skip if existing or pending filter already does the right thing */
1023 		if (!new && rule->rxq_index == rxq_index &&
1024 		    rule->filter_id >= EFX_ARFS_FILTER_ID_PENDING)
1025 			goto out_unlock;
1026 		rule->rxq_index = rxq_index;
1027 		rule->filter_id = EFX_ARFS_FILTER_ID_PENDING;
1028 		spin_unlock(&efx->rps_hash_lock);
1029 	} else {
1030 		/* Without an ARFS hash table, we just use arfs_id 0 for all
1031 		 * filters.  This means if multiple flows hash to the same
1032 		 * flow_id, all but the most recently touched will be eligible
1033 		 * for expiry.
1034 		 */
1035 		rc = 0;
1036 	}
1037 
1038 	/* Queue the request */
1039 	dev_hold(req->net_dev = net_dev);
1040 	INIT_WORK(&req->work, efx_filter_rfs_work);
1041 	req->rxq_index = rxq_index;
1042 	req->flow_id = flow_id;
1043 	schedule_work(&req->work);
1044 	return rc;
1045 out_unlock:
1046 	spin_unlock(&efx->rps_hash_lock);
1047 out_clear:
1048 	clear_bit(slot_idx, &efx->rps_slot_map);
1049 	return rc;
1050 }
1051 
1052 bool __efx_siena_filter_rfs_expire(struct efx_channel *channel,
1053 				   unsigned int quota)
1054 {
1055 	bool (*expire_one)(struct efx_nic *efx, u32 flow_id, unsigned int index);
1056 	struct efx_nic *efx = channel->efx;
1057 	unsigned int index, size, start;
1058 	u32 flow_id;
1059 
1060 	if (!mutex_trylock(&efx->rps_mutex))
1061 		return false;
1062 	expire_one = efx->type->filter_rfs_expire_one;
1063 	index = channel->rfs_expire_index;
1064 	start = index;
1065 	size = efx->type->max_rx_ip_filters;
1066 	while (quota) {
1067 		flow_id = channel->rps_flow_id[index];
1068 
1069 		if (flow_id != RPS_FLOW_ID_INVALID) {
1070 			quota--;
1071 			if (expire_one(efx, flow_id, index)) {
1072 				netif_info(efx, rx_status, efx->net_dev,
1073 					   "expired filter %d [channel %u flow %u]\n",
1074 					   index, channel->channel, flow_id);
1075 				channel->rps_flow_id[index] = RPS_FLOW_ID_INVALID;
1076 				channel->rfs_filter_count--;
1077 			}
1078 		}
1079 		if (++index == size)
1080 			index = 0;
1081 		/* If we were called with a quota that exceeds the total number
1082 		 * of filters in the table (which shouldn't happen, but could
1083 		 * if two callers race), ensure that we don't loop forever -
1084 		 * stop when we've examined every row of the table.
1085 		 */
1086 		if (index == start)
1087 			break;
1088 	}
1089 
1090 	channel->rfs_expire_index = index;
1091 	mutex_unlock(&efx->rps_mutex);
1092 	return true;
1093 }
1094 
1095 #endif /* CONFIG_RFS_ACCEL */
1096