xref: /linux/drivers/net/ethernet/sfc/siena/mcdi.c (revision daa2be74b1b2302004945b2a5e32424e177cc7da)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2008-2013 Solarflare Communications Inc.
5  */
6 
7 #include <linux/delay.h>
8 #include <linux/moduleparam.h>
9 #include <linux/atomic.h>
10 #include "net_driver.h"
11 #include "nic.h"
12 #include "io.h"
13 #include "farch_regs.h"
14 #include "mcdi_pcol.h"
15 
16 /**************************************************************************
17  *
18  * Management-Controller-to-Driver Interface
19  *
20  **************************************************************************
21  */
22 
23 #define MCDI_RPC_TIMEOUT       (10 * HZ)
24 
25 /* A reboot/assertion causes the MCDI status word to be set after the
26  * command word is set or a REBOOT event is sent. If we notice a reboot
27  * via these mechanisms then wait 250ms for the status word to be set.
28  */
29 #define MCDI_STATUS_DELAY_US		100
30 #define MCDI_STATUS_DELAY_COUNT		2500
31 #define MCDI_STATUS_SLEEP_MS						\
32 	(MCDI_STATUS_DELAY_US * MCDI_STATUS_DELAY_COUNT / 1000)
33 
34 #define SEQ_MASK							\
35 	EFX_MASK32(EFX_WIDTH(MCDI_HEADER_SEQ))
36 
37 struct efx_mcdi_async_param {
38 	struct list_head list;
39 	unsigned int cmd;
40 	size_t inlen;
41 	size_t outlen;
42 	bool quiet;
43 	efx_mcdi_async_completer *complete;
44 	unsigned long cookie;
45 	/* followed by request/response buffer */
46 };
47 
48 static void efx_mcdi_timeout_async(struct timer_list *t);
49 static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
50 			       bool *was_attached_out);
51 static bool efx_mcdi_poll_once(struct efx_nic *efx);
52 static void efx_mcdi_abandon(struct efx_nic *efx);
53 
54 #ifdef CONFIG_SFC_SIENA_MCDI_LOGGING
55 static bool efx_siena_mcdi_logging_default;
56 module_param_named(mcdi_logging_default, efx_siena_mcdi_logging_default,
57 		   bool, 0644);
58 MODULE_PARM_DESC(mcdi_logging_default,
59 		 "Enable MCDI logging on newly-probed functions");
60 #endif
61 
62 int efx_siena_mcdi_init(struct efx_nic *efx)
63 {
64 	struct efx_mcdi_iface *mcdi;
65 	bool already_attached;
66 	int rc = -ENOMEM;
67 
68 	efx->mcdi = kzalloc(sizeof(*efx->mcdi), GFP_KERNEL);
69 	if (!efx->mcdi)
70 		goto fail;
71 
72 	mcdi = efx_mcdi(efx);
73 	mcdi->efx = efx;
74 #ifdef CONFIG_SFC_SIENA_MCDI_LOGGING
75 	/* consuming code assumes buffer is page-sized */
76 	mcdi->logging_buffer = (char *)__get_free_page(GFP_KERNEL);
77 	if (!mcdi->logging_buffer)
78 		goto fail1;
79 	mcdi->logging_enabled = efx_siena_mcdi_logging_default;
80 #endif
81 	init_waitqueue_head(&mcdi->wq);
82 	init_waitqueue_head(&mcdi->proxy_rx_wq);
83 	spin_lock_init(&mcdi->iface_lock);
84 	mcdi->state = MCDI_STATE_QUIESCENT;
85 	mcdi->mode = MCDI_MODE_POLL;
86 	spin_lock_init(&mcdi->async_lock);
87 	INIT_LIST_HEAD(&mcdi->async_list);
88 	timer_setup(&mcdi->async_timer, efx_mcdi_timeout_async, 0);
89 
90 	(void)efx_siena_mcdi_poll_reboot(efx);
91 	mcdi->new_epoch = true;
92 
93 	/* Recover from a failed assertion before probing */
94 	rc = efx_siena_mcdi_handle_assertion(efx);
95 	if (rc)
96 		goto fail2;
97 
98 	/* Let the MC (and BMC, if this is a LOM) know that the driver
99 	 * is loaded. We should do this before we reset the NIC.
100 	 */
101 	rc = efx_mcdi_drv_attach(efx, true, &already_attached);
102 	if (rc) {
103 		netif_err(efx, probe, efx->net_dev,
104 			  "Unable to register driver with MCPU\n");
105 		goto fail2;
106 	}
107 	if (already_attached)
108 		/* Not a fatal error */
109 		netif_err(efx, probe, efx->net_dev,
110 			  "Host already registered with MCPU\n");
111 
112 	if (efx->mcdi->fn_flags &
113 	    (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
114 		efx->primary = efx;
115 
116 	return 0;
117 fail2:
118 #ifdef CONFIG_SFC_SIENA_MCDI_LOGGING
119 	free_page((unsigned long)mcdi->logging_buffer);
120 fail1:
121 #endif
122 	kfree(efx->mcdi);
123 	efx->mcdi = NULL;
124 fail:
125 	return rc;
126 }
127 
128 void efx_siena_mcdi_detach(struct efx_nic *efx)
129 {
130 	if (!efx->mcdi)
131 		return;
132 
133 	BUG_ON(efx->mcdi->iface.state != MCDI_STATE_QUIESCENT);
134 
135 	/* Relinquish the device (back to the BMC, if this is a LOM) */
136 	efx_mcdi_drv_attach(efx, false, NULL);
137 }
138 
139 void efx_siena_mcdi_fini(struct efx_nic *efx)
140 {
141 	if (!efx->mcdi)
142 		return;
143 
144 #ifdef CONFIG_SFC_SIENA_MCDI_LOGGING
145 	free_page((unsigned long)efx->mcdi->iface.logging_buffer);
146 #endif
147 
148 	kfree(efx->mcdi);
149 }
150 
151 static void efx_mcdi_send_request(struct efx_nic *efx, unsigned cmd,
152 				  const efx_dword_t *inbuf, size_t inlen)
153 {
154 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
155 #ifdef CONFIG_SFC_SIENA_MCDI_LOGGING
156 	char *buf = mcdi->logging_buffer; /* page-sized */
157 #endif
158 	efx_dword_t hdr[2];
159 	size_t hdr_len;
160 	u32 xflags, seqno;
161 
162 	BUG_ON(mcdi->state == MCDI_STATE_QUIESCENT);
163 
164 	/* Serialise with efx_mcdi_ev_cpl() and efx_mcdi_ev_death() */
165 	spin_lock_bh(&mcdi->iface_lock);
166 	++mcdi->seqno;
167 	seqno = mcdi->seqno & SEQ_MASK;
168 	spin_unlock_bh(&mcdi->iface_lock);
169 
170 	xflags = 0;
171 	if (mcdi->mode == MCDI_MODE_EVENTS)
172 		xflags |= MCDI_HEADER_XFLAGS_EVREQ;
173 
174 	if (efx->type->mcdi_max_ver == 1) {
175 		/* MCDI v1 */
176 		EFX_POPULATE_DWORD_7(hdr[0],
177 				     MCDI_HEADER_RESPONSE, 0,
178 				     MCDI_HEADER_RESYNC, 1,
179 				     MCDI_HEADER_CODE, cmd,
180 				     MCDI_HEADER_DATALEN, inlen,
181 				     MCDI_HEADER_SEQ, seqno,
182 				     MCDI_HEADER_XFLAGS, xflags,
183 				     MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch);
184 		hdr_len = 4;
185 	} else {
186 		/* MCDI v2 */
187 		BUG_ON(inlen > MCDI_CTL_SDU_LEN_MAX_V2);
188 		EFX_POPULATE_DWORD_7(hdr[0],
189 				     MCDI_HEADER_RESPONSE, 0,
190 				     MCDI_HEADER_RESYNC, 1,
191 				     MCDI_HEADER_CODE, MC_CMD_V2_EXTN,
192 				     MCDI_HEADER_DATALEN, 0,
193 				     MCDI_HEADER_SEQ, seqno,
194 				     MCDI_HEADER_XFLAGS, xflags,
195 				     MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch);
196 		EFX_POPULATE_DWORD_2(hdr[1],
197 				     MC_CMD_V2_EXTN_IN_EXTENDED_CMD, cmd,
198 				     MC_CMD_V2_EXTN_IN_ACTUAL_LEN, inlen);
199 		hdr_len = 8;
200 	}
201 
202 #ifdef CONFIG_SFC_SIENA_MCDI_LOGGING
203 	if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) {
204 		int bytes = 0;
205 		int i;
206 		/* Lengths should always be a whole number of dwords, so scream
207 		 * if they're not.
208 		 */
209 		WARN_ON_ONCE(hdr_len % 4);
210 		WARN_ON_ONCE(inlen % 4);
211 
212 		/* We own the logging buffer, as only one MCDI can be in
213 		 * progress on a NIC at any one time.  So no need for locking.
214 		 */
215 		for (i = 0; i < hdr_len / 4 && bytes < PAGE_SIZE; i++)
216 			bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
217 					   " %08x",
218 					   le32_to_cpu(hdr[i].u32[0]));
219 
220 		for (i = 0; i < inlen / 4 && bytes < PAGE_SIZE; i++)
221 			bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
222 					   " %08x",
223 					   le32_to_cpu(inbuf[i].u32[0]));
224 
225 		netif_info(efx, hw, efx->net_dev, "MCDI RPC REQ:%s\n", buf);
226 	}
227 #endif
228 
229 	efx->type->mcdi_request(efx, hdr, hdr_len, inbuf, inlen);
230 
231 	mcdi->new_epoch = false;
232 }
233 
234 static int efx_mcdi_errno(unsigned int mcdi_err)
235 {
236 	switch (mcdi_err) {
237 	case 0:
238 		return 0;
239 #define TRANSLATE_ERROR(name)					\
240 	case MC_CMD_ERR_ ## name:				\
241 		return -name;
242 	TRANSLATE_ERROR(EPERM);
243 	TRANSLATE_ERROR(ENOENT);
244 	TRANSLATE_ERROR(EINTR);
245 	TRANSLATE_ERROR(EAGAIN);
246 	TRANSLATE_ERROR(EACCES);
247 	TRANSLATE_ERROR(EBUSY);
248 	TRANSLATE_ERROR(EINVAL);
249 	TRANSLATE_ERROR(EDEADLK);
250 	TRANSLATE_ERROR(ENOSYS);
251 	TRANSLATE_ERROR(ETIME);
252 	TRANSLATE_ERROR(EALREADY);
253 	TRANSLATE_ERROR(ENOSPC);
254 #undef TRANSLATE_ERROR
255 	case MC_CMD_ERR_ENOTSUP:
256 		return -EOPNOTSUPP;
257 	case MC_CMD_ERR_ALLOC_FAIL:
258 		return -ENOBUFS;
259 	case MC_CMD_ERR_MAC_EXIST:
260 		return -EADDRINUSE;
261 	default:
262 		return -EPROTO;
263 	}
264 }
265 
266 static void efx_mcdi_read_response_header(struct efx_nic *efx)
267 {
268 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
269 	unsigned int respseq, respcmd, error;
270 #ifdef CONFIG_SFC_SIENA_MCDI_LOGGING
271 	char *buf = mcdi->logging_buffer; /* page-sized */
272 #endif
273 	efx_dword_t hdr;
274 
275 	efx->type->mcdi_read_response(efx, &hdr, 0, 4);
276 	respseq = EFX_DWORD_FIELD(hdr, MCDI_HEADER_SEQ);
277 	respcmd = EFX_DWORD_FIELD(hdr, MCDI_HEADER_CODE);
278 	error = EFX_DWORD_FIELD(hdr, MCDI_HEADER_ERROR);
279 
280 	if (respcmd != MC_CMD_V2_EXTN) {
281 		mcdi->resp_hdr_len = 4;
282 		mcdi->resp_data_len = EFX_DWORD_FIELD(hdr, MCDI_HEADER_DATALEN);
283 	} else {
284 		efx->type->mcdi_read_response(efx, &hdr, 4, 4);
285 		mcdi->resp_hdr_len = 8;
286 		mcdi->resp_data_len =
287 			EFX_DWORD_FIELD(hdr, MC_CMD_V2_EXTN_IN_ACTUAL_LEN);
288 	}
289 
290 #ifdef CONFIG_SFC_SIENA_MCDI_LOGGING
291 	if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) {
292 		size_t hdr_len, data_len;
293 		int bytes = 0;
294 		int i;
295 
296 		WARN_ON_ONCE(mcdi->resp_hdr_len % 4);
297 		hdr_len = mcdi->resp_hdr_len / 4;
298 		/* MCDI_DECLARE_BUF ensures that underlying buffer is padded
299 		 * to dword size, and the MCDI buffer is always dword size
300 		 */
301 		data_len = DIV_ROUND_UP(mcdi->resp_data_len, 4);
302 
303 		/* We own the logging buffer, as only one MCDI can be in
304 		 * progress on a NIC at any one time.  So no need for locking.
305 		 */
306 		for (i = 0; i < hdr_len && bytes < PAGE_SIZE; i++) {
307 			efx->type->mcdi_read_response(efx, &hdr, (i * 4), 4);
308 			bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
309 					   " %08x", le32_to_cpu(hdr.u32[0]));
310 		}
311 
312 		for (i = 0; i < data_len && bytes < PAGE_SIZE; i++) {
313 			efx->type->mcdi_read_response(efx, &hdr,
314 					mcdi->resp_hdr_len + (i * 4), 4);
315 			bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
316 					   " %08x", le32_to_cpu(hdr.u32[0]));
317 		}
318 
319 		netif_info(efx, hw, efx->net_dev, "MCDI RPC RESP:%s\n", buf);
320 	}
321 #endif
322 
323 	mcdi->resprc_raw = 0;
324 	if (error && mcdi->resp_data_len == 0) {
325 		netif_err(efx, hw, efx->net_dev, "MC rebooted\n");
326 		mcdi->resprc = -EIO;
327 	} else if ((respseq ^ mcdi->seqno) & SEQ_MASK) {
328 		netif_err(efx, hw, efx->net_dev,
329 			  "MC response mismatch tx seq 0x%x rx seq 0x%x\n",
330 			  respseq, mcdi->seqno);
331 		mcdi->resprc = -EIO;
332 	} else if (error) {
333 		efx->type->mcdi_read_response(efx, &hdr, mcdi->resp_hdr_len, 4);
334 		mcdi->resprc_raw = EFX_DWORD_FIELD(hdr, EFX_DWORD_0);
335 		mcdi->resprc = efx_mcdi_errno(mcdi->resprc_raw);
336 	} else {
337 		mcdi->resprc = 0;
338 	}
339 }
340 
341 static bool efx_mcdi_poll_once(struct efx_nic *efx)
342 {
343 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
344 
345 	rmb();
346 	if (!efx->type->mcdi_poll_response(efx))
347 		return false;
348 
349 	spin_lock_bh(&mcdi->iface_lock);
350 	efx_mcdi_read_response_header(efx);
351 	spin_unlock_bh(&mcdi->iface_lock);
352 
353 	return true;
354 }
355 
356 static int efx_mcdi_poll(struct efx_nic *efx)
357 {
358 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
359 	unsigned long time, finish;
360 	unsigned int spins;
361 	int rc;
362 
363 	/* Check for a reboot atomically with respect to efx_mcdi_copyout() */
364 	rc = efx_siena_mcdi_poll_reboot(efx);
365 	if (rc) {
366 		spin_lock_bh(&mcdi->iface_lock);
367 		mcdi->resprc = rc;
368 		mcdi->resp_hdr_len = 0;
369 		mcdi->resp_data_len = 0;
370 		spin_unlock_bh(&mcdi->iface_lock);
371 		return 0;
372 	}
373 
374 	/* Poll for completion. Poll quickly (once a us) for the 1st jiffy,
375 	 * because generally mcdi responses are fast. After that, back off
376 	 * and poll once a jiffy (approximately)
377 	 */
378 	spins = USER_TICK_USEC;
379 	finish = jiffies + MCDI_RPC_TIMEOUT;
380 
381 	while (1) {
382 		if (spins != 0) {
383 			--spins;
384 			udelay(1);
385 		} else {
386 			schedule_timeout_uninterruptible(1);
387 		}
388 
389 		time = jiffies;
390 
391 		if (efx_mcdi_poll_once(efx))
392 			break;
393 
394 		if (time_after(time, finish))
395 			return -ETIMEDOUT;
396 	}
397 
398 	/* Return rc=0 like wait_event_timeout() */
399 	return 0;
400 }
401 
402 /* Test and clear MC-rebooted flag for this port/function; reset
403  * software state as necessary.
404  */
405 int efx_siena_mcdi_poll_reboot(struct efx_nic *efx)
406 {
407 	if (!efx->mcdi)
408 		return 0;
409 
410 	return efx->type->mcdi_poll_reboot(efx);
411 }
412 
413 static bool efx_mcdi_acquire_async(struct efx_mcdi_iface *mcdi)
414 {
415 	return cmpxchg(&mcdi->state,
416 		       MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_ASYNC) ==
417 		MCDI_STATE_QUIESCENT;
418 }
419 
420 static void efx_mcdi_acquire_sync(struct efx_mcdi_iface *mcdi)
421 {
422 	/* Wait until the interface becomes QUIESCENT and we win the race
423 	 * to mark it RUNNING_SYNC.
424 	 */
425 	wait_event(mcdi->wq,
426 		   cmpxchg(&mcdi->state,
427 			   MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_SYNC) ==
428 		   MCDI_STATE_QUIESCENT);
429 }
430 
431 static int efx_mcdi_await_completion(struct efx_nic *efx)
432 {
433 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
434 
435 	if (wait_event_timeout(mcdi->wq, mcdi->state == MCDI_STATE_COMPLETED,
436 			       MCDI_RPC_TIMEOUT) == 0)
437 		return -ETIMEDOUT;
438 
439 	/* Check if efx_mcdi_set_mode() switched us back to polled completions.
440 	 * In which case, poll for completions directly. If efx_mcdi_ev_cpl()
441 	 * completed the request first, then we'll just end up completing the
442 	 * request again, which is safe.
443 	 *
444 	 * We need an smp_rmb() to synchronise with efx_siena_mcdi_mode_poll(), which
445 	 * wait_event_timeout() implicitly provides.
446 	 */
447 	if (mcdi->mode == MCDI_MODE_POLL)
448 		return efx_mcdi_poll(efx);
449 
450 	return 0;
451 }
452 
453 /* If the interface is RUNNING_SYNC, switch to COMPLETED and wake the
454  * requester.  Return whether this was done.  Does not take any locks.
455  */
456 static bool efx_mcdi_complete_sync(struct efx_mcdi_iface *mcdi)
457 {
458 	if (cmpxchg(&mcdi->state,
459 		    MCDI_STATE_RUNNING_SYNC, MCDI_STATE_COMPLETED) ==
460 	    MCDI_STATE_RUNNING_SYNC) {
461 		wake_up(&mcdi->wq);
462 		return true;
463 	}
464 
465 	return false;
466 }
467 
468 static void efx_mcdi_release(struct efx_mcdi_iface *mcdi)
469 {
470 	if (mcdi->mode == MCDI_MODE_EVENTS) {
471 		struct efx_mcdi_async_param *async;
472 		struct efx_nic *efx = mcdi->efx;
473 
474 		/* Process the asynchronous request queue */
475 		spin_lock_bh(&mcdi->async_lock);
476 		async = list_first_entry_or_null(
477 			&mcdi->async_list, struct efx_mcdi_async_param, list);
478 		if (async) {
479 			mcdi->state = MCDI_STATE_RUNNING_ASYNC;
480 			efx_mcdi_send_request(efx, async->cmd,
481 					      (const efx_dword_t *)(async + 1),
482 					      async->inlen);
483 			mod_timer(&mcdi->async_timer,
484 				  jiffies + MCDI_RPC_TIMEOUT);
485 		}
486 		spin_unlock_bh(&mcdi->async_lock);
487 
488 		if (async)
489 			return;
490 	}
491 
492 	mcdi->state = MCDI_STATE_QUIESCENT;
493 	wake_up(&mcdi->wq);
494 }
495 
496 /* If the interface is RUNNING_ASYNC, switch to COMPLETED, call the
497  * asynchronous completion function, and release the interface.
498  * Return whether this was done.  Must be called in bh-disabled
499  * context.  Will take iface_lock and async_lock.
500  */
501 static bool efx_mcdi_complete_async(struct efx_mcdi_iface *mcdi, bool timeout)
502 {
503 	struct efx_nic *efx = mcdi->efx;
504 	struct efx_mcdi_async_param *async;
505 	size_t hdr_len, data_len, err_len;
506 	efx_dword_t *outbuf;
507 	MCDI_DECLARE_BUF_ERR(errbuf);
508 	int rc;
509 
510 	if (cmpxchg(&mcdi->state,
511 		    MCDI_STATE_RUNNING_ASYNC, MCDI_STATE_COMPLETED) !=
512 	    MCDI_STATE_RUNNING_ASYNC)
513 		return false;
514 
515 	spin_lock(&mcdi->iface_lock);
516 	if (timeout) {
517 		/* Ensure that if the completion event arrives later,
518 		 * the seqno check in efx_mcdi_ev_cpl() will fail
519 		 */
520 		++mcdi->seqno;
521 		++mcdi->credits;
522 		rc = -ETIMEDOUT;
523 		hdr_len = 0;
524 		data_len = 0;
525 	} else {
526 		rc = mcdi->resprc;
527 		hdr_len = mcdi->resp_hdr_len;
528 		data_len = mcdi->resp_data_len;
529 	}
530 	spin_unlock(&mcdi->iface_lock);
531 
532 	/* Stop the timer.  In case the timer function is running, we
533 	 * must wait for it to return so that there is no possibility
534 	 * of it aborting the next request.
535 	 */
536 	if (!timeout)
537 		del_timer_sync(&mcdi->async_timer);
538 
539 	spin_lock(&mcdi->async_lock);
540 	async = list_first_entry(&mcdi->async_list,
541 				 struct efx_mcdi_async_param, list);
542 	list_del(&async->list);
543 	spin_unlock(&mcdi->async_lock);
544 
545 	outbuf = (efx_dword_t *)(async + 1);
546 	efx->type->mcdi_read_response(efx, outbuf, hdr_len,
547 				      min(async->outlen, data_len));
548 	if (!timeout && rc && !async->quiet) {
549 		err_len = min(sizeof(errbuf), data_len);
550 		efx->type->mcdi_read_response(efx, errbuf, hdr_len,
551 					      sizeof(errbuf));
552 		efx_siena_mcdi_display_error(efx, async->cmd, async->inlen,
553 					     errbuf, err_len, rc);
554 	}
555 
556 	if (async->complete)
557 		async->complete(efx, async->cookie, rc, outbuf,
558 				min(async->outlen, data_len));
559 	kfree(async);
560 
561 	efx_mcdi_release(mcdi);
562 
563 	return true;
564 }
565 
566 static void efx_mcdi_ev_cpl(struct efx_nic *efx, unsigned int seqno,
567 			    unsigned int datalen, unsigned int mcdi_err)
568 {
569 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
570 	bool wake = false;
571 
572 	spin_lock(&mcdi->iface_lock);
573 
574 	if ((seqno ^ mcdi->seqno) & SEQ_MASK) {
575 		if (mcdi->credits)
576 			/* The request has been cancelled */
577 			--mcdi->credits;
578 		else
579 			netif_err(efx, hw, efx->net_dev,
580 				  "MC response mismatch tx seq 0x%x rx "
581 				  "seq 0x%x\n", seqno, mcdi->seqno);
582 	} else {
583 		if (efx->type->mcdi_max_ver >= 2) {
584 			/* MCDI v2 responses don't fit in an event */
585 			efx_mcdi_read_response_header(efx);
586 		} else {
587 			mcdi->resprc = efx_mcdi_errno(mcdi_err);
588 			mcdi->resp_hdr_len = 4;
589 			mcdi->resp_data_len = datalen;
590 		}
591 
592 		wake = true;
593 	}
594 
595 	spin_unlock(&mcdi->iface_lock);
596 
597 	if (wake) {
598 		if (!efx_mcdi_complete_async(mcdi, false))
599 			(void) efx_mcdi_complete_sync(mcdi);
600 
601 		/* If the interface isn't RUNNING_ASYNC or
602 		 * RUNNING_SYNC then we've received a duplicate
603 		 * completion after we've already transitioned back to
604 		 * QUIESCENT. [A subsequent invocation would increment
605 		 * seqno, so would have failed the seqno check].
606 		 */
607 	}
608 }
609 
610 static void efx_mcdi_timeout_async(struct timer_list *t)
611 {
612 	struct efx_mcdi_iface *mcdi = from_timer(mcdi, t, async_timer);
613 
614 	efx_mcdi_complete_async(mcdi, true);
615 }
616 
617 static int
618 efx_mcdi_check_supported(struct efx_nic *efx, unsigned int cmd, size_t inlen)
619 {
620 	if (efx->type->mcdi_max_ver < 0 ||
621 	     (efx->type->mcdi_max_ver < 2 &&
622 	      cmd > MC_CMD_CMD_SPACE_ESCAPE_7))
623 		return -EINVAL;
624 
625 	if (inlen > MCDI_CTL_SDU_LEN_MAX_V2 ||
626 	    (efx->type->mcdi_max_ver < 2 &&
627 	     inlen > MCDI_CTL_SDU_LEN_MAX_V1))
628 		return -EMSGSIZE;
629 
630 	return 0;
631 }
632 
633 static bool efx_mcdi_get_proxy_handle(struct efx_nic *efx,
634 				      size_t hdr_len, size_t data_len,
635 				      u32 *proxy_handle)
636 {
637 	MCDI_DECLARE_BUF_ERR(testbuf);
638 	const size_t buflen = sizeof(testbuf);
639 
640 	if (!proxy_handle || data_len < buflen)
641 		return false;
642 
643 	efx->type->mcdi_read_response(efx, testbuf, hdr_len, buflen);
644 	if (MCDI_DWORD(testbuf, ERR_CODE) == MC_CMD_ERR_PROXY_PENDING) {
645 		*proxy_handle = MCDI_DWORD(testbuf, ERR_PROXY_PENDING_HANDLE);
646 		return true;
647 	}
648 
649 	return false;
650 }
651 
652 static int _efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned int cmd,
653 				size_t inlen,
654 				efx_dword_t *outbuf, size_t outlen,
655 				size_t *outlen_actual, bool quiet,
656 				u32 *proxy_handle, int *raw_rc)
657 {
658 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
659 	MCDI_DECLARE_BUF_ERR(errbuf);
660 	int rc;
661 
662 	if (mcdi->mode == MCDI_MODE_POLL)
663 		rc = efx_mcdi_poll(efx);
664 	else
665 		rc = efx_mcdi_await_completion(efx);
666 
667 	if (rc != 0) {
668 		netif_err(efx, hw, efx->net_dev,
669 			  "MC command 0x%x inlen %d mode %d timed out\n",
670 			  cmd, (int)inlen, mcdi->mode);
671 
672 		if (mcdi->mode == MCDI_MODE_EVENTS && efx_mcdi_poll_once(efx)) {
673 			netif_err(efx, hw, efx->net_dev,
674 				  "MCDI request was completed without an event\n");
675 			rc = 0;
676 		}
677 
678 		efx_mcdi_abandon(efx);
679 
680 		/* Close the race with efx_mcdi_ev_cpl() executing just too late
681 		 * and completing a request we've just cancelled, by ensuring
682 		 * that the seqno check therein fails.
683 		 */
684 		spin_lock_bh(&mcdi->iface_lock);
685 		++mcdi->seqno;
686 		++mcdi->credits;
687 		spin_unlock_bh(&mcdi->iface_lock);
688 	}
689 
690 	if (proxy_handle)
691 		*proxy_handle = 0;
692 
693 	if (rc != 0) {
694 		if (outlen_actual)
695 			*outlen_actual = 0;
696 	} else {
697 		size_t hdr_len, data_len, err_len;
698 
699 		/* At the very least we need a memory barrier here to ensure
700 		 * we pick up changes from efx_mcdi_ev_cpl(). Protect against
701 		 * a spurious efx_mcdi_ev_cpl() running concurrently by
702 		 * acquiring the iface_lock. */
703 		spin_lock_bh(&mcdi->iface_lock);
704 		rc = mcdi->resprc;
705 		if (raw_rc)
706 			*raw_rc = mcdi->resprc_raw;
707 		hdr_len = mcdi->resp_hdr_len;
708 		data_len = mcdi->resp_data_len;
709 		err_len = min(sizeof(errbuf), data_len);
710 		spin_unlock_bh(&mcdi->iface_lock);
711 
712 		BUG_ON(rc > 0);
713 
714 		efx->type->mcdi_read_response(efx, outbuf, hdr_len,
715 					      min(outlen, data_len));
716 		if (outlen_actual)
717 			*outlen_actual = data_len;
718 
719 		efx->type->mcdi_read_response(efx, errbuf, hdr_len, err_len);
720 
721 		if (cmd == MC_CMD_REBOOT && rc == -EIO) {
722 			/* Don't reset if MC_CMD_REBOOT returns EIO */
723 		} else if (rc == -EIO || rc == -EINTR) {
724 			netif_err(efx, hw, efx->net_dev, "MC reboot detected\n");
725 			netif_dbg(efx, hw, efx->net_dev, "MC rebooted during command %d rc %d\n",
726 				  cmd, -rc);
727 			if (efx->type->mcdi_reboot_detected)
728 				efx->type->mcdi_reboot_detected(efx);
729 			efx_siena_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
730 		} else if (proxy_handle && (rc == -EPROTO) &&
731 			   efx_mcdi_get_proxy_handle(efx, hdr_len, data_len,
732 						     proxy_handle)) {
733 			mcdi->proxy_rx_status = 0;
734 			mcdi->proxy_rx_handle = 0;
735 			mcdi->state = MCDI_STATE_PROXY_WAIT;
736 		} else if (rc && !quiet) {
737 			efx_siena_mcdi_display_error(efx, cmd, inlen, errbuf,
738 						     err_len, rc);
739 		}
740 
741 		if (rc == -EIO || rc == -EINTR) {
742 			msleep(MCDI_STATUS_SLEEP_MS);
743 			efx_siena_mcdi_poll_reboot(efx);
744 			mcdi->new_epoch = true;
745 		}
746 	}
747 
748 	if (!proxy_handle || !*proxy_handle)
749 		efx_mcdi_release(mcdi);
750 	return rc;
751 }
752 
753 static void efx_mcdi_proxy_abort(struct efx_mcdi_iface *mcdi)
754 {
755 	if (mcdi->state == MCDI_STATE_PROXY_WAIT) {
756 		/* Interrupt the proxy wait. */
757 		mcdi->proxy_rx_status = -EINTR;
758 		wake_up(&mcdi->proxy_rx_wq);
759 	}
760 }
761 
762 static void efx_mcdi_ev_proxy_response(struct efx_nic *efx,
763 				       u32 handle, int status)
764 {
765 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
766 
767 	WARN_ON(mcdi->state != MCDI_STATE_PROXY_WAIT);
768 
769 	mcdi->proxy_rx_status = efx_mcdi_errno(status);
770 	/* Ensure the status is written before we update the handle, since the
771 	 * latter is used to check if we've finished.
772 	 */
773 	wmb();
774 	mcdi->proxy_rx_handle = handle;
775 	wake_up(&mcdi->proxy_rx_wq);
776 }
777 
778 static int efx_mcdi_proxy_wait(struct efx_nic *efx, u32 handle, bool quiet)
779 {
780 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
781 	int rc;
782 
783 	/* Wait for a proxy event, or timeout. */
784 	rc = wait_event_timeout(mcdi->proxy_rx_wq,
785 				mcdi->proxy_rx_handle != 0 ||
786 				mcdi->proxy_rx_status == -EINTR,
787 				MCDI_RPC_TIMEOUT);
788 
789 	if (rc <= 0) {
790 		netif_dbg(efx, hw, efx->net_dev,
791 			  "MCDI proxy timeout %d\n", handle);
792 		return -ETIMEDOUT;
793 	} else if (mcdi->proxy_rx_handle != handle) {
794 		netif_warn(efx, hw, efx->net_dev,
795 			   "MCDI proxy unexpected handle %d (expected %d)\n",
796 			   mcdi->proxy_rx_handle, handle);
797 		return -EINVAL;
798 	}
799 
800 	return mcdi->proxy_rx_status;
801 }
802 
803 static int _efx_mcdi_rpc(struct efx_nic *efx, unsigned int cmd,
804 			 const efx_dword_t *inbuf, size_t inlen,
805 			 efx_dword_t *outbuf, size_t outlen,
806 			 size_t *outlen_actual, bool quiet, int *raw_rc)
807 {
808 	u32 proxy_handle = 0; /* Zero is an invalid proxy handle. */
809 	int rc;
810 
811 	if (inbuf && inlen && (inbuf == outbuf)) {
812 		/* The input buffer can't be aliased with the output. */
813 		WARN_ON(1);
814 		return -EINVAL;
815 	}
816 
817 	rc = efx_siena_mcdi_rpc_start(efx, cmd, inbuf, inlen);
818 	if (rc)
819 		return rc;
820 
821 	rc = _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
822 				  outlen_actual, quiet, &proxy_handle, raw_rc);
823 
824 	if (proxy_handle) {
825 		/* Handle proxy authorisation. This allows approval of MCDI
826 		 * operations to be delegated to the admin function, allowing
827 		 * fine control over (eg) multicast subscriptions.
828 		 */
829 		struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
830 
831 		netif_dbg(efx, hw, efx->net_dev,
832 			  "MCDI waiting for proxy auth %d\n",
833 			  proxy_handle);
834 		rc = efx_mcdi_proxy_wait(efx, proxy_handle, quiet);
835 
836 		if (rc == 0) {
837 			netif_dbg(efx, hw, efx->net_dev,
838 				  "MCDI proxy retry %d\n", proxy_handle);
839 
840 			/* We now retry the original request. */
841 			mcdi->state = MCDI_STATE_RUNNING_SYNC;
842 			efx_mcdi_send_request(efx, cmd, inbuf, inlen);
843 
844 			rc = _efx_mcdi_rpc_finish(efx, cmd, inlen,
845 						  outbuf, outlen, outlen_actual,
846 						  quiet, NULL, raw_rc);
847 		} else {
848 			netif_cond_dbg(efx, hw, efx->net_dev, rc == -EPERM, err,
849 				       "MC command 0x%x failed after proxy auth rc=%d\n",
850 				       cmd, rc);
851 
852 			if (rc == -EINTR || rc == -EIO)
853 				efx_siena_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
854 			efx_mcdi_release(mcdi);
855 		}
856 	}
857 
858 	return rc;
859 }
860 
861 static int _efx_mcdi_rpc_evb_retry(struct efx_nic *efx, unsigned cmd,
862 				   const efx_dword_t *inbuf, size_t inlen,
863 				   efx_dword_t *outbuf, size_t outlen,
864 				   size_t *outlen_actual, bool quiet)
865 {
866 	int raw_rc = 0;
867 	int rc;
868 
869 	rc = _efx_mcdi_rpc(efx, cmd, inbuf, inlen,
870 			   outbuf, outlen, outlen_actual, true, &raw_rc);
871 
872 	if ((rc == -EPROTO) && (raw_rc == MC_CMD_ERR_NO_EVB_PORT) &&
873 	    efx->type->is_vf) {
874 		/* If the EVB port isn't available within a VF this may
875 		 * mean the PF is still bringing the switch up. We should
876 		 * retry our request shortly.
877 		 */
878 		unsigned long abort_time = jiffies + MCDI_RPC_TIMEOUT;
879 		unsigned int delay_us = 10000;
880 
881 		netif_dbg(efx, hw, efx->net_dev,
882 			  "%s: NO_EVB_PORT; will retry request\n",
883 			  __func__);
884 
885 		do {
886 			usleep_range(delay_us, delay_us + 10000);
887 			rc = _efx_mcdi_rpc(efx, cmd, inbuf, inlen,
888 					   outbuf, outlen, outlen_actual,
889 					   true, &raw_rc);
890 			if (delay_us < 100000)
891 				delay_us <<= 1;
892 		} while ((rc == -EPROTO) &&
893 			 (raw_rc == MC_CMD_ERR_NO_EVB_PORT) &&
894 			 time_before(jiffies, abort_time));
895 	}
896 
897 	if (rc && !quiet && !(cmd == MC_CMD_REBOOT && rc == -EIO))
898 		efx_siena_mcdi_display_error(efx, cmd, inlen,
899 					     outbuf, outlen, rc);
900 
901 	return rc;
902 }
903 
904 /**
905  * efx_siena_mcdi_rpc - Issue an MCDI command and wait for completion
906  * @efx: NIC through which to issue the command
907  * @cmd: Command type number
908  * @inbuf: Command parameters
909  * @inlen: Length of command parameters, in bytes.  Must be a multiple
910  *	of 4 and no greater than %MCDI_CTL_SDU_LEN_MAX_V1.
911  * @outbuf: Response buffer.  May be %NULL if @outlen is 0.
912  * @outlen: Length of response buffer, in bytes.  If the actual
913  *	response is longer than @outlen & ~3, it will be truncated
914  *	to that length.
915  * @outlen_actual: Pointer through which to return the actual response
916  *	length.  May be %NULL if this is not needed.
917  *
918  * This function may sleep and therefore must be called in an appropriate
919  * context.
920  *
921  * Return: A negative error code, or zero if successful.  The error
922  *	code may come from the MCDI response or may indicate a failure
923  *	to communicate with the MC.  In the former case, the response
924  *	will still be copied to @outbuf and *@outlen_actual will be
925  *	set accordingly.  In the latter case, *@outlen_actual will be
926  *	set to zero.
927  */
928 int efx_siena_mcdi_rpc(struct efx_nic *efx, unsigned int cmd,
929 		       const efx_dword_t *inbuf, size_t inlen,
930 		       efx_dword_t *outbuf, size_t outlen,
931 		       size_t *outlen_actual)
932 {
933 	return _efx_mcdi_rpc_evb_retry(efx, cmd, inbuf, inlen, outbuf, outlen,
934 				       outlen_actual, false);
935 }
936 
937 /* Normally, on receiving an error code in the MCDI response,
938  * efx_siena_mcdi_rpc will log an error message containing (among other
939  * things) the raw error code, by means of efx_siena_mcdi_display_error.
940  * This _quiet version suppresses that; if the caller wishes to log
941  * the error conditionally on the return code, it should call this
942  * function and is then responsible for calling efx_siena_mcdi_display_error
943  * as needed.
944  */
945 int efx_siena_mcdi_rpc_quiet(struct efx_nic *efx, unsigned int cmd,
946 			     const efx_dword_t *inbuf, size_t inlen,
947 			     efx_dword_t *outbuf, size_t outlen,
948 			     size_t *outlen_actual)
949 {
950 	return _efx_mcdi_rpc_evb_retry(efx, cmd, inbuf, inlen, outbuf, outlen,
951 				       outlen_actual, true);
952 }
953 
954 int efx_siena_mcdi_rpc_start(struct efx_nic *efx, unsigned int cmd,
955 			     const efx_dword_t *inbuf, size_t inlen)
956 {
957 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
958 	int rc;
959 
960 	rc = efx_mcdi_check_supported(efx, cmd, inlen);
961 	if (rc)
962 		return rc;
963 
964 	if (efx->mc_bist_for_other_fn)
965 		return -ENETDOWN;
966 
967 	if (mcdi->mode == MCDI_MODE_FAIL)
968 		return -ENETDOWN;
969 
970 	efx_mcdi_acquire_sync(mcdi);
971 	efx_mcdi_send_request(efx, cmd, inbuf, inlen);
972 	return 0;
973 }
974 
975 static int _efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
976 			       const efx_dword_t *inbuf, size_t inlen,
977 			       size_t outlen,
978 			       efx_mcdi_async_completer *complete,
979 			       unsigned long cookie, bool quiet)
980 {
981 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
982 	struct efx_mcdi_async_param *async;
983 	int rc;
984 
985 	rc = efx_mcdi_check_supported(efx, cmd, inlen);
986 	if (rc)
987 		return rc;
988 
989 	if (efx->mc_bist_for_other_fn)
990 		return -ENETDOWN;
991 
992 	async = kmalloc(sizeof(*async) + ALIGN(max(inlen, outlen), 4),
993 			GFP_ATOMIC);
994 	if (!async)
995 		return -ENOMEM;
996 
997 	async->cmd = cmd;
998 	async->inlen = inlen;
999 	async->outlen = outlen;
1000 	async->quiet = quiet;
1001 	async->complete = complete;
1002 	async->cookie = cookie;
1003 	memcpy(async + 1, inbuf, inlen);
1004 
1005 	spin_lock_bh(&mcdi->async_lock);
1006 
1007 	if (mcdi->mode == MCDI_MODE_EVENTS) {
1008 		list_add_tail(&async->list, &mcdi->async_list);
1009 
1010 		/* If this is at the front of the queue, try to start it
1011 		 * immediately
1012 		 */
1013 		if (mcdi->async_list.next == &async->list &&
1014 		    efx_mcdi_acquire_async(mcdi)) {
1015 			efx_mcdi_send_request(efx, cmd, inbuf, inlen);
1016 			mod_timer(&mcdi->async_timer,
1017 				  jiffies + MCDI_RPC_TIMEOUT);
1018 		}
1019 	} else {
1020 		kfree(async);
1021 		rc = -ENETDOWN;
1022 	}
1023 
1024 	spin_unlock_bh(&mcdi->async_lock);
1025 
1026 	return rc;
1027 }
1028 
1029 /**
1030  * efx_siena_mcdi_rpc_async - Schedule an MCDI command to run asynchronously
1031  * @efx: NIC through which to issue the command
1032  * @cmd: Command type number
1033  * @inbuf: Command parameters
1034  * @inlen: Length of command parameters, in bytes
1035  * @outlen: Length to allocate for response buffer, in bytes
1036  * @complete: Function to be called on completion or cancellation.
1037  * @cookie: Arbitrary value to be passed to @complete.
1038  *
1039  * This function does not sleep and therefore may be called in atomic
1040  * context.  It will fail if event queues are disabled or if MCDI
1041  * event completions have been disabled due to an error.
1042  *
1043  * If it succeeds, the @complete function will be called exactly once
1044  * in atomic context, when one of the following occurs:
1045  * (a) the completion event is received (in NAPI context)
1046  * (b) event queues are disabled (in the process that disables them)
1047  * (c) the request times-out (in timer context)
1048  */
1049 int
1050 efx_siena_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
1051 			 const efx_dword_t *inbuf, size_t inlen, size_t outlen,
1052 			 efx_mcdi_async_completer *complete,
1053 			 unsigned long cookie)
1054 {
1055 	return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete,
1056 				   cookie, false);
1057 }
1058 
1059 int efx_siena_mcdi_rpc_async_quiet(struct efx_nic *efx, unsigned int cmd,
1060 				   const efx_dword_t *inbuf, size_t inlen,
1061 				   size_t outlen,
1062 				   efx_mcdi_async_completer *complete,
1063 				   unsigned long cookie)
1064 {
1065 	return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete,
1066 				   cookie, true);
1067 }
1068 
1069 int efx_siena_mcdi_rpc_finish(struct efx_nic *efx, unsigned int cmd,
1070 			      size_t inlen, efx_dword_t *outbuf, size_t outlen,
1071 			      size_t *outlen_actual)
1072 {
1073 	return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
1074 				    outlen_actual, false, NULL, NULL);
1075 }
1076 
1077 int efx_siena_mcdi_rpc_finish_quiet(struct efx_nic *efx, unsigned int cmd,
1078 				    size_t inlen, efx_dword_t *outbuf,
1079 				    size_t outlen, size_t *outlen_actual)
1080 {
1081 	return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
1082 				    outlen_actual, true, NULL, NULL);
1083 }
1084 
1085 void efx_siena_mcdi_display_error(struct efx_nic *efx, unsigned int cmd,
1086 				  size_t inlen, efx_dword_t *outbuf,
1087 				  size_t outlen, int rc)
1088 {
1089 	int code = 0, err_arg = 0;
1090 
1091 	if (outlen >= MC_CMD_ERR_CODE_OFST + 4)
1092 		code = MCDI_DWORD(outbuf, ERR_CODE);
1093 	if (outlen >= MC_CMD_ERR_ARG_OFST + 4)
1094 		err_arg = MCDI_DWORD(outbuf, ERR_ARG);
1095 	netif_cond_dbg(efx, hw, efx->net_dev, rc == -EPERM, err,
1096 		       "MC command 0x%x inlen %zu failed rc=%d (raw=%d) arg=%d\n",
1097 		       cmd, inlen, rc, code, err_arg);
1098 }
1099 
1100 /* Switch to polled MCDI completions.  This can be called in various
1101  * error conditions with various locks held, so it must be lockless.
1102  * Caller is responsible for flushing asynchronous requests later.
1103  */
1104 void efx_siena_mcdi_mode_poll(struct efx_nic *efx)
1105 {
1106 	struct efx_mcdi_iface *mcdi;
1107 
1108 	if (!efx->mcdi)
1109 		return;
1110 
1111 	mcdi = efx_mcdi(efx);
1112 	/* If already in polling mode, nothing to do.
1113 	 * If in fail-fast state, don't switch to polled completion.
1114 	 * FLR recovery will do that later.
1115 	 */
1116 	if (mcdi->mode == MCDI_MODE_POLL || mcdi->mode == MCDI_MODE_FAIL)
1117 		return;
1118 
1119 	/* We can switch from event completion to polled completion, because
1120 	 * mcdi requests are always completed in shared memory. We do this by
1121 	 * switching the mode to POLL'd then completing the request.
1122 	 * efx_mcdi_await_completion() will then call efx_mcdi_poll().
1123 	 *
1124 	 * We need an smp_wmb() to synchronise with efx_mcdi_await_completion(),
1125 	 * which efx_mcdi_complete_sync() provides for us.
1126 	 */
1127 	mcdi->mode = MCDI_MODE_POLL;
1128 
1129 	efx_mcdi_complete_sync(mcdi);
1130 }
1131 
1132 /* Flush any running or queued asynchronous requests, after event processing
1133  * is stopped
1134  */
1135 void efx_siena_mcdi_flush_async(struct efx_nic *efx)
1136 {
1137 	struct efx_mcdi_async_param *async, *next;
1138 	struct efx_mcdi_iface *mcdi;
1139 
1140 	if (!efx->mcdi)
1141 		return;
1142 
1143 	mcdi = efx_mcdi(efx);
1144 
1145 	/* We must be in poll or fail mode so no more requests can be queued */
1146 	BUG_ON(mcdi->mode == MCDI_MODE_EVENTS);
1147 
1148 	del_timer_sync(&mcdi->async_timer);
1149 
1150 	/* If a request is still running, make sure we give the MC
1151 	 * time to complete it so that the response won't overwrite our
1152 	 * next request.
1153 	 */
1154 	if (mcdi->state == MCDI_STATE_RUNNING_ASYNC) {
1155 		efx_mcdi_poll(efx);
1156 		mcdi->state = MCDI_STATE_QUIESCENT;
1157 	}
1158 
1159 	/* Nothing else will access the async list now, so it is safe
1160 	 * to walk it without holding async_lock.  If we hold it while
1161 	 * calling a completer then lockdep may warn that we have
1162 	 * acquired locks in the wrong order.
1163 	 */
1164 	list_for_each_entry_safe(async, next, &mcdi->async_list, list) {
1165 		if (async->complete)
1166 			async->complete(efx, async->cookie, -ENETDOWN, NULL, 0);
1167 		list_del(&async->list);
1168 		kfree(async);
1169 	}
1170 }
1171 
1172 void efx_siena_mcdi_mode_event(struct efx_nic *efx)
1173 {
1174 	struct efx_mcdi_iface *mcdi;
1175 
1176 	if (!efx->mcdi)
1177 		return;
1178 
1179 	mcdi = efx_mcdi(efx);
1180 	/* If already in event completion mode, nothing to do.
1181 	 * If in fail-fast state, don't switch to event completion.  FLR
1182 	 * recovery will do that later.
1183 	 */
1184 	if (mcdi->mode == MCDI_MODE_EVENTS || mcdi->mode == MCDI_MODE_FAIL)
1185 		return;
1186 
1187 	/* We can't switch from polled to event completion in the middle of a
1188 	 * request, because the completion method is specified in the request.
1189 	 * So acquire the interface to serialise the requestors. We don't need
1190 	 * to acquire the iface_lock to change the mode here, but we do need a
1191 	 * write memory barrier ensure that efx_siena_mcdi_rpc() sees it, which
1192 	 * efx_mcdi_acquire() provides.
1193 	 */
1194 	efx_mcdi_acquire_sync(mcdi);
1195 	mcdi->mode = MCDI_MODE_EVENTS;
1196 	efx_mcdi_release(mcdi);
1197 }
1198 
1199 static void efx_mcdi_ev_death(struct efx_nic *efx, int rc)
1200 {
1201 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1202 
1203 	/* If there is an outstanding MCDI request, it has been terminated
1204 	 * either by a BADASSERT or REBOOT event. If the mcdi interface is
1205 	 * in polled mode, then do nothing because the MC reboot handler will
1206 	 * set the header correctly. However, if the mcdi interface is waiting
1207 	 * for a CMDDONE event it won't receive it [and since all MCDI events
1208 	 * are sent to the same queue, we can't be racing with
1209 	 * efx_mcdi_ev_cpl()]
1210 	 *
1211 	 * If there is an outstanding asynchronous request, we can't
1212 	 * complete it now (efx_mcdi_complete() would deadlock).  The
1213 	 * reset process will take care of this.
1214 	 *
1215 	 * There's a race here with efx_mcdi_send_request(), because
1216 	 * we might receive a REBOOT event *before* the request has
1217 	 * been copied out. In polled mode (during startup) this is
1218 	 * irrelevant, because efx_mcdi_complete_sync() is ignored. In
1219 	 * event mode, this condition is just an edge-case of
1220 	 * receiving a REBOOT event after posting the MCDI
1221 	 * request. Did the mc reboot before or after the copyout? The
1222 	 * best we can do always is just return failure.
1223 	 *
1224 	 * If there is an outstanding proxy response expected it is not going
1225 	 * to arrive. We should thus abort it.
1226 	 */
1227 	spin_lock(&mcdi->iface_lock);
1228 	efx_mcdi_proxy_abort(mcdi);
1229 
1230 	if (efx_mcdi_complete_sync(mcdi)) {
1231 		if (mcdi->mode == MCDI_MODE_EVENTS) {
1232 			mcdi->resprc = rc;
1233 			mcdi->resp_hdr_len = 0;
1234 			mcdi->resp_data_len = 0;
1235 			++mcdi->credits;
1236 		}
1237 	} else {
1238 		int count;
1239 
1240 		/* Consume the status word since efx_siena_mcdi_rpc_finish() won't */
1241 		for (count = 0; count < MCDI_STATUS_DELAY_COUNT; ++count) {
1242 			rc = efx_siena_mcdi_poll_reboot(efx);
1243 			if (rc)
1244 				break;
1245 			udelay(MCDI_STATUS_DELAY_US);
1246 		}
1247 
1248 		/* On EF10, a CODE_MC_REBOOT event can be received without the
1249 		 * reboot detection in efx_siena_mcdi_poll_reboot() being triggered.
1250 		 * If zero was returned from the final call to
1251 		 * efx_siena_mcdi_poll_reboot(), the MC reboot wasn't noticed but the
1252 		 * MC has definitely rebooted so prepare for the reset.
1253 		 */
1254 		if (!rc && efx->type->mcdi_reboot_detected)
1255 			efx->type->mcdi_reboot_detected(efx);
1256 
1257 		mcdi->new_epoch = true;
1258 
1259 		/* Nobody was waiting for an MCDI request, so trigger a reset */
1260 		efx_siena_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
1261 	}
1262 
1263 	spin_unlock(&mcdi->iface_lock);
1264 }
1265 
1266 /* The MC is going down in to BIST mode. set the BIST flag to block
1267  * new MCDI, cancel any outstanding MCDI and schedule a BIST-type reset
1268  * (which doesn't actually execute a reset, it waits for the controlling
1269  * function to reset it).
1270  */
1271 static void efx_mcdi_ev_bist(struct efx_nic *efx)
1272 {
1273 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1274 
1275 	spin_lock(&mcdi->iface_lock);
1276 	efx->mc_bist_for_other_fn = true;
1277 	efx_mcdi_proxy_abort(mcdi);
1278 
1279 	if (efx_mcdi_complete_sync(mcdi)) {
1280 		if (mcdi->mode == MCDI_MODE_EVENTS) {
1281 			mcdi->resprc = -EIO;
1282 			mcdi->resp_hdr_len = 0;
1283 			mcdi->resp_data_len = 0;
1284 			++mcdi->credits;
1285 		}
1286 	}
1287 	mcdi->new_epoch = true;
1288 	efx_siena_schedule_reset(efx, RESET_TYPE_MC_BIST);
1289 	spin_unlock(&mcdi->iface_lock);
1290 }
1291 
1292 /* MCDI timeouts seen, so make all MCDI calls fail-fast and issue an FLR to try
1293  * to recover.
1294  */
1295 static void efx_mcdi_abandon(struct efx_nic *efx)
1296 {
1297 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1298 
1299 	if (xchg(&mcdi->mode, MCDI_MODE_FAIL) == MCDI_MODE_FAIL)
1300 		return; /* it had already been done */
1301 	netif_dbg(efx, hw, efx->net_dev, "MCDI is timing out; trying to recover\n");
1302 	efx_siena_schedule_reset(efx, RESET_TYPE_MCDI_TIMEOUT);
1303 }
1304 
1305 static void efx_handle_drain_event(struct efx_nic *efx)
1306 {
1307 	if (atomic_dec_and_test(&efx->active_queues))
1308 		wake_up(&efx->flush_wq);
1309 
1310 	WARN_ON(atomic_read(&efx->active_queues) < 0);
1311 }
1312 
1313 /* Called from efx_farch_ev_process and efx_ef10_ev_process for MCDI events */
1314 void efx_siena_mcdi_process_event(struct efx_channel *channel,
1315 				  efx_qword_t *event)
1316 {
1317 	struct efx_nic *efx = channel->efx;
1318 	int code = EFX_QWORD_FIELD(*event, MCDI_EVENT_CODE);
1319 	u32 data = EFX_QWORD_FIELD(*event, MCDI_EVENT_DATA);
1320 
1321 	switch (code) {
1322 	case MCDI_EVENT_CODE_BADSSERT:
1323 		netif_err(efx, hw, efx->net_dev,
1324 			  "MC watchdog or assertion failure at 0x%x\n", data);
1325 		efx_mcdi_ev_death(efx, -EINTR);
1326 		break;
1327 
1328 	case MCDI_EVENT_CODE_PMNOTICE:
1329 		netif_info(efx, wol, efx->net_dev, "MCDI PM event.\n");
1330 		break;
1331 
1332 	case MCDI_EVENT_CODE_CMDDONE:
1333 		efx_mcdi_ev_cpl(efx,
1334 				MCDI_EVENT_FIELD(*event, CMDDONE_SEQ),
1335 				MCDI_EVENT_FIELD(*event, CMDDONE_DATALEN),
1336 				MCDI_EVENT_FIELD(*event, CMDDONE_ERRNO));
1337 		break;
1338 
1339 	case MCDI_EVENT_CODE_LINKCHANGE:
1340 		efx_siena_mcdi_process_link_change(efx, event);
1341 		break;
1342 	case MCDI_EVENT_CODE_SENSOREVT:
1343 		efx_sensor_event(efx, event);
1344 		break;
1345 	case MCDI_EVENT_CODE_SCHEDERR:
1346 		netif_dbg(efx, hw, efx->net_dev,
1347 			  "MC Scheduler alert (0x%x)\n", data);
1348 		break;
1349 	case MCDI_EVENT_CODE_REBOOT:
1350 	case MCDI_EVENT_CODE_MC_REBOOT:
1351 		netif_info(efx, hw, efx->net_dev, "MC Reboot\n");
1352 		efx_mcdi_ev_death(efx, -EIO);
1353 		break;
1354 	case MCDI_EVENT_CODE_MC_BIST:
1355 		netif_info(efx, hw, efx->net_dev, "MC entered BIST mode\n");
1356 		efx_mcdi_ev_bist(efx);
1357 		break;
1358 	case MCDI_EVENT_CODE_MAC_STATS_DMA:
1359 		/* MAC stats are gather lazily.  We can ignore this. */
1360 		break;
1361 	case MCDI_EVENT_CODE_FLR:
1362 		if (efx->type->sriov_flr)
1363 			efx->type->sriov_flr(efx,
1364 					     MCDI_EVENT_FIELD(*event, FLR_VF));
1365 		break;
1366 	case MCDI_EVENT_CODE_PTP_RX:
1367 	case MCDI_EVENT_CODE_PTP_FAULT:
1368 	case MCDI_EVENT_CODE_PTP_PPS:
1369 		efx_siena_ptp_event(efx, event);
1370 		break;
1371 	case MCDI_EVENT_CODE_PTP_TIME:
1372 		efx_siena_time_sync_event(channel, event);
1373 		break;
1374 	case MCDI_EVENT_CODE_TX_FLUSH:
1375 	case MCDI_EVENT_CODE_RX_FLUSH:
1376 		/* Two flush events will be sent: one to the same event
1377 		 * queue as completions, and one to event queue 0.
1378 		 * In the latter case the {RX,TX}_FLUSH_TO_DRIVER
1379 		 * flag will be set, and we should ignore the event
1380 		 * because we want to wait for all completions.
1381 		 */
1382 		BUILD_BUG_ON(MCDI_EVENT_TX_FLUSH_TO_DRIVER_LBN !=
1383 			     MCDI_EVENT_RX_FLUSH_TO_DRIVER_LBN);
1384 		if (!MCDI_EVENT_FIELD(*event, TX_FLUSH_TO_DRIVER))
1385 			efx_handle_drain_event(efx);
1386 		break;
1387 	case MCDI_EVENT_CODE_TX_ERR:
1388 	case MCDI_EVENT_CODE_RX_ERR:
1389 		netif_err(efx, hw, efx->net_dev,
1390 			  "%s DMA error (event: "EFX_QWORD_FMT")\n",
1391 			  code == MCDI_EVENT_CODE_TX_ERR ? "TX" : "RX",
1392 			  EFX_QWORD_VAL(*event));
1393 		efx_siena_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1394 		break;
1395 	case MCDI_EVENT_CODE_PROXY_RESPONSE:
1396 		efx_mcdi_ev_proxy_response(efx,
1397 				MCDI_EVENT_FIELD(*event, PROXY_RESPONSE_HANDLE),
1398 				MCDI_EVENT_FIELD(*event, PROXY_RESPONSE_RC));
1399 		break;
1400 	default:
1401 		netif_err(efx, hw, efx->net_dev,
1402 			  "Unknown MCDI event " EFX_QWORD_FMT "\n",
1403 			  EFX_QWORD_VAL(*event));
1404 	}
1405 }
1406 
1407 /**************************************************************************
1408  *
1409  * Specific request functions
1410  *
1411  **************************************************************************
1412  */
1413 
1414 void efx_siena_mcdi_print_fwver(struct efx_nic *efx, char *buf, size_t len)
1415 {
1416 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_VERSION_OUT_LEN);
1417 	size_t outlength;
1418 	const __le16 *ver_words;
1419 	size_t offset;
1420 	int rc;
1421 
1422 	BUILD_BUG_ON(MC_CMD_GET_VERSION_IN_LEN != 0);
1423 	rc = efx_siena_mcdi_rpc(efx, MC_CMD_GET_VERSION, NULL, 0,
1424 				outbuf, sizeof(outbuf), &outlength);
1425 	if (rc)
1426 		goto fail;
1427 	if (outlength < MC_CMD_GET_VERSION_OUT_LEN) {
1428 		rc = -EIO;
1429 		goto fail;
1430 	}
1431 
1432 	ver_words = (__le16 *)MCDI_PTR(outbuf, GET_VERSION_OUT_VERSION);
1433 	offset = scnprintf(buf, len, "%u.%u.%u.%u",
1434 			   le16_to_cpu(ver_words[0]),
1435 			   le16_to_cpu(ver_words[1]),
1436 			   le16_to_cpu(ver_words[2]),
1437 			   le16_to_cpu(ver_words[3]));
1438 
1439 	if (efx->type->print_additional_fwver)
1440 		offset += efx->type->print_additional_fwver(efx, buf + offset,
1441 							    len - offset);
1442 
1443 	/* It's theoretically possible for the string to exceed 31
1444 	 * characters, though in practice the first three version
1445 	 * components are short enough that this doesn't happen.
1446 	 */
1447 	if (WARN_ON(offset >= len))
1448 		buf[0] = 0;
1449 
1450 	return;
1451 
1452 fail:
1453 	netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1454 	buf[0] = 0;
1455 }
1456 
1457 static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
1458 			       bool *was_attached)
1459 {
1460 	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRV_ATTACH_IN_LEN);
1461 	MCDI_DECLARE_BUF(outbuf, MC_CMD_DRV_ATTACH_EXT_OUT_LEN);
1462 	size_t outlen;
1463 	int rc;
1464 
1465 	MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_NEW_STATE,
1466 		       driver_operating ? 1 : 0);
1467 	MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_UPDATE, 1);
1468 	MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID, MC_CMD_FW_LOW_LATENCY);
1469 
1470 	rc = efx_siena_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf,
1471 				      sizeof(inbuf), outbuf, sizeof(outbuf),
1472 				      &outlen);
1473 	/* If we're not the primary PF, trying to ATTACH with a FIRMWARE_ID
1474 	 * specified will fail with EPERM, and we have to tell the MC we don't
1475 	 * care what firmware we get.
1476 	 */
1477 	if (rc == -EPERM) {
1478 		netif_dbg(efx, probe, efx->net_dev,
1479 			  "efx_mcdi_drv_attach with fw-variant setting failed EPERM, trying without it\n");
1480 		MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID,
1481 			       MC_CMD_FW_DONT_CARE);
1482 		rc = efx_siena_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf,
1483 					      sizeof(inbuf), outbuf,
1484 					      sizeof(outbuf), &outlen);
1485 	}
1486 	if (rc) {
1487 		efx_siena_mcdi_display_error(efx, MC_CMD_DRV_ATTACH,
1488 					     sizeof(inbuf), outbuf, outlen, rc);
1489 		goto fail;
1490 	}
1491 	if (outlen < MC_CMD_DRV_ATTACH_OUT_LEN) {
1492 		rc = -EIO;
1493 		goto fail;
1494 	}
1495 
1496 	if (driver_operating) {
1497 		if (outlen >= MC_CMD_DRV_ATTACH_EXT_OUT_LEN) {
1498 			efx->mcdi->fn_flags =
1499 				MCDI_DWORD(outbuf,
1500 					   DRV_ATTACH_EXT_OUT_FUNC_FLAGS);
1501 		} else {
1502 			/* Synthesise flags for Siena */
1503 			efx->mcdi->fn_flags =
1504 				1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL |
1505 				1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED |
1506 				(efx_port_num(efx) == 0) <<
1507 				MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY;
1508 		}
1509 	}
1510 
1511 	/* We currently assume we have control of the external link
1512 	 * and are completely trusted by firmware.  Abort probing
1513 	 * if that's not true for this function.
1514 	 */
1515 
1516 	if (was_attached != NULL)
1517 		*was_attached = MCDI_DWORD(outbuf, DRV_ATTACH_OUT_OLD_STATE);
1518 	return 0;
1519 
1520 fail:
1521 	netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1522 	return rc;
1523 }
1524 
1525 int efx_siena_mcdi_get_board_cfg(struct efx_nic *efx, u8 *mac_address,
1526 				 u16 *fw_subtype_list, u32 *capabilities)
1527 {
1528 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_BOARD_CFG_OUT_LENMAX);
1529 	size_t outlen, i;
1530 	int port_num = efx_port_num(efx);
1531 	int rc;
1532 
1533 	BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_IN_LEN != 0);
1534 	/* we need __aligned(2) for ether_addr_copy */
1535 	BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0_OFST & 1);
1536 	BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1_OFST & 1);
1537 
1538 	rc = efx_siena_mcdi_rpc(efx, MC_CMD_GET_BOARD_CFG, NULL, 0,
1539 				outbuf, sizeof(outbuf), &outlen);
1540 	if (rc)
1541 		goto fail;
1542 
1543 	if (outlen < MC_CMD_GET_BOARD_CFG_OUT_LENMIN) {
1544 		rc = -EIO;
1545 		goto fail;
1546 	}
1547 
1548 	if (mac_address)
1549 		ether_addr_copy(mac_address,
1550 				port_num ?
1551 				MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1) :
1552 				MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0));
1553 	if (fw_subtype_list) {
1554 		for (i = 0;
1555 		     i < MCDI_VAR_ARRAY_LEN(outlen,
1556 					    GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST);
1557 		     i++)
1558 			fw_subtype_list[i] = MCDI_ARRAY_WORD(
1559 				outbuf, GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST, i);
1560 		for (; i < MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_MAXNUM; i++)
1561 			fw_subtype_list[i] = 0;
1562 	}
1563 	if (capabilities) {
1564 		if (port_num)
1565 			*capabilities = MCDI_DWORD(outbuf,
1566 					GET_BOARD_CFG_OUT_CAPABILITIES_PORT1);
1567 		else
1568 			*capabilities = MCDI_DWORD(outbuf,
1569 					GET_BOARD_CFG_OUT_CAPABILITIES_PORT0);
1570 	}
1571 
1572 	return 0;
1573 
1574 fail:
1575 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d len=%d\n",
1576 		  __func__, rc, (int)outlen);
1577 
1578 	return rc;
1579 }
1580 
1581 int efx_siena_mcdi_log_ctrl(struct efx_nic *efx, bool evq, bool uart,
1582 			    u32 dest_evq)
1583 {
1584 	MCDI_DECLARE_BUF(inbuf, MC_CMD_LOG_CTRL_IN_LEN);
1585 	u32 dest = 0;
1586 	int rc;
1587 
1588 	if (uart)
1589 		dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_UART;
1590 	if (evq)
1591 		dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ;
1592 
1593 	MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST, dest);
1594 	MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST_EVQ, dest_evq);
1595 
1596 	BUILD_BUG_ON(MC_CMD_LOG_CTRL_OUT_LEN != 0);
1597 
1598 	rc = efx_siena_mcdi_rpc(efx, MC_CMD_LOG_CTRL, inbuf, sizeof(inbuf),
1599 				NULL, 0, NULL);
1600 	return rc;
1601 }
1602 
1603 int efx_siena_mcdi_nvram_types(struct efx_nic *efx, u32 *nvram_types_out)
1604 {
1605 	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TYPES_OUT_LEN);
1606 	size_t outlen;
1607 	int rc;
1608 
1609 	BUILD_BUG_ON(MC_CMD_NVRAM_TYPES_IN_LEN != 0);
1610 
1611 	rc = efx_siena_mcdi_rpc(efx, MC_CMD_NVRAM_TYPES, NULL, 0,
1612 				outbuf, sizeof(outbuf), &outlen);
1613 	if (rc)
1614 		goto fail;
1615 	if (outlen < MC_CMD_NVRAM_TYPES_OUT_LEN) {
1616 		rc = -EIO;
1617 		goto fail;
1618 	}
1619 
1620 	*nvram_types_out = MCDI_DWORD(outbuf, NVRAM_TYPES_OUT_TYPES);
1621 	return 0;
1622 
1623 fail:
1624 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n",
1625 		  __func__, rc);
1626 	return rc;
1627 }
1628 
1629 int efx_siena_mcdi_nvram_info(struct efx_nic *efx, unsigned int type,
1630 			      size_t *size_out, size_t *erase_size_out,
1631 			      bool *protected_out)
1632 {
1633 	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_INFO_IN_LEN);
1634 	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_INFO_OUT_LEN);
1635 	size_t outlen;
1636 	int rc;
1637 
1638 	MCDI_SET_DWORD(inbuf, NVRAM_INFO_IN_TYPE, type);
1639 
1640 	rc = efx_siena_mcdi_rpc(efx, MC_CMD_NVRAM_INFO, inbuf, sizeof(inbuf),
1641 				outbuf, sizeof(outbuf), &outlen);
1642 	if (rc)
1643 		goto fail;
1644 	if (outlen < MC_CMD_NVRAM_INFO_OUT_LEN) {
1645 		rc = -EIO;
1646 		goto fail;
1647 	}
1648 
1649 	*size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_SIZE);
1650 	*erase_size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_ERASESIZE);
1651 	*protected_out = !!(MCDI_DWORD(outbuf, NVRAM_INFO_OUT_FLAGS) &
1652 				(1 << MC_CMD_NVRAM_INFO_OUT_PROTECTED_LBN));
1653 	return 0;
1654 
1655 fail:
1656 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1657 	return rc;
1658 }
1659 
1660 static int efx_mcdi_nvram_test(struct efx_nic *efx, unsigned int type)
1661 {
1662 	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_TEST_IN_LEN);
1663 	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TEST_OUT_LEN);
1664 	int rc;
1665 
1666 	MCDI_SET_DWORD(inbuf, NVRAM_TEST_IN_TYPE, type);
1667 
1668 	rc = efx_siena_mcdi_rpc(efx, MC_CMD_NVRAM_TEST, inbuf, sizeof(inbuf),
1669 				outbuf, sizeof(outbuf), NULL);
1670 	if (rc)
1671 		return rc;
1672 
1673 	switch (MCDI_DWORD(outbuf, NVRAM_TEST_OUT_RESULT)) {
1674 	case MC_CMD_NVRAM_TEST_PASS:
1675 	case MC_CMD_NVRAM_TEST_NOTSUPP:
1676 		return 0;
1677 	default:
1678 		return -EIO;
1679 	}
1680 }
1681 
1682 int efx_siena_mcdi_nvram_test_all(struct efx_nic *efx)
1683 {
1684 	u32 nvram_types;
1685 	unsigned int type;
1686 	int rc;
1687 
1688 	rc = efx_siena_mcdi_nvram_types(efx, &nvram_types);
1689 	if (rc)
1690 		goto fail1;
1691 
1692 	type = 0;
1693 	while (nvram_types != 0) {
1694 		if (nvram_types & 1) {
1695 			rc = efx_mcdi_nvram_test(efx, type);
1696 			if (rc)
1697 				goto fail2;
1698 		}
1699 		type++;
1700 		nvram_types >>= 1;
1701 	}
1702 
1703 	return 0;
1704 
1705 fail2:
1706 	netif_err(efx, hw, efx->net_dev, "%s: failed type=%u\n",
1707 		  __func__, type);
1708 fail1:
1709 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1710 	return rc;
1711 }
1712 
1713 /* Returns 1 if an assertion was read, 0 if no assertion had fired,
1714  * negative on error.
1715  */
1716 static int efx_mcdi_read_assertion(struct efx_nic *efx)
1717 {
1718 	MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_ASSERTS_IN_LEN);
1719 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_ASSERTS_OUT_LEN);
1720 	unsigned int flags, index;
1721 	const char *reason;
1722 	size_t outlen;
1723 	int retry;
1724 	int rc;
1725 
1726 	/* Attempt to read any stored assertion state before we reboot
1727 	 * the mcfw out of the assertion handler. Retry twice, once
1728 	 * because a boot-time assertion might cause this command to fail
1729 	 * with EINTR. And once again because GET_ASSERTS can race with
1730 	 * MC_CMD_REBOOT running on the other port. */
1731 	retry = 2;
1732 	do {
1733 		MCDI_SET_DWORD(inbuf, GET_ASSERTS_IN_CLEAR, 1);
1734 		rc = efx_siena_mcdi_rpc_quiet(efx, MC_CMD_GET_ASSERTS,
1735 					      inbuf, MC_CMD_GET_ASSERTS_IN_LEN,
1736 					      outbuf, sizeof(outbuf), &outlen);
1737 		if (rc == -EPERM)
1738 			return 0;
1739 	} while ((rc == -EINTR || rc == -EIO) && retry-- > 0);
1740 
1741 	if (rc) {
1742 		efx_siena_mcdi_display_error(efx, MC_CMD_GET_ASSERTS,
1743 					     MC_CMD_GET_ASSERTS_IN_LEN, outbuf,
1744 					     outlen, rc);
1745 		return rc;
1746 	}
1747 	if (outlen < MC_CMD_GET_ASSERTS_OUT_LEN)
1748 		return -EIO;
1749 
1750 	/* Print out any recorded assertion state */
1751 	flags = MCDI_DWORD(outbuf, GET_ASSERTS_OUT_GLOBAL_FLAGS);
1752 	if (flags == MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS)
1753 		return 0;
1754 
1755 	reason = (flags == MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL)
1756 		? "system-level assertion"
1757 		: (flags == MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL)
1758 		? "thread-level assertion"
1759 		: (flags == MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED)
1760 		? "watchdog reset"
1761 		: "unknown assertion";
1762 	netif_err(efx, hw, efx->net_dev,
1763 		  "MCPU %s at PC = 0x%.8x in thread 0x%.8x\n", reason,
1764 		  MCDI_DWORD(outbuf, GET_ASSERTS_OUT_SAVED_PC_OFFS),
1765 		  MCDI_DWORD(outbuf, GET_ASSERTS_OUT_THREAD_OFFS));
1766 
1767 	/* Print out the registers */
1768 	for (index = 0;
1769 	     index < MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_NUM;
1770 	     index++)
1771 		netif_err(efx, hw, efx->net_dev, "R%.2d (?): 0x%.8x\n",
1772 			  1 + index,
1773 			  MCDI_ARRAY_DWORD(outbuf, GET_ASSERTS_OUT_GP_REGS_OFFS,
1774 					   index));
1775 
1776 	return 1;
1777 }
1778 
1779 static int efx_mcdi_exit_assertion(struct efx_nic *efx)
1780 {
1781 	MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
1782 	int rc;
1783 
1784 	/* If the MC is running debug firmware, it might now be
1785 	 * waiting for a debugger to attach, but we just want it to
1786 	 * reboot.  We set a flag that makes the command a no-op if it
1787 	 * has already done so.
1788 	 * The MCDI will thus return either 0 or -EIO.
1789 	 */
1790 	BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
1791 	MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS,
1792 		       MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION);
1793 	rc = efx_siena_mcdi_rpc_quiet(efx, MC_CMD_REBOOT, inbuf,
1794 				      MC_CMD_REBOOT_IN_LEN, NULL, 0, NULL);
1795 	if (rc == -EIO)
1796 		rc = 0;
1797 	if (rc)
1798 		efx_siena_mcdi_display_error(efx, MC_CMD_REBOOT,
1799 					     MC_CMD_REBOOT_IN_LEN, NULL, 0, rc);
1800 	return rc;
1801 }
1802 
1803 int efx_siena_mcdi_handle_assertion(struct efx_nic *efx)
1804 {
1805 	int rc;
1806 
1807 	rc = efx_mcdi_read_assertion(efx);
1808 	if (rc <= 0)
1809 		return rc;
1810 
1811 	return efx_mcdi_exit_assertion(efx);
1812 }
1813 
1814 int efx_siena_mcdi_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
1815 {
1816 	MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_ID_LED_IN_LEN);
1817 
1818 	BUILD_BUG_ON(EFX_LED_OFF != MC_CMD_LED_OFF);
1819 	BUILD_BUG_ON(EFX_LED_ON != MC_CMD_LED_ON);
1820 	BUILD_BUG_ON(EFX_LED_DEFAULT != MC_CMD_LED_DEFAULT);
1821 
1822 	BUILD_BUG_ON(MC_CMD_SET_ID_LED_OUT_LEN != 0);
1823 
1824 	MCDI_SET_DWORD(inbuf, SET_ID_LED_IN_STATE, mode);
1825 
1826 	return efx_siena_mcdi_rpc(efx, MC_CMD_SET_ID_LED, inbuf, sizeof(inbuf),
1827 				  NULL, 0, NULL);
1828 }
1829 
1830 static int efx_mcdi_reset_func(struct efx_nic *efx)
1831 {
1832 	MCDI_DECLARE_BUF(inbuf, MC_CMD_ENTITY_RESET_IN_LEN);
1833 	int rc;
1834 
1835 	BUILD_BUG_ON(MC_CMD_ENTITY_RESET_OUT_LEN != 0);
1836 	MCDI_POPULATE_DWORD_1(inbuf, ENTITY_RESET_IN_FLAG,
1837 			      ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET, 1);
1838 	rc = efx_siena_mcdi_rpc(efx, MC_CMD_ENTITY_RESET, inbuf, sizeof(inbuf),
1839 				NULL, 0, NULL);
1840 	return rc;
1841 }
1842 
1843 static int efx_mcdi_reset_mc(struct efx_nic *efx)
1844 {
1845 	MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
1846 	int rc;
1847 
1848 	BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
1849 	MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS, 0);
1850 	rc = efx_siena_mcdi_rpc(efx, MC_CMD_REBOOT, inbuf, sizeof(inbuf),
1851 				NULL, 0, NULL);
1852 	/* White is black, and up is down */
1853 	if (rc == -EIO)
1854 		return 0;
1855 	if (rc == 0)
1856 		rc = -EIO;
1857 	return rc;
1858 }
1859 
1860 enum reset_type efx_siena_mcdi_map_reset_reason(enum reset_type reason)
1861 {
1862 	return RESET_TYPE_RECOVER_OR_ALL;
1863 }
1864 
1865 int efx_siena_mcdi_reset(struct efx_nic *efx, enum reset_type method)
1866 {
1867 	int rc;
1868 
1869 	/* If MCDI is down, we can't handle_assertion */
1870 	if (method == RESET_TYPE_MCDI_TIMEOUT) {
1871 		rc = pci_reset_function(efx->pci_dev);
1872 		if (rc)
1873 			return rc;
1874 		/* Re-enable polled MCDI completion */
1875 		if (efx->mcdi) {
1876 			struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1877 			mcdi->mode = MCDI_MODE_POLL;
1878 		}
1879 		return 0;
1880 	}
1881 
1882 	/* Recover from a failed assertion pre-reset */
1883 	rc = efx_siena_mcdi_handle_assertion(efx);
1884 	if (rc)
1885 		return rc;
1886 
1887 	if (method == RESET_TYPE_DATAPATH)
1888 		return 0;
1889 	else if (method == RESET_TYPE_WORLD)
1890 		return efx_mcdi_reset_mc(efx);
1891 	else
1892 		return efx_mcdi_reset_func(efx);
1893 }
1894 
1895 static int efx_mcdi_wol_filter_set(struct efx_nic *efx, u32 type,
1896 				   const u8 *mac, int *id_out)
1897 {
1898 	MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_SET_IN_LEN);
1899 	MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_SET_OUT_LEN);
1900 	size_t outlen;
1901 	int rc;
1902 
1903 	MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_WOL_TYPE, type);
1904 	MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_FILTER_MODE,
1905 		       MC_CMD_FILTER_MODE_SIMPLE);
1906 	ether_addr_copy(MCDI_PTR(inbuf, WOL_FILTER_SET_IN_MAGIC_MAC), mac);
1907 
1908 	rc = efx_siena_mcdi_rpc(efx, MC_CMD_WOL_FILTER_SET, inbuf,
1909 				sizeof(inbuf), outbuf, sizeof(outbuf), &outlen);
1910 	if (rc)
1911 		goto fail;
1912 
1913 	if (outlen < MC_CMD_WOL_FILTER_SET_OUT_LEN) {
1914 		rc = -EIO;
1915 		goto fail;
1916 	}
1917 
1918 	*id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_SET_OUT_FILTER_ID);
1919 
1920 	return 0;
1921 
1922 fail:
1923 	*id_out = -1;
1924 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1925 	return rc;
1926 
1927 }
1928 
1929 
1930 int efx_siena_mcdi_wol_filter_set_magic(struct efx_nic *efx,  const u8 *mac,
1931 					int *id_out)
1932 {
1933 	return efx_mcdi_wol_filter_set(efx, MC_CMD_WOL_TYPE_MAGIC, mac, id_out);
1934 }
1935 
1936 
1937 int efx_siena_mcdi_wol_filter_get_magic(struct efx_nic *efx, int *id_out)
1938 {
1939 	MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_GET_OUT_LEN);
1940 	size_t outlen;
1941 	int rc;
1942 
1943 	rc = efx_siena_mcdi_rpc(efx, MC_CMD_WOL_FILTER_GET, NULL, 0,
1944 				outbuf, sizeof(outbuf), &outlen);
1945 	if (rc)
1946 		goto fail;
1947 
1948 	if (outlen < MC_CMD_WOL_FILTER_GET_OUT_LEN) {
1949 		rc = -EIO;
1950 		goto fail;
1951 	}
1952 
1953 	*id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_GET_OUT_FILTER_ID);
1954 
1955 	return 0;
1956 
1957 fail:
1958 	*id_out = -1;
1959 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1960 	return rc;
1961 }
1962 
1963 
1964 int efx_siena_mcdi_wol_filter_remove(struct efx_nic *efx, int id)
1965 {
1966 	MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_REMOVE_IN_LEN);
1967 	int rc;
1968 
1969 	MCDI_SET_DWORD(inbuf, WOL_FILTER_REMOVE_IN_FILTER_ID, (u32)id);
1970 
1971 	rc = efx_siena_mcdi_rpc(efx, MC_CMD_WOL_FILTER_REMOVE, inbuf,
1972 				sizeof(inbuf), NULL, 0, NULL);
1973 	return rc;
1974 }
1975 
1976 int efx_siena_mcdi_flush_rxqs(struct efx_nic *efx)
1977 {
1978 	struct efx_channel *channel;
1979 	struct efx_rx_queue *rx_queue;
1980 	MCDI_DECLARE_BUF(inbuf,
1981 			 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(EFX_MAX_CHANNELS));
1982 	int rc, count;
1983 
1984 	BUILD_BUG_ON(EFX_MAX_CHANNELS >
1985 		     MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM);
1986 
1987 	count = 0;
1988 	efx_for_each_channel(channel, efx) {
1989 		efx_for_each_channel_rx_queue(rx_queue, channel) {
1990 			if (rx_queue->flush_pending) {
1991 				rx_queue->flush_pending = false;
1992 				atomic_dec(&efx->rxq_flush_pending);
1993 				MCDI_SET_ARRAY_DWORD(
1994 					inbuf, FLUSH_RX_QUEUES_IN_QID_OFST,
1995 					count, efx_rx_queue_index(rx_queue));
1996 				count++;
1997 			}
1998 		}
1999 	}
2000 
2001 	rc = efx_siena_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, inbuf,
2002 				MC_CMD_FLUSH_RX_QUEUES_IN_LEN(count),
2003 				NULL, 0, NULL);
2004 	WARN_ON(rc < 0);
2005 
2006 	return rc;
2007 }
2008 
2009 int efx_siena_mcdi_wol_filter_reset(struct efx_nic *efx)
2010 {
2011 	int rc;
2012 
2013 	rc = efx_siena_mcdi_rpc(efx, MC_CMD_WOL_FILTER_RESET, NULL, 0,
2014 				NULL, 0, NULL);
2015 	return rc;
2016 }
2017 
2018 #ifdef CONFIG_SFC_SIENA_MTD
2019 
2020 #define EFX_MCDI_NVRAM_LEN_MAX 128
2021 
2022 static int efx_mcdi_nvram_update_start(struct efx_nic *efx, unsigned int type)
2023 {
2024 	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_START_V2_IN_LEN);
2025 	int rc;
2026 
2027 	MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_START_IN_TYPE, type);
2028 	MCDI_POPULATE_DWORD_1(inbuf, NVRAM_UPDATE_START_V2_IN_FLAGS,
2029 			      NVRAM_UPDATE_START_V2_IN_FLAG_REPORT_VERIFY_RESULT,
2030 			      1);
2031 
2032 	BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_START_OUT_LEN != 0);
2033 
2034 	rc = efx_siena_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_START, inbuf,
2035 				sizeof(inbuf), NULL, 0, NULL);
2036 
2037 	return rc;
2038 }
2039 
2040 static int efx_mcdi_nvram_read(struct efx_nic *efx, unsigned int type,
2041 			       loff_t offset, u8 *buffer, size_t length)
2042 {
2043 	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_READ_IN_V2_LEN);
2044 	MCDI_DECLARE_BUF(outbuf,
2045 			 MC_CMD_NVRAM_READ_OUT_LEN(EFX_MCDI_NVRAM_LEN_MAX));
2046 	size_t outlen;
2047 	int rc;
2048 
2049 	MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_TYPE, type);
2050 	MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_OFFSET, offset);
2051 	MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_LENGTH, length);
2052 	MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_V2_MODE,
2053 		       MC_CMD_NVRAM_READ_IN_V2_DEFAULT);
2054 
2055 	rc = efx_siena_mcdi_rpc(efx, MC_CMD_NVRAM_READ, inbuf, sizeof(inbuf),
2056 				outbuf, sizeof(outbuf), &outlen);
2057 	if (rc)
2058 		return rc;
2059 
2060 	memcpy(buffer, MCDI_PTR(outbuf, NVRAM_READ_OUT_READ_BUFFER), length);
2061 	return 0;
2062 }
2063 
2064 static int efx_mcdi_nvram_write(struct efx_nic *efx, unsigned int type,
2065 				loff_t offset, const u8 *buffer, size_t length)
2066 {
2067 	MCDI_DECLARE_BUF(inbuf,
2068 			 MC_CMD_NVRAM_WRITE_IN_LEN(EFX_MCDI_NVRAM_LEN_MAX));
2069 	int rc;
2070 
2071 	MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_TYPE, type);
2072 	MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_OFFSET, offset);
2073 	MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_LENGTH, length);
2074 	memcpy(MCDI_PTR(inbuf, NVRAM_WRITE_IN_WRITE_BUFFER), buffer, length);
2075 
2076 	BUILD_BUG_ON(MC_CMD_NVRAM_WRITE_OUT_LEN != 0);
2077 
2078 	rc = efx_siena_mcdi_rpc(efx, MC_CMD_NVRAM_WRITE, inbuf,
2079 				ALIGN(MC_CMD_NVRAM_WRITE_IN_LEN(length), 4),
2080 				NULL, 0, NULL);
2081 	return rc;
2082 }
2083 
2084 static int efx_mcdi_nvram_erase(struct efx_nic *efx, unsigned int type,
2085 				loff_t offset, size_t length)
2086 {
2087 	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_ERASE_IN_LEN);
2088 	int rc;
2089 
2090 	MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_TYPE, type);
2091 	MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_OFFSET, offset);
2092 	MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_LENGTH, length);
2093 
2094 	BUILD_BUG_ON(MC_CMD_NVRAM_ERASE_OUT_LEN != 0);
2095 
2096 	rc = efx_siena_mcdi_rpc(efx, MC_CMD_NVRAM_ERASE, inbuf, sizeof(inbuf),
2097 				NULL, 0, NULL);
2098 	return rc;
2099 }
2100 
2101 static int efx_mcdi_nvram_update_finish(struct efx_nic *efx, unsigned int type)
2102 {
2103 	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_FINISH_V2_IN_LEN);
2104 	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_UPDATE_FINISH_V2_OUT_LEN);
2105 	size_t outlen;
2106 	int rc, rc2;
2107 
2108 	MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_FINISH_IN_TYPE, type);
2109 	/* Always set this flag. Old firmware ignores it */
2110 	MCDI_POPULATE_DWORD_1(inbuf, NVRAM_UPDATE_FINISH_V2_IN_FLAGS,
2111 			      NVRAM_UPDATE_FINISH_V2_IN_FLAG_REPORT_VERIFY_RESULT,
2112 			      1);
2113 
2114 	rc = efx_siena_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_FINISH, inbuf,
2115 				sizeof(inbuf), outbuf, sizeof(outbuf), &outlen);
2116 	if (!rc && outlen >= MC_CMD_NVRAM_UPDATE_FINISH_V2_OUT_LEN) {
2117 		rc2 = MCDI_DWORD(outbuf, NVRAM_UPDATE_FINISH_V2_OUT_RESULT_CODE);
2118 		if (rc2 != MC_CMD_NVRAM_VERIFY_RC_SUCCESS)
2119 			netif_err(efx, drv, efx->net_dev,
2120 				  "NVRAM update failed verification with code 0x%x\n",
2121 				  rc2);
2122 		switch (rc2) {
2123 		case MC_CMD_NVRAM_VERIFY_RC_SUCCESS:
2124 			break;
2125 		case MC_CMD_NVRAM_VERIFY_RC_CMS_CHECK_FAILED:
2126 		case MC_CMD_NVRAM_VERIFY_RC_MESSAGE_DIGEST_CHECK_FAILED:
2127 		case MC_CMD_NVRAM_VERIFY_RC_SIGNATURE_CHECK_FAILED:
2128 		case MC_CMD_NVRAM_VERIFY_RC_TRUSTED_APPROVERS_CHECK_FAILED:
2129 		case MC_CMD_NVRAM_VERIFY_RC_SIGNATURE_CHAIN_CHECK_FAILED:
2130 			rc = -EIO;
2131 			break;
2132 		case MC_CMD_NVRAM_VERIFY_RC_INVALID_CMS_FORMAT:
2133 		case MC_CMD_NVRAM_VERIFY_RC_BAD_MESSAGE_DIGEST:
2134 			rc = -EINVAL;
2135 			break;
2136 		case MC_CMD_NVRAM_VERIFY_RC_NO_VALID_SIGNATURES:
2137 		case MC_CMD_NVRAM_VERIFY_RC_NO_TRUSTED_APPROVERS:
2138 		case MC_CMD_NVRAM_VERIFY_RC_NO_SIGNATURE_MATCH:
2139 			rc = -EPERM;
2140 			break;
2141 		default:
2142 			netif_err(efx, drv, efx->net_dev,
2143 				  "Unknown response to NVRAM_UPDATE_FINISH\n");
2144 			rc = -EIO;
2145 		}
2146 	}
2147 
2148 	return rc;
2149 }
2150 
2151 int efx_siena_mcdi_mtd_read(struct mtd_info *mtd, loff_t start,
2152 			    size_t len, size_t *retlen, u8 *buffer)
2153 {
2154 	struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2155 	struct efx_nic *efx = mtd->priv;
2156 	loff_t offset = start;
2157 	loff_t end = min_t(loff_t, start + len, mtd->size);
2158 	size_t chunk;
2159 	int rc = 0;
2160 
2161 	while (offset < end) {
2162 		chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
2163 		rc = efx_mcdi_nvram_read(efx, part->nvram_type, offset,
2164 					 buffer, chunk);
2165 		if (rc)
2166 			goto out;
2167 		offset += chunk;
2168 		buffer += chunk;
2169 	}
2170 out:
2171 	*retlen = offset - start;
2172 	return rc;
2173 }
2174 
2175 int efx_siena_mcdi_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len)
2176 {
2177 	struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2178 	struct efx_nic *efx = mtd->priv;
2179 	loff_t offset = start & ~((loff_t)(mtd->erasesize - 1));
2180 	loff_t end = min_t(loff_t, start + len, mtd->size);
2181 	size_t chunk = part->common.mtd.erasesize;
2182 	int rc = 0;
2183 
2184 	if (!part->updating) {
2185 		rc = efx_mcdi_nvram_update_start(efx, part->nvram_type);
2186 		if (rc)
2187 			goto out;
2188 		part->updating = true;
2189 	}
2190 
2191 	/* The MCDI interface can in fact do multiple erase blocks at once;
2192 	 * but erasing may be slow, so we make multiple calls here to avoid
2193 	 * tripping the MCDI RPC timeout. */
2194 	while (offset < end) {
2195 		rc = efx_mcdi_nvram_erase(efx, part->nvram_type, offset,
2196 					  chunk);
2197 		if (rc)
2198 			goto out;
2199 		offset += chunk;
2200 	}
2201 out:
2202 	return rc;
2203 }
2204 
2205 int efx_siena_mcdi_mtd_write(struct mtd_info *mtd, loff_t start,
2206 			     size_t len, size_t *retlen, const u8 *buffer)
2207 {
2208 	struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2209 	struct efx_nic *efx = mtd->priv;
2210 	loff_t offset = start;
2211 	loff_t end = min_t(loff_t, start + len, mtd->size);
2212 	size_t chunk;
2213 	int rc = 0;
2214 
2215 	if (!part->updating) {
2216 		rc = efx_mcdi_nvram_update_start(efx, part->nvram_type);
2217 		if (rc)
2218 			goto out;
2219 		part->updating = true;
2220 	}
2221 
2222 	while (offset < end) {
2223 		chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
2224 		rc = efx_mcdi_nvram_write(efx, part->nvram_type, offset,
2225 					  buffer, chunk);
2226 		if (rc)
2227 			goto out;
2228 		offset += chunk;
2229 		buffer += chunk;
2230 	}
2231 out:
2232 	*retlen = offset - start;
2233 	return rc;
2234 }
2235 
2236 int efx_siena_mcdi_mtd_sync(struct mtd_info *mtd)
2237 {
2238 	struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2239 	struct efx_nic *efx = mtd->priv;
2240 	int rc = 0;
2241 
2242 	if (part->updating) {
2243 		part->updating = false;
2244 		rc = efx_mcdi_nvram_update_finish(efx, part->nvram_type);
2245 	}
2246 
2247 	return rc;
2248 }
2249 
2250 void efx_siena_mcdi_mtd_rename(struct efx_mtd_partition *part)
2251 {
2252 	struct efx_mcdi_mtd_partition *mcdi_part =
2253 		container_of(part, struct efx_mcdi_mtd_partition, common);
2254 	struct efx_nic *efx = part->mtd.priv;
2255 
2256 	snprintf(part->name, sizeof(part->name), "%s %s:%02x",
2257 		 efx->name, part->type_name, mcdi_part->fw_subtype);
2258 }
2259 
2260 #endif /* CONFIG_SFC_SIENA_MTD */
2261