1 // SPDX-License-Identifier: GPL-2.0-only 2 /**************************************************************************** 3 * Driver for Solarflare network controllers and boards 4 * Copyright 2018 Solarflare Communications Inc. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published 8 * by the Free Software Foundation, incorporated herein by reference. 9 */ 10 11 #include "net_driver.h" 12 #include <linux/filter.h> 13 #include <linux/module.h> 14 #include <linux/netdevice.h> 15 #include <net/gre.h> 16 #include "efx_common.h" 17 #include "efx_channels.h" 18 #include "efx.h" 19 #include "mcdi.h" 20 #include "selftest.h" 21 #include "rx_common.h" 22 #include "tx_common.h" 23 #include "nic.h" 24 #include "mcdi_port_common.h" 25 #include "io.h" 26 #include "mcdi_pcol.h" 27 28 static unsigned int debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE | 29 NETIF_MSG_LINK | NETIF_MSG_IFDOWN | 30 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR | 31 NETIF_MSG_TX_ERR | NETIF_MSG_HW); 32 module_param(debug, uint, 0); 33 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value"); 34 35 /* This is the time (in jiffies) between invocations of the hardware 36 * monitor. 37 * On Falcon-based NICs, this will: 38 * - Check the on-board hardware monitor; 39 * - Poll the link state and reconfigure the hardware as necessary. 40 * On Siena-based NICs for power systems with EEH support, this will give EEH a 41 * chance to start. 42 */ 43 static unsigned int efx_monitor_interval = 1 * HZ; 44 45 /* How often and how many times to poll for a reset while waiting for a 46 * BIST that another function started to complete. 47 */ 48 #define BIST_WAIT_DELAY_MS 100 49 #define BIST_WAIT_DELAY_COUNT 100 50 51 /* Default stats update time */ 52 #define STATS_PERIOD_MS_DEFAULT 1000 53 54 static const unsigned int efx_reset_type_max = RESET_TYPE_MAX; 55 static const char *const efx_reset_type_names[] = { 56 [RESET_TYPE_INVISIBLE] = "INVISIBLE", 57 [RESET_TYPE_ALL] = "ALL", 58 [RESET_TYPE_RECOVER_OR_ALL] = "RECOVER_OR_ALL", 59 [RESET_TYPE_WORLD] = "WORLD", 60 [RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE", 61 [RESET_TYPE_DATAPATH] = "DATAPATH", 62 [RESET_TYPE_MC_BIST] = "MC_BIST", 63 [RESET_TYPE_DISABLE] = "DISABLE", 64 [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG", 65 [RESET_TYPE_INT_ERROR] = "INT_ERROR", 66 [RESET_TYPE_DMA_ERROR] = "DMA_ERROR", 67 [RESET_TYPE_TX_SKIP] = "TX_SKIP", 68 [RESET_TYPE_MC_FAILURE] = "MC_FAILURE", 69 [RESET_TYPE_MCDI_TIMEOUT] = "MCDI_TIMEOUT (FLR)", 70 }; 71 72 #define RESET_TYPE(type) \ 73 STRING_TABLE_LOOKUP(type, efx_reset_type) 74 75 /* Loopback mode names (see LOOPBACK_MODE()) */ 76 const unsigned int efx_siena_loopback_mode_max = LOOPBACK_MAX; 77 const char *const efx_siena_loopback_mode_names[] = { 78 [LOOPBACK_NONE] = "NONE", 79 [LOOPBACK_DATA] = "DATAPATH", 80 [LOOPBACK_GMAC] = "GMAC", 81 [LOOPBACK_XGMII] = "XGMII", 82 [LOOPBACK_XGXS] = "XGXS", 83 [LOOPBACK_XAUI] = "XAUI", 84 [LOOPBACK_GMII] = "GMII", 85 [LOOPBACK_SGMII] = "SGMII", 86 [LOOPBACK_XGBR] = "XGBR", 87 [LOOPBACK_XFI] = "XFI", 88 [LOOPBACK_XAUI_FAR] = "XAUI_FAR", 89 [LOOPBACK_GMII_FAR] = "GMII_FAR", 90 [LOOPBACK_SGMII_FAR] = "SGMII_FAR", 91 [LOOPBACK_XFI_FAR] = "XFI_FAR", 92 [LOOPBACK_GPHY] = "GPHY", 93 [LOOPBACK_PHYXS] = "PHYXS", 94 [LOOPBACK_PCS] = "PCS", 95 [LOOPBACK_PMAPMD] = "PMA/PMD", 96 [LOOPBACK_XPORT] = "XPORT", 97 [LOOPBACK_XGMII_WS] = "XGMII_WS", 98 [LOOPBACK_XAUI_WS] = "XAUI_WS", 99 [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR", 100 [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR", 101 [LOOPBACK_GMII_WS] = "GMII_WS", 102 [LOOPBACK_XFI_WS] = "XFI_WS", 103 [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR", 104 [LOOPBACK_PHYXS_WS] = "PHYXS_WS", 105 }; 106 107 /* Reset workqueue. If any NIC has a hardware failure then a reset will be 108 * queued onto this work queue. This is not a per-nic work queue, because 109 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised. 110 */ 111 static struct workqueue_struct *reset_workqueue; 112 113 int efx_siena_create_reset_workqueue(void) 114 { 115 reset_workqueue = create_singlethread_workqueue("sfc_siena_reset"); 116 if (!reset_workqueue) { 117 printk(KERN_ERR "Failed to create reset workqueue\n"); 118 return -ENOMEM; 119 } 120 121 return 0; 122 } 123 124 void efx_siena_queue_reset_work(struct efx_nic *efx) 125 { 126 queue_work(reset_workqueue, &efx->reset_work); 127 } 128 129 void efx_siena_flush_reset_workqueue(struct efx_nic *efx) 130 { 131 cancel_work_sync(&efx->reset_work); 132 } 133 134 void efx_siena_destroy_reset_workqueue(void) 135 { 136 if (reset_workqueue) { 137 destroy_workqueue(reset_workqueue); 138 reset_workqueue = NULL; 139 } 140 } 141 142 /* We assume that efx->type->reconfigure_mac will always try to sync RX 143 * filters and therefore needs to read-lock the filter table against freeing 144 */ 145 void efx_siena_mac_reconfigure(struct efx_nic *efx, bool mtu_only) 146 { 147 if (efx->type->reconfigure_mac) { 148 down_read(&efx->filter_sem); 149 efx->type->reconfigure_mac(efx, mtu_only); 150 up_read(&efx->filter_sem); 151 } 152 } 153 154 /* Asynchronous work item for changing MAC promiscuity and multicast 155 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current 156 * MAC directly. 157 */ 158 static void efx_mac_work(struct work_struct *data) 159 { 160 struct efx_nic *efx = container_of(data, struct efx_nic, mac_work); 161 162 mutex_lock(&efx->mac_lock); 163 if (efx->port_enabled) 164 efx_siena_mac_reconfigure(efx, false); 165 mutex_unlock(&efx->mac_lock); 166 } 167 168 int efx_siena_set_mac_address(struct net_device *net_dev, void *data) 169 { 170 struct efx_nic *efx = netdev_priv(net_dev); 171 struct sockaddr *addr = data; 172 u8 *new_addr = addr->sa_data; 173 u8 old_addr[6]; 174 int rc; 175 176 if (!is_valid_ether_addr(new_addr)) { 177 netif_err(efx, drv, efx->net_dev, 178 "invalid ethernet MAC address requested: %pM\n", 179 new_addr); 180 return -EADDRNOTAVAIL; 181 } 182 183 /* save old address */ 184 ether_addr_copy(old_addr, net_dev->dev_addr); 185 eth_hw_addr_set(net_dev, new_addr); 186 if (efx->type->set_mac_address) { 187 rc = efx->type->set_mac_address(efx); 188 if (rc) { 189 eth_hw_addr_set(net_dev, old_addr); 190 return rc; 191 } 192 } 193 194 /* Reconfigure the MAC */ 195 mutex_lock(&efx->mac_lock); 196 efx_siena_mac_reconfigure(efx, false); 197 mutex_unlock(&efx->mac_lock); 198 199 return 0; 200 } 201 202 /* Context: netif_addr_lock held, BHs disabled. */ 203 void efx_siena_set_rx_mode(struct net_device *net_dev) 204 { 205 struct efx_nic *efx = netdev_priv(net_dev); 206 207 if (efx->port_enabled) 208 queue_work(efx->workqueue, &efx->mac_work); 209 /* Otherwise efx_start_port() will do this */ 210 } 211 212 int efx_siena_set_features(struct net_device *net_dev, netdev_features_t data) 213 { 214 struct efx_nic *efx = netdev_priv(net_dev); 215 int rc; 216 217 /* If disabling RX n-tuple filtering, clear existing filters */ 218 if (net_dev->features & ~data & NETIF_F_NTUPLE) { 219 rc = efx->type->filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL); 220 if (rc) 221 return rc; 222 } 223 224 /* If Rx VLAN filter is changed, update filters via mac_reconfigure. 225 * If rx-fcs is changed, mac_reconfigure updates that too. 226 */ 227 if ((net_dev->features ^ data) & (NETIF_F_HW_VLAN_CTAG_FILTER | 228 NETIF_F_RXFCS)) { 229 /* efx_siena_set_rx_mode() will schedule MAC work to update filters 230 * when a new features are finally set in net_dev. 231 */ 232 efx_siena_set_rx_mode(net_dev); 233 } 234 235 return 0; 236 } 237 238 /* This ensures that the kernel is kept informed (via 239 * netif_carrier_on/off) of the link status, and also maintains the 240 * link status's stop on the port's TX queue. 241 */ 242 void efx_siena_link_status_changed(struct efx_nic *efx) 243 { 244 struct efx_link_state *link_state = &efx->link_state; 245 246 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure 247 * that no events are triggered between unregister_netdev() and the 248 * driver unloading. A more general condition is that NETDEV_CHANGE 249 * can only be generated between NETDEV_UP and NETDEV_DOWN 250 */ 251 if (!netif_running(efx->net_dev)) 252 return; 253 254 if (link_state->up != netif_carrier_ok(efx->net_dev)) { 255 efx->n_link_state_changes++; 256 257 if (link_state->up) 258 netif_carrier_on(efx->net_dev); 259 else 260 netif_carrier_off(efx->net_dev); 261 } 262 263 /* Status message for kernel log */ 264 if (link_state->up) 265 netif_info(efx, link, efx->net_dev, 266 "link up at %uMbps %s-duplex (MTU %d)\n", 267 link_state->speed, link_state->fd ? "full" : "half", 268 efx->net_dev->mtu); 269 else 270 netif_info(efx, link, efx->net_dev, "link down\n"); 271 } 272 273 unsigned int efx_siena_xdp_max_mtu(struct efx_nic *efx) 274 { 275 /* The maximum MTU that we can fit in a single page, allowing for 276 * framing, overhead and XDP headroom + tailroom. 277 */ 278 int overhead = EFX_MAX_FRAME_LEN(0) + sizeof(struct efx_rx_page_state) + 279 efx->rx_prefix_size + efx->type->rx_buffer_padding + 280 efx->rx_ip_align + EFX_XDP_HEADROOM + EFX_XDP_TAILROOM; 281 282 return PAGE_SIZE - overhead; 283 } 284 285 /* Context: process, rtnl_lock() held. */ 286 int efx_siena_change_mtu(struct net_device *net_dev, int new_mtu) 287 { 288 struct efx_nic *efx = netdev_priv(net_dev); 289 int rc; 290 291 rc = efx_check_disabled(efx); 292 if (rc) 293 return rc; 294 295 if (rtnl_dereference(efx->xdp_prog) && 296 new_mtu > efx_siena_xdp_max_mtu(efx)) { 297 netif_err(efx, drv, efx->net_dev, 298 "Requested MTU of %d too big for XDP (max: %d)\n", 299 new_mtu, efx_siena_xdp_max_mtu(efx)); 300 return -EINVAL; 301 } 302 303 netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu); 304 305 efx_device_detach_sync(efx); 306 efx_siena_stop_all(efx); 307 308 mutex_lock(&efx->mac_lock); 309 WRITE_ONCE(net_dev->mtu, new_mtu); 310 efx_siena_mac_reconfigure(efx, true); 311 mutex_unlock(&efx->mac_lock); 312 313 efx_siena_start_all(efx); 314 efx_device_attach_if_not_resetting(efx); 315 return 0; 316 } 317 318 /************************************************************************** 319 * 320 * Hardware monitor 321 * 322 **************************************************************************/ 323 324 /* Run periodically off the general workqueue */ 325 static void efx_monitor(struct work_struct *data) 326 { 327 struct efx_nic *efx = container_of(data, struct efx_nic, 328 monitor_work.work); 329 330 netif_vdbg(efx, timer, efx->net_dev, 331 "hardware monitor executing on CPU %d\n", 332 raw_smp_processor_id()); 333 BUG_ON(efx->type->monitor == NULL); 334 335 /* If the mac_lock is already held then it is likely a port 336 * reconfiguration is already in place, which will likely do 337 * most of the work of monitor() anyway. 338 */ 339 if (mutex_trylock(&efx->mac_lock)) { 340 if (efx->port_enabled && efx->type->monitor) 341 efx->type->monitor(efx); 342 mutex_unlock(&efx->mac_lock); 343 } 344 345 efx_siena_start_monitor(efx); 346 } 347 348 void efx_siena_start_monitor(struct efx_nic *efx) 349 { 350 if (efx->type->monitor) 351 queue_delayed_work(efx->workqueue, &efx->monitor_work, 352 efx_monitor_interval); 353 } 354 355 /************************************************************************** 356 * 357 * Event queue processing 358 * 359 *************************************************************************/ 360 361 /* Channels are shutdown and reinitialised whilst the NIC is running 362 * to propagate configuration changes (mtu, checksum offload), or 363 * to clear hardware error conditions 364 */ 365 static void efx_start_datapath(struct efx_nic *efx) 366 { 367 netdev_features_t old_features = efx->net_dev->features; 368 bool old_rx_scatter = efx->rx_scatter; 369 size_t rx_buf_len; 370 371 /* Calculate the rx buffer allocation parameters required to 372 * support the current MTU, including padding for header 373 * alignment and overruns. 374 */ 375 efx->rx_dma_len = (efx->rx_prefix_size + 376 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) + 377 efx->type->rx_buffer_padding); 378 rx_buf_len = (sizeof(struct efx_rx_page_state) + EFX_XDP_HEADROOM + 379 efx->rx_ip_align + efx->rx_dma_len + EFX_XDP_TAILROOM); 380 381 if (rx_buf_len <= PAGE_SIZE) { 382 efx->rx_scatter = efx->type->always_rx_scatter; 383 efx->rx_buffer_order = 0; 384 } else if (efx->type->can_rx_scatter) { 385 BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES); 386 BUILD_BUG_ON(sizeof(struct efx_rx_page_state) + 387 2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE, 388 EFX_RX_BUF_ALIGNMENT) > 389 PAGE_SIZE); 390 efx->rx_scatter = true; 391 efx->rx_dma_len = EFX_RX_USR_BUF_SIZE; 392 efx->rx_buffer_order = 0; 393 } else { 394 efx->rx_scatter = false; 395 efx->rx_buffer_order = get_order(rx_buf_len); 396 } 397 398 efx_siena_rx_config_page_split(efx); 399 if (efx->rx_buffer_order) 400 netif_dbg(efx, drv, efx->net_dev, 401 "RX buf len=%u; page order=%u batch=%u\n", 402 efx->rx_dma_len, efx->rx_buffer_order, 403 efx->rx_pages_per_batch); 404 else 405 netif_dbg(efx, drv, efx->net_dev, 406 "RX buf len=%u step=%u bpp=%u; page batch=%u\n", 407 efx->rx_dma_len, efx->rx_page_buf_step, 408 efx->rx_bufs_per_page, efx->rx_pages_per_batch); 409 410 /* Restore previously fixed features in hw_features and remove 411 * features which are fixed now 412 */ 413 efx->net_dev->hw_features |= efx->net_dev->features; 414 efx->net_dev->hw_features &= ~efx->fixed_features; 415 efx->net_dev->features |= efx->fixed_features; 416 if (efx->net_dev->features != old_features) 417 netdev_features_change(efx->net_dev); 418 419 /* RX filters may also have scatter-enabled flags */ 420 if ((efx->rx_scatter != old_rx_scatter) && 421 efx->type->filter_update_rx_scatter) 422 efx->type->filter_update_rx_scatter(efx); 423 424 /* We must keep at least one descriptor in a TX ring empty. 425 * We could avoid this when the queue size does not exactly 426 * match the hardware ring size, but it's not that important. 427 * Therefore we stop the queue when one more skb might fill 428 * the ring completely. We wake it when half way back to 429 * empty. 430 */ 431 efx->txq_stop_thresh = efx->txq_entries - efx_siena_tx_max_skb_descs(efx); 432 efx->txq_wake_thresh = efx->txq_stop_thresh / 2; 433 434 /* Initialise the channels */ 435 efx_siena_start_channels(efx); 436 437 efx_siena_ptp_start_datapath(efx); 438 439 if (netif_device_present(efx->net_dev)) 440 netif_tx_wake_all_queues(efx->net_dev); 441 } 442 443 static void efx_stop_datapath(struct efx_nic *efx) 444 { 445 EFX_ASSERT_RESET_SERIALISED(efx); 446 BUG_ON(efx->port_enabled); 447 448 efx_siena_ptp_stop_datapath(efx); 449 450 efx_siena_stop_channels(efx); 451 } 452 453 /************************************************************************** 454 * 455 * Port handling 456 * 457 **************************************************************************/ 458 459 /* Equivalent to efx_siena_link_set_advertising with all-zeroes, except does not 460 * force the Autoneg bit on. 461 */ 462 void efx_siena_link_clear_advertising(struct efx_nic *efx) 463 { 464 bitmap_zero(efx->link_advertising, __ETHTOOL_LINK_MODE_MASK_NBITS); 465 efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX); 466 } 467 468 void efx_siena_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc) 469 { 470 efx->wanted_fc = wanted_fc; 471 if (efx->link_advertising[0]) { 472 if (wanted_fc & EFX_FC_RX) 473 efx->link_advertising[0] |= (ADVERTISED_Pause | 474 ADVERTISED_Asym_Pause); 475 else 476 efx->link_advertising[0] &= ~(ADVERTISED_Pause | 477 ADVERTISED_Asym_Pause); 478 if (wanted_fc & EFX_FC_TX) 479 efx->link_advertising[0] ^= ADVERTISED_Asym_Pause; 480 } 481 } 482 483 static void efx_start_port(struct efx_nic *efx) 484 { 485 netif_dbg(efx, ifup, efx->net_dev, "start port\n"); 486 BUG_ON(efx->port_enabled); 487 488 mutex_lock(&efx->mac_lock); 489 efx->port_enabled = true; 490 491 /* Ensure MAC ingress/egress is enabled */ 492 efx_siena_mac_reconfigure(efx, false); 493 494 mutex_unlock(&efx->mac_lock); 495 } 496 497 /* Cancel work for MAC reconfiguration, periodic hardware monitoring 498 * and the async self-test, wait for them to finish and prevent them 499 * being scheduled again. This doesn't cover online resets, which 500 * should only be cancelled when removing the device. 501 */ 502 static void efx_stop_port(struct efx_nic *efx) 503 { 504 netif_dbg(efx, ifdown, efx->net_dev, "stop port\n"); 505 506 EFX_ASSERT_RESET_SERIALISED(efx); 507 508 mutex_lock(&efx->mac_lock); 509 efx->port_enabled = false; 510 mutex_unlock(&efx->mac_lock); 511 512 /* Serialise against efx_set_multicast_list() */ 513 netif_addr_lock_bh(efx->net_dev); 514 netif_addr_unlock_bh(efx->net_dev); 515 516 cancel_delayed_work_sync(&efx->monitor_work); 517 efx_siena_selftest_async_cancel(efx); 518 cancel_work_sync(&efx->mac_work); 519 } 520 521 /* If the interface is supposed to be running but is not, start 522 * the hardware and software data path, regular activity for the port 523 * (MAC statistics, link polling, etc.) and schedule the port to be 524 * reconfigured. Interrupts must already be enabled. This function 525 * is safe to call multiple times, so long as the NIC is not disabled. 526 * Requires the RTNL lock. 527 */ 528 void efx_siena_start_all(struct efx_nic *efx) 529 { 530 EFX_ASSERT_RESET_SERIALISED(efx); 531 BUG_ON(efx->state == STATE_DISABLED); 532 533 /* Check that it is appropriate to restart the interface. All 534 * of these flags are safe to read under just the rtnl lock 535 */ 536 if (efx->port_enabled || !netif_running(efx->net_dev) || 537 efx->reset_pending) 538 return; 539 540 efx_start_port(efx); 541 efx_start_datapath(efx); 542 543 /* Start the hardware monitor if there is one */ 544 efx_siena_start_monitor(efx); 545 546 /* Link state detection is normally event-driven; we have 547 * to poll now because we could have missed a change 548 */ 549 mutex_lock(&efx->mac_lock); 550 if (efx_siena_mcdi_phy_poll(efx)) 551 efx_siena_link_status_changed(efx); 552 mutex_unlock(&efx->mac_lock); 553 554 if (efx->type->start_stats) { 555 efx->type->start_stats(efx); 556 efx->type->pull_stats(efx); 557 spin_lock_bh(&efx->stats_lock); 558 efx->type->update_stats(efx, NULL, NULL); 559 spin_unlock_bh(&efx->stats_lock); 560 } 561 } 562 563 /* Quiesce the hardware and software data path, and regular activity 564 * for the port without bringing the link down. Safe to call multiple 565 * times with the NIC in almost any state, but interrupts should be 566 * enabled. Requires the RTNL lock. 567 */ 568 void efx_siena_stop_all(struct efx_nic *efx) 569 { 570 EFX_ASSERT_RESET_SERIALISED(efx); 571 572 /* port_enabled can be read safely under the rtnl lock */ 573 if (!efx->port_enabled) 574 return; 575 576 if (efx->type->update_stats) { 577 /* update stats before we go down so we can accurately count 578 * rx_nodesc_drops 579 */ 580 efx->type->pull_stats(efx); 581 spin_lock_bh(&efx->stats_lock); 582 efx->type->update_stats(efx, NULL, NULL); 583 spin_unlock_bh(&efx->stats_lock); 584 efx->type->stop_stats(efx); 585 } 586 587 efx_stop_port(efx); 588 589 /* Stop the kernel transmit interface. This is only valid if 590 * the device is stopped or detached; otherwise the watchdog 591 * may fire immediately. 592 */ 593 WARN_ON(netif_running(efx->net_dev) && 594 netif_device_present(efx->net_dev)); 595 netif_tx_disable(efx->net_dev); 596 597 efx_stop_datapath(efx); 598 } 599 600 static size_t efx_siena_update_stats_atomic(struct efx_nic *efx, u64 *full_stats, 601 struct rtnl_link_stats64 *core_stats) 602 { 603 if (efx->type->update_stats_atomic) 604 return efx->type->update_stats_atomic(efx, full_stats, core_stats); 605 return efx->type->update_stats(efx, full_stats, core_stats); 606 } 607 608 /* Context: process, rcu_read_lock or RTNL held, non-blocking. */ 609 void efx_siena_net_stats(struct net_device *net_dev, 610 struct rtnl_link_stats64 *stats) 611 { 612 struct efx_nic *efx = netdev_priv(net_dev); 613 614 spin_lock_bh(&efx->stats_lock); 615 efx_siena_update_stats_atomic(efx, NULL, stats); 616 spin_unlock_bh(&efx->stats_lock); 617 } 618 619 /* Push loopback/power/transmit disable settings to the PHY, and reconfigure 620 * the MAC appropriately. All other PHY configuration changes are pushed 621 * through phy_op->set_settings(), and pushed asynchronously to the MAC 622 * through efx_monitor(). 623 * 624 * Callers must hold the mac_lock 625 */ 626 int __efx_siena_reconfigure_port(struct efx_nic *efx) 627 { 628 enum efx_phy_mode phy_mode; 629 int rc = 0; 630 631 WARN_ON(!mutex_is_locked(&efx->mac_lock)); 632 633 /* Disable PHY transmit in mac level loopbacks */ 634 phy_mode = efx->phy_mode; 635 if (LOOPBACK_INTERNAL(efx)) 636 efx->phy_mode |= PHY_MODE_TX_DISABLED; 637 else 638 efx->phy_mode &= ~PHY_MODE_TX_DISABLED; 639 640 if (efx->type->reconfigure_port) 641 rc = efx->type->reconfigure_port(efx); 642 643 if (rc) 644 efx->phy_mode = phy_mode; 645 646 return rc; 647 } 648 649 /* Reinitialise the MAC to pick up new PHY settings, even if the port is 650 * disabled. 651 */ 652 int efx_siena_reconfigure_port(struct efx_nic *efx) 653 { 654 int rc; 655 656 EFX_ASSERT_RESET_SERIALISED(efx); 657 658 mutex_lock(&efx->mac_lock); 659 rc = __efx_siena_reconfigure_port(efx); 660 mutex_unlock(&efx->mac_lock); 661 662 return rc; 663 } 664 665 /************************************************************************** 666 * 667 * Device reset and suspend 668 * 669 **************************************************************************/ 670 671 static void efx_wait_for_bist_end(struct efx_nic *efx) 672 { 673 int i; 674 675 for (i = 0; i < BIST_WAIT_DELAY_COUNT; ++i) { 676 if (efx_siena_mcdi_poll_reboot(efx)) 677 goto out; 678 msleep(BIST_WAIT_DELAY_MS); 679 } 680 681 netif_err(efx, drv, efx->net_dev, "Warning: No MC reboot after BIST mode\n"); 682 out: 683 /* Either way unset the BIST flag. If we found no reboot we probably 684 * won't recover, but we should try. 685 */ 686 efx->mc_bist_for_other_fn = false; 687 } 688 689 /* Try recovery mechanisms. 690 * For now only EEH is supported. 691 * Returns 0 if the recovery mechanisms are unsuccessful. 692 * Returns a non-zero value otherwise. 693 */ 694 int efx_siena_try_recovery(struct efx_nic *efx) 695 { 696 #ifdef CONFIG_EEH 697 /* A PCI error can occur and not be seen by EEH because nothing 698 * happens on the PCI bus. In this case the driver may fail and 699 * schedule a 'recover or reset', leading to this recovery handler. 700 * Manually call the eeh failure check function. 701 */ 702 struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev); 703 if (eeh_dev_check_failure(eehdev)) { 704 /* The EEH mechanisms will handle the error and reset the 705 * device if necessary. 706 */ 707 return 1; 708 } 709 #endif 710 return 0; 711 } 712 713 /* Tears down the entire software state and most of the hardware state 714 * before reset. 715 */ 716 void efx_siena_reset_down(struct efx_nic *efx, enum reset_type method) 717 { 718 EFX_ASSERT_RESET_SERIALISED(efx); 719 720 if (method == RESET_TYPE_MCDI_TIMEOUT) 721 efx->type->prepare_flr(efx); 722 723 efx_siena_stop_all(efx); 724 efx_siena_disable_interrupts(efx); 725 726 mutex_lock(&efx->mac_lock); 727 down_write(&efx->filter_sem); 728 mutex_lock(&efx->rss_lock); 729 efx->type->fini(efx); 730 } 731 732 /* Context: netif_tx_lock held, BHs disabled. */ 733 void efx_siena_watchdog(struct net_device *net_dev, unsigned int txqueue) 734 { 735 struct efx_nic *efx = netdev_priv(net_dev); 736 737 netif_err(efx, tx_err, efx->net_dev, 738 "TX stuck with port_enabled=%d: resetting channels\n", 739 efx->port_enabled); 740 741 efx_siena_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG); 742 } 743 744 /* This function will always ensure that the locks acquired in 745 * efx_siena_reset_down() are released. A failure return code indicates 746 * that we were unable to reinitialise the hardware, and the 747 * driver should be disabled. If ok is false, then the rx and tx 748 * engines are not restarted, pending a RESET_DISABLE. 749 */ 750 int efx_siena_reset_up(struct efx_nic *efx, enum reset_type method, bool ok) 751 { 752 int rc; 753 754 EFX_ASSERT_RESET_SERIALISED(efx); 755 756 if (method == RESET_TYPE_MCDI_TIMEOUT) 757 efx->type->finish_flr(efx); 758 759 /* Ensure that SRAM is initialised even if we're disabling the device */ 760 rc = efx->type->init(efx); 761 if (rc) { 762 netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n"); 763 goto fail; 764 } 765 766 if (!ok) 767 goto fail; 768 769 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE && 770 method != RESET_TYPE_DATAPATH) { 771 rc = efx_siena_mcdi_port_reconfigure(efx); 772 if (rc && rc != -EPERM) 773 netif_err(efx, drv, efx->net_dev, 774 "could not restore PHY settings\n"); 775 } 776 777 rc = efx_siena_enable_interrupts(efx); 778 if (rc) 779 goto fail; 780 781 #ifdef CONFIG_SFC_SIENA_SRIOV 782 rc = efx->type->vswitching_restore(efx); 783 if (rc) /* not fatal; the PF will still work fine */ 784 netif_warn(efx, probe, efx->net_dev, 785 "failed to restore vswitching rc=%d;" 786 " VFs may not function\n", rc); 787 #endif 788 789 if (efx->type->rx_restore_rss_contexts) 790 efx->type->rx_restore_rss_contexts(efx); 791 mutex_unlock(&efx->rss_lock); 792 efx->type->filter_table_restore(efx); 793 up_write(&efx->filter_sem); 794 if (efx->type->sriov_reset) 795 efx->type->sriov_reset(efx); 796 797 mutex_unlock(&efx->mac_lock); 798 799 efx_siena_start_all(efx); 800 801 if (efx->type->udp_tnl_push_ports) 802 efx->type->udp_tnl_push_ports(efx); 803 804 return 0; 805 806 fail: 807 efx->port_initialized = false; 808 809 mutex_unlock(&efx->rss_lock); 810 up_write(&efx->filter_sem); 811 mutex_unlock(&efx->mac_lock); 812 813 return rc; 814 } 815 816 /* Reset the NIC using the specified method. Note that the reset may 817 * fail, in which case the card will be left in an unusable state. 818 * 819 * Caller must hold the rtnl_lock. 820 */ 821 int efx_siena_reset(struct efx_nic *efx, enum reset_type method) 822 { 823 int rc, rc2 = 0; 824 bool disabled; 825 826 netif_info(efx, drv, efx->net_dev, "resetting (%s)\n", 827 RESET_TYPE(method)); 828 829 efx_device_detach_sync(efx); 830 /* efx_siena_reset_down() grabs locks that prevent recovery on EF100. 831 * EF100 reset is handled in the efx_nic_type callback below. 832 */ 833 if (efx_nic_rev(efx) != EFX_REV_EF100) 834 efx_siena_reset_down(efx, method); 835 836 rc = efx->type->reset(efx, method); 837 if (rc) { 838 netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n"); 839 goto out; 840 } 841 842 /* Clear flags for the scopes we covered. We assume the NIC and 843 * driver are now quiescent so that there is no race here. 844 */ 845 if (method < RESET_TYPE_MAX_METHOD) 846 efx->reset_pending &= -(1 << (method + 1)); 847 else /* it doesn't fit into the well-ordered scope hierarchy */ 848 __clear_bit(method, &efx->reset_pending); 849 850 /* Reinitialise bus-mastering, which may have been turned off before 851 * the reset was scheduled. This is still appropriate, even in the 852 * RESET_TYPE_DISABLE since this driver generally assumes the hardware 853 * can respond to requests. 854 */ 855 pci_set_master(efx->pci_dev); 856 857 out: 858 /* Leave device stopped if necessary */ 859 disabled = rc || 860 method == RESET_TYPE_DISABLE || 861 method == RESET_TYPE_RECOVER_OR_DISABLE; 862 if (efx_nic_rev(efx) != EFX_REV_EF100) 863 rc2 = efx_siena_reset_up(efx, method, !disabled); 864 if (rc2) { 865 disabled = true; 866 if (!rc) 867 rc = rc2; 868 } 869 870 if (disabled) { 871 dev_close(efx->net_dev); 872 netif_err(efx, drv, efx->net_dev, "has been disabled\n"); 873 efx->state = STATE_DISABLED; 874 } else { 875 netif_dbg(efx, drv, efx->net_dev, "reset complete\n"); 876 efx_device_attach_if_not_resetting(efx); 877 } 878 return rc; 879 } 880 881 /* The worker thread exists so that code that cannot sleep can 882 * schedule a reset for later. 883 */ 884 static void efx_reset_work(struct work_struct *data) 885 { 886 struct efx_nic *efx = container_of(data, struct efx_nic, reset_work); 887 unsigned long pending; 888 enum reset_type method; 889 890 pending = READ_ONCE(efx->reset_pending); 891 method = fls(pending) - 1; 892 893 if (method == RESET_TYPE_MC_BIST) 894 efx_wait_for_bist_end(efx); 895 896 if ((method == RESET_TYPE_RECOVER_OR_DISABLE || 897 method == RESET_TYPE_RECOVER_OR_ALL) && 898 efx_siena_try_recovery(efx)) 899 return; 900 901 if (!pending) 902 return; 903 904 rtnl_lock(); 905 906 /* We checked the state in efx_siena_schedule_reset() but it may 907 * have changed by now. Now that we have the RTNL lock, 908 * it cannot change again. 909 */ 910 if (efx->state == STATE_READY) 911 (void)efx_siena_reset(efx, method); 912 913 rtnl_unlock(); 914 } 915 916 void efx_siena_schedule_reset(struct efx_nic *efx, enum reset_type type) 917 { 918 enum reset_type method; 919 920 if (efx->state == STATE_RECOVERY) { 921 netif_dbg(efx, drv, efx->net_dev, 922 "recovering: skip scheduling %s reset\n", 923 RESET_TYPE(type)); 924 return; 925 } 926 927 switch (type) { 928 case RESET_TYPE_INVISIBLE: 929 case RESET_TYPE_ALL: 930 case RESET_TYPE_RECOVER_OR_ALL: 931 case RESET_TYPE_WORLD: 932 case RESET_TYPE_DISABLE: 933 case RESET_TYPE_RECOVER_OR_DISABLE: 934 case RESET_TYPE_DATAPATH: 935 case RESET_TYPE_MC_BIST: 936 case RESET_TYPE_MCDI_TIMEOUT: 937 method = type; 938 netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n", 939 RESET_TYPE(method)); 940 break; 941 default: 942 method = efx->type->map_reset_reason(type); 943 netif_dbg(efx, drv, efx->net_dev, 944 "scheduling %s reset for %s\n", 945 RESET_TYPE(method), RESET_TYPE(type)); 946 break; 947 } 948 949 set_bit(method, &efx->reset_pending); 950 smp_mb(); /* ensure we change reset_pending before checking state */ 951 952 /* If we're not READY then just leave the flags set as the cue 953 * to abort probing or reschedule the reset later. 954 */ 955 if (READ_ONCE(efx->state) != STATE_READY) 956 return; 957 958 /* efx_process_channel() will no longer read events once a 959 * reset is scheduled. So switch back to poll'd MCDI completions. 960 */ 961 efx_siena_mcdi_mode_poll(efx); 962 963 efx_siena_queue_reset_work(efx); 964 } 965 966 /************************************************************************** 967 * 968 * Dummy NIC operations 969 * 970 * Can be used for some unimplemented operations 971 * Needed so all function pointers are valid and do not have to be tested 972 * before use 973 * 974 **************************************************************************/ 975 int efx_siena_port_dummy_op_int(struct efx_nic *efx) 976 { 977 return 0; 978 } 979 980 void efx_siena_port_dummy_op_void(struct efx_nic *efx) {} 981 982 /************************************************************************** 983 * 984 * Data housekeeping 985 * 986 **************************************************************************/ 987 988 /* This zeroes out and then fills in the invariants in a struct 989 * efx_nic (including all sub-structures). 990 */ 991 int efx_siena_init_struct(struct efx_nic *efx, 992 struct pci_dev *pci_dev, struct net_device *net_dev) 993 { 994 int rc = -ENOMEM; 995 996 /* Initialise common structures */ 997 INIT_LIST_HEAD(&efx->node); 998 INIT_LIST_HEAD(&efx->secondary_list); 999 spin_lock_init(&efx->biu_lock); 1000 #ifdef CONFIG_SFC_SIENA_MTD 1001 INIT_LIST_HEAD(&efx->mtd_list); 1002 #endif 1003 INIT_WORK(&efx->reset_work, efx_reset_work); 1004 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor); 1005 efx_siena_selftest_async_init(efx); 1006 efx->pci_dev = pci_dev; 1007 efx->msg_enable = debug; 1008 efx->state = STATE_UNINIT; 1009 strscpy(efx->name, pci_name(pci_dev), sizeof(efx->name)); 1010 1011 efx->net_dev = net_dev; 1012 efx->rx_prefix_size = efx->type->rx_prefix_size; 1013 efx->rx_ip_align = 1014 NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0; 1015 efx->rx_packet_hash_offset = 1016 efx->type->rx_hash_offset - efx->type->rx_prefix_size; 1017 efx->rx_packet_ts_offset = 1018 efx->type->rx_ts_offset - efx->type->rx_prefix_size; 1019 INIT_LIST_HEAD(&efx->rss_context.list); 1020 efx->rss_context.context_id = EFX_MCDI_RSS_CONTEXT_INVALID; 1021 mutex_init(&efx->rss_lock); 1022 efx->vport_id = EVB_PORT_ID_ASSIGNED; 1023 spin_lock_init(&efx->stats_lock); 1024 efx->vi_stride = EFX_DEFAULT_VI_STRIDE; 1025 efx->num_mac_stats = MC_CMD_MAC_NSTATS; 1026 BUILD_BUG_ON(MC_CMD_MAC_NSTATS - 1 != MC_CMD_MAC_GENERATION_END); 1027 mutex_init(&efx->mac_lock); 1028 init_rwsem(&efx->filter_sem); 1029 #ifdef CONFIG_RFS_ACCEL 1030 mutex_init(&efx->rps_mutex); 1031 spin_lock_init(&efx->rps_hash_lock); 1032 /* Failure to allocate is not fatal, but may degrade ARFS performance */ 1033 efx->rps_hash_table = kcalloc(EFX_ARFS_HASH_TABLE_SIZE, 1034 sizeof(*efx->rps_hash_table), GFP_KERNEL); 1035 #endif 1036 efx->mdio.dev = net_dev; 1037 INIT_WORK(&efx->mac_work, efx_mac_work); 1038 init_waitqueue_head(&efx->flush_wq); 1039 1040 efx->tx_queues_per_channel = 1; 1041 efx->rxq_entries = EFX_DEFAULT_DMAQ_SIZE; 1042 efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE; 1043 1044 efx->mem_bar = UINT_MAX; 1045 1046 rc = efx_siena_init_channels(efx); 1047 if (rc) 1048 goto fail; 1049 1050 /* Would be good to use the net_dev name, but we're too early */ 1051 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s", 1052 pci_name(pci_dev)); 1053 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name); 1054 if (!efx->workqueue) { 1055 rc = -ENOMEM; 1056 goto fail; 1057 } 1058 1059 return 0; 1060 1061 fail: 1062 efx_siena_fini_struct(efx); 1063 return rc; 1064 } 1065 1066 void efx_siena_fini_struct(struct efx_nic *efx) 1067 { 1068 #ifdef CONFIG_RFS_ACCEL 1069 kfree(efx->rps_hash_table); 1070 #endif 1071 1072 efx_siena_fini_channels(efx); 1073 1074 kfree(efx->vpd_sn); 1075 1076 if (efx->workqueue) { 1077 destroy_workqueue(efx->workqueue); 1078 efx->workqueue = NULL; 1079 } 1080 } 1081 1082 /* This configures the PCI device to enable I/O and DMA. */ 1083 int efx_siena_init_io(struct efx_nic *efx, int bar, dma_addr_t dma_mask, 1084 unsigned int mem_map_size) 1085 { 1086 struct pci_dev *pci_dev = efx->pci_dev; 1087 int rc; 1088 1089 efx->mem_bar = UINT_MAX; 1090 1091 netif_dbg(efx, probe, efx->net_dev, "initialising I/O bar=%d\n", bar); 1092 1093 rc = pci_enable_device(pci_dev); 1094 if (rc) { 1095 netif_err(efx, probe, efx->net_dev, 1096 "failed to enable PCI device\n"); 1097 goto fail1; 1098 } 1099 1100 pci_set_master(pci_dev); 1101 1102 rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask); 1103 if (rc) { 1104 netif_err(efx, probe, efx->net_dev, 1105 "could not find a suitable DMA mask\n"); 1106 goto fail2; 1107 } 1108 netif_dbg(efx, probe, efx->net_dev, 1109 "using DMA mask %llx\n", (unsigned long long)dma_mask); 1110 1111 efx->membase_phys = pci_resource_start(efx->pci_dev, bar); 1112 if (!efx->membase_phys) { 1113 netif_err(efx, probe, efx->net_dev, 1114 "ERROR: No BAR%d mapping from the BIOS. " 1115 "Try pci=realloc on the kernel command line\n", bar); 1116 rc = -ENODEV; 1117 goto fail3; 1118 } 1119 1120 rc = pci_request_region(pci_dev, bar, "sfc"); 1121 if (rc) { 1122 netif_err(efx, probe, efx->net_dev, 1123 "request for memory BAR[%d] failed\n", bar); 1124 rc = -EIO; 1125 goto fail3; 1126 } 1127 efx->mem_bar = bar; 1128 efx->membase = ioremap(efx->membase_phys, mem_map_size); 1129 if (!efx->membase) { 1130 netif_err(efx, probe, efx->net_dev, 1131 "could not map memory BAR[%d] at %llx+%x\n", bar, 1132 (unsigned long long)efx->membase_phys, mem_map_size); 1133 rc = -ENOMEM; 1134 goto fail4; 1135 } 1136 netif_dbg(efx, probe, efx->net_dev, 1137 "memory BAR[%d] at %llx+%x (virtual %p)\n", bar, 1138 (unsigned long long)efx->membase_phys, mem_map_size, 1139 efx->membase); 1140 1141 return 0; 1142 1143 fail4: 1144 pci_release_region(efx->pci_dev, bar); 1145 fail3: 1146 efx->membase_phys = 0; 1147 fail2: 1148 pci_disable_device(efx->pci_dev); 1149 fail1: 1150 return rc; 1151 } 1152 1153 void efx_siena_fini_io(struct efx_nic *efx) 1154 { 1155 netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n"); 1156 1157 if (efx->membase) { 1158 iounmap(efx->membase); 1159 efx->membase = NULL; 1160 } 1161 1162 if (efx->membase_phys) { 1163 pci_release_region(efx->pci_dev, efx->mem_bar); 1164 efx->membase_phys = 0; 1165 efx->mem_bar = UINT_MAX; 1166 } 1167 1168 /* Don't disable bus-mastering if VFs are assigned */ 1169 if (!pci_vfs_assigned(efx->pci_dev)) 1170 pci_disable_device(efx->pci_dev); 1171 } 1172 1173 #ifdef CONFIG_SFC_SIENA_MCDI_LOGGING 1174 static ssize_t mcdi_logging_show(struct device *dev, 1175 struct device_attribute *attr, 1176 char *buf) 1177 { 1178 struct efx_nic *efx = dev_get_drvdata(dev); 1179 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 1180 1181 return sysfs_emit(buf, "%d\n", mcdi->logging_enabled); 1182 } 1183 1184 static ssize_t mcdi_logging_store(struct device *dev, 1185 struct device_attribute *attr, 1186 const char *buf, size_t count) 1187 { 1188 struct efx_nic *efx = dev_get_drvdata(dev); 1189 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 1190 bool enable = count > 0 && *buf != '0'; 1191 1192 mcdi->logging_enabled = enable; 1193 return count; 1194 } 1195 1196 static DEVICE_ATTR_RW(mcdi_logging); 1197 1198 void efx_siena_init_mcdi_logging(struct efx_nic *efx) 1199 { 1200 int rc = device_create_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging); 1201 1202 if (rc) { 1203 netif_warn(efx, drv, efx->net_dev, 1204 "failed to init net dev attributes\n"); 1205 } 1206 } 1207 1208 void efx_siena_fini_mcdi_logging(struct efx_nic *efx) 1209 { 1210 device_remove_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging); 1211 } 1212 #endif 1213 1214 /* A PCI error affecting this device was detected. 1215 * At this point MMIO and DMA may be disabled. 1216 * Stop the software path and request a slot reset. 1217 */ 1218 static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev, 1219 pci_channel_state_t state) 1220 { 1221 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED; 1222 struct efx_nic *efx = pci_get_drvdata(pdev); 1223 1224 if (state == pci_channel_io_perm_failure) 1225 return PCI_ERS_RESULT_DISCONNECT; 1226 1227 rtnl_lock(); 1228 1229 if (efx->state != STATE_DISABLED) { 1230 efx->state = STATE_RECOVERY; 1231 efx->reset_pending = 0; 1232 1233 efx_device_detach_sync(efx); 1234 1235 efx_siena_stop_all(efx); 1236 efx_siena_disable_interrupts(efx); 1237 1238 status = PCI_ERS_RESULT_NEED_RESET; 1239 } else { 1240 /* If the interface is disabled we don't want to do anything 1241 * with it. 1242 */ 1243 status = PCI_ERS_RESULT_RECOVERED; 1244 } 1245 1246 rtnl_unlock(); 1247 1248 pci_disable_device(pdev); 1249 1250 return status; 1251 } 1252 1253 /* Fake a successful reset, which will be performed later in efx_io_resume. */ 1254 static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev) 1255 { 1256 struct efx_nic *efx = pci_get_drvdata(pdev); 1257 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED; 1258 1259 if (pci_enable_device(pdev)) { 1260 netif_err(efx, hw, efx->net_dev, 1261 "Cannot re-enable PCI device after reset.\n"); 1262 status = PCI_ERS_RESULT_DISCONNECT; 1263 } 1264 1265 return status; 1266 } 1267 1268 /* Perform the actual reset and resume I/O operations. */ 1269 static void efx_io_resume(struct pci_dev *pdev) 1270 { 1271 struct efx_nic *efx = pci_get_drvdata(pdev); 1272 int rc; 1273 1274 rtnl_lock(); 1275 1276 if (efx->state == STATE_DISABLED) 1277 goto out; 1278 1279 rc = efx_siena_reset(efx, RESET_TYPE_ALL); 1280 if (rc) { 1281 netif_err(efx, hw, efx->net_dev, 1282 "efx_siena_reset failed after PCI error (%d)\n", rc); 1283 } else { 1284 efx->state = STATE_READY; 1285 netif_dbg(efx, hw, efx->net_dev, 1286 "Done resetting and resuming IO after PCI error.\n"); 1287 } 1288 1289 out: 1290 rtnl_unlock(); 1291 } 1292 1293 /* For simplicity and reliability, we always require a slot reset and try to 1294 * reset the hardware when a pci error affecting the device is detected. 1295 * We leave both the link_reset and mmio_enabled callback unimplemented: 1296 * with our request for slot reset the mmio_enabled callback will never be 1297 * called, and the link_reset callback is not used by AER or EEH mechanisms. 1298 */ 1299 const struct pci_error_handlers efx_siena_err_handlers = { 1300 .error_detected = efx_io_error_detected, 1301 .slot_reset = efx_io_slot_reset, 1302 .resume = efx_io_resume, 1303 }; 1304 1305 /* Determine whether the NIC will be able to handle TX offloads for a given 1306 * encapsulated packet. 1307 */ 1308 static bool efx_can_encap_offloads(struct efx_nic *efx, struct sk_buff *skb) 1309 { 1310 struct gre_base_hdr *greh; 1311 __be16 dst_port; 1312 u8 ipproto; 1313 1314 /* Does the NIC support encap offloads? 1315 * If not, we should never get here, because we shouldn't have 1316 * advertised encap offload feature flags in the first place. 1317 */ 1318 if (WARN_ON_ONCE(!efx->type->udp_tnl_has_port)) 1319 return false; 1320 1321 /* Determine encapsulation protocol in use */ 1322 switch (skb->protocol) { 1323 case htons(ETH_P_IP): 1324 ipproto = ip_hdr(skb)->protocol; 1325 break; 1326 case htons(ETH_P_IPV6): 1327 /* If there are extension headers, this will cause us to 1328 * think we can't offload something that we maybe could have. 1329 */ 1330 ipproto = ipv6_hdr(skb)->nexthdr; 1331 break; 1332 default: 1333 /* Not IP, so can't offload it */ 1334 return false; 1335 } 1336 switch (ipproto) { 1337 case IPPROTO_GRE: 1338 /* We support NVGRE but not IP over GRE or random gretaps. 1339 * Specifically, the NIC will accept GRE as encapsulated if 1340 * the inner protocol is Ethernet, but only handle it 1341 * correctly if the GRE header is 8 bytes long. Moreover, 1342 * it will not update the Checksum or Sequence Number fields 1343 * if they are present. (The Routing Present flag, 1344 * GRE_ROUTING, cannot be set else the header would be more 1345 * than 8 bytes long; so we don't have to worry about it.) 1346 */ 1347 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER) 1348 return false; 1349 if (ntohs(skb->inner_protocol) != ETH_P_TEB) 1350 return false; 1351 if (skb_inner_mac_header(skb) - skb_transport_header(skb) != 8) 1352 return false; 1353 greh = (struct gre_base_hdr *)skb_transport_header(skb); 1354 return !(greh->flags & (GRE_CSUM | GRE_SEQ)); 1355 case IPPROTO_UDP: 1356 /* If the port is registered for a UDP tunnel, we assume the 1357 * packet is for that tunnel, and the NIC will handle it as 1358 * such. If not, the NIC won't know what to do with it. 1359 */ 1360 dst_port = udp_hdr(skb)->dest; 1361 return efx->type->udp_tnl_has_port(efx, dst_port); 1362 default: 1363 return false; 1364 } 1365 } 1366 1367 netdev_features_t efx_siena_features_check(struct sk_buff *skb, 1368 struct net_device *dev, 1369 netdev_features_t features) 1370 { 1371 struct efx_nic *efx = netdev_priv(dev); 1372 1373 if (skb->encapsulation) { 1374 if (features & NETIF_F_GSO_MASK) 1375 /* Hardware can only do TSO with at most 208 bytes 1376 * of headers. 1377 */ 1378 if (skb_inner_transport_offset(skb) > 1379 EFX_TSO2_MAX_HDRLEN) 1380 features &= ~(NETIF_F_GSO_MASK); 1381 if (features & (NETIF_F_GSO_MASK | NETIF_F_CSUM_MASK)) 1382 if (!efx_can_encap_offloads(efx, skb)) 1383 features &= ~(NETIF_F_GSO_MASK | 1384 NETIF_F_CSUM_MASK); 1385 } 1386 return features; 1387 } 1388 1389 int efx_siena_get_phys_port_id(struct net_device *net_dev, 1390 struct netdev_phys_item_id *ppid) 1391 { 1392 struct efx_nic *efx = netdev_priv(net_dev); 1393 1394 if (efx->type->get_phys_port_id) 1395 return efx->type->get_phys_port_id(efx, ppid); 1396 else 1397 return -EOPNOTSUPP; 1398 } 1399 1400 int efx_siena_get_phys_port_name(struct net_device *net_dev, 1401 char *name, size_t len) 1402 { 1403 struct efx_nic *efx = netdev_priv(net_dev); 1404 1405 if (snprintf(name, len, "p%u", efx->port_num) >= len) 1406 return -EINVAL; 1407 return 0; 1408 } 1409