1 // SPDX-License-Identifier: GPL-2.0-only 2 /**************************************************************************** 3 * Driver for Solarflare network controllers and boards 4 * Copyright 2018 Solarflare Communications Inc. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published 8 * by the Free Software Foundation, incorporated herein by reference. 9 */ 10 11 #include "net_driver.h" 12 #include <linux/module.h> 13 #include <linux/filter.h> 14 #include "efx_channels.h" 15 #include "efx.h" 16 #include "efx_common.h" 17 #include "tx_common.h" 18 #include "rx_common.h" 19 #include "nic.h" 20 #include "sriov.h" 21 #include "workarounds.h" 22 23 /* This is the first interrupt mode to try out of: 24 * 0 => MSI-X 25 * 1 => MSI 26 * 2 => legacy 27 */ 28 unsigned int efx_siena_interrupt_mode = EFX_INT_MODE_MSIX; 29 30 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS), 31 * i.e. the number of CPUs among which we may distribute simultaneous 32 * interrupt handling. 33 * 34 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt. 35 * The default (0) means to assign an interrupt to each core. 36 */ 37 unsigned int efx_siena_rss_cpus; 38 39 static unsigned int irq_adapt_low_thresh = 8000; 40 module_param(irq_adapt_low_thresh, uint, 0644); 41 MODULE_PARM_DESC(irq_adapt_low_thresh, 42 "Threshold score for reducing IRQ moderation"); 43 44 static unsigned int irq_adapt_high_thresh = 16000; 45 module_param(irq_adapt_high_thresh, uint, 0644); 46 MODULE_PARM_DESC(irq_adapt_high_thresh, 47 "Threshold score for increasing IRQ moderation"); 48 49 static const struct efx_channel_type efx_default_channel_type; 50 51 /************* 52 * INTERRUPTS 53 *************/ 54 55 static unsigned int count_online_cores(struct efx_nic *efx, bool local_node) 56 { 57 cpumask_var_t filter_mask; 58 unsigned int count; 59 int cpu; 60 61 if (unlikely(!zalloc_cpumask_var(&filter_mask, GFP_KERNEL))) { 62 netif_warn(efx, probe, efx->net_dev, 63 "RSS disabled due to allocation failure\n"); 64 return 1; 65 } 66 67 cpumask_copy(filter_mask, cpu_online_mask); 68 if (local_node) 69 cpumask_and(filter_mask, filter_mask, 70 cpumask_of_pcibus(efx->pci_dev->bus)); 71 72 count = 0; 73 for_each_cpu(cpu, filter_mask) { 74 ++count; 75 cpumask_andnot(filter_mask, filter_mask, topology_sibling_cpumask(cpu)); 76 } 77 78 free_cpumask_var(filter_mask); 79 80 return count; 81 } 82 83 static unsigned int efx_wanted_parallelism(struct efx_nic *efx) 84 { 85 unsigned int count; 86 87 if (efx_siena_rss_cpus) { 88 count = efx_siena_rss_cpus; 89 } else { 90 count = count_online_cores(efx, true); 91 92 /* If no online CPUs in local node, fallback to any online CPUs */ 93 if (count == 0) 94 count = count_online_cores(efx, false); 95 } 96 97 if (count > EFX_MAX_RX_QUEUES) { 98 netif_cond_dbg(efx, probe, efx->net_dev, !efx_siena_rss_cpus, 99 warn, 100 "Reducing number of rx queues from %u to %u.\n", 101 count, EFX_MAX_RX_QUEUES); 102 count = EFX_MAX_RX_QUEUES; 103 } 104 105 /* If RSS is requested for the PF *and* VFs then we can't write RSS 106 * table entries that are inaccessible to VFs 107 */ 108 #ifdef CONFIG_SFC_SIENA_SRIOV 109 if (efx->type->sriov_wanted) { 110 if (efx->type->sriov_wanted(efx) && efx_vf_size(efx) > 1 && 111 count > efx_vf_size(efx)) { 112 netif_warn(efx, probe, efx->net_dev, 113 "Reducing number of RSS channels from %u to %u for " 114 "VF support. Increase vf-msix-limit to use more " 115 "channels on the PF.\n", 116 count, efx_vf_size(efx)); 117 count = efx_vf_size(efx); 118 } 119 } 120 #endif 121 122 return count; 123 } 124 125 static int efx_allocate_msix_channels(struct efx_nic *efx, 126 unsigned int max_channels, 127 unsigned int extra_channels, 128 unsigned int parallelism) 129 { 130 unsigned int n_channels = parallelism; 131 int vec_count; 132 int tx_per_ev; 133 int n_xdp_tx; 134 int n_xdp_ev; 135 136 if (efx_siena_separate_tx_channels) 137 n_channels *= 2; 138 n_channels += extra_channels; 139 140 /* To allow XDP transmit to happen from arbitrary NAPI contexts 141 * we allocate a TX queue per CPU. We share event queues across 142 * multiple tx queues, assuming tx and ev queues are both 143 * maximum size. 144 */ 145 tx_per_ev = EFX_MAX_EVQ_SIZE / EFX_TXQ_MAX_ENT(efx); 146 tx_per_ev = min(tx_per_ev, EFX_MAX_TXQ_PER_CHANNEL); 147 n_xdp_tx = num_possible_cpus(); 148 n_xdp_ev = DIV_ROUND_UP(n_xdp_tx, tx_per_ev); 149 150 vec_count = pci_msix_vec_count(efx->pci_dev); 151 if (vec_count < 0) 152 return vec_count; 153 154 max_channels = min_t(unsigned int, vec_count, max_channels); 155 156 /* Check resources. 157 * We need a channel per event queue, plus a VI per tx queue. 158 * This may be more pessimistic than it needs to be. 159 */ 160 if (n_channels >= max_channels) { 161 efx->xdp_txq_queues_mode = EFX_XDP_TX_QUEUES_BORROWED; 162 netif_warn(efx, drv, efx->net_dev, 163 "Insufficient resources for %d XDP event queues (%d other channels, max %d)\n", 164 n_xdp_ev, n_channels, max_channels); 165 netif_warn(efx, drv, efx->net_dev, 166 "XDP_TX and XDP_REDIRECT might decrease device's performance\n"); 167 } else if (n_channels + n_xdp_tx > efx->max_vis) { 168 efx->xdp_txq_queues_mode = EFX_XDP_TX_QUEUES_BORROWED; 169 netif_warn(efx, drv, efx->net_dev, 170 "Insufficient resources for %d XDP TX queues (%d other channels, max VIs %d)\n", 171 n_xdp_tx, n_channels, efx->max_vis); 172 netif_warn(efx, drv, efx->net_dev, 173 "XDP_TX and XDP_REDIRECT might decrease device's performance\n"); 174 } else if (n_channels + n_xdp_ev > max_channels) { 175 efx->xdp_txq_queues_mode = EFX_XDP_TX_QUEUES_SHARED; 176 netif_warn(efx, drv, efx->net_dev, 177 "Insufficient resources for %d XDP event queues (%d other channels, max %d)\n", 178 n_xdp_ev, n_channels, max_channels); 179 180 n_xdp_ev = max_channels - n_channels; 181 netif_warn(efx, drv, efx->net_dev, 182 "XDP_TX and XDP_REDIRECT will work with reduced performance (%d cpus/tx_queue)\n", 183 DIV_ROUND_UP(n_xdp_tx, tx_per_ev * n_xdp_ev)); 184 } else { 185 efx->xdp_txq_queues_mode = EFX_XDP_TX_QUEUES_DEDICATED; 186 } 187 188 if (efx->xdp_txq_queues_mode != EFX_XDP_TX_QUEUES_BORROWED) { 189 efx->n_xdp_channels = n_xdp_ev; 190 efx->xdp_tx_per_channel = tx_per_ev; 191 efx->xdp_tx_queue_count = n_xdp_tx; 192 n_channels += n_xdp_ev; 193 netif_dbg(efx, drv, efx->net_dev, 194 "Allocating %d TX and %d event queues for XDP\n", 195 n_xdp_ev * tx_per_ev, n_xdp_ev); 196 } else { 197 efx->n_xdp_channels = 0; 198 efx->xdp_tx_per_channel = 0; 199 efx->xdp_tx_queue_count = n_xdp_tx; 200 } 201 202 if (vec_count < n_channels) { 203 netif_err(efx, drv, efx->net_dev, 204 "WARNING: Insufficient MSI-X vectors available (%d < %u).\n", 205 vec_count, n_channels); 206 netif_err(efx, drv, efx->net_dev, 207 "WARNING: Performance may be reduced.\n"); 208 n_channels = vec_count; 209 } 210 211 n_channels = min(n_channels, max_channels); 212 213 efx->n_channels = n_channels; 214 215 /* Ignore XDP tx channels when creating rx channels. */ 216 n_channels -= efx->n_xdp_channels; 217 218 if (efx_siena_separate_tx_channels) { 219 efx->n_tx_channels = 220 min(max(n_channels / 2, 1U), 221 efx->max_tx_channels); 222 efx->tx_channel_offset = 223 n_channels - efx->n_tx_channels; 224 efx->n_rx_channels = 225 max(n_channels - 226 efx->n_tx_channels, 1U); 227 } else { 228 efx->n_tx_channels = min(n_channels, efx->max_tx_channels); 229 efx->tx_channel_offset = 0; 230 efx->n_rx_channels = n_channels; 231 } 232 233 efx->n_rx_channels = min(efx->n_rx_channels, parallelism); 234 efx->n_tx_channels = min(efx->n_tx_channels, parallelism); 235 236 efx->xdp_channel_offset = n_channels; 237 238 netif_dbg(efx, drv, efx->net_dev, 239 "Allocating %u RX channels\n", 240 efx->n_rx_channels); 241 242 return efx->n_channels; 243 } 244 245 /* Probe the number and type of interrupts we are able to obtain, and 246 * the resulting numbers of channels and RX queues. 247 */ 248 int efx_siena_probe_interrupts(struct efx_nic *efx) 249 { 250 unsigned int extra_channels = 0; 251 unsigned int rss_spread; 252 unsigned int i, j; 253 int rc; 254 255 for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) 256 if (efx->extra_channel_type[i]) 257 ++extra_channels; 258 259 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) { 260 unsigned int parallelism = efx_wanted_parallelism(efx); 261 struct msix_entry xentries[EFX_MAX_CHANNELS]; 262 unsigned int n_channels; 263 264 rc = efx_allocate_msix_channels(efx, efx->max_channels, 265 extra_channels, parallelism); 266 if (rc >= 0) { 267 n_channels = rc; 268 for (i = 0; i < n_channels; i++) 269 xentries[i].entry = i; 270 rc = pci_enable_msix_range(efx->pci_dev, xentries, 1, 271 n_channels); 272 } 273 if (rc < 0) { 274 /* Fall back to single channel MSI */ 275 netif_err(efx, drv, efx->net_dev, 276 "could not enable MSI-X\n"); 277 if (efx->type->min_interrupt_mode >= EFX_INT_MODE_MSI) 278 efx->interrupt_mode = EFX_INT_MODE_MSI; 279 else 280 return rc; 281 } else if (rc < n_channels) { 282 netif_err(efx, drv, efx->net_dev, 283 "WARNING: Insufficient MSI-X vectors" 284 " available (%d < %u).\n", rc, n_channels); 285 netif_err(efx, drv, efx->net_dev, 286 "WARNING: Performance may be reduced.\n"); 287 n_channels = rc; 288 } 289 290 if (rc > 0) { 291 for (i = 0; i < efx->n_channels; i++) 292 efx_get_channel(efx, i)->irq = 293 xentries[i].vector; 294 } 295 } 296 297 /* Try single interrupt MSI */ 298 if (efx->interrupt_mode == EFX_INT_MODE_MSI) { 299 efx->n_channels = 1; 300 efx->n_rx_channels = 1; 301 efx->n_tx_channels = 1; 302 efx->tx_channel_offset = 0; 303 efx->n_xdp_channels = 0; 304 efx->xdp_channel_offset = efx->n_channels; 305 efx->xdp_txq_queues_mode = EFX_XDP_TX_QUEUES_BORROWED; 306 rc = pci_enable_msi(efx->pci_dev); 307 if (rc == 0) { 308 efx_get_channel(efx, 0)->irq = efx->pci_dev->irq; 309 } else { 310 netif_err(efx, drv, efx->net_dev, 311 "could not enable MSI\n"); 312 if (efx->type->min_interrupt_mode >= EFX_INT_MODE_LEGACY) 313 efx->interrupt_mode = EFX_INT_MODE_LEGACY; 314 else 315 return rc; 316 } 317 } 318 319 /* Assume legacy interrupts */ 320 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) { 321 efx->n_channels = 1 + (efx_siena_separate_tx_channels ? 1 : 0); 322 efx->n_rx_channels = 1; 323 efx->n_tx_channels = 1; 324 efx->tx_channel_offset = efx_siena_separate_tx_channels ? 1 : 0; 325 efx->n_xdp_channels = 0; 326 efx->xdp_channel_offset = efx->n_channels; 327 efx->xdp_txq_queues_mode = EFX_XDP_TX_QUEUES_BORROWED; 328 efx->legacy_irq = efx->pci_dev->irq; 329 } 330 331 /* Assign extra channels if possible, before XDP channels */ 332 efx->n_extra_tx_channels = 0; 333 j = efx->xdp_channel_offset; 334 for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) { 335 if (!efx->extra_channel_type[i]) 336 continue; 337 if (j <= efx->tx_channel_offset + efx->n_tx_channels) { 338 efx->extra_channel_type[i]->handle_no_channel(efx); 339 } else { 340 --j; 341 efx_get_channel(efx, j)->type = 342 efx->extra_channel_type[i]; 343 if (efx_channel_has_tx_queues(efx_get_channel(efx, j))) 344 efx->n_extra_tx_channels++; 345 } 346 } 347 348 rss_spread = efx->n_rx_channels; 349 /* RSS might be usable on VFs even if it is disabled on the PF */ 350 #ifdef CONFIG_SFC_SIENA_SRIOV 351 if (efx->type->sriov_wanted) { 352 efx->rss_spread = ((rss_spread > 1 || 353 !efx->type->sriov_wanted(efx)) ? 354 rss_spread : efx_vf_size(efx)); 355 return 0; 356 } 357 #endif 358 efx->rss_spread = rss_spread; 359 360 return 0; 361 } 362 363 #if defined(CONFIG_SMP) 364 void efx_siena_set_interrupt_affinity(struct efx_nic *efx) 365 { 366 const struct cpumask *numa_mask = cpumask_of_pcibus(efx->pci_dev->bus); 367 struct efx_channel *channel; 368 unsigned int cpu; 369 370 /* If no online CPUs in local node, fallback to any online CPU */ 371 if (cpumask_first_and(cpu_online_mask, numa_mask) >= nr_cpu_ids) 372 numa_mask = cpu_online_mask; 373 374 cpu = -1; 375 efx_for_each_channel(channel, efx) { 376 cpu = cpumask_next_and(cpu, cpu_online_mask, numa_mask); 377 if (cpu >= nr_cpu_ids) 378 cpu = cpumask_first_and(cpu_online_mask, numa_mask); 379 irq_set_affinity_hint(channel->irq, cpumask_of(cpu)); 380 } 381 } 382 383 void efx_siena_clear_interrupt_affinity(struct efx_nic *efx) 384 { 385 struct efx_channel *channel; 386 387 efx_for_each_channel(channel, efx) 388 irq_set_affinity_hint(channel->irq, NULL); 389 } 390 #else 391 void 392 efx_siena_set_interrupt_affinity(struct efx_nic *efx __always_unused) 393 { 394 } 395 396 void 397 efx_siena_clear_interrupt_affinity(struct efx_nic *efx __always_unused) 398 { 399 } 400 #endif /* CONFIG_SMP */ 401 402 void efx_siena_remove_interrupts(struct efx_nic *efx) 403 { 404 struct efx_channel *channel; 405 406 /* Remove MSI/MSI-X interrupts */ 407 efx_for_each_channel(channel, efx) 408 channel->irq = 0; 409 pci_disable_msi(efx->pci_dev); 410 pci_disable_msix(efx->pci_dev); 411 412 /* Remove legacy interrupt */ 413 efx->legacy_irq = 0; 414 } 415 416 /*************** 417 * EVENT QUEUES 418 ***************/ 419 420 /* Create event queue 421 * Event queue memory allocations are done only once. If the channel 422 * is reset, the memory buffer will be reused; this guards against 423 * errors during channel reset and also simplifies interrupt handling. 424 */ 425 static int efx_probe_eventq(struct efx_channel *channel) 426 { 427 struct efx_nic *efx = channel->efx; 428 unsigned long entries; 429 430 netif_dbg(efx, probe, efx->net_dev, 431 "chan %d create event queue\n", channel->channel); 432 433 /* Build an event queue with room for one event per tx and rx buffer, 434 * plus some extra for link state events and MCDI completions. 435 */ 436 entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128); 437 EFX_WARN_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE); 438 channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1; 439 440 return efx_nic_probe_eventq(channel); 441 } 442 443 /* Prepare channel's event queue */ 444 static int efx_init_eventq(struct efx_channel *channel) 445 { 446 struct efx_nic *efx = channel->efx; 447 int rc; 448 449 EFX_WARN_ON_PARANOID(channel->eventq_init); 450 451 netif_dbg(efx, drv, efx->net_dev, 452 "chan %d init event queue\n", channel->channel); 453 454 rc = efx_nic_init_eventq(channel); 455 if (rc == 0) { 456 efx->type->push_irq_moderation(channel); 457 channel->eventq_read_ptr = 0; 458 channel->eventq_init = true; 459 } 460 return rc; 461 } 462 463 /* Enable event queue processing and NAPI */ 464 void efx_siena_start_eventq(struct efx_channel *channel) 465 { 466 netif_dbg(channel->efx, ifup, channel->efx->net_dev, 467 "chan %d start event queue\n", channel->channel); 468 469 /* Make sure the NAPI handler sees the enabled flag set */ 470 channel->enabled = true; 471 smp_wmb(); 472 473 napi_enable(&channel->napi_str); 474 efx_nic_eventq_read_ack(channel); 475 } 476 477 /* Disable event queue processing and NAPI */ 478 void efx_siena_stop_eventq(struct efx_channel *channel) 479 { 480 if (!channel->enabled) 481 return; 482 483 napi_disable(&channel->napi_str); 484 channel->enabled = false; 485 } 486 487 static void efx_fini_eventq(struct efx_channel *channel) 488 { 489 if (!channel->eventq_init) 490 return; 491 492 netif_dbg(channel->efx, drv, channel->efx->net_dev, 493 "chan %d fini event queue\n", channel->channel); 494 495 efx_nic_fini_eventq(channel); 496 channel->eventq_init = false; 497 } 498 499 static void efx_remove_eventq(struct efx_channel *channel) 500 { 501 netif_dbg(channel->efx, drv, channel->efx->net_dev, 502 "chan %d remove event queue\n", channel->channel); 503 504 efx_nic_remove_eventq(channel); 505 } 506 507 /************************************************************************** 508 * 509 * Channel handling 510 * 511 *************************************************************************/ 512 513 #ifdef CONFIG_RFS_ACCEL 514 static void efx_filter_rfs_expire(struct work_struct *data) 515 { 516 struct delayed_work *dwork = to_delayed_work(data); 517 struct efx_channel *channel; 518 unsigned int time, quota; 519 520 channel = container_of(dwork, struct efx_channel, filter_work); 521 time = jiffies - channel->rfs_last_expiry; 522 quota = channel->rfs_filter_count * time / (30 * HZ); 523 if (quota >= 20 && __efx_siena_filter_rfs_expire(channel, 524 min(channel->rfs_filter_count, quota))) 525 channel->rfs_last_expiry += time; 526 /* Ensure we do more work eventually even if NAPI poll is not happening */ 527 schedule_delayed_work(dwork, 30 * HZ); 528 } 529 #endif 530 531 /* Allocate and initialise a channel structure. */ 532 static struct efx_channel *efx_alloc_channel(struct efx_nic *efx, int i) 533 { 534 struct efx_rx_queue *rx_queue; 535 struct efx_tx_queue *tx_queue; 536 struct efx_channel *channel; 537 int j; 538 539 channel = kzalloc(sizeof(*channel), GFP_KERNEL); 540 if (!channel) 541 return NULL; 542 543 channel->efx = efx; 544 channel->channel = i; 545 channel->type = &efx_default_channel_type; 546 547 for (j = 0; j < EFX_MAX_TXQ_PER_CHANNEL; j++) { 548 tx_queue = &channel->tx_queue[j]; 549 tx_queue->efx = efx; 550 tx_queue->queue = -1; 551 tx_queue->label = j; 552 tx_queue->channel = channel; 553 } 554 555 #ifdef CONFIG_RFS_ACCEL 556 INIT_DELAYED_WORK(&channel->filter_work, efx_filter_rfs_expire); 557 #endif 558 559 rx_queue = &channel->rx_queue; 560 rx_queue->efx = efx; 561 timer_setup(&rx_queue->slow_fill, efx_siena_rx_slow_fill, 0); 562 563 return channel; 564 } 565 566 int efx_siena_init_channels(struct efx_nic *efx) 567 { 568 unsigned int i; 569 570 for (i = 0; i < EFX_MAX_CHANNELS; i++) { 571 efx->channel[i] = efx_alloc_channel(efx, i); 572 if (!efx->channel[i]) 573 return -ENOMEM; 574 efx->msi_context[i].efx = efx; 575 efx->msi_context[i].index = i; 576 } 577 578 /* Higher numbered interrupt modes are less capable! */ 579 efx->interrupt_mode = min(efx->type->min_interrupt_mode, 580 efx_siena_interrupt_mode); 581 582 efx->max_channels = EFX_MAX_CHANNELS; 583 efx->max_tx_channels = EFX_MAX_CHANNELS; 584 585 return 0; 586 } 587 588 void efx_siena_fini_channels(struct efx_nic *efx) 589 { 590 unsigned int i; 591 592 for (i = 0; i < EFX_MAX_CHANNELS; i++) 593 if (efx->channel[i]) { 594 kfree(efx->channel[i]); 595 efx->channel[i] = NULL; 596 } 597 } 598 599 /* Allocate and initialise a channel structure, copying parameters 600 * (but not resources) from an old channel structure. 601 */ 602 static 603 struct efx_channel *efx_copy_channel(const struct efx_channel *old_channel) 604 { 605 struct efx_rx_queue *rx_queue; 606 struct efx_tx_queue *tx_queue; 607 struct efx_channel *channel; 608 int j; 609 610 channel = kmalloc(sizeof(*channel), GFP_KERNEL); 611 if (!channel) 612 return NULL; 613 614 *channel = *old_channel; 615 616 channel->napi_dev = NULL; 617 INIT_HLIST_NODE(&channel->napi_str.napi_hash_node); 618 channel->napi_str.napi_id = 0; 619 channel->napi_str.state = 0; 620 memset(&channel->eventq, 0, sizeof(channel->eventq)); 621 622 for (j = 0; j < EFX_MAX_TXQ_PER_CHANNEL; j++) { 623 tx_queue = &channel->tx_queue[j]; 624 if (tx_queue->channel) 625 tx_queue->channel = channel; 626 tx_queue->buffer = NULL; 627 tx_queue->cb_page = NULL; 628 memset(&tx_queue->txd, 0, sizeof(tx_queue->txd)); 629 } 630 631 rx_queue = &channel->rx_queue; 632 rx_queue->buffer = NULL; 633 memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd)); 634 timer_setup(&rx_queue->slow_fill, efx_siena_rx_slow_fill, 0); 635 #ifdef CONFIG_RFS_ACCEL 636 INIT_DELAYED_WORK(&channel->filter_work, efx_filter_rfs_expire); 637 #endif 638 639 return channel; 640 } 641 642 static int efx_probe_channel(struct efx_channel *channel) 643 { 644 struct efx_tx_queue *tx_queue; 645 struct efx_rx_queue *rx_queue; 646 int rc; 647 648 netif_dbg(channel->efx, probe, channel->efx->net_dev, 649 "creating channel %d\n", channel->channel); 650 651 rc = channel->type->pre_probe(channel); 652 if (rc) 653 goto fail; 654 655 rc = efx_probe_eventq(channel); 656 if (rc) 657 goto fail; 658 659 efx_for_each_channel_tx_queue(tx_queue, channel) { 660 rc = efx_siena_probe_tx_queue(tx_queue); 661 if (rc) 662 goto fail; 663 } 664 665 efx_for_each_channel_rx_queue(rx_queue, channel) { 666 rc = efx_siena_probe_rx_queue(rx_queue); 667 if (rc) 668 goto fail; 669 } 670 671 channel->rx_list = NULL; 672 673 return 0; 674 675 fail: 676 efx_siena_remove_channel(channel); 677 return rc; 678 } 679 680 static void efx_get_channel_name(struct efx_channel *channel, char *buf, 681 size_t len) 682 { 683 struct efx_nic *efx = channel->efx; 684 const char *type; 685 int number; 686 687 number = channel->channel; 688 689 if (number >= efx->xdp_channel_offset && 690 !WARN_ON_ONCE(!efx->n_xdp_channels)) { 691 type = "-xdp"; 692 number -= efx->xdp_channel_offset; 693 } else if (efx->tx_channel_offset == 0) { 694 type = ""; 695 } else if (number < efx->tx_channel_offset) { 696 type = "-rx"; 697 } else { 698 type = "-tx"; 699 number -= efx->tx_channel_offset; 700 } 701 snprintf(buf, len, "%s%s-%d", efx->name, type, number); 702 } 703 704 void efx_siena_set_channel_names(struct efx_nic *efx) 705 { 706 struct efx_channel *channel; 707 708 efx_for_each_channel(channel, efx) 709 channel->type->get_name(channel, 710 efx->msi_context[channel->channel].name, 711 sizeof(efx->msi_context[0].name)); 712 } 713 714 int efx_siena_probe_channels(struct efx_nic *efx) 715 { 716 struct efx_channel *channel; 717 int rc; 718 719 /* Restart special buffer allocation */ 720 efx->next_buffer_table = 0; 721 722 /* Probe channels in reverse, so that any 'extra' channels 723 * use the start of the buffer table. This allows the traffic 724 * channels to be resized without moving them or wasting the 725 * entries before them. 726 */ 727 efx_for_each_channel_rev(channel, efx) { 728 rc = efx_probe_channel(channel); 729 if (rc) { 730 netif_err(efx, probe, efx->net_dev, 731 "failed to create channel %d\n", 732 channel->channel); 733 goto fail; 734 } 735 } 736 efx_siena_set_channel_names(efx); 737 738 return 0; 739 740 fail: 741 efx_siena_remove_channels(efx); 742 return rc; 743 } 744 745 void efx_siena_remove_channel(struct efx_channel *channel) 746 { 747 struct efx_tx_queue *tx_queue; 748 struct efx_rx_queue *rx_queue; 749 750 netif_dbg(channel->efx, drv, channel->efx->net_dev, 751 "destroy chan %d\n", channel->channel); 752 753 efx_for_each_channel_rx_queue(rx_queue, channel) 754 efx_siena_remove_rx_queue(rx_queue); 755 efx_for_each_channel_tx_queue(tx_queue, channel) 756 efx_siena_remove_tx_queue(tx_queue); 757 efx_remove_eventq(channel); 758 channel->type->post_remove(channel); 759 } 760 761 void efx_siena_remove_channels(struct efx_nic *efx) 762 { 763 struct efx_channel *channel; 764 765 efx_for_each_channel(channel, efx) 766 efx_siena_remove_channel(channel); 767 768 kfree(efx->xdp_tx_queues); 769 } 770 771 static int efx_set_xdp_tx_queue(struct efx_nic *efx, int xdp_queue_number, 772 struct efx_tx_queue *tx_queue) 773 { 774 if (xdp_queue_number >= efx->xdp_tx_queue_count) 775 return -EINVAL; 776 777 netif_dbg(efx, drv, efx->net_dev, 778 "Channel %u TXQ %u is XDP %u, HW %u\n", 779 tx_queue->channel->channel, tx_queue->label, 780 xdp_queue_number, tx_queue->queue); 781 efx->xdp_tx_queues[xdp_queue_number] = tx_queue; 782 return 0; 783 } 784 785 static void efx_set_xdp_channels(struct efx_nic *efx) 786 { 787 struct efx_tx_queue *tx_queue; 788 struct efx_channel *channel; 789 unsigned int next_queue = 0; 790 int xdp_queue_number = 0; 791 int rc; 792 793 /* We need to mark which channels really have RX and TX 794 * queues, and adjust the TX queue numbers if we have separate 795 * RX-only and TX-only channels. 796 */ 797 efx_for_each_channel(channel, efx) { 798 if (channel->channel < efx->tx_channel_offset) 799 continue; 800 801 if (efx_channel_is_xdp_tx(channel)) { 802 efx_for_each_channel_tx_queue(tx_queue, channel) { 803 tx_queue->queue = next_queue++; 804 rc = efx_set_xdp_tx_queue(efx, xdp_queue_number, 805 tx_queue); 806 if (rc == 0) 807 xdp_queue_number++; 808 } 809 } else { 810 efx_for_each_channel_tx_queue(tx_queue, channel) { 811 tx_queue->queue = next_queue++; 812 netif_dbg(efx, drv, efx->net_dev, 813 "Channel %u TXQ %u is HW %u\n", 814 channel->channel, tx_queue->label, 815 tx_queue->queue); 816 } 817 818 /* If XDP is borrowing queues from net stack, it must 819 * use the queue with no csum offload, which is the 820 * first one of the channel 821 * (note: tx_queue_by_type is not initialized yet) 822 */ 823 if (efx->xdp_txq_queues_mode == 824 EFX_XDP_TX_QUEUES_BORROWED) { 825 tx_queue = &channel->tx_queue[0]; 826 rc = efx_set_xdp_tx_queue(efx, xdp_queue_number, 827 tx_queue); 828 if (rc == 0) 829 xdp_queue_number++; 830 } 831 } 832 } 833 WARN_ON(efx->xdp_txq_queues_mode == EFX_XDP_TX_QUEUES_DEDICATED && 834 xdp_queue_number != efx->xdp_tx_queue_count); 835 WARN_ON(efx->xdp_txq_queues_mode != EFX_XDP_TX_QUEUES_DEDICATED && 836 xdp_queue_number > efx->xdp_tx_queue_count); 837 838 /* If we have more CPUs than assigned XDP TX queues, assign the already 839 * existing queues to the exceeding CPUs 840 */ 841 next_queue = 0; 842 while (xdp_queue_number < efx->xdp_tx_queue_count) { 843 tx_queue = efx->xdp_tx_queues[next_queue++]; 844 rc = efx_set_xdp_tx_queue(efx, xdp_queue_number, tx_queue); 845 if (rc == 0) 846 xdp_queue_number++; 847 } 848 } 849 850 static int efx_soft_enable_interrupts(struct efx_nic *efx); 851 static void efx_soft_disable_interrupts(struct efx_nic *efx); 852 static void efx_init_napi_channel(struct efx_channel *channel); 853 static void efx_fini_napi_channel(struct efx_channel *channel); 854 855 int efx_siena_realloc_channels(struct efx_nic *efx, u32 rxq_entries, 856 u32 txq_entries) 857 { 858 struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel; 859 unsigned int i, next_buffer_table = 0; 860 u32 old_rxq_entries, old_txq_entries; 861 int rc, rc2; 862 863 rc = efx_check_disabled(efx); 864 if (rc) 865 return rc; 866 867 /* Not all channels should be reallocated. We must avoid 868 * reallocating their buffer table entries. 869 */ 870 efx_for_each_channel(channel, efx) { 871 struct efx_rx_queue *rx_queue; 872 struct efx_tx_queue *tx_queue; 873 874 if (channel->type->copy) 875 continue; 876 next_buffer_table = max(next_buffer_table, 877 channel->eventq.index + 878 channel->eventq.entries); 879 efx_for_each_channel_rx_queue(rx_queue, channel) 880 next_buffer_table = max(next_buffer_table, 881 rx_queue->rxd.index + 882 rx_queue->rxd.entries); 883 efx_for_each_channel_tx_queue(tx_queue, channel) 884 next_buffer_table = max(next_buffer_table, 885 tx_queue->txd.index + 886 tx_queue->txd.entries); 887 } 888 889 efx_device_detach_sync(efx); 890 efx_siena_stop_all(efx); 891 efx_soft_disable_interrupts(efx); 892 893 /* Clone channels (where possible) */ 894 memset(other_channel, 0, sizeof(other_channel)); 895 for (i = 0; i < efx->n_channels; i++) { 896 channel = efx->channel[i]; 897 if (channel->type->copy) 898 channel = channel->type->copy(channel); 899 if (!channel) { 900 rc = -ENOMEM; 901 goto out; 902 } 903 other_channel[i] = channel; 904 } 905 906 /* Swap entry counts and channel pointers */ 907 old_rxq_entries = efx->rxq_entries; 908 old_txq_entries = efx->txq_entries; 909 efx->rxq_entries = rxq_entries; 910 efx->txq_entries = txq_entries; 911 for (i = 0; i < efx->n_channels; i++) 912 swap(efx->channel[i], other_channel[i]); 913 914 /* Restart buffer table allocation */ 915 efx->next_buffer_table = next_buffer_table; 916 917 for (i = 0; i < efx->n_channels; i++) { 918 channel = efx->channel[i]; 919 if (!channel->type->copy) 920 continue; 921 rc = efx_probe_channel(channel); 922 if (rc) 923 goto rollback; 924 efx_init_napi_channel(efx->channel[i]); 925 } 926 927 efx_set_xdp_channels(efx); 928 out: 929 /* Destroy unused channel structures */ 930 for (i = 0; i < efx->n_channels; i++) { 931 channel = other_channel[i]; 932 if (channel && channel->type->copy) { 933 efx_fini_napi_channel(channel); 934 efx_siena_remove_channel(channel); 935 kfree(channel); 936 } 937 } 938 939 rc2 = efx_soft_enable_interrupts(efx); 940 if (rc2) { 941 rc = rc ? rc : rc2; 942 netif_err(efx, drv, efx->net_dev, 943 "unable to restart interrupts on channel reallocation\n"); 944 efx_siena_schedule_reset(efx, RESET_TYPE_DISABLE); 945 } else { 946 efx_siena_start_all(efx); 947 efx_device_attach_if_not_resetting(efx); 948 } 949 return rc; 950 951 rollback: 952 /* Swap back */ 953 efx->rxq_entries = old_rxq_entries; 954 efx->txq_entries = old_txq_entries; 955 for (i = 0; i < efx->n_channels; i++) 956 swap(efx->channel[i], other_channel[i]); 957 goto out; 958 } 959 960 int efx_siena_set_channels(struct efx_nic *efx) 961 { 962 struct efx_channel *channel; 963 int rc; 964 965 if (efx->xdp_tx_queue_count) { 966 EFX_WARN_ON_PARANOID(efx->xdp_tx_queues); 967 968 /* Allocate array for XDP TX queue lookup. */ 969 efx->xdp_tx_queues = kcalloc(efx->xdp_tx_queue_count, 970 sizeof(*efx->xdp_tx_queues), 971 GFP_KERNEL); 972 if (!efx->xdp_tx_queues) 973 return -ENOMEM; 974 } 975 976 efx_for_each_channel(channel, efx) { 977 if (channel->channel < efx->n_rx_channels) 978 channel->rx_queue.core_index = channel->channel; 979 else 980 channel->rx_queue.core_index = -1; 981 } 982 983 efx_set_xdp_channels(efx); 984 985 rc = netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels); 986 if (rc) 987 return rc; 988 return netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels); 989 } 990 991 static bool efx_default_channel_want_txqs(struct efx_channel *channel) 992 { 993 return channel->channel - channel->efx->tx_channel_offset < 994 channel->efx->n_tx_channels; 995 } 996 997 /************* 998 * START/STOP 999 *************/ 1000 1001 static int efx_soft_enable_interrupts(struct efx_nic *efx) 1002 { 1003 struct efx_channel *channel, *end_channel; 1004 int rc; 1005 1006 BUG_ON(efx->state == STATE_DISABLED); 1007 1008 efx->irq_soft_enabled = true; 1009 smp_wmb(); 1010 1011 efx_for_each_channel(channel, efx) { 1012 if (!channel->type->keep_eventq) { 1013 rc = efx_init_eventq(channel); 1014 if (rc) 1015 goto fail; 1016 } 1017 efx_siena_start_eventq(channel); 1018 } 1019 1020 efx_siena_mcdi_mode_event(efx); 1021 1022 return 0; 1023 fail: 1024 end_channel = channel; 1025 efx_for_each_channel(channel, efx) { 1026 if (channel == end_channel) 1027 break; 1028 efx_siena_stop_eventq(channel); 1029 if (!channel->type->keep_eventq) 1030 efx_fini_eventq(channel); 1031 } 1032 1033 return rc; 1034 } 1035 1036 static void efx_soft_disable_interrupts(struct efx_nic *efx) 1037 { 1038 struct efx_channel *channel; 1039 1040 if (efx->state == STATE_DISABLED) 1041 return; 1042 1043 efx_siena_mcdi_mode_poll(efx); 1044 1045 efx->irq_soft_enabled = false; 1046 smp_wmb(); 1047 1048 if (efx->legacy_irq) 1049 synchronize_irq(efx->legacy_irq); 1050 1051 efx_for_each_channel(channel, efx) { 1052 if (channel->irq) 1053 synchronize_irq(channel->irq); 1054 1055 efx_siena_stop_eventq(channel); 1056 if (!channel->type->keep_eventq) 1057 efx_fini_eventq(channel); 1058 } 1059 1060 /* Flush the asynchronous MCDI request queue */ 1061 efx_siena_mcdi_flush_async(efx); 1062 } 1063 1064 int efx_siena_enable_interrupts(struct efx_nic *efx) 1065 { 1066 struct efx_channel *channel, *end_channel; 1067 int rc; 1068 1069 /* TODO: Is this really a bug? */ 1070 BUG_ON(efx->state == STATE_DISABLED); 1071 1072 if (efx->eeh_disabled_legacy_irq) { 1073 enable_irq(efx->legacy_irq); 1074 efx->eeh_disabled_legacy_irq = false; 1075 } 1076 1077 efx->type->irq_enable_master(efx); 1078 1079 efx_for_each_channel(channel, efx) { 1080 if (channel->type->keep_eventq) { 1081 rc = efx_init_eventq(channel); 1082 if (rc) 1083 goto fail; 1084 } 1085 } 1086 1087 rc = efx_soft_enable_interrupts(efx); 1088 if (rc) 1089 goto fail; 1090 1091 return 0; 1092 1093 fail: 1094 end_channel = channel; 1095 efx_for_each_channel(channel, efx) { 1096 if (channel == end_channel) 1097 break; 1098 if (channel->type->keep_eventq) 1099 efx_fini_eventq(channel); 1100 } 1101 1102 efx->type->irq_disable_non_ev(efx); 1103 1104 return rc; 1105 } 1106 1107 void efx_siena_disable_interrupts(struct efx_nic *efx) 1108 { 1109 struct efx_channel *channel; 1110 1111 efx_soft_disable_interrupts(efx); 1112 1113 efx_for_each_channel(channel, efx) { 1114 if (channel->type->keep_eventq) 1115 efx_fini_eventq(channel); 1116 } 1117 1118 efx->type->irq_disable_non_ev(efx); 1119 } 1120 1121 void efx_siena_start_channels(struct efx_nic *efx) 1122 { 1123 struct efx_tx_queue *tx_queue; 1124 struct efx_rx_queue *rx_queue; 1125 struct efx_channel *channel; 1126 1127 efx_for_each_channel_rev(channel, efx) { 1128 efx_for_each_channel_tx_queue(tx_queue, channel) { 1129 efx_siena_init_tx_queue(tx_queue); 1130 atomic_inc(&efx->active_queues); 1131 } 1132 1133 efx_for_each_channel_rx_queue(rx_queue, channel) { 1134 efx_siena_init_rx_queue(rx_queue); 1135 atomic_inc(&efx->active_queues); 1136 efx_siena_stop_eventq(channel); 1137 efx_siena_fast_push_rx_descriptors(rx_queue, false); 1138 efx_siena_start_eventq(channel); 1139 } 1140 1141 WARN_ON(channel->rx_pkt_n_frags); 1142 } 1143 } 1144 1145 void efx_siena_stop_channels(struct efx_nic *efx) 1146 { 1147 struct efx_tx_queue *tx_queue; 1148 struct efx_rx_queue *rx_queue; 1149 struct efx_channel *channel; 1150 int rc = 0; 1151 1152 /* Stop RX refill */ 1153 efx_for_each_channel(channel, efx) { 1154 efx_for_each_channel_rx_queue(rx_queue, channel) 1155 rx_queue->refill_enabled = false; 1156 } 1157 1158 efx_for_each_channel(channel, efx) { 1159 /* RX packet processing is pipelined, so wait for the 1160 * NAPI handler to complete. At least event queue 0 1161 * might be kept active by non-data events, so don't 1162 * use napi_synchronize() but actually disable NAPI 1163 * temporarily. 1164 */ 1165 if (efx_channel_has_rx_queue(channel)) { 1166 efx_siena_stop_eventq(channel); 1167 efx_siena_start_eventq(channel); 1168 } 1169 } 1170 1171 if (efx->type->fini_dmaq) 1172 rc = efx->type->fini_dmaq(efx); 1173 1174 if (rc) { 1175 netif_err(efx, drv, efx->net_dev, "failed to flush queues\n"); 1176 } else { 1177 netif_dbg(efx, drv, efx->net_dev, 1178 "successfully flushed all queues\n"); 1179 } 1180 1181 efx_for_each_channel(channel, efx) { 1182 efx_for_each_channel_rx_queue(rx_queue, channel) 1183 efx_siena_fini_rx_queue(rx_queue); 1184 efx_for_each_channel_tx_queue(tx_queue, channel) 1185 efx_siena_fini_tx_queue(tx_queue); 1186 } 1187 } 1188 1189 /************************************************************************** 1190 * 1191 * NAPI interface 1192 * 1193 *************************************************************************/ 1194 1195 /* Process channel's event queue 1196 * 1197 * This function is responsible for processing the event queue of a 1198 * single channel. The caller must guarantee that this function will 1199 * never be concurrently called more than once on the same channel, 1200 * though different channels may be being processed concurrently. 1201 */ 1202 static int efx_process_channel(struct efx_channel *channel, int budget) 1203 { 1204 struct efx_tx_queue *tx_queue; 1205 struct list_head rx_list; 1206 int spent; 1207 1208 if (unlikely(!channel->enabled)) 1209 return 0; 1210 1211 /* Prepare the batch receive list */ 1212 EFX_WARN_ON_PARANOID(channel->rx_list != NULL); 1213 INIT_LIST_HEAD(&rx_list); 1214 channel->rx_list = &rx_list; 1215 1216 efx_for_each_channel_tx_queue(tx_queue, channel) { 1217 tx_queue->pkts_compl = 0; 1218 tx_queue->bytes_compl = 0; 1219 } 1220 1221 spent = efx_nic_process_eventq(channel, budget); 1222 if (spent && efx_channel_has_rx_queue(channel)) { 1223 struct efx_rx_queue *rx_queue = 1224 efx_channel_get_rx_queue(channel); 1225 1226 efx_rx_flush_packet(channel); 1227 efx_siena_fast_push_rx_descriptors(rx_queue, true); 1228 } 1229 1230 /* Update BQL */ 1231 efx_for_each_channel_tx_queue(tx_queue, channel) { 1232 if (tx_queue->bytes_compl) { 1233 netdev_tx_completed_queue(tx_queue->core_txq, 1234 tx_queue->pkts_compl, 1235 tx_queue->bytes_compl); 1236 } 1237 } 1238 1239 /* Receive any packets we queued up */ 1240 netif_receive_skb_list(channel->rx_list); 1241 channel->rx_list = NULL; 1242 1243 return spent; 1244 } 1245 1246 static void efx_update_irq_mod(struct efx_nic *efx, struct efx_channel *channel) 1247 { 1248 int step = efx->irq_mod_step_us; 1249 1250 if (channel->irq_mod_score < irq_adapt_low_thresh) { 1251 if (channel->irq_moderation_us > step) { 1252 channel->irq_moderation_us -= step; 1253 efx->type->push_irq_moderation(channel); 1254 } 1255 } else if (channel->irq_mod_score > irq_adapt_high_thresh) { 1256 if (channel->irq_moderation_us < 1257 efx->irq_rx_moderation_us) { 1258 channel->irq_moderation_us += step; 1259 efx->type->push_irq_moderation(channel); 1260 } 1261 } 1262 1263 channel->irq_count = 0; 1264 channel->irq_mod_score = 0; 1265 } 1266 1267 /* NAPI poll handler 1268 * 1269 * NAPI guarantees serialisation of polls of the same device, which 1270 * provides the guarantee required by efx_process_channel(). 1271 */ 1272 static int efx_poll(struct napi_struct *napi, int budget) 1273 { 1274 struct efx_channel *channel = 1275 container_of(napi, struct efx_channel, napi_str); 1276 struct efx_nic *efx = channel->efx; 1277 #ifdef CONFIG_RFS_ACCEL 1278 unsigned int time; 1279 #endif 1280 int spent; 1281 1282 netif_vdbg(efx, intr, efx->net_dev, 1283 "channel %d NAPI poll executing on CPU %d\n", 1284 channel->channel, raw_smp_processor_id()); 1285 1286 spent = efx_process_channel(channel, budget); 1287 1288 xdp_do_flush(); 1289 1290 if (spent < budget) { 1291 if (efx_channel_has_rx_queue(channel) && 1292 efx->irq_rx_adaptive && 1293 unlikely(++channel->irq_count == 1000)) { 1294 efx_update_irq_mod(efx, channel); 1295 } 1296 1297 #ifdef CONFIG_RFS_ACCEL 1298 /* Perhaps expire some ARFS filters */ 1299 time = jiffies - channel->rfs_last_expiry; 1300 /* Would our quota be >= 20? */ 1301 if (channel->rfs_filter_count * time >= 600 * HZ) 1302 mod_delayed_work(system_wq, &channel->filter_work, 0); 1303 #endif 1304 1305 /* There is no race here; although napi_disable() will 1306 * only wait for napi_complete(), this isn't a problem 1307 * since efx_nic_eventq_read_ack() will have no effect if 1308 * interrupts have already been disabled. 1309 */ 1310 if (napi_complete_done(napi, spent)) 1311 efx_nic_eventq_read_ack(channel); 1312 } 1313 1314 return spent; 1315 } 1316 1317 static void efx_init_napi_channel(struct efx_channel *channel) 1318 { 1319 struct efx_nic *efx = channel->efx; 1320 1321 channel->napi_dev = efx->net_dev; 1322 netif_napi_add(channel->napi_dev, &channel->napi_str, efx_poll); 1323 } 1324 1325 void efx_siena_init_napi(struct efx_nic *efx) 1326 { 1327 struct efx_channel *channel; 1328 1329 efx_for_each_channel(channel, efx) 1330 efx_init_napi_channel(channel); 1331 } 1332 1333 static void efx_fini_napi_channel(struct efx_channel *channel) 1334 { 1335 if (channel->napi_dev) 1336 netif_napi_del(&channel->napi_str); 1337 1338 channel->napi_dev = NULL; 1339 } 1340 1341 void efx_siena_fini_napi(struct efx_nic *efx) 1342 { 1343 struct efx_channel *channel; 1344 1345 efx_for_each_channel(channel, efx) 1346 efx_fini_napi_channel(channel); 1347 } 1348 1349 /*************** 1350 * Housekeeping 1351 ***************/ 1352 1353 static int efx_channel_dummy_op_int(struct efx_channel *channel) 1354 { 1355 return 0; 1356 } 1357 1358 void efx_siena_channel_dummy_op_void(struct efx_channel *channel) 1359 { 1360 } 1361 1362 static const struct efx_channel_type efx_default_channel_type = { 1363 .pre_probe = efx_channel_dummy_op_int, 1364 .post_remove = efx_siena_channel_dummy_op_void, 1365 .get_name = efx_get_channel_name, 1366 .copy = efx_copy_channel, 1367 .want_txqs = efx_default_channel_want_txqs, 1368 .keep_eventq = false, 1369 .want_pio = true, 1370 }; 1371