1 // SPDX-License-Identifier: GPL-2.0-only 2 /**************************************************************************** 3 * Driver for Solarflare network controllers and boards 4 * Copyright 2005-2006 Fen Systems Ltd. 5 * Copyright 2005-2013 Solarflare Communications Inc. 6 */ 7 8 #include <linux/filter.h> 9 #include <linux/module.h> 10 #include <linux/pci.h> 11 #include <linux/netdevice.h> 12 #include <linux/etherdevice.h> 13 #include <linux/delay.h> 14 #include <linux/notifier.h> 15 #include <linux/ip.h> 16 #include <linux/tcp.h> 17 #include <linux/in.h> 18 #include <linux/ethtool.h> 19 #include <linux/topology.h> 20 #include <linux/gfp.h> 21 #include <linux/interrupt.h> 22 #include "net_driver.h" 23 #include <net/gre.h> 24 #include <net/udp_tunnel.h> 25 #include "efx.h" 26 #include "efx_common.h" 27 #include "efx_channels.h" 28 #include "rx_common.h" 29 #include "tx_common.h" 30 #include "nic.h" 31 #include "io.h" 32 #include "selftest.h" 33 #include "sriov.h" 34 #ifdef CONFIG_SFC_SIENA_SRIOV 35 #include "siena_sriov.h" 36 #endif 37 38 #include "mcdi_port_common.h" 39 #include "mcdi_pcol.h" 40 #include "workarounds.h" 41 42 /************************************************************************** 43 * 44 * Configurable values 45 * 46 *************************************************************************/ 47 48 module_param_named(interrupt_mode, efx_siena_interrupt_mode, uint, 0444); 49 MODULE_PARM_DESC(interrupt_mode, 50 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)"); 51 52 module_param_named(rss_cpus, efx_siena_rss_cpus, uint, 0444); 53 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling"); 54 55 /* 56 * Use separate channels for TX and RX events 57 * 58 * Set this to 1 to use separate channels for TX and RX. It allows us 59 * to control interrupt affinity separately for TX and RX. 60 * 61 * This is only used in MSI-X interrupt mode 62 */ 63 bool efx_siena_separate_tx_channels; 64 module_param_named(efx_separate_tx_channels, efx_siena_separate_tx_channels, 65 bool, 0444); 66 MODULE_PARM_DESC(efx_separate_tx_channels, 67 "Use separate channels for TX and RX"); 68 69 /* Initial interrupt moderation settings. They can be modified after 70 * module load with ethtool. 71 * 72 * The default for RX should strike a balance between increasing the 73 * round-trip latency and reducing overhead. 74 */ 75 static unsigned int rx_irq_mod_usec = 60; 76 77 /* Initial interrupt moderation settings. They can be modified after 78 * module load with ethtool. 79 * 80 * This default is chosen to ensure that a 10G link does not go idle 81 * while a TX queue is stopped after it has become full. A queue is 82 * restarted when it drops below half full. The time this takes (assuming 83 * worst case 3 descriptors per packet and 1024 descriptors) is 84 * 512 / 3 * 1.2 = 205 usec. 85 */ 86 static unsigned int tx_irq_mod_usec = 150; 87 88 static bool phy_flash_cfg; 89 module_param(phy_flash_cfg, bool, 0644); 90 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially"); 91 92 static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE | 93 NETIF_MSG_LINK | NETIF_MSG_IFDOWN | 94 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR | 95 NETIF_MSG_TX_ERR | NETIF_MSG_HW); 96 module_param(debug, uint, 0); 97 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value"); 98 99 /************************************************************************** 100 * 101 * Utility functions and prototypes 102 * 103 *************************************************************************/ 104 105 static void efx_remove_port(struct efx_nic *efx); 106 static int efx_xdp_setup_prog(struct efx_nic *efx, struct bpf_prog *prog); 107 static int efx_xdp(struct net_device *dev, struct netdev_bpf *xdp); 108 static int efx_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **xdpfs, 109 u32 flags); 110 111 #define EFX_ASSERT_RESET_SERIALISED(efx) \ 112 do { \ 113 if ((efx->state == STATE_READY) || \ 114 (efx->state == STATE_RECOVERY) || \ 115 (efx->state == STATE_DISABLED)) \ 116 ASSERT_RTNL(); \ 117 } while (0) 118 119 /************************************************************************** 120 * 121 * Port handling 122 * 123 **************************************************************************/ 124 125 static void efx_fini_port(struct efx_nic *efx); 126 127 static int efx_probe_port(struct efx_nic *efx) 128 { 129 int rc; 130 131 netif_dbg(efx, probe, efx->net_dev, "create port\n"); 132 133 if (phy_flash_cfg) 134 efx->phy_mode = PHY_MODE_SPECIAL; 135 136 /* Connect up MAC/PHY operations table */ 137 rc = efx->type->probe_port(efx); 138 if (rc) 139 return rc; 140 141 /* Initialise MAC address to permanent address */ 142 eth_hw_addr_set(efx->net_dev, efx->net_dev->perm_addr); 143 144 return 0; 145 } 146 147 static int efx_init_port(struct efx_nic *efx) 148 { 149 int rc; 150 151 netif_dbg(efx, drv, efx->net_dev, "init port\n"); 152 153 mutex_lock(&efx->mac_lock); 154 155 efx->port_initialized = true; 156 157 /* Ensure the PHY advertises the correct flow control settings */ 158 rc = efx_siena_mcdi_port_reconfigure(efx); 159 if (rc && rc != -EPERM) 160 goto fail; 161 162 mutex_unlock(&efx->mac_lock); 163 return 0; 164 165 fail: 166 mutex_unlock(&efx->mac_lock); 167 return rc; 168 } 169 170 static void efx_fini_port(struct efx_nic *efx) 171 { 172 netif_dbg(efx, drv, efx->net_dev, "shut down port\n"); 173 174 if (!efx->port_initialized) 175 return; 176 177 efx->port_initialized = false; 178 179 efx->link_state.up = false; 180 efx_siena_link_status_changed(efx); 181 } 182 183 static void efx_remove_port(struct efx_nic *efx) 184 { 185 netif_dbg(efx, drv, efx->net_dev, "destroying port\n"); 186 187 efx->type->remove_port(efx); 188 } 189 190 /************************************************************************** 191 * 192 * NIC handling 193 * 194 **************************************************************************/ 195 196 static LIST_HEAD(efx_primary_list); 197 static LIST_HEAD(efx_unassociated_list); 198 199 static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right) 200 { 201 return left->type == right->type && 202 left->vpd_sn && right->vpd_sn && 203 !strcmp(left->vpd_sn, right->vpd_sn); 204 } 205 206 static void efx_associate(struct efx_nic *efx) 207 { 208 struct efx_nic *other, *next; 209 210 if (efx->primary == efx) { 211 /* Adding primary function; look for secondaries */ 212 213 netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n"); 214 list_add_tail(&efx->node, &efx_primary_list); 215 216 list_for_each_entry_safe(other, next, &efx_unassociated_list, 217 node) { 218 if (efx_same_controller(efx, other)) { 219 list_del(&other->node); 220 netif_dbg(other, probe, other->net_dev, 221 "moving to secondary list of %s %s\n", 222 pci_name(efx->pci_dev), 223 efx->net_dev->name); 224 list_add_tail(&other->node, 225 &efx->secondary_list); 226 other->primary = efx; 227 } 228 } 229 } else { 230 /* Adding secondary function; look for primary */ 231 232 list_for_each_entry(other, &efx_primary_list, node) { 233 if (efx_same_controller(efx, other)) { 234 netif_dbg(efx, probe, efx->net_dev, 235 "adding to secondary list of %s %s\n", 236 pci_name(other->pci_dev), 237 other->net_dev->name); 238 list_add_tail(&efx->node, 239 &other->secondary_list); 240 efx->primary = other; 241 return; 242 } 243 } 244 245 netif_dbg(efx, probe, efx->net_dev, 246 "adding to unassociated list\n"); 247 list_add_tail(&efx->node, &efx_unassociated_list); 248 } 249 } 250 251 static void efx_dissociate(struct efx_nic *efx) 252 { 253 struct efx_nic *other, *next; 254 255 list_del(&efx->node); 256 efx->primary = NULL; 257 258 list_for_each_entry_safe(other, next, &efx->secondary_list, node) { 259 list_del(&other->node); 260 netif_dbg(other, probe, other->net_dev, 261 "moving to unassociated list\n"); 262 list_add_tail(&other->node, &efx_unassociated_list); 263 other->primary = NULL; 264 } 265 } 266 267 static int efx_probe_nic(struct efx_nic *efx) 268 { 269 int rc; 270 271 netif_dbg(efx, probe, efx->net_dev, "creating NIC\n"); 272 273 /* Carry out hardware-type specific initialisation */ 274 rc = efx->type->probe(efx); 275 if (rc) 276 return rc; 277 278 do { 279 if (!efx->max_channels || !efx->max_tx_channels) { 280 netif_err(efx, drv, efx->net_dev, 281 "Insufficient resources to allocate" 282 " any channels\n"); 283 rc = -ENOSPC; 284 goto fail1; 285 } 286 287 /* Determine the number of channels and queues by trying 288 * to hook in MSI-X interrupts. 289 */ 290 rc = efx_siena_probe_interrupts(efx); 291 if (rc) 292 goto fail1; 293 294 rc = efx_siena_set_channels(efx); 295 if (rc) 296 goto fail1; 297 298 /* dimension_resources can fail with EAGAIN */ 299 rc = efx->type->dimension_resources(efx); 300 if (rc != 0 && rc != -EAGAIN) 301 goto fail2; 302 303 if (rc == -EAGAIN) 304 /* try again with new max_channels */ 305 efx_siena_remove_interrupts(efx); 306 307 } while (rc == -EAGAIN); 308 309 if (efx->n_channels > 1) 310 netdev_rss_key_fill(efx->rss_context.rx_hash_key, 311 sizeof(efx->rss_context.rx_hash_key)); 312 efx_siena_set_default_rx_indir_table(efx, &efx->rss_context); 313 314 /* Initialise the interrupt moderation settings */ 315 efx->irq_mod_step_us = DIV_ROUND_UP(efx->timer_quantum_ns, 1000); 316 efx_siena_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, 317 true, true); 318 319 return 0; 320 321 fail2: 322 efx_siena_remove_interrupts(efx); 323 fail1: 324 efx->type->remove(efx); 325 return rc; 326 } 327 328 static void efx_remove_nic(struct efx_nic *efx) 329 { 330 netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n"); 331 332 efx_siena_remove_interrupts(efx); 333 efx->type->remove(efx); 334 } 335 336 /************************************************************************** 337 * 338 * NIC startup/shutdown 339 * 340 *************************************************************************/ 341 342 static int efx_probe_all(struct efx_nic *efx) 343 { 344 int rc; 345 346 rc = efx_probe_nic(efx); 347 if (rc) { 348 netif_err(efx, probe, efx->net_dev, "failed to create NIC\n"); 349 goto fail1; 350 } 351 352 rc = efx_probe_port(efx); 353 if (rc) { 354 netif_err(efx, probe, efx->net_dev, "failed to create port\n"); 355 goto fail2; 356 } 357 358 BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT); 359 if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) { 360 rc = -EINVAL; 361 goto fail3; 362 } 363 364 #ifdef CONFIG_SFC_SIENA_SRIOV 365 rc = efx->type->vswitching_probe(efx); 366 if (rc) /* not fatal; the PF will still work fine */ 367 netif_warn(efx, probe, efx->net_dev, 368 "failed to setup vswitching rc=%d;" 369 " VFs may not function\n", rc); 370 #endif 371 372 rc = efx_siena_probe_filters(efx); 373 if (rc) { 374 netif_err(efx, probe, efx->net_dev, 375 "failed to create filter tables\n"); 376 goto fail4; 377 } 378 379 rc = efx_siena_probe_channels(efx); 380 if (rc) 381 goto fail5; 382 383 return 0; 384 385 fail5: 386 efx_siena_remove_filters(efx); 387 fail4: 388 #ifdef CONFIG_SFC_SIENA_SRIOV 389 efx->type->vswitching_remove(efx); 390 #endif 391 fail3: 392 efx_remove_port(efx); 393 fail2: 394 efx_remove_nic(efx); 395 fail1: 396 return rc; 397 } 398 399 static void efx_remove_all(struct efx_nic *efx) 400 { 401 rtnl_lock(); 402 efx_xdp_setup_prog(efx, NULL); 403 rtnl_unlock(); 404 405 efx_siena_remove_channels(efx); 406 efx_siena_remove_filters(efx); 407 #ifdef CONFIG_SFC_SIENA_SRIOV 408 efx->type->vswitching_remove(efx); 409 #endif 410 efx_remove_port(efx); 411 efx_remove_nic(efx); 412 } 413 414 /************************************************************************** 415 * 416 * Interrupt moderation 417 * 418 **************************************************************************/ 419 unsigned int efx_siena_usecs_to_ticks(struct efx_nic *efx, unsigned int usecs) 420 { 421 if (usecs == 0) 422 return 0; 423 if (usecs * 1000 < efx->timer_quantum_ns) 424 return 1; /* never round down to 0 */ 425 return usecs * 1000 / efx->timer_quantum_ns; 426 } 427 428 /* Set interrupt moderation parameters */ 429 int efx_siena_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs, 430 unsigned int rx_usecs, bool rx_adaptive, 431 bool rx_may_override_tx) 432 { 433 struct efx_channel *channel; 434 unsigned int timer_max_us; 435 436 EFX_ASSERT_RESET_SERIALISED(efx); 437 438 timer_max_us = efx->timer_max_ns / 1000; 439 440 if (tx_usecs > timer_max_us || rx_usecs > timer_max_us) 441 return -EINVAL; 442 443 if (tx_usecs != rx_usecs && efx->tx_channel_offset == 0 && 444 !rx_may_override_tx) { 445 netif_err(efx, drv, efx->net_dev, "Channels are shared. " 446 "RX and TX IRQ moderation must be equal\n"); 447 return -EINVAL; 448 } 449 450 efx->irq_rx_adaptive = rx_adaptive; 451 efx->irq_rx_moderation_us = rx_usecs; 452 efx_for_each_channel(channel, efx) { 453 if (efx_channel_has_rx_queue(channel)) 454 channel->irq_moderation_us = rx_usecs; 455 else if (efx_channel_has_tx_queues(channel)) 456 channel->irq_moderation_us = tx_usecs; 457 else if (efx_channel_is_xdp_tx(channel)) 458 channel->irq_moderation_us = tx_usecs; 459 } 460 461 return 0; 462 } 463 464 void efx_siena_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs, 465 unsigned int *rx_usecs, bool *rx_adaptive) 466 { 467 *rx_adaptive = efx->irq_rx_adaptive; 468 *rx_usecs = efx->irq_rx_moderation_us; 469 470 /* If channels are shared between RX and TX, so is IRQ 471 * moderation. Otherwise, IRQ moderation is the same for all 472 * TX channels and is not adaptive. 473 */ 474 if (efx->tx_channel_offset == 0) { 475 *tx_usecs = *rx_usecs; 476 } else { 477 struct efx_channel *tx_channel; 478 479 tx_channel = efx->channel[efx->tx_channel_offset]; 480 *tx_usecs = tx_channel->irq_moderation_us; 481 } 482 } 483 484 /************************************************************************** 485 * 486 * ioctls 487 * 488 *************************************************************************/ 489 490 /* Net device ioctl 491 * Context: process, rtnl_lock() held. 492 */ 493 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd) 494 { 495 struct efx_nic *efx = netdev_priv(net_dev); 496 struct mii_ioctl_data *data = if_mii(ifr); 497 498 /* Convert phy_id from older PRTAD/DEVAD format */ 499 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) && 500 (data->phy_id & 0xfc00) == 0x0400) 501 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400; 502 503 return mdio_mii_ioctl(&efx->mdio, data, cmd); 504 } 505 506 /************************************************************************** 507 * 508 * Kernel net device interface 509 * 510 *************************************************************************/ 511 512 /* Context: process, rtnl_lock() held. */ 513 static int efx_net_open(struct net_device *net_dev) 514 { 515 struct efx_nic *efx = netdev_priv(net_dev); 516 int rc; 517 518 netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n", 519 raw_smp_processor_id()); 520 521 rc = efx_check_disabled(efx); 522 if (rc) 523 return rc; 524 if (efx->phy_mode & PHY_MODE_SPECIAL) 525 return -EBUSY; 526 if (efx_siena_mcdi_poll_reboot(efx) && efx_siena_reset(efx, RESET_TYPE_ALL)) 527 return -EIO; 528 529 /* Notify the kernel of the link state polled during driver load, 530 * before the monitor starts running */ 531 efx_siena_link_status_changed(efx); 532 533 efx_siena_start_all(efx); 534 if (efx->state == STATE_DISABLED || efx->reset_pending) 535 netif_device_detach(efx->net_dev); 536 efx_siena_selftest_async_start(efx); 537 return 0; 538 } 539 540 /* Context: process, rtnl_lock() held. 541 * Note that the kernel will ignore our return code; this method 542 * should really be a void. 543 */ 544 static int efx_net_stop(struct net_device *net_dev) 545 { 546 struct efx_nic *efx = netdev_priv(net_dev); 547 548 netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n", 549 raw_smp_processor_id()); 550 551 /* Stop the device and flush all the channels */ 552 efx_siena_stop_all(efx); 553 554 return 0; 555 } 556 557 static int efx_vlan_rx_add_vid(struct net_device *net_dev, __be16 proto, u16 vid) 558 { 559 struct efx_nic *efx = netdev_priv(net_dev); 560 561 if (efx->type->vlan_rx_add_vid) 562 return efx->type->vlan_rx_add_vid(efx, proto, vid); 563 else 564 return -EOPNOTSUPP; 565 } 566 567 static int efx_vlan_rx_kill_vid(struct net_device *net_dev, __be16 proto, u16 vid) 568 { 569 struct efx_nic *efx = netdev_priv(net_dev); 570 571 if (efx->type->vlan_rx_kill_vid) 572 return efx->type->vlan_rx_kill_vid(efx, proto, vid); 573 else 574 return -EOPNOTSUPP; 575 } 576 577 static int efx_siena_hwtstamp_set(struct net_device *net_dev, 578 struct kernel_hwtstamp_config *config, 579 struct netlink_ext_ack *extack) 580 { 581 struct efx_nic *efx = netdev_priv(net_dev); 582 583 return efx_siena_ptp_set_ts_config(efx, config, extack); 584 } 585 586 static int efx_siena_hwtstamp_get(struct net_device *net_dev, 587 struct kernel_hwtstamp_config *config) 588 { 589 struct efx_nic *efx = netdev_priv(net_dev); 590 591 return efx_siena_ptp_get_ts_config(efx, config); 592 } 593 594 static const struct net_device_ops efx_netdev_ops = { 595 .ndo_open = efx_net_open, 596 .ndo_stop = efx_net_stop, 597 .ndo_get_stats64 = efx_siena_net_stats, 598 .ndo_tx_timeout = efx_siena_watchdog, 599 .ndo_start_xmit = efx_siena_hard_start_xmit, 600 .ndo_validate_addr = eth_validate_addr, 601 .ndo_eth_ioctl = efx_ioctl, 602 .ndo_change_mtu = efx_siena_change_mtu, 603 .ndo_set_mac_address = efx_siena_set_mac_address, 604 .ndo_set_rx_mode = efx_siena_set_rx_mode, 605 .ndo_set_features = efx_siena_set_features, 606 .ndo_features_check = efx_siena_features_check, 607 .ndo_vlan_rx_add_vid = efx_vlan_rx_add_vid, 608 .ndo_vlan_rx_kill_vid = efx_vlan_rx_kill_vid, 609 .ndo_hwtstamp_set = efx_siena_hwtstamp_set, 610 .ndo_hwtstamp_get = efx_siena_hwtstamp_get, 611 #ifdef CONFIG_SFC_SIENA_SRIOV 612 .ndo_set_vf_mac = efx_sriov_set_vf_mac, 613 .ndo_set_vf_vlan = efx_sriov_set_vf_vlan, 614 .ndo_set_vf_spoofchk = efx_sriov_set_vf_spoofchk, 615 .ndo_get_vf_config = efx_sriov_get_vf_config, 616 .ndo_set_vf_link_state = efx_sriov_set_vf_link_state, 617 #endif 618 .ndo_get_phys_port_id = efx_siena_get_phys_port_id, 619 .ndo_get_phys_port_name = efx_siena_get_phys_port_name, 620 .ndo_setup_tc = efx_siena_setup_tc, 621 #ifdef CONFIG_RFS_ACCEL 622 .ndo_rx_flow_steer = efx_siena_filter_rfs, 623 #endif 624 .ndo_xdp_xmit = efx_xdp_xmit, 625 .ndo_bpf = efx_xdp 626 }; 627 628 static int efx_xdp_setup_prog(struct efx_nic *efx, struct bpf_prog *prog) 629 { 630 struct bpf_prog *old_prog; 631 632 if (efx->xdp_rxq_info_failed) { 633 netif_err(efx, drv, efx->net_dev, 634 "Unable to bind XDP program due to previous failure of rxq_info\n"); 635 return -EINVAL; 636 } 637 638 if (prog && efx->net_dev->mtu > efx_siena_xdp_max_mtu(efx)) { 639 netif_err(efx, drv, efx->net_dev, 640 "Unable to configure XDP with MTU of %d (max: %d)\n", 641 efx->net_dev->mtu, efx_siena_xdp_max_mtu(efx)); 642 return -EINVAL; 643 } 644 645 old_prog = rtnl_dereference(efx->xdp_prog); 646 rcu_assign_pointer(efx->xdp_prog, prog); 647 /* Release the reference that was originally passed by the caller. */ 648 if (old_prog) 649 bpf_prog_put(old_prog); 650 651 return 0; 652 } 653 654 /* Context: process, rtnl_lock() held. */ 655 static int efx_xdp(struct net_device *dev, struct netdev_bpf *xdp) 656 { 657 struct efx_nic *efx = netdev_priv(dev); 658 659 switch (xdp->command) { 660 case XDP_SETUP_PROG: 661 return efx_xdp_setup_prog(efx, xdp->prog); 662 default: 663 return -EINVAL; 664 } 665 } 666 667 static int efx_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **xdpfs, 668 u32 flags) 669 { 670 struct efx_nic *efx = netdev_priv(dev); 671 672 if (!netif_running(dev)) 673 return -EINVAL; 674 675 return efx_siena_xdp_tx_buffers(efx, n, xdpfs, flags & XDP_XMIT_FLUSH); 676 } 677 678 static void efx_update_name(struct efx_nic *efx) 679 { 680 strcpy(efx->name, efx->net_dev->name); 681 efx_siena_mtd_rename(efx); 682 efx_siena_set_channel_names(efx); 683 } 684 685 static int efx_netdev_event(struct notifier_block *this, 686 unsigned long event, void *ptr) 687 { 688 struct net_device *net_dev = netdev_notifier_info_to_dev(ptr); 689 690 if ((net_dev->netdev_ops == &efx_netdev_ops) && 691 event == NETDEV_CHANGENAME) 692 efx_update_name(netdev_priv(net_dev)); 693 694 return NOTIFY_DONE; 695 } 696 697 static struct notifier_block efx_netdev_notifier = { 698 .notifier_call = efx_netdev_event, 699 }; 700 701 static ssize_t phy_type_show(struct device *dev, 702 struct device_attribute *attr, char *buf) 703 { 704 struct efx_nic *efx = dev_get_drvdata(dev); 705 return sprintf(buf, "%d\n", efx->phy_type); 706 } 707 static DEVICE_ATTR_RO(phy_type); 708 709 static int efx_register_netdev(struct efx_nic *efx) 710 { 711 struct net_device *net_dev = efx->net_dev; 712 struct efx_channel *channel; 713 int rc; 714 715 net_dev->watchdog_timeo = 5 * HZ; 716 net_dev->irq = efx->pci_dev->irq; 717 net_dev->netdev_ops = &efx_netdev_ops; 718 if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) 719 net_dev->priv_flags |= IFF_UNICAST_FLT; 720 net_dev->ethtool_ops = &efx_siena_ethtool_ops; 721 netif_set_tso_max_segs(net_dev, EFX_TSO_MAX_SEGS); 722 net_dev->min_mtu = EFX_MIN_MTU; 723 net_dev->max_mtu = EFX_MAX_MTU; 724 725 rtnl_lock(); 726 727 /* Enable resets to be scheduled and check whether any were 728 * already requested. If so, the NIC is probably hosed so we 729 * abort. 730 */ 731 efx->state = STATE_READY; 732 smp_mb(); /* ensure we change state before checking reset_pending */ 733 if (efx->reset_pending) { 734 pci_err(efx->pci_dev, "aborting probe due to scheduled reset\n"); 735 rc = -EIO; 736 goto fail_locked; 737 } 738 739 rc = dev_alloc_name(net_dev, net_dev->name); 740 if (rc < 0) 741 goto fail_locked; 742 efx_update_name(efx); 743 744 /* Always start with carrier off; PHY events will detect the link */ 745 netif_carrier_off(net_dev); 746 747 rc = register_netdevice(net_dev); 748 if (rc) 749 goto fail_locked; 750 751 efx_for_each_channel(channel, efx) { 752 struct efx_tx_queue *tx_queue; 753 efx_for_each_channel_tx_queue(tx_queue, channel) 754 efx_siena_init_tx_queue_core_txq(tx_queue); 755 } 756 757 efx_associate(efx); 758 759 rtnl_unlock(); 760 761 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type); 762 if (rc) { 763 netif_err(efx, drv, efx->net_dev, 764 "failed to init net dev attributes\n"); 765 goto fail_registered; 766 } 767 768 efx_siena_init_mcdi_logging(efx); 769 770 return 0; 771 772 fail_registered: 773 rtnl_lock(); 774 efx_dissociate(efx); 775 unregister_netdevice(net_dev); 776 fail_locked: 777 efx->state = STATE_UNINIT; 778 rtnl_unlock(); 779 netif_err(efx, drv, efx->net_dev, "could not register net dev\n"); 780 return rc; 781 } 782 783 static void efx_unregister_netdev(struct efx_nic *efx) 784 { 785 if (!efx->net_dev) 786 return; 787 788 BUG_ON(netdev_priv(efx->net_dev) != efx); 789 790 if (efx_dev_registered(efx)) { 791 strscpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name)); 792 efx_siena_fini_mcdi_logging(efx); 793 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type); 794 unregister_netdev(efx->net_dev); 795 } 796 } 797 798 /************************************************************************** 799 * 800 * List of NICs we support 801 * 802 **************************************************************************/ 803 804 /* PCI device ID table */ 805 static const struct pci_device_id efx_pci_table[] = { 806 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803), /* SFC9020 */ 807 .driver_data = (unsigned long)&siena_a0_nic_type}, 808 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813), /* SFL9021 */ 809 .driver_data = (unsigned long)&siena_a0_nic_type}, 810 {0} /* end of list */ 811 }; 812 813 /************************************************************************** 814 * 815 * Data housekeeping 816 * 817 **************************************************************************/ 818 819 void efx_siena_update_sw_stats(struct efx_nic *efx, u64 *stats) 820 { 821 u64 n_rx_nodesc_trunc = 0; 822 struct efx_channel *channel; 823 824 efx_for_each_channel(channel, efx) 825 n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc; 826 stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc; 827 stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops); 828 } 829 830 /************************************************************************** 831 * 832 * PCI interface 833 * 834 **************************************************************************/ 835 836 /* Main body of final NIC shutdown code 837 * This is called only at module unload (or hotplug removal). 838 */ 839 static void efx_pci_remove_main(struct efx_nic *efx) 840 { 841 /* Flush reset_work. It can no longer be scheduled since we 842 * are not READY. 843 */ 844 BUG_ON(efx->state == STATE_READY); 845 efx_siena_flush_reset_workqueue(efx); 846 847 efx_siena_disable_interrupts(efx); 848 efx_siena_clear_interrupt_affinity(efx); 849 efx_siena_fini_interrupt(efx); 850 efx_fini_port(efx); 851 efx->type->fini(efx); 852 efx_siena_fini_napi(efx); 853 efx_remove_all(efx); 854 } 855 856 /* Final NIC shutdown 857 * This is called only at module unload (or hotplug removal). A PF can call 858 * this on its VFs to ensure they are unbound first. 859 */ 860 static void efx_pci_remove(struct pci_dev *pci_dev) 861 { 862 struct efx_nic *efx; 863 864 efx = pci_get_drvdata(pci_dev); 865 if (!efx) 866 return; 867 868 /* Mark the NIC as fini, then stop the interface */ 869 rtnl_lock(); 870 efx_dissociate(efx); 871 dev_close(efx->net_dev); 872 efx_siena_disable_interrupts(efx); 873 efx->state = STATE_UNINIT; 874 rtnl_unlock(); 875 876 if (efx->type->sriov_fini) 877 efx->type->sriov_fini(efx); 878 879 efx_unregister_netdev(efx); 880 881 efx_siena_mtd_remove(efx); 882 883 efx_pci_remove_main(efx); 884 885 efx_siena_fini_io(efx); 886 netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n"); 887 888 efx_siena_fini_struct(efx); 889 free_netdev(efx->net_dev); 890 }; 891 892 /* NIC VPD information 893 * Called during probe to display the part number of the 894 * installed NIC. 895 */ 896 static void efx_probe_vpd_strings(struct efx_nic *efx) 897 { 898 struct pci_dev *dev = efx->pci_dev; 899 unsigned int vpd_size, kw_len; 900 u8 *vpd_data; 901 int start; 902 903 vpd_data = pci_vpd_alloc(dev, &vpd_size); 904 if (IS_ERR(vpd_data)) { 905 pci_warn(dev, "Unable to read VPD\n"); 906 return; 907 } 908 909 start = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size, 910 PCI_VPD_RO_KEYWORD_PARTNO, &kw_len); 911 if (start < 0) 912 pci_err(dev, "Part number not found or incomplete\n"); 913 else 914 pci_info(dev, "Part Number : %.*s\n", kw_len, vpd_data + start); 915 916 start = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size, 917 PCI_VPD_RO_KEYWORD_SERIALNO, &kw_len); 918 if (start < 0) 919 pci_err(dev, "Serial number not found or incomplete\n"); 920 else 921 efx->vpd_sn = kmemdup_nul(vpd_data + start, kw_len, GFP_KERNEL); 922 923 kfree(vpd_data); 924 } 925 926 927 /* Main body of NIC initialisation 928 * This is called at module load (or hotplug insertion, theoretically). 929 */ 930 static int efx_pci_probe_main(struct efx_nic *efx) 931 { 932 int rc; 933 934 /* Do start-of-day initialisation */ 935 rc = efx_probe_all(efx); 936 if (rc) 937 goto fail1; 938 939 efx_siena_init_napi(efx); 940 941 down_write(&efx->filter_sem); 942 rc = efx->type->init(efx); 943 up_write(&efx->filter_sem); 944 if (rc) { 945 pci_err(efx->pci_dev, "failed to initialise NIC\n"); 946 goto fail3; 947 } 948 949 rc = efx_init_port(efx); 950 if (rc) { 951 netif_err(efx, probe, efx->net_dev, 952 "failed to initialise port\n"); 953 goto fail4; 954 } 955 956 rc = efx_siena_init_interrupt(efx); 957 if (rc) 958 goto fail5; 959 960 efx_siena_set_interrupt_affinity(efx); 961 rc = efx_siena_enable_interrupts(efx); 962 if (rc) 963 goto fail6; 964 965 return 0; 966 967 fail6: 968 efx_siena_clear_interrupt_affinity(efx); 969 efx_siena_fini_interrupt(efx); 970 fail5: 971 efx_fini_port(efx); 972 fail4: 973 efx->type->fini(efx); 974 fail3: 975 efx_siena_fini_napi(efx); 976 efx_remove_all(efx); 977 fail1: 978 return rc; 979 } 980 981 static int efx_pci_probe_post_io(struct efx_nic *efx) 982 { 983 struct net_device *net_dev = efx->net_dev; 984 int rc = efx_pci_probe_main(efx); 985 986 if (rc) 987 return rc; 988 989 if (efx->type->sriov_init) { 990 rc = efx->type->sriov_init(efx); 991 if (rc) 992 pci_err(efx->pci_dev, "SR-IOV can't be enabled rc %d\n", 993 rc); 994 } 995 996 /* Determine netdevice features */ 997 net_dev->features |= (efx->type->offload_features | NETIF_F_SG | 998 NETIF_F_TSO | NETIF_F_RXCSUM | NETIF_F_RXALL); 999 if (efx->type->offload_features & (NETIF_F_IPV6_CSUM | NETIF_F_HW_CSUM)) 1000 net_dev->features |= NETIF_F_TSO6; 1001 /* Check whether device supports TSO */ 1002 if (!efx->type->tso_versions || !efx->type->tso_versions(efx)) 1003 net_dev->features &= ~NETIF_F_ALL_TSO; 1004 /* Mask for features that also apply to VLAN devices */ 1005 net_dev->vlan_features |= (NETIF_F_HW_CSUM | NETIF_F_SG | 1006 NETIF_F_HIGHDMA | NETIF_F_ALL_TSO | 1007 NETIF_F_RXCSUM); 1008 1009 net_dev->hw_features |= net_dev->features & ~efx->fixed_features; 1010 1011 /* Disable receiving frames with bad FCS, by default. */ 1012 net_dev->features &= ~NETIF_F_RXALL; 1013 1014 /* Disable VLAN filtering by default. It may be enforced if 1015 * the feature is fixed (i.e. VLAN filters are required to 1016 * receive VLAN tagged packets due to vPort restrictions). 1017 */ 1018 net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER; 1019 net_dev->features |= efx->fixed_features; 1020 1021 net_dev->xdp_features = NETDEV_XDP_ACT_BASIC | 1022 NETDEV_XDP_ACT_REDIRECT | 1023 NETDEV_XDP_ACT_NDO_XMIT; 1024 1025 rc = efx_register_netdev(efx); 1026 if (!rc) 1027 return 0; 1028 1029 efx_pci_remove_main(efx); 1030 return rc; 1031 } 1032 1033 /* NIC initialisation 1034 * 1035 * This is called at module load (or hotplug insertion, 1036 * theoretically). It sets up PCI mappings, resets the NIC, 1037 * sets up and registers the network devices with the kernel and hooks 1038 * the interrupt service routine. It does not prepare the device for 1039 * transmission; this is left to the first time one of the network 1040 * interfaces is brought up (i.e. efx_net_open). 1041 */ 1042 static int efx_pci_probe(struct pci_dev *pci_dev, 1043 const struct pci_device_id *entry) 1044 { 1045 struct net_device *net_dev; 1046 struct efx_nic *efx; 1047 int rc; 1048 1049 /* Allocate and initialise a struct net_device and struct efx_nic */ 1050 net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES, 1051 EFX_MAX_RX_QUEUES); 1052 if (!net_dev) 1053 return -ENOMEM; 1054 efx = netdev_priv(net_dev); 1055 efx->type = (const struct efx_nic_type *) entry->driver_data; 1056 efx->fixed_features |= NETIF_F_HIGHDMA; 1057 1058 pci_set_drvdata(pci_dev, efx); 1059 SET_NETDEV_DEV(net_dev, &pci_dev->dev); 1060 rc = efx_siena_init_struct(efx, pci_dev, net_dev); 1061 if (rc) 1062 goto fail1; 1063 1064 pci_info(pci_dev, "Solarflare NIC detected\n"); 1065 1066 if (!efx->type->is_vf) 1067 efx_probe_vpd_strings(efx); 1068 1069 /* Set up basic I/O (BAR mappings etc) */ 1070 rc = efx_siena_init_io(efx, efx->type->mem_bar(efx), 1071 efx->type->max_dma_mask, 1072 efx->type->mem_map_size(efx)); 1073 if (rc) 1074 goto fail2; 1075 1076 rc = efx_pci_probe_post_io(efx); 1077 if (rc) { 1078 /* On failure, retry once immediately. 1079 * If we aborted probe due to a scheduled reset, dismiss it. 1080 */ 1081 efx->reset_pending = 0; 1082 rc = efx_pci_probe_post_io(efx); 1083 if (rc) { 1084 /* On another failure, retry once more 1085 * after a 50-305ms delay. 1086 */ 1087 unsigned char r; 1088 1089 get_random_bytes(&r, 1); 1090 msleep((unsigned int)r + 50); 1091 efx->reset_pending = 0; 1092 rc = efx_pci_probe_post_io(efx); 1093 } 1094 } 1095 if (rc) 1096 goto fail3; 1097 1098 netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n"); 1099 1100 /* Try to create MTDs, but allow this to fail */ 1101 rtnl_lock(); 1102 rc = efx_mtd_probe(efx); 1103 rtnl_unlock(); 1104 if (rc && rc != -EPERM) 1105 netif_warn(efx, probe, efx->net_dev, 1106 "failed to create MTDs (%d)\n", rc); 1107 1108 if (efx->type->udp_tnl_push_ports) 1109 efx->type->udp_tnl_push_ports(efx); 1110 1111 return 0; 1112 1113 fail3: 1114 efx_siena_fini_io(efx); 1115 fail2: 1116 efx_siena_fini_struct(efx); 1117 fail1: 1118 WARN_ON(rc > 0); 1119 netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc); 1120 free_netdev(net_dev); 1121 return rc; 1122 } 1123 1124 /* efx_pci_sriov_configure returns the actual number of Virtual Functions 1125 * enabled on success 1126 */ 1127 #ifdef CONFIG_SFC_SIENA_SRIOV 1128 static int efx_pci_sriov_configure(struct pci_dev *dev, int num_vfs) 1129 { 1130 int rc; 1131 struct efx_nic *efx = pci_get_drvdata(dev); 1132 1133 if (efx->type->sriov_configure) { 1134 rc = efx->type->sriov_configure(efx, num_vfs); 1135 if (rc) 1136 return rc; 1137 else 1138 return num_vfs; 1139 } else 1140 return -EOPNOTSUPP; 1141 } 1142 #endif 1143 1144 static int efx_pm_freeze(struct device *dev) 1145 { 1146 struct efx_nic *efx = dev_get_drvdata(dev); 1147 1148 rtnl_lock(); 1149 1150 if (efx->state != STATE_DISABLED) { 1151 efx->state = STATE_UNINIT; 1152 1153 efx_device_detach_sync(efx); 1154 1155 efx_siena_stop_all(efx); 1156 efx_siena_disable_interrupts(efx); 1157 } 1158 1159 rtnl_unlock(); 1160 1161 return 0; 1162 } 1163 1164 static void efx_pci_shutdown(struct pci_dev *pci_dev) 1165 { 1166 struct efx_nic *efx = pci_get_drvdata(pci_dev); 1167 1168 if (!efx) 1169 return; 1170 1171 efx_pm_freeze(&pci_dev->dev); 1172 pci_disable_device(pci_dev); 1173 } 1174 1175 static int efx_pm_thaw(struct device *dev) 1176 { 1177 int rc; 1178 struct efx_nic *efx = dev_get_drvdata(dev); 1179 1180 rtnl_lock(); 1181 1182 if (efx->state != STATE_DISABLED) { 1183 rc = efx_siena_enable_interrupts(efx); 1184 if (rc) 1185 goto fail; 1186 1187 mutex_lock(&efx->mac_lock); 1188 efx_siena_mcdi_port_reconfigure(efx); 1189 mutex_unlock(&efx->mac_lock); 1190 1191 efx_siena_start_all(efx); 1192 1193 efx_device_attach_if_not_resetting(efx); 1194 1195 efx->state = STATE_READY; 1196 1197 efx->type->resume_wol(efx); 1198 } 1199 1200 rtnl_unlock(); 1201 1202 /* Reschedule any quenched resets scheduled during efx_pm_freeze() */ 1203 efx_siena_queue_reset_work(efx); 1204 1205 return 0; 1206 1207 fail: 1208 rtnl_unlock(); 1209 1210 return rc; 1211 } 1212 1213 static int efx_pm_poweroff(struct device *dev) 1214 { 1215 struct pci_dev *pci_dev = to_pci_dev(dev); 1216 struct efx_nic *efx = pci_get_drvdata(pci_dev); 1217 1218 efx->type->fini(efx); 1219 1220 efx->reset_pending = 0; 1221 1222 pci_save_state(pci_dev); 1223 return pci_set_power_state(pci_dev, PCI_D3hot); 1224 } 1225 1226 /* Used for both resume and restore */ 1227 static int efx_pm_resume(struct device *dev) 1228 { 1229 struct pci_dev *pci_dev = to_pci_dev(dev); 1230 struct efx_nic *efx = pci_get_drvdata(pci_dev); 1231 int rc; 1232 1233 rc = pci_set_power_state(pci_dev, PCI_D0); 1234 if (rc) 1235 return rc; 1236 pci_restore_state(pci_dev); 1237 rc = pci_enable_device(pci_dev); 1238 if (rc) 1239 return rc; 1240 pci_set_master(efx->pci_dev); 1241 rc = efx->type->reset(efx, RESET_TYPE_ALL); 1242 if (rc) 1243 return rc; 1244 down_write(&efx->filter_sem); 1245 rc = efx->type->init(efx); 1246 up_write(&efx->filter_sem); 1247 if (rc) 1248 return rc; 1249 rc = efx_pm_thaw(dev); 1250 return rc; 1251 } 1252 1253 static int efx_pm_suspend(struct device *dev) 1254 { 1255 int rc; 1256 1257 efx_pm_freeze(dev); 1258 rc = efx_pm_poweroff(dev); 1259 if (rc) 1260 efx_pm_resume(dev); 1261 return rc; 1262 } 1263 1264 static const struct dev_pm_ops efx_pm_ops = { 1265 .suspend = efx_pm_suspend, 1266 .resume = efx_pm_resume, 1267 .freeze = efx_pm_freeze, 1268 .thaw = efx_pm_thaw, 1269 .poweroff = efx_pm_poweroff, 1270 .restore = efx_pm_resume, 1271 }; 1272 1273 static struct pci_driver efx_pci_driver = { 1274 .name = KBUILD_MODNAME, 1275 .id_table = efx_pci_table, 1276 .probe = efx_pci_probe, 1277 .remove = efx_pci_remove, 1278 .driver.pm = &efx_pm_ops, 1279 .shutdown = efx_pci_shutdown, 1280 .err_handler = &efx_siena_err_handlers, 1281 #ifdef CONFIG_SFC_SIENA_SRIOV 1282 .sriov_configure = efx_pci_sriov_configure, 1283 #endif 1284 }; 1285 1286 /************************************************************************** 1287 * 1288 * Kernel module interface 1289 * 1290 *************************************************************************/ 1291 1292 static int __init efx_init_module(void) 1293 { 1294 int rc; 1295 1296 pr_info("Solarflare Siena driver\n"); 1297 1298 rc = register_netdevice_notifier(&efx_netdev_notifier); 1299 if (rc) 1300 goto err_notifier; 1301 1302 #ifdef CONFIG_SFC_SIENA_SRIOV 1303 rc = efx_init_sriov(); 1304 if (rc) 1305 goto err_sriov; 1306 #endif 1307 1308 rc = efx_siena_create_reset_workqueue(); 1309 if (rc) 1310 goto err_reset; 1311 1312 rc = pci_register_driver(&efx_pci_driver); 1313 if (rc < 0) 1314 goto err_pci; 1315 1316 return 0; 1317 1318 err_pci: 1319 efx_siena_destroy_reset_workqueue(); 1320 err_reset: 1321 #ifdef CONFIG_SFC_SIENA_SRIOV 1322 efx_fini_sriov(); 1323 err_sriov: 1324 #endif 1325 unregister_netdevice_notifier(&efx_netdev_notifier); 1326 err_notifier: 1327 return rc; 1328 } 1329 1330 static void __exit efx_exit_module(void) 1331 { 1332 pr_info("Solarflare Siena driver unloading\n"); 1333 1334 pci_unregister_driver(&efx_pci_driver); 1335 efx_siena_destroy_reset_workqueue(); 1336 #ifdef CONFIG_SFC_SIENA_SRIOV 1337 efx_fini_sriov(); 1338 #endif 1339 unregister_netdevice_notifier(&efx_netdev_notifier); 1340 1341 } 1342 1343 module_init(efx_init_module); 1344 module_exit(efx_exit_module); 1345 1346 MODULE_AUTHOR("Solarflare Communications and " 1347 "Michael Brown <mbrown@fensystems.co.uk>"); 1348 MODULE_DESCRIPTION("Solarflare Siena network driver"); 1349 MODULE_LICENSE("GPL"); 1350 MODULE_DEVICE_TABLE(pci, efx_pci_table); 1351