xref: /linux/drivers/net/ethernet/sfc/siena/efx.c (revision 8c994eff8fcfe8ecb1f1dbebed25b4d7bb75be12)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2005-2006 Fen Systems Ltd.
5  * Copyright 2005-2013 Solarflare Communications Inc.
6  */
7 
8 #include <linux/filter.h>
9 #include <linux/module.h>
10 #include <linux/pci.h>
11 #include <linux/netdevice.h>
12 #include <linux/etherdevice.h>
13 #include <linux/delay.h>
14 #include <linux/notifier.h>
15 #include <linux/ip.h>
16 #include <linux/tcp.h>
17 #include <linux/in.h>
18 #include <linux/ethtool.h>
19 #include <linux/topology.h>
20 #include <linux/gfp.h>
21 #include <linux/interrupt.h>
22 #include "net_driver.h"
23 #include <net/gre.h>
24 #include <net/udp_tunnel.h>
25 #include "efx.h"
26 #include "efx_common.h"
27 #include "efx_channels.h"
28 #include "rx_common.h"
29 #include "tx_common.h"
30 #include "nic.h"
31 #include "io.h"
32 #include "selftest.h"
33 #include "sriov.h"
34 #ifdef CONFIG_SFC_SIENA_SRIOV
35 #include "siena_sriov.h"
36 #endif
37 
38 #include "mcdi_port_common.h"
39 #include "mcdi_pcol.h"
40 #include "workarounds.h"
41 
42 /**************************************************************************
43  *
44  * Configurable values
45  *
46  *************************************************************************/
47 
48 module_param_named(interrupt_mode, efx_siena_interrupt_mode, uint, 0444);
49 MODULE_PARM_DESC(interrupt_mode,
50 		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
51 
52 module_param_named(rss_cpus, efx_siena_rss_cpus, uint, 0444);
53 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
54 
55 /*
56  * Use separate channels for TX and RX events
57  *
58  * Set this to 1 to use separate channels for TX and RX. It allows us
59  * to control interrupt affinity separately for TX and RX.
60  *
61  * This is only used in MSI-X interrupt mode
62  */
63 bool efx_siena_separate_tx_channels;
64 module_param_named(efx_separate_tx_channels, efx_siena_separate_tx_channels,
65 		   bool, 0444);
66 MODULE_PARM_DESC(efx_separate_tx_channels,
67 		 "Use separate channels for TX and RX");
68 
69 /* Initial interrupt moderation settings.  They can be modified after
70  * module load with ethtool.
71  *
72  * The default for RX should strike a balance between increasing the
73  * round-trip latency and reducing overhead.
74  */
75 static unsigned int rx_irq_mod_usec = 60;
76 
77 /* Initial interrupt moderation settings.  They can be modified after
78  * module load with ethtool.
79  *
80  * This default is chosen to ensure that a 10G link does not go idle
81  * while a TX queue is stopped after it has become full.  A queue is
82  * restarted when it drops below half full.  The time this takes (assuming
83  * worst case 3 descriptors per packet and 1024 descriptors) is
84  *   512 / 3 * 1.2 = 205 usec.
85  */
86 static unsigned int tx_irq_mod_usec = 150;
87 
88 static bool phy_flash_cfg;
89 module_param(phy_flash_cfg, bool, 0644);
90 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
91 
92 static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
93 			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
94 			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
95 			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
96 module_param(debug, uint, 0);
97 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
98 
99 /**************************************************************************
100  *
101  * Utility functions and prototypes
102  *
103  *************************************************************************/
104 
105 static void efx_remove_port(struct efx_nic *efx);
106 static int efx_xdp_setup_prog(struct efx_nic *efx, struct bpf_prog *prog);
107 static int efx_xdp(struct net_device *dev, struct netdev_bpf *xdp);
108 static int efx_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **xdpfs,
109 			u32 flags);
110 
111 #define EFX_ASSERT_RESET_SERIALISED(efx)		\
112 	do {						\
113 		if ((efx->state == STATE_READY) ||	\
114 		    (efx->state == STATE_RECOVERY) ||	\
115 		    (efx->state == STATE_DISABLED))	\
116 			ASSERT_RTNL();			\
117 	} while (0)
118 
119 /**************************************************************************
120  *
121  * Port handling
122  *
123  **************************************************************************/
124 
125 static void efx_fini_port(struct efx_nic *efx);
126 
127 static int efx_probe_port(struct efx_nic *efx)
128 {
129 	int rc;
130 
131 	netif_dbg(efx, probe, efx->net_dev, "create port\n");
132 
133 	if (phy_flash_cfg)
134 		efx->phy_mode = PHY_MODE_SPECIAL;
135 
136 	/* Connect up MAC/PHY operations table */
137 	rc = efx->type->probe_port(efx);
138 	if (rc)
139 		return rc;
140 
141 	/* Initialise MAC address to permanent address */
142 	eth_hw_addr_set(efx->net_dev, efx->net_dev->perm_addr);
143 
144 	return 0;
145 }
146 
147 static int efx_init_port(struct efx_nic *efx)
148 {
149 	int rc;
150 
151 	netif_dbg(efx, drv, efx->net_dev, "init port\n");
152 
153 	mutex_lock(&efx->mac_lock);
154 
155 	efx->port_initialized = true;
156 
157 	/* Ensure the PHY advertises the correct flow control settings */
158 	rc = efx_siena_mcdi_port_reconfigure(efx);
159 	if (rc && rc != -EPERM)
160 		goto fail;
161 
162 	mutex_unlock(&efx->mac_lock);
163 	return 0;
164 
165 fail:
166 	mutex_unlock(&efx->mac_lock);
167 	return rc;
168 }
169 
170 static void efx_fini_port(struct efx_nic *efx)
171 {
172 	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
173 
174 	if (!efx->port_initialized)
175 		return;
176 
177 	efx->port_initialized = false;
178 
179 	efx->link_state.up = false;
180 	efx_siena_link_status_changed(efx);
181 }
182 
183 static void efx_remove_port(struct efx_nic *efx)
184 {
185 	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
186 
187 	efx->type->remove_port(efx);
188 }
189 
190 /**************************************************************************
191  *
192  * NIC handling
193  *
194  **************************************************************************/
195 
196 static LIST_HEAD(efx_primary_list);
197 static LIST_HEAD(efx_unassociated_list);
198 
199 static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right)
200 {
201 	return left->type == right->type &&
202 		left->vpd_sn && right->vpd_sn &&
203 		!strcmp(left->vpd_sn, right->vpd_sn);
204 }
205 
206 static void efx_associate(struct efx_nic *efx)
207 {
208 	struct efx_nic *other, *next;
209 
210 	if (efx->primary == efx) {
211 		/* Adding primary function; look for secondaries */
212 
213 		netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
214 		list_add_tail(&efx->node, &efx_primary_list);
215 
216 		list_for_each_entry_safe(other, next, &efx_unassociated_list,
217 					 node) {
218 			if (efx_same_controller(efx, other)) {
219 				list_del(&other->node);
220 				netif_dbg(other, probe, other->net_dev,
221 					  "moving to secondary list of %s %s\n",
222 					  pci_name(efx->pci_dev),
223 					  efx->net_dev->name);
224 				list_add_tail(&other->node,
225 					      &efx->secondary_list);
226 				other->primary = efx;
227 			}
228 		}
229 	} else {
230 		/* Adding secondary function; look for primary */
231 
232 		list_for_each_entry(other, &efx_primary_list, node) {
233 			if (efx_same_controller(efx, other)) {
234 				netif_dbg(efx, probe, efx->net_dev,
235 					  "adding to secondary list of %s %s\n",
236 					  pci_name(other->pci_dev),
237 					  other->net_dev->name);
238 				list_add_tail(&efx->node,
239 					      &other->secondary_list);
240 				efx->primary = other;
241 				return;
242 			}
243 		}
244 
245 		netif_dbg(efx, probe, efx->net_dev,
246 			  "adding to unassociated list\n");
247 		list_add_tail(&efx->node, &efx_unassociated_list);
248 	}
249 }
250 
251 static void efx_dissociate(struct efx_nic *efx)
252 {
253 	struct efx_nic *other, *next;
254 
255 	list_del(&efx->node);
256 	efx->primary = NULL;
257 
258 	list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
259 		list_del(&other->node);
260 		netif_dbg(other, probe, other->net_dev,
261 			  "moving to unassociated list\n");
262 		list_add_tail(&other->node, &efx_unassociated_list);
263 		other->primary = NULL;
264 	}
265 }
266 
267 static int efx_probe_nic(struct efx_nic *efx)
268 {
269 	int rc;
270 
271 	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
272 
273 	/* Carry out hardware-type specific initialisation */
274 	rc = efx->type->probe(efx);
275 	if (rc)
276 		return rc;
277 
278 	do {
279 		if (!efx->max_channels || !efx->max_tx_channels) {
280 			netif_err(efx, drv, efx->net_dev,
281 				  "Insufficient resources to allocate"
282 				  " any channels\n");
283 			rc = -ENOSPC;
284 			goto fail1;
285 		}
286 
287 		/* Determine the number of channels and queues by trying
288 		 * to hook in MSI-X interrupts.
289 		 */
290 		rc = efx_siena_probe_interrupts(efx);
291 		if (rc)
292 			goto fail1;
293 
294 		rc = efx_siena_set_channels(efx);
295 		if (rc)
296 			goto fail1;
297 
298 		/* dimension_resources can fail with EAGAIN */
299 		rc = efx->type->dimension_resources(efx);
300 		if (rc != 0 && rc != -EAGAIN)
301 			goto fail2;
302 
303 		if (rc == -EAGAIN)
304 			/* try again with new max_channels */
305 			efx_siena_remove_interrupts(efx);
306 
307 	} while (rc == -EAGAIN);
308 
309 	if (efx->n_channels > 1)
310 		netdev_rss_key_fill(efx->rss_context.rx_hash_key,
311 				    sizeof(efx->rss_context.rx_hash_key));
312 	efx_siena_set_default_rx_indir_table(efx, &efx->rss_context);
313 
314 	/* Initialise the interrupt moderation settings */
315 	efx->irq_mod_step_us = DIV_ROUND_UP(efx->timer_quantum_ns, 1000);
316 	efx_siena_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec,
317 				      true, true);
318 
319 	return 0;
320 
321 fail2:
322 	efx_siena_remove_interrupts(efx);
323 fail1:
324 	efx->type->remove(efx);
325 	return rc;
326 }
327 
328 static void efx_remove_nic(struct efx_nic *efx)
329 {
330 	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
331 
332 	efx_siena_remove_interrupts(efx);
333 	efx->type->remove(efx);
334 }
335 
336 /**************************************************************************
337  *
338  * NIC startup/shutdown
339  *
340  *************************************************************************/
341 
342 static int efx_probe_all(struct efx_nic *efx)
343 {
344 	int rc;
345 
346 	rc = efx_probe_nic(efx);
347 	if (rc) {
348 		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
349 		goto fail1;
350 	}
351 
352 	rc = efx_probe_port(efx);
353 	if (rc) {
354 		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
355 		goto fail2;
356 	}
357 
358 	BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
359 	if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
360 		rc = -EINVAL;
361 		goto fail3;
362 	}
363 
364 #ifdef CONFIG_SFC_SIENA_SRIOV
365 	rc = efx->type->vswitching_probe(efx);
366 	if (rc) /* not fatal; the PF will still work fine */
367 		netif_warn(efx, probe, efx->net_dev,
368 			   "failed to setup vswitching rc=%d;"
369 			   " VFs may not function\n", rc);
370 #endif
371 
372 	rc = efx_siena_probe_filters(efx);
373 	if (rc) {
374 		netif_err(efx, probe, efx->net_dev,
375 			  "failed to create filter tables\n");
376 		goto fail4;
377 	}
378 
379 	rc = efx_siena_probe_channels(efx);
380 	if (rc)
381 		goto fail5;
382 
383 	return 0;
384 
385  fail5:
386 	efx_siena_remove_filters(efx);
387  fail4:
388 #ifdef CONFIG_SFC_SIENA_SRIOV
389 	efx->type->vswitching_remove(efx);
390 #endif
391  fail3:
392 	efx_remove_port(efx);
393  fail2:
394 	efx_remove_nic(efx);
395  fail1:
396 	return rc;
397 }
398 
399 static void efx_remove_all(struct efx_nic *efx)
400 {
401 	rtnl_lock();
402 	efx_xdp_setup_prog(efx, NULL);
403 	rtnl_unlock();
404 
405 	efx_siena_remove_channels(efx);
406 	efx_siena_remove_filters(efx);
407 #ifdef CONFIG_SFC_SIENA_SRIOV
408 	efx->type->vswitching_remove(efx);
409 #endif
410 	efx_remove_port(efx);
411 	efx_remove_nic(efx);
412 }
413 
414 /**************************************************************************
415  *
416  * Interrupt moderation
417  *
418  **************************************************************************/
419 unsigned int efx_siena_usecs_to_ticks(struct efx_nic *efx, unsigned int usecs)
420 {
421 	if (usecs == 0)
422 		return 0;
423 	if (usecs * 1000 < efx->timer_quantum_ns)
424 		return 1; /* never round down to 0 */
425 	return usecs * 1000 / efx->timer_quantum_ns;
426 }
427 
428 /* Set interrupt moderation parameters */
429 int efx_siena_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
430 				  unsigned int rx_usecs, bool rx_adaptive,
431 				  bool rx_may_override_tx)
432 {
433 	struct efx_channel *channel;
434 	unsigned int timer_max_us;
435 
436 	EFX_ASSERT_RESET_SERIALISED(efx);
437 
438 	timer_max_us = efx->timer_max_ns / 1000;
439 
440 	if (tx_usecs > timer_max_us || rx_usecs > timer_max_us)
441 		return -EINVAL;
442 
443 	if (tx_usecs != rx_usecs && efx->tx_channel_offset == 0 &&
444 	    !rx_may_override_tx) {
445 		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
446 			  "RX and TX IRQ moderation must be equal\n");
447 		return -EINVAL;
448 	}
449 
450 	efx->irq_rx_adaptive = rx_adaptive;
451 	efx->irq_rx_moderation_us = rx_usecs;
452 	efx_for_each_channel(channel, efx) {
453 		if (efx_channel_has_rx_queue(channel))
454 			channel->irq_moderation_us = rx_usecs;
455 		else if (efx_channel_has_tx_queues(channel))
456 			channel->irq_moderation_us = tx_usecs;
457 		else if (efx_channel_is_xdp_tx(channel))
458 			channel->irq_moderation_us = tx_usecs;
459 	}
460 
461 	return 0;
462 }
463 
464 void efx_siena_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
465 				  unsigned int *rx_usecs, bool *rx_adaptive)
466 {
467 	*rx_adaptive = efx->irq_rx_adaptive;
468 	*rx_usecs = efx->irq_rx_moderation_us;
469 
470 	/* If channels are shared between RX and TX, so is IRQ
471 	 * moderation.  Otherwise, IRQ moderation is the same for all
472 	 * TX channels and is not adaptive.
473 	 */
474 	if (efx->tx_channel_offset == 0) {
475 		*tx_usecs = *rx_usecs;
476 	} else {
477 		struct efx_channel *tx_channel;
478 
479 		tx_channel = efx->channel[efx->tx_channel_offset];
480 		*tx_usecs = tx_channel->irq_moderation_us;
481 	}
482 }
483 
484 /**************************************************************************
485  *
486  * ioctls
487  *
488  *************************************************************************/
489 
490 /* Net device ioctl
491  * Context: process, rtnl_lock() held.
492  */
493 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
494 {
495 	struct efx_nic *efx = netdev_priv(net_dev);
496 	struct mii_ioctl_data *data = if_mii(ifr);
497 
498 	if (cmd == SIOCSHWTSTAMP)
499 		return efx_siena_ptp_set_ts_config(efx, ifr);
500 	if (cmd == SIOCGHWTSTAMP)
501 		return efx_siena_ptp_get_ts_config(efx, ifr);
502 
503 	/* Convert phy_id from older PRTAD/DEVAD format */
504 	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
505 	    (data->phy_id & 0xfc00) == 0x0400)
506 		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
507 
508 	return mdio_mii_ioctl(&efx->mdio, data, cmd);
509 }
510 
511 /**************************************************************************
512  *
513  * Kernel net device interface
514  *
515  *************************************************************************/
516 
517 /* Context: process, rtnl_lock() held. */
518 static int efx_net_open(struct net_device *net_dev)
519 {
520 	struct efx_nic *efx = netdev_priv(net_dev);
521 	int rc;
522 
523 	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
524 		  raw_smp_processor_id());
525 
526 	rc = efx_check_disabled(efx);
527 	if (rc)
528 		return rc;
529 	if (efx->phy_mode & PHY_MODE_SPECIAL)
530 		return -EBUSY;
531 	if (efx_siena_mcdi_poll_reboot(efx) && efx_siena_reset(efx, RESET_TYPE_ALL))
532 		return -EIO;
533 
534 	/* Notify the kernel of the link state polled during driver load,
535 	 * before the monitor starts running */
536 	efx_siena_link_status_changed(efx);
537 
538 	efx_siena_start_all(efx);
539 	if (efx->state == STATE_DISABLED || efx->reset_pending)
540 		netif_device_detach(efx->net_dev);
541 	efx_siena_selftest_async_start(efx);
542 	return 0;
543 }
544 
545 /* Context: process, rtnl_lock() held.
546  * Note that the kernel will ignore our return code; this method
547  * should really be a void.
548  */
549 static int efx_net_stop(struct net_device *net_dev)
550 {
551 	struct efx_nic *efx = netdev_priv(net_dev);
552 
553 	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
554 		  raw_smp_processor_id());
555 
556 	/* Stop the device and flush all the channels */
557 	efx_siena_stop_all(efx);
558 
559 	return 0;
560 }
561 
562 static int efx_vlan_rx_add_vid(struct net_device *net_dev, __be16 proto, u16 vid)
563 {
564 	struct efx_nic *efx = netdev_priv(net_dev);
565 
566 	if (efx->type->vlan_rx_add_vid)
567 		return efx->type->vlan_rx_add_vid(efx, proto, vid);
568 	else
569 		return -EOPNOTSUPP;
570 }
571 
572 static int efx_vlan_rx_kill_vid(struct net_device *net_dev, __be16 proto, u16 vid)
573 {
574 	struct efx_nic *efx = netdev_priv(net_dev);
575 
576 	if (efx->type->vlan_rx_kill_vid)
577 		return efx->type->vlan_rx_kill_vid(efx, proto, vid);
578 	else
579 		return -EOPNOTSUPP;
580 }
581 
582 static const struct net_device_ops efx_netdev_ops = {
583 	.ndo_open		= efx_net_open,
584 	.ndo_stop		= efx_net_stop,
585 	.ndo_get_stats64	= efx_siena_net_stats,
586 	.ndo_tx_timeout		= efx_siena_watchdog,
587 	.ndo_start_xmit		= efx_siena_hard_start_xmit,
588 	.ndo_validate_addr	= eth_validate_addr,
589 	.ndo_eth_ioctl		= efx_ioctl,
590 	.ndo_change_mtu		= efx_siena_change_mtu,
591 	.ndo_set_mac_address	= efx_siena_set_mac_address,
592 	.ndo_set_rx_mode	= efx_siena_set_rx_mode,
593 	.ndo_set_features	= efx_siena_set_features,
594 	.ndo_features_check	= efx_siena_features_check,
595 	.ndo_vlan_rx_add_vid	= efx_vlan_rx_add_vid,
596 	.ndo_vlan_rx_kill_vid	= efx_vlan_rx_kill_vid,
597 #ifdef CONFIG_SFC_SIENA_SRIOV
598 	.ndo_set_vf_mac		= efx_sriov_set_vf_mac,
599 	.ndo_set_vf_vlan	= efx_sriov_set_vf_vlan,
600 	.ndo_set_vf_spoofchk	= efx_sriov_set_vf_spoofchk,
601 	.ndo_get_vf_config	= efx_sriov_get_vf_config,
602 	.ndo_set_vf_link_state  = efx_sriov_set_vf_link_state,
603 #endif
604 	.ndo_get_phys_port_id   = efx_siena_get_phys_port_id,
605 	.ndo_get_phys_port_name	= efx_siena_get_phys_port_name,
606 	.ndo_setup_tc		= efx_siena_setup_tc,
607 #ifdef CONFIG_RFS_ACCEL
608 	.ndo_rx_flow_steer	= efx_siena_filter_rfs,
609 #endif
610 	.ndo_xdp_xmit		= efx_xdp_xmit,
611 	.ndo_bpf		= efx_xdp
612 };
613 
614 static int efx_xdp_setup_prog(struct efx_nic *efx, struct bpf_prog *prog)
615 {
616 	struct bpf_prog *old_prog;
617 
618 	if (efx->xdp_rxq_info_failed) {
619 		netif_err(efx, drv, efx->net_dev,
620 			  "Unable to bind XDP program due to previous failure of rxq_info\n");
621 		return -EINVAL;
622 	}
623 
624 	if (prog && efx->net_dev->mtu > efx_siena_xdp_max_mtu(efx)) {
625 		netif_err(efx, drv, efx->net_dev,
626 			  "Unable to configure XDP with MTU of %d (max: %d)\n",
627 			  efx->net_dev->mtu, efx_siena_xdp_max_mtu(efx));
628 		return -EINVAL;
629 	}
630 
631 	old_prog = rtnl_dereference(efx->xdp_prog);
632 	rcu_assign_pointer(efx->xdp_prog, prog);
633 	/* Release the reference that was originally passed by the caller. */
634 	if (old_prog)
635 		bpf_prog_put(old_prog);
636 
637 	return 0;
638 }
639 
640 /* Context: process, rtnl_lock() held. */
641 static int efx_xdp(struct net_device *dev, struct netdev_bpf *xdp)
642 {
643 	struct efx_nic *efx = netdev_priv(dev);
644 
645 	switch (xdp->command) {
646 	case XDP_SETUP_PROG:
647 		return efx_xdp_setup_prog(efx, xdp->prog);
648 	default:
649 		return -EINVAL;
650 	}
651 }
652 
653 static int efx_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **xdpfs,
654 			u32 flags)
655 {
656 	struct efx_nic *efx = netdev_priv(dev);
657 
658 	if (!netif_running(dev))
659 		return -EINVAL;
660 
661 	return efx_siena_xdp_tx_buffers(efx, n, xdpfs, flags & XDP_XMIT_FLUSH);
662 }
663 
664 static void efx_update_name(struct efx_nic *efx)
665 {
666 	strcpy(efx->name, efx->net_dev->name);
667 	efx_siena_mtd_rename(efx);
668 	efx_siena_set_channel_names(efx);
669 }
670 
671 static int efx_netdev_event(struct notifier_block *this,
672 			    unsigned long event, void *ptr)
673 {
674 	struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
675 
676 	if ((net_dev->netdev_ops == &efx_netdev_ops) &&
677 	    event == NETDEV_CHANGENAME)
678 		efx_update_name(netdev_priv(net_dev));
679 
680 	return NOTIFY_DONE;
681 }
682 
683 static struct notifier_block efx_netdev_notifier = {
684 	.notifier_call = efx_netdev_event,
685 };
686 
687 static ssize_t phy_type_show(struct device *dev,
688 			     struct device_attribute *attr, char *buf)
689 {
690 	struct efx_nic *efx = dev_get_drvdata(dev);
691 	return sprintf(buf, "%d\n", efx->phy_type);
692 }
693 static DEVICE_ATTR_RO(phy_type);
694 
695 static int efx_register_netdev(struct efx_nic *efx)
696 {
697 	struct net_device *net_dev = efx->net_dev;
698 	struct efx_channel *channel;
699 	int rc;
700 
701 	net_dev->watchdog_timeo = 5 * HZ;
702 	net_dev->irq = efx->pci_dev->irq;
703 	net_dev->netdev_ops = &efx_netdev_ops;
704 	if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
705 		net_dev->priv_flags |= IFF_UNICAST_FLT;
706 	net_dev->ethtool_ops = &efx_siena_ethtool_ops;
707 	netif_set_tso_max_segs(net_dev, EFX_TSO_MAX_SEGS);
708 	net_dev->min_mtu = EFX_MIN_MTU;
709 	net_dev->max_mtu = EFX_MAX_MTU;
710 
711 	rtnl_lock();
712 
713 	/* Enable resets to be scheduled and check whether any were
714 	 * already requested.  If so, the NIC is probably hosed so we
715 	 * abort.
716 	 */
717 	efx->state = STATE_READY;
718 	smp_mb(); /* ensure we change state before checking reset_pending */
719 	if (efx->reset_pending) {
720 		pci_err(efx->pci_dev, "aborting probe due to scheduled reset\n");
721 		rc = -EIO;
722 		goto fail_locked;
723 	}
724 
725 	rc = dev_alloc_name(net_dev, net_dev->name);
726 	if (rc < 0)
727 		goto fail_locked;
728 	efx_update_name(efx);
729 
730 	/* Always start with carrier off; PHY events will detect the link */
731 	netif_carrier_off(net_dev);
732 
733 	rc = register_netdevice(net_dev);
734 	if (rc)
735 		goto fail_locked;
736 
737 	efx_for_each_channel(channel, efx) {
738 		struct efx_tx_queue *tx_queue;
739 		efx_for_each_channel_tx_queue(tx_queue, channel)
740 			efx_siena_init_tx_queue_core_txq(tx_queue);
741 	}
742 
743 	efx_associate(efx);
744 
745 	rtnl_unlock();
746 
747 	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
748 	if (rc) {
749 		netif_err(efx, drv, efx->net_dev,
750 			  "failed to init net dev attributes\n");
751 		goto fail_registered;
752 	}
753 
754 	efx_siena_init_mcdi_logging(efx);
755 
756 	return 0;
757 
758 fail_registered:
759 	rtnl_lock();
760 	efx_dissociate(efx);
761 	unregister_netdevice(net_dev);
762 fail_locked:
763 	efx->state = STATE_UNINIT;
764 	rtnl_unlock();
765 	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
766 	return rc;
767 }
768 
769 static void efx_unregister_netdev(struct efx_nic *efx)
770 {
771 	if (!efx->net_dev)
772 		return;
773 
774 	BUG_ON(netdev_priv(efx->net_dev) != efx);
775 
776 	if (efx_dev_registered(efx)) {
777 		strscpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
778 		efx_siena_fini_mcdi_logging(efx);
779 		device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
780 		unregister_netdev(efx->net_dev);
781 	}
782 }
783 
784 /**************************************************************************
785  *
786  * List of NICs we support
787  *
788  **************************************************************************/
789 
790 /* PCI device ID table */
791 static const struct pci_device_id efx_pci_table[] = {
792 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803),	/* SFC9020 */
793 	 .driver_data = (unsigned long)&siena_a0_nic_type},
794 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813),	/* SFL9021 */
795 	 .driver_data = (unsigned long)&siena_a0_nic_type},
796 	{0}			/* end of list */
797 };
798 
799 /**************************************************************************
800  *
801  * Data housekeeping
802  *
803  **************************************************************************/
804 
805 void efx_siena_update_sw_stats(struct efx_nic *efx, u64 *stats)
806 {
807 	u64 n_rx_nodesc_trunc = 0;
808 	struct efx_channel *channel;
809 
810 	efx_for_each_channel(channel, efx)
811 		n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc;
812 	stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc;
813 	stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops);
814 }
815 
816 /**************************************************************************
817  *
818  * PCI interface
819  *
820  **************************************************************************/
821 
822 /* Main body of final NIC shutdown code
823  * This is called only at module unload (or hotplug removal).
824  */
825 static void efx_pci_remove_main(struct efx_nic *efx)
826 {
827 	/* Flush reset_work. It can no longer be scheduled since we
828 	 * are not READY.
829 	 */
830 	BUG_ON(efx->state == STATE_READY);
831 	efx_siena_flush_reset_workqueue(efx);
832 
833 	efx_siena_disable_interrupts(efx);
834 	efx_siena_clear_interrupt_affinity(efx);
835 	efx_siena_fini_interrupt(efx);
836 	efx_fini_port(efx);
837 	efx->type->fini(efx);
838 	efx_siena_fini_napi(efx);
839 	efx_remove_all(efx);
840 }
841 
842 /* Final NIC shutdown
843  * This is called only at module unload (or hotplug removal).  A PF can call
844  * this on its VFs to ensure they are unbound first.
845  */
846 static void efx_pci_remove(struct pci_dev *pci_dev)
847 {
848 	struct efx_nic *efx;
849 
850 	efx = pci_get_drvdata(pci_dev);
851 	if (!efx)
852 		return;
853 
854 	/* Mark the NIC as fini, then stop the interface */
855 	rtnl_lock();
856 	efx_dissociate(efx);
857 	dev_close(efx->net_dev);
858 	efx_siena_disable_interrupts(efx);
859 	efx->state = STATE_UNINIT;
860 	rtnl_unlock();
861 
862 	if (efx->type->sriov_fini)
863 		efx->type->sriov_fini(efx);
864 
865 	efx_unregister_netdev(efx);
866 
867 	efx_siena_mtd_remove(efx);
868 
869 	efx_pci_remove_main(efx);
870 
871 	efx_siena_fini_io(efx);
872 	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
873 
874 	efx_siena_fini_struct(efx);
875 	free_netdev(efx->net_dev);
876 };
877 
878 /* NIC VPD information
879  * Called during probe to display the part number of the
880  * installed NIC.
881  */
882 static void efx_probe_vpd_strings(struct efx_nic *efx)
883 {
884 	struct pci_dev *dev = efx->pci_dev;
885 	unsigned int vpd_size, kw_len;
886 	u8 *vpd_data;
887 	int start;
888 
889 	vpd_data = pci_vpd_alloc(dev, &vpd_size);
890 	if (IS_ERR(vpd_data)) {
891 		pci_warn(dev, "Unable to read VPD\n");
892 		return;
893 	}
894 
895 	start = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
896 					     PCI_VPD_RO_KEYWORD_PARTNO, &kw_len);
897 	if (start < 0)
898 		pci_err(dev, "Part number not found or incomplete\n");
899 	else
900 		pci_info(dev, "Part Number : %.*s\n", kw_len, vpd_data + start);
901 
902 	start = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
903 					     PCI_VPD_RO_KEYWORD_SERIALNO, &kw_len);
904 	if (start < 0)
905 		pci_err(dev, "Serial number not found or incomplete\n");
906 	else
907 		efx->vpd_sn = kmemdup_nul(vpd_data + start, kw_len, GFP_KERNEL);
908 
909 	kfree(vpd_data);
910 }
911 
912 
913 /* Main body of NIC initialisation
914  * This is called at module load (or hotplug insertion, theoretically).
915  */
916 static int efx_pci_probe_main(struct efx_nic *efx)
917 {
918 	int rc;
919 
920 	/* Do start-of-day initialisation */
921 	rc = efx_probe_all(efx);
922 	if (rc)
923 		goto fail1;
924 
925 	efx_siena_init_napi(efx);
926 
927 	down_write(&efx->filter_sem);
928 	rc = efx->type->init(efx);
929 	up_write(&efx->filter_sem);
930 	if (rc) {
931 		pci_err(efx->pci_dev, "failed to initialise NIC\n");
932 		goto fail3;
933 	}
934 
935 	rc = efx_init_port(efx);
936 	if (rc) {
937 		netif_err(efx, probe, efx->net_dev,
938 			  "failed to initialise port\n");
939 		goto fail4;
940 	}
941 
942 	rc = efx_siena_init_interrupt(efx);
943 	if (rc)
944 		goto fail5;
945 
946 	efx_siena_set_interrupt_affinity(efx);
947 	rc = efx_siena_enable_interrupts(efx);
948 	if (rc)
949 		goto fail6;
950 
951 	return 0;
952 
953  fail6:
954 	efx_siena_clear_interrupt_affinity(efx);
955 	efx_siena_fini_interrupt(efx);
956  fail5:
957 	efx_fini_port(efx);
958  fail4:
959 	efx->type->fini(efx);
960  fail3:
961 	efx_siena_fini_napi(efx);
962 	efx_remove_all(efx);
963  fail1:
964 	return rc;
965 }
966 
967 static int efx_pci_probe_post_io(struct efx_nic *efx)
968 {
969 	struct net_device *net_dev = efx->net_dev;
970 	int rc = efx_pci_probe_main(efx);
971 
972 	if (rc)
973 		return rc;
974 
975 	if (efx->type->sriov_init) {
976 		rc = efx->type->sriov_init(efx);
977 		if (rc)
978 			pci_err(efx->pci_dev, "SR-IOV can't be enabled rc %d\n",
979 				rc);
980 	}
981 
982 	/* Determine netdevice features */
983 	net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
984 			      NETIF_F_TSO | NETIF_F_RXCSUM | NETIF_F_RXALL);
985 	if (efx->type->offload_features & (NETIF_F_IPV6_CSUM | NETIF_F_HW_CSUM))
986 		net_dev->features |= NETIF_F_TSO6;
987 	/* Check whether device supports TSO */
988 	if (!efx->type->tso_versions || !efx->type->tso_versions(efx))
989 		net_dev->features &= ~NETIF_F_ALL_TSO;
990 	/* Mask for features that also apply to VLAN devices */
991 	net_dev->vlan_features |= (NETIF_F_HW_CSUM | NETIF_F_SG |
992 				   NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
993 				   NETIF_F_RXCSUM);
994 
995 	net_dev->hw_features |= net_dev->features & ~efx->fixed_features;
996 
997 	/* Disable receiving frames with bad FCS, by default. */
998 	net_dev->features &= ~NETIF_F_RXALL;
999 
1000 	/* Disable VLAN filtering by default.  It may be enforced if
1001 	 * the feature is fixed (i.e. VLAN filters are required to
1002 	 * receive VLAN tagged packets due to vPort restrictions).
1003 	 */
1004 	net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
1005 	net_dev->features |= efx->fixed_features;
1006 
1007 	net_dev->xdp_features = NETDEV_XDP_ACT_BASIC |
1008 				NETDEV_XDP_ACT_REDIRECT |
1009 				NETDEV_XDP_ACT_NDO_XMIT;
1010 
1011 	rc = efx_register_netdev(efx);
1012 	if (!rc)
1013 		return 0;
1014 
1015 	efx_pci_remove_main(efx);
1016 	return rc;
1017 }
1018 
1019 /* NIC initialisation
1020  *
1021  * This is called at module load (or hotplug insertion,
1022  * theoretically).  It sets up PCI mappings, resets the NIC,
1023  * sets up and registers the network devices with the kernel and hooks
1024  * the interrupt service routine.  It does not prepare the device for
1025  * transmission; this is left to the first time one of the network
1026  * interfaces is brought up (i.e. efx_net_open).
1027  */
1028 static int efx_pci_probe(struct pci_dev *pci_dev,
1029 			 const struct pci_device_id *entry)
1030 {
1031 	struct net_device *net_dev;
1032 	struct efx_nic *efx;
1033 	int rc;
1034 
1035 	/* Allocate and initialise a struct net_device and struct efx_nic */
1036 	net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
1037 				     EFX_MAX_RX_QUEUES);
1038 	if (!net_dev)
1039 		return -ENOMEM;
1040 	efx = netdev_priv(net_dev);
1041 	efx->type = (const struct efx_nic_type *) entry->driver_data;
1042 	efx->fixed_features |= NETIF_F_HIGHDMA;
1043 
1044 	pci_set_drvdata(pci_dev, efx);
1045 	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
1046 	rc = efx_siena_init_struct(efx, pci_dev, net_dev);
1047 	if (rc)
1048 		goto fail1;
1049 
1050 	pci_info(pci_dev, "Solarflare NIC detected\n");
1051 
1052 	if (!efx->type->is_vf)
1053 		efx_probe_vpd_strings(efx);
1054 
1055 	/* Set up basic I/O (BAR mappings etc) */
1056 	rc = efx_siena_init_io(efx, efx->type->mem_bar(efx),
1057 			       efx->type->max_dma_mask,
1058 			       efx->type->mem_map_size(efx));
1059 	if (rc)
1060 		goto fail2;
1061 
1062 	rc = efx_pci_probe_post_io(efx);
1063 	if (rc) {
1064 		/* On failure, retry once immediately.
1065 		 * If we aborted probe due to a scheduled reset, dismiss it.
1066 		 */
1067 		efx->reset_pending = 0;
1068 		rc = efx_pci_probe_post_io(efx);
1069 		if (rc) {
1070 			/* On another failure, retry once more
1071 			 * after a 50-305ms delay.
1072 			 */
1073 			unsigned char r;
1074 
1075 			get_random_bytes(&r, 1);
1076 			msleep((unsigned int)r + 50);
1077 			efx->reset_pending = 0;
1078 			rc = efx_pci_probe_post_io(efx);
1079 		}
1080 	}
1081 	if (rc)
1082 		goto fail3;
1083 
1084 	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
1085 
1086 	/* Try to create MTDs, but allow this to fail */
1087 	rtnl_lock();
1088 	rc = efx_mtd_probe(efx);
1089 	rtnl_unlock();
1090 	if (rc && rc != -EPERM)
1091 		netif_warn(efx, probe, efx->net_dev,
1092 			   "failed to create MTDs (%d)\n", rc);
1093 
1094 	if (efx->type->udp_tnl_push_ports)
1095 		efx->type->udp_tnl_push_ports(efx);
1096 
1097 	return 0;
1098 
1099  fail3:
1100 	efx_siena_fini_io(efx);
1101  fail2:
1102 	efx_siena_fini_struct(efx);
1103  fail1:
1104 	WARN_ON(rc > 0);
1105 	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
1106 	free_netdev(net_dev);
1107 	return rc;
1108 }
1109 
1110 /* efx_pci_sriov_configure returns the actual number of Virtual Functions
1111  * enabled on success
1112  */
1113 #ifdef CONFIG_SFC_SIENA_SRIOV
1114 static int efx_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
1115 {
1116 	int rc;
1117 	struct efx_nic *efx = pci_get_drvdata(dev);
1118 
1119 	if (efx->type->sriov_configure) {
1120 		rc = efx->type->sriov_configure(efx, num_vfs);
1121 		if (rc)
1122 			return rc;
1123 		else
1124 			return num_vfs;
1125 	} else
1126 		return -EOPNOTSUPP;
1127 }
1128 #endif
1129 
1130 static int efx_pm_freeze(struct device *dev)
1131 {
1132 	struct efx_nic *efx = dev_get_drvdata(dev);
1133 
1134 	rtnl_lock();
1135 
1136 	if (efx->state != STATE_DISABLED) {
1137 		efx->state = STATE_UNINIT;
1138 
1139 		efx_device_detach_sync(efx);
1140 
1141 		efx_siena_stop_all(efx);
1142 		efx_siena_disable_interrupts(efx);
1143 	}
1144 
1145 	rtnl_unlock();
1146 
1147 	return 0;
1148 }
1149 
1150 static void efx_pci_shutdown(struct pci_dev *pci_dev)
1151 {
1152 	struct efx_nic *efx = pci_get_drvdata(pci_dev);
1153 
1154 	if (!efx)
1155 		return;
1156 
1157 	efx_pm_freeze(&pci_dev->dev);
1158 	pci_disable_device(pci_dev);
1159 }
1160 
1161 static int efx_pm_thaw(struct device *dev)
1162 {
1163 	int rc;
1164 	struct efx_nic *efx = dev_get_drvdata(dev);
1165 
1166 	rtnl_lock();
1167 
1168 	if (efx->state != STATE_DISABLED) {
1169 		rc = efx_siena_enable_interrupts(efx);
1170 		if (rc)
1171 			goto fail;
1172 
1173 		mutex_lock(&efx->mac_lock);
1174 		efx_siena_mcdi_port_reconfigure(efx);
1175 		mutex_unlock(&efx->mac_lock);
1176 
1177 		efx_siena_start_all(efx);
1178 
1179 		efx_device_attach_if_not_resetting(efx);
1180 
1181 		efx->state = STATE_READY;
1182 
1183 		efx->type->resume_wol(efx);
1184 	}
1185 
1186 	rtnl_unlock();
1187 
1188 	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
1189 	efx_siena_queue_reset_work(efx);
1190 
1191 	return 0;
1192 
1193 fail:
1194 	rtnl_unlock();
1195 
1196 	return rc;
1197 }
1198 
1199 static int efx_pm_poweroff(struct device *dev)
1200 {
1201 	struct pci_dev *pci_dev = to_pci_dev(dev);
1202 	struct efx_nic *efx = pci_get_drvdata(pci_dev);
1203 
1204 	efx->type->fini(efx);
1205 
1206 	efx->reset_pending = 0;
1207 
1208 	pci_save_state(pci_dev);
1209 	return pci_set_power_state(pci_dev, PCI_D3hot);
1210 }
1211 
1212 /* Used for both resume and restore */
1213 static int efx_pm_resume(struct device *dev)
1214 {
1215 	struct pci_dev *pci_dev = to_pci_dev(dev);
1216 	struct efx_nic *efx = pci_get_drvdata(pci_dev);
1217 	int rc;
1218 
1219 	rc = pci_set_power_state(pci_dev, PCI_D0);
1220 	if (rc)
1221 		return rc;
1222 	pci_restore_state(pci_dev);
1223 	rc = pci_enable_device(pci_dev);
1224 	if (rc)
1225 		return rc;
1226 	pci_set_master(efx->pci_dev);
1227 	rc = efx->type->reset(efx, RESET_TYPE_ALL);
1228 	if (rc)
1229 		return rc;
1230 	down_write(&efx->filter_sem);
1231 	rc = efx->type->init(efx);
1232 	up_write(&efx->filter_sem);
1233 	if (rc)
1234 		return rc;
1235 	rc = efx_pm_thaw(dev);
1236 	return rc;
1237 }
1238 
1239 static int efx_pm_suspend(struct device *dev)
1240 {
1241 	int rc;
1242 
1243 	efx_pm_freeze(dev);
1244 	rc = efx_pm_poweroff(dev);
1245 	if (rc)
1246 		efx_pm_resume(dev);
1247 	return rc;
1248 }
1249 
1250 static const struct dev_pm_ops efx_pm_ops = {
1251 	.suspend	= efx_pm_suspend,
1252 	.resume		= efx_pm_resume,
1253 	.freeze		= efx_pm_freeze,
1254 	.thaw		= efx_pm_thaw,
1255 	.poweroff	= efx_pm_poweroff,
1256 	.restore	= efx_pm_resume,
1257 };
1258 
1259 static struct pci_driver efx_pci_driver = {
1260 	.name		= KBUILD_MODNAME,
1261 	.id_table	= efx_pci_table,
1262 	.probe		= efx_pci_probe,
1263 	.remove		= efx_pci_remove,
1264 	.driver.pm	= &efx_pm_ops,
1265 	.shutdown	= efx_pci_shutdown,
1266 	.err_handler	= &efx_siena_err_handlers,
1267 #ifdef CONFIG_SFC_SIENA_SRIOV
1268 	.sriov_configure = efx_pci_sriov_configure,
1269 #endif
1270 };
1271 
1272 /**************************************************************************
1273  *
1274  * Kernel module interface
1275  *
1276  *************************************************************************/
1277 
1278 static int __init efx_init_module(void)
1279 {
1280 	int rc;
1281 
1282 	pr_info("Solarflare Siena driver\n");
1283 
1284 	rc = register_netdevice_notifier(&efx_netdev_notifier);
1285 	if (rc)
1286 		goto err_notifier;
1287 
1288 #ifdef CONFIG_SFC_SIENA_SRIOV
1289 	rc = efx_init_sriov();
1290 	if (rc)
1291 		goto err_sriov;
1292 #endif
1293 
1294 	rc = efx_siena_create_reset_workqueue();
1295 	if (rc)
1296 		goto err_reset;
1297 
1298 	rc = pci_register_driver(&efx_pci_driver);
1299 	if (rc < 0)
1300 		goto err_pci;
1301 
1302 	return 0;
1303 
1304  err_pci:
1305 	efx_siena_destroy_reset_workqueue();
1306  err_reset:
1307 #ifdef CONFIG_SFC_SIENA_SRIOV
1308 	efx_fini_sriov();
1309  err_sriov:
1310 #endif
1311 	unregister_netdevice_notifier(&efx_netdev_notifier);
1312  err_notifier:
1313 	return rc;
1314 }
1315 
1316 static void __exit efx_exit_module(void)
1317 {
1318 	pr_info("Solarflare Siena driver unloading\n");
1319 
1320 	pci_unregister_driver(&efx_pci_driver);
1321 	efx_siena_destroy_reset_workqueue();
1322 #ifdef CONFIG_SFC_SIENA_SRIOV
1323 	efx_fini_sriov();
1324 #endif
1325 	unregister_netdevice_notifier(&efx_netdev_notifier);
1326 
1327 }
1328 
1329 module_init(efx_init_module);
1330 module_exit(efx_exit_module);
1331 
1332 MODULE_AUTHOR("Solarflare Communications and "
1333 	      "Michael Brown <mbrown@fensystems.co.uk>");
1334 MODULE_DESCRIPTION("Solarflare Siena network driver");
1335 MODULE_LICENSE("GPL");
1336 MODULE_DEVICE_TABLE(pci, efx_pci_table);
1337