1 // SPDX-License-Identifier: GPL-2.0-only 2 /**************************************************************************** 3 * Driver for Solarflare network controllers and boards 4 * Copyright 2018 Solarflare Communications Inc. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published 8 * by the Free Software Foundation, incorporated herein by reference. 9 */ 10 11 #include "net_driver.h" 12 #include <linux/module.h> 13 #include <linux/iommu.h> 14 #include <net/rps.h> 15 #include "efx.h" 16 #include "nic.h" 17 #include "rx_common.h" 18 19 /* This is the percentage fill level below which new RX descriptors 20 * will be added to the RX descriptor ring. 21 */ 22 static unsigned int rx_refill_threshold; 23 module_param(rx_refill_threshold, uint, 0444); 24 MODULE_PARM_DESC(rx_refill_threshold, 25 "RX descriptor ring refill threshold (%)"); 26 27 /* RX maximum head room required. 28 * 29 * This must be at least 1 to prevent overflow, plus one packet-worth 30 * to allow pipelined receives. 31 */ 32 #define EFX_RXD_HEAD_ROOM (1 + EFX_RX_MAX_FRAGS) 33 34 /* Check the RX page recycle ring for a page that can be reused. */ 35 static struct page *efx_reuse_page(struct efx_rx_queue *rx_queue) 36 { 37 struct efx_nic *efx = rx_queue->efx; 38 struct efx_rx_page_state *state; 39 unsigned int index; 40 struct page *page; 41 42 if (unlikely(!rx_queue->page_ring)) 43 return NULL; 44 index = rx_queue->page_remove & rx_queue->page_ptr_mask; 45 page = rx_queue->page_ring[index]; 46 if (page == NULL) 47 return NULL; 48 49 rx_queue->page_ring[index] = NULL; 50 /* page_remove cannot exceed page_add. */ 51 if (rx_queue->page_remove != rx_queue->page_add) 52 ++rx_queue->page_remove; 53 54 /* If page_count is 1 then we hold the only reference to this page. */ 55 if (page_count(page) == 1) { 56 ++rx_queue->page_recycle_count; 57 return page; 58 } else { 59 state = page_address(page); 60 dma_unmap_page(&efx->pci_dev->dev, state->dma_addr, 61 PAGE_SIZE << efx->rx_buffer_order, 62 DMA_FROM_DEVICE); 63 put_page(page); 64 ++rx_queue->page_recycle_failed; 65 } 66 67 return NULL; 68 } 69 70 /* Attempt to recycle the page if there is an RX recycle ring; the page can 71 * only be added if this is the final RX buffer, to prevent pages being used in 72 * the descriptor ring and appearing in the recycle ring simultaneously. 73 */ 74 static void efx_recycle_rx_page(struct efx_channel *channel, 75 struct efx_rx_buffer *rx_buf) 76 { 77 struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel); 78 struct efx_nic *efx = rx_queue->efx; 79 struct page *page = rx_buf->page; 80 unsigned int index; 81 82 /* Only recycle the page after processing the final buffer. */ 83 if (!(rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE)) 84 return; 85 86 index = rx_queue->page_add & rx_queue->page_ptr_mask; 87 if (rx_queue->page_ring[index] == NULL) { 88 unsigned int read_index = rx_queue->page_remove & 89 rx_queue->page_ptr_mask; 90 91 /* The next slot in the recycle ring is available, but 92 * increment page_remove if the read pointer currently 93 * points here. 94 */ 95 if (read_index == index) 96 ++rx_queue->page_remove; 97 rx_queue->page_ring[index] = page; 98 ++rx_queue->page_add; 99 return; 100 } 101 ++rx_queue->page_recycle_full; 102 efx_unmap_rx_buffer(efx, rx_buf); 103 put_page(rx_buf->page); 104 } 105 106 /* Recycle the pages that are used by buffers that have just been received. */ 107 void efx_recycle_rx_pages(struct efx_channel *channel, 108 struct efx_rx_buffer *rx_buf, 109 unsigned int n_frags) 110 { 111 struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel); 112 113 if (unlikely(!rx_queue->page_ring)) 114 return; 115 116 do { 117 efx_recycle_rx_page(channel, rx_buf); 118 rx_buf = efx_rx_buf_next(rx_queue, rx_buf); 119 } while (--n_frags); 120 } 121 122 void efx_discard_rx_packet(struct efx_channel *channel, 123 struct efx_rx_buffer *rx_buf, 124 unsigned int n_frags) 125 { 126 struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel); 127 128 efx_recycle_rx_pages(channel, rx_buf, n_frags); 129 130 efx_free_rx_buffers(rx_queue, rx_buf, n_frags); 131 } 132 133 static void efx_init_rx_recycle_ring(struct efx_rx_queue *rx_queue) 134 { 135 unsigned int bufs_in_recycle_ring, page_ring_size; 136 struct efx_nic *efx = rx_queue->efx; 137 138 bufs_in_recycle_ring = efx_rx_recycle_ring_size(efx); 139 page_ring_size = roundup_pow_of_two(bufs_in_recycle_ring / 140 efx->rx_bufs_per_page); 141 rx_queue->page_ring = kcalloc(page_ring_size, 142 sizeof(*rx_queue->page_ring), GFP_KERNEL); 143 if (!rx_queue->page_ring) 144 rx_queue->page_ptr_mask = 0; 145 else 146 rx_queue->page_ptr_mask = page_ring_size - 1; 147 } 148 149 static void efx_fini_rx_recycle_ring(struct efx_rx_queue *rx_queue) 150 { 151 struct efx_nic *efx = rx_queue->efx; 152 int i; 153 154 if (unlikely(!rx_queue->page_ring)) 155 return; 156 157 /* Unmap and release the pages in the recycle ring. Remove the ring. */ 158 for (i = 0; i <= rx_queue->page_ptr_mask; i++) { 159 struct page *page = rx_queue->page_ring[i]; 160 struct efx_rx_page_state *state; 161 162 if (page == NULL) 163 continue; 164 165 state = page_address(page); 166 dma_unmap_page(&efx->pci_dev->dev, state->dma_addr, 167 PAGE_SIZE << efx->rx_buffer_order, 168 DMA_FROM_DEVICE); 169 put_page(page); 170 } 171 kfree(rx_queue->page_ring); 172 rx_queue->page_ring = NULL; 173 } 174 175 static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue, 176 struct efx_rx_buffer *rx_buf) 177 { 178 /* Release the page reference we hold for the buffer. */ 179 if (rx_buf->page) 180 put_page(rx_buf->page); 181 182 /* If this is the last buffer in a page, unmap and free it. */ 183 if (rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE) { 184 efx_unmap_rx_buffer(rx_queue->efx, rx_buf); 185 efx_free_rx_buffers(rx_queue, rx_buf, 1); 186 } 187 rx_buf->page = NULL; 188 } 189 190 int efx_probe_rx_queue(struct efx_rx_queue *rx_queue) 191 { 192 struct efx_nic *efx = rx_queue->efx; 193 unsigned int entries; 194 int rc; 195 196 /* Create the smallest power-of-two aligned ring */ 197 entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE); 198 EFX_WARN_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE); 199 rx_queue->ptr_mask = entries - 1; 200 201 netif_dbg(efx, probe, efx->net_dev, 202 "creating RX queue %d size %#x mask %#x\n", 203 efx_rx_queue_index(rx_queue), efx->rxq_entries, 204 rx_queue->ptr_mask); 205 206 /* Allocate RX buffers */ 207 rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer), 208 GFP_KERNEL); 209 if (!rx_queue->buffer) 210 return -ENOMEM; 211 212 rc = efx_nic_probe_rx(rx_queue); 213 if (rc) { 214 kfree(rx_queue->buffer); 215 rx_queue->buffer = NULL; 216 } 217 218 return rc; 219 } 220 221 void efx_init_rx_queue(struct efx_rx_queue *rx_queue) 222 { 223 unsigned int max_fill, trigger, max_trigger; 224 struct efx_nic *efx = rx_queue->efx; 225 int rc = 0; 226 227 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev, 228 "initialising RX queue %d\n", efx_rx_queue_index(rx_queue)); 229 230 /* Initialise ptr fields */ 231 rx_queue->added_count = 0; 232 rx_queue->notified_count = 0; 233 rx_queue->granted_count = 0; 234 rx_queue->removed_count = 0; 235 rx_queue->min_fill = -1U; 236 efx_init_rx_recycle_ring(rx_queue); 237 238 rx_queue->page_remove = 0; 239 rx_queue->page_add = rx_queue->page_ptr_mask + 1; 240 rx_queue->page_recycle_count = 0; 241 rx_queue->page_recycle_failed = 0; 242 rx_queue->page_recycle_full = 0; 243 244 rx_queue->old_rx_packets = rx_queue->rx_packets; 245 rx_queue->old_rx_bytes = rx_queue->rx_bytes; 246 247 /* Initialise limit fields */ 248 max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM; 249 max_trigger = 250 max_fill - efx->rx_pages_per_batch * efx->rx_bufs_per_page; 251 if (rx_refill_threshold != 0) { 252 trigger = max_fill * min(rx_refill_threshold, 100U) / 100U; 253 if (trigger > max_trigger) 254 trigger = max_trigger; 255 } else { 256 trigger = max_trigger; 257 } 258 259 rx_queue->max_fill = max_fill; 260 rx_queue->fast_fill_trigger = trigger; 261 rx_queue->refill_enabled = true; 262 263 /* Initialise XDP queue information */ 264 rc = xdp_rxq_info_reg(&rx_queue->xdp_rxq_info, efx->net_dev, 265 rx_queue->core_index, 0); 266 267 if (rc) { 268 netif_err(efx, rx_err, efx->net_dev, 269 "Failure to initialise XDP queue information rc=%d\n", 270 rc); 271 efx->xdp_rxq_info_failed = true; 272 } else { 273 rx_queue->xdp_rxq_info_valid = true; 274 } 275 276 /* Set up RX descriptor ring */ 277 efx_nic_init_rx(rx_queue); 278 } 279 280 void efx_fini_rx_queue(struct efx_rx_queue *rx_queue) 281 { 282 struct efx_rx_buffer *rx_buf; 283 int i; 284 285 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev, 286 "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue)); 287 288 timer_delete_sync(&rx_queue->slow_fill); 289 if (rx_queue->grant_credits) 290 flush_work(&rx_queue->grant_work); 291 292 /* Release RX buffers from the current read ptr to the write ptr */ 293 if (rx_queue->buffer) { 294 for (i = rx_queue->removed_count; i < rx_queue->added_count; 295 i++) { 296 unsigned int index = i & rx_queue->ptr_mask; 297 298 rx_buf = efx_rx_buffer(rx_queue, index); 299 efx_fini_rx_buffer(rx_queue, rx_buf); 300 } 301 } 302 303 efx_fini_rx_recycle_ring(rx_queue); 304 305 if (rx_queue->xdp_rxq_info_valid) 306 xdp_rxq_info_unreg(&rx_queue->xdp_rxq_info); 307 308 rx_queue->xdp_rxq_info_valid = false; 309 } 310 311 void efx_remove_rx_queue(struct efx_rx_queue *rx_queue) 312 { 313 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev, 314 "destroying RX queue %d\n", efx_rx_queue_index(rx_queue)); 315 316 efx_nic_remove_rx(rx_queue); 317 318 kfree(rx_queue->buffer); 319 rx_queue->buffer = NULL; 320 } 321 322 /* Unmap a DMA-mapped page. This function is only called for the final RX 323 * buffer in a page. 324 */ 325 void efx_unmap_rx_buffer(struct efx_nic *efx, 326 struct efx_rx_buffer *rx_buf) 327 { 328 struct page *page = rx_buf->page; 329 330 if (page) { 331 struct efx_rx_page_state *state = page_address(page); 332 333 dma_unmap_page(&efx->pci_dev->dev, 334 state->dma_addr, 335 PAGE_SIZE << efx->rx_buffer_order, 336 DMA_FROM_DEVICE); 337 } 338 } 339 340 void efx_free_rx_buffers(struct efx_rx_queue *rx_queue, 341 struct efx_rx_buffer *rx_buf, 342 unsigned int num_bufs) 343 { 344 do { 345 if (rx_buf->page) { 346 put_page(rx_buf->page); 347 rx_buf->page = NULL; 348 } 349 rx_buf = efx_rx_buf_next(rx_queue, rx_buf); 350 } while (--num_bufs); 351 } 352 353 void efx_rx_slow_fill(struct timer_list *t) 354 { 355 struct efx_rx_queue *rx_queue = timer_container_of(rx_queue, t, 356 slow_fill); 357 358 /* Post an event to cause NAPI to run and refill the queue */ 359 efx_nic_generate_fill_event(rx_queue); 360 ++rx_queue->slow_fill_count; 361 } 362 363 void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue) 364 { 365 mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(10)); 366 } 367 368 /* efx_init_rx_buffers - create EFX_RX_BATCH page-based RX buffers 369 * 370 * @rx_queue: Efx RX queue 371 * 372 * This allocates a batch of pages, maps them for DMA, and populates 373 * struct efx_rx_buffers for each one. Return a negative error code or 374 * 0 on success. If a single page can be used for multiple buffers, 375 * then the page will either be inserted fully, or not at all. 376 */ 377 static int efx_init_rx_buffers(struct efx_rx_queue *rx_queue, bool atomic) 378 { 379 unsigned int page_offset, index, count; 380 struct efx_nic *efx = rx_queue->efx; 381 struct efx_rx_page_state *state; 382 struct efx_rx_buffer *rx_buf; 383 dma_addr_t dma_addr; 384 struct page *page; 385 386 count = 0; 387 do { 388 page = efx_reuse_page(rx_queue); 389 if (page == NULL) { 390 page = alloc_pages(__GFP_COMP | 391 (atomic ? GFP_ATOMIC : GFP_KERNEL), 392 efx->rx_buffer_order); 393 if (unlikely(page == NULL)) 394 return -ENOMEM; 395 dma_addr = 396 dma_map_page(&efx->pci_dev->dev, page, 0, 397 PAGE_SIZE << efx->rx_buffer_order, 398 DMA_FROM_DEVICE); 399 if (unlikely(dma_mapping_error(&efx->pci_dev->dev, 400 dma_addr))) { 401 __free_pages(page, efx->rx_buffer_order); 402 return -EIO; 403 } 404 state = page_address(page); 405 state->dma_addr = dma_addr; 406 } else { 407 state = page_address(page); 408 dma_addr = state->dma_addr; 409 } 410 411 dma_addr += sizeof(struct efx_rx_page_state); 412 page_offset = sizeof(struct efx_rx_page_state); 413 414 do { 415 index = rx_queue->added_count & rx_queue->ptr_mask; 416 rx_buf = efx_rx_buffer(rx_queue, index); 417 rx_buf->dma_addr = dma_addr + efx->rx_ip_align + 418 EFX_XDP_HEADROOM; 419 rx_buf->page = page; 420 rx_buf->page_offset = page_offset + efx->rx_ip_align + 421 EFX_XDP_HEADROOM; 422 rx_buf->len = efx->rx_dma_len; 423 rx_buf->flags = 0; 424 ++rx_queue->added_count; 425 get_page(page); 426 dma_addr += efx->rx_page_buf_step; 427 page_offset += efx->rx_page_buf_step; 428 } while (page_offset + efx->rx_page_buf_step <= PAGE_SIZE); 429 430 rx_buf->flags = EFX_RX_BUF_LAST_IN_PAGE; 431 } while (++count < efx->rx_pages_per_batch); 432 433 return 0; 434 } 435 436 void efx_rx_config_page_split(struct efx_nic *efx) 437 { 438 efx->rx_page_buf_step = ALIGN(efx->rx_dma_len + efx->rx_ip_align + 439 EFX_XDP_HEADROOM + EFX_XDP_TAILROOM, 440 EFX_RX_BUF_ALIGNMENT); 441 efx->rx_bufs_per_page = efx->rx_buffer_order ? 1 : 442 ((PAGE_SIZE - sizeof(struct efx_rx_page_state)) / 443 efx->rx_page_buf_step); 444 efx->rx_buffer_truesize = (PAGE_SIZE << efx->rx_buffer_order) / 445 efx->rx_bufs_per_page; 446 efx->rx_pages_per_batch = DIV_ROUND_UP(EFX_RX_PREFERRED_BATCH, 447 efx->rx_bufs_per_page); 448 } 449 450 /* efx_fast_push_rx_descriptors - push new RX descriptors quickly 451 * @rx_queue: RX descriptor queue 452 * 453 * This will aim to fill the RX descriptor queue up to 454 * @rx_queue->@max_fill. If there is insufficient atomic 455 * memory to do so, a slow fill will be scheduled. 456 * 457 * The caller must provide serialisation (none is used here). In practise, 458 * this means this function must run from the NAPI handler, or be called 459 * when NAPI is disabled. 460 */ 461 void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue, bool atomic) 462 { 463 struct efx_nic *efx = rx_queue->efx; 464 unsigned int fill_level, batch_size; 465 int space, rc = 0; 466 467 if (!rx_queue->refill_enabled) 468 return; 469 470 /* Calculate current fill level, and exit if we don't need to fill */ 471 fill_level = (rx_queue->added_count - rx_queue->removed_count); 472 EFX_WARN_ON_ONCE_PARANOID(fill_level > rx_queue->efx->rxq_entries); 473 if (fill_level >= rx_queue->fast_fill_trigger) 474 goto out; 475 476 /* Record minimum fill level */ 477 if (unlikely(fill_level < rx_queue->min_fill)) { 478 if (fill_level) 479 rx_queue->min_fill = fill_level; 480 } 481 482 batch_size = efx->rx_pages_per_batch * efx->rx_bufs_per_page; 483 space = rx_queue->max_fill - fill_level; 484 EFX_WARN_ON_ONCE_PARANOID(space < batch_size); 485 486 netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev, 487 "RX queue %d fast-filling descriptor ring from" 488 " level %d to level %d\n", 489 efx_rx_queue_index(rx_queue), fill_level, 490 rx_queue->max_fill); 491 492 do { 493 rc = efx_init_rx_buffers(rx_queue, atomic); 494 if (unlikely(rc)) { 495 /* Ensure that we don't leave the rx queue empty */ 496 efx_schedule_slow_fill(rx_queue); 497 goto out; 498 } 499 } while ((space -= batch_size) >= batch_size); 500 501 netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev, 502 "RX queue %d fast-filled descriptor ring " 503 "to level %d\n", efx_rx_queue_index(rx_queue), 504 rx_queue->added_count - rx_queue->removed_count); 505 506 out: 507 if (rx_queue->notified_count != rx_queue->added_count) 508 efx_nic_notify_rx_desc(rx_queue); 509 } 510 511 /* Pass a received packet up through GRO. GRO can handle pages 512 * regardless of checksum state and skbs with a good checksum. 513 */ 514 void 515 efx_rx_packet_gro(struct efx_channel *channel, struct efx_rx_buffer *rx_buf, 516 unsigned int n_frags, u8 *eh, __wsum csum) 517 { 518 struct napi_struct *napi = &channel->napi_str; 519 struct efx_nic *efx = channel->efx; 520 struct sk_buff *skb; 521 522 skb = napi_get_frags(napi); 523 if (unlikely(!skb)) { 524 struct efx_rx_queue *rx_queue; 525 526 rx_queue = efx_channel_get_rx_queue(channel); 527 efx_free_rx_buffers(rx_queue, rx_buf, n_frags); 528 return; 529 } 530 531 if (efx->net_dev->features & NETIF_F_RXHASH && 532 efx_rx_buf_hash_valid(efx, eh)) 533 skb_set_hash(skb, efx_rx_buf_hash(efx, eh), 534 PKT_HASH_TYPE_L3); 535 if (csum) { 536 skb->csum = csum; 537 skb->ip_summed = CHECKSUM_COMPLETE; 538 } else { 539 skb->ip_summed = ((rx_buf->flags & EFX_RX_PKT_CSUMMED) ? 540 CHECKSUM_UNNECESSARY : CHECKSUM_NONE); 541 } 542 skb->csum_level = !!(rx_buf->flags & EFX_RX_PKT_CSUM_LEVEL); 543 544 for (;;) { 545 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags, 546 rx_buf->page, rx_buf->page_offset, 547 rx_buf->len); 548 rx_buf->page = NULL; 549 skb->len += rx_buf->len; 550 if (skb_shinfo(skb)->nr_frags == n_frags) 551 break; 552 553 rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf); 554 } 555 556 skb->data_len = skb->len; 557 skb->truesize += n_frags * efx->rx_buffer_truesize; 558 559 skb_record_rx_queue(skb, channel->rx_queue.core_index); 560 561 napi_gro_frags(napi); 562 } 563 564 struct efx_rss_context_priv *efx_find_rss_context_entry(struct efx_nic *efx, 565 u32 id) 566 { 567 struct ethtool_rxfh_context *ctx; 568 569 WARN_ON(!mutex_is_locked(&efx->net_dev->ethtool->rss_lock)); 570 571 ctx = xa_load(&efx->net_dev->ethtool->rss_ctx, id); 572 if (!ctx) 573 return NULL; 574 return ethtool_rxfh_context_priv(ctx); 575 } 576 577 void efx_set_default_rx_indir_table(struct efx_nic *efx, u32 *indir) 578 { 579 size_t i; 580 581 for (i = 0; i < ARRAY_SIZE(efx->rss_context.rx_indir_table); i++) 582 indir[i] = ethtool_rxfh_indir_default(i, efx->rss_spread); 583 } 584 585 /** 586 * efx_filter_is_mc_recipient - test whether spec is a multicast recipient 587 * @spec: Specification to test 588 * 589 * Return: %true if the specification is a non-drop RX filter that 590 * matches a local MAC address I/G bit value of 1 or matches a local 591 * IPv4 or IPv6 address value in the respective multicast address 592 * range. Otherwise %false. 593 */ 594 bool efx_filter_is_mc_recipient(const struct efx_filter_spec *spec) 595 { 596 if (!(spec->flags & EFX_FILTER_FLAG_RX) || 597 spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP) 598 return false; 599 600 if (spec->match_flags & 601 (EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_LOC_MAC_IG) && 602 is_multicast_ether_addr(spec->loc_mac)) 603 return true; 604 605 if ((spec->match_flags & 606 (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) == 607 (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) { 608 if (spec->ether_type == htons(ETH_P_IP) && 609 ipv4_is_multicast(spec->loc_host[0])) 610 return true; 611 if (spec->ether_type == htons(ETH_P_IPV6) && 612 ((const u8 *)spec->loc_host)[0] == 0xff) 613 return true; 614 } 615 616 return false; 617 } 618 619 bool efx_filter_spec_equal(const struct efx_filter_spec *left, 620 const struct efx_filter_spec *right) 621 { 622 if ((left->match_flags ^ right->match_flags) | 623 ((left->flags ^ right->flags) & 624 (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX))) 625 return false; 626 627 return memcmp(&left->vport_id, &right->vport_id, 628 sizeof(struct efx_filter_spec) - 629 offsetof(struct efx_filter_spec, vport_id)) == 0; 630 } 631 632 u32 efx_filter_spec_hash(const struct efx_filter_spec *spec) 633 { 634 BUILD_BUG_ON(offsetof(struct efx_filter_spec, vport_id) & 3); 635 return jhash2((const u32 *)&spec->vport_id, 636 (sizeof(struct efx_filter_spec) - 637 offsetof(struct efx_filter_spec, vport_id)) / 4, 638 0); 639 } 640 641 #ifdef CONFIG_RFS_ACCEL 642 bool efx_rps_check_rule(struct efx_arfs_rule *rule, unsigned int filter_idx, 643 bool *force) 644 { 645 if (rule->filter_id == EFX_ARFS_FILTER_ID_PENDING) { 646 /* ARFS is currently updating this entry, leave it */ 647 return false; 648 } 649 if (rule->filter_id == EFX_ARFS_FILTER_ID_ERROR) { 650 /* ARFS tried and failed to update this, so it's probably out 651 * of date. Remove the filter and the ARFS rule entry. 652 */ 653 rule->filter_id = EFX_ARFS_FILTER_ID_REMOVING; 654 *force = true; 655 return true; 656 } else if (WARN_ON(rule->filter_id != filter_idx)) { /* can't happen */ 657 /* ARFS has moved on, so old filter is not needed. Since we did 658 * not mark the rule with EFX_ARFS_FILTER_ID_REMOVING, it will 659 * not be removed by efx_rps_hash_del() subsequently. 660 */ 661 *force = true; 662 return true; 663 } 664 /* Remove it iff ARFS wants to. */ 665 return true; 666 } 667 668 static 669 struct hlist_head *efx_rps_hash_bucket(struct efx_nic *efx, 670 const struct efx_filter_spec *spec) 671 { 672 u32 hash = efx_filter_spec_hash(spec); 673 674 lockdep_assert_held(&efx->rps_hash_lock); 675 if (!efx->rps_hash_table) 676 return NULL; 677 return &efx->rps_hash_table[hash % EFX_ARFS_HASH_TABLE_SIZE]; 678 } 679 680 struct efx_arfs_rule *efx_rps_hash_find(struct efx_nic *efx, 681 const struct efx_filter_spec *spec) 682 { 683 struct efx_arfs_rule *rule; 684 struct hlist_head *head; 685 struct hlist_node *node; 686 687 head = efx_rps_hash_bucket(efx, spec); 688 if (!head) 689 return NULL; 690 hlist_for_each(node, head) { 691 rule = container_of(node, struct efx_arfs_rule, node); 692 if (efx_filter_spec_equal(spec, &rule->spec)) 693 return rule; 694 } 695 return NULL; 696 } 697 698 struct efx_arfs_rule *efx_rps_hash_add(struct efx_nic *efx, 699 const struct efx_filter_spec *spec, 700 bool *new) 701 { 702 struct efx_arfs_rule *rule; 703 struct hlist_head *head; 704 struct hlist_node *node; 705 706 head = efx_rps_hash_bucket(efx, spec); 707 if (!head) 708 return NULL; 709 hlist_for_each(node, head) { 710 rule = container_of(node, struct efx_arfs_rule, node); 711 if (efx_filter_spec_equal(spec, &rule->spec)) { 712 *new = false; 713 return rule; 714 } 715 } 716 rule = kmalloc(sizeof(*rule), GFP_ATOMIC); 717 *new = true; 718 if (rule) { 719 memcpy(&rule->spec, spec, sizeof(rule->spec)); 720 hlist_add_head(&rule->node, head); 721 } 722 return rule; 723 } 724 725 void efx_rps_hash_del(struct efx_nic *efx, const struct efx_filter_spec *spec) 726 { 727 struct efx_arfs_rule *rule; 728 struct hlist_head *head; 729 struct hlist_node *node; 730 731 head = efx_rps_hash_bucket(efx, spec); 732 if (WARN_ON(!head)) 733 return; 734 hlist_for_each(node, head) { 735 rule = container_of(node, struct efx_arfs_rule, node); 736 if (efx_filter_spec_equal(spec, &rule->spec)) { 737 /* Someone already reused the entry. We know that if 738 * this check doesn't fire (i.e. filter_id == REMOVING) 739 * then the REMOVING mark was put there by our caller, 740 * because caller is holding a lock on filter table and 741 * only holders of that lock set REMOVING. 742 */ 743 if (rule->filter_id != EFX_ARFS_FILTER_ID_REMOVING) 744 return; 745 hlist_del(node); 746 kfree(rule); 747 return; 748 } 749 } 750 /* We didn't find it. */ 751 WARN_ON(1); 752 } 753 #endif 754 755 int efx_probe_filters(struct efx_nic *efx) 756 { 757 int rc; 758 759 mutex_lock(&efx->mac_lock); 760 rc = efx->type->filter_table_probe(efx); 761 if (rc) 762 goto out_unlock; 763 764 #ifdef CONFIG_RFS_ACCEL 765 if (efx->type->offload_features & NETIF_F_NTUPLE) { 766 struct efx_channel *channel; 767 int i, success = 1; 768 769 efx_for_each_channel(channel, efx) { 770 channel->rps_flow_id = 771 kcalloc(efx->type->max_rx_ip_filters, 772 sizeof(*channel->rps_flow_id), 773 GFP_KERNEL); 774 if (!channel->rps_flow_id) 775 success = 0; 776 else 777 for (i = 0; 778 i < efx->type->max_rx_ip_filters; 779 ++i) 780 channel->rps_flow_id[i] = 781 RPS_FLOW_ID_INVALID; 782 channel->rfs_expire_index = 0; 783 channel->rfs_filter_count = 0; 784 } 785 786 if (!success) { 787 efx_for_each_channel(channel, efx) { 788 kfree(channel->rps_flow_id); 789 channel->rps_flow_id = NULL; 790 } 791 efx->type->filter_table_remove(efx); 792 rc = -ENOMEM; 793 goto out_unlock; 794 } 795 } 796 #endif 797 out_unlock: 798 mutex_unlock(&efx->mac_lock); 799 return rc; 800 } 801 802 void efx_remove_filters(struct efx_nic *efx) 803 { 804 #ifdef CONFIG_RFS_ACCEL 805 struct efx_channel *channel; 806 807 efx_for_each_channel(channel, efx) { 808 cancel_delayed_work_sync(&channel->filter_work); 809 kfree(channel->rps_flow_id); 810 channel->rps_flow_id = NULL; 811 } 812 #endif 813 efx->type->filter_table_remove(efx); 814 } 815 816 #ifdef CONFIG_RFS_ACCEL 817 818 static void efx_filter_rfs_work(struct work_struct *data) 819 { 820 struct efx_async_filter_insertion *req = container_of(data, struct efx_async_filter_insertion, 821 work); 822 struct efx_nic *efx = efx_netdev_priv(req->net_dev); 823 struct efx_channel *channel = efx_get_channel(efx, req->rxq_index); 824 int slot_idx = req - efx->rps_slot; 825 struct efx_arfs_rule *rule; 826 u16 arfs_id = 0; 827 int rc; 828 829 rc = efx->type->filter_insert(efx, &req->spec, true); 830 if (rc >= 0) 831 /* Discard 'priority' part of EF10+ filter ID (mcdi_filters) */ 832 rc %= efx->type->max_rx_ip_filters; 833 if (efx->rps_hash_table) { 834 spin_lock_bh(&efx->rps_hash_lock); 835 rule = efx_rps_hash_find(efx, &req->spec); 836 /* The rule might have already gone, if someone else's request 837 * for the same spec was already worked and then expired before 838 * we got around to our work. In that case we have nothing 839 * tying us to an arfs_id, meaning that as soon as the filter 840 * is considered for expiry it will be removed. 841 */ 842 if (rule) { 843 if (rc < 0) 844 rule->filter_id = EFX_ARFS_FILTER_ID_ERROR; 845 else 846 rule->filter_id = rc; 847 arfs_id = rule->arfs_id; 848 } 849 spin_unlock_bh(&efx->rps_hash_lock); 850 } 851 if (rc >= 0) { 852 /* Remember this so we can check whether to expire the filter 853 * later. 854 */ 855 mutex_lock(&efx->rps_mutex); 856 if (channel->rps_flow_id[rc] == RPS_FLOW_ID_INVALID) 857 channel->rfs_filter_count++; 858 channel->rps_flow_id[rc] = req->flow_id; 859 mutex_unlock(&efx->rps_mutex); 860 861 if (req->spec.ether_type == htons(ETH_P_IP)) 862 netif_info(efx, rx_status, efx->net_dev, 863 "steering %s %pI4:%u:%pI4:%u to queue %u [flow %u filter %d id %u]\n", 864 (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP", 865 req->spec.rem_host, ntohs(req->spec.rem_port), 866 req->spec.loc_host, ntohs(req->spec.loc_port), 867 req->rxq_index, req->flow_id, rc, arfs_id); 868 else 869 netif_info(efx, rx_status, efx->net_dev, 870 "steering %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u filter %d id %u]\n", 871 (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP", 872 req->spec.rem_host, ntohs(req->spec.rem_port), 873 req->spec.loc_host, ntohs(req->spec.loc_port), 874 req->rxq_index, req->flow_id, rc, arfs_id); 875 channel->n_rfs_succeeded++; 876 } else { 877 if (req->spec.ether_type == htons(ETH_P_IP)) 878 netif_dbg(efx, rx_status, efx->net_dev, 879 "failed to steer %s %pI4:%u:%pI4:%u to queue %u [flow %u rc %d id %u]\n", 880 (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP", 881 req->spec.rem_host, ntohs(req->spec.rem_port), 882 req->spec.loc_host, ntohs(req->spec.loc_port), 883 req->rxq_index, req->flow_id, rc, arfs_id); 884 else 885 netif_dbg(efx, rx_status, efx->net_dev, 886 "failed to steer %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u rc %d id %u]\n", 887 (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP", 888 req->spec.rem_host, ntohs(req->spec.rem_port), 889 req->spec.loc_host, ntohs(req->spec.loc_port), 890 req->rxq_index, req->flow_id, rc, arfs_id); 891 channel->n_rfs_failed++; 892 /* We're overloading the NIC's filter tables, so let's do a 893 * chunk of extra expiry work. 894 */ 895 __efx_filter_rfs_expire(channel, min(channel->rfs_filter_count, 896 100u)); 897 } 898 899 /* Release references */ 900 clear_bit(slot_idx, &efx->rps_slot_map); 901 netdev_put(req->net_dev, &req->net_dev_tracker); 902 } 903 904 int efx_filter_rfs(struct net_device *net_dev, const struct sk_buff *skb, 905 u16 rxq_index, u32 flow_id) 906 { 907 struct efx_nic *efx = efx_netdev_priv(net_dev); 908 struct efx_async_filter_insertion *req; 909 struct efx_arfs_rule *rule; 910 struct flow_keys fk; 911 int slot_idx; 912 bool new; 913 int rc; 914 915 /* find a free slot */ 916 for (slot_idx = 0; slot_idx < EFX_RPS_MAX_IN_FLIGHT; slot_idx++) 917 if (!test_and_set_bit(slot_idx, &efx->rps_slot_map)) 918 break; 919 if (slot_idx >= EFX_RPS_MAX_IN_FLIGHT) 920 return -EBUSY; 921 922 if (flow_id == RPS_FLOW_ID_INVALID) { 923 rc = -EINVAL; 924 goto out_clear; 925 } 926 927 if (!skb_flow_dissect_flow_keys(skb, &fk, 0)) { 928 rc = -EPROTONOSUPPORT; 929 goto out_clear; 930 } 931 932 if (fk.basic.n_proto != htons(ETH_P_IP) && fk.basic.n_proto != htons(ETH_P_IPV6)) { 933 rc = -EPROTONOSUPPORT; 934 goto out_clear; 935 } 936 if (fk.control.flags & FLOW_DIS_IS_FRAGMENT) { 937 rc = -EPROTONOSUPPORT; 938 goto out_clear; 939 } 940 941 req = efx->rps_slot + slot_idx; 942 efx_filter_init_rx(&req->spec, EFX_FILTER_PRI_HINT, 943 efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0, 944 rxq_index); 945 req->spec.match_flags = 946 EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO | 947 EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT | 948 EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT; 949 req->spec.ether_type = fk.basic.n_proto; 950 req->spec.ip_proto = fk.basic.ip_proto; 951 952 if (fk.basic.n_proto == htons(ETH_P_IP)) { 953 req->spec.rem_host[0] = fk.addrs.v4addrs.src; 954 req->spec.loc_host[0] = fk.addrs.v4addrs.dst; 955 } else { 956 memcpy(req->spec.rem_host, &fk.addrs.v6addrs.src, 957 sizeof(struct in6_addr)); 958 memcpy(req->spec.loc_host, &fk.addrs.v6addrs.dst, 959 sizeof(struct in6_addr)); 960 } 961 962 req->spec.rem_port = fk.ports.src; 963 req->spec.loc_port = fk.ports.dst; 964 965 if (efx->rps_hash_table) { 966 /* Add it to ARFS hash table */ 967 spin_lock(&efx->rps_hash_lock); 968 rule = efx_rps_hash_add(efx, &req->spec, &new); 969 if (!rule) { 970 rc = -ENOMEM; 971 goto out_unlock; 972 } 973 if (new) 974 rule->arfs_id = efx->rps_next_id++ % RPS_NO_FILTER; 975 rc = rule->arfs_id; 976 /* Skip if existing or pending filter already does the right thing */ 977 if (!new && rule->rxq_index == rxq_index && 978 rule->filter_id >= EFX_ARFS_FILTER_ID_PENDING) 979 goto out_unlock; 980 rule->rxq_index = rxq_index; 981 rule->filter_id = EFX_ARFS_FILTER_ID_PENDING; 982 spin_unlock(&efx->rps_hash_lock); 983 } else { 984 /* Without an ARFS hash table, we just use arfs_id 0 for all 985 * filters. This means if multiple flows hash to the same 986 * flow_id, all but the most recently touched will be eligible 987 * for expiry. 988 */ 989 rc = 0; 990 } 991 992 /* Queue the request */ 993 req->net_dev = net_dev; 994 netdev_hold(req->net_dev, &req->net_dev_tracker, GFP_ATOMIC); 995 INIT_WORK(&req->work, efx_filter_rfs_work); 996 req->rxq_index = rxq_index; 997 req->flow_id = flow_id; 998 schedule_work(&req->work); 999 return rc; 1000 out_unlock: 1001 spin_unlock(&efx->rps_hash_lock); 1002 out_clear: 1003 clear_bit(slot_idx, &efx->rps_slot_map); 1004 return rc; 1005 } 1006 1007 bool __efx_filter_rfs_expire(struct efx_channel *channel, unsigned int quota) 1008 { 1009 bool (*expire_one)(struct efx_nic *efx, u32 flow_id, unsigned int index); 1010 struct efx_nic *efx = channel->efx; 1011 unsigned int index, size, start; 1012 u32 flow_id; 1013 1014 if (!mutex_trylock(&efx->rps_mutex)) 1015 return false; 1016 expire_one = efx->type->filter_rfs_expire_one; 1017 index = channel->rfs_expire_index; 1018 start = index; 1019 size = efx->type->max_rx_ip_filters; 1020 while (quota) { 1021 flow_id = channel->rps_flow_id[index]; 1022 1023 if (flow_id != RPS_FLOW_ID_INVALID) { 1024 quota--; 1025 if (expire_one(efx, flow_id, index)) { 1026 netif_info(efx, rx_status, efx->net_dev, 1027 "expired filter %d [channel %u flow %u]\n", 1028 index, channel->channel, flow_id); 1029 channel->rps_flow_id[index] = RPS_FLOW_ID_INVALID; 1030 channel->rfs_filter_count--; 1031 } 1032 } 1033 if (++index == size) 1034 index = 0; 1035 /* If we were called with a quota that exceeds the total number 1036 * of filters in the table (which shouldn't happen, but could 1037 * if two callers race), ensure that we don't loop forever - 1038 * stop when we've examined every row of the table. 1039 */ 1040 if (index == start) 1041 break; 1042 } 1043 1044 channel->rfs_expire_index = index; 1045 mutex_unlock(&efx->rps_mutex); 1046 return true; 1047 } 1048 1049 #endif /* CONFIG_RFS_ACCEL */ 1050