1 // SPDX-License-Identifier: GPL-2.0-only 2 /**************************************************************************** 3 * Driver for Solarflare network controllers and boards 4 * Copyright 2018 Solarflare Communications Inc. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published 8 * by the Free Software Foundation, incorporated herein by reference. 9 */ 10 11 #include "net_driver.h" 12 #include <linux/module.h> 13 #include <linux/iommu.h> 14 #include <net/rps.h> 15 #include "efx.h" 16 #include "nic.h" 17 #include "rx_common.h" 18 19 /* This is the percentage fill level below which new RX descriptors 20 * will be added to the RX descriptor ring. 21 */ 22 static unsigned int rx_refill_threshold; 23 module_param(rx_refill_threshold, uint, 0444); 24 MODULE_PARM_DESC(rx_refill_threshold, 25 "RX descriptor ring refill threshold (%)"); 26 27 /* RX maximum head room required. 28 * 29 * This must be at least 1 to prevent overflow, plus one packet-worth 30 * to allow pipelined receives. 31 */ 32 #define EFX_RXD_HEAD_ROOM (1 + EFX_RX_MAX_FRAGS) 33 34 /* Check the RX page recycle ring for a page that can be reused. */ 35 static struct page *efx_reuse_page(struct efx_rx_queue *rx_queue) 36 { 37 struct efx_nic *efx = rx_queue->efx; 38 struct efx_rx_page_state *state; 39 unsigned int index; 40 struct page *page; 41 42 if (unlikely(!rx_queue->page_ring)) 43 return NULL; 44 index = rx_queue->page_remove & rx_queue->page_ptr_mask; 45 page = rx_queue->page_ring[index]; 46 if (page == NULL) 47 return NULL; 48 49 rx_queue->page_ring[index] = NULL; 50 /* page_remove cannot exceed page_add. */ 51 if (rx_queue->page_remove != rx_queue->page_add) 52 ++rx_queue->page_remove; 53 54 /* If page_count is 1 then we hold the only reference to this page. */ 55 if (page_count(page) == 1) { 56 ++rx_queue->page_recycle_count; 57 return page; 58 } else { 59 state = page_address(page); 60 dma_unmap_page(&efx->pci_dev->dev, state->dma_addr, 61 PAGE_SIZE << efx->rx_buffer_order, 62 DMA_FROM_DEVICE); 63 put_page(page); 64 ++rx_queue->page_recycle_failed; 65 } 66 67 return NULL; 68 } 69 70 /* Attempt to recycle the page if there is an RX recycle ring; the page can 71 * only be added if this is the final RX buffer, to prevent pages being used in 72 * the descriptor ring and appearing in the recycle ring simultaneously. 73 */ 74 static void efx_recycle_rx_page(struct efx_channel *channel, 75 struct efx_rx_buffer *rx_buf) 76 { 77 struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel); 78 struct efx_nic *efx = rx_queue->efx; 79 struct page *page = rx_buf->page; 80 unsigned int index; 81 82 /* Only recycle the page after processing the final buffer. */ 83 if (!(rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE)) 84 return; 85 86 index = rx_queue->page_add & rx_queue->page_ptr_mask; 87 if (rx_queue->page_ring[index] == NULL) { 88 unsigned int read_index = rx_queue->page_remove & 89 rx_queue->page_ptr_mask; 90 91 /* The next slot in the recycle ring is available, but 92 * increment page_remove if the read pointer currently 93 * points here. 94 */ 95 if (read_index == index) 96 ++rx_queue->page_remove; 97 rx_queue->page_ring[index] = page; 98 ++rx_queue->page_add; 99 return; 100 } 101 ++rx_queue->page_recycle_full; 102 efx_unmap_rx_buffer(efx, rx_buf); 103 put_page(rx_buf->page); 104 } 105 106 /* Recycle the pages that are used by buffers that have just been received. */ 107 void efx_recycle_rx_pages(struct efx_channel *channel, 108 struct efx_rx_buffer *rx_buf, 109 unsigned int n_frags) 110 { 111 struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel); 112 113 if (unlikely(!rx_queue->page_ring)) 114 return; 115 116 do { 117 efx_recycle_rx_page(channel, rx_buf); 118 rx_buf = efx_rx_buf_next(rx_queue, rx_buf); 119 } while (--n_frags); 120 } 121 122 void efx_discard_rx_packet(struct efx_channel *channel, 123 struct efx_rx_buffer *rx_buf, 124 unsigned int n_frags) 125 { 126 struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel); 127 128 efx_recycle_rx_pages(channel, rx_buf, n_frags); 129 130 efx_free_rx_buffers(rx_queue, rx_buf, n_frags); 131 } 132 133 static void efx_init_rx_recycle_ring(struct efx_rx_queue *rx_queue) 134 { 135 unsigned int bufs_in_recycle_ring, page_ring_size; 136 struct efx_nic *efx = rx_queue->efx; 137 138 bufs_in_recycle_ring = efx_rx_recycle_ring_size(efx); 139 page_ring_size = roundup_pow_of_two(bufs_in_recycle_ring / 140 efx->rx_bufs_per_page); 141 rx_queue->page_ring = kcalloc(page_ring_size, 142 sizeof(*rx_queue->page_ring), GFP_KERNEL); 143 if (!rx_queue->page_ring) 144 rx_queue->page_ptr_mask = 0; 145 else 146 rx_queue->page_ptr_mask = page_ring_size - 1; 147 } 148 149 static void efx_fini_rx_recycle_ring(struct efx_rx_queue *rx_queue) 150 { 151 struct efx_nic *efx = rx_queue->efx; 152 int i; 153 154 if (unlikely(!rx_queue->page_ring)) 155 return; 156 157 /* Unmap and release the pages in the recycle ring. Remove the ring. */ 158 for (i = 0; i <= rx_queue->page_ptr_mask; i++) { 159 struct page *page = rx_queue->page_ring[i]; 160 struct efx_rx_page_state *state; 161 162 if (page == NULL) 163 continue; 164 165 state = page_address(page); 166 dma_unmap_page(&efx->pci_dev->dev, state->dma_addr, 167 PAGE_SIZE << efx->rx_buffer_order, 168 DMA_FROM_DEVICE); 169 put_page(page); 170 } 171 kfree(rx_queue->page_ring); 172 rx_queue->page_ring = NULL; 173 } 174 175 static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue, 176 struct efx_rx_buffer *rx_buf) 177 { 178 /* Release the page reference we hold for the buffer. */ 179 if (rx_buf->page) 180 put_page(rx_buf->page); 181 182 /* If this is the last buffer in a page, unmap and free it. */ 183 if (rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE) { 184 efx_unmap_rx_buffer(rx_queue->efx, rx_buf); 185 efx_free_rx_buffers(rx_queue, rx_buf, 1); 186 } 187 rx_buf->page = NULL; 188 } 189 190 int efx_probe_rx_queue(struct efx_rx_queue *rx_queue) 191 { 192 struct efx_nic *efx = rx_queue->efx; 193 unsigned int entries; 194 int rc; 195 196 /* Create the smallest power-of-two aligned ring */ 197 entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE); 198 EFX_WARN_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE); 199 rx_queue->ptr_mask = entries - 1; 200 201 netif_dbg(efx, probe, efx->net_dev, 202 "creating RX queue %d size %#x mask %#x\n", 203 efx_rx_queue_index(rx_queue), efx->rxq_entries, 204 rx_queue->ptr_mask); 205 206 /* Allocate RX buffers */ 207 rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer), 208 GFP_KERNEL); 209 if (!rx_queue->buffer) 210 return -ENOMEM; 211 212 rc = efx_nic_probe_rx(rx_queue); 213 if (rc) { 214 kfree(rx_queue->buffer); 215 rx_queue->buffer = NULL; 216 } 217 218 return rc; 219 } 220 221 void efx_init_rx_queue(struct efx_rx_queue *rx_queue) 222 { 223 unsigned int max_fill, trigger, max_trigger; 224 struct efx_nic *efx = rx_queue->efx; 225 int rc = 0; 226 227 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev, 228 "initialising RX queue %d\n", efx_rx_queue_index(rx_queue)); 229 230 /* Initialise ptr fields */ 231 rx_queue->added_count = 0; 232 rx_queue->notified_count = 0; 233 rx_queue->granted_count = 0; 234 rx_queue->removed_count = 0; 235 rx_queue->min_fill = -1U; 236 efx_init_rx_recycle_ring(rx_queue); 237 238 rx_queue->page_remove = 0; 239 rx_queue->page_add = rx_queue->page_ptr_mask + 1; 240 rx_queue->page_recycle_count = 0; 241 rx_queue->page_recycle_failed = 0; 242 rx_queue->page_recycle_full = 0; 243 244 rx_queue->old_rx_packets = rx_queue->rx_packets; 245 rx_queue->old_rx_bytes = rx_queue->rx_bytes; 246 247 /* Initialise limit fields */ 248 max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM; 249 max_trigger = 250 max_fill - efx->rx_pages_per_batch * efx->rx_bufs_per_page; 251 if (rx_refill_threshold != 0) { 252 trigger = max_fill * min(rx_refill_threshold, 100U) / 100U; 253 if (trigger > max_trigger) 254 trigger = max_trigger; 255 } else { 256 trigger = max_trigger; 257 } 258 259 rx_queue->max_fill = max_fill; 260 rx_queue->fast_fill_trigger = trigger; 261 rx_queue->refill_enabled = true; 262 263 /* Initialise XDP queue information */ 264 rc = xdp_rxq_info_reg(&rx_queue->xdp_rxq_info, efx->net_dev, 265 rx_queue->core_index, 0); 266 267 if (rc) { 268 netif_err(efx, rx_err, efx->net_dev, 269 "Failure to initialise XDP queue information rc=%d\n", 270 rc); 271 efx->xdp_rxq_info_failed = true; 272 } else { 273 rx_queue->xdp_rxq_info_valid = true; 274 } 275 276 /* Set up RX descriptor ring */ 277 efx_nic_init_rx(rx_queue); 278 } 279 280 void efx_fini_rx_queue(struct efx_rx_queue *rx_queue) 281 { 282 struct efx_rx_buffer *rx_buf; 283 int i; 284 285 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev, 286 "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue)); 287 288 del_timer_sync(&rx_queue->slow_fill); 289 if (rx_queue->grant_credits) 290 flush_work(&rx_queue->grant_work); 291 292 /* Release RX buffers from the current read ptr to the write ptr */ 293 if (rx_queue->buffer) { 294 for (i = rx_queue->removed_count; i < rx_queue->added_count; 295 i++) { 296 unsigned int index = i & rx_queue->ptr_mask; 297 298 rx_buf = efx_rx_buffer(rx_queue, index); 299 efx_fini_rx_buffer(rx_queue, rx_buf); 300 } 301 } 302 303 efx_fini_rx_recycle_ring(rx_queue); 304 305 if (rx_queue->xdp_rxq_info_valid) 306 xdp_rxq_info_unreg(&rx_queue->xdp_rxq_info); 307 308 rx_queue->xdp_rxq_info_valid = false; 309 } 310 311 void efx_remove_rx_queue(struct efx_rx_queue *rx_queue) 312 { 313 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev, 314 "destroying RX queue %d\n", efx_rx_queue_index(rx_queue)); 315 316 efx_nic_remove_rx(rx_queue); 317 318 kfree(rx_queue->buffer); 319 rx_queue->buffer = NULL; 320 } 321 322 /* Unmap a DMA-mapped page. This function is only called for the final RX 323 * buffer in a page. 324 */ 325 void efx_unmap_rx_buffer(struct efx_nic *efx, 326 struct efx_rx_buffer *rx_buf) 327 { 328 struct page *page = rx_buf->page; 329 330 if (page) { 331 struct efx_rx_page_state *state = page_address(page); 332 333 dma_unmap_page(&efx->pci_dev->dev, 334 state->dma_addr, 335 PAGE_SIZE << efx->rx_buffer_order, 336 DMA_FROM_DEVICE); 337 } 338 } 339 340 void efx_free_rx_buffers(struct efx_rx_queue *rx_queue, 341 struct efx_rx_buffer *rx_buf, 342 unsigned int num_bufs) 343 { 344 do { 345 if (rx_buf->page) { 346 put_page(rx_buf->page); 347 rx_buf->page = NULL; 348 } 349 rx_buf = efx_rx_buf_next(rx_queue, rx_buf); 350 } while (--num_bufs); 351 } 352 353 void efx_rx_slow_fill(struct timer_list *t) 354 { 355 struct efx_rx_queue *rx_queue = from_timer(rx_queue, t, slow_fill); 356 357 /* Post an event to cause NAPI to run and refill the queue */ 358 efx_nic_generate_fill_event(rx_queue); 359 ++rx_queue->slow_fill_count; 360 } 361 362 void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue) 363 { 364 mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(10)); 365 } 366 367 /* efx_init_rx_buffers - create EFX_RX_BATCH page-based RX buffers 368 * 369 * @rx_queue: Efx RX queue 370 * 371 * This allocates a batch of pages, maps them for DMA, and populates 372 * struct efx_rx_buffers for each one. Return a negative error code or 373 * 0 on success. If a single page can be used for multiple buffers, 374 * then the page will either be inserted fully, or not at all. 375 */ 376 static int efx_init_rx_buffers(struct efx_rx_queue *rx_queue, bool atomic) 377 { 378 unsigned int page_offset, index, count; 379 struct efx_nic *efx = rx_queue->efx; 380 struct efx_rx_page_state *state; 381 struct efx_rx_buffer *rx_buf; 382 dma_addr_t dma_addr; 383 struct page *page; 384 385 count = 0; 386 do { 387 page = efx_reuse_page(rx_queue); 388 if (page == NULL) { 389 page = alloc_pages(__GFP_COMP | 390 (atomic ? GFP_ATOMIC : GFP_KERNEL), 391 efx->rx_buffer_order); 392 if (unlikely(page == NULL)) 393 return -ENOMEM; 394 dma_addr = 395 dma_map_page(&efx->pci_dev->dev, page, 0, 396 PAGE_SIZE << efx->rx_buffer_order, 397 DMA_FROM_DEVICE); 398 if (unlikely(dma_mapping_error(&efx->pci_dev->dev, 399 dma_addr))) { 400 __free_pages(page, efx->rx_buffer_order); 401 return -EIO; 402 } 403 state = page_address(page); 404 state->dma_addr = dma_addr; 405 } else { 406 state = page_address(page); 407 dma_addr = state->dma_addr; 408 } 409 410 dma_addr += sizeof(struct efx_rx_page_state); 411 page_offset = sizeof(struct efx_rx_page_state); 412 413 do { 414 index = rx_queue->added_count & rx_queue->ptr_mask; 415 rx_buf = efx_rx_buffer(rx_queue, index); 416 rx_buf->dma_addr = dma_addr + efx->rx_ip_align + 417 EFX_XDP_HEADROOM; 418 rx_buf->page = page; 419 rx_buf->page_offset = page_offset + efx->rx_ip_align + 420 EFX_XDP_HEADROOM; 421 rx_buf->len = efx->rx_dma_len; 422 rx_buf->flags = 0; 423 ++rx_queue->added_count; 424 get_page(page); 425 dma_addr += efx->rx_page_buf_step; 426 page_offset += efx->rx_page_buf_step; 427 } while (page_offset + efx->rx_page_buf_step <= PAGE_SIZE); 428 429 rx_buf->flags = EFX_RX_BUF_LAST_IN_PAGE; 430 } while (++count < efx->rx_pages_per_batch); 431 432 return 0; 433 } 434 435 void efx_rx_config_page_split(struct efx_nic *efx) 436 { 437 efx->rx_page_buf_step = ALIGN(efx->rx_dma_len + efx->rx_ip_align + 438 EFX_XDP_HEADROOM + EFX_XDP_TAILROOM, 439 EFX_RX_BUF_ALIGNMENT); 440 efx->rx_bufs_per_page = efx->rx_buffer_order ? 1 : 441 ((PAGE_SIZE - sizeof(struct efx_rx_page_state)) / 442 efx->rx_page_buf_step); 443 efx->rx_buffer_truesize = (PAGE_SIZE << efx->rx_buffer_order) / 444 efx->rx_bufs_per_page; 445 efx->rx_pages_per_batch = DIV_ROUND_UP(EFX_RX_PREFERRED_BATCH, 446 efx->rx_bufs_per_page); 447 } 448 449 /* efx_fast_push_rx_descriptors - push new RX descriptors quickly 450 * @rx_queue: RX descriptor queue 451 * 452 * This will aim to fill the RX descriptor queue up to 453 * @rx_queue->@max_fill. If there is insufficient atomic 454 * memory to do so, a slow fill will be scheduled. 455 * 456 * The caller must provide serialisation (none is used here). In practise, 457 * this means this function must run from the NAPI handler, or be called 458 * when NAPI is disabled. 459 */ 460 void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue, bool atomic) 461 { 462 struct efx_nic *efx = rx_queue->efx; 463 unsigned int fill_level, batch_size; 464 int space, rc = 0; 465 466 if (!rx_queue->refill_enabled) 467 return; 468 469 /* Calculate current fill level, and exit if we don't need to fill */ 470 fill_level = (rx_queue->added_count - rx_queue->removed_count); 471 EFX_WARN_ON_ONCE_PARANOID(fill_level > rx_queue->efx->rxq_entries); 472 if (fill_level >= rx_queue->fast_fill_trigger) 473 goto out; 474 475 /* Record minimum fill level */ 476 if (unlikely(fill_level < rx_queue->min_fill)) { 477 if (fill_level) 478 rx_queue->min_fill = fill_level; 479 } 480 481 batch_size = efx->rx_pages_per_batch * efx->rx_bufs_per_page; 482 space = rx_queue->max_fill - fill_level; 483 EFX_WARN_ON_ONCE_PARANOID(space < batch_size); 484 485 netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev, 486 "RX queue %d fast-filling descriptor ring from" 487 " level %d to level %d\n", 488 efx_rx_queue_index(rx_queue), fill_level, 489 rx_queue->max_fill); 490 491 do { 492 rc = efx_init_rx_buffers(rx_queue, atomic); 493 if (unlikely(rc)) { 494 /* Ensure that we don't leave the rx queue empty */ 495 efx_schedule_slow_fill(rx_queue); 496 goto out; 497 } 498 } while ((space -= batch_size) >= batch_size); 499 500 netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev, 501 "RX queue %d fast-filled descriptor ring " 502 "to level %d\n", efx_rx_queue_index(rx_queue), 503 rx_queue->added_count - rx_queue->removed_count); 504 505 out: 506 if (rx_queue->notified_count != rx_queue->added_count) 507 efx_nic_notify_rx_desc(rx_queue); 508 } 509 510 /* Pass a received packet up through GRO. GRO can handle pages 511 * regardless of checksum state and skbs with a good checksum. 512 */ 513 void 514 efx_rx_packet_gro(struct efx_channel *channel, struct efx_rx_buffer *rx_buf, 515 unsigned int n_frags, u8 *eh, __wsum csum) 516 { 517 struct napi_struct *napi = &channel->napi_str; 518 struct efx_nic *efx = channel->efx; 519 struct sk_buff *skb; 520 521 skb = napi_get_frags(napi); 522 if (unlikely(!skb)) { 523 struct efx_rx_queue *rx_queue; 524 525 rx_queue = efx_channel_get_rx_queue(channel); 526 efx_free_rx_buffers(rx_queue, rx_buf, n_frags); 527 return; 528 } 529 530 if (efx->net_dev->features & NETIF_F_RXHASH && 531 efx_rx_buf_hash_valid(efx, eh)) 532 skb_set_hash(skb, efx_rx_buf_hash(efx, eh), 533 PKT_HASH_TYPE_L3); 534 if (csum) { 535 skb->csum = csum; 536 skb->ip_summed = CHECKSUM_COMPLETE; 537 } else { 538 skb->ip_summed = ((rx_buf->flags & EFX_RX_PKT_CSUMMED) ? 539 CHECKSUM_UNNECESSARY : CHECKSUM_NONE); 540 } 541 skb->csum_level = !!(rx_buf->flags & EFX_RX_PKT_CSUM_LEVEL); 542 543 for (;;) { 544 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags, 545 rx_buf->page, rx_buf->page_offset, 546 rx_buf->len); 547 rx_buf->page = NULL; 548 skb->len += rx_buf->len; 549 if (skb_shinfo(skb)->nr_frags == n_frags) 550 break; 551 552 rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf); 553 } 554 555 skb->data_len = skb->len; 556 skb->truesize += n_frags * efx->rx_buffer_truesize; 557 558 skb_record_rx_queue(skb, channel->rx_queue.core_index); 559 560 napi_gro_frags(napi); 561 } 562 563 struct efx_rss_context_priv *efx_find_rss_context_entry(struct efx_nic *efx, 564 u32 id) 565 { 566 struct ethtool_rxfh_context *ctx; 567 568 WARN_ON(!mutex_is_locked(&efx->net_dev->ethtool->rss_lock)); 569 570 ctx = xa_load(&efx->net_dev->ethtool->rss_ctx, id); 571 if (!ctx) 572 return NULL; 573 return ethtool_rxfh_context_priv(ctx); 574 } 575 576 void efx_set_default_rx_indir_table(struct efx_nic *efx, u32 *indir) 577 { 578 size_t i; 579 580 for (i = 0; i < ARRAY_SIZE(efx->rss_context.rx_indir_table); i++) 581 indir[i] = ethtool_rxfh_indir_default(i, efx->rss_spread); 582 } 583 584 /** 585 * efx_filter_is_mc_recipient - test whether spec is a multicast recipient 586 * @spec: Specification to test 587 * 588 * Return: %true if the specification is a non-drop RX filter that 589 * matches a local MAC address I/G bit value of 1 or matches a local 590 * IPv4 or IPv6 address value in the respective multicast address 591 * range. Otherwise %false. 592 */ 593 bool efx_filter_is_mc_recipient(const struct efx_filter_spec *spec) 594 { 595 if (!(spec->flags & EFX_FILTER_FLAG_RX) || 596 spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP) 597 return false; 598 599 if (spec->match_flags & 600 (EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_LOC_MAC_IG) && 601 is_multicast_ether_addr(spec->loc_mac)) 602 return true; 603 604 if ((spec->match_flags & 605 (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) == 606 (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) { 607 if (spec->ether_type == htons(ETH_P_IP) && 608 ipv4_is_multicast(spec->loc_host[0])) 609 return true; 610 if (spec->ether_type == htons(ETH_P_IPV6) && 611 ((const u8 *)spec->loc_host)[0] == 0xff) 612 return true; 613 } 614 615 return false; 616 } 617 618 bool efx_filter_spec_equal(const struct efx_filter_spec *left, 619 const struct efx_filter_spec *right) 620 { 621 if ((left->match_flags ^ right->match_flags) | 622 ((left->flags ^ right->flags) & 623 (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX))) 624 return false; 625 626 return memcmp(&left->vport_id, &right->vport_id, 627 sizeof(struct efx_filter_spec) - 628 offsetof(struct efx_filter_spec, vport_id)) == 0; 629 } 630 631 u32 efx_filter_spec_hash(const struct efx_filter_spec *spec) 632 { 633 BUILD_BUG_ON(offsetof(struct efx_filter_spec, vport_id) & 3); 634 return jhash2((const u32 *)&spec->vport_id, 635 (sizeof(struct efx_filter_spec) - 636 offsetof(struct efx_filter_spec, vport_id)) / 4, 637 0); 638 } 639 640 #ifdef CONFIG_RFS_ACCEL 641 bool efx_rps_check_rule(struct efx_arfs_rule *rule, unsigned int filter_idx, 642 bool *force) 643 { 644 if (rule->filter_id == EFX_ARFS_FILTER_ID_PENDING) { 645 /* ARFS is currently updating this entry, leave it */ 646 return false; 647 } 648 if (rule->filter_id == EFX_ARFS_FILTER_ID_ERROR) { 649 /* ARFS tried and failed to update this, so it's probably out 650 * of date. Remove the filter and the ARFS rule entry. 651 */ 652 rule->filter_id = EFX_ARFS_FILTER_ID_REMOVING; 653 *force = true; 654 return true; 655 } else if (WARN_ON(rule->filter_id != filter_idx)) { /* can't happen */ 656 /* ARFS has moved on, so old filter is not needed. Since we did 657 * not mark the rule with EFX_ARFS_FILTER_ID_REMOVING, it will 658 * not be removed by efx_rps_hash_del() subsequently. 659 */ 660 *force = true; 661 return true; 662 } 663 /* Remove it iff ARFS wants to. */ 664 return true; 665 } 666 667 static 668 struct hlist_head *efx_rps_hash_bucket(struct efx_nic *efx, 669 const struct efx_filter_spec *spec) 670 { 671 u32 hash = efx_filter_spec_hash(spec); 672 673 lockdep_assert_held(&efx->rps_hash_lock); 674 if (!efx->rps_hash_table) 675 return NULL; 676 return &efx->rps_hash_table[hash % EFX_ARFS_HASH_TABLE_SIZE]; 677 } 678 679 struct efx_arfs_rule *efx_rps_hash_find(struct efx_nic *efx, 680 const struct efx_filter_spec *spec) 681 { 682 struct efx_arfs_rule *rule; 683 struct hlist_head *head; 684 struct hlist_node *node; 685 686 head = efx_rps_hash_bucket(efx, spec); 687 if (!head) 688 return NULL; 689 hlist_for_each(node, head) { 690 rule = container_of(node, struct efx_arfs_rule, node); 691 if (efx_filter_spec_equal(spec, &rule->spec)) 692 return rule; 693 } 694 return NULL; 695 } 696 697 struct efx_arfs_rule *efx_rps_hash_add(struct efx_nic *efx, 698 const struct efx_filter_spec *spec, 699 bool *new) 700 { 701 struct efx_arfs_rule *rule; 702 struct hlist_head *head; 703 struct hlist_node *node; 704 705 head = efx_rps_hash_bucket(efx, spec); 706 if (!head) 707 return NULL; 708 hlist_for_each(node, head) { 709 rule = container_of(node, struct efx_arfs_rule, node); 710 if (efx_filter_spec_equal(spec, &rule->spec)) { 711 *new = false; 712 return rule; 713 } 714 } 715 rule = kmalloc(sizeof(*rule), GFP_ATOMIC); 716 *new = true; 717 if (rule) { 718 memcpy(&rule->spec, spec, sizeof(rule->spec)); 719 hlist_add_head(&rule->node, head); 720 } 721 return rule; 722 } 723 724 void efx_rps_hash_del(struct efx_nic *efx, const struct efx_filter_spec *spec) 725 { 726 struct efx_arfs_rule *rule; 727 struct hlist_head *head; 728 struct hlist_node *node; 729 730 head = efx_rps_hash_bucket(efx, spec); 731 if (WARN_ON(!head)) 732 return; 733 hlist_for_each(node, head) { 734 rule = container_of(node, struct efx_arfs_rule, node); 735 if (efx_filter_spec_equal(spec, &rule->spec)) { 736 /* Someone already reused the entry. We know that if 737 * this check doesn't fire (i.e. filter_id == REMOVING) 738 * then the REMOVING mark was put there by our caller, 739 * because caller is holding a lock on filter table and 740 * only holders of that lock set REMOVING. 741 */ 742 if (rule->filter_id != EFX_ARFS_FILTER_ID_REMOVING) 743 return; 744 hlist_del(node); 745 kfree(rule); 746 return; 747 } 748 } 749 /* We didn't find it. */ 750 WARN_ON(1); 751 } 752 #endif 753 754 int efx_probe_filters(struct efx_nic *efx) 755 { 756 int rc; 757 758 mutex_lock(&efx->mac_lock); 759 rc = efx->type->filter_table_probe(efx); 760 if (rc) 761 goto out_unlock; 762 763 #ifdef CONFIG_RFS_ACCEL 764 if (efx->type->offload_features & NETIF_F_NTUPLE) { 765 struct efx_channel *channel; 766 int i, success = 1; 767 768 efx_for_each_channel(channel, efx) { 769 channel->rps_flow_id = 770 kcalloc(efx->type->max_rx_ip_filters, 771 sizeof(*channel->rps_flow_id), 772 GFP_KERNEL); 773 if (!channel->rps_flow_id) 774 success = 0; 775 else 776 for (i = 0; 777 i < efx->type->max_rx_ip_filters; 778 ++i) 779 channel->rps_flow_id[i] = 780 RPS_FLOW_ID_INVALID; 781 channel->rfs_expire_index = 0; 782 channel->rfs_filter_count = 0; 783 } 784 785 if (!success) { 786 efx_for_each_channel(channel, efx) { 787 kfree(channel->rps_flow_id); 788 channel->rps_flow_id = NULL; 789 } 790 efx->type->filter_table_remove(efx); 791 rc = -ENOMEM; 792 goto out_unlock; 793 } 794 } 795 #endif 796 out_unlock: 797 mutex_unlock(&efx->mac_lock); 798 return rc; 799 } 800 801 void efx_remove_filters(struct efx_nic *efx) 802 { 803 #ifdef CONFIG_RFS_ACCEL 804 struct efx_channel *channel; 805 806 efx_for_each_channel(channel, efx) { 807 cancel_delayed_work_sync(&channel->filter_work); 808 kfree(channel->rps_flow_id); 809 channel->rps_flow_id = NULL; 810 } 811 #endif 812 efx->type->filter_table_remove(efx); 813 } 814 815 #ifdef CONFIG_RFS_ACCEL 816 817 static void efx_filter_rfs_work(struct work_struct *data) 818 { 819 struct efx_async_filter_insertion *req = container_of(data, struct efx_async_filter_insertion, 820 work); 821 struct efx_nic *efx = efx_netdev_priv(req->net_dev); 822 struct efx_channel *channel = efx_get_channel(efx, req->rxq_index); 823 int slot_idx = req - efx->rps_slot; 824 struct efx_arfs_rule *rule; 825 u16 arfs_id = 0; 826 int rc; 827 828 rc = efx->type->filter_insert(efx, &req->spec, true); 829 if (rc >= 0) 830 /* Discard 'priority' part of EF10+ filter ID (mcdi_filters) */ 831 rc %= efx->type->max_rx_ip_filters; 832 if (efx->rps_hash_table) { 833 spin_lock_bh(&efx->rps_hash_lock); 834 rule = efx_rps_hash_find(efx, &req->spec); 835 /* The rule might have already gone, if someone else's request 836 * for the same spec was already worked and then expired before 837 * we got around to our work. In that case we have nothing 838 * tying us to an arfs_id, meaning that as soon as the filter 839 * is considered for expiry it will be removed. 840 */ 841 if (rule) { 842 if (rc < 0) 843 rule->filter_id = EFX_ARFS_FILTER_ID_ERROR; 844 else 845 rule->filter_id = rc; 846 arfs_id = rule->arfs_id; 847 } 848 spin_unlock_bh(&efx->rps_hash_lock); 849 } 850 if (rc >= 0) { 851 /* Remember this so we can check whether to expire the filter 852 * later. 853 */ 854 mutex_lock(&efx->rps_mutex); 855 if (channel->rps_flow_id[rc] == RPS_FLOW_ID_INVALID) 856 channel->rfs_filter_count++; 857 channel->rps_flow_id[rc] = req->flow_id; 858 mutex_unlock(&efx->rps_mutex); 859 860 if (req->spec.ether_type == htons(ETH_P_IP)) 861 netif_info(efx, rx_status, efx->net_dev, 862 "steering %s %pI4:%u:%pI4:%u to queue %u [flow %u filter %d id %u]\n", 863 (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP", 864 req->spec.rem_host, ntohs(req->spec.rem_port), 865 req->spec.loc_host, ntohs(req->spec.loc_port), 866 req->rxq_index, req->flow_id, rc, arfs_id); 867 else 868 netif_info(efx, rx_status, efx->net_dev, 869 "steering %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u filter %d id %u]\n", 870 (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP", 871 req->spec.rem_host, ntohs(req->spec.rem_port), 872 req->spec.loc_host, ntohs(req->spec.loc_port), 873 req->rxq_index, req->flow_id, rc, arfs_id); 874 channel->n_rfs_succeeded++; 875 } else { 876 if (req->spec.ether_type == htons(ETH_P_IP)) 877 netif_dbg(efx, rx_status, efx->net_dev, 878 "failed to steer %s %pI4:%u:%pI4:%u to queue %u [flow %u rc %d id %u]\n", 879 (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP", 880 req->spec.rem_host, ntohs(req->spec.rem_port), 881 req->spec.loc_host, ntohs(req->spec.loc_port), 882 req->rxq_index, req->flow_id, rc, arfs_id); 883 else 884 netif_dbg(efx, rx_status, efx->net_dev, 885 "failed to steer %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u rc %d id %u]\n", 886 (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP", 887 req->spec.rem_host, ntohs(req->spec.rem_port), 888 req->spec.loc_host, ntohs(req->spec.loc_port), 889 req->rxq_index, req->flow_id, rc, arfs_id); 890 channel->n_rfs_failed++; 891 /* We're overloading the NIC's filter tables, so let's do a 892 * chunk of extra expiry work. 893 */ 894 __efx_filter_rfs_expire(channel, min(channel->rfs_filter_count, 895 100u)); 896 } 897 898 /* Release references */ 899 clear_bit(slot_idx, &efx->rps_slot_map); 900 dev_put(req->net_dev); 901 } 902 903 int efx_filter_rfs(struct net_device *net_dev, const struct sk_buff *skb, 904 u16 rxq_index, u32 flow_id) 905 { 906 struct efx_nic *efx = efx_netdev_priv(net_dev); 907 struct efx_async_filter_insertion *req; 908 struct efx_arfs_rule *rule; 909 struct flow_keys fk; 910 int slot_idx; 911 bool new; 912 int rc; 913 914 /* find a free slot */ 915 for (slot_idx = 0; slot_idx < EFX_RPS_MAX_IN_FLIGHT; slot_idx++) 916 if (!test_and_set_bit(slot_idx, &efx->rps_slot_map)) 917 break; 918 if (slot_idx >= EFX_RPS_MAX_IN_FLIGHT) 919 return -EBUSY; 920 921 if (flow_id == RPS_FLOW_ID_INVALID) { 922 rc = -EINVAL; 923 goto out_clear; 924 } 925 926 if (!skb_flow_dissect_flow_keys(skb, &fk, 0)) { 927 rc = -EPROTONOSUPPORT; 928 goto out_clear; 929 } 930 931 if (fk.basic.n_proto != htons(ETH_P_IP) && fk.basic.n_proto != htons(ETH_P_IPV6)) { 932 rc = -EPROTONOSUPPORT; 933 goto out_clear; 934 } 935 if (fk.control.flags & FLOW_DIS_IS_FRAGMENT) { 936 rc = -EPROTONOSUPPORT; 937 goto out_clear; 938 } 939 940 req = efx->rps_slot + slot_idx; 941 efx_filter_init_rx(&req->spec, EFX_FILTER_PRI_HINT, 942 efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0, 943 rxq_index); 944 req->spec.match_flags = 945 EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO | 946 EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT | 947 EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT; 948 req->spec.ether_type = fk.basic.n_proto; 949 req->spec.ip_proto = fk.basic.ip_proto; 950 951 if (fk.basic.n_proto == htons(ETH_P_IP)) { 952 req->spec.rem_host[0] = fk.addrs.v4addrs.src; 953 req->spec.loc_host[0] = fk.addrs.v4addrs.dst; 954 } else { 955 memcpy(req->spec.rem_host, &fk.addrs.v6addrs.src, 956 sizeof(struct in6_addr)); 957 memcpy(req->spec.loc_host, &fk.addrs.v6addrs.dst, 958 sizeof(struct in6_addr)); 959 } 960 961 req->spec.rem_port = fk.ports.src; 962 req->spec.loc_port = fk.ports.dst; 963 964 if (efx->rps_hash_table) { 965 /* Add it to ARFS hash table */ 966 spin_lock(&efx->rps_hash_lock); 967 rule = efx_rps_hash_add(efx, &req->spec, &new); 968 if (!rule) { 969 rc = -ENOMEM; 970 goto out_unlock; 971 } 972 if (new) 973 rule->arfs_id = efx->rps_next_id++ % RPS_NO_FILTER; 974 rc = rule->arfs_id; 975 /* Skip if existing or pending filter already does the right thing */ 976 if (!new && rule->rxq_index == rxq_index && 977 rule->filter_id >= EFX_ARFS_FILTER_ID_PENDING) 978 goto out_unlock; 979 rule->rxq_index = rxq_index; 980 rule->filter_id = EFX_ARFS_FILTER_ID_PENDING; 981 spin_unlock(&efx->rps_hash_lock); 982 } else { 983 /* Without an ARFS hash table, we just use arfs_id 0 for all 984 * filters. This means if multiple flows hash to the same 985 * flow_id, all but the most recently touched will be eligible 986 * for expiry. 987 */ 988 rc = 0; 989 } 990 991 /* Queue the request */ 992 dev_hold(req->net_dev = net_dev); 993 INIT_WORK(&req->work, efx_filter_rfs_work); 994 req->rxq_index = rxq_index; 995 req->flow_id = flow_id; 996 schedule_work(&req->work); 997 return rc; 998 out_unlock: 999 spin_unlock(&efx->rps_hash_lock); 1000 out_clear: 1001 clear_bit(slot_idx, &efx->rps_slot_map); 1002 return rc; 1003 } 1004 1005 bool __efx_filter_rfs_expire(struct efx_channel *channel, unsigned int quota) 1006 { 1007 bool (*expire_one)(struct efx_nic *efx, u32 flow_id, unsigned int index); 1008 struct efx_nic *efx = channel->efx; 1009 unsigned int index, size, start; 1010 u32 flow_id; 1011 1012 if (!mutex_trylock(&efx->rps_mutex)) 1013 return false; 1014 expire_one = efx->type->filter_rfs_expire_one; 1015 index = channel->rfs_expire_index; 1016 start = index; 1017 size = efx->type->max_rx_ip_filters; 1018 while (quota) { 1019 flow_id = channel->rps_flow_id[index]; 1020 1021 if (flow_id != RPS_FLOW_ID_INVALID) { 1022 quota--; 1023 if (expire_one(efx, flow_id, index)) { 1024 netif_info(efx, rx_status, efx->net_dev, 1025 "expired filter %d [channel %u flow %u]\n", 1026 index, channel->channel, flow_id); 1027 channel->rps_flow_id[index] = RPS_FLOW_ID_INVALID; 1028 channel->rfs_filter_count--; 1029 } 1030 } 1031 if (++index == size) 1032 index = 0; 1033 /* If we were called with a quota that exceeds the total number 1034 * of filters in the table (which shouldn't happen, but could 1035 * if two callers race), ensure that we don't loop forever - 1036 * stop when we've examined every row of the table. 1037 */ 1038 if (index == start) 1039 break; 1040 } 1041 1042 channel->rfs_expire_index = index; 1043 mutex_unlock(&efx->rps_mutex); 1044 return true; 1045 } 1046 1047 #endif /* CONFIG_RFS_ACCEL */ 1048