1 // SPDX-License-Identifier: GPL-2.0-only 2 /**************************************************************************** 3 * Driver for Solarflare network controllers and boards 4 * Copyright 2018 Solarflare Communications Inc. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published 8 * by the Free Software Foundation, incorporated herein by reference. 9 */ 10 11 #include "net_driver.h" 12 #include <linux/module.h> 13 #include <linux/iommu.h> 14 #include "efx.h" 15 #include "nic.h" 16 #include "rx_common.h" 17 18 /* This is the percentage fill level below which new RX descriptors 19 * will be added to the RX descriptor ring. 20 */ 21 static unsigned int rx_refill_threshold; 22 module_param(rx_refill_threshold, uint, 0444); 23 MODULE_PARM_DESC(rx_refill_threshold, 24 "RX descriptor ring refill threshold (%)"); 25 26 /* RX maximum head room required. 27 * 28 * This must be at least 1 to prevent overflow, plus one packet-worth 29 * to allow pipelined receives. 30 */ 31 #define EFX_RXD_HEAD_ROOM (1 + EFX_RX_MAX_FRAGS) 32 33 /* Check the RX page recycle ring for a page that can be reused. */ 34 static struct page *efx_reuse_page(struct efx_rx_queue *rx_queue) 35 { 36 struct efx_nic *efx = rx_queue->efx; 37 struct efx_rx_page_state *state; 38 unsigned int index; 39 struct page *page; 40 41 if (unlikely(!rx_queue->page_ring)) 42 return NULL; 43 index = rx_queue->page_remove & rx_queue->page_ptr_mask; 44 page = rx_queue->page_ring[index]; 45 if (page == NULL) 46 return NULL; 47 48 rx_queue->page_ring[index] = NULL; 49 /* page_remove cannot exceed page_add. */ 50 if (rx_queue->page_remove != rx_queue->page_add) 51 ++rx_queue->page_remove; 52 53 /* If page_count is 1 then we hold the only reference to this page. */ 54 if (page_count(page) == 1) { 55 ++rx_queue->page_recycle_count; 56 return page; 57 } else { 58 state = page_address(page); 59 dma_unmap_page(&efx->pci_dev->dev, state->dma_addr, 60 PAGE_SIZE << efx->rx_buffer_order, 61 DMA_FROM_DEVICE); 62 put_page(page); 63 ++rx_queue->page_recycle_failed; 64 } 65 66 return NULL; 67 } 68 69 /* Attempt to recycle the page if there is an RX recycle ring; the page can 70 * only be added if this is the final RX buffer, to prevent pages being used in 71 * the descriptor ring and appearing in the recycle ring simultaneously. 72 */ 73 static void efx_recycle_rx_page(struct efx_channel *channel, 74 struct efx_rx_buffer *rx_buf) 75 { 76 struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel); 77 struct efx_nic *efx = rx_queue->efx; 78 struct page *page = rx_buf->page; 79 unsigned int index; 80 81 /* Only recycle the page after processing the final buffer. */ 82 if (!(rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE)) 83 return; 84 85 index = rx_queue->page_add & rx_queue->page_ptr_mask; 86 if (rx_queue->page_ring[index] == NULL) { 87 unsigned int read_index = rx_queue->page_remove & 88 rx_queue->page_ptr_mask; 89 90 /* The next slot in the recycle ring is available, but 91 * increment page_remove if the read pointer currently 92 * points here. 93 */ 94 if (read_index == index) 95 ++rx_queue->page_remove; 96 rx_queue->page_ring[index] = page; 97 ++rx_queue->page_add; 98 return; 99 } 100 ++rx_queue->page_recycle_full; 101 efx_unmap_rx_buffer(efx, rx_buf); 102 put_page(rx_buf->page); 103 } 104 105 /* Recycle the pages that are used by buffers that have just been received. */ 106 void efx_recycle_rx_pages(struct efx_channel *channel, 107 struct efx_rx_buffer *rx_buf, 108 unsigned int n_frags) 109 { 110 struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel); 111 112 if (unlikely(!rx_queue->page_ring)) 113 return; 114 115 do { 116 efx_recycle_rx_page(channel, rx_buf); 117 rx_buf = efx_rx_buf_next(rx_queue, rx_buf); 118 } while (--n_frags); 119 } 120 121 void efx_discard_rx_packet(struct efx_channel *channel, 122 struct efx_rx_buffer *rx_buf, 123 unsigned int n_frags) 124 { 125 struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel); 126 127 efx_recycle_rx_pages(channel, rx_buf, n_frags); 128 129 efx_free_rx_buffers(rx_queue, rx_buf, n_frags); 130 } 131 132 static void efx_init_rx_recycle_ring(struct efx_rx_queue *rx_queue) 133 { 134 unsigned int bufs_in_recycle_ring, page_ring_size; 135 struct efx_nic *efx = rx_queue->efx; 136 137 bufs_in_recycle_ring = efx_rx_recycle_ring_size(efx); 138 page_ring_size = roundup_pow_of_two(bufs_in_recycle_ring / 139 efx->rx_bufs_per_page); 140 rx_queue->page_ring = kcalloc(page_ring_size, 141 sizeof(*rx_queue->page_ring), GFP_KERNEL); 142 if (!rx_queue->page_ring) 143 rx_queue->page_ptr_mask = 0; 144 else 145 rx_queue->page_ptr_mask = page_ring_size - 1; 146 } 147 148 static void efx_fini_rx_recycle_ring(struct efx_rx_queue *rx_queue) 149 { 150 struct efx_nic *efx = rx_queue->efx; 151 int i; 152 153 if (unlikely(!rx_queue->page_ring)) 154 return; 155 156 /* Unmap and release the pages in the recycle ring. Remove the ring. */ 157 for (i = 0; i <= rx_queue->page_ptr_mask; i++) { 158 struct page *page = rx_queue->page_ring[i]; 159 struct efx_rx_page_state *state; 160 161 if (page == NULL) 162 continue; 163 164 state = page_address(page); 165 dma_unmap_page(&efx->pci_dev->dev, state->dma_addr, 166 PAGE_SIZE << efx->rx_buffer_order, 167 DMA_FROM_DEVICE); 168 put_page(page); 169 } 170 kfree(rx_queue->page_ring); 171 rx_queue->page_ring = NULL; 172 } 173 174 static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue, 175 struct efx_rx_buffer *rx_buf) 176 { 177 /* Release the page reference we hold for the buffer. */ 178 if (rx_buf->page) 179 put_page(rx_buf->page); 180 181 /* If this is the last buffer in a page, unmap and free it. */ 182 if (rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE) { 183 efx_unmap_rx_buffer(rx_queue->efx, rx_buf); 184 efx_free_rx_buffers(rx_queue, rx_buf, 1); 185 } 186 rx_buf->page = NULL; 187 } 188 189 int efx_probe_rx_queue(struct efx_rx_queue *rx_queue) 190 { 191 struct efx_nic *efx = rx_queue->efx; 192 unsigned int entries; 193 int rc; 194 195 /* Create the smallest power-of-two aligned ring */ 196 entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE); 197 EFX_WARN_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE); 198 rx_queue->ptr_mask = entries - 1; 199 200 netif_dbg(efx, probe, efx->net_dev, 201 "creating RX queue %d size %#x mask %#x\n", 202 efx_rx_queue_index(rx_queue), efx->rxq_entries, 203 rx_queue->ptr_mask); 204 205 /* Allocate RX buffers */ 206 rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer), 207 GFP_KERNEL); 208 if (!rx_queue->buffer) 209 return -ENOMEM; 210 211 rc = efx_nic_probe_rx(rx_queue); 212 if (rc) { 213 kfree(rx_queue->buffer); 214 rx_queue->buffer = NULL; 215 } 216 217 return rc; 218 } 219 220 void efx_init_rx_queue(struct efx_rx_queue *rx_queue) 221 { 222 unsigned int max_fill, trigger, max_trigger; 223 struct efx_nic *efx = rx_queue->efx; 224 int rc = 0; 225 226 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev, 227 "initialising RX queue %d\n", efx_rx_queue_index(rx_queue)); 228 229 /* Initialise ptr fields */ 230 rx_queue->added_count = 0; 231 rx_queue->notified_count = 0; 232 rx_queue->granted_count = 0; 233 rx_queue->removed_count = 0; 234 rx_queue->min_fill = -1U; 235 efx_init_rx_recycle_ring(rx_queue); 236 237 rx_queue->page_remove = 0; 238 rx_queue->page_add = rx_queue->page_ptr_mask + 1; 239 rx_queue->page_recycle_count = 0; 240 rx_queue->page_recycle_failed = 0; 241 rx_queue->page_recycle_full = 0; 242 243 /* Initialise limit fields */ 244 max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM; 245 max_trigger = 246 max_fill - efx->rx_pages_per_batch * efx->rx_bufs_per_page; 247 if (rx_refill_threshold != 0) { 248 trigger = max_fill * min(rx_refill_threshold, 100U) / 100U; 249 if (trigger > max_trigger) 250 trigger = max_trigger; 251 } else { 252 trigger = max_trigger; 253 } 254 255 rx_queue->max_fill = max_fill; 256 rx_queue->fast_fill_trigger = trigger; 257 rx_queue->refill_enabled = true; 258 259 /* Initialise XDP queue information */ 260 rc = xdp_rxq_info_reg(&rx_queue->xdp_rxq_info, efx->net_dev, 261 rx_queue->core_index, 0); 262 263 if (rc) { 264 netif_err(efx, rx_err, efx->net_dev, 265 "Failure to initialise XDP queue information rc=%d\n", 266 rc); 267 efx->xdp_rxq_info_failed = true; 268 } else { 269 rx_queue->xdp_rxq_info_valid = true; 270 } 271 272 /* Set up RX descriptor ring */ 273 efx_nic_init_rx(rx_queue); 274 } 275 276 void efx_fini_rx_queue(struct efx_rx_queue *rx_queue) 277 { 278 struct efx_rx_buffer *rx_buf; 279 int i; 280 281 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev, 282 "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue)); 283 284 del_timer_sync(&rx_queue->slow_fill); 285 if (rx_queue->grant_credits) 286 flush_work(&rx_queue->grant_work); 287 288 /* Release RX buffers from the current read ptr to the write ptr */ 289 if (rx_queue->buffer) { 290 for (i = rx_queue->removed_count; i < rx_queue->added_count; 291 i++) { 292 unsigned int index = i & rx_queue->ptr_mask; 293 294 rx_buf = efx_rx_buffer(rx_queue, index); 295 efx_fini_rx_buffer(rx_queue, rx_buf); 296 } 297 } 298 299 efx_fini_rx_recycle_ring(rx_queue); 300 301 if (rx_queue->xdp_rxq_info_valid) 302 xdp_rxq_info_unreg(&rx_queue->xdp_rxq_info); 303 304 rx_queue->xdp_rxq_info_valid = false; 305 } 306 307 void efx_remove_rx_queue(struct efx_rx_queue *rx_queue) 308 { 309 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev, 310 "destroying RX queue %d\n", efx_rx_queue_index(rx_queue)); 311 312 efx_nic_remove_rx(rx_queue); 313 314 kfree(rx_queue->buffer); 315 rx_queue->buffer = NULL; 316 } 317 318 /* Unmap a DMA-mapped page. This function is only called for the final RX 319 * buffer in a page. 320 */ 321 void efx_unmap_rx_buffer(struct efx_nic *efx, 322 struct efx_rx_buffer *rx_buf) 323 { 324 struct page *page = rx_buf->page; 325 326 if (page) { 327 struct efx_rx_page_state *state = page_address(page); 328 329 dma_unmap_page(&efx->pci_dev->dev, 330 state->dma_addr, 331 PAGE_SIZE << efx->rx_buffer_order, 332 DMA_FROM_DEVICE); 333 } 334 } 335 336 void efx_free_rx_buffers(struct efx_rx_queue *rx_queue, 337 struct efx_rx_buffer *rx_buf, 338 unsigned int num_bufs) 339 { 340 do { 341 if (rx_buf->page) { 342 put_page(rx_buf->page); 343 rx_buf->page = NULL; 344 } 345 rx_buf = efx_rx_buf_next(rx_queue, rx_buf); 346 } while (--num_bufs); 347 } 348 349 void efx_rx_slow_fill(struct timer_list *t) 350 { 351 struct efx_rx_queue *rx_queue = from_timer(rx_queue, t, slow_fill); 352 353 /* Post an event to cause NAPI to run and refill the queue */ 354 efx_nic_generate_fill_event(rx_queue); 355 ++rx_queue->slow_fill_count; 356 } 357 358 void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue) 359 { 360 mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(10)); 361 } 362 363 /* efx_init_rx_buffers - create EFX_RX_BATCH page-based RX buffers 364 * 365 * @rx_queue: Efx RX queue 366 * 367 * This allocates a batch of pages, maps them for DMA, and populates 368 * struct efx_rx_buffers for each one. Return a negative error code or 369 * 0 on success. If a single page can be used for multiple buffers, 370 * then the page will either be inserted fully, or not at all. 371 */ 372 static int efx_init_rx_buffers(struct efx_rx_queue *rx_queue, bool atomic) 373 { 374 unsigned int page_offset, index, count; 375 struct efx_nic *efx = rx_queue->efx; 376 struct efx_rx_page_state *state; 377 struct efx_rx_buffer *rx_buf; 378 dma_addr_t dma_addr; 379 struct page *page; 380 381 count = 0; 382 do { 383 page = efx_reuse_page(rx_queue); 384 if (page == NULL) { 385 page = alloc_pages(__GFP_COMP | 386 (atomic ? GFP_ATOMIC : GFP_KERNEL), 387 efx->rx_buffer_order); 388 if (unlikely(page == NULL)) 389 return -ENOMEM; 390 dma_addr = 391 dma_map_page(&efx->pci_dev->dev, page, 0, 392 PAGE_SIZE << efx->rx_buffer_order, 393 DMA_FROM_DEVICE); 394 if (unlikely(dma_mapping_error(&efx->pci_dev->dev, 395 dma_addr))) { 396 __free_pages(page, efx->rx_buffer_order); 397 return -EIO; 398 } 399 state = page_address(page); 400 state->dma_addr = dma_addr; 401 } else { 402 state = page_address(page); 403 dma_addr = state->dma_addr; 404 } 405 406 dma_addr += sizeof(struct efx_rx_page_state); 407 page_offset = sizeof(struct efx_rx_page_state); 408 409 do { 410 index = rx_queue->added_count & rx_queue->ptr_mask; 411 rx_buf = efx_rx_buffer(rx_queue, index); 412 rx_buf->dma_addr = dma_addr + efx->rx_ip_align + 413 EFX_XDP_HEADROOM; 414 rx_buf->page = page; 415 rx_buf->page_offset = page_offset + efx->rx_ip_align + 416 EFX_XDP_HEADROOM; 417 rx_buf->len = efx->rx_dma_len; 418 rx_buf->flags = 0; 419 ++rx_queue->added_count; 420 get_page(page); 421 dma_addr += efx->rx_page_buf_step; 422 page_offset += efx->rx_page_buf_step; 423 } while (page_offset + efx->rx_page_buf_step <= PAGE_SIZE); 424 425 rx_buf->flags = EFX_RX_BUF_LAST_IN_PAGE; 426 } while (++count < efx->rx_pages_per_batch); 427 428 return 0; 429 } 430 431 void efx_rx_config_page_split(struct efx_nic *efx) 432 { 433 efx->rx_page_buf_step = ALIGN(efx->rx_dma_len + efx->rx_ip_align + 434 EFX_XDP_HEADROOM + EFX_XDP_TAILROOM, 435 EFX_RX_BUF_ALIGNMENT); 436 efx->rx_bufs_per_page = efx->rx_buffer_order ? 1 : 437 ((PAGE_SIZE - sizeof(struct efx_rx_page_state)) / 438 efx->rx_page_buf_step); 439 efx->rx_buffer_truesize = (PAGE_SIZE << efx->rx_buffer_order) / 440 efx->rx_bufs_per_page; 441 efx->rx_pages_per_batch = DIV_ROUND_UP(EFX_RX_PREFERRED_BATCH, 442 efx->rx_bufs_per_page); 443 } 444 445 /* efx_fast_push_rx_descriptors - push new RX descriptors quickly 446 * @rx_queue: RX descriptor queue 447 * 448 * This will aim to fill the RX descriptor queue up to 449 * @rx_queue->@max_fill. If there is insufficient atomic 450 * memory to do so, a slow fill will be scheduled. 451 * 452 * The caller must provide serialisation (none is used here). In practise, 453 * this means this function must run from the NAPI handler, or be called 454 * when NAPI is disabled. 455 */ 456 void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue, bool atomic) 457 { 458 struct efx_nic *efx = rx_queue->efx; 459 unsigned int fill_level, batch_size; 460 int space, rc = 0; 461 462 if (!rx_queue->refill_enabled) 463 return; 464 465 /* Calculate current fill level, and exit if we don't need to fill */ 466 fill_level = (rx_queue->added_count - rx_queue->removed_count); 467 EFX_WARN_ON_ONCE_PARANOID(fill_level > rx_queue->efx->rxq_entries); 468 if (fill_level >= rx_queue->fast_fill_trigger) 469 goto out; 470 471 /* Record minimum fill level */ 472 if (unlikely(fill_level < rx_queue->min_fill)) { 473 if (fill_level) 474 rx_queue->min_fill = fill_level; 475 } 476 477 batch_size = efx->rx_pages_per_batch * efx->rx_bufs_per_page; 478 space = rx_queue->max_fill - fill_level; 479 EFX_WARN_ON_ONCE_PARANOID(space < batch_size); 480 481 netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev, 482 "RX queue %d fast-filling descriptor ring from" 483 " level %d to level %d\n", 484 efx_rx_queue_index(rx_queue), fill_level, 485 rx_queue->max_fill); 486 487 do { 488 rc = efx_init_rx_buffers(rx_queue, atomic); 489 if (unlikely(rc)) { 490 /* Ensure that we don't leave the rx queue empty */ 491 efx_schedule_slow_fill(rx_queue); 492 goto out; 493 } 494 } while ((space -= batch_size) >= batch_size); 495 496 netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev, 497 "RX queue %d fast-filled descriptor ring " 498 "to level %d\n", efx_rx_queue_index(rx_queue), 499 rx_queue->added_count - rx_queue->removed_count); 500 501 out: 502 if (rx_queue->notified_count != rx_queue->added_count) 503 efx_nic_notify_rx_desc(rx_queue); 504 } 505 506 /* Pass a received packet up through GRO. GRO can handle pages 507 * regardless of checksum state and skbs with a good checksum. 508 */ 509 void 510 efx_rx_packet_gro(struct efx_channel *channel, struct efx_rx_buffer *rx_buf, 511 unsigned int n_frags, u8 *eh, __wsum csum) 512 { 513 struct napi_struct *napi = &channel->napi_str; 514 struct efx_nic *efx = channel->efx; 515 struct sk_buff *skb; 516 517 skb = napi_get_frags(napi); 518 if (unlikely(!skb)) { 519 struct efx_rx_queue *rx_queue; 520 521 rx_queue = efx_channel_get_rx_queue(channel); 522 efx_free_rx_buffers(rx_queue, rx_buf, n_frags); 523 return; 524 } 525 526 if (efx->net_dev->features & NETIF_F_RXHASH && 527 efx_rx_buf_hash_valid(efx, eh)) 528 skb_set_hash(skb, efx_rx_buf_hash(efx, eh), 529 PKT_HASH_TYPE_L3); 530 if (csum) { 531 skb->csum = csum; 532 skb->ip_summed = CHECKSUM_COMPLETE; 533 } else { 534 skb->ip_summed = ((rx_buf->flags & EFX_RX_PKT_CSUMMED) ? 535 CHECKSUM_UNNECESSARY : CHECKSUM_NONE); 536 } 537 skb->csum_level = !!(rx_buf->flags & EFX_RX_PKT_CSUM_LEVEL); 538 539 for (;;) { 540 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags, 541 rx_buf->page, rx_buf->page_offset, 542 rx_buf->len); 543 rx_buf->page = NULL; 544 skb->len += rx_buf->len; 545 if (skb_shinfo(skb)->nr_frags == n_frags) 546 break; 547 548 rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf); 549 } 550 551 skb->data_len = skb->len; 552 skb->truesize += n_frags * efx->rx_buffer_truesize; 553 554 skb_record_rx_queue(skb, channel->rx_queue.core_index); 555 556 napi_gro_frags(napi); 557 } 558 559 /* RSS contexts. We're using linked lists and crappy O(n) algorithms, because 560 * (a) this is an infrequent control-plane operation and (b) n is small (max 64) 561 */ 562 struct efx_rss_context *efx_alloc_rss_context_entry(struct efx_nic *efx) 563 { 564 struct list_head *head = &efx->rss_context.list; 565 struct efx_rss_context *ctx, *new; 566 u32 id = 1; /* Don't use zero, that refers to the master RSS context */ 567 568 WARN_ON(!mutex_is_locked(&efx->rss_lock)); 569 570 /* Search for first gap in the numbering */ 571 list_for_each_entry(ctx, head, list) { 572 if (ctx->user_id != id) 573 break; 574 id++; 575 /* Check for wrap. If this happens, we have nearly 2^32 576 * allocated RSS contexts, which seems unlikely. 577 */ 578 if (WARN_ON_ONCE(!id)) 579 return NULL; 580 } 581 582 /* Create the new entry */ 583 new = kmalloc(sizeof(*new), GFP_KERNEL); 584 if (!new) 585 return NULL; 586 new->context_id = EFX_MCDI_RSS_CONTEXT_INVALID; 587 new->rx_hash_udp_4tuple = false; 588 589 /* Insert the new entry into the gap */ 590 new->user_id = id; 591 list_add_tail(&new->list, &ctx->list); 592 return new; 593 } 594 595 struct efx_rss_context *efx_find_rss_context_entry(struct efx_nic *efx, u32 id) 596 { 597 struct list_head *head = &efx->rss_context.list; 598 struct efx_rss_context *ctx; 599 600 WARN_ON(!mutex_is_locked(&efx->rss_lock)); 601 602 list_for_each_entry(ctx, head, list) 603 if (ctx->user_id == id) 604 return ctx; 605 return NULL; 606 } 607 608 void efx_free_rss_context_entry(struct efx_rss_context *ctx) 609 { 610 list_del(&ctx->list); 611 kfree(ctx); 612 } 613 614 void efx_set_default_rx_indir_table(struct efx_nic *efx, 615 struct efx_rss_context *ctx) 616 { 617 size_t i; 618 619 for (i = 0; i < ARRAY_SIZE(ctx->rx_indir_table); i++) 620 ctx->rx_indir_table[i] = 621 ethtool_rxfh_indir_default(i, efx->rss_spread); 622 } 623 624 /** 625 * efx_filter_is_mc_recipient - test whether spec is a multicast recipient 626 * @spec: Specification to test 627 * 628 * Return: %true if the specification is a non-drop RX filter that 629 * matches a local MAC address I/G bit value of 1 or matches a local 630 * IPv4 or IPv6 address value in the respective multicast address 631 * range. Otherwise %false. 632 */ 633 bool efx_filter_is_mc_recipient(const struct efx_filter_spec *spec) 634 { 635 if (!(spec->flags & EFX_FILTER_FLAG_RX) || 636 spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP) 637 return false; 638 639 if (spec->match_flags & 640 (EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_LOC_MAC_IG) && 641 is_multicast_ether_addr(spec->loc_mac)) 642 return true; 643 644 if ((spec->match_flags & 645 (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) == 646 (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) { 647 if (spec->ether_type == htons(ETH_P_IP) && 648 ipv4_is_multicast(spec->loc_host[0])) 649 return true; 650 if (spec->ether_type == htons(ETH_P_IPV6) && 651 ((const u8 *)spec->loc_host)[0] == 0xff) 652 return true; 653 } 654 655 return false; 656 } 657 658 bool efx_filter_spec_equal(const struct efx_filter_spec *left, 659 const struct efx_filter_spec *right) 660 { 661 if ((left->match_flags ^ right->match_flags) | 662 ((left->flags ^ right->flags) & 663 (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX))) 664 return false; 665 666 return memcmp(&left->vport_id, &right->vport_id, 667 sizeof(struct efx_filter_spec) - 668 offsetof(struct efx_filter_spec, vport_id)) == 0; 669 } 670 671 u32 efx_filter_spec_hash(const struct efx_filter_spec *spec) 672 { 673 BUILD_BUG_ON(offsetof(struct efx_filter_spec, vport_id) & 3); 674 return jhash2((const u32 *)&spec->vport_id, 675 (sizeof(struct efx_filter_spec) - 676 offsetof(struct efx_filter_spec, vport_id)) / 4, 677 0); 678 } 679 680 #ifdef CONFIG_RFS_ACCEL 681 bool efx_rps_check_rule(struct efx_arfs_rule *rule, unsigned int filter_idx, 682 bool *force) 683 { 684 if (rule->filter_id == EFX_ARFS_FILTER_ID_PENDING) { 685 /* ARFS is currently updating this entry, leave it */ 686 return false; 687 } 688 if (rule->filter_id == EFX_ARFS_FILTER_ID_ERROR) { 689 /* ARFS tried and failed to update this, so it's probably out 690 * of date. Remove the filter and the ARFS rule entry. 691 */ 692 rule->filter_id = EFX_ARFS_FILTER_ID_REMOVING; 693 *force = true; 694 return true; 695 } else if (WARN_ON(rule->filter_id != filter_idx)) { /* can't happen */ 696 /* ARFS has moved on, so old filter is not needed. Since we did 697 * not mark the rule with EFX_ARFS_FILTER_ID_REMOVING, it will 698 * not be removed by efx_rps_hash_del() subsequently. 699 */ 700 *force = true; 701 return true; 702 } 703 /* Remove it iff ARFS wants to. */ 704 return true; 705 } 706 707 static 708 struct hlist_head *efx_rps_hash_bucket(struct efx_nic *efx, 709 const struct efx_filter_spec *spec) 710 { 711 u32 hash = efx_filter_spec_hash(spec); 712 713 lockdep_assert_held(&efx->rps_hash_lock); 714 if (!efx->rps_hash_table) 715 return NULL; 716 return &efx->rps_hash_table[hash % EFX_ARFS_HASH_TABLE_SIZE]; 717 } 718 719 struct efx_arfs_rule *efx_rps_hash_find(struct efx_nic *efx, 720 const struct efx_filter_spec *spec) 721 { 722 struct efx_arfs_rule *rule; 723 struct hlist_head *head; 724 struct hlist_node *node; 725 726 head = efx_rps_hash_bucket(efx, spec); 727 if (!head) 728 return NULL; 729 hlist_for_each(node, head) { 730 rule = container_of(node, struct efx_arfs_rule, node); 731 if (efx_filter_spec_equal(spec, &rule->spec)) 732 return rule; 733 } 734 return NULL; 735 } 736 737 struct efx_arfs_rule *efx_rps_hash_add(struct efx_nic *efx, 738 const struct efx_filter_spec *spec, 739 bool *new) 740 { 741 struct efx_arfs_rule *rule; 742 struct hlist_head *head; 743 struct hlist_node *node; 744 745 head = efx_rps_hash_bucket(efx, spec); 746 if (!head) 747 return NULL; 748 hlist_for_each(node, head) { 749 rule = container_of(node, struct efx_arfs_rule, node); 750 if (efx_filter_spec_equal(spec, &rule->spec)) { 751 *new = false; 752 return rule; 753 } 754 } 755 rule = kmalloc(sizeof(*rule), GFP_ATOMIC); 756 *new = true; 757 if (rule) { 758 memcpy(&rule->spec, spec, sizeof(rule->spec)); 759 hlist_add_head(&rule->node, head); 760 } 761 return rule; 762 } 763 764 void efx_rps_hash_del(struct efx_nic *efx, const struct efx_filter_spec *spec) 765 { 766 struct efx_arfs_rule *rule; 767 struct hlist_head *head; 768 struct hlist_node *node; 769 770 head = efx_rps_hash_bucket(efx, spec); 771 if (WARN_ON(!head)) 772 return; 773 hlist_for_each(node, head) { 774 rule = container_of(node, struct efx_arfs_rule, node); 775 if (efx_filter_spec_equal(spec, &rule->spec)) { 776 /* Someone already reused the entry. We know that if 777 * this check doesn't fire (i.e. filter_id == REMOVING) 778 * then the REMOVING mark was put there by our caller, 779 * because caller is holding a lock on filter table and 780 * only holders of that lock set REMOVING. 781 */ 782 if (rule->filter_id != EFX_ARFS_FILTER_ID_REMOVING) 783 return; 784 hlist_del(node); 785 kfree(rule); 786 return; 787 } 788 } 789 /* We didn't find it. */ 790 WARN_ON(1); 791 } 792 #endif 793 794 int efx_probe_filters(struct efx_nic *efx) 795 { 796 int rc; 797 798 mutex_lock(&efx->mac_lock); 799 rc = efx->type->filter_table_probe(efx); 800 if (rc) 801 goto out_unlock; 802 803 #ifdef CONFIG_RFS_ACCEL 804 if (efx->type->offload_features & NETIF_F_NTUPLE) { 805 struct efx_channel *channel; 806 int i, success = 1; 807 808 efx_for_each_channel(channel, efx) { 809 channel->rps_flow_id = 810 kcalloc(efx->type->max_rx_ip_filters, 811 sizeof(*channel->rps_flow_id), 812 GFP_KERNEL); 813 if (!channel->rps_flow_id) 814 success = 0; 815 else 816 for (i = 0; 817 i < efx->type->max_rx_ip_filters; 818 ++i) 819 channel->rps_flow_id[i] = 820 RPS_FLOW_ID_INVALID; 821 channel->rfs_expire_index = 0; 822 channel->rfs_filter_count = 0; 823 } 824 825 if (!success) { 826 efx_for_each_channel(channel, efx) { 827 kfree(channel->rps_flow_id); 828 channel->rps_flow_id = NULL; 829 } 830 efx->type->filter_table_remove(efx); 831 rc = -ENOMEM; 832 goto out_unlock; 833 } 834 } 835 #endif 836 out_unlock: 837 mutex_unlock(&efx->mac_lock); 838 return rc; 839 } 840 841 void efx_remove_filters(struct efx_nic *efx) 842 { 843 #ifdef CONFIG_RFS_ACCEL 844 struct efx_channel *channel; 845 846 efx_for_each_channel(channel, efx) { 847 cancel_delayed_work_sync(&channel->filter_work); 848 kfree(channel->rps_flow_id); 849 channel->rps_flow_id = NULL; 850 } 851 #endif 852 efx->type->filter_table_remove(efx); 853 } 854 855 #ifdef CONFIG_RFS_ACCEL 856 857 static void efx_filter_rfs_work(struct work_struct *data) 858 { 859 struct efx_async_filter_insertion *req = container_of(data, struct efx_async_filter_insertion, 860 work); 861 struct efx_nic *efx = efx_netdev_priv(req->net_dev); 862 struct efx_channel *channel = efx_get_channel(efx, req->rxq_index); 863 int slot_idx = req - efx->rps_slot; 864 struct efx_arfs_rule *rule; 865 u16 arfs_id = 0; 866 int rc; 867 868 rc = efx->type->filter_insert(efx, &req->spec, true); 869 if (rc >= 0) 870 /* Discard 'priority' part of EF10+ filter ID (mcdi_filters) */ 871 rc %= efx->type->max_rx_ip_filters; 872 if (efx->rps_hash_table) { 873 spin_lock_bh(&efx->rps_hash_lock); 874 rule = efx_rps_hash_find(efx, &req->spec); 875 /* The rule might have already gone, if someone else's request 876 * for the same spec was already worked and then expired before 877 * we got around to our work. In that case we have nothing 878 * tying us to an arfs_id, meaning that as soon as the filter 879 * is considered for expiry it will be removed. 880 */ 881 if (rule) { 882 if (rc < 0) 883 rule->filter_id = EFX_ARFS_FILTER_ID_ERROR; 884 else 885 rule->filter_id = rc; 886 arfs_id = rule->arfs_id; 887 } 888 spin_unlock_bh(&efx->rps_hash_lock); 889 } 890 if (rc >= 0) { 891 /* Remember this so we can check whether to expire the filter 892 * later. 893 */ 894 mutex_lock(&efx->rps_mutex); 895 if (channel->rps_flow_id[rc] == RPS_FLOW_ID_INVALID) 896 channel->rfs_filter_count++; 897 channel->rps_flow_id[rc] = req->flow_id; 898 mutex_unlock(&efx->rps_mutex); 899 900 if (req->spec.ether_type == htons(ETH_P_IP)) 901 netif_info(efx, rx_status, efx->net_dev, 902 "steering %s %pI4:%u:%pI4:%u to queue %u [flow %u filter %d id %u]\n", 903 (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP", 904 req->spec.rem_host, ntohs(req->spec.rem_port), 905 req->spec.loc_host, ntohs(req->spec.loc_port), 906 req->rxq_index, req->flow_id, rc, arfs_id); 907 else 908 netif_info(efx, rx_status, efx->net_dev, 909 "steering %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u filter %d id %u]\n", 910 (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP", 911 req->spec.rem_host, ntohs(req->spec.rem_port), 912 req->spec.loc_host, ntohs(req->spec.loc_port), 913 req->rxq_index, req->flow_id, rc, arfs_id); 914 channel->n_rfs_succeeded++; 915 } else { 916 if (req->spec.ether_type == htons(ETH_P_IP)) 917 netif_dbg(efx, rx_status, efx->net_dev, 918 "failed to steer %s %pI4:%u:%pI4:%u to queue %u [flow %u rc %d id %u]\n", 919 (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP", 920 req->spec.rem_host, ntohs(req->spec.rem_port), 921 req->spec.loc_host, ntohs(req->spec.loc_port), 922 req->rxq_index, req->flow_id, rc, arfs_id); 923 else 924 netif_dbg(efx, rx_status, efx->net_dev, 925 "failed to steer %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u rc %d id %u]\n", 926 (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP", 927 req->spec.rem_host, ntohs(req->spec.rem_port), 928 req->spec.loc_host, ntohs(req->spec.loc_port), 929 req->rxq_index, req->flow_id, rc, arfs_id); 930 channel->n_rfs_failed++; 931 /* We're overloading the NIC's filter tables, so let's do a 932 * chunk of extra expiry work. 933 */ 934 __efx_filter_rfs_expire(channel, min(channel->rfs_filter_count, 935 100u)); 936 } 937 938 /* Release references */ 939 clear_bit(slot_idx, &efx->rps_slot_map); 940 dev_put(req->net_dev); 941 } 942 943 int efx_filter_rfs(struct net_device *net_dev, const struct sk_buff *skb, 944 u16 rxq_index, u32 flow_id) 945 { 946 struct efx_nic *efx = efx_netdev_priv(net_dev); 947 struct efx_async_filter_insertion *req; 948 struct efx_arfs_rule *rule; 949 struct flow_keys fk; 950 int slot_idx; 951 bool new; 952 int rc; 953 954 /* find a free slot */ 955 for (slot_idx = 0; slot_idx < EFX_RPS_MAX_IN_FLIGHT; slot_idx++) 956 if (!test_and_set_bit(slot_idx, &efx->rps_slot_map)) 957 break; 958 if (slot_idx >= EFX_RPS_MAX_IN_FLIGHT) 959 return -EBUSY; 960 961 if (flow_id == RPS_FLOW_ID_INVALID) { 962 rc = -EINVAL; 963 goto out_clear; 964 } 965 966 if (!skb_flow_dissect_flow_keys(skb, &fk, 0)) { 967 rc = -EPROTONOSUPPORT; 968 goto out_clear; 969 } 970 971 if (fk.basic.n_proto != htons(ETH_P_IP) && fk.basic.n_proto != htons(ETH_P_IPV6)) { 972 rc = -EPROTONOSUPPORT; 973 goto out_clear; 974 } 975 if (fk.control.flags & FLOW_DIS_IS_FRAGMENT) { 976 rc = -EPROTONOSUPPORT; 977 goto out_clear; 978 } 979 980 req = efx->rps_slot + slot_idx; 981 efx_filter_init_rx(&req->spec, EFX_FILTER_PRI_HINT, 982 efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0, 983 rxq_index); 984 req->spec.match_flags = 985 EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO | 986 EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT | 987 EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT; 988 req->spec.ether_type = fk.basic.n_proto; 989 req->spec.ip_proto = fk.basic.ip_proto; 990 991 if (fk.basic.n_proto == htons(ETH_P_IP)) { 992 req->spec.rem_host[0] = fk.addrs.v4addrs.src; 993 req->spec.loc_host[0] = fk.addrs.v4addrs.dst; 994 } else { 995 memcpy(req->spec.rem_host, &fk.addrs.v6addrs.src, 996 sizeof(struct in6_addr)); 997 memcpy(req->spec.loc_host, &fk.addrs.v6addrs.dst, 998 sizeof(struct in6_addr)); 999 } 1000 1001 req->spec.rem_port = fk.ports.src; 1002 req->spec.loc_port = fk.ports.dst; 1003 1004 if (efx->rps_hash_table) { 1005 /* Add it to ARFS hash table */ 1006 spin_lock(&efx->rps_hash_lock); 1007 rule = efx_rps_hash_add(efx, &req->spec, &new); 1008 if (!rule) { 1009 rc = -ENOMEM; 1010 goto out_unlock; 1011 } 1012 if (new) 1013 rule->arfs_id = efx->rps_next_id++ % RPS_NO_FILTER; 1014 rc = rule->arfs_id; 1015 /* Skip if existing or pending filter already does the right thing */ 1016 if (!new && rule->rxq_index == rxq_index && 1017 rule->filter_id >= EFX_ARFS_FILTER_ID_PENDING) 1018 goto out_unlock; 1019 rule->rxq_index = rxq_index; 1020 rule->filter_id = EFX_ARFS_FILTER_ID_PENDING; 1021 spin_unlock(&efx->rps_hash_lock); 1022 } else { 1023 /* Without an ARFS hash table, we just use arfs_id 0 for all 1024 * filters. This means if multiple flows hash to the same 1025 * flow_id, all but the most recently touched will be eligible 1026 * for expiry. 1027 */ 1028 rc = 0; 1029 } 1030 1031 /* Queue the request */ 1032 dev_hold(req->net_dev = net_dev); 1033 INIT_WORK(&req->work, efx_filter_rfs_work); 1034 req->rxq_index = rxq_index; 1035 req->flow_id = flow_id; 1036 schedule_work(&req->work); 1037 return rc; 1038 out_unlock: 1039 spin_unlock(&efx->rps_hash_lock); 1040 out_clear: 1041 clear_bit(slot_idx, &efx->rps_slot_map); 1042 return rc; 1043 } 1044 1045 bool __efx_filter_rfs_expire(struct efx_channel *channel, unsigned int quota) 1046 { 1047 bool (*expire_one)(struct efx_nic *efx, u32 flow_id, unsigned int index); 1048 struct efx_nic *efx = channel->efx; 1049 unsigned int index, size, start; 1050 u32 flow_id; 1051 1052 if (!mutex_trylock(&efx->rps_mutex)) 1053 return false; 1054 expire_one = efx->type->filter_rfs_expire_one; 1055 index = channel->rfs_expire_index; 1056 start = index; 1057 size = efx->type->max_rx_ip_filters; 1058 while (quota) { 1059 flow_id = channel->rps_flow_id[index]; 1060 1061 if (flow_id != RPS_FLOW_ID_INVALID) { 1062 quota--; 1063 if (expire_one(efx, flow_id, index)) { 1064 netif_info(efx, rx_status, efx->net_dev, 1065 "expired filter %d [channel %u flow %u]\n", 1066 index, channel->channel, flow_id); 1067 channel->rps_flow_id[index] = RPS_FLOW_ID_INVALID; 1068 channel->rfs_filter_count--; 1069 } 1070 } 1071 if (++index == size) 1072 index = 0; 1073 /* If we were called with a quota that exceeds the total number 1074 * of filters in the table (which shouldn't happen, but could 1075 * if two callers race), ensure that we don't loop forever - 1076 * stop when we've examined every row of the table. 1077 */ 1078 if (index == start) 1079 break; 1080 } 1081 1082 channel->rfs_expire_index = index; 1083 mutex_unlock(&efx->rps_mutex); 1084 return true; 1085 } 1086 1087 #endif /* CONFIG_RFS_ACCEL */ 1088