1 /**************************************************************************** 2 * Driver for Solarflare Solarstorm network controllers and boards 3 * Copyright 2005-2006 Fen Systems Ltd. 4 * Copyright 2005-2011 Solarflare Communications Inc. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published 8 * by the Free Software Foundation, incorporated herein by reference. 9 */ 10 11 #include <linux/socket.h> 12 #include <linux/in.h> 13 #include <linux/slab.h> 14 #include <linux/ip.h> 15 #include <linux/tcp.h> 16 #include <linux/udp.h> 17 #include <linux/prefetch.h> 18 #include <linux/moduleparam.h> 19 #include <net/ip.h> 20 #include <net/checksum.h> 21 #include "net_driver.h" 22 #include "efx.h" 23 #include "nic.h" 24 #include "selftest.h" 25 #include "workarounds.h" 26 27 /* Number of RX descriptors pushed at once. */ 28 #define EFX_RX_BATCH 8 29 30 /* Maximum size of a buffer sharing a page */ 31 #define EFX_RX_HALF_PAGE ((PAGE_SIZE >> 1) - sizeof(struct efx_rx_page_state)) 32 33 /* Size of buffer allocated for skb header area. */ 34 #define EFX_SKB_HEADERS 64u 35 36 /* 37 * rx_alloc_method - RX buffer allocation method 38 * 39 * This driver supports two methods for allocating and using RX buffers: 40 * each RX buffer may be backed by an skb or by an order-n page. 41 * 42 * When GRO is in use then the second method has a lower overhead, 43 * since we don't have to allocate then free skbs on reassembled frames. 44 * 45 * Values: 46 * - RX_ALLOC_METHOD_AUTO = 0 47 * - RX_ALLOC_METHOD_SKB = 1 48 * - RX_ALLOC_METHOD_PAGE = 2 49 * 50 * The heuristic for %RX_ALLOC_METHOD_AUTO is a simple hysteresis count 51 * controlled by the parameters below. 52 * 53 * - Since pushing and popping descriptors are separated by the rx_queue 54 * size, so the watermarks should be ~rxd_size. 55 * - The performance win by using page-based allocation for GRO is less 56 * than the performance hit of using page-based allocation of non-GRO, 57 * so the watermarks should reflect this. 58 * 59 * Per channel we maintain a single variable, updated by each channel: 60 * 61 * rx_alloc_level += (gro_performed ? RX_ALLOC_FACTOR_GRO : 62 * RX_ALLOC_FACTOR_SKB) 63 * Per NAPI poll interval, we constrain rx_alloc_level to 0..MAX (which 64 * limits the hysteresis), and update the allocation strategy: 65 * 66 * rx_alloc_method = (rx_alloc_level > RX_ALLOC_LEVEL_GRO ? 67 * RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB) 68 */ 69 static int rx_alloc_method = RX_ALLOC_METHOD_AUTO; 70 71 #define RX_ALLOC_LEVEL_GRO 0x2000 72 #define RX_ALLOC_LEVEL_MAX 0x3000 73 #define RX_ALLOC_FACTOR_GRO 1 74 #define RX_ALLOC_FACTOR_SKB (-2) 75 76 /* This is the percentage fill level below which new RX descriptors 77 * will be added to the RX descriptor ring. 78 */ 79 static unsigned int rx_refill_threshold = 90; 80 81 /* This is the percentage fill level to which an RX queue will be refilled 82 * when the "RX refill threshold" is reached. 83 */ 84 static unsigned int rx_refill_limit = 95; 85 86 /* 87 * RX maximum head room required. 88 * 89 * This must be at least 1 to prevent overflow and at least 2 to allow 90 * pipelined receives. 91 */ 92 #define EFX_RXD_HEAD_ROOM 2 93 94 /* Offset of ethernet header within page */ 95 static inline unsigned int efx_rx_buf_offset(struct efx_nic *efx, 96 struct efx_rx_buffer *buf) 97 { 98 /* Offset is always within one page, so we don't need to consider 99 * the page order. 100 */ 101 return (((__force unsigned long) buf->dma_addr & (PAGE_SIZE - 1)) + 102 efx->type->rx_buffer_hash_size); 103 } 104 static inline unsigned int efx_rx_buf_size(struct efx_nic *efx) 105 { 106 return PAGE_SIZE << efx->rx_buffer_order; 107 } 108 109 static u8 *efx_rx_buf_eh(struct efx_nic *efx, struct efx_rx_buffer *buf) 110 { 111 if (buf->is_page) 112 return page_address(buf->u.page) + efx_rx_buf_offset(efx, buf); 113 else 114 return ((u8 *)buf->u.skb->data + 115 efx->type->rx_buffer_hash_size); 116 } 117 118 static inline u32 efx_rx_buf_hash(const u8 *eh) 119 { 120 /* The ethernet header is always directly after any hash. */ 121 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) || NET_IP_ALIGN % 4 == 0 122 return __le32_to_cpup((const __le32 *)(eh - 4)); 123 #else 124 const u8 *data = eh - 4; 125 return ((u32)data[0] | 126 (u32)data[1] << 8 | 127 (u32)data[2] << 16 | 128 (u32)data[3] << 24); 129 #endif 130 } 131 132 /** 133 * efx_init_rx_buffers_skb - create EFX_RX_BATCH skb-based RX buffers 134 * 135 * @rx_queue: Efx RX queue 136 * 137 * This allocates EFX_RX_BATCH skbs, maps them for DMA, and populates a 138 * struct efx_rx_buffer for each one. Return a negative error code or 0 139 * on success. May fail having only inserted fewer than EFX_RX_BATCH 140 * buffers. 141 */ 142 static int efx_init_rx_buffers_skb(struct efx_rx_queue *rx_queue) 143 { 144 struct efx_nic *efx = rx_queue->efx; 145 struct net_device *net_dev = efx->net_dev; 146 struct efx_rx_buffer *rx_buf; 147 struct sk_buff *skb; 148 int skb_len = efx->rx_buffer_len; 149 unsigned index, count; 150 151 for (count = 0; count < EFX_RX_BATCH; ++count) { 152 index = rx_queue->added_count & rx_queue->ptr_mask; 153 rx_buf = efx_rx_buffer(rx_queue, index); 154 155 rx_buf->u.skb = skb = netdev_alloc_skb(net_dev, skb_len); 156 if (unlikely(!skb)) 157 return -ENOMEM; 158 159 /* Adjust the SKB for padding and checksum */ 160 skb_reserve(skb, NET_IP_ALIGN); 161 rx_buf->len = skb_len - NET_IP_ALIGN; 162 rx_buf->is_page = false; 163 skb->ip_summed = CHECKSUM_UNNECESSARY; 164 165 rx_buf->dma_addr = pci_map_single(efx->pci_dev, 166 skb->data, rx_buf->len, 167 PCI_DMA_FROMDEVICE); 168 if (unlikely(pci_dma_mapping_error(efx->pci_dev, 169 rx_buf->dma_addr))) { 170 dev_kfree_skb_any(skb); 171 rx_buf->u.skb = NULL; 172 return -EIO; 173 } 174 175 ++rx_queue->added_count; 176 ++rx_queue->alloc_skb_count; 177 } 178 179 return 0; 180 } 181 182 /** 183 * efx_init_rx_buffers_page - create EFX_RX_BATCH page-based RX buffers 184 * 185 * @rx_queue: Efx RX queue 186 * 187 * This allocates memory for EFX_RX_BATCH receive buffers, maps them for DMA, 188 * and populates struct efx_rx_buffers for each one. Return a negative error 189 * code or 0 on success. If a single page can be split between two buffers, 190 * then the page will either be inserted fully, or not at at all. 191 */ 192 static int efx_init_rx_buffers_page(struct efx_rx_queue *rx_queue) 193 { 194 struct efx_nic *efx = rx_queue->efx; 195 struct efx_rx_buffer *rx_buf; 196 struct page *page; 197 void *page_addr; 198 struct efx_rx_page_state *state; 199 dma_addr_t dma_addr; 200 unsigned index, count; 201 202 /* We can split a page between two buffers */ 203 BUILD_BUG_ON(EFX_RX_BATCH & 1); 204 205 for (count = 0; count < EFX_RX_BATCH; ++count) { 206 page = alloc_pages(__GFP_COLD | __GFP_COMP | GFP_ATOMIC, 207 efx->rx_buffer_order); 208 if (unlikely(page == NULL)) 209 return -ENOMEM; 210 dma_addr = pci_map_page(efx->pci_dev, page, 0, 211 efx_rx_buf_size(efx), 212 PCI_DMA_FROMDEVICE); 213 if (unlikely(pci_dma_mapping_error(efx->pci_dev, dma_addr))) { 214 __free_pages(page, efx->rx_buffer_order); 215 return -EIO; 216 } 217 page_addr = page_address(page); 218 state = page_addr; 219 state->refcnt = 0; 220 state->dma_addr = dma_addr; 221 222 page_addr += sizeof(struct efx_rx_page_state); 223 dma_addr += sizeof(struct efx_rx_page_state); 224 225 split: 226 index = rx_queue->added_count & rx_queue->ptr_mask; 227 rx_buf = efx_rx_buffer(rx_queue, index); 228 rx_buf->dma_addr = dma_addr + EFX_PAGE_IP_ALIGN; 229 rx_buf->u.page = page; 230 rx_buf->len = efx->rx_buffer_len - EFX_PAGE_IP_ALIGN; 231 rx_buf->is_page = true; 232 ++rx_queue->added_count; 233 ++rx_queue->alloc_page_count; 234 ++state->refcnt; 235 236 if ((~count & 1) && (efx->rx_buffer_len <= EFX_RX_HALF_PAGE)) { 237 /* Use the second half of the page */ 238 get_page(page); 239 dma_addr += (PAGE_SIZE >> 1); 240 page_addr += (PAGE_SIZE >> 1); 241 ++count; 242 goto split; 243 } 244 } 245 246 return 0; 247 } 248 249 static void efx_unmap_rx_buffer(struct efx_nic *efx, 250 struct efx_rx_buffer *rx_buf) 251 { 252 if (rx_buf->is_page && rx_buf->u.page) { 253 struct efx_rx_page_state *state; 254 255 state = page_address(rx_buf->u.page); 256 if (--state->refcnt == 0) { 257 pci_unmap_page(efx->pci_dev, 258 state->dma_addr, 259 efx_rx_buf_size(efx), 260 PCI_DMA_FROMDEVICE); 261 } 262 } else if (!rx_buf->is_page && rx_buf->u.skb) { 263 pci_unmap_single(efx->pci_dev, rx_buf->dma_addr, 264 rx_buf->len, PCI_DMA_FROMDEVICE); 265 } 266 } 267 268 static void efx_free_rx_buffer(struct efx_nic *efx, 269 struct efx_rx_buffer *rx_buf) 270 { 271 if (rx_buf->is_page && rx_buf->u.page) { 272 __free_pages(rx_buf->u.page, efx->rx_buffer_order); 273 rx_buf->u.page = NULL; 274 } else if (!rx_buf->is_page && rx_buf->u.skb) { 275 dev_kfree_skb_any(rx_buf->u.skb); 276 rx_buf->u.skb = NULL; 277 } 278 } 279 280 static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue, 281 struct efx_rx_buffer *rx_buf) 282 { 283 efx_unmap_rx_buffer(rx_queue->efx, rx_buf); 284 efx_free_rx_buffer(rx_queue->efx, rx_buf); 285 } 286 287 /* Attempt to resurrect the other receive buffer that used to share this page, 288 * which had previously been passed up to the kernel and freed. */ 289 static void efx_resurrect_rx_buffer(struct efx_rx_queue *rx_queue, 290 struct efx_rx_buffer *rx_buf) 291 { 292 struct efx_rx_page_state *state = page_address(rx_buf->u.page); 293 struct efx_rx_buffer *new_buf; 294 unsigned fill_level, index; 295 296 /* +1 because efx_rx_packet() incremented removed_count. +1 because 297 * we'd like to insert an additional descriptor whilst leaving 298 * EFX_RXD_HEAD_ROOM for the non-recycle path */ 299 fill_level = (rx_queue->added_count - rx_queue->removed_count + 2); 300 if (unlikely(fill_level > rx_queue->max_fill)) { 301 /* We could place "state" on a list, and drain the list in 302 * efx_fast_push_rx_descriptors(). For now, this will do. */ 303 return; 304 } 305 306 ++state->refcnt; 307 get_page(rx_buf->u.page); 308 309 index = rx_queue->added_count & rx_queue->ptr_mask; 310 new_buf = efx_rx_buffer(rx_queue, index); 311 new_buf->dma_addr = rx_buf->dma_addr ^ (PAGE_SIZE >> 1); 312 new_buf->u.page = rx_buf->u.page; 313 new_buf->len = rx_buf->len; 314 new_buf->is_page = true; 315 ++rx_queue->added_count; 316 } 317 318 /* Recycle the given rx buffer directly back into the rx_queue. There is 319 * always room to add this buffer, because we've just popped a buffer. */ 320 static void efx_recycle_rx_buffer(struct efx_channel *channel, 321 struct efx_rx_buffer *rx_buf) 322 { 323 struct efx_nic *efx = channel->efx; 324 struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel); 325 struct efx_rx_buffer *new_buf; 326 unsigned index; 327 328 if (rx_buf->is_page && efx->rx_buffer_len <= EFX_RX_HALF_PAGE && 329 page_count(rx_buf->u.page) == 1) 330 efx_resurrect_rx_buffer(rx_queue, rx_buf); 331 332 index = rx_queue->added_count & rx_queue->ptr_mask; 333 new_buf = efx_rx_buffer(rx_queue, index); 334 335 memcpy(new_buf, rx_buf, sizeof(*new_buf)); 336 rx_buf->u.page = NULL; 337 ++rx_queue->added_count; 338 } 339 340 /** 341 * efx_fast_push_rx_descriptors - push new RX descriptors quickly 342 * @rx_queue: RX descriptor queue 343 * This will aim to fill the RX descriptor queue up to 344 * @rx_queue->@fast_fill_limit. If there is insufficient atomic 345 * memory to do so, a slow fill will be scheduled. 346 * 347 * The caller must provide serialisation (none is used here). In practise, 348 * this means this function must run from the NAPI handler, or be called 349 * when NAPI is disabled. 350 */ 351 void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue) 352 { 353 struct efx_channel *channel = efx_rx_queue_channel(rx_queue); 354 unsigned fill_level; 355 int space, rc = 0; 356 357 /* Calculate current fill level, and exit if we don't need to fill */ 358 fill_level = (rx_queue->added_count - rx_queue->removed_count); 359 EFX_BUG_ON_PARANOID(fill_level > rx_queue->efx->rxq_entries); 360 if (fill_level >= rx_queue->fast_fill_trigger) 361 goto out; 362 363 /* Record minimum fill level */ 364 if (unlikely(fill_level < rx_queue->min_fill)) { 365 if (fill_level) 366 rx_queue->min_fill = fill_level; 367 } 368 369 space = rx_queue->fast_fill_limit - fill_level; 370 if (space < EFX_RX_BATCH) 371 goto out; 372 373 netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev, 374 "RX queue %d fast-filling descriptor ring from" 375 " level %d to level %d using %s allocation\n", 376 efx_rx_queue_index(rx_queue), fill_level, 377 rx_queue->fast_fill_limit, 378 channel->rx_alloc_push_pages ? "page" : "skb"); 379 380 do { 381 if (channel->rx_alloc_push_pages) 382 rc = efx_init_rx_buffers_page(rx_queue); 383 else 384 rc = efx_init_rx_buffers_skb(rx_queue); 385 if (unlikely(rc)) { 386 /* Ensure that we don't leave the rx queue empty */ 387 if (rx_queue->added_count == rx_queue->removed_count) 388 efx_schedule_slow_fill(rx_queue); 389 goto out; 390 } 391 } while ((space -= EFX_RX_BATCH) >= EFX_RX_BATCH); 392 393 netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev, 394 "RX queue %d fast-filled descriptor ring " 395 "to level %d\n", efx_rx_queue_index(rx_queue), 396 rx_queue->added_count - rx_queue->removed_count); 397 398 out: 399 if (rx_queue->notified_count != rx_queue->added_count) 400 efx_nic_notify_rx_desc(rx_queue); 401 } 402 403 void efx_rx_slow_fill(unsigned long context) 404 { 405 struct efx_rx_queue *rx_queue = (struct efx_rx_queue *)context; 406 struct efx_channel *channel = efx_rx_queue_channel(rx_queue); 407 408 /* Post an event to cause NAPI to run and refill the queue */ 409 efx_nic_generate_fill_event(channel); 410 ++rx_queue->slow_fill_count; 411 } 412 413 static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue, 414 struct efx_rx_buffer *rx_buf, 415 int len, bool *discard, 416 bool *leak_packet) 417 { 418 struct efx_nic *efx = rx_queue->efx; 419 unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding; 420 421 if (likely(len <= max_len)) 422 return; 423 424 /* The packet must be discarded, but this is only a fatal error 425 * if the caller indicated it was 426 */ 427 *discard = true; 428 429 if ((len > rx_buf->len) && EFX_WORKAROUND_8071(efx)) { 430 if (net_ratelimit()) 431 netif_err(efx, rx_err, efx->net_dev, 432 " RX queue %d seriously overlength " 433 "RX event (0x%x > 0x%x+0x%x). Leaking\n", 434 efx_rx_queue_index(rx_queue), len, max_len, 435 efx->type->rx_buffer_padding); 436 /* If this buffer was skb-allocated, then the meta 437 * data at the end of the skb will be trashed. So 438 * we have no choice but to leak the fragment. 439 */ 440 *leak_packet = !rx_buf->is_page; 441 efx_schedule_reset(efx, RESET_TYPE_RX_RECOVERY); 442 } else { 443 if (net_ratelimit()) 444 netif_err(efx, rx_err, efx->net_dev, 445 " RX queue %d overlength RX event " 446 "(0x%x > 0x%x)\n", 447 efx_rx_queue_index(rx_queue), len, max_len); 448 } 449 450 efx_rx_queue_channel(rx_queue)->n_rx_overlength++; 451 } 452 453 /* Pass a received packet up through the generic GRO stack 454 * 455 * Handles driverlink veto, and passes the fragment up via 456 * the appropriate GRO method 457 */ 458 static void efx_rx_packet_gro(struct efx_channel *channel, 459 struct efx_rx_buffer *rx_buf, 460 const u8 *eh, bool checksummed) 461 { 462 struct napi_struct *napi = &channel->napi_str; 463 gro_result_t gro_result; 464 465 /* Pass the skb/page into the GRO engine */ 466 if (rx_buf->is_page) { 467 struct efx_nic *efx = channel->efx; 468 struct page *page = rx_buf->u.page; 469 struct sk_buff *skb; 470 471 rx_buf->u.page = NULL; 472 473 skb = napi_get_frags(napi); 474 if (!skb) { 475 put_page(page); 476 return; 477 } 478 479 if (efx->net_dev->features & NETIF_F_RXHASH) 480 skb->rxhash = efx_rx_buf_hash(eh); 481 482 skb_frag_set_page(skb, 0, page); 483 skb_shinfo(skb)->frags[0].page_offset = 484 efx_rx_buf_offset(efx, rx_buf); 485 skb_frag_size_set(&skb_shinfo(skb)->frags[0], rx_buf->len); 486 skb_shinfo(skb)->nr_frags = 1; 487 488 skb->len = rx_buf->len; 489 skb->data_len = rx_buf->len; 490 skb->truesize += rx_buf->len; 491 skb->ip_summed = 492 checksummed ? CHECKSUM_UNNECESSARY : CHECKSUM_NONE; 493 494 skb_record_rx_queue(skb, channel->channel); 495 496 gro_result = napi_gro_frags(napi); 497 } else { 498 struct sk_buff *skb = rx_buf->u.skb; 499 500 EFX_BUG_ON_PARANOID(!checksummed); 501 rx_buf->u.skb = NULL; 502 503 gro_result = napi_gro_receive(napi, skb); 504 } 505 506 if (gro_result == GRO_NORMAL) { 507 channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB; 508 } else if (gro_result != GRO_DROP) { 509 channel->rx_alloc_level += RX_ALLOC_FACTOR_GRO; 510 channel->irq_mod_score += 2; 511 } 512 } 513 514 void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index, 515 unsigned int len, bool checksummed, bool discard) 516 { 517 struct efx_nic *efx = rx_queue->efx; 518 struct efx_channel *channel = efx_rx_queue_channel(rx_queue); 519 struct efx_rx_buffer *rx_buf; 520 bool leak_packet = false; 521 522 rx_buf = efx_rx_buffer(rx_queue, index); 523 524 /* This allows the refill path to post another buffer. 525 * EFX_RXD_HEAD_ROOM ensures that the slot we are using 526 * isn't overwritten yet. 527 */ 528 rx_queue->removed_count++; 529 530 /* Validate the length encoded in the event vs the descriptor pushed */ 531 efx_rx_packet__check_len(rx_queue, rx_buf, len, 532 &discard, &leak_packet); 533 534 netif_vdbg(efx, rx_status, efx->net_dev, 535 "RX queue %d received id %x at %llx+%x %s%s\n", 536 efx_rx_queue_index(rx_queue), index, 537 (unsigned long long)rx_buf->dma_addr, len, 538 (checksummed ? " [SUMMED]" : ""), 539 (discard ? " [DISCARD]" : "")); 540 541 /* Discard packet, if instructed to do so */ 542 if (unlikely(discard)) { 543 if (unlikely(leak_packet)) 544 channel->n_skbuff_leaks++; 545 else 546 efx_recycle_rx_buffer(channel, rx_buf); 547 548 /* Don't hold off the previous receive */ 549 rx_buf = NULL; 550 goto out; 551 } 552 553 /* Release card resources - assumes all RX buffers consumed in-order 554 * per RX queue 555 */ 556 efx_unmap_rx_buffer(efx, rx_buf); 557 558 /* Prefetch nice and early so data will (hopefully) be in cache by 559 * the time we look at it. 560 */ 561 prefetch(efx_rx_buf_eh(efx, rx_buf)); 562 563 /* Pipeline receives so that we give time for packet headers to be 564 * prefetched into cache. 565 */ 566 rx_buf->len = len - efx->type->rx_buffer_hash_size; 567 out: 568 if (channel->rx_pkt) 569 __efx_rx_packet(channel, 570 channel->rx_pkt, channel->rx_pkt_csummed); 571 channel->rx_pkt = rx_buf; 572 channel->rx_pkt_csummed = checksummed; 573 } 574 575 /* Handle a received packet. Second half: Touches packet payload. */ 576 void __efx_rx_packet(struct efx_channel *channel, 577 struct efx_rx_buffer *rx_buf, bool checksummed) 578 { 579 struct efx_nic *efx = channel->efx; 580 struct sk_buff *skb; 581 u8 *eh = efx_rx_buf_eh(efx, rx_buf); 582 583 /* If we're in loopback test, then pass the packet directly to the 584 * loopback layer, and free the rx_buf here 585 */ 586 if (unlikely(efx->loopback_selftest)) { 587 efx_loopback_rx_packet(efx, eh, rx_buf->len); 588 efx_free_rx_buffer(efx, rx_buf); 589 return; 590 } 591 592 if (!rx_buf->is_page) { 593 skb = rx_buf->u.skb; 594 595 prefetch(skb_shinfo(skb)); 596 597 skb_reserve(skb, efx->type->rx_buffer_hash_size); 598 skb_put(skb, rx_buf->len); 599 600 if (efx->net_dev->features & NETIF_F_RXHASH) 601 skb->rxhash = efx_rx_buf_hash(eh); 602 603 /* Move past the ethernet header. rx_buf->data still points 604 * at the ethernet header */ 605 skb->protocol = eth_type_trans(skb, efx->net_dev); 606 607 skb_record_rx_queue(skb, channel->channel); 608 } 609 610 if (unlikely(!(efx->net_dev->features & NETIF_F_RXCSUM))) 611 checksummed = false; 612 613 if (likely(checksummed || rx_buf->is_page)) { 614 efx_rx_packet_gro(channel, rx_buf, eh, checksummed); 615 return; 616 } 617 618 /* We now own the SKB */ 619 skb = rx_buf->u.skb; 620 rx_buf->u.skb = NULL; 621 622 /* Set the SKB flags */ 623 skb_checksum_none_assert(skb); 624 625 /* Pass the packet up */ 626 netif_receive_skb(skb); 627 628 /* Update allocation strategy method */ 629 channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB; 630 } 631 632 void efx_rx_strategy(struct efx_channel *channel) 633 { 634 enum efx_rx_alloc_method method = rx_alloc_method; 635 636 /* Only makes sense to use page based allocation if GRO is enabled */ 637 if (!(channel->efx->net_dev->features & NETIF_F_GRO)) { 638 method = RX_ALLOC_METHOD_SKB; 639 } else if (method == RX_ALLOC_METHOD_AUTO) { 640 /* Constrain the rx_alloc_level */ 641 if (channel->rx_alloc_level < 0) 642 channel->rx_alloc_level = 0; 643 else if (channel->rx_alloc_level > RX_ALLOC_LEVEL_MAX) 644 channel->rx_alloc_level = RX_ALLOC_LEVEL_MAX; 645 646 /* Decide on the allocation method */ 647 method = ((channel->rx_alloc_level > RX_ALLOC_LEVEL_GRO) ? 648 RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB); 649 } 650 651 /* Push the option */ 652 channel->rx_alloc_push_pages = (method == RX_ALLOC_METHOD_PAGE); 653 } 654 655 int efx_probe_rx_queue(struct efx_rx_queue *rx_queue) 656 { 657 struct efx_nic *efx = rx_queue->efx; 658 unsigned int entries; 659 int rc; 660 661 /* Create the smallest power-of-two aligned ring */ 662 entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE); 663 EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE); 664 rx_queue->ptr_mask = entries - 1; 665 666 netif_dbg(efx, probe, efx->net_dev, 667 "creating RX queue %d size %#x mask %#x\n", 668 efx_rx_queue_index(rx_queue), efx->rxq_entries, 669 rx_queue->ptr_mask); 670 671 /* Allocate RX buffers */ 672 rx_queue->buffer = kzalloc(entries * sizeof(*rx_queue->buffer), 673 GFP_KERNEL); 674 if (!rx_queue->buffer) 675 return -ENOMEM; 676 677 rc = efx_nic_probe_rx(rx_queue); 678 if (rc) { 679 kfree(rx_queue->buffer); 680 rx_queue->buffer = NULL; 681 } 682 return rc; 683 } 684 685 void efx_init_rx_queue(struct efx_rx_queue *rx_queue) 686 { 687 struct efx_nic *efx = rx_queue->efx; 688 unsigned int max_fill, trigger, limit; 689 690 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev, 691 "initialising RX queue %d\n", efx_rx_queue_index(rx_queue)); 692 693 /* Initialise ptr fields */ 694 rx_queue->added_count = 0; 695 rx_queue->notified_count = 0; 696 rx_queue->removed_count = 0; 697 rx_queue->min_fill = -1U; 698 699 /* Initialise limit fields */ 700 max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM; 701 trigger = max_fill * min(rx_refill_threshold, 100U) / 100U; 702 limit = max_fill * min(rx_refill_limit, 100U) / 100U; 703 704 rx_queue->max_fill = max_fill; 705 rx_queue->fast_fill_trigger = trigger; 706 rx_queue->fast_fill_limit = limit; 707 708 /* Set up RX descriptor ring */ 709 efx_nic_init_rx(rx_queue); 710 } 711 712 void efx_fini_rx_queue(struct efx_rx_queue *rx_queue) 713 { 714 int i; 715 struct efx_rx_buffer *rx_buf; 716 717 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev, 718 "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue)); 719 720 del_timer_sync(&rx_queue->slow_fill); 721 efx_nic_fini_rx(rx_queue); 722 723 /* Release RX buffers NB start at index 0 not current HW ptr */ 724 if (rx_queue->buffer) { 725 for (i = 0; i <= rx_queue->ptr_mask; i++) { 726 rx_buf = efx_rx_buffer(rx_queue, i); 727 efx_fini_rx_buffer(rx_queue, rx_buf); 728 } 729 } 730 } 731 732 void efx_remove_rx_queue(struct efx_rx_queue *rx_queue) 733 { 734 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev, 735 "destroying RX queue %d\n", efx_rx_queue_index(rx_queue)); 736 737 efx_nic_remove_rx(rx_queue); 738 739 kfree(rx_queue->buffer); 740 rx_queue->buffer = NULL; 741 } 742 743 744 module_param(rx_alloc_method, int, 0644); 745 MODULE_PARM_DESC(rx_alloc_method, "Allocation method used for RX buffers"); 746 747 module_param(rx_refill_threshold, uint, 0444); 748 MODULE_PARM_DESC(rx_refill_threshold, 749 "RX descriptor ring fast/slow fill threshold (%)"); 750 751