xref: /linux/drivers/net/ethernet/sfc/rx.c (revision c75c5ab575af7db707689cdbb5a5c458e9a034bb)
1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2005-2011 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #include <linux/socket.h>
12 #include <linux/in.h>
13 #include <linux/slab.h>
14 #include <linux/ip.h>
15 #include <linux/tcp.h>
16 #include <linux/udp.h>
17 #include <linux/prefetch.h>
18 #include <linux/moduleparam.h>
19 #include <net/ip.h>
20 #include <net/checksum.h>
21 #include "net_driver.h"
22 #include "efx.h"
23 #include "nic.h"
24 #include "selftest.h"
25 #include "workarounds.h"
26 
27 /* Number of RX descriptors pushed at once. */
28 #define EFX_RX_BATCH  8
29 
30 /* Maximum size of a buffer sharing a page */
31 #define EFX_RX_HALF_PAGE ((PAGE_SIZE >> 1) - sizeof(struct efx_rx_page_state))
32 
33 /* Size of buffer allocated for skb header area. */
34 #define EFX_SKB_HEADERS  64u
35 
36 /*
37  * rx_alloc_method - RX buffer allocation method
38  *
39  * This driver supports two methods for allocating and using RX buffers:
40  * each RX buffer may be backed by an skb or by an order-n page.
41  *
42  * When GRO is in use then the second method has a lower overhead,
43  * since we don't have to allocate then free skbs on reassembled frames.
44  *
45  * Values:
46  *   - RX_ALLOC_METHOD_AUTO = 0
47  *   - RX_ALLOC_METHOD_SKB  = 1
48  *   - RX_ALLOC_METHOD_PAGE = 2
49  *
50  * The heuristic for %RX_ALLOC_METHOD_AUTO is a simple hysteresis count
51  * controlled by the parameters below.
52  *
53  *   - Since pushing and popping descriptors are separated by the rx_queue
54  *     size, so the watermarks should be ~rxd_size.
55  *   - The performance win by using page-based allocation for GRO is less
56  *     than the performance hit of using page-based allocation of non-GRO,
57  *     so the watermarks should reflect this.
58  *
59  * Per channel we maintain a single variable, updated by each channel:
60  *
61  *   rx_alloc_level += (gro_performed ? RX_ALLOC_FACTOR_GRO :
62  *                      RX_ALLOC_FACTOR_SKB)
63  * Per NAPI poll interval, we constrain rx_alloc_level to 0..MAX (which
64  * limits the hysteresis), and update the allocation strategy:
65  *
66  *   rx_alloc_method = (rx_alloc_level > RX_ALLOC_LEVEL_GRO ?
67  *                      RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB)
68  */
69 static int rx_alloc_method = RX_ALLOC_METHOD_AUTO;
70 
71 #define RX_ALLOC_LEVEL_GRO 0x2000
72 #define RX_ALLOC_LEVEL_MAX 0x3000
73 #define RX_ALLOC_FACTOR_GRO 1
74 #define RX_ALLOC_FACTOR_SKB (-2)
75 
76 /* This is the percentage fill level below which new RX descriptors
77  * will be added to the RX descriptor ring.
78  */
79 static unsigned int rx_refill_threshold;
80 
81 /*
82  * RX maximum head room required.
83  *
84  * This must be at least 1 to prevent overflow and at least 2 to allow
85  * pipelined receives.
86  */
87 #define EFX_RXD_HEAD_ROOM 2
88 
89 /* Offset of ethernet header within page */
90 static inline unsigned int efx_rx_buf_offset(struct efx_nic *efx,
91 					     struct efx_rx_buffer *buf)
92 {
93 	return buf->page_offset + efx->type->rx_buffer_hash_size;
94 }
95 static inline unsigned int efx_rx_buf_size(struct efx_nic *efx)
96 {
97 	return PAGE_SIZE << efx->rx_buffer_order;
98 }
99 
100 static u8 *efx_rx_buf_eh(struct efx_nic *efx, struct efx_rx_buffer *buf)
101 {
102 	if (buf->flags & EFX_RX_BUF_PAGE)
103 		return page_address(buf->u.page) + efx_rx_buf_offset(efx, buf);
104 	else
105 		return (u8 *)buf->u.skb->data + efx->type->rx_buffer_hash_size;
106 }
107 
108 static inline u32 efx_rx_buf_hash(const u8 *eh)
109 {
110 	/* The ethernet header is always directly after any hash. */
111 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) || NET_IP_ALIGN % 4 == 0
112 	return __le32_to_cpup((const __le32 *)(eh - 4));
113 #else
114 	const u8 *data = eh - 4;
115 	return (u32)data[0]	  |
116 	       (u32)data[1] << 8  |
117 	       (u32)data[2] << 16 |
118 	       (u32)data[3] << 24;
119 #endif
120 }
121 
122 /**
123  * efx_init_rx_buffers_skb - create EFX_RX_BATCH skb-based RX buffers
124  *
125  * @rx_queue:		Efx RX queue
126  *
127  * This allocates EFX_RX_BATCH skbs, maps them for DMA, and populates a
128  * struct efx_rx_buffer for each one. Return a negative error code or 0
129  * on success. May fail having only inserted fewer than EFX_RX_BATCH
130  * buffers.
131  */
132 static int efx_init_rx_buffers_skb(struct efx_rx_queue *rx_queue)
133 {
134 	struct efx_nic *efx = rx_queue->efx;
135 	struct net_device *net_dev = efx->net_dev;
136 	struct efx_rx_buffer *rx_buf;
137 	struct sk_buff *skb;
138 	int skb_len = efx->rx_buffer_len;
139 	unsigned index, count;
140 
141 	for (count = 0; count < EFX_RX_BATCH; ++count) {
142 		index = rx_queue->added_count & rx_queue->ptr_mask;
143 		rx_buf = efx_rx_buffer(rx_queue, index);
144 
145 		rx_buf->u.skb = skb = netdev_alloc_skb(net_dev, skb_len);
146 		if (unlikely(!skb))
147 			return -ENOMEM;
148 
149 		/* Adjust the SKB for padding */
150 		skb_reserve(skb, NET_IP_ALIGN);
151 		rx_buf->len = skb_len - NET_IP_ALIGN;
152 		rx_buf->flags = 0;
153 
154 		rx_buf->dma_addr = dma_map_single(&efx->pci_dev->dev,
155 						  skb->data, rx_buf->len,
156 						  DMA_FROM_DEVICE);
157 		if (unlikely(dma_mapping_error(&efx->pci_dev->dev,
158 					       rx_buf->dma_addr))) {
159 			dev_kfree_skb_any(skb);
160 			rx_buf->u.skb = NULL;
161 			return -EIO;
162 		}
163 
164 		++rx_queue->added_count;
165 		++rx_queue->alloc_skb_count;
166 	}
167 
168 	return 0;
169 }
170 
171 /**
172  * efx_init_rx_buffers_page - create EFX_RX_BATCH page-based RX buffers
173  *
174  * @rx_queue:		Efx RX queue
175  *
176  * This allocates memory for EFX_RX_BATCH receive buffers, maps them for DMA,
177  * and populates struct efx_rx_buffers for each one. Return a negative error
178  * code or 0 on success. If a single page can be split between two buffers,
179  * then the page will either be inserted fully, or not at at all.
180  */
181 static int efx_init_rx_buffers_page(struct efx_rx_queue *rx_queue)
182 {
183 	struct efx_nic *efx = rx_queue->efx;
184 	struct efx_rx_buffer *rx_buf;
185 	struct page *page;
186 	unsigned int page_offset;
187 	struct efx_rx_page_state *state;
188 	dma_addr_t dma_addr;
189 	unsigned index, count;
190 
191 	/* We can split a page between two buffers */
192 	BUILD_BUG_ON(EFX_RX_BATCH & 1);
193 
194 	for (count = 0; count < EFX_RX_BATCH; ++count) {
195 		page = alloc_pages(__GFP_COLD | __GFP_COMP | GFP_ATOMIC,
196 				   efx->rx_buffer_order);
197 		if (unlikely(page == NULL))
198 			return -ENOMEM;
199 		dma_addr = dma_map_page(&efx->pci_dev->dev, page, 0,
200 					efx_rx_buf_size(efx),
201 					DMA_FROM_DEVICE);
202 		if (unlikely(dma_mapping_error(&efx->pci_dev->dev, dma_addr))) {
203 			__free_pages(page, efx->rx_buffer_order);
204 			return -EIO;
205 		}
206 		state = page_address(page);
207 		state->refcnt = 0;
208 		state->dma_addr = dma_addr;
209 
210 		dma_addr += sizeof(struct efx_rx_page_state);
211 		page_offset = sizeof(struct efx_rx_page_state);
212 
213 	split:
214 		index = rx_queue->added_count & rx_queue->ptr_mask;
215 		rx_buf = efx_rx_buffer(rx_queue, index);
216 		rx_buf->dma_addr = dma_addr + EFX_PAGE_IP_ALIGN;
217 		rx_buf->u.page = page;
218 		rx_buf->page_offset = page_offset + EFX_PAGE_IP_ALIGN;
219 		rx_buf->len = efx->rx_buffer_len - EFX_PAGE_IP_ALIGN;
220 		rx_buf->flags = EFX_RX_BUF_PAGE;
221 		++rx_queue->added_count;
222 		++rx_queue->alloc_page_count;
223 		++state->refcnt;
224 
225 		if ((~count & 1) && (efx->rx_buffer_len <= EFX_RX_HALF_PAGE)) {
226 			/* Use the second half of the page */
227 			get_page(page);
228 			dma_addr += (PAGE_SIZE >> 1);
229 			page_offset += (PAGE_SIZE >> 1);
230 			++count;
231 			goto split;
232 		}
233 	}
234 
235 	return 0;
236 }
237 
238 static void efx_unmap_rx_buffer(struct efx_nic *efx,
239 				struct efx_rx_buffer *rx_buf,
240 				unsigned int used_len)
241 {
242 	if ((rx_buf->flags & EFX_RX_BUF_PAGE) && rx_buf->u.page) {
243 		struct efx_rx_page_state *state;
244 
245 		state = page_address(rx_buf->u.page);
246 		if (--state->refcnt == 0) {
247 			dma_unmap_page(&efx->pci_dev->dev,
248 				       state->dma_addr,
249 				       efx_rx_buf_size(efx),
250 				       DMA_FROM_DEVICE);
251 		} else if (used_len) {
252 			dma_sync_single_for_cpu(&efx->pci_dev->dev,
253 						rx_buf->dma_addr, used_len,
254 						DMA_FROM_DEVICE);
255 		}
256 	} else if (!(rx_buf->flags & EFX_RX_BUF_PAGE) && rx_buf->u.skb) {
257 		dma_unmap_single(&efx->pci_dev->dev, rx_buf->dma_addr,
258 				 rx_buf->len, DMA_FROM_DEVICE);
259 	}
260 }
261 
262 static void efx_free_rx_buffer(struct efx_nic *efx,
263 			       struct efx_rx_buffer *rx_buf)
264 {
265 	if ((rx_buf->flags & EFX_RX_BUF_PAGE) && rx_buf->u.page) {
266 		__free_pages(rx_buf->u.page, efx->rx_buffer_order);
267 		rx_buf->u.page = NULL;
268 	} else if (!(rx_buf->flags & EFX_RX_BUF_PAGE) && rx_buf->u.skb) {
269 		dev_kfree_skb_any(rx_buf->u.skb);
270 		rx_buf->u.skb = NULL;
271 	}
272 }
273 
274 static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue,
275 			       struct efx_rx_buffer *rx_buf)
276 {
277 	efx_unmap_rx_buffer(rx_queue->efx, rx_buf, 0);
278 	efx_free_rx_buffer(rx_queue->efx, rx_buf);
279 }
280 
281 /* Attempt to resurrect the other receive buffer that used to share this page,
282  * which had previously been passed up to the kernel and freed. */
283 static void efx_resurrect_rx_buffer(struct efx_rx_queue *rx_queue,
284 				    struct efx_rx_buffer *rx_buf)
285 {
286 	struct efx_rx_page_state *state = page_address(rx_buf->u.page);
287 	struct efx_rx_buffer *new_buf;
288 	unsigned fill_level, index;
289 
290 	/* +1 because efx_rx_packet() incremented removed_count. +1 because
291 	 * we'd like to insert an additional descriptor whilst leaving
292 	 * EFX_RXD_HEAD_ROOM for the non-recycle path */
293 	fill_level = (rx_queue->added_count - rx_queue->removed_count + 2);
294 	if (unlikely(fill_level > rx_queue->max_fill)) {
295 		/* We could place "state" on a list, and drain the list in
296 		 * efx_fast_push_rx_descriptors(). For now, this will do. */
297 		return;
298 	}
299 
300 	++state->refcnt;
301 	get_page(rx_buf->u.page);
302 
303 	index = rx_queue->added_count & rx_queue->ptr_mask;
304 	new_buf = efx_rx_buffer(rx_queue, index);
305 	new_buf->dma_addr = rx_buf->dma_addr ^ (PAGE_SIZE >> 1);
306 	new_buf->u.page = rx_buf->u.page;
307 	new_buf->len = rx_buf->len;
308 	new_buf->flags = EFX_RX_BUF_PAGE;
309 	++rx_queue->added_count;
310 }
311 
312 /* Recycle the given rx buffer directly back into the rx_queue. There is
313  * always room to add this buffer, because we've just popped a buffer. */
314 static void efx_recycle_rx_buffer(struct efx_channel *channel,
315 				  struct efx_rx_buffer *rx_buf)
316 {
317 	struct efx_nic *efx = channel->efx;
318 	struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
319 	struct efx_rx_buffer *new_buf;
320 	unsigned index;
321 
322 	rx_buf->flags &= EFX_RX_BUF_PAGE;
323 
324 	if ((rx_buf->flags & EFX_RX_BUF_PAGE) &&
325 	    efx->rx_buffer_len <= EFX_RX_HALF_PAGE &&
326 	    page_count(rx_buf->u.page) == 1)
327 		efx_resurrect_rx_buffer(rx_queue, rx_buf);
328 
329 	index = rx_queue->added_count & rx_queue->ptr_mask;
330 	new_buf = efx_rx_buffer(rx_queue, index);
331 
332 	memcpy(new_buf, rx_buf, sizeof(*new_buf));
333 	rx_buf->u.page = NULL;
334 	++rx_queue->added_count;
335 }
336 
337 /**
338  * efx_fast_push_rx_descriptors - push new RX descriptors quickly
339  * @rx_queue:		RX descriptor queue
340  *
341  * This will aim to fill the RX descriptor queue up to
342  * @rx_queue->@max_fill. If there is insufficient atomic
343  * memory to do so, a slow fill will be scheduled.
344  *
345  * The caller must provide serialisation (none is used here). In practise,
346  * this means this function must run from the NAPI handler, or be called
347  * when NAPI is disabled.
348  */
349 void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue)
350 {
351 	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
352 	unsigned fill_level;
353 	int space, rc = 0;
354 
355 	/* Calculate current fill level, and exit if we don't need to fill */
356 	fill_level = (rx_queue->added_count - rx_queue->removed_count);
357 	EFX_BUG_ON_PARANOID(fill_level > rx_queue->efx->rxq_entries);
358 	if (fill_level >= rx_queue->fast_fill_trigger)
359 		goto out;
360 
361 	/* Record minimum fill level */
362 	if (unlikely(fill_level < rx_queue->min_fill)) {
363 		if (fill_level)
364 			rx_queue->min_fill = fill_level;
365 	}
366 
367 	space = rx_queue->max_fill - fill_level;
368 	EFX_BUG_ON_PARANOID(space < EFX_RX_BATCH);
369 
370 	netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
371 		   "RX queue %d fast-filling descriptor ring from"
372 		   " level %d to level %d using %s allocation\n",
373 		   efx_rx_queue_index(rx_queue), fill_level,
374 		   rx_queue->max_fill,
375 		   channel->rx_alloc_push_pages ? "page" : "skb");
376 
377 	do {
378 		if (channel->rx_alloc_push_pages)
379 			rc = efx_init_rx_buffers_page(rx_queue);
380 		else
381 			rc = efx_init_rx_buffers_skb(rx_queue);
382 		if (unlikely(rc)) {
383 			/* Ensure that we don't leave the rx queue empty */
384 			if (rx_queue->added_count == rx_queue->removed_count)
385 				efx_schedule_slow_fill(rx_queue);
386 			goto out;
387 		}
388 	} while ((space -= EFX_RX_BATCH) >= EFX_RX_BATCH);
389 
390 	netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
391 		   "RX queue %d fast-filled descriptor ring "
392 		   "to level %d\n", efx_rx_queue_index(rx_queue),
393 		   rx_queue->added_count - rx_queue->removed_count);
394 
395  out:
396 	if (rx_queue->notified_count != rx_queue->added_count)
397 		efx_nic_notify_rx_desc(rx_queue);
398 }
399 
400 void efx_rx_slow_fill(unsigned long context)
401 {
402 	struct efx_rx_queue *rx_queue = (struct efx_rx_queue *)context;
403 
404 	/* Post an event to cause NAPI to run and refill the queue */
405 	efx_nic_generate_fill_event(rx_queue);
406 	++rx_queue->slow_fill_count;
407 }
408 
409 static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue,
410 				     struct efx_rx_buffer *rx_buf,
411 				     int len, bool *leak_packet)
412 {
413 	struct efx_nic *efx = rx_queue->efx;
414 	unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding;
415 
416 	if (likely(len <= max_len))
417 		return;
418 
419 	/* The packet must be discarded, but this is only a fatal error
420 	 * if the caller indicated it was
421 	 */
422 	rx_buf->flags |= EFX_RX_PKT_DISCARD;
423 
424 	if ((len > rx_buf->len) && EFX_WORKAROUND_8071(efx)) {
425 		if (net_ratelimit())
426 			netif_err(efx, rx_err, efx->net_dev,
427 				  " RX queue %d seriously overlength "
428 				  "RX event (0x%x > 0x%x+0x%x). Leaking\n",
429 				  efx_rx_queue_index(rx_queue), len, max_len,
430 				  efx->type->rx_buffer_padding);
431 		/* If this buffer was skb-allocated, then the meta
432 		 * data at the end of the skb will be trashed. So
433 		 * we have no choice but to leak the fragment.
434 		 */
435 		*leak_packet = !(rx_buf->flags & EFX_RX_BUF_PAGE);
436 		efx_schedule_reset(efx, RESET_TYPE_RX_RECOVERY);
437 	} else {
438 		if (net_ratelimit())
439 			netif_err(efx, rx_err, efx->net_dev,
440 				  " RX queue %d overlength RX event "
441 				  "(0x%x > 0x%x)\n",
442 				  efx_rx_queue_index(rx_queue), len, max_len);
443 	}
444 
445 	efx_rx_queue_channel(rx_queue)->n_rx_overlength++;
446 }
447 
448 /* Pass a received packet up through GRO.  GRO can handle pages
449  * regardless of checksum state and skbs with a good checksum.
450  */
451 static void efx_rx_packet_gro(struct efx_channel *channel,
452 			      struct efx_rx_buffer *rx_buf,
453 			      const u8 *eh)
454 {
455 	struct napi_struct *napi = &channel->napi_str;
456 	gro_result_t gro_result;
457 
458 	if (rx_buf->flags & EFX_RX_BUF_PAGE) {
459 		struct efx_nic *efx = channel->efx;
460 		struct page *page = rx_buf->u.page;
461 		struct sk_buff *skb;
462 
463 		rx_buf->u.page = NULL;
464 
465 		skb = napi_get_frags(napi);
466 		if (!skb) {
467 			put_page(page);
468 			return;
469 		}
470 
471 		if (efx->net_dev->features & NETIF_F_RXHASH)
472 			skb->rxhash = efx_rx_buf_hash(eh);
473 
474 		skb_fill_page_desc(skb, 0, page,
475 				   efx_rx_buf_offset(efx, rx_buf), rx_buf->len);
476 
477 		skb->len = rx_buf->len;
478 		skb->data_len = rx_buf->len;
479 		skb->truesize += rx_buf->len;
480 		skb->ip_summed = ((rx_buf->flags & EFX_RX_PKT_CSUMMED) ?
481 				  CHECKSUM_UNNECESSARY : CHECKSUM_NONE);
482 
483 		skb_record_rx_queue(skb, channel->rx_queue.core_index);
484 
485 		gro_result = napi_gro_frags(napi);
486 	} else {
487 		struct sk_buff *skb = rx_buf->u.skb;
488 
489 		EFX_BUG_ON_PARANOID(!(rx_buf->flags & EFX_RX_PKT_CSUMMED));
490 		rx_buf->u.skb = NULL;
491 		skb->ip_summed = CHECKSUM_UNNECESSARY;
492 
493 		gro_result = napi_gro_receive(napi, skb);
494 	}
495 
496 	if (gro_result == GRO_NORMAL) {
497 		channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB;
498 	} else if (gro_result != GRO_DROP) {
499 		channel->rx_alloc_level += RX_ALLOC_FACTOR_GRO;
500 		channel->irq_mod_score += 2;
501 	}
502 }
503 
504 void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index,
505 		   unsigned int len, u16 flags)
506 {
507 	struct efx_nic *efx = rx_queue->efx;
508 	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
509 	struct efx_rx_buffer *rx_buf;
510 	bool leak_packet = false;
511 
512 	rx_buf = efx_rx_buffer(rx_queue, index);
513 	rx_buf->flags |= flags;
514 
515 	/* This allows the refill path to post another buffer.
516 	 * EFX_RXD_HEAD_ROOM ensures that the slot we are using
517 	 * isn't overwritten yet.
518 	 */
519 	rx_queue->removed_count++;
520 
521 	/* Validate the length encoded in the event vs the descriptor pushed */
522 	efx_rx_packet__check_len(rx_queue, rx_buf, len, &leak_packet);
523 
524 	netif_vdbg(efx, rx_status, efx->net_dev,
525 		   "RX queue %d received id %x at %llx+%x %s%s\n",
526 		   efx_rx_queue_index(rx_queue), index,
527 		   (unsigned long long)rx_buf->dma_addr, len,
528 		   (rx_buf->flags & EFX_RX_PKT_CSUMMED) ? " [SUMMED]" : "",
529 		   (rx_buf->flags & EFX_RX_PKT_DISCARD) ? " [DISCARD]" : "");
530 
531 	/* Discard packet, if instructed to do so */
532 	if (unlikely(rx_buf->flags & EFX_RX_PKT_DISCARD)) {
533 		if (unlikely(leak_packet))
534 			channel->n_skbuff_leaks++;
535 		else
536 			efx_recycle_rx_buffer(channel, rx_buf);
537 
538 		/* Don't hold off the previous receive */
539 		rx_buf = NULL;
540 		goto out;
541 	}
542 
543 	/* Release and/or sync DMA mapping - assumes all RX buffers
544 	 * consumed in-order per RX queue
545 	 */
546 	efx_unmap_rx_buffer(efx, rx_buf, len);
547 
548 	/* Prefetch nice and early so data will (hopefully) be in cache by
549 	 * the time we look at it.
550 	 */
551 	prefetch(efx_rx_buf_eh(efx, rx_buf));
552 
553 	/* Pipeline receives so that we give time for packet headers to be
554 	 * prefetched into cache.
555 	 */
556 	rx_buf->len = len - efx->type->rx_buffer_hash_size;
557 out:
558 	if (channel->rx_pkt)
559 		__efx_rx_packet(channel, channel->rx_pkt);
560 	channel->rx_pkt = rx_buf;
561 }
562 
563 static void efx_rx_deliver(struct efx_channel *channel,
564 			   struct efx_rx_buffer *rx_buf)
565 {
566 	struct sk_buff *skb;
567 
568 	/* We now own the SKB */
569 	skb = rx_buf->u.skb;
570 	rx_buf->u.skb = NULL;
571 
572 	/* Set the SKB flags */
573 	skb_checksum_none_assert(skb);
574 
575 	/* Record the rx_queue */
576 	skb_record_rx_queue(skb, channel->rx_queue.core_index);
577 
578 	/* Pass the packet up */
579 	if (channel->type->receive_skb)
580 		channel->type->receive_skb(channel, skb);
581 	else
582 		netif_receive_skb(skb);
583 
584 	/* Update allocation strategy method */
585 	channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB;
586 }
587 
588 /* Handle a received packet.  Second half: Touches packet payload. */
589 void __efx_rx_packet(struct efx_channel *channel, struct efx_rx_buffer *rx_buf)
590 {
591 	struct efx_nic *efx = channel->efx;
592 	u8 *eh = efx_rx_buf_eh(efx, rx_buf);
593 
594 	/* If we're in loopback test, then pass the packet directly to the
595 	 * loopback layer, and free the rx_buf here
596 	 */
597 	if (unlikely(efx->loopback_selftest)) {
598 		efx_loopback_rx_packet(efx, eh, rx_buf->len);
599 		efx_free_rx_buffer(efx, rx_buf);
600 		return;
601 	}
602 
603 	if (!(rx_buf->flags & EFX_RX_BUF_PAGE)) {
604 		struct sk_buff *skb = rx_buf->u.skb;
605 
606 		prefetch(skb_shinfo(skb));
607 
608 		skb_reserve(skb, efx->type->rx_buffer_hash_size);
609 		skb_put(skb, rx_buf->len);
610 
611 		if (efx->net_dev->features & NETIF_F_RXHASH)
612 			skb->rxhash = efx_rx_buf_hash(eh);
613 
614 		/* Move past the ethernet header. rx_buf->data still points
615 		 * at the ethernet header */
616 		skb->protocol = eth_type_trans(skb, efx->net_dev);
617 
618 		skb_record_rx_queue(skb, channel->rx_queue.core_index);
619 	}
620 
621 	if (unlikely(!(efx->net_dev->features & NETIF_F_RXCSUM)))
622 		rx_buf->flags &= ~EFX_RX_PKT_CSUMMED;
623 
624 	if (likely(rx_buf->flags & (EFX_RX_BUF_PAGE | EFX_RX_PKT_CSUMMED)) &&
625 	    !channel->type->receive_skb)
626 		efx_rx_packet_gro(channel, rx_buf, eh);
627 	else
628 		efx_rx_deliver(channel, rx_buf);
629 }
630 
631 void efx_rx_strategy(struct efx_channel *channel)
632 {
633 	enum efx_rx_alloc_method method = rx_alloc_method;
634 
635 	if (channel->type->receive_skb) {
636 		channel->rx_alloc_push_pages = false;
637 		return;
638 	}
639 
640 	/* Only makes sense to use page based allocation if GRO is enabled */
641 	if (!(channel->efx->net_dev->features & NETIF_F_GRO)) {
642 		method = RX_ALLOC_METHOD_SKB;
643 	} else if (method == RX_ALLOC_METHOD_AUTO) {
644 		/* Constrain the rx_alloc_level */
645 		if (channel->rx_alloc_level < 0)
646 			channel->rx_alloc_level = 0;
647 		else if (channel->rx_alloc_level > RX_ALLOC_LEVEL_MAX)
648 			channel->rx_alloc_level = RX_ALLOC_LEVEL_MAX;
649 
650 		/* Decide on the allocation method */
651 		method = ((channel->rx_alloc_level > RX_ALLOC_LEVEL_GRO) ?
652 			  RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB);
653 	}
654 
655 	/* Push the option */
656 	channel->rx_alloc_push_pages = (method == RX_ALLOC_METHOD_PAGE);
657 }
658 
659 int efx_probe_rx_queue(struct efx_rx_queue *rx_queue)
660 {
661 	struct efx_nic *efx = rx_queue->efx;
662 	unsigned int entries;
663 	int rc;
664 
665 	/* Create the smallest power-of-two aligned ring */
666 	entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE);
667 	EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
668 	rx_queue->ptr_mask = entries - 1;
669 
670 	netif_dbg(efx, probe, efx->net_dev,
671 		  "creating RX queue %d size %#x mask %#x\n",
672 		  efx_rx_queue_index(rx_queue), efx->rxq_entries,
673 		  rx_queue->ptr_mask);
674 
675 	/* Allocate RX buffers */
676 	rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer),
677 				   GFP_KERNEL);
678 	if (!rx_queue->buffer)
679 		return -ENOMEM;
680 
681 	rc = efx_nic_probe_rx(rx_queue);
682 	if (rc) {
683 		kfree(rx_queue->buffer);
684 		rx_queue->buffer = NULL;
685 	}
686 	return rc;
687 }
688 
689 void efx_init_rx_queue(struct efx_rx_queue *rx_queue)
690 {
691 	struct efx_nic *efx = rx_queue->efx;
692 	unsigned int max_fill, trigger, max_trigger;
693 
694 	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
695 		  "initialising RX queue %d\n", efx_rx_queue_index(rx_queue));
696 
697 	/* Initialise ptr fields */
698 	rx_queue->added_count = 0;
699 	rx_queue->notified_count = 0;
700 	rx_queue->removed_count = 0;
701 	rx_queue->min_fill = -1U;
702 
703 	/* Initialise limit fields */
704 	max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM;
705 	max_trigger = max_fill - EFX_RX_BATCH;
706 	if (rx_refill_threshold != 0) {
707 		trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
708 		if (trigger > max_trigger)
709 			trigger = max_trigger;
710 	} else {
711 		trigger = max_trigger;
712 	}
713 
714 	rx_queue->max_fill = max_fill;
715 	rx_queue->fast_fill_trigger = trigger;
716 
717 	/* Set up RX descriptor ring */
718 	rx_queue->enabled = true;
719 	efx_nic_init_rx(rx_queue);
720 }
721 
722 void efx_fini_rx_queue(struct efx_rx_queue *rx_queue)
723 {
724 	int i;
725 	struct efx_rx_buffer *rx_buf;
726 
727 	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
728 		  "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue));
729 
730 	/* A flush failure might have left rx_queue->enabled */
731 	rx_queue->enabled = false;
732 
733 	del_timer_sync(&rx_queue->slow_fill);
734 	efx_nic_fini_rx(rx_queue);
735 
736 	/* Release RX buffers NB start at index 0 not current HW ptr */
737 	if (rx_queue->buffer) {
738 		for (i = 0; i <= rx_queue->ptr_mask; i++) {
739 			rx_buf = efx_rx_buffer(rx_queue, i);
740 			efx_fini_rx_buffer(rx_queue, rx_buf);
741 		}
742 	}
743 }
744 
745 void efx_remove_rx_queue(struct efx_rx_queue *rx_queue)
746 {
747 	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
748 		  "destroying RX queue %d\n", efx_rx_queue_index(rx_queue));
749 
750 	efx_nic_remove_rx(rx_queue);
751 
752 	kfree(rx_queue->buffer);
753 	rx_queue->buffer = NULL;
754 }
755 
756 
757 module_param(rx_alloc_method, int, 0644);
758 MODULE_PARM_DESC(rx_alloc_method, "Allocation method used for RX buffers");
759 
760 module_param(rx_refill_threshold, uint, 0444);
761 MODULE_PARM_DESC(rx_refill_threshold,
762 		 "RX descriptor ring refill threshold (%)");
763 
764